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Organization of talk

Context of problem: Distributed data structures.

Problem: Correctness.

Compositionality and abstraction.

DePaul CDM Tech Report, 2016. “From Linearizability to Eventual
Consistency”.
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Sequential interfaces.

eg. Integer Set.

Mutators: +0 [Add] and -0 [remove]. Return type VOID.
Accessor: 31,71. Returns a boolean. Do not alter the state of the
object
Example traces.

70 +0 30 71

+0 +1 30 31 -1 30 71
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Distributed (implementation of) Set.

add(0); ?0; ?1; ?1||add(1); ?1; ?0; ?0
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+1 31 70 31

+0
a

30
f

71
c

31
e

+1
b 31

g
70

d 30 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency



Distributed (implementation of) Set.

add(0); ?0; ?1; ?1||add(1); ?1; ?0; ?0

+0 30 71 31

+1 31 70 31

+0
a

30
f

71
c

31
e

+1
b 31

g
70

d 30 h

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency



No global ordering

+0 30 71 31

+1 31 70 30

Serialization affects performance and scalability
cap theorem : can’t have all three [Gilbert and Lynch 2002]

Consistency Every read receives the most recent write or an error
Availability Every request receives a response
Partition tolerance The system operates despite arbitrary messages loss
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Convergent and Commutative Replicated Data Types

[Shapiro, Pregui̧ Baquero, Zawirski 2011]

Resolving conflicts among mutators.
Observed Remove Set. or-set: “Add wins"

+0 -0 70 30

+0

70 30 30

Specification : +0-0+0
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Short digresssion. Distributed text editors

[Attiya, Burckhardt, Gotsman, Morrison, Yang, and Zawirski, 2016]
Mutators: !a, a<b, a>b,-a Accessors: ?a1 ···an

‘Deletion wins” (compare to ORSET)

!c

b<c

d>c

?bcd

-d a<b

-b e>d

?ace

!c; b<c; d>c; ?bcd; a<b; e>d; -b; -d; ?ace
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Resume: or-set examples
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+0 -0 30 70
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Resume: or-set examples
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or-set: non-behaviors

+0 31 71
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30 +0
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or-set: non-behaviors
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In what sense does the or-set implement a Set?

When is implementation(U) valid for a specification (Σ) :

U ∼< Σ

What are the constraints?
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Constraint 1: Compositionality (a)

[Herlihy, Wing 1990] Given two separate and independent sets:

LΣ1 ∩LΣ2 = /0.

and two implementations, each of which is correct individually:

U1 ∼< Σ1,U2 ∼< Σ2

we want:
U1 9U2 ∼< Σ1 9Σ2
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Constraint 2: Compositionality (b)

[Filipovic, O Hearn, Rinetzky, Yang 2009]
Let P be the graph implementation, which is a client of the two
sets (for vertices,edges).
We want:

(P |d (Σ1 9Σ2))\(LΣ1 ∪LΣ2)∼< T

implies

(P |d (U1 9U2))\(LΣ1 ∪LΣ2)∼< T .
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Constraint 3: Coherence with the sequential specification

Single threaded semantics: A correct implementation should
behave according to the sequential semantics if accessed at a single
replica.
Permutation equivalence: “If all sequential permutations of
updates lead to equivalent states, then it should also hold that
concurrent executions of the updates lead to equivalent states.
Client-server linearizability: Any execution of a correct
implementation on a client-server system should be linearizable.
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Linearizability: Linear time, Atomic/Instantaneous methods

+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

An implementation U is valid if it is simulated by the above
automaton.
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This talk

The linearizability automaton is too restrictive: does not simulate
many desired behaviors.

+0 30 71 30 31

+1 31 70 30 31

Not linearizable: no way to place both 70,71 in +0 +1 while
preserving order.
What is the correct formalization?
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Relaxing linearizability: Eventual consistency

+0 30 71 30 31

+1 31 70 30 31

But, states of all the replicas eventually converge when all the
messages have been delivered. cf. quiescent consistency

Suffices for “shopping cart”.
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Consistency at non-quiescent states??

30 +0 30

+1

+0 71 31

+1

+0 70 +0 30

-0 30 30

Not enough constraints: eg. “permutation equivalence” not
enforced.
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Prior Work

Abandon sequential specifications
[Bouajjani, Enea, Hamza 2014]
[Burckhardt, Gotsman, Yang, Zawirski 2014]

Only sequential specifications are canonical

Permutation based
[Burckhardt, Leijen, Fähndrich, Sagiv. 2012]
[Jagadeesan, Riely 2015]

Too restrictive
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Our approach: liberalize the linearizability automaton

Two ingredients.
(a) Quotient states under observational equivalence
(b) Time as a partial order

Prefixes to subsequences
Explicate and disentangle dependencies
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Quotient states under observational equivalence

In linearizability state machine, states are sequences of methods.
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Quotient automaton states under observational equivalence

[Brookes 96]: Two sequences are equivalent if they yield the same
sequence of states of the data structure, upto stuttering. In set :

+0+0∼ +0 +030∼ +0

and the equivalence classes for a set over one element 0 are:

+0,+0-0,+0-0+0,+0-0+0-0, . . .

ε +0 +0-0 +0-0+0

+0 +0-0 +0-0+0

+030

+0+0

+0-070

+0-0-0

+0-0+030

+0-0+0+0

70
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Time as a partial order.

In the linearizability automaton, time is linear.
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Strict prefix ordering
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Time as a partial order: prefixes to subsequence

ε
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Time as a partial order. Disentangling dependencies

The linearizability automaton is insensitive to independence.

In binary set [+0,-0,30,70,71,31], the two values are independent,
i.e a trace for a binary set is valid iff its projection to 0 (resp. 1) is
valid.

More generally, enrich specification with notion of conflict: #

set : +0 # 30,+0 # 70,+1 # 31,+1 # 71,30 # 70,31 # 71 . . . . . .

Distributed text editors: Two labels from this alphabet are in
conflict iff they mention overlapping sets of text identifiers, or if
one is a query and the other is a remove.

b<c # a<b,?ce # -a . . . . . .

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency



+071+131

+0+13031

+170+030

+071+1

+0+131

+1+030

+170+0

+130

+130

+031

+031

+071

+0+1

+170

+1

+031

+130

+0

+0

+1

+071

+1

+0

+170

ε

+0

+1

+0|+1 +031|+130

+071|+1

+0|+170

Radha Jagadeesan, James Riely, College of CDM, DePaul University, Chicago

From Linearizability to Eventual Consistency



Disentangling dependencies: set

+0
a

+1
b

-1
c

+1
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+0
e
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f
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Specification: (+0-0+0)9 (+1-1+1)
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Disentangling dependencies: Distributed text editor

!c
b<c

d>c
?bcd

-d a>b

-b e<d
?ace

Specification : !c; b<c; d>c; ?bcd; a<b; e>d; -b; -d; ?ace

!c

b<c

d>c

?bcd
-b

a<b

-d

e>d

?ace
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Disentangling dependencies: the set automaton.

+0+1

+0
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ε

+0 +1

+1 +0
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Our correctness criterion: U ∼< Σ

Σ: Incorporate "quotienting of the label sequences under
observational equivalence", and "time as a partial order".

is generated purely from the standard sequential specification.

An implementation U is valid if it is simulated by Σ.
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The set automaton

70, 71

7030, 71

703070, 71

70
+0

70
30
-0

70, 7131

7030, 7131

703070, 7131

70
+0

70
30
-0

70, 713171

7030, 713171

703070, 713171

70
+0

70
30
-071+1

7131-1

71+1

7131-1

71+1

7131-1
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Results (1)

Alternative characterization. Via a direct definition.
Coherence with the sequential specification. Single threaded
semantics, Permutation equivalence and Client-server linearizability.
Expressiveness. Addresses the CRDT examples.
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Results (2)

Composition. Given two separate and independent sets, LΣ1 ∩LΣ2

= /0. and U1 ∼< Σ1,U2 ∼< Σ2, we have :

U1 9U2 ∼< Σ1 9Σ2

Abstraction. Let P be the graph implementation, which is a
client of the two sets (for vertices,edges). Then:

(P |d (Σ1 9Σ2))\(LΣ1 ∪LΣ2)∼< T

implies

(P |d (U1 9U2))\(LΣ1 ∪LΣ2)∼< T .
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Results (3). calm clients can program sequentially

calm: “Consistency as logical monotonicity” . [Hellerstein 2010] The
Bloom language. [Conway, Marczak, Alvaro, Hellerstein, Maier]
“Monotonic reasoning requires no coordination”

path(@Src ,Dest) :−path(@Src ,X ), link(@X ,Dest)

BUT: “non-monotonic reasoning in general requires global barriers”.
eg. state change, counting aggregates..

toggle(1) :− state(0)
toggle(0) :− state(1)
state(X )@next:− toggle(X )

No “races” between concurrent mutators and mutators/accessors.
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QUESTIONS??

For full details refer to:
DePaul CDM Tech Report, 2016. “From Linearizability to Eventual
Consistency”.
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