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1.1:Introductiontofiniteautomata

In this chapter we are going to study a class of machines called finite automata. Finite
automata are computing devices that accept/recognize regular languages and are usedto
model operations of many systems we find in practice. Their operations can be simulated by
a very simple computer program. A kind of systems finite automnata can model and a
computer program to simulate their operations are discussed.

Formal definition

Automaton
An automaton is represented formally by a 5-tuple (Q,Z,8,qo,F), where:

e Qis afinite set of states.

e X is afinite set of symbols, called the alphabet of the automaton.

e s the transition function, that is, 6: Q xZ/— Q.

e (Qois the start state, that is, the state of'the automaton before any input has
been processed, where qo€ Q.

e Fisaset of states of Q (i.e. FEQ).called accept states.

Input word
An automaton reads a finite stringiof symbols a;,ay,...., a,, where a; € Z, which is
called an input word. The set ofall words is denoted by >*.
Run
A run of the automaton.oh an input word w = aj,ay,..., an € Z*, is a sequence of states
Jo.91,92:---+ dn, Where'\ gi€Q such that qo is the start state and gi= 6(q;.1,a;) for
0<i<n. In words,at firstithe automaton is at the start state qo, and then the
automaton reads symbols of the input word in sequence. When the automaton reads
symbol aj it jumps to state’gi = 8(gi-1,ai). gnis said to be the final state of the run.
Accepting word
A word'w € 2* is accepted by the automaton if g, € F.
Recognizedlanguage
An automaton.can recognize a formallanguage. The language L € X* recognized by
an automaton is the set of all the words that are accepted by the automaton.
Recognizable languages
The recognizablelanguages are the set of languages that are recognized by some
automaton. For the above definition of automata the recognizable languages are
regularlanguages. For different definitions of automata, the recognizable languages
are different.

1.2:conceptsofautomatatheory

Automata theory is a subject matter that studies properties of various types of automata. For
example, the following questions are studied about a given type of automata.
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» Which class of formal languages is recognizable by some type of automata?
(Recognizable languages)
o Are certain automata closed under union, intersection, or complementation of formal
languages? (Closure properties)
e How muchis atype of automata expressive in terms of recognizing class of formal
languages? And, their relative expressive power? (Language Hierarchy)

Automata theory also studies if there exist any effectivealgorithm or not to solve problems
similar to the following list.

e Does an automaton accept any input word? (emptiness checking)

e Isit possible to transform a given non-deterministic automaton inte‘deterministic
automaton without changing the recognizable language? (Determinization)

e Foragiven formal language, what is the smallest automaton_that recognizesit?
(Minimization).

Classes of automata

The following is an incomplete list of types of automata.

Automata Recognizable language
Deterministicfiniteautomata(DFA) /7" reqularlanguages
Nondeterministicfiniteautomata(NFA) reqular languages
Nondeterministic finite automata with<€=transitions (FND-¢ regular languages
or e-NFA)

Pushdownautomata(PDA) Lineaf context-freelanguages
boundedautomata(LBA) context-sensitivelanguage
. : recursivelyenumerable

Turingmachines

languages
Timedautomata Detérministic
Blichiautomata Nondeterministic w-limitlanguages
Bichi automata w-reqular languages
Nondeterministic/DeterministicRabinautomata w-regular languages
Nondeterministic/DeterministicStreettautomata w-regular languages
Nondeterministic/Deterministicparityautomata w-regular languages
Nondeterministic/DeterministicMullerautomata w-regular languages

.1.3:Deterministic finite automata
Definition: A DFA is 5-tuple or quintuple M = (Q, Z, 0, qo, A) where

Q is non-empty, finite set of states.
2 is non-empty, finite set of input alphabets.

d is transition function, which is a mapping from Q x ¥ to Q.
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go € Q is the start state.

A C Qs set of accepting or final states.

Note: For each input symbol a, from a given state there is exactly one transition (there can be
no transitions from a state also) and we are sure (or can determine) to which state the
machine enters. So, the machine is called Deterministic machine. Since it has finite number
of states the machine is called Deterministic finite machine or Deterministic Finite
Automaton or Finite State Machine (FSM).

The language accepted by DFA is
L(M) ={w|w e >*and d*(qgo, W) € A }

The non-acceptance of the string w by an FA or DFA can be defined in formal notation as:
L(M) ={w|we >*and d*(qo, W) ¢ A }

Obtain a DFA to accept strings of a’s and b’s starting with the string ab
a,b

ab
Fig.1.1 Transition diagram to accept string ab(a+b)*

So, the DFA which accepts stringsiof a’s'and b’s starting with the string ab is given by
=(Q, X, 9, qo, A) where
Q = {90, 91 92,93}

2 =A{a, b}
golis the start state
A = {q2}

0is.shown the transition table 2.4.

Draw a DFA to accept string of 0's and 1's ending with the string 011.

N1
@@@@
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Obtain a DFA to accept strings of a’s and b’s having a sub string aa

Obtain a DFA to accept strings of a’s and b’s except those containing the substring aab.

b a a,b
|‘ a ,. a ,a b 'g

'\.._/
b

Obtain DFAs to accept strings of a’s and b’sthaving exactly one a,

b . b : a,b

Obtain a DFA to accept strings of a’s and b’s having even number of a’'sand b’s
The machine to accept even number of a’s and b’s is shown in fig.2.22.

a

CITSTUDENTS a Page3d
JIN 5> <>
a

@< @



FLAT 10CS56

Fig.2.22 DFA to accept even no. of a’'sand b’s

CE=0
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a

a
Regular language

Definition: Let M = (Q, X, 0, go, A) bea DFA. The language L is regular if there exists a
machine M such that L = L(M).

* Applications of Finite Automata *
String matching/processing

Compiler Construction
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The various compilers such as C/C++, Pascal, Fortran or any other compiler is designed
using the finite automata. The DFAs are extensively used in the building the various phases
of compiler such as

Lexical analysis (To identify the tokens, identifiers, to strip of the comments etc.)

Syntax analysis (To check the syntax of each statement or control statement used in
the program)
Code optimization (To remove the un wanted code)

Code generation (To generate the machine code)

Other applications- The concept of finite automata is used in wide applications. It is.not
possible tolist all the applications as there are infinite number of applications. This séction
lists some applications:

1. Large natural vocabularies can be described using finite automaton which includes

the applications such as spelling checkers and advisers, multi-language dictionaries,
to indent the documents, in calculators to evaluate .complex expressions based on the

priority of an operator etc. to namea few. Any editor that we use uses finite
automaton for implementation.

Finite automaton is very useful in recognizing difficult problems i.e., sometimes it is

very essential to solve an un-decidable problem.”Even though there is no general
solution exists for the specified problem, using theory of computation, we can find

the approximate solutions.

Finite automaton is very dseful'in: hardware design such as circuit verification, in
design of the hardwaresboard(mother board or any other hardware unit), automatic
traffic signals, radioscontrolled toys, elevators, automatic sensors, remote sensing or
controller etc.

In game theory and games wherein we use some control characters to fight against a monster,
economics, computer graphics, linguistics etc., finite automaton plays a very important role

1.4 ;_Nondeterministicfiniteautomata(NFA)
Definition: An NFA is a 5-tuple or quintuple M = (Q, 2, d, qo, A) where

Q is non empty, finite set of states.
2 is non empty, finite set of input alphabets.
d is transition function which is a mapping from
Q x {Z U €} to subsets of 22. This function shows

the change of state from one state to a set of states
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based on the input symbol.
go € Q is the start state.
A € Qis set of final states.
Acceptance of language

Definition: Let M = (Q, 2,0, qo, A) be a DFA where Q is set of finite states, 2 is set of input
alphabets (from which a string can be formed), d is transition function from Q x {ZUe} to

2% qois the start state and A is the final or accepting state. The string (also called language)
w accepted by an NFA can be defined in formal notation as:

L(M) = {w|w € Z*and O*(qo, w) = Q with atleast one
Component of Q in A}

Obtain an NFA to accept the following language L = {w | w € abab" or.aba" where n > 0}

The machine to accept either abab" or aba" where n > O sglown below:
.—-.—-.—-‘ 2>(@—(a-2(a3

Conversion from NFA to DFA

Let Mn = (Qn, 2N, On, Jo, An) be antNFA and accepts the language L(My). There should be

an equivalent DFA Mp = (Qp, 2, Op, Qo, Ap) such that L(Mp) = L(Mn). The procedure to
convert an NFA toits equivalent DFA=isshown below:

Stepl:

The start state of NFA My is the start state of DFA Mp. So, add qo(which is the start
state.of NFA) to Qp and find the transitions from this state. The way to obtain
different transitions is shown in step2.

Step2:

For each state [q;, j,-...qk] in Qp, the transitions for each input symbol in > can be
obtained as shown below:

1. do([qi gj,-.--ql, @) = On(q;, @) U On(gj @) U ...... On (g, a)
= [q|l qm,----qn] Say
2. Add the state [q, Qm,---.0n] to Qp, if it is not already in Qp.

3. Add thetransition from [q;, j,....qk] t0 [Q), Qm,--..qn] ON the input symbol a iff the
state [q), Qm,--.-.qn] is added to Qp in the previous step.

CITSTUDENTS.IN Page 12
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Step3:
The state [qa, Ob,----9c] € Qp is the final state, if at least one of the state in ga, qp, ---..

gc € Ay i.e, at least one of the component in [qa, b, --..qc] should be the final state of
NFA.

Step4:
If epsilon (€) is accepted by NFA, then start state qoof DFA is made the final state.

Convert the following NFA into an equivalent DFA.

'0 '1
@ 0,1 A 0,1

Stepl: qois the start of DFA (see stepl in the conversion procedure).

So, Qo = {[qol} @.7)

Step2: Find the new states from each state in Qp-and obtain the corresponding transitions.

Consider the state [qo]:

Whena=0
Oo([qal, 0) = “Onf[qo]0)
= [go,'qil
(2.8)
Whena=1
6D([QO]: 1) 5 6N([q0]: 1)
=" [qi]
(2.9)

Since thesstates obtained in (2.8) and (2.9) are not in Qp(2.7), add these two states to Qp so
that

Qo = {[90], [0, 1], [q1] } (2.10)

The corresponding transitions on a = 0 and a = 1 are shown below.

