

Type SCO2
Size 1, 3-Pole Contactor

Type SCO3
Size 1, 3-Pole Starter

Starter with MOTOR LOGIC

Starter with Melting Alloy

AC MAGNETIC CONTACTORS CLASS 8502

General Information

Class 8502 Type S magnetic contactors are used to switch heating loads, capacitors, transformers, and electric motors where overload protection is separately provided. Class 8502 contactors are available in NEMA Sizes 00-7. Type S contactors are designed for operation at 600 Volts, AC 50-60 Hertz.

Holding Circuit Contact

A normally open holding circuit contact for three wire control is provided on all contactors as standard. Sizes 00-2 contactors use a Class 9999 SX11 auxiliary contact as the holding circuit contact. Sizes 3-7 contactors use a Class 9999 SX6 auxiliary contact as the holding circuit contact. See Class 9999 for the holding circuit contact electrical ratings. On Size 00-1 single phase contactors, a power pole is used as the holding circuit contact and therefore has the same rating as the power contacts.

Enclosures

Class 8502 magnetic contactors are available in the following enclosures:

- NEMA Type 1 General Purpose
- NEMA Type 4 \& $4 X$ Watertight and Dusttight Stainless Steel
- NEMA Type 4X Watertight, Dusttight, and Corrosion Resistant Glass - Polyester
- NEMA Type 7 \& 9 Bolted and Spin-Top for Hazardous Locations
- NEMA Type 12 Dusttight and Driptight for Industrial Use
The NEMA Type 4 \& 4X stainless steel enclosure (Sizes 0-5) has a brushed finish. For an electropolished finish, specify Form G16 and add 15% to the price of the standard device.
Also, NEMA Type 12 devices are available UL Listed for use in Class II, Division 2, Group G and Class III, Divisions 1 and 2 locations. Request Form G21, no additional charge.

Separate enclosures are available, see Class 9991.

AC MAGNETIC STARTERS CLASS 8536

General Information

Class 8536 Type S magnetic starters are used for full voltage starting and stopping AC squirrel cage motors. Motor overload protection is provided by melting alloy type thermal overload relays. Class 8536 starters are available in NEMA Sizes 00-7. Type S starters are designed for operation at 600 Volts AC, 50-60 Hertz.

Holding Circuit Contact

A normally open holding circuit contact for three wire control is provided on all contactors as standard. Sizes 00-2 contactors use a Class 9999 SX11 auxiliary contact as the holding circuit contact. Sizes 3-7 contactors use a Class 9999 SX6 auxiliary contact as the holding circuit contact. See Class 9999 for the holding circuit contact electrical ratings.

Overload Relays with Melting Alloys

Class 8536 Type S Sizes 00-6 starters are provided with a melting alloy thermal overload relay as standard. Interchangeable thermal units are available in standard trip (Class 20) Sizes 00-6, quick trip (Class 10) Sizes 00-4, and slow trip (Class 30) Sizes 00-3. Single-phase starters use one thermal unit, 3-phase starters use three thermal units.
Class 8536 Size 7 starters are provided with solid state Motor Logic which has selectable trip Class10/20, Ground fault detection, and Communication capabilities for future enhancement. The solid state overload relay is ambient insensitive and features phase loss, phase unbalance and over-current protection.

MOTOR LOGIC ${ }^{\text {TM }}$ Solid State Overload Relay (SSOLR)

Solid state overload relays are available for Sizes $00-7$ starters. These ambient insensitive overload relays provide phase loss protection, phase unbalance protection and a LED power indicator. For additional information, see the Class 9065 catalog section. To order Type S starters with solid state overload relays, see Factory Modification (FORMS).

Bimetallic overload relays are also available for Sizes 0-6. Ambient Compensated and Noncompensated versions are supplied with manual

Full Voltage Contactors and Starters - NEMA Application Data - Class 8502, 8536

and automatic reset, trip current adjustment, and an alarm contact on Sizes 0-2. For additional information, see the Class 9065 catalog section. To order Type S starters with bimetallic overload relays, see Factory Modifications (FORMS).

Enclosures

Class 8536 magnetic starters are available in the following enclosures.

- NEMA Type 1 General Purpose Enclosure
- NEMA Type 3R Rainproof, Sleet Resistant for Outdoor Use
- NEMA Type 4 \& 4X Watertight and Dusttight
- NEMA Type 4X Watertight, Dusttight, and Corrosion Resistant Glass - Polyester
- NEMA Type 7 \& 9 Bolted and Spin-Top for Hazardous Locations
- NEMA Type 9 Bolted for Hazardous Locations
- NEMA Type 12 Dusttight and Driptight for Industrial Use
The NEMA Type $4 \& 4$ X stainless steel enclosure (Sizes 0-5) has a brushed finish. For an electropolished finish, specify Form G16 and add 15% to the price of the standard device. Sizes 6 \& 7 are painted sheet steel and are rated NEMA 4 ONLY.

Also NEMA Type 12 devices are available UL Listed for use in Class II, Division 2, Group G and Class III, Divisions 1 and 2 locations. Specify Form G21, no additional charge.
Separate enclosures are available, see Class 9991.

Coil Voltages

AC coils are available for application on 50-60 Hertz. NEMA Sizes 00-5 are supplied with coils that are designed to operate satisfactorily on line voltages of $85 \%-110 \%$ of rated voltage. NEMA Size 6 and 7 contactors are supplied with a DC coil operated by a solid state rectifier circuit that is powered by an AC source.
Please note that Voltage Codes have been added to the Type designations in order to improve customer service. It is necessary to include the Voltage Code when ordering contactors and starters. Also, 120 Volt Polyphase contactors and starters will be wired for separate control.

Auxiliary Contacts

Additional auxiliary contacts may be added to Type S contactors. See Page 15 for maximum number of auxiliary units and Form designations for factory installed auxiliary contacts.

Type S Accessories

Additional accessories such as power poles, pneumatic timer attachments, and cover mounted control stations are available as factory or field modifications.

Selection - Class 8536

3-Pole Polyphase-600 Volt AC Max. $50 / 60 \mathrm{~Hz}$-Three Thermal Units Required

NEMA Size	Continuous Current Ratings	Motor Volts	Max. HP	* Coil Voltage	Open Type Type	NEMA Type 1 General Purpose Enclosure Type	NEMA Type 4 \& 4X Watertight, Dusttight Brushed Stainless Steel Enclosure (Size 0-5) Type	NEMA Type 4X Watertight, Dusttight, Corrosion-Resistant Glass-Polyester Enclosure Type
00	9	Separat 200 230 460 575	Controlt $11 / 2$ $11 / 2$ 2 2	$\begin{aligned} & 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline \text { SAO12V02S } \\ & \text { SAO12V08 } \\ & \text { SAO12V03 } \\ & \text { SAO12V06 } \\ & \text { SAO12V07 } \end{aligned}$	$\begin{aligned} & \hline \text { SAG12V02S } \\ & \text { SAG12V08 } \\ & \text { SAG12V03 } \\ & \text { SAG12V06 } \\ & \text { SAG12V07 } \\ & \hline \end{aligned}$	Use Size 0	Use Size 0
0	18	Separate 200 230 460 575	$\begin{aligned} & \text { Controlt } \\ & 3 \\ & 3 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline \text { SBO2V02S } \\ & \text { SBO2V08 } \\ & \text { SBO2V03 } \\ & \text { SBO2V06 } \\ & \text { SBO2V07 } \end{aligned}$	$\begin{aligned} & \hline \text { SBG2V02S } \\ & \text { SBG2V08 } \\ & \text { SBG2V03 } \\ & \text { SBG2V06 } \\ & \text { SBG2V07 } \end{aligned}$	SBW12V02S SBW12V08 SBW12V03 SBW12V06 SBW12V07	SBW22V02S SBW22V08 SBW22V03 SBW22V06 SBW22V07
1	27	Separate 200 230 460 575	Controlt $71 / 2$ $71 / 2$ 10 10	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline \text { SCO3V02S } \\ & \text { SCO3V08 } \\ & \text { SCO3V03 } \\ & \text { SCO3V06 } \\ & \text { SCO3V07 } \end{aligned}$	$\begin{aligned} & \hline \text { SCG3V02S } \\ & \text { SCG3V08 } \\ & \text { SCG3V03 } \\ & \text { SCG3V06 } \\ & \text { SCG3V07 } \end{aligned}$	SCW13V02S SCW13V08 SCW13V03 SCW13V06 SCW13V07	SCW23V02S SCW23V08 SCW23V03 SCW23V06 SCW23V07
2	45	Separate 200 230 460 575	Controlt 10 15 25 25	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SDO1V02S } \\ \text { SDO1V08 } \\ \text { SDO1V03 } \\ \text { SDO1V06 } \\ \text { SDO1V07 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SDG1V02S } \\ & \text { SDG1V08 } \\ & \text { SDG1V03 } \\ & \text { SDG1V06 } \\ & \text { SDG1V07 } \end{aligned}$	SDW11V02S SDW11V08 SDW11V03 SDW11V06 SDW11V07	SDW21V02S SDW21V08 SDW21V03 SDW21V06 SDW21V07
3	90	Separate 200 230 460 575	Controlt 25 30 50 50	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SEO1V02S } \\ & \text { SEO1V08 } \\ & \text { SEO1V03 } \\ & \text { SEO1V06 } \\ & \text { SEO1V07 } \end{aligned}$	$\begin{array}{\|l} \hline \text { SEG1V02S } \\ \text { SEG1V08 } \\ \text { SEG1V03 } \\ \text { SEG1V06 } \\ \text { SEG1V07 } \\ \hline \end{array}$	SEW11V02S SEW11V08 SEW11V03 SEW11V06 SEW11V07	SEW21V02S SEW21V08 SEW21V03 SEW21V06 SEW21V07
4	135	Separate 200 230 460 575	Controlt 40 50 100 100	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$	$\begin{aligned} & \hline \text { SFO1V02S } \\ & \text { SFO1V08 } \\ & \text { SFO1V03 } \\ & \text { SFO1V06 } \\ & \text { SFO1V07 } \end{aligned}$	$\begin{array}{\|l} \hline \text { SFG1V02S } \\ \text { SFG1V08 } \\ \text { SFG1V03 } \\ \text { SFG1V06 } \\ \text { SFG1V07 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SFW11V02S } \\ & \text { SFW11V08 } \\ & \text { SFW11V03 } \\ & \text { SFW11V06 } \\ & \text { SFW11V07 } \end{aligned}$	SFW21V02S SFW21V08 SFW21V03 SFW21V06 SFW21V07
5	270	Separate 200 230 460 575	Controlt 75 100 200 200	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \end{aligned}$	$\begin{array}{\|l} \hline \text { SGO1V02S } \\ \text { SGO1V08 } \\ \text { SGO1V03 } \\ \text { SGO1V06 } \\ \text { SGO1V07 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SGG1V02S } \\ & \text { SGG1V08 } \\ & \text { SGG1V03 } \\ & \text { SGG1V06 } \\ & \text { SGG1V07 } \end{aligned}$	SGW11V02S SGW11V08 SGW11V03 SGW11V06 SGW11V07	\ldots
6	540	Separate 200 230 460 575	Controlt 150 200 400 400	$\begin{array}{\|l} \hline 120 \\ 208 \\ 240 \\ 480 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & \text { SHO2V02S } \\ & \text { SHO2V08 } \\ & \text { SHO2V03 } \\ & \text { SHO2V06 } \\ & \text { SHO2V07 } \end{aligned}$	$\begin{aligned} & \hline \text { SHG2V02S } \\ & \text { SHG2V08 } \\ & \text { SHG2V03 } \\ & \text { SHG2V06 } \\ & \text { SHG2V07 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SHW2V02S } \\ & \text { SHW2V08 } \\ & \text { SHW2V03 } \\ & \text { SHW2V06 } \\ & \text { SHW2V07 } \\ & \hline \end{aligned}$	\ldots
7	810	Separate 200 230 460 575	Controlt $-\quad$ 300 600 600	$\begin{aligned} & \hline 120 \\ & 208 \\ & 240 \\ & 480 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { SJO2V02S } \\ & \text { SJO2V08 } \\ & \text { SJO2V03 } \\ & \text { SJO2V06 } \\ & \text { SJO2V07 } \end{aligned}$	$\begin{array}{\|l} \hline \text { SJG2V02S } \\ \text { SJG2V08 } \\ \text { SJG2V03 } \\ \text { SJG2V06 } \\ \text { SJG2V07 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SJW2V02S } \\ & \text { SJW2V08 } \\ & \text { SJW2V03 } \\ & \text { SJW2V06 } \\ & \text { SJW2V07 } \\ & \hline \end{aligned}$	\ldots
$\begin{array}{ll} \hline \boldsymbol{*} & \text { Siz } \\ \mathbf{t} & 120 \\ * & \text { Coil } \\ & \text { volt } \\ \hline \end{array}$	6 and 7 are rat Volt Polyphase voltage code m age codes below	d NEMA tarters ar st be spe and insert	yype 4 only	separate c er this prod in the HOW	ntrol. uct. Refer to s TO ORDER	dard coil voltage ck.	des listed in selection tabl	above or additional standard

Coil Voltage Codes

Voltage		Code
$\mathbf{6 0 ~ H z}$	50 Hz	
$24 \pm$	\ldots	VO1
120	110	VO2
208	\ldots	VO8
240	440	VO3
480	550	VO6
600	Specify	VO7
Specify	V99	
24 V		

- 24 V coils are not available on Sizes 4-7. On Sizes 00-3, where 24 V coils are available, Form S (separate control) must be specified.

File LR60905

C IEC 947-4-1 Sizes $00-5$ only

How to Order:

To Order Specify:	Catalog Number			
	Class	Type	$\begin{array}{c}\text { Coil } \\ \text { - Class Number } \\ \text { - Type Number } \\ \text { - Coil Voltage Code } \\ \text { - Form(s) }\end{array}$	
Code				

	og 9999CT9701
Application Data	Pages 13-16
Dimensions	Pages 17-20
Separate Enclosures (Class	99CT9701
Replacement Parts (Class 9998)	Refer to Catalog 9999CT9701
Type S Accessories (Class 9999)	Refer to Catalog 9999CT9701

