
From Linearizability to Eventual Consistency

Radha Jagadeesan James Riely,
College of CDM, DePaul University, Chicago

Dec 5, 2016. Compositionality workshop

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Organization of talk

Context of problem: Distributed data structures.

Problem: Correctness.

Compositionality and abstraction.

DePaul CDM Tech Report, 2016. “From Linearizability to Eventual
Consistency”.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Sequential interfaces.

eg. Integer Set.

Mutators: +0 [Add] and -0 [remove]. Return type VOID.
Accessor: 31,71. Returns a boolean. Do not alter the state of the
object
Example traces.

70 +0 30 71

+0 +1 30 31 -1 30 71

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Distributed (implementation of) Set.

add(0); ?0; ?1; ?1||add(1); ?1; ?0; ?0

+0 30 71 31

+1 31 70 31

+0
a

30
f

71
c

31
e

+1
b 31

g
70

d 30 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Distributed (implementation of) Set.

add(0); ?0; ?1; ?1||add(1); ?1; ?0; ?0

+0 30 71 31

+1 31 70 31

+0
a

30
f

71
c

31
e

+1
b 31

g
70

d 30 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

No global ordering

+0 30 71 31

+1 31 70 30

Serialization affects performance and scalability
cap theorem : can’t have all three [Gilbert and Lynch 2002]

Consistency Every read receives the most recent write or an error
Availability Every request receives a response
Partition tolerance The system operates despite arbitrary messages loss

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Convergent and Commutative Replicated Data Types

[Shapiro, Pregui̧ Baquero, Zawirski 2011]

Resolving conflicts among mutators.
Observed Remove Set. or-set: “Add wins"

+0 -0 70 30

+0

70 30 30

Specification : +0-0+0

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Short digresssion. Distributed text editors

[Attiya, Burckhardt, Gotsman, Morrison, Yang, and Zawirski, 2016]
Mutators: !a, a<b, a>b,-a Accessors: ?a1 ···an

‘Deletion wins” (compare to ORSET)

!c

b<c

d>c

?bcd

-d a<b

-b e>d

?ace

!c; b<c; d>c; ?bcd; a<b; e>d; -b; -d; ?ace

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Resume: or-set examples

+0 -0 30 70

+0 -0 30 70

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

30 g 31 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Resume: or-set examples

+0 -0 30 70

+0 -0 30 70

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

30 g 31 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

or-set: non-behaviors

+0 31 71

+1

30 +0

+0
a

30
c

-0
b

70
d

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

or-set: non-behaviors

+0 31 71

+1

30 +0

+0
a

30
c

-0
b

70
d

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

or-set: non-behaviors

+0 31 71

+1

30 +0

+0
a

30
c

-0
b

70
d

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

In what sense does the or-set implement a Set?

When is implementation(U) valid for a specification (Σ) :

U ∼< Σ

What are the constraints?

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Constraint 1: Compositionality (a)

[Herlihy, Wing 1990] Given two separate and independent sets:

LΣ1 ∩LΣ2 = /0.

and two implementations, each of which is correct individually:

U1 ∼< Σ1,U2 ∼< Σ2

we want:
U1 9U2 ∼< Σ1 9Σ2

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Constraint 2: Compositionality (b)

[Filipovic, O Hearn, Rinetzky, Yang 2009]
Let P be the graph implementation, which is a client of the two
sets (for vertices,edges).
We want:

(P |d (Σ1 9Σ2))\(LΣ1 ∪LΣ2)∼< T

implies

(P |d (U1 9U2))\(LΣ1 ∪LΣ2)∼< T .

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Constraint 3: Coherence with the sequential specification

Single threaded semantics: A correct implementation should
behave according to the sequential semantics if accessed at a single
replica.
Permutation equivalence: “If all sequential permutations of
updates lead to equivalent states, then it should also hold that
concurrent executions of the updates lead to equivalent states.
Client-server linearizability: Any execution of a correct
implementation on a client-server system should be linearizable.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Linearizability: Linear time, Atomic/Instantaneous methods

+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

An implementation U is valid if it is simulated by the above
automaton.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

This talk

The linearizability automaton is too restrictive: does not simulate
many desired behaviors.

+0 30 71 30 31

+1 31 70 30 31

Not linearizable: no way to place both 70,71 in +0 +1 while
preserving order.
What is the correct formalization?

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Relaxing linearizability: Eventual consistency

+0 30 71 30 31

+1 31 70 30 31

But, states of all the replicas eventually converge when all the
messages have been delivered. cf. quiescent consistency

Suffices for “shopping cart”.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Consistency at non-quiescent states??