<—z—>

o 0 1

[l | [90ad | lad , t
(9o, 91] Consider th&state [90, q1:

[9a] Whena =0
6D([Q0, q]_], = 6N([q0: ql]: O)
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O) 6N(qOI 0) U 6N(qll 0)

{90, 91} U {q2}

[9o, 91, 92]
(2.11)

Whena=1

Oo([qo, qul,
1)

On(lqo, q1l, 1)
On(qo, 1) U On(qu 1)
{91} U {q2}

[91, 92]
(2.12)

Since the states obtained in (2.11) and (2.12) are the not defined in Qp(see.2.10Q), add these
two states to Qp so that

Qp = {[q0], [90, 1, [a1], [0, 91, 921, [91, Q2] } (2.13)

and add the transitions on a = 0 and a = 1 as shown below:

2 -
o) 0 1
(0] [Qoad | lad] T
[do, 91l [do. 91 92] | [91,9] g
[qa] Consider the state [qi]:
qu‘])’ . Whenla = 0
2
Oo([qi], 0) = “On([g:]0)
= [g2]
(2.14)
Whena=1
6D([Q1]: 1) = 6N([q1]: 1)
= [qg2]
(2.15)

Since.the states obtained in (2.14) and (2.15) are same and the state gz is not in Qp(see 2.13),
add the state q2to Qp so that

Qo="{[q0], [90, 911, [q1], [90, g1 92, [a1, 921, [92]}  (2.16)

and add the transitions on a = 0 and a = 1 as shown below:

«—2 — »

) 0 1
[Qo] [9o, 91] [q1] ) T
[9o, q1] [0, 91 92] | [91, 92 Consider the|state [qo,q1.92]:
(g (g2] lg2] Q
CITSTUDEq 'S 1IN l Page 14
2
[91, 92]




FLAT 10CS56

Whena =0
Oo([qo,91.92], = On([90quAzl, O)
0) = On(go, 0) U On(gz, 0) U On(gz O)
= {90,91} U {q2} U {0}
= [go,91,9:2]
2.17)
Whena=1
Oo([qo.q1.g2], = On([90quazl, 1)
1) = On(go, 1) U dn(gy 1) U dn(g2 1)
= {q1} U {q2} U {q2}
= [9u 2]
(2.18)

Since the states obtained in (2.17) and (2.18) are not néw. states (are already in Qp, see 2.16),
do not add these two states to Qp. But, the transitiohs.on a:= 0 and a = 1 should be added to
the transitional table as shown below:

z <

0 0 1
[qo] [do Qi | [qu] T
[q0, 91l [q0, 91.°92] |'[91.92]
[qil (92l (921 Q
[9o,  quAlgo.qua2] /| (a1 92l
92l l
[91, 9ol

Consider the state [q1,92]:

When a =0
Oo([g1,9210) On([91.92] 0)

On(qr 0) U dn(g2 0)

{a2} U {0}

[92]
(2.19)

Whena=1

Oo([91.92], 1) On([aua2l, 1)
6N(qll 1) U 6N(q2: 1)
{92} U {q2}

[92]
(2.20)

CITSTUDENTS. Page 15
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Since the states obtained in (2.19) and (2.20) are not new states (are already in Qp see 2.16),
do not add these two states to Qp. But, the transitions on a = 0 and a = 1 should be added to
the transitional table as shown below:

«—> 5

5 0 1
[ |lqoad | ad . J‘
[q0, 91l [q0. 91 92] | [91 92] Consider the state [q2]:
[au] [a2] [a2] Q
[Q(]), gy | [90.91,92] | [qu g2l Whenla =0
g2
(91, 92] [92] [92]
Op([q2], 0) = On([g2l, 0)
= {0}
(2.21)
Whena=1
Op(la2], 1) = On([q2], 1)
= [qg2]
(2.22)

Since the states obtained in (2.21) and (2.22).dre not new: states (are already in Qp, see 2.16),
do not add these two states to Qp. But, the transitions:on‘a = 0 and a = 1 should be added to
the transitional table. The final transitional table is/shown in table 2.14. and final DFA is
shown in figure 2.35.

0 0 1

[Fol [qo, qil [qi]
[90, 91 92] | [91, 92]

[92] [92]

[90.91.92] | [91 92]

[92] [92]
[92] P [92]
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Fig.2.35 The DFA

Convert the following NFA to its equivalent DFA.

Let Qp = {0}

Consider the state [A]:

When'input is a:

O(A, a)

When input is b:

O(A, b)

Consider the state [B]:

When input is a:

O(B, a)

(A)

6N(0, a)
{1}
(B)

On(0, b)
{6}

6N(1, a)
{0}

CITSTUDENTS.IN
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When input is b:
6( B, b) 6N(]-l b)

{2}

{2.3,4,6,9} (@)

This is because, in state 2, due to g-transitions (or without giving any input) there
can be transition to states 3,4,6,9 also. So, all these states are reachable from state 2.
Therefore,

0(B, b) = {2,3,469}=C
Consider the state [C]:

When input is a:
3(C, a) On({2,3,4,6,9}, a)

{5}

{5, 8,9 3,4,6}

{3,4,5,6,8 9} (ascending

order) (D)

This is because, in state 5 due to e-transitions, the states reachable are {8, 9, 3, 4,
6}. Therefore,

0(C,a)={3,4,56,89} =D
When input is b:

6( C, b) 6N({zr 31 41 6: 9}1 b)

(8 R | I | I |
=
~
00

6}
, 9}(ascending order)
(E)
This is becatse, from ‘state 7 the states that are reachable without any input (i.e., €-
transition).are{8,9, 3, 4, 6}. Therefore,

0(C, b)=43/4,6,7,8,9} =E

Consider the state [D]:

When input'is a:
3(D;, a) On({3,4,5,6,8,9}, a)

{5}

{5809, 3,46}

{3,4,5,6,8 9} (ascending

order) (D)

When input is b:

O(D, b)

On({3,4,5,6,8,9}, b)

{7}

{7,893, 4,6}

{3,4,6,7,8,9} (ascending

CITSTUDENTS.IN Page 18
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order) (E)

Consider the state [E]:
When input is a:
O(E, a) 0n({3,4,6,7,8,9}, a)
{5}
{5, 8,9, 3,4,6}
{3, 4,5, 6, 8, 9}(ascending order)

(D)

When input is b:
O(E, b) On({3,4,6,7,8,9}, b)

{7}

{7.8,9, 3,4, 6}

{3,4,6,7,8,9}(ascending order)

(B)

Since there are no new states, we can stop at this point and.the transition‘table for the DFA is

shown in table 2.15.

— 5

0 a b

A B - T

B C Table 2.15
D E Transitiond table
D E _
D E The states GyD and E are final states,

since 9 (final state of NFA) is present in
C, D and E. The final transition diagram,of DFA is shown in figure 2.36

Fig. 2.36 The DFA
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Unit 1:Assignment questions:

1. Obtain a DFA to accept strings ofa’s and b’s starting with the string ab
2. Draw a DFA to accept string of 0’s and 1’s ending with the string 011.

Obtain a DFA to accept strings ofa’s and b’s having a sub string aa

Obtain a DFA to accept strings of a’s and b’s except those containing the substring
aab.

5. Obtain DFAs to accept strings of a’s and b’s having exactly one a,

~ow

6. Obtain a DFA to accept strings ofa’s and b’s having even number of a’s and'b’s

7. Give Applications of Finite Automata *

Define DFA, € NFA & Language?
(i) Write Regular expression for the following L = { a”h™: m, naréeven} L = { a", b™:
m>=2, n>=2}

(i) Write DFA to accept strings of 0’s, 1's.& 2"s.beginning with a 0 followed by odd
number of 1’s and ending with a 2.
10. Design a DFA to accept string of 0’s & L‘s whentinterpreted as binary numbers would be

O

multiple of 3. ,
11. Find € closure of each state and give the set of all'strings of length 3 or less accepted by
automaton.
1) € a b
>p {0} {a} {p.r}
q P {p} 0
s {p.q} {n} {p}

12. Convert/above automaton to a DFA
13. Write’anote on Application of automaton.
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UNIT-2:
FINITE AUTOMATA, REGULAR EXPRESSIONS

2.1 An application of finite automata

2.2 Finite automata with Epsilon transitions
2.3 Regular expressions
2.4 Finite automata and regular expressions

2.5 Applications of Regular expressions
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2.1 Anapplicationoffiniteautomata

Applications of finite automata includes String matching algorithms, network
protocols and lexical analyzers

StringProcessing
Consider finding all occurrences of a short string (pattern string) within a

Long string (text string).This can be done by processing the text through
a DFA: the DFA for all strings that end with the pattern string. Each time the aceept state is
reached, the current position in the text is output

Example: Finding 1001
To find all occurrences of pattern 1001, construct
the DFA for all strings ending in 1001.

i R [N 0 .
—f g }———l q1 0 G2 ————\ G —— Q4
~ \ N

Finite-State Machines
A finite-state machine is-an FA together with
actions on the afrcs.

. . . . . .
A trivial example for a communication linke

A send packet

_z:disuf N 'f'_wc.ir Jif NAK then resend

receive ack
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Example FSM: Bot Behavior

A bot is a computer-generated character ina video gamee

find dragon J{ find peasant get close

. s " \ "
Jroam | chase] fight

escape lose sight of get far

flee

State charts

State charts model tasks as a set of states and actions. They extend FA diagrams. Here is a
simplified state chart for a stopwatch

active

. stopped running

start

._’ stop

reset]

Lexical Analysis

In compiling a program, ‘the first step is lexi-cal analysis. This isolates
keywords,identifiersetc., .while eliminating irrelevant symbols.A token is a category, for
example “identifier”,"relation operator” or specific keyword.

For example,

token RE

keyword thenthen

variable name [a-zA-Z][a-zA-Z0-9]* where latter RE says it is any string of alphanumeric

characters starting with a letter.

A lexical analyzer takes source code as a string,and outputs sequence of tokens.
Forexample,

for i'=.1.to max do

X[i] =0;

might have token sequence

forid =num toiddoid[id] = num sep

As atoken is identified, there may be an action.
For example, when a number is identified, itsvalue is calculated
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2.2 Finite automata with Epsilon transitions

We can extend an NFA by introducing a "feature" that allows us to make a transition on
, the empty string. All the transition lets us do is spontaneously make a transition,
without receiving an input symbol. This is another mechanism that allows our NFA to be
in multiple states at once. Whenever we take an edge, we must fork off a new "thread"”
for the NFA starting in the destination state.

Just as nondeterminism made NFA's more convenient to represent some problems than
DFA's but were not more powerful, the same applies to ENFA's. While more

expressive, anything we can represent with an ENFA we can represent with a DFA"that
has no € transitions.

Epsilon Closure

Epsilon Closure of a state is simply the set of all states we can reachibyfoltowing the
transition function from the given state that are labeled . Generally speaking,/a collection of
objects is closed under some operation if applying that operationto. members of the collection
returns an object still in the collection.
In the above example:
ex (@)=1{q)
ex (r) = {r, s}
let us define the extended transition function foran €éNFA. For a
regular, NFA we said for the induction steps
Let
OMq,w) = {p1, p2, ... pk}
O(pi,a) =Sifori=1,2,...k
Then *(qg, wa) = S1,S2... Sk

For an -NFA, we change for (g, wa):
Union[ 0* (Each state in.S1, S2;... Sk)]

This includes the original set S1,S2...-Sk as well as any states we can reach via .
When coupled with/he basis that 2(q, ) = 0* (q) lets us inductively define an

extended transition function for a eNFA.

Eliminating €Transitions
gTransitions.are a convenience in some cases, but do not increase the power of the NFA.

To eliminate them we can convert a éNFA into an equivalent DFA, which is quite

similar to the steps we took for converting a normal NFA to a DFA, except we must now
follow all Transitions and add those to our set of states.

1. Compute e for the current state, resulting in a set of states S.
2.0(S,a) is computed forall ain 2 by
a.LetS = {py p2, ... px}
b. Compute 1=1>k (pi,a) and call this set {ri, r2, r3... rm}. This set is achieved by following
input a,
not by following any € transitions

c. Add the € transitions in by computing (S,a)=1=1>m €x(I'1)
3. Make a state an accepting state if it includes any final states in the -NFA.
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Note :The ¢ (epsilon) transition refers to a transition from one state to another without

the reading of an input

0 |a b C € symbol (ie without the tape containing the input string
q0 | {q0} | ¢ 0 {a1} | moving). Epsilon transitions can be inserted between
ql| ¢ {92} | o {92} | any states. There is also a conversion algorithm from a
a2 o 0 {92} | o NFA with epsilon transitions to a NFA without

epsilon transitions.

Consider the NFA-epsilon move machine M = {Q, %, 9, q0, F}
Q={q0,ql g2}
2={ab,c} and € moves
q0 =q0
F={q2}

__ o
On0n 0763
* * *

regular expression a” b’

NFA

Note: add an.arc from qz.te’qz labeled "c" to figure above.

The language accepted by the above NFA with epsilon move
the set of strings over {a,b,c} including the null string and
all strings with'any number of a's followed by any number of b's
followed by any number of c's.
Now convert the NFA with epsilon moves toaNFA M = (Q', ,9', q0', F)
First determine the states of the new machine, Q' = the epsilon closure
of the states in the NFA with epsilon moves. There will be the same number
of states but the names can be constructed by writing the state name as
the set of states in the epsilon closure. The epsilon closure is the
initial state and all states that can be reached by one or more epsilon moves.
Thus g0 in the NFA-epsilon becomes {q0,91,92} because the machine can move
from g0 to gl by an epsilon move, then check ql and find that it can move
from gl to g2 by an epsilon move.
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ql in the NFA-epsilon becomes {q1l,q2} because the machine can move from
ql to g2 by an epsilon move.

g2 in the NFA-epsilon becomes {q2} just to keep the notation the same. g2
can go nowhere except g2, that is what phi means, on an epsilon move.
We do not show the epsilon transition of a state to itself here, but,

beware, we will take into account the state to itself epsilon transition

when converting NFA's to regular expressions.

The initial state of our new machine is {q0,91,g2} the epsilon closure of g0

The final state(s) of our new machine is the new state(s) that contain
a state symbol that was a final state in the original machine.

The new machine accepts the same language as the old machiné, thus same sigma.

So far we have for out new NFA

Q' ={{q0,91,92}, {q1,92}, {92} } orrenamed { gx,qy.qz }
>={ab,c}

F'= {{q0,91,92}, {q1,92}, {92} } or renamed 4 qx, qy,gz }
q0 = {q0,91,92} or renamed gx

inputs

o' alblc

gxor{q0,q1,92}

qy or{ql,q2}

gz or{q2}

Now we fill in thetransitions. Remember that a NFA has transition entries that are sets.
Further, the names inithe transition entry sets must be only the state names from Q'.

Very carefully consider.eaeh’old machine transitions in the first row.

You can ignore any ¢ entries and ignore the € column.

In the old machine §(q0,a)=q0 thus in the new machine

0'({90,91,92},2)={q0,q1,q2} this is just because the new machine

accepts the.same language as the old machine and must at least have the

the same transitions for the new state names.

inputs
0' a blc
gxor{q0,91,92} | {gx} or{{q0,q1,92}}
qy or{ql,q2}
gz or{g2}

No more entries go under input ain the first row because

CITSTUDENTS.IN Page 26



FLAT 10CS56
old d(ql,a)=0, d(q2,a)=0
Now consider the input b in the first row, 8(q0,b)=0, 8(q1,b)={q2}
and 0(g2,b)=0. The reason we considered g0, g1 and g2 in the old
machine was because out new state has symbols g0, q1 and g2 in the new
state name from the epsilon closure. Since gqlis in {q0,q1,92} and
0(ql,b)=ql then 0'({q0,91,92},b)={q1,92}. WHY {q1,92} ?, because
{91,92} is the new machines name for the old machines name q1. Just
compare the zeroth column of d to &'. So we have
inputs
0' a b C
qxor{q0,q1,92} | {gx} or{{q0,q91,92}} | {qy} or{{ql,q2}}
qy or{ql,q2}
gz or{g2}
Now, because our new gx state has a symbol g2 in its name and
0(g2,c)=g2 is in the old machine, the new name fof thewold g2,
which is gz or {g2} is put into the input c transition in‘row 1.
Inputs
0' a b C
ax or{q0,91,92} | {gx} or{{q0,q1,42}} | {qy}or{{ql,q2}} | {9z} or{{q2}}
qy or{ql,q2}
gz or{q2}
Now, tediously, move on'torow two, ...".
You are considering.all transitions in the old machine, delta,
for all old maching state.symbols’in the name of the new machines states.
Fine the old machine state that results from an input and translate
the old machine state to.the corresponding new machine state name and
put the new-'machine state name in the set in delta’. Below are the
"long,new state names" and the renamed state names in delta’.
Inputs
0' a b C
ax or{q0,91,92} | {gx} or{{q0,q91,92}} | {qy} or{{ql,q2}} | {qaz} or{{q2}}
qyor{qlg2} |o {ay} or{{q1,92}} | {qz} or{{q2}}
qz or{q2} 0 0 {9z} or{{q2}}
inputs
d |a b C \
ax | {faxt | {avt | {gz}
| B¥or @ cSE/SHYS | 1925 Page 27
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\>Q'

The figure above labeled NFA shows this state transition table.

It seems rather trivial to add the column for epsilon transitions,
but we will make good use of this in converting regular expressions
to machines. regular-expression -> NFA-epsilon -> NFA -> DFA.

2.3 :Regular expression

Definition: A regular expression is recursively defined as follows.

0 is a regular expression denoting an empty language:
€-(epsilon) is aregular expression indicates the langdage containing an empty string.
ais aregular expression which indicates the language containing only {a}
If R is aregular expression denoting the language Lr and’S is a regular expression
denoting the language Ls, then

a. R+Sis aregular expression corresponding to the language LrULs.

b. R.S is aregular expression corresponding tothe language Lg.Ls.

c. R*is aregular expression corresponding to the language Lg .
5. The expressions obtained by“applying ‘any of the rules from 1-4 are regular
expressions.

N

The table 3.1 shows some examples-of reqular expressions and the language corresponding to these
regular expressionhs.

Regular Meaning

expressions

(a+b)* Set of strings of a’s and b’s of any length
including the NULL string.

(a+b)*abb Set of strings of a’s and b’s ending with the
string abb

ab(a+b)* Set of strings of a’s and b’s starting with the
string ab.

(a+b)*aa(a+b) | Set of strings of a’s and b’s having a sub string

* aa.

a*b*c* Set of string consisting of any number of
a’s(may be empty string also) followed by any
number of b’s(may include empty string)
followed by any number of c’s(may include
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empty string).

a'b’c Set of string consisting of at least one ‘a’
followed by string consisting of at least one ‘b’
followed by string consisting of at least one “c’.
aa*bb*cc* Set of string consisting of at least one ‘a’
followed by string consisting of at least one ‘b’
followed by string consisting of at least one “c’.
(a+b)* (a + | Set of strings of a’s and b’s ending with either a
bb) or bb

(aa)*(bb)*b Set of strings consisting of even number of a’s
followed by odd number ofb’s

(0+1)*000 Set of strings of 0’s and 1’s ending with-three
consecutive zeros(or ending with 000)

(11)* Set consisting of even number of 1's

Table 3.1 Meaning of reqular expressions

Obtain aregular expression to accept a language consisting ofstrings ofa’sand b’s of even length.

String of a’s and b’s of even length can be obtaihied by the combination of the strings aa, ab,
ba and bb. The language may even consist of:an.empty'string denoted by €. So, the regular
expression can be of the form '

(@a‘+ ab +.ba + bb)*

The * closure includes the empty string.
Note: This regular expression can-also be represented using set notation as
L(R) ={(aa'+ ab + ba + bb)" | n> 0}

Obtain aregular expression to accept-a language consisting of strings ofa’s and b’s of odd length.

String of a’s and 'b’s of odd length can be obtained by the combination of the strings aa, ab,
ba and bb followed by éither a or b. So, the regular expression can be of the form

(aa + ab + ba + bb)* (a+b)

String of a’s and'b’s of odd length can also be obtained by the combination of the strings aa,
ab, 'ba-and bb preceded by either a or b. So, the regular expression can also be represented as

(a+b) (aa +ab + ba + bb)*

Note: Even though these two expression are seems to be different, the language
corresponding to those two expression is same. So, a variety of regular expressions can be
obtained for a language and all are equivalent.
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2.4 -finite automata and regular expressions

Obtain NFA from the regular expression

Theorem: Let R be a regular expression. Then there exists a finite automaton M = (Q, 2, 9,
go, A) which accepts L(R).

Proof: By definition, ¢, € and a are regular expressions. So, the corresponding machines to
recognize these expressions are shown in figure 3.1.a, 3.1.b and 3.1.c respectively.

—@® , ® — @O
(@) (b) ©
Fig 3.1 NFAs to accept ¢, £and a

The schematic representation of a regular expression Rito.accept the language L(R) is shown
in figure 3.2. where q is the start state and f is the final state of'machine M.

L(R)

Fig 3.2 Schematic'representation of FA accepting L(R)

In the definition of a regularexpression it is clear that if R and S are regular expression, then
R+S andR.S and R* areseqgular expressions which clearly uses three operators “+°, ’-* and

".". Let us take each case separately and construct equivalent machine. Let M1 = (Q1, 21, 01,

g1, f1) be a machineg'which.accepts the language L(R1) corresponding to the regular
expression Ry. Let Mza=(Q5; 22 0, gy f2) be a machine which accepts the language L(R;)

corresponding to. the regulaf‘expression R;.

Case 1:'R = R; + R3:We can construct an NFA which accepts either L(R1) or L(R2) which
can be represented as L(R;1 + Ry) as shown in figure 3.3.

L(Ry)
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Fig. 3.3 To accept the language L(R1 + R2)

It is clear from figure 3.3 that the machine can either accept L(R1) or L(Ry). Here, qo is the
start state of the combined machine and g¢is the final state of combined machine M.

Case 2: R = R; . Ry. We can construct an NFA which accepts L(R1) followed by L(R2) which
can be represented as L(R1 . Ry) as shown in figure 3.4.

L(Ry) L(Rz2)

3
(@ M)
Fig. 3.4To accept the language L(R1 . R2)
It is clear from figure 3.4 that the machine after accepting L(R1) moves from'state q; to fi.

Since there is a e-transition, without any input there will be a trapsition from,state f; to state

gz. In state g, upon accepting L(R;), the machine moves to fawhich’is the final state. Thus,
g1 Which is the start state of machine M1 becomes the start state of the.combined machine M
and f, which is the final state of machine M,, becomes the final state of machine M and
accepts the language L(R1.Ry).

Case 3: R = (R1)". We can construct an NFA which aceepts either L(R1)") as shown in figure
3.5.a. It can also be represented as shown in figure:3.5.b.

(b)
Fig. 3.5 To accept the language L(R1)’

It is clear from figure 3.5 that the machine can either accept € orany number of L(R1)s thus
accepting the language L(R:) . Here, qois the start state gris the final state.

Obtain an NFA which accepts strings of a’s and b’s starting with the string ab.
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The regular expression corresponding to this language is ab(a+b)*.

Step 1: The machine to accept ‘a” is shown below.

Step 2: The machine to accept “b” is shown below.

Step 3: The machine to accept (a + b) is shown below.

Step 5: The machingto accept abiis shown below.

Step 62 Themachineto accept ab(a+b)* is shown below.
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Fig. 3.6 To accept the language L(ab(a+b)*)

Obtain the regular expression from FA

Theorem: Let M = (Q, 2, d, go, A) be an FA recognizing the language L. Then there exists
an equivalent regular expression R for the regular language L such that L = L(R).

The general procedure to obtain a regular expression from FA is shown below. Consider the
generalized graph

(a5 @)

r

Fig. 3.9 Generalized transition graph

where ry, ry, r3 and ry are the regular expressions and correspond to the labels for the edges.
The regular expression for this can take the form:

F=rr(r+rnr) (3.1)

Note:
1. Any graph can be reduced to the graph shown~in figure 3.9. Then substitute the
regular expressions appropriately=in the equation 3.1 and obtain the final regular

expression.
2. 1If rsis not there in figure 3.9, the regular expression can be of the form
r=rirr (3.2)

3. If goand gz are thefinal states.then the regular expression can be of the form
r= I’]_* b SN X V1 (33

Obtain a regular eéxpression for the FA shown below:
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The figure can be reduced as shown below:

’01
(49
U10

It is clear from this figure that the machine accepts strings of 01’s and 10’s of any.length and
the regular expression can be of the form

(01 + 10)"

What is the language accepted by the following FA

No 1 o
O ®

Since, state qgyis the dead state, it can be removed and'the following FA is obtained.

The state qois the final state and at.this paint it can accept any number of 0’s which can be
represented using notation as

*

0

g1 is also the final state. So, to'reach g; one can input any number of 0’s followed by 1 and
followed by any number©ofl’s and can be represented as
011

So, the final regularexpression is obtained by adding 0" and 0'11". So, the regular expression
is

It is clear from the regular expression that language consists of any number of 0’s (possibly
€) followed by any number of 1"s(possibly €).
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2.5:Applications of Regular Expressions

Pattern Matching refers to a set of objects with some common properties. We can match an
identifier or a decimal number or we can search for astring in the text.

An application of regular expression in UNIX editor ed.
In UNIX operating system, we can use the editor ed to search for a specific pattern in the
text. For example, if the command specified is

Jacb*c/

then the editor searches for a string which starts with ac followed by zero ormore’b’s and
followed by the symbol c. Note that the editor ed accepts the regular.expression and searches
for that particular pattern in the text. As the input can vary dynamically;.itsis challenging to
write programs for string patters of these kinds.
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Assignment questions:

1.
2.

Obtain an NFA to accept the following language L = {w | w € abab" or aba" where n > 0}

Convert the following NFA into an equivalent DFA.

‘O 01 ‘ 0,1 ‘1

3.

Convert the following NFA to its equivalent DFA.

10.

11.

12.
13.

P.T. Let R be aregular expression. Then there exists-a finite automaton M = (Q, 2, 9,
go, A) which accepts L(R). J

Obtain an NFA which accepts strings of a’s.andb’s starting with the string ab.

Define grammar? Explain.Ghomsky Hierarchy? Give an example
(a) Obtain grammar« to generate, string consisting of any number of a’s and b’s with at
least one b.
e Obtain a gfammar to generate the following language: L ={WW® where We{a,
b}*}
(a) Obtain a grammar to generate the following language: L = { 0™ 1™2" | m>= 1 and
n>=0}
e / Obtain a,grammar to generate the set of all strings with no more than threea’s when
2={a, b}
Obtain a grammar to generate the following language:
() L={w[naw)>nyw)}
(i) L= £a"b™ c*|n+2m =k forn>=0, m>=0}
Define derivation , types of derivation , Derivation tree & ambiguous grammar. Give
example for each.
Is the following grammar ambiguous?
S > aB|bA
A > aS|bAA |a
B > bS|aBB |b
Define PDA. Obtain PDA to accept the language L = {a"b"| n>=1} by a final state.
write a short note on application of context free grammar.
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UNIT 3:
PROPERTIES OF REGULAR LANGUAGES

3.1 Regular languages

3.2 proving languages not to be regular languages
3.3 closure properties of regular languages

3.4 decision properties of regular languages

3.5 equivalence and minimization of automata
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3.1:Regular languages

In theoreticalcomputerscience and formallanguagetheory, a regular language is a formal
language that can be expressed using a regularexpression. Note that the "reqular expression”
features provided with many programming languages are augmentedwithfeatures that make
them capable of recognizing languages that can not be expressed by the formal regular
expressions (as formally defined below).

In the Chomskyhierarchy, regular languages are defined to be the languages that.are
generated by Type-3 grammars (regulargrammars). Regular languages are very. useful in
input parsing and programminglanguage design.

Formal definition
The collection of regular languages over an alphabet X is defined recursively as follows:

e Theempty language @ is aregular language.

e Foreacha € X (abelongs to %), the singleton language {a} is aregular language.

o If Aand B are regular languages, then A'U B (union);A « B (concatenation), and A*
(Kleenestar) are regular languages. )

» No other languages over X are regular.

See regularexpression for its syntax'and semantics. Note that the above cases are in effect
the defining rules of regular expression

Examples

All finite languagessare regular; inparticular the emptystring language {€} = @* is regular.
Other typical examplesiinclude the language consisting of all strings over the alphabet {a, b}
which contain@n even number of as, or the language consisting of all strings of the form:
several as followed by several bs.

Tnyn
A simple example of a language that is not regular is the set of strings {a"V" | n = 0},
Intuitively, it canhot be recognized with a finite automaton, since a finite automaton has
finitesmemory and it cannot remember the exact number of a's. Techniques to prove this fact
rigorously are given below.

provinglanguagesnottobereqularlanguages

* Pumping Lemma
Used to prove certain languages like L = {0"1" | n > 1} are not regular.
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 Closure properties of regular languages
Used to build recognizers for languages that are constructed from other languages by
certain operations.
Ex. Automata for intersection of two regular languages

« Decision properties of reqular languages
— Used tofind whether two automata define the same language

— Used to minimize the states of DFA
eg. Design of switching circuits.

PumpinglLemmaforregularlanguages(Explanation)
Let L={0"1"|n>1}

There is no regular expression to define L. 00*11* is not the regular expression defining L.
Let L= {0%1°

State 6 is a trap state, state 3 remembers that.two 0’s have come and from there state 5
remembers that two 1’s are accepted.

This implies DFA has no memory to remember arbitrary ‘n’. In other words if we have to
remember n, which varies from 1 to’co@@we have to have infinite states, which is not
possible with a finite state machine,which hasfinite number of states.

PumpingLemma(PL)forReqularLanguages

Theorem:

Let L bea regular language. Then there exists a constant ‘n” (which depends
on L) such that forevery string w in L such that |w| > n, we can break w into three strings,
w=xyZ, suchthat:

1. |y}>0

2:%y| < n

3. Forall k > 0, the string xy*z is also in L.
PROOF:

Let L be regular defined by an FA having ‘n” states. Let w= aj,a; ,as----a, and is in L.
lw| = n2 n. Let the start state be P1. Let w = xyz where x= a;,a; ,a3 -----an-1, y=a, and z = €.
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But there are only n states. == there
5(Ppa)P, ) y

must be a loop. Let there be a loop in
o(P,,2,)7P; P_ State.
i > Let s, .. o0 a,
| y—a,
8(Pn7an)=Pn+1 /’J =g

Therefore xyKz = a1 ------ an-1 (@an)K e

k=0 a1 ------ an-1 is accepted

k=1 a1 ------ an is accepted
k=2 a1 ------ an+1 is accepted
k=10 a1 ------ an+9 is accepted and so on.

UsesofPumpinglemma: -This is to betised to show that, certain languages are not regular.
It should neverbe used“to show that some language is regular. If you want to show that
language is regular,Write separate éxpression, DFA or NFA.

General Method<of proof: -

(i) Select wistich that |w| 2 n

(ii) Select’y such that|y| > 1

(i) Select x such that|xy| < n

(iv) Assign remaining string to z

(v) Select k suitably to show that, resulting string is not in L.
Example 1.

To prove that L={w|w € a"b", where n > 1} is not regular
Proof:

Let L be regular. Let nis the constant (PL Definition). Consider aword w in L.
Let w = a"b", such that |w|=2n. Since 2n > nand L is regular it must satisfy PL.
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Consider w=  aa-----a bb-----b

Xy contain only a’s. (Because |xy| < n).
Let |y|=I, where | > O (Because y| > 0).

Then, the break up of x. y and z can be as follows

X y oz
| N 1 |

w= a*l al bt
from the definition of PL, w=xykz, where k=0,1,2,------ 0,should belong'to L.
That is an! (a)k br €L, for all k=0,1,2,------ 73y
Put k=0. we get a™' b ¢ L.
Contradiction. Hence the Language is not regular.
Example 2.

To prove that L={w|w is a palindrome on {a;b}*} is'not regular. i.e., L={aabaa, aba,
abbbba,...}

Proof:

Let L be regular. Let nis the'constant (PL Definition). Consideraword win L. Let w
= a"ba™ such that |w|=2n+1. Since 2n+1 >'n'and L is regular it must satisfy PL.

n n
=1 1

Consider w="aa-----a b ap-----

}"?ﬁ’"\‘_z_’{a

xy contain'only a“s. (Because |xy| < n).
Let|yl=], where | > 0 (Because |y| > 0).

Thatis, the'break up of x. y and z can be as follows
X ¥ Z
| | 1l |

w= a~ a  ba°

from the definition of PL w=xy*z, where k=0,1,2,------ 0, should belong to L.
k
Thatis a"' (a") ba"elL, for all k=0,1,2,------ Q0.
Put k=0. we get a"' b a’¢ L, because, it is not a palindrome. Contradiction, hence the
language is not regular
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Example 3.

To prove that L={ all strings of 1’s whose length is prime} is not regular. i.e., L={1?,
13 115 117 1111 I____}

Proof: Let L be regular. Let w = 1Pwhere p is prime and | p| = n +2

Lety =m.
by PL xykz eL
| xy*z |= | xz | + | y¥| Let k = p-m
= (p-m) + m(p-m)
= (p-m) (1+m) ----- this can not be prime
if p-m 2 2o0r1l+m 22
1. (1+m) > 2 because m> 1

2. Limiting case p=n+2
(p-m) 2 2 since m <n

Example 4.
To prove that L={ 0’ |iis integer and i >0} isnot'regular. i.e., L={0%, 0%,0°,0%,0%

-}
Proof: Let L be regular. Let w = 0" where [Wj="n2>n

by PL xy*z €L, forall k = 0,1,--
Selectk = 2
|xy?z|=[xyz|+]y]|
= n?+ Minl'and Max:n
Therefore n? < | xy?z | < n?+n

n?< | xy?z| <2+ n+71+n adding 1 + n ( Note that less than or equal to is
N2 <xy?z < (n /1) replaced by less than sign)

Say n = 5 this implies that string can have length > 25 and < 36
which is'hot of the form 07

a) (Show thatfollowing languages are not regular
3.3:closurepropertiesofregularlanguages

1. The union of two regular languages is regular.
2. The intersection of two regular languages is regular.

3. The complement of a regular language is regular.
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4. The difference of two regular languages is regular.

5. Thereversal of aregular language is regular.

6. The closure (star) of a reqular language is regular.

7. The concatenation of regular languages is regular.

8. A homomorphism (substitution of strings for symbols) of a regular language is regular.

9. The inverse homomorphism of aregular language is regular

Closure under Union

Theorem: If L and M are regular languages, then so is L UM.

Ex1.
L1={aa%a>-----}
L2={a%a%a%-----}
L1ul2 = {a,a%a3a%----}
RE=a(a)"

Ex2.

L1={ab, a2 b?, a3b3, a*b?,-2==-}
L2={ab,a? b3,a5b5, ¥

L1UL2 = {ab,a2b? a3b3, a*b%, a’b>----}
RE=ab(ab)”

Closure Under Complementation
Theorem : If Ldis a regular language over alphabet S, then L= =" - L is also a regular

language.

Ex1.
L1={a,a%a°----}
5 1={e,a?,a%ab -}
RE=(aa)*

Ex2.

Consider a DFA, A that accepts all and only the strings of 0’s and 1’s that end in
01. That is L(A) = (0+1)'01. The complement of L(A) is therefore all string of 0’s and 1's
that do not end in 01
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L{(A)=(0+1)"01

T {ab,c}L(A)

[\‘ll) 9 f\&b
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Theorem: - If L is a regular language over alphabet ,then, L = X - Lisalso a
regular language _

Proof: - Let L =L(A) forsome DFA. A=(Q, Z,d,qo, F). Then L = L(B), where B is the
DFA (Q, Z, 0, qo, Q-F). That is, B is exactly like A, but the accepting states of A have
become non-accepting states of B, and vice versa, then w is in L(B) if and only if 8" ( qo, w)
is in Q-F, which occurs if and only if w is not in L(A).

Closure Under Intersection
Theorem : If L and M are regular languages, then sois L N M.
Ex1.

L1L2 = {a%,a%a%,----}
RE=aa(aa)*

Ex2
L1={ab,a%b%a°b®,a’b’-----}
L2={a? b2, a%b?, abhs,-----}
L1NL2 = @
RE= ¢

Ex3.
Consider a DFA that accepts all-those strings'that have a 0.

0.1
v

A
5y )
Consider aDFA thataccepts all those strings that have a 1.

0,1
)

<5

The product of above two automatais given below.

0.1

This automaton accepts the intersection of the first two languages: Those languages that have
both a0 and a 1. Then prrepresents only the initial condition, in which we have seen neither
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0 nor 1. Then state qr means that we have seen only once 0’s, while state ps represents the
condition that we have seen only 1’s. The accepting state gs represents the condition where
we have seen both0’s and 1’s.

Ex4(onintersection)
Write a DFA to accept the intersection of L1=(a+b)*a and L2=(a+b)*b thatis for L1 n L2.

b a a

'~ B
[

[

©

- .‘

DFA forL1 n L2 = cp (as no string has reached to final state (2,4))

Ex5(onintersection)

Find the DFA tofccept the intersection of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba
(a+b)* that is for LL.a L2
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DFA forlLl n L2

Closure Under Difference

Theorem : If L and M are regular languages, then sofis:—M.

Ex.
L1={a,a% 2% a’,----}
L2={a%a%a®-----}
L1-L2 = {a,a%a%a’-4}
RE=a(a)"
Reversal

Theorem : If L is aregular language, so is LR
Ex.
={001,10,1711,01}
R={100,01,111,10}

To prove thatregular languages are closed under reversal.

Let L= {001, 10, 111}, be a language over 2={0,1}.
LR is‘alanguage consisting of the reversals of the strings of L.
Thatis LR = {100,01,111}.

If Lis regular we can show that LR is also regular.
Proof.

As L is regular it can be defined by an FA, M = (Q, Z, 0, q, F), having only one final state.

If there are more than one final states, we can use €- transitions from the final states going
to acommon final state.
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Let FA, MR = (QR, 2R, 3 R, q R FR) defines the language LR,
Where Q%=Q, 2R=2, qf=F,FR=q,, and 0% (p,a)-> q,iff 0 (g,a) -> p
Since MR is derivable from M, LR is also regular.

The proofimplies the following method

1. Reverse all the transitions.
2. Swap initial and final states.
3. Create a new start state p0 with transition on € to all the
accepting states of original DFA
Example
Let r=(a+b)* ab define a language L. That is
L = {ab, aab, bab,aaab, ----- }. The FA is as given below
b a
f - @) ©,
—_—

b

The FA for LR can be derived from FA for L by swapping initial and final states and
changing the direction of each edge. It isishown in the following figure.

b a
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Homomorphism

A string homomorphism is a function on strings that works by substituting a particular string
for each symbol.

Theorem : If L is aregular language over alphabet 2, and h is ahomomorphism on 2, then h
(L) is also regular.

Ex.
The function h defined by h(0)=ab h(1)=c is ahomomorphism.
h applied to the string 00110 is ababccab

Ll= (a+b)* a(a+b)*

h
b a ab
b . ]1
h: {a, b}—>{0, 1}*
h: {a b}~ {0, 1}*
Ez E= E=
h@=01 =101 byfa) = 01
hyb)=11 hoth) =010 hy(a) =101
Resultinga:

h1(L)= (01 + 11)* 01 (01 + 11)*
h2(L) = (101 + 010)* 101 (101 + 010)*
h3(L) = (01 + 101)* 01 (01 + 101)*

InverseHomomorphism

Theorem : If his a homomorphism from alphabet S to alphabet T, and L is a regular
language over T, then h™ (L) is also a regular language.

Ex.Let L be the language of regular expression (00+1)".
Let h be the homomorphism defined by h(a)=01 and h(b)=10. Then h-1(L) is the language of
regular expression (ba)".
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3.4:decisionpropertiesofreqularlanguages
1. is the language described empty?

2.1Is aparticular string w in the described language?

3. Do two descriptions of a language actually describe the same language?
This question is often called “equivalence” of languages. Converting

AmongRepresentations
Converting NFA's to DFA’s

Time taken for either an NFA or-NFA to DFA can be exponential in the number of'states of
the NFA Computing €-Closure of n states takes O(n®) time. Computatlon of DFA takes

O(n®) time where number of states of DFA can be 2". The running time of NFA to DFA
conversion including € transition is O(n® 2"). Therefore the bound' on the running time is

O(n’s) where s is the number of states the DFA actually has.
DFAtoNFAConversion
Conversion takes O(n) time for an n state DFA.

AutomatontoRegularExpressionConversion

For DFA where nis the number of states, conversion takes O(n*4M by substitution method
and by state elimination method conversion takes O(n3) time. If we convert an NFA to DFA
and then convert the DFA to aregular expression it takes the time O(n*4"32")

RegularExpressiontoAutomatonConversion

Regular expression to €-NFA takes linear time’~ O(n) on a regular expression of length n.
Conversion from €-NFA to NFA takes O(n®)time.

Testing Emptiness of Regtlar Languages
Suppose R is.regular expression, then
1.R = Rl + R2:Then L(R) is empty if and only if both L(R1) and L(R2) are empty.
2.R=/R1R2. Then-L(R) is empty if and only if either L(R1) or L(R2) is empty.
3¢R=R1* Then L(R) is not empty. It always includes at least €

4. R=(R1) Then L(R) is empty if and only if L(R1) is empty since they are the same
language.

TestingEmptinessofRegularLanguages
Suppose R is regular expression, then

1.R =R1 + R2. Then L(R) is empty if and only if both L(R1) and L(R2) are empty.
2.R=R1R2. Then L(R) is empty if and only if either L(R1) or L(R2) is empty.
3. R=(R1)* Then L(R) is not empty. It always includes at least €
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4. R=(R1) Then L(R) is empty if and only if L(R1) is empty since they are the same
language.
TestingMembershipinaRegularLanguage
Given astring w and a Regular Language L, isw in L.
If L is represented by a DFA, simulate the DFA processing the string of input symbol

w, beginning in start state. If DFA ends in accepting state the answer is “Yes’, else it is ‘no".
This test takes O(n) time

If the representation is NFA, if w is of length n, NFA has s states, running‘time of this
algorithm is O(ns?)

If the representation is € - NFA, € - closure has to be computed, then processing of
each input symbol , a, has 2 stages, each of which requires O(s?) time.
If the representation of L is a Regular Expression of size s, We can convert to an € -

NFA with almost 2s states, in O(s) time. Simulation of the above takés O(ns?) time on an
input w of length n

3.5:MinimizationofAutomata(Method1)

Let pand q are two states in DFA. Ourgoal is to-understand when pand q (p # g) can
be replaced by asingle state.

Two states p and q are said to be distinguishable, if there is at least one string, w, such
that one of 9" (p,w) and &" (q,w) is;accepting and the other is not accepting.

Algorithm1:

List all unordered/pair of states (p,q) for which p # g. Make a sequence of passes
through these pairs. On first pass, mark each pair of which exactly one element is in F. On
each subsequent pass, mark-any pair (r,s) if there is ana€2 for which 0 (r,a) = p,d(s,a) = q,
and (p,q) is already marked. After a pass in which no new pairs are marked, stop. The
marked pair (p,q). are distinguishable.

Examples:
1. LetL = {€, a2 a4 a% ....} be aregular language over 2 = {a,b}. The FA is shown
in Fig 1.

Fig 2. gives the list of all unordered pairs of states (p,q) with p # q.
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1 2
The boxes (1,2) and (2,3) are marked in the first pass according to the algorithm 1.

=1
In pass 2 no boxes are marked because, d(1,a) >¢ and & (3,a) =2. That is (1,3) = (0,2),
where ¢and 3 are non final states.

@(1,b) >0 and @ (3,b) > 0. Thatis (1,3) % (0,0), where ¢ is a non-final state. This implies
that (1,3) are equivalent and can replaced by a single state A.

—{(r—6)

Fig 3. Minimal Automata corresponding to FA in Fig 1

Minimizationof Automata(Method2)

11,23}

non final finnal

12} 11,3}

Consider set {1,3}. (1,3) % (2,2) and (1,3) % (©,0)./This implies state 1 and 3 are
equivalent and can not be divided further. This givesus two states 2,A. The resultant FA is
shown is Fig 3.

Example2.(Method1):
Let r= (0+1)*10, then L(r)+=4{10,010,00010,110, ---}. The FA is given below
0

Following fig shows all unordered pairs (p,q) with p # g
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2 Inpass 2,

sz |2 CSPIINCE)
(3.4 — =64

4 2 G062

52 |2 2 (5,2 g (6,4)

[T T R

Tlz |z z 1 | andsm

1 2 2 4 & G

The pairs marked 1 are those of which exactly one element is in F; They are marked on pass
1. The pairs marked 2 are those marked on the second pass. For example (5,2).is-one\of these,
since (5,2) = (6,4), and the pair (6,4) was marked on pass 1.

From this we can make out that 1, 2, and 4 can be replaced by a single state.124 and
states 3, 5, and 7 can be replaced by the single state 357. The resultant minimal FA is’'shown
in Fig. 6

0

@'@

Fig 6

The transitions of fig 4 are mapped to fig 6 as shown below

Original DF A Ilinimal DF &
0 0
1 — = 32 124 1—}124
4 L}- 3 124 —=357
0
3 9 .6 357 —=6
atid s0 o1
Example2:(Method1):
11,2,3,4,5,6,7) Lewvell
nanﬁnamnal
11,234,577} 161 Lewel ]
11,2, 4% {3, 5,71 Lewel 2

(2,3) o, (4,6) this implies that 2 and 3 belongs to different group hence they are split in level
2. similarly it can be easily shown for the pairs (4,5) (1,7) and (2,5) and so on.
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Assignment questions

1. Let M =(Q, 2,0, qo, A) be an FA recognizing the language L. Then there exists an
equivalent regular expression R for the regular language L such that L = L(R).

2. Obtain aregular expression for the FA shown below:

@ 0,1

3. What is the language accepted by the following FA
0 1 0,1
0
1 {

4. Write short note on Applications of Regular Expressions

5. Obtain a DFA to accept stringsofa’s and b’s starting with the string ab

6. Prove pumping lemma?

7. prove that L={w|w is a palindrome on {a,b}*} is not regular. i.e., L={aabaa, aba,
abbbba,...}

8. prove that L={ all strings of 1's whose length is prime} is not regular. i.e., L={1?, 13
15,17 111 -}
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9. Show that following languages are not regular
e L={a"0™ |n, m=2=0and n<m }
e L={a"0™|n,m=>0and n>m }
e L={a""c"d"| n,m=21}
e L={a" | nis aperfect square }
e L={a" | nis a perfect cube }

10. Apply pumping lemma to following languages and understand why we cannot
complete proof

e L={a"aba |n20}
e L={a"v™|n,m20}

11.P.T. If L and M are regular languages, then so is L UM

12.P.T. If L is a regular language over alphabet’S, then L =3 - L is also a regular
language.

13.P.T. - If L is a regular language overalphabet >, then, L = 3 - L is also aregular
language

14. Write a DFA to accept the intefsection of | L1=(a+b)*a and L2=(a+b)*b that is for L1

N L2.

15. Find the DFA to accept the intersection'of L1=(a+b)*ab (a+b)* and L2=(a+b)*ba
(a+b)* that is for L1 a'l.2

16.P.T. If L and M areregular languages, then so is L — M.
7. P.T. If Lis aregular language, so is LR

18.If L is aregularlanguage over alphabet 2, and h is a homomorphism on 2, then h (L)
is also‘regular.

19.Ifhis a homomorphism from alphabet S to alphabet T, and L is a regular language
over T, then h™* (L) is also a regular language.

20. Design context-free grammar for the following cases
a) L={0nln|n2l}
b) L={aibjck]|iz#j orjzk}

21. Generate grammar for RE 0*1(0+1)*

CITSTUDENTS.IN Page 55



FLAT 10CS56

UNIT 4:
Context Free Grammar and languages

4.1 Context free grammars
4.2 parse trees
4.3 Applications

4.4 ambiguities in grammars and languages
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4.1:Contextfreegrammar

Context Free grammar or CGF, G is represented by four components that is G=(V,T,P,S),
where V is the set of variables, T the terminals, P the set of productions and S the start
symbol.
Example: The grammar Gy, for palindromes is represented \by.
Gpa = ({P}.{0,1}, A, P)
where A represents the set of five productions
P>e
P->0
P>1
P->0P0O
P->1P1

uhwh e

DerivationusingGrammar

Consider a context-free gramimar E
for simple expressions ‘
I

E-1
E4E +E
ENE*E E
£ (5) .| J
"> a I

|

—

1%

I21a

>n Y3
I=>10

0. I=>I1 b/

e he e B = DL S S A

4.2: parse trees

Parse trees are trees labeled by symbols of a particular CFG.
Leaves: labeled by aterminal or .

Interior nodes: labeled by a variable.

Children are labeled by the right side of a

production for the parent.
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Root: must be labeled by the start
symbol.

Example: Parse Tree

S->SS1(S)10
®)
S
@{%&

Examplel:LeftmostDerivation

The inference that a* (a+b00) is in the language|of variable E can be reflected in a derivation
of that string, starting with the string:E. Here,is’one such derivation:

E2E*E=>I*E2>a*E=D
a*(E) da*(E4E)=>a*(I+E) »a*(@a+E) >
a*(@+)=>at(@a+I0)=>a* (a+100)=>a* (a+ b00)

LeftmostDerivation-Tree
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Example2:RightmostDerivations
The derivation of Example 1 was actually a leftmost derivation. Thus, we can describe the
same derivation by:

E>E*E=>E*E) 2E*(E +E) >

E*(E+I)=>E*(E +I0)=>E*(E +100)=>E* (E +b00) =

E* (I +b00) = E*(a+b00)=>1* (a+b00) =»a* (a+ b00)
We can also summarize the leftmost derivation by saying
E = a* (a+b00), or express several steps of the derivation by expressions such as E*
E=>a* (E).

RightmostDerivation-Tree

There is a rightmost derivatioh that uses the same replacements for each variable, although it
makes the replacements in‘different order. This rightmost derivation is:

E>E*E=>E*(E) 2E*(E+E) =>

E*E+I) =>E*{E+I0)=>E*(E +I100)=>E*(E +b00) =>

E*(I+b00)=»E*(a+h00) =»I*(a+b00) =>a*(a+b00)
This derivation allows us to conclude E =» a* (a + b00)

Consider the Grammar for string(a+b)*c
ESE 1T
T>\T *F | F
F=>(E)|a|b|c

Leftmost Derivation
E>T2T*F2F*F=>(E)*F=> (E+T)*F=>(T+T)*F=>(F+T)*F = (a+T)*F = (a+F)*F
= (a+b)*F=>(a+b)*c

Rightmost derivation
ES>T2T*F2T*cDF*c>(E)*c>(E+T)*c>(E+F)*c
> (E+b)*c=>(T+b)*c=> (F+b)*c=>(a+b)*c
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Example2:
Consider the Grammar for string (a,a)

S->(L)|a
L->L,S|S

Leftmost derivation
S=>L)=>(LS)=>(5,5)~>(a,S)>(a,a)

Rightmost Derivation
S=>(L)>(LS)=>(La)=>(S,a)~>(a,a)

ThelanguageofaGrammar
If G(V,T,P,S) is aCFG, the language of G, denoted by L(G),s the set ofterminal

strings that have derivations from the start symbol.
L(G) ={winT|S =2 w}

SententialForms

Derivations from the start symbol produce strings that have a special role called “sentential
forms”. Thatisif G = (V, T, P, S) is a CFG, then any.stringin_ (V U T)* such thatS =»ais a
sentential form. If S =»@, then is a left — sentential form, and if S =»a , then is a right -
sentential form. Note that the language L(G).is those sentential
forms thatare in T*; that is they consist solely of terminals.

For example, E * (I + E) is a sentential form, since there is a derivation
E>E*E>E*E) DEE+E)DPE*(I+E)
However this derivation is neither leftmast nor rightmost, since at the last step, the middle E
is replaced.
As an example of a left <'sentential form, consider a* E, with the leftmost derivation.
E>E*E=>I*E=2a*E
Additionally, the derivation
E>E*E=2E*(E) 2E*(E+E)
Shows that
E *(E +E).is aright — sentential form.

4.3;Applicationsof Context—FreeGrammars

Parsers

The YACC Parser Generator
Markup Languages

XML and Document typr definitions

TheYACCParserGenerator

CITSTUDENTS.IN Page 60



FLAT

10CS56

E> E+E|E*E | (E)lid

%{ #include <stdio.h>

%}

%token ID id

%%

Exp :id {$$ =9$1; printf ("result is %d\n", $1);}
|Exp “+" Exp {$$=91+$3;}
|Exp "*" Exp {$$ =$1*$3;}
| ‘CExp ‘)" {$$=92;}

4

%%

int main (void) {
return yyparse ();
}

void yyerror (char *s) {

fprintf (stderr, "%s\n", s);

}

%{

#include "y.tab.h"

%}

%%

[0-9]+ [ {yylval.ID = atoi(yytext); return.id;}

\t \n] [+ ;

* ()] {return yytext{0];}

. {ECHOjyyerrori(‘unexpected character");}
%%

Example 2:

%{

#include <stdioth>

%}

%start line

%token <a_number> number

%type <a_number> exp term factor

%%

line'sexp.;/{printf ("result is %d\n", $1);}

exp : term {$$ = $1;}
| exp '+'term {$$ = $1 + $3;}
| exp '-"term {$$ = $1- $3;}
term : factor {$$ = $1;}
| term "*' factor {$$ = $1* $3;}
| term '/ factor {$$ = $1 /$3;}

factor : number {$$ =91}

CITSTUDENTS.IN

Page 61



FLAT

10CS56

|'(exp ) {$$ = $2;}

%%
int main (void) {
return yyparse ();

void yyerror (char *s) {

fprintf (stderr, "%s\n", s);

}

%4

#include "y.tab.h"

%}

%%

[0-9]+ {yylval.a_number = atoi(yytext); return number;}
[\t\n];

[-+*/();] {return yytext[0];}

. {ECHO; yyerror ("unexpected character");¥
%%

MarkupLanguages

Functions

+Creating links between documents
«Describing the format of the document

Example

The Things I hate
1. Moldy. bread
2. Peoplewho drive too slow
In the fast lane

HTML Source

<P>The things I <EM>hate</EM>:
<OL>

<LI> Moldy bread

<LI>People who drive too slow

In the fast lane

</OL>

HTML Grammar
*Char alA|...

CITSTUDENTS.IN

Page 62



FLAT 10CS56

*Text e | Char Text
*Doc e | Element Doc
Element Text |
<EM> Doc </EM>|

<p> Doc|

<OL> List </OL>| ...
5. List-Item <LI> Doc
6. List e | List-Item List Start symbol

XMLandDocumenttypedefinitions.

1. A>ElE2.
A->BC
B->El
C->FE2
2. A>E1 |E2.
A->E1l
A>E2
3. A>(ED*
A->BA
A->¢€
B->El
4. A>(EL)+
A->BA
A->B
B->E1l
5. A>(El)?
A€
A>El

4.4:Ambiguity

A context = free grammar G is said to be ambiguous if there exists some w € L(G) which has
at least:two distinct derivation trees. Alternatively, ambiguity implies the existence of two or
more left most or rightmost derivations.

Ex:-
Consider the grammar G=(V,T,E,P) with V={E,I}, T={a,b,c,+,*,(,)}, and productions.
E->I,
E->E+E,
E>E*E,
E->(B),
I->alb|c
Consider two derivation treesfora+ b * c.
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atb*c
Tree I /
Let a=5, b=6, c=7
The value for Tree I
will be 47 I

atb*c
Tree II
Let a=5, b=6, c=7

The value for Tree I
will be 77

Now unambiguous grammar for the above
Example:
E>T, T>F F21 E>E4T, T9T*F,
F>(E), I=>alblc

InherentAmbiguity

A CFL L is said to'be inherently ambiguous if all its grammars are ambiguous
Example:
Condider the Grammar for” string aabbccdd

S2AB |C

A->2Ab|ab

B->cBd |«cd

C~>aCd | abd

D->bDc | bc

Parse tree for string aabbccdd
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/y\ /y\ a
/\ /\

Parse tree for string aabbccdd
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ASSIGNMENT QUESTIONS

1) Design context-free grammar for the following cases

2)

3)

4)

a) L={ Onln | n2I}
b) L={aibjck| i#j or j#k}

The following grammar generatesithe language of RE
0*1(0+1)*

S >AB

A > 0Afe

B > O0B|1BJe

Give leftmost and rightmost derivations of the following strings
a) 00101 b)1001 ¢ 00011

Consider the grammar

S >/aS[aSbS|e
Show that deviation for the string aab is ambiguous

Suppose his'the homomorphism from the alphabet {0,1,2} to the alphabet { a,b} defined
by h(0) =/a; h(1) =ab &
h(2).=ba

a) What is h(0120) ?

b) What is h(21120) ?

c) If Lis the language L(01*2), what is h(L) ?

d) If L is the language L(0+12), what is h(L) ?

e) If L is the language L(a(ba)*), what is h-1(L) ?

5) Design context-free grammar for the following cases
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a) L={ Onln | n2I}
b) L={aibjck| i#j or j#k}

6) The following grammar generates the language of RE
0*1(0+1)*
S >AB
A > 0Afe
B > OB|1BJe
Give leftmost and rightmost derivations of the following strings
a) 00101 b)1001 ¢) 00011

7) Consider the grammar
S - aS|aSbS|e

Show that deviation for the string aab is ambiguous

8) Suppose his the homomorphism from thealphabet {0,1,2} to the alphabet { a,b} defined
by h(0) = a; h(1) = ab &
h(2) = ba

a) What is h(0120) ?

b) What is h(21120) ?

c) If L is the language L(01*2), what is h(L) ?

d) If L is the language L(0+12), what is h(L) ?

e) If L is the'language L(a(ba)*) , what is h-1(L) ?
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UNIT-5:

PUSH DOWN AUTOMATA

5.1: Definition of the pushdown automata
5.2: The languages of a PDA

5.3: Equivalence of PDA and CFG

5.4: Deterministic pushdown automata
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5.1:DefinitionofpushdownAutomata:

As Fig. 5.1 indicates, a pushdown automaton consists of three components: 1) an input tape,
2) a control unit and 3) a stack structure. The input tape consists of a linear configuration of
cells each of which contains a character from an alphabet. This tape can be moved one cell at
atime to the left. The stack is also a sequential structure that has afirst element and grows in
either direction from the other end. Contrary to the tape head associated with the input tape,
the head positioned over the current stack element can read and write special stack characters
from that position. The current stack element is always the top element of the stack, hence
the name “stack”. The control unit contains both tape heads and finds itself at any moment in
a particular state.

Control
Unit

Figure 5.1: Conceptual Model of a Pushdown Automaton

A (non-deterministic) finite state pushdown automaton (abbreviated PDA or, when the
context is clear, an aitomaton) isa7-tuple P= (X, Z, S, R, za, Sa, Zr), where

o X ={xi~, xm} is afinite set of input symbols. As above, it is also called an alphabet.
The®empty symbol™ Ais not a member of this set. It does, however, carry its usual
meaning when-encountered in the input.

o' Z =4z, - zn} is afinite set of states.

o S=s1,, sp} is afinite set of stack symbols. In this case A ¢ S.
C * S5*

e R (X U{A)xZx )X(Zx ))is the transition relation.

e zalistheinitial state.

e Sais the initial stack symbol.

C
e Zr ~ Kis adistinguished set of final states
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5.2ThelanguageofaPDA

. P={Q:E:F16:QD:ZO:F}
There are two ways to define the language of a PDA (

L(P)c®* .
). because there are two notions of acceptance:

Acceptance by final state
L(P) = {w | (g0, w, Z0) Fp (g.€,7) Ag € F}
That is the PDA accepts the word ‘aif there is any sequence of IDs starting from

W0y Zﬂ 1 E; e F
(% }and leading to (¢ T}, where is one of the final'states. Here it

doesn't play arole what the contents of the stack are at the end.

F
In our example the PDA owould accept 011l because
(90,0110, #) F&, (g2,€€) ’ g €F
an

WE L(Fa)

On the other hand since there is no successful.sequence of IDs starting with

(g0, 0011, ) 0011 ¢ %\
we know that A ,

Acceptance by empty stack

L(g)\\wl)},aﬁf Zo) Fp (g,€,€)}

That is the PDA accepts«the word afif there is any sequence of IDs starting from
(Q’o: ur, Zﬂ}

. Hence we conclude

\
£
and leading to @ in this case the final state plays norole.

If we specify’a PDA foracceptance by empty stack we will leave out the set of final

/74
- !‘E!‘l—l!‘§1‘ ?Z
states ‘Fand just usebp @ @ 0}.

Fo
Ourexample’automaton ““also works if we leave out "Fland use acceptance by
empty stack.

We canalways turn a PDA which use one acceptance method into one which uses the other.
Hence, both acceptance criteria specify the same class of languages.
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5.3:Equivalence of PDA and CFG

The aim is to prove that the following three classes of languages are same:
1. Context Free Language defined by CFG
2. Language accepted by PDA by final state
3. Language accepted by PDA by empty stack

It is possible to convert between any 3 classes. The representation is shown in figurel.

PDA by
PDA by
m k .
empty stac Final state

Figure 1: Equivalence of PDA and‘CFG

From CFG to PDA:

Given a CFG G, we construct a PDA _Pythat/simulates the leftmost derivations of G. The
stack symbols of the new PDA containall the.terminal and non-terminals of the CFG. There
is only one state in the new PDA,; all therest of the information is encoded in the stack. Most

transitions are on @, one for each production. New transitions are added, each one
corresponding to terminals of G. For every intermediate sentential form uA€ in the leftmost
derivation of w (initially w'= uv forseme v), M will have A€ on its stack after reading u. At

the end (case u = w) thestack:will be empty.