NEMA Size	Load Volts	Maximum Horsepower Rating - Nonplugging and Nonjogging Duty		Maximum Horsepower Rating - Plugging and Jogging Duty †		Continuous Current Rating, Amperes 600 Volt Max.	Service - Limit Current Rating, Amperes *	Tungsten and Infrared Lamp Load, Amperes- 250 Volts Max. \star	Resistance Heating Loads, KW - Other Than Infrared Lamp Loads キ		KVA Rating for Switching Transformer Primaries at 50 or 60 Cycles				3 Phase Rating for Switching Capacitors	
				Transformers Having Inrush Currents (Worst Case Peak) of Not More Than 20 Times Peak of Continuous Current Rating	Transformers Having Inrush Currents (Worst Case Peak) of Over 20 Through 40 Times Peak of Continuous Current Rating											
		Single Phase	PolyPhase			Single Phase			PolyPhase	Single Phase	PolyPhase	Single Phase	Poly- Phase	$\begin{aligned} & \hline \text { Single } \\ & \text { Phase } \end{aligned}$	PolyPhase	KVAR
00	$\begin{array}{\|l\|} \hline 115 \\ 200 \\ 230 \\ 380 \\ 460 \\ 575 \\ \hline \end{array}$	$1 / 2$ 1 1 \cdots \cdots \cdots	$\begin{array}{\|l} \hline 11 / 2 \\ 11 / 2 \\ 111 / 2 \\ 2 \\ 2 \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 5 \\ 5 \\ \cdots \\ \cdots \end{array}$	\cdots \cdots \cdots \cdots \cdots			\cdots \cdots \cdots \cdots \cdots	\cdots \cdots \cdots \cdots \cdots		
0	$\begin{aligned} & \hline 115 \\ & 200 \\ & 230 \\ & 380 \\ & 460 \\ & 575 \end{aligned}$	1 \ldots \cdots \cdots \cdots \cdots	3 3 5 5 5	$\begin{array}{\|l\|} \hline 1 / 2 \\ \cdots \\ 1 \\ \cdots \\ \cdots \end{array}$	$\begin{array}{\|l} 111 / 2 \\ 11 / 2 \\ 11^{11 / 2} \\ 2 \\ 2 \end{array}$		$\begin{aligned} & \hline 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 10 \\ 10 \\ 10 \\ \cdots \\ \cdots \end{array}$			$\begin{array}{\|l\|} \hline 0.6 \\ 1.2 \\ 1.2 \\ \dddot{2.4} \\ 3.0 \end{array}$	$\begin{aligned} & 1.8 \\ & 2.1 \\ & \dddot{4.2} \\ & 5.2 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & \dddot{0} \ddot{6} \\ & \dddot{10} .2 \\ & 1.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.9 \\ 1.0 \\ \dddot{2.1} \\ 2.6 \\ \hline \end{array}$	\cdots \cdots \cdots \cdots
1	$\begin{aligned} & \hline 115 \\ & 200 \\ & 230 \\ & 3800 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	2 \ldots 3 \cdots \cdots \cdots	$\begin{array}{\|l\|} \hline 71 / 2 \\ 71 / 2 \\ 10 \\ 10 \\ 10 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1 \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \cdots \\ \hline \end{array}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 5 \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \\ & 27 \\ & 27 \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 15 \\ 15 \\ 15 \\ \ldots \\ \cdots \\ \cdots \\ \hline \end{array}$	$\begin{array}{\|l} \hline 3 \\ \dddot{6} \\ \dddot{12} \\ 12 \\ 15 \\ \hline \end{array}$	5 9.1 10 16.5 20 25	$\begin{array}{\|l\|} \hline 1.2 \\ \cdots .4 \\ \dddot{2} .4 \\ \ddot{4} .9 \\ 6.2 \\ \hline \end{array}$	$\begin{array}{\|l} 3.6 \\ 4.3 \\ \ddot{8.5} \\ 11.0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.6 \\ 7.2 \\ 1.2 \\ \dddot{2} .5 \\ 3.1 \\ \hline \end{array}$	$\begin{aligned} & 1.8 \\ & 2.1 \\ & \dddot{4.3} \\ & 5.3 \\ & \hline \end{aligned}$	\ldots \cdots \cdots	
1P	115 230	3 5	\cdots	$\begin{array}{\|l} \hline 11 / 2 \\ 3 \end{array}$	\ldots	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & 42 \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 24 \end{aligned}$.	\cdots	\ldots	\ldots	..	\ldots	\cdots	
2	$\begin{aligned} & \hline 115 \\ & 200 \\ & 230 \\ & 3800 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	3 $711 / 2$ \cdots \cdots	$\begin{aligned} & 10 \\ & 15 \\ & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 71 / 20 \\ & 10 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	45 45 45 45 45 45	52 52 52 52 52 52	$\begin{array}{\|l\|} \hline 30 \\ 30 \\ 30 \\ \ldots \\ \ldots \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ \dddot{10} \\ \dddot{20} \\ 20 \\ 25 \end{array}$	$\begin{array}{\|l\|} \hline 8.5 \\ 15.4 \\ 17 \\ 28 \\ 34 \\ 43 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.1 \\ \ddot{4} .1 \\ \dddot{8.3} \\ 10.0 \\ \hline \end{array}$	$\begin{array}{\|l} 6.3 \\ 7.2 \\ 74 \\ 18 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.0 \\ & \ddot{2} .1 \\ & \dddot{4} .2 \\ & 5.2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.1 \\ 3.6 \\ 7 \\ 7.2 \\ 8.9 \end{array}$	$\begin{aligned} & \dddot{8} \\ & \dddot{16} \\ & 20 \end{aligned}$	
3	$\begin{aligned} & \hline 115 \\ & 200 \\ & 230 \\ & 380 \\ & 460 \\ & 575 \end{aligned}$	\cdots \cdots \cdots \cdots \cdots	$\begin{aligned} & 25 \\ & 30 \\ & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \\ & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & \hline 104 \\ & 104 \\ & 104 \\ & 104 \\ & 104 \\ & 104 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 60 \\ & 60 \\ & \cdots \\ & \cdots \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ \dddot{20} \\ \dddot{40} \\ 50 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ 31 \\ 34 \\ 56 \\ 68 \\ 86 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.1 \\ \ddot{8.1} \\ \dddot{16} \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & 14 \\ & \dddot{20} \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & \dddot{4.1} \\ & \ddot{8} .1 \\ & 10 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 7.0 \\ & \dddot{14} \\ & 18 \end{aligned}$	$\begin{aligned} & \ddot{27} \\ & \dddot{53} \\ & 67 \end{aligned}$	
4	$\begin{array}{\|l\|} \hline 2000 \\ 230 \\ 380 \\ 460 \\ 575 \\ \hline \end{array}$	\cdots \cdots \cdots \cdots \cdots	$\begin{array}{\|l\|} \hline 40 \\ 50 \\ 75 \\ 1000 \\ 100 \\ \hline \end{array}$		$\begin{array}{\|l} \hline 25 \\ 30 \\ 50 \\ 60 \\ 60 \\ \hline \end{array}$	135 135 135 135 135	$\begin{array}{\|l\|} \hline 156 \\ 156 \\ 156 \\ 156 \\ 156 \\ \hline \end{array}$	$\begin{aligned} & \hline 120 \\ & 120 \\ & \cdots \\ & \cdots \end{aligned}$	$\begin{aligned} & 30 \\ & \ldots 0 \\ & 75 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 45 \\ 52 \\ 86.7 \\ 105 \\ 130 \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & \dddot{27} \\ & 34 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \\ 23 \\ \dddot{47} \\ 59 \\ \hline \end{array}$	$\begin{aligned} & 6.8 \\ & 74 \\ & 14 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 12 \\ \hdashline 23 \\ 29 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 40 \\ \dddot{80} \\ 100 \\ \hline \end{array}$	
5	$\begin{aligned} & \hline 200 \\ & 230 \\ & 380 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$.	$\begin{aligned} & \hline 75 \\ & 100 \\ & 150 \\ & 200 \\ & 200 \end{aligned}$		$\begin{array}{\|l\|} \hline 60 \\ 75 \\ 125 \\ 1550 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 270 \\ 270 \\ 270 \\ 270 \\ 270 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 311 \\ 311 \\ 311 \\ 311 \\ 311 \\ \hline \end{array}$	$\begin{aligned} & \hline 240 \\ & 240 \\ & \cdots \\ & \cdots \\ & \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 7120 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|} \hline 91 \\ 105 \\ 173 \\ 210 \\ 260 \end{array}$	$\begin{aligned} & 27 \\ & \dddot{54} \\ & 68 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 41 \\ 47 \\ \dddot{94} \\ 117 \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & \dddot{27} \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 24 \\ & \ddot{47} \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 80 \\ 1600 \\ 200 \\ \hline \end{array}$	
6	$\begin{aligned} & 200 \\ & 230 \\ & 380 \\ & 460 \\ & 575 \\ & \hline \end{aligned}$	\cdots \cdots \cdots \cdots \cdots	$\begin{array}{\|l\|} \hline 150 \\ 200 \\ 300 \\ 400 \\ 400 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 125 \\ 150 \\ 250 \\ 300 \\ 300 \\ \hline \end{array}$	540 540 540 540 540	$\begin{aligned} & 621 \\ & 621 \\ & 621 \\ & 621 \\ & 621 \end{aligned}$	$\begin{aligned} & \hline 480 \\ & 480 \\ & \cdots \\ & \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & \dddot{200} \\ & 300 \\ & \hline \end{aligned}$	182 210 342 415 515	$\begin{aligned} & \ddot{54} \\ & \dddot{108} \\ & 135 \end{aligned}$	$\begin{aligned} & \hline 81 \\ & 94 \\ & 188 \\ & 188 \\ & 234 \end{aligned}$	$\begin{aligned} & 27 \\ & \dddot{54} \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 47 \\ & \dddot{94} \\ & 117 \end{aligned}$	$\begin{array}{\|l\|} 160 \\ 300 \\ 300 \\ 400 \\ \hline \end{array}$	
7	$\begin{array}{\|l\|} \hline 230 \\ 460 \\ 575 \\ \hline \end{array}$	\cdots	$\begin{array}{\|l} \hline 300 \\ 600 \\ 600 \\ \hline \end{array}$	\ldots	\ldots	$\begin{array}{\|l\|} \hline 810 \\ 810 \\ 810 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 932 \\ 932 \\ 932 \\ \hline \end{array}$	\cdots	$\begin{array}{\|l\|} \hline 180 \\ 360 \\ 450 \\ \hline \end{array}$	$\begin{aligned} & 315 \\ & 625 \\ & 775 \\ & \hline \end{aligned}$	\cdots	\cdots	\cdots	\cdots \cdots \cdots	$\begin{array}{\|l\|} \hline 240 \\ 480 \\ 600 \\ \hline \end{array}$	