30 +0 30

+1

+0 71 31

+1

+0 70 +0 30

-0 30 30

Not enough constraints: eg. “permutation equivalence” not
enforced.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Prior Work

Abandon sequential specifications
[Bouajjani, Enea, Hamza 2014]
[Burckhardt, Gotsman, Yang, Zawirski 2014]

Only sequential specifications are canonical

Permutation based
[Burckhardt, Leijen, Fähndrich, Sagiv. 2012]
[Jagadeesan, Riely 2015]

Too restrictive

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Our approach: liberalize the linearizability automaton

Two ingredients.
(a) Quotient states under observational equivalence
(b) Time as a partial order

Prefixes to subsequences
Explicate and disentangle dependencies

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Quotient states under observational equivalence

In linearizability state machine, states are sequences of methods.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Quotient automaton states under observational equivalence

[Brookes 96]: Two sequences are equivalent if they yield the same
sequence of states of the data structure, upto stuttering. In set :

+0+0∼ +0 +030∼ +0

and the equivalence classes for a set over one element 0 are:

+0,+0-0,+0-0+0,+0-0+0-0, . . .

ε +0 +0-0 +0-0+0

+0 +0-0 +0-0+0

+030

+0+0

+0-070

+0-0-0

+0-0+030

+0-0+0+0

70

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Time as a partial order.

In the linearizability automaton, time is linear.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Strict prefix ordering

+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Time as a partial order: prefixes to subsequence

ε

+0

-0

+0-0-0+0

+0
-0

-0

+0-0

+0

-0|+0

70
,+0

30
,(-0|+0

)70
,+0-0

70

70,+030

70,-070

-0

-0+0

+0

+0|-0

7
0,
-0

7
0,

(+
0|
-0

)3
0,
-0

+0
3
0

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Time as a partial order. Disentangling dependencies

The linearizability automaton is insensitive to independence.

In binary set [+0,-0,30,70,71,31], the two values are independent,
i.e a trace for a binary set is valid iff its projection to 0 (resp. 1) is
valid.

More generally, enrich specification with notion of conflict: #

set : +0 # 30,+0 # 70,+1 # 31,+1 # 71,30 # 70,31 # 71

Distributed text editors: Two labels from this alphabet are in
conflict iff they mention overlapping sets of text identifiers, or if
one is a query and the other is a remove.

b<c # a<b,?ce # -a

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Disentangling dependencies: set

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

30 g 31 h

Specification: (+0-0+0)9 (+1-1+1)

+0
a

+1
b

-1
c

+1
d

+0
e

-0
f

30 g 31 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Disentangling dependencies: Distributed text editor

!c
b<c

d>c
?bcd

-d a>b

-b e<d
?ace

Specification : !c; b<c; d>c; ?bcd; a<b; e>d; -b; -d; ?ace

!c

b<c

d>c

?bcd
-b

a<b

-d

e>d

?ace

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Disentangling dependencies: the set automaton.

+0+1

+0

+1

ε

+0 +1

+1 +0

+0|+1

70
,+0

30 71

71,+131

70,+0
30

70
71,+131

71

70

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Our correctness criterion: U ∼< Σ

Σ: Incorporate "quotienting of the label sequences under
observational equivalence", and "time as a partial order".

is generated purely from the standard sequential specification.

An implementation U is valid if it is simulated by Σ.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

The set automaton

70, 71

7030, 71

703070, 71

70
+0

70
30
-0

70, 7131

7030, 7131

703070, 7131

70
+0

70
30
-0

70, 713171

7030, 713171

703070, 713171

70
+0

70
30
-071+1

7131-1

71+1

7131-1

71+1

7131-1

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Results (1)

Alternative characterization. Via a direct definition.
Coherence with the sequential specification. Single threaded
semantics, Permutation equivalence and Client-server linearizability.
Expressiveness. Addresses the CRDT examples.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Results (2)

Composition. Given two separate and independent sets, LΣ1 ∩LΣ2

= /0. and U1 ∼< Σ1,U2 ∼< Σ2, we have :

U1 9U2 ∼< Σ1 9Σ2

Abstraction. Let P be the graph implementation, which is a
client of the two sets (for vertices,edges). Then:

(P |d (Σ1 9Σ2))\(LΣ1 ∪LΣ2)∼< T

implies

(P |d (U1 9U2))\(LΣ1 ∪LΣ2)∼< T .

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

Results (3). calm clients can program sequentially

calm: “Consistency as logical monotonicity” . [Hellerstein 2010] The
Bloom language. [Conway, Marczak, Alvaro, Hellerstein, Maier]
“Monotonic reasoning requires no coordination”

path(@Src ,Dest) :−path(@Src ,X), link(@X ,Dest)

BUT: “non-monotonic reasoning in general requires global barriers”.
eg. state change, counting aggregates..

toggle(1) :− state(0)
toggle(0) :− state(1)
state(X)@next:− toggle(X)

No “races” between concurrent mutators and mutators/accessors.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

QUESTIONS??

For full details refer to:
DePaul CDM Tech Report, 2016. “From Linearizability to Eventual
Consistency”.

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency

