Fractals in Nature and Mathematics: From Simplicity to Complexity

Dr. R. L. Herman, UNCW Mathematics \& Physics

Outline

(1) Complexity in Nature (2) What are Fractals?
(3) Geometric Fractals
(4) Fractal Dimensions
(5) Function Iteration
(6) Applications

Benô̂t Mandelbrot (1924-2010)

- Grew up in France
- Paris and Caltech Education
- IBM Fellow
- Fractals
- Studied "roughness" in nature
- Fractal Geometry
- Mandelbrot Set
- TED Talk link

MTBink of color, pitcb, lo udness, beaviness, and botness. Eacb is the topic of a brancb of pbysics." GBeno it ©Mandelbrot

Clouds and Mountains

Figure: How would you measure roughness and complexity

Trees

Figure: Self-similarity

Lightning

Figure: Fractals - what do you see?

Capillaries

Figure: Leaf and rivers
Fractals in Nature and Mathematics

Figure: Lungs
R. L. Herman

Ferns

Figure: Do you see similarity at different scales?

Ferns - Example of Self-Similarity

Fractals in Nature and Mathematics
R. L. Herman

OLLI STEM Society, Oct 13, 2017
9/41

Coastlines

Figure: What is the length of the coastline?

What are Fractals?

- From fractus, - "broken"
- Self-similarity
- Fractional Dimension

Figure: Fractal Fern

Fractal Trees

Figure: Fractals - self-similarity, roughness

Fractals in Nature

Figure: Fractals -what do you see?

Geometric Fractals - Koch Curve (1904)

Step $1(L=1)$

Geometric Fractals - Koch Curve (1904)

Step $1(L=1)$

T ——Step 2

Geometric Fractals - Koch Curve (1904)

\longrightarrow Step $1(L=1)$

Geometric Fractals - Koch Curve (1904)

\longrightarrow Step $1(L=1)$

Geometric Fractals - Koch Curve (1904)

Koch Curve - Self Similarity $\left(L=\frac{4^{n}}{3^{n}} \rightarrow \infty\right)$

Fractals in Nature and Mathematics
R. L. Herman

Simple Fractals - Sierpinski Triangle

Dimensions - $r=$ magnification, $n=$ Number of shapes

$$
\begin{aligned}
& n=2, \quad r=2 \\
& \Rightarrow \ln 2=\ln 2 .
\end{aligned}
$$

$$
\begin{aligned}
& n=4, \quad r=2 \\
& \Rightarrow \ln 4=2 \ln 2 .
\end{aligned}
$$

$$
D_{E}=2
$$

$$
\begin{aligned}
& n=8, \quad r=2 \\
& \Rightarrow \ln 8=3 \ln 2 .
\end{aligned}
$$

$$
D=\frac{\ln n}{\ln r}
$$

Fractal Dimensions - Koch Curve

For each step length of line segment is reduced by $r=3$.

The number of lines increases by factor $n=4$.

Therefore

$$
\begin{aligned}
D & =\frac{\ln n}{\ln r} \\
& =\frac{\ln 4}{\ln 3} \\
& =1.26 .
\end{aligned}
$$

Sierpinski Triangle - Dimension

Coastlines - Great Britain, $D=1.25$

Coastlines -North Carolina

What is the fractal dimension of the NC coast?

Iterations

Logistic Map $-x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Figure: $r=0.05$

Logistic Map $-x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Figure: $\quad r=2.0$

Logistic Map $-x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Figure: $\quad r=3.1$

Logistic Map $-x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Figure: $\quad r=3.5$

Logistic Map $-x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Figure: $\quad r=3.56$

Logistic Map - $x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Figure: $\quad r=4.0$

Bifurcations of Logistic Map $-x_{n+1}=r x_{n}\left(1-x_{n}\right)$, given x_{0}

Mandelbrot Set

Iterate complex numbers
$z=a+b i, i=\sqrt{-1}$.

$$
z_{n+1}=z_{n}^{2}+c, \quad z_{0}=0
$$

Example: $c=1$:

$$
0,1,2,5,26 \ldots
$$

Example: $c=-1$:

$$
0,-1,0,-1,0, \ldots
$$

Mandelbrot Set $-z_{n+1}=z_{n}^{2}+c, \quad z_{0}=0$.

Example: $c=i$:

$$
\begin{aligned}
& x_{0}=0 \\
& x_{1}=0^{2}+i=i \\
& x_{2}=i^{2}+i=-1+i \\
& x_{3}=(-1+i)^{2}+i=-i \\
& x_{4}=(-i)^{2}+i=-1+i \\
& x_{4}=(-i)^{2}+i=-i
\end{aligned}
$$

Gives period 2 orbit $=$
$\{-1+i,-i,-1+i,-i, \ldots\}$.

- Show more points at Fractals site.
- Mandelbrot Set Zoom online.

Mandelbrot Set - Bulbs

Mandelbrot Set - Bulbs

Fractals in Nature and Mathematics

Mandelbrot Set - Plot and Zoom

http://www.flashandmath.com/advanced/mandelbrot/ MandelbrotPlot.html

Iterated Function Systems

- Iterated Function Systems
- Scalings, Rotations, and Translations

Fractals in Nature and Mathematics

IFS - Turning CHAOS into a Fractal

대묘․

IFS - CHAOS

대모

IFS Chaos

IFS Chaos

Maple Leaf - Barnsley Fractals Everywhere

The Collage Theorem and Fractal Image Compression.

The Genesis Effect - Star Trek II: The Wrath of Khan (1982)

- Fractal Landscapes
- First completely computer-generated sequence in a film http:
//design.osu.edu/carlson/ history/tree/images/ pages/genesis1_jpeg.htm

https://www.youtube.com/ watch?v=QXbWCrzWJo4

Fractal Landscapes - Roughness in Nature

- Mountains
- Clouds

1D Midpoint Displacement Algorithm

1D Midpoint Displacement Algorithm

1D Midpoint Displacement Algorithm

1D Midpoint Displacement Algorithm

1D Midpoint Displacement Algorithm

Diamond - Square Algorithm

- Square of size $2^{n}+1$.
- Find Midpoint, adding random small hieghts.
- Create Diamond.
- Edge midpoints, ...

Diamond - Square Algorithm

- Square of size $2^{n}+1$.
- Find Midpoint, adding random small hieghts.
- Create Diamond.
- Edge midpoints, ...

Height Maps: Clouds and Coloring

Other Applications

- Video Games
- Fracture - link
- Ceramic Material - link
- Biology - wrinkles, lungs, brain, ...
- Astrophysics

Figure: The Sloan Digital Sky Survey

Conclusion

- Fractals - Measure of Roughness
- Fractal Dimension
- Function Iteration - Mandelbrot Set
- Applications

- J. Gleick, Chaos, Making a New Science, 1987/2008
- E. Lorenz, The Essence of Chaos, Making a New Science, 1995
- B. Mandelbrot, The Fractal Geometry of Nature, 1982
- Barnsley, Fractals Everywhere, 1988/2012