$\dagger \quad$ Ratings shown are for applications requiring repeated interruptions of stalled motor current or repeated closing of high transient currents encountered in rapid motor reversal, involving more than five openings or closings per minute and more than ten in a ten-minute period, such as plug-stop, plug-reverse or jogging duty. Ratings apply to single speed and multi-speed

* Per NEMA Standards paragraph ICS 2-321.20, the service-limit current represents the maximum ms current, in amperes, which the controller may be expected to carry for protracted periods in normal service. At service-limit current ratings, temperature rises may exceed those obtained by testing the controller at its continuous current rating. The ultimate trip current of overcurrent (overload) relays or other motor protective devices shall not exceed the service-limit current ratings of the controller.
$\star \quad$ FLUORESCENT LAMP LOADS - 300 VOLTS AND LESS - The characteristics of fluorescent lamps are such that it is not necessary to derate Class 8502 contactors below their normal continuous current rating. Class 8903 contactors may also be used with fluorescent lamp loads. For controlling tungsten and infrared lamp loads, and resistance heating loads, Class 8903 ac lighting contactors are recommended. These contactors are specifically designed for such loads and are applied at their full rating as listed in the Class 8903 Section.
$\ddagger \quad$ Ratings apply to contactors which are employed to switch the load at the utilization voltage of the heat producing element with a duty which requires continuous operation of not more than
five openings per minute. Class 8903 Types L and S lighting contactors are rated for resistance heating loads.
- When discharged, a capacitor has essentially zero impedance. For repetitive switching by contactor, sufficient impedance should be connected in series to limit inrush current to not more than 6 times the contactor rated continuous current. In many installations, the impedance of connecting conductors may be sufficient for this purpose. When switching to connect additional banks, the banks already on the line may be charged and can supply additional available short-circuit current which should be considered when selecting the impedance to limit the current. 6-7: 18,000 A RMS Sym. If available fault current is greater than these values, connect sufficient impedance in series as noted in the previous paragraph. 6-7: 18,000 A RMS Sym. If available fault current is gre
See Page 16 regarding operation rates for Size $6 \& 7$.
See Page 16 regarding operation rates for Size 6 \& 7 .
The motor ratings in the above table are NEMA standard ratings and apply only when the code letter of the motor is the same as or occurs earlier in the alphabet than is shown in the table below. Motors having code letters occurring later in the alphabet may require a larger controller. Consult local Square D field office.

Motor HP Rating	Maximum Allowable Motor Code Letter
$1112-2$	L
$3-5$	K
$7112 \&$ above	H

CLASS 8502 AND 8536 APPLICATION DATA

Power Contact Ratings

All contactors and starters are rated in accordance with NEMA standards. The ratings shown in the price tables are for normal service. For complete data on power contact ratings, refer to Page 13.

Short Circuit Protection

According to the National Electrical Code branch circuit overcurrent protection must be provided for each contactor or starter. For starters refer to instructions furnished with the thermal unit selection table. For contactors (Class 8502 or 8702) provide branch circuit overcurrent protection in accordance with the National Electrical Code, except do not exceed the maximum protective device ratings in table below.

NEMA Size	Maximum Voltage	Class K5, RK5 or RK1 Fuse (Ampere)	Class J or T Fuse (Ampere)	Inverse-Time Circuit Breaker (Ampere)
00	$\begin{aligned} & 600 \\ & 250 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 12 \end{array}$	15	15
0	$\begin{aligned} & 600 \\ & 250 \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \\ 25 \end{array}$	30	$\begin{aligned} & 20 \\ & 35 \end{aligned}$
1	$\begin{aligned} & 600 \\ & 250 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 40 \end{array}$	60	$\begin{aligned} & \hline 40 \\ & 60 \end{aligned}$
2	$\begin{aligned} & 600 \\ & 250 \end{aligned}$	60	100	$\begin{array}{\|l\|} \hline 80 \\ 90 \end{array}$
3	$\begin{aligned} & 600 \\ & 250 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	200	$\begin{aligned} & 125 \\ & 150 \end{aligned}$
4	600	200	400	225
5	600	400	600	400
6	600	600	1200*	800
7	600	600	1600*	1200
* Class L Fuse only.				

Capacitor Switching

The kilovar ratings of enclosed, three phase contactors used as switches for capacitor loads, when only one load appears on the secondary of a distribution system are shown in the table on Page 13.

Coil Burdens

NEMA Size	No. of Poles	Inrush VA		Sealed VA		Sealed Watts	
		50	60	50	60	50	60
		Hertz	Hertz	Hertz	Hertz	Hertz	Hertz
00	2-3	.	165	...	33	. . 7	6
0 \& 1	1-5	232	245	26	27	7.7	7.8
2	2 \& 3	296	311	36	37	12	14
	4 \& 5	429	438	37	38		
3	2-3	676	700	47	46	15	14
	4-5	1260	1185	89	85	23.4	22
4	2-5	...	973	. .	81	\ldots	25
5	2-3	2970	2970	250	212	42	39
6 *	2-3	1495	1780	56	48	27	32
7ぇ	2-3	\ldots	1960	\ldots	59	\ldots	36
- Mean values. Size 6 and 7 have a DC coil. The values shown are for the AC input to the DC power supply that provides power to the coil.							

Maintenance of Equipment

Class 9998 Repair Parts Kits are available for all Class 8502 contactors and Class 8536 starters. Service bulletins with a complete list of replaceable parts are supplied with all enclosed devices. Separate bulletins can be ordered and are listed along with the appropriate contact parts kit.

Device				Service Bulletin	Replacement Contacts Class 9998 Type
NEMA Type	Type	Series	No. of Poles		
00	SA	A	2-3	362AS	SL2
		B	2-3	556AS	SJ1
0	SB	A \& B	$\begin{aligned} & 1-3 \\ & 4 \\ & 5 \end{aligned}$	277AS 277AS \& 250AS 277AS \& 250AS	SL2 SLL2 (1)SL12 \& (1)SL22 or (1)SL2 \& (2)SL22
1	SC	A \& B	$\begin{aligned} & 1-3 \\ & 4 \\ & 5 \end{aligned}$	278AS 278AS \& 250AS 278AS \& 250AS	SL3 SL13 (1)SL13 \& (1)SL22 or (1)SL3 \& (2)SL22
1P	SC	A	2	278AS	SL3
2	SD	A	$\begin{aligned} & 2-3 \\ & 4 \\ & 5 \end{aligned}$	279AS 279AS \& 293AS 279AS \& 293AS	SL4 SL14 (1)SL14 \& (1)SL24 or (1)SL4 \& (2)SL24
3	SE	A	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 305 A S \\ & 305 A S \\ & 326 A S \\ & 326 A S \end{aligned}$	SL6 SL7 (2)SL6 (1)SL6 \& (1)SL7
4	SF	A	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array}$	306AS 306AS 326AS 326AS	$\begin{array}{\|l\|} \hline \text { SL8 } \\ \text { SL9 } \\ \text { (2)SL8 } \\ \text { (1)SL8 \& (1)SL9 } \\ \hline \end{array}$
5	SG	A	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 328 \mathrm{AS} \\ 328 \mathrm{AS} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SL10 } \\ & \text { SL11 } \\ & \hline \end{aligned}$
6	SH	A	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 342 A S \\ 342 A S \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SL25 } \\ & \text { SL26 } \\ & \hline \end{aligned}$
		B	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	370AS 370AS	$\begin{aligned} & \hline \text { SL25 } \\ & \text { SL26 } \\ & \hline \end{aligned}$
7	SJ	A	$\begin{array}{\|l} 2 \\ 3 \\ \hline \end{array}$	397AS	$\begin{aligned} & \text { SL30 } \\ & \text { SL31 } \\ & \hline \end{aligned}$

Terminals

NEMA Size	Type	Power Terminals		Control Terminals	
		Type of Lug	Wire Sizes* Min.-Max.	Type of Lug	Wire Sizes* Min.-Max.
$\begin{aligned} & 00, \\ & 0 \& 1 \end{aligned}$	$\begin{aligned} & \text { SA, SB } \\ & \text { \& SC } \end{aligned}$	Pressure Wire	\#14-\#8	Pressure Wire	\#16-\#12
2	SD	Box Lug	\#14-\#4	Pressure Wire	\#16-\#12
3	SE	Box Lug	\#14-1/0	Pressure Wire	\#16-\#12
4	SF	Box Lug	\#8-250 kcmil	Pressure Wire	\#16-\#12
5	SG	Box Lug	\#4-500 kcmil	Pressure Wire	\#16-\#12
6	SH	Parallel Groove	One or two 250-500 kcmil per phase	Pressure Wire	\#16-\#12
7	SJ	Parallel Groove	One to four 250-500 kcmil per phase	Pressure Wire	\#16-\#12
* Solid or stranded copper wire.					

Auxiliary Units

Auxiliary contacts, power poles, and timer attachments can be added by the factory or in the field on all Type S starters and contactors. The table below shows the maximum number of auxiliary units (in addition to the holding circuit contact) that can be added to a given size starter or contactor. In addition, it is possible to add a second internal contact on NEMA Size 0, 1, and 2 contactors and starters.

NEMA Size	Type	No. of Poles of Basic Contactor	Maximum Number of External Auxiliary Units (In addition to holding circuit contact)
00	SA	2-3	4 single circuit auxiliary contacts (N.O. or N.C.) if second internal auxiliary contact is not used.
$0,1 \& 2$	$\begin{aligned} & \text { SB } \\ & \text { SC } \\ & \text { SD } \end{aligned}$	1,2 or 3	4 single circuit auxiliary contacts (N.O. or N.C.)
			3 single circuit auxiliary contacts (N.O. or N.C.) plus 1 attached timer (ON or OFF delay).
			2 single circuit auxiliary contacts (N.O. or N.C.) plus 1 power pole adder (1 or 2 poles, N.O. or N.C.).
			1 attached timer (ON or OFF delay) plus 1 power pole adder (1 or 2 poles, N.O. or N.C.) plus 1 auxiliary contact.
		4 or 5	2 single circuit auxiliary contacts (N.O. or N.C.) 1 timer attachment plus 1 auxiliary contact.
3, 4 \& 5	$\begin{aligned} & \text { SE } \\ & \text { SF } \\ & \text { SG } \end{aligned}$	$\begin{aligned} & 2-5 \\ & \text { (Size } 3 \& 4) \end{aligned}$	4 single circuit auxiliary contacts (N.O. or N.C.)
			2 single circuit (Sizes 3\&4) or 3 single circuit (Size 5) auxiliary contacts plus 1 attached timer (ON or OFF delay).
			2 single circuit auxiliary contacts (N.O. or N.C.) plus 1 NEMA Size 0-1 or Size 2 power pole adder (1 or 2 poles, N.O. or N.C.)
6 \& 7	$\begin{aligned} & \text { SH } \\ & \text { SJ } \end{aligned}$	2-3	4 single circuit auxiliary contacts (N.O. or N.C.)
			3 single circuit auxiliary contacts (N.O. or N.C.) plus 1 attached timer (ON or OFF delay).
			2 single circuit auxiliary contacts (N.O. or N.C.) plus 1 NEMA Size 0-1 or Size 2 power pole adder (1 or 2 poles, N.O. or N.C.)

Factory Installed Auxiliary Contacts

Additional auxiliary contacts may be factory or field added to any Type S contactor or starter. See table above for maximum number of auxiliary units. The table below lists the Form designations for factory installed electrical contacts.

See Class 9999 for field modification kits.

Form Number of Additional Auxiliary Contacts

When ordering factory installed auxiliary contacts, the Form designations listed should be used.

Number of N.O. Contacts	Number of N.C. Contacts	Form Number
	1	
0	2	X01
	3	X02
	4	X03
	0	X04
	1	X10
	2	X11
	3	X12
	0	X13
3	1	X20
3	2	X21
4	0	X22

Control Circuit Transformers

Class 9070 Type T machine tool control transformers are normally used when it is necessary to provide a lower voltage to the control circuit. This transformer with fused protection may be ordered from the factory by specifying Form F4T. The addition of a transformer often requires the use of a larger enclosure. The table below shows the transformer selection for given sized starters and contactors with or without auxiliary units.
$\left.\begin{array}{l|l|l|l|l}\hline \begin{array}{l}\text { NEMA } \\ \text { Size }\end{array} & \text { Type } & \begin{array}{l}\text { No. } \\ \text { of } \\ \text { Poles }\end{array} & \text { Auxiliary Units }\end{array} \quad \begin{array}{l}\text { Transformer } \\ \text { Class 9070 } \\ \text { Type }\end{array}\right]$
enclosures have space for field mounting a fused control circuit
transformer. A Class 9070 Type GFT3 transformer and fuse block kit is available for Form F4T requirements in a NEMA Type 1 enclosure. NEMA Type 4 and 12 enclosures utilize a Class 9070 T150 transformer and a Class 9999 SF4 fuse block.
$\ddagger \quad$ A Class 9070 transformer is an integral part of the Size 6 and Size 7 control circuit providing 120 volt control circuit voltage as standard.

Power Poles

Single or double circuit power pole adders may be factory or field installed on 2 and 3 pole Type S contactors and starters. The table below lists the Form designation for factory installed power pole adders. Only one power pole adder may be installed per contactor.

Type	NEMA Size	Class 9999 Type	Form Designation
1 N.O.	0,1	SB6	Y428
SB11	Y436		
1 N.C.	0,1	SB7	Y429
SB12	Y437		
1 N.O., 1 N.C.	0,1	SB8 2	Y435
2 NB13	Y440		
2 N.C.	0,1	SB9	Y430
2	2,1	SB14	Y438

Full Voltage Contactors and Starters - NEMA Application Data - Class 8502, 8536

Size 6 Starter 8536 SH

Size 7 Starter 8536 SJ

Size 6 Type SH and Size 7 Type SJ Contactors and Starters

Size 6 Type SH and Size 7 Type SJ contactors and starters have a DC coil operated by a solid state rectifier circuit mounted on the device and powered from an ac source. The Size 6 and 7 are equipped as standard with a fused control circuit transformer (Form F4T) rated 240/480-120 volts 60 hertz, 220/440-110 volts 50 hertz. The purpose of this transformer is to provide an isolated 120 volts 60 hertz, 110 volts 50 hertz, supply for the control circuit. Size 6 and 7 devices may be ordered for other system voltages by specifying the voltage and frequency desired.

Operation Rates

Continuous operation rate: 3 operations/minute maximum. Jogging or Plugging Duty: 15 operations/minute - 3 minutes maximum.

Field conversion for other system voltages is accomplished by one of the following methods, NOT BYTHE USUAL PRACTICE OF CHANGING THE COIL:

1. If the factory wiring is indicated as being for 480 volts 60 hertz, 440 volts 50 hertz, conversion to 240 volts 60 hertz, 220 volts 50 hertz, can be accomplished by reconnecting the control transformer as illustrated on instruction sheet supplied with the controller. This is the same method that would be used on Class 9070 control circuit transformers. Conversion to any other voltage requires replacement of the control transformer. For other system voltages: i.e. 208, 277, 380, 600 volts, a new transformer with single voltage primary must be selected from table at right. Control transformer connections are illustrated on the instruction sheet supplied with the controller.
2. If the factory wiring is indicated as being for any voltage other than 480 volts 60 hertz, 440 volts 50 hertz, conversion to any other voltage requires replacement of the control transformer. Refer to table at right.
3. The standard transformer supplied may be used to power a maximum of five Class 9001 Type K illuminated operators powered with transformer type light modules. When extra capacity to power control relays or other inductive loads is required, a second transformer must be added. Extra capacity can be purchased as Form F4T with additions in 100 VA increments.
4. Standard controllers are wired for common control and are not convertible for operation of the control circuit from a separate source of supply voltage. Controllers designated Form S have special wiring designed for separate control. They are furnished with an isolating transformer, usually having a 120 volt primary and 120 volt secondary, that must not be bypassed. Form S controllers are not convertible for operation on common control.
The tables below give the replacement transformers for Type S Sizes 6 and 7 contactors and starters. To change voltages on these devices, coils are not changed, instead transformers with the desired voltage are changed.

Replacement Control Transformers for Type S Size 6

Voltage		Class 9070 Type
60 Hertz	50 Hertz	
240/480-120	220/440-110	EO3S2A
208-120		EO3S2B
277-120		EO3S2C
	380-110	EO3S2D
600-120	550-110	EO3S2E
120-120	110-110	EO3S2F
240-120	220-110	EO3S2G
Replacement Control Transformers for Type S Size 7		
Voltage		Class 9070 Type
60 Hertz	50 Hertz	
240/480-120	220/440-110	EO19S2A
208-120	\cdots	EO19S2B
277-120		EO19S2C
	380-110	EO19S2D
600-120	550-110	EO19S2E
120-120	110-110	EO19S2F
240-120	220-110	EO19S2G

Auxiliary Contacts

A N.O. holding circuit contact and a N.C. auxiliary contact are provided as standard. The holding circuit contact may or may not be required for either 3 -wire or 2 -wire control. Size 6 and 7 devices have an additional N.C. auxiliary contact which is wired in the coil control circuit. DO NOT USE THIS N.C. CONTACT FOR ANY OTHER PURPOSE.

Class 8502 Open Type

Figure 1

Class 8536 Open Type

Figure 2

Class	NEMA Size	Type	No. of Poles	Fig. No.	Mtg. Screws	Dimensions - Inches/mm (Refer to Appropriate Figure)																		$\begin{aligned} & \text { Wt } \\ & \text { (Lbs) } \end{aligned}$
						A		B		C		D		E		F		G		H		1		
						IN	mm																	
8502	00	SAO	2-3	1	(2) \#10	3.22	82	4.34	110	4.22	107	1.63	41	1.63	41	22	6	3.94	100	\ldots	\ldots	\ldots	.	4
	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	SBO	$\begin{aligned} & 1-3 \\ & 4-5 \end{aligned}$	1	(2) \#10	$\begin{aligned} & 3.22 \\ & 4.25 \end{aligned}$	$\begin{array}{\|l\|} \hline 82 \\ 108 \end{array}$	$\begin{aligned} & 4.34 \\ & 4.34 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 4.22 \\ & 4.22 \end{aligned}$	$\begin{aligned} & 107 \\ & 107 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.63 \\ 1.63 \end{array}$	$\begin{aligned} & 41 \\ & 41 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.63 \\ 2.63 \end{array}$	$\left\lvert\, \begin{aligned} & 41 \\ & 67 \end{aligned}\right.$	$\begin{array}{\|l} .22 \\ .22 \end{array}$	$\begin{array}{\|l\|} 6 \\ 6 \end{array}$	$\begin{aligned} & 3.94 \\ & 3.94 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	\ldots		\cdots		$\begin{aligned} & 4 \\ & 41 / 2 \end{aligned}$
	2	SDO	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	1	(3) \#10	$\begin{aligned} & 4.94 \\ & 5.63 \end{aligned}$	$\begin{aligned} & 125 \\ & 143 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.13 \\ & 5.13 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$	$\begin{aligned} & 4.94 \\ & 4.94 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.16 \\ 2.16 \end{array}$	$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.16 \\ & 3.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 88 \end{aligned}$	$\begin{array}{\|l} .22 \\ .22 \end{array}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 4.59 \\ & 4.59 \end{aligned}$	$\begin{aligned} & 117 \\ & 117 \end{aligned}$	$\begin{array}{\|l} .53 \\ .53 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{array}{\|l\|} \hline 1.06 \\ 1.06 \\ \hline \end{array}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 63 / 4 \\ & 88^{1 / 4} \end{aligned}$
	3	SEO	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	1	(3) $1 / 4 / 4$ (3) $5 / 16^{\prime \prime}$	$\begin{aligned} & 5.47 \\ & 9.75 \end{aligned}$	$\begin{aligned} & 139 \\ & 248 \end{aligned}$	$\begin{aligned} & 7.09 \\ & 7.88 \end{aligned}$	$\begin{aligned} & 180 \\ & 200 \end{aligned}$	$\begin{array}{\|l\|} 6.50 \\ 6.50 \\ \hline \end{array}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 3.94 \end{aligned}$	$\begin{array}{l\|l} 48 \\ 100 \end{array}$	$\left\|\begin{array}{l} 3.59 \\ 5.81 \end{array}\right\|$	$\begin{aligned} & 91 \\ & 148 \end{aligned}$	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{array}{\|l} 8 \\ 8 \\ 8 \end{array}$	$\begin{aligned} & 6.03 \\ & 7.00 \end{aligned}$	$\begin{aligned} & 153 \\ & 178 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 4.53 \end{aligned}$	$\begin{aligned} & 83 \\ & 115 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 9.06 \end{aligned}$	$\begin{aligned} & 121 \\ & 230 \end{aligned}$	$\begin{array}{\|l} 14 \\ 22 \end{array}$
	4	SFO	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	1	(3) $5 / 16^{\prime \prime}$ (3) $5 / 16^{\prime \prime}$	$\begin{aligned} & 6.00 \\ & 9.75 \end{aligned}$	$\begin{array}{l\|l} 152 \\ 248 \end{array}$	$\begin{aligned} & 8.19 \\ & 8.19 \end{aligned}$	$\begin{array}{\|l\|} 208 \\ 208 \end{array}$	$\begin{aligned} & 6.50 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.06 \\ & 3.94 \end{aligned}$	$\begin{array}{\|l\|} \hline 52 \\ 100 \end{array}$	$\begin{aligned} & 3.94 \\ & 5.81 \\ & \hline \end{aligned}$	$\begin{array}{l\|l} 100 \\ 148 \end{array}$	$\begin{aligned} & .31 \\ & .31 \end{aligned}$	$\begin{array}{\|l} 8 \\ 8 \end{array}$	$\begin{aligned} & 7.00 \\ & 7.00 \end{aligned}$	$\begin{aligned} & 178 \\ & 178 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.59 \\ 4.53 \\ \hline \end{array}$	$\begin{aligned} & 91 \\ & 115 \end{aligned}$	$\begin{aligned} & \hline 5.31 \\ & 9.06 \end{aligned}$	$\begin{aligned} & 135 \\ & 230 \end{aligned}$	$\begin{array}{\|l\|l} 18 \\ 22 \end{array}$
	5	SGO	2-3	1	(3) $1 / 22^{\prime \prime}$	8.66	220	12.31	313	8.75	222	3.25	83	5.81	148	. 63	16	11.13	283	4.75	121	7.25	184	45
	6	SHO	2-3	1	(3) $1 / 22^{\prime \prime}$	12.34	313	28.06	713	9.00	229	3.53	90	5.78	147	5.06	129	18.56	471	4.75	121	7.25	184	80
	7	SJO	2-3	1	(3) $1 / 2{ }^{\prime \prime}$	12.34	313	37.25	946	10.88	276	3.53	90	5.78	147	7.22	183	22.38	568	4.75	121	7.25	184	135
8536	00, 0, 1, 1P	SAO-SCO	2-3	2	(3) \#10	3.50	89	6.77	172	4.22	107	50	13	1.00	25	1.61	41	. 20	5	6.25	159	3.97	101	5
	0, 1	SBO-SCO	4	2	(3) \#10	4.53	115	6.77	172	4.22	107	. 50	13	1.00	25	2.66	68	20	5	6.25	159	3.97	101	51/2
	2	SDO	$\begin{array}{\|l\|} \hline 2-3 \\ \hline \end{array}$	2	(3) \#10	$\begin{aligned} & 4.31 \\ & 5.63 \end{aligned}$	$\begin{aligned} & 109 \\ & 143 \end{aligned}$	$\begin{aligned} & 7.81 \\ & 7.81 \\ & \hline \end{aligned}$	$\begin{aligned} & 198 \\ & 198 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4.94 \\ 4.94 \\ \hline \end{array}$	$\begin{aligned} & \hline 125 \\ & 125 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline .50 \\ .50 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 2.16 \\ 3.47 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 88 \end{aligned}$	$\begin{aligned} & .20 \\ & .20 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 7.34 \\ & 7.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 186 \\ & 186 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4.06 \\ 4.06 \\ \hline \end{array}$	$\begin{aligned} & 103 \\ & 103 \end{aligned}$	$\begin{aligned} & 73 / 4 \\ & 91 / 4 \end{aligned}$
	3	SEO	$\begin{aligned} & 2-3 \\ & 4 \end{aligned}$	2	$\begin{aligned} & \text { (3) } 1 / 4 " \\ & \text { (3) } 5 / 16 " \end{aligned}$	$\begin{aligned} & 5.47 \\ & 9.75 \end{aligned}$	$\begin{array}{\|l\|l\|} 139 \\ 248 \end{array}$	$\begin{aligned} & 11.09 \\ & 12.13 \end{aligned}$	$\begin{aligned} & 282 \\ & 308 \end{aligned}$	$\begin{aligned} & 6.50 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{array}{\|l\|} \hline .88 \\ 1.81 \end{array}$	$\begin{aligned} & 22 \\ & 46 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.59 \\ 5.81 \end{array}$	$\begin{aligned} & 91 \\ & 148 \end{aligned}$	$\begin{array}{\|l\|} \hline .31 \\ . \end{array}$	$\begin{array}{\|l} 8 \\ 8 \end{array}$	$\begin{aligned} & 10.19 \\ & 11.19 \end{aligned}$	$\begin{array}{\|l\|} 259 \\ 284 \end{array}$	$\left\|\begin{array}{l} 5.75 \\ 5.75 \end{array}\right\|$	$\begin{array}{\|l\|l} 146 \\ 146 \end{array}$	$\begin{aligned} & 17 \\ & 25 \end{aligned}$
	4	SFO	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	2	$\begin{array}{\|l\|l\|} \hline \text { (3) } 5 / 16^{\prime \prime} \\ \text { (3) } 5 / 16^{\prime \prime} \end{array}$	$\begin{aligned} & 6.00 \\ & 9.75 \end{aligned}$	$\begin{array}{l\|l} 152 \\ 248 \end{array}$	$\begin{aligned} & 12.88 \\ & 12.88 \end{aligned}$	$\begin{aligned} & 327 \\ & 327 \end{aligned}$	$\begin{aligned} & 6.50 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \end{aligned}$	$\begin{aligned} & 1.81 \\ & 1.81 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	$\begin{aligned} & 3.94 \\ & 5.91 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{array}{\|l} .31 \\ .31 \end{array}$	$\begin{array}{\|l} 8 \\ 8 \end{array}$	$\begin{aligned} & 11.19 \\ & 11.19 \end{aligned}$	$\begin{array}{\|l\|} \hline 284 \\ 284 \end{array}$	$\begin{aligned} & 5.75 \\ & 5.75 \end{aligned}$	$\begin{aligned} & 146 \\ & 146 \end{aligned}$	$\begin{aligned} & 22 \\ & 25 \end{aligned}$
	5	SGO	3	2	(3) $1 / 2{ }^{\prime \prime}$	8.56	217	17.56	446	8.75	222	4.75	121	7.25	184	5.38	137	. 63	16	16.38	416	6.00	152	62
	6	SHO	3	2	(3) $1 / 2{ }^{\prime \prime}$	12.34	313	28.06	713	9.00	229	4.75	121	7.25	184	5.78	147	5.06	129	18.56	471	8.69	221	85
	7	SJO	3	2	(3) $1 / 2$ "	12.34	313	37.25	946	10.88	276	4.75	121	7.25	184	5.78	147	7.22	183	22.38	568	9.00	229	140

References, associations

Contactors and Starters

Type S, NEMA-style
 Variants - Motor Logic ${ }^{\circledR}$ Overload Relay

(1) Example: 8536 SAO 12 V01 H1O.
(2) Standard current ranges, depending on contactor size:

| Size | $\mathbf{0 0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Current ranges A | $3 \ldots 9$ | $6 \ldots 18$ | $9 \ldots 27$ | $15 \ldots 45$ | $30 \ldots 90$ | $40 \ldots 135$ | $90 \ldots 270$ | $180 \ldots 540$ | $270 \ldots 810$ | |
| | | | | | | | | (3) | (4) | |

(3) Only a vailable with feature unit.
(4) Only available with feature unit with auxiliary contact.

Associations

Contactor Size	Trip type	Motor Logic solid-state overload relays									
		No auxiliary contact	With auxiliary contact								
00	Class 10	Size 00C (3-9 A)		Size 00B (1.5-4.5 A)							
		H10	H11	H108	H118						
	Class 20	H2O	H21	H208	H218						
	Class 10/20 (selectable)	H30	H31	H308	H318						
0		Size 0 (6-18 A)		Size 00C (3-9 A)		Size 00B (1.5-4.5 A)					
	Class 10	H10	H11	H109	H119	H108	H118				
	Class 20	H2O	H21	H209	H219	H208	H218				
	Class 10/20 (selectable)	H30	H31	H309	H319	H308	H318				
1		Size 1 (9-27 A)		Size 0 (6-18 A)		Size 00C (3-9 A)		Size 00B (1.5-4.5 A)			
	Class 10	H10	H11	H100	H110	H109	H119	H108	H118		
	Class 20	H20	H21	H200	H210	H209	H219	H208	H218		
	Class 10/20 (selectable)	H30	H31	H300	H310	H309	H319	H308	H318		
2	Class 10	Size 2 (15-45 A)		Size 1 (9-27 A)		Size 0 (6-18 A)		Size 00C (3-9 A)		Size 00B (1.5-4.5 A)	
		H10	H11	H101	H111	H100	H110	H109	H119	-	-
	Class 20	H2O	H21	H201	H211	H200	H210	H209	H219	-	-
	Class 10/20 (selectable)	H30	H31	H301	H311	H300	H310	H309	H319	H308	H318
3	Class 10	Size 3 (30-90 A)									
		H10	H11								
	Class 20	H2O	H21								
	Class 10/20 (selectable)	H30	H31								
4		Size 4 (45-135 A)		Size 3 (30-90 A)							
	Class 10	H10	H11	H103	H113						
	Class 20	H20	H21	H203	H213						
	Class 10/20 (selectable)	H30	H31	H303	H313						
5	Class 10	Size 5 (90-270 A)									
		H10	H11								
	Class 20	H2O	H21								
	Class 10/20 (selectable)	H30	H31								
			Available	des							
			Not availa								

Variants - Operators					
Description	For use on		Colour/Marking	Suffix to the contactor or starter reference (1)	Weight kg (lb)
	Class	Enclosure type			
Push buttons	8502, 8536	NEMA 1, 12	"Start-Stop"	A	-
	8702, 8736	NEMA 1, 12	"Forward-Reverse-Stop"	A1	-
			"High-Low-Stop"	A2	-
Pilot lights without operating interlock (2)	$\begin{aligned} & \hline 8502,8536, \\ & 8702,8736 \end{aligned}$	NEMA 1	Red	P1	-
			Green	P2	-
			Amber	P3	-
			Clear	P4	-
Push-to-test pilot lights without operating interlock (2)	$\begin{aligned} & \text { 8502, 8536, } \\ & 8702,8736 \end{aligned}$	NEMA 12	Red	P21	-
			Green	P22	-
			Amber	P23	-
			Clear	P24	-
			Yellow	P25	-
LED pilot lights	$\begin{aligned} & \hline 8502,8536, \\ & 8702,8736 \end{aligned}$	NEMA 1	Red	P51	-
			Green	P52	-
			Yellow	P55	-
Special wiring	$\begin{aligned} & \hline 8502,8536, \\ & 8702,8736 \end{aligned}$	NEMA 1	Red/"Off"	P71	-
			Green/"On"	P72	-
Selector switches	$\begin{aligned} & \hline 8502,8536, \\ & 8702,8736 \end{aligned}$	NEMA 1 , NEMA 12	"Hand-Off-Auto"	C	-
	8702, 8736	NEMA 1, NEMA 12	"On-Off"	C6	-
			"Forward-Off-Reverse"	C14	-
			"Forward-Reverse"	C20	-
Variants - Transformers					
Description	For use on		Functions	Suffix to the contactor or starter reference (1)	Weight kg (Ib)
	Class	Enclosure type			
Separate control circuit	$\begin{aligned} & 8502,8536, \\ & 8702,8736 \end{aligned}$	NEMA 1, 12	Specify voltage and frequency	S	-
Fused control circuit without transformer	$\begin{aligned} & 8502,8536, \\ & \text { 8702. } 8736 \end{aligned}$	NEMA 1, 12	One fuse	F	-
			Two fuses	F4	-
Control circuit transformers standard capacity $(50 / 60 \mathrm{~Hz})$ (3)	$\begin{aligned} & \text { 8502, 8536, } \\ & 8702,8736 \end{aligned}$	NEMA 1, 12	Fuses: 2 (primary), 0 (secondary)	F4T (4)	-
			Fuses: 2 (primary), 1 (secondary)	FF4T	-
			Fuses: 1 (primary), 2 (secondary) (5)	F1F10T	-
			Fuses: 2 (primary), 2 (secondary)	F4F10T	-
Additional capacity ($50 / 60 \mathrm{~Hz}$) Two fuses in primary (3) Additional capacity	$\begin{aligned} & 8502,8536, \\ & 8702,8736 \end{aligned}$	NEMA 1, 12	100 VA additional capacity	F4T11 (6)	-
			200 VA additional capacity	F4T12 (6)	-
	8502, 8536,	NEMA 1, 12	100 VA additional capacity	FF4T11	-

Additional capacity
$(50 / 60 \mathrm{~Hz})$ Two fuses in primary 8702,8536
8702,8736
and one fuse in secondary (3)
(1) Example: 8536 SAG 12 V01 A P1 P2. All suffixes are listed in alphanumeric order after the voltage code
(2) Unless otherwise requested, the standard practice is to wire the red pilot light to indicate that the device is energized. No additional auxiliary contact is required. Also, standard practice is to wire the green pilot light to indicate that the device is deenergized. An additional normally closed auxiliary contact is required; please consult your regional sales office.
(3) Control circuit transformer selection table:

Primary-secondary	120-24 (7) 208-120	240-24 (7) 240-120	277-120	480-24 (7) 480-120	480-240	600-120
60 Hz	V89 V84	V82 V80	V85	V83 V81	V87	V86

Example: 8536 SAG 12 V81 F4T A P1 P2.
(4) Not available with $24 V$ secondary on Size 3 . Select appropriate transformer with secondary fuse protection. See transformer selection table.
(5) Single phase with one leg earthed, or earthed 3-phase applications only.
(6) Not available with $24 V$ secondary. Select appropriate transformer with secondary fuse protection. See transformer selection table for $24 V$ secondary restrictions.
(7) 24 V coils are not available on Sizes 4-7.

Variants - Auxiliary	contacts							
Description	For use on		Num	r of	acts		Suffix to the	Weight
	Class	Enclosure type	Forw con		Reve cont		contactor or starter reference	kg (lb)
			N/O	N/C	N/O	N/C		
Auxiliary contacts	8502, 8536	NEMA 1,	-	1			X01	
for non-reversing contactors and		NEMA 12		2			X02	
non-reversing starters				3			X03	
				4			X04	
			1	-			X10	
				1			X11	
				2			X12	
				3			X13	
			2	-			X20	
				1			X21	
				2			X22	
			3	-			X30	
				1			X31	
			4	-			X40	
Auxiliary contacts standard	8702, 8736	NEMA 1,	1	-	-	-	X1000	
no additional auxiliary		NEMA 12	-	1	-	-	X0100	
			2	-	-	-	X2000	
reversing starters			1	1	-	-	X1100	
			-	2	-	-	X0200	
			-	-	1	-	X0010	
			1	-	1	-	X1010	
			-	1	1	-	X0110	
			2	-	1	-	X2010	
			1	1	1	-	X1110	
			-	2	1	-	X0210	
			-	-	-	1	X0001	
			1	-	-	1	X1001	
			-	1	-	1	X0101	
			2	-	-	1	X2001	
			1	1	-	1	X1101	
			-	2	-	1	X0201	
			-	-	2	-	X0020	
			1	-	2	-	X1020	
			-	1	2	-	X0120	
			2	-	2	-	X2020	
			1	1	2	-	X1120	
			-	2	2	-	X0220	
			-	-	1	1	X0011	
			1	-	1	1	X1011	
			-	1	1	1	X0111	
			2	-	1	1	X2011	
			1	1	1	1	X1111	
			-	2	1	1	X0211	
			-	-	-	2	X0002	
			1	-	-	2	X1002	
			-	1	-	2	X0102	
			2	-	-	2	X2002	
			1	1	-	2	X1102	
			-	2	-	2	X0202	

(1) Maximum number of external auxiliary units (in addition to holding circuit contact):

Class 8502/8536/8702/8736 Maximum number

-0.0 S
4 N/O or N/C, if second internal auxiliary contact is not used
-0ッ๑ SB/SC/SD
4 N/O or N/C
2 N/O or N/C plus 1 power-pole adder (single- or 2-pole, N/O or N/C) 1 attached timer plus 1 power-pole adder (single- or 2-pole, N/O or N/C) plus 1 auxiliary contact
-0.0 SE/SF/SG

4 N/O or N/C

(Size 3 and Size 4)
-000 SE/SF/SG
2 N/O or N/C plus 1 NEMA Size 0-1 or Size 2 power-pole adder (single- or 2-pole, N/O or N/C)
(Size 5)

$\bullet \bullet \bullet$ SH/SJ	$\frac{4 \mathrm{~N} / \mathrm{O} \text { or N/C }}{2 \text { N/O or N/C plus } 1 \text { NEMA Size 0-1 or Size } 2 \text { power-pole adder (single- or 2-pole, N/O or N/C) }}$