Let G = (V, T,.Q,S) bea CFG. The PDA which accepts L(G) by empty stack is given by:

P=({q}. T, V@T & q,S) where &is defined by:

1. For.eachvariable A include atransition,
5(q, 9, A) = {(q, b)| A @ bis aproduction of Q}

2. Foreach terminal a, include a transition

8(q, a,a) = {(q, @)}

CFG to PDA conversion is another way of constructing PDA. First construct CFG, and then

convert CFG to PDA.
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Example:
Convert the grammar with following production to PDA accepted by empty stack:
S@OS1|A
A @ 1A0|S| @
Solution:
P=({q}, {0, 1}, {0, 1, A, S}, &, q,S), where & is given by:
6(q, 9. S) = {(q, 0S1), (q, A)}
6(9, 9. A) ={(q, 1A0), (g, ), (9 @)}
6(q,0,0) ={(q, 9)}
6(9, 1, 1) ={(a, )}
From PDA to CFG:

Let P =(Q, L, T, §, q0, Z0) be aPDA. An equivalent CFGisG=(V, L R 9), where
V = {S, [pXql}, where p,q @ Q and X @ I, productionsof R consists of

1. For all states p, G has productions'S @ [q0Z0 p]
2. Let d(q,a,X) = {(r, Y1Y2...YK)} where a @ X~ or a= @, k canbe 0 or any number
andrir2 ...rk are list of states. Gthas productions

[aXtkl -9 alrY1r1] [r1Y2r2] ... [rk-1Ykrk]
If k = 0 then [gXr] @a
Example:
Construct PDAto accept if-else of a C program and convert it to CFG. (This does not accept
if —if =else-else statements).
Let the PDA P = ({q}, {i, e}, {X.,Z}, §, q, Z), where & is given by:
5(q, i, 2) = {(q, X2)}, 8(q, e, X) = {(q, )} and 8(q, @, 2) = {(q, §)}
Solution:

Equivalent productions are:
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S ¢ [g9Zq]
[9Zq] @ i[aXqllgZq]
[aXq] @ e
[9Zql @ &

If [gZq] is renamed to A and [gXq] is renamed to B, then the CFG can be defined by:

G =({S, A B}, {i, e}, {SQA A9iBA | 9, B e}, S)

Example:

Convert PDA to CFG. PDA is given by P = ({p,q}, {0,1}, {X,Z}, §, q, Z)), Transition

function 6 is defined by:

6(q, 1, 2) = {(q, X2)}
) ={

6(q, 1, X) = {(q, XX)}

6(q, 9. X) ={(q, )}

6(q, 0, X) = {(p, X)}

6(p, 1, X) = {(p, 9}

6(p, 0, 2) = {(a, D)}
Solution:

Add productions for start variable
S @ [aZql| [9Zp]

For 6(q, 1, 2)= {(q, XZ)}
[aZa] ¢ 1[gXaligZq]
[aZq] ¢ 1[gXpllpZa]
[aZp] @ 1[gXqllgZp]
[aZp] @ 1lgXpllpZp]

For®(q, 1, X)={(q, XX)}
[aXq] ¢ 1[gXqllgXq]
[9Xq] € 1[gXp][pXq]
[aXp] € 1[gXqllgXp]
[aXp] € 1[gXpllpXp]

Ford(q, . X) = {(q. )}
[aXq] ¢ &

For8(q, 0, X) = {(p, X)}
[aXq] @ O[pXq]
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[aXp] €@ O[pXp]

For8(p, 1, X) = {(p, 9)}
[pXp] @ 1

For8(p, 0, 2) = {(q, 2)}
[pZq] ¢ 0[qZq]
[pZp] @ 0[gZp]

Renaming the variables [qZq] to A, [gZp] to B, [pZq] to C, [pZp] to D, [gXq] to E.[gXp] to
F, [pXp] to G and [pXq] to H, the equivalent CFG can be defined by:

G=({S A B C D E F G, H} {01}, R, S). The productions of R:alsgareto be
renamed accordingly.
5.4:DeterministicPDA

NPDA provides non-determinism to PDA. Deterministic‘\PDA’s (DPDA) are very useful for
use in programming languages. For example Parsers usediin YACC are DPDA's.

Definition:
A PDA P=(Q, %, T, §, 90, Z0, F) is deterministic if and only if,
1.5(q,a,X) has at most one member for g@Q, a @ X or a= @ and XTI
2.If 8(q,a,X) is not empty. for some a@Z, then &(q, §,X) must be empty
DPDA s less powerful than'nPDA. The Context Free Languages could be recognized by
nPDA. Theclass offanguage DPDA accept is in between than of Regular language and

CFL. NPDA can be constructed for accepting language of palindromes, but not by DPDA.

CITSTUDENTS.IN Page 73



FLAT 10CS56

Example:
Construct DPDA which accepts the language L = {wcwR | w @ {a, b}*, c ¢ =}.

The transition diagram for the DPDA is given in figure 2.

0,0/ ¢
0, Z,/0Z, 1,1/¢
1,7,/1Z,
0,0/00
1,111 ¢,0/0

0,1/01
1,0/10

E: ZO/ZO

Figure 2: DPDA L = {wcwR%}

DPDA and Regular Languages:

The class of languages DPDA accepts is in between regular languages and CFLs. The
DPDA languages include all regular, languages.| The two modes of acceptance are not same
for DPDA.

To accept with final state:

If Lis aregular language, L=L(P) for some DPDA P. PDA surely includes a stack, but the
DPDA used to simulate_a regular language does not use the stack. The stack is inactive
always. If A is the FA for accepting the language L, then 6p(q,a,Z2)={(p,2)} forall p,q @ Q

such that 5 A(g,a)=p.

To accept with-.empty stack:

Every.regular language is not N(P) for some DPDA P. A language L = N(P) for some DPDA
P if and onlyif L has prefix property. Definition of prefix property of L states that if x, y

L, then x should not be a prefix of y, orvice versa. Non-Regular language L=WcWR could
be accepted by DPDA with empty stack, because if you take any x, y@ L(WcWR), x and y
satisfy the prefix property. But the language, L={0*} could be accepted by DPDA with final
state, but not with empty stack, because strings of this language do not satisfy the prefix

property. So N(P) are properly included in CFLL, ie. N(P) @ L
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DPDA and Ambiguous grammar:

DPDA is very important to design of programming languages because languages DPDA
accept are unambiguous grammars. But all unambiguous grammars are not accepted by
DPDA. For exampleS @ 0S0|1S1| € is an unambiguous grammar corresponds to the

language of palindromes. This is language is accepted by only nPDA. If L = N(P) for DPDA
P, then surely L has unambiguous CFG.

If L = L(P) for DPDA P, then L has unambiguous CFG. To convert L(P) to/N(P) to"have
prefix property by adding an end marker $ to strings of L. Then convert N(P) to CEG'G’.
From G” we have to construct G to accept L by getting rid of $ .So add’a new production

$9 @ as avariable of G.
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ASSIGNMENT QUESTIONS
a. Convert to PDA, CFG with productions:

1. AgaAA A@aS|bS|a

2. S9SS[|(S)| @

3. S@aAS|bAB |aB, A@bBB|aS|a, B @bA|a
b. Convert to CFG, PDA with transition function:

6(q, 0, 2) = {(q, X2)}
6(q, 0, X) = {(q, XX)}

6(a, 9. X) = {(p. 9}
6(p. 1. X) = {(p, XX)}

6(q. 1. X) = {(a, X)}

5(p, €. X) = {(p, M}
8(p, 1, Z) = {(p, @)}
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Unit-6:

PROPERTIESOFCONTEXTFREELANGUAGES

6.1 Normal forms for CFGS
6.2The pumping lemma for CFGS

6.3closure properties of CFLS
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The goal is to take an arbitrary Context Free Grammar G = (V, T, P, S) and perform
transformations on the grammar that preserve the language generated by the grammar but
reach a specific format for the productions. A CFG can be simplified by eliminating

6.1 Normal forms for CFGS

How to simplify?
« Simplify CFG by eliminating
— Useless symbols
* Those variables or terminals that do not appear in any derivation‘of a terminal string
starting from Start variable
— @@- productions
* A 99, where A is avariable
— Unit production
*A @B, A and B are variables
* Sequence to be followed
1. Eliminate @ - productions from G and obtain.G1
2. Eliminate unit productions from G1 and obtain G2

3. Eliminate useless symbols from-G2and obtain' G3

1. Eliminate useless symbols:

Definition: Symbol X is useful. fora grammar G = (V, T, P, S) if there is S *@ @X@ 9w,
w@@*. If X is not useful, then itis-useless.
Omitting useless symbals from a grammar does not change the language generated

« Example
S —.aShilel A S— A
A s aA A —saAle

Alis.a useless symbol | B — bB

B is a useless symbol

« Symbol X is useful if both
— X is generating
o If X *= w,where w@ T*

— X is reachable
If S*= X@
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* Theorem:

— Let G=(V,T,P,S) be aCFG and assume that L(G)@@, then G1=(V1,T1,P1,S) be agrammar
without useless symbols by

1. Eliminating non generating symbols

2. Eliminating symbols that are non reachable

« Elimination in the order of 1 followed by 2

1. Eliminating non generating symbols

Generating symbols follow to one of the categories below:

1. Every symbol of T is generating

2. If A @ @ and @ is already generating, then A is genherating

Non-generating symbols = V- generating symbols.

s Example : S @ABJa, A @a
— 1 followed by 2 gives S ¢ @a
— 2 followed by 1 gives S @ @a; A @a
* A is still useless
* Not completely all useless symbols eliminated
« Eliminate non genérating symbols
— Every,symbol of T is generating
- A @9@9and @@is already generating, then A is generating
s Example
1.G= ({S,A.B}. {a}, S @ABJa, A @a}, S) here B is non generating symbol
Aftereliminating B, G1= ({S,A}, {a}, {S @a, A @a}.S)
2.S @aS|AIC, A @a, B @aa, C @aCb
After eliminating C gets, S @aS|A, A @a, B @aa
2. Eliminate symbols that are non reachable

— Draw dependency graph for all productions
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C ¢xDy
— If no edge reaching a variable X from Start
symbol, X is non reachable

» Example

1. G= ({S,A}, {a}, {S @a, A @a}.5)

ORO

After eliminating A, G1= ({S}, {a}, {S 9a}.S)
2.S @aS|A A @a, B @aa

After eliminating B, S @aS|A, A @a

//\' AR AR

e OaY (B

T g \
5 & 29

« Example
—S @AB|CA, B 9BC|AB, A ¢a, C AB)p
1. Eliminate non generating symbols V1 = {A,G,S3 P1={S @CA A ¢a, C §b}

2. Eliminate symbols that are non reachable

/ '\\\,

.
P = L
{

V2 = {A,C,S} — N
P2={S @@CA Al9a, Céb

Exercises

« Eliminate useless:symbols from the grammar

1. P=A{S @aAa, A @Sb|bCC, C @abb, E ¢aC}

2. P={S @aBalBC, A @aC|BCC,C ¢a, B @bcc, D @E E d}
3. P={S.@aAa, A @bBB, B §ab, C @aB}

4.P={S @aS|AB, A @bABGAA}

Eliminate ¢ - productions

* Most theorems and methods about grammars G assume L(G) does not contain ¢
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« Example: G with @€- productions
S> ABA, A> aA|¢.B>DbB| ¢

The procedure to find out an equivalent G with out @-productions
1. Find nullable variables
2. Add productions with nullable variables removed.

3. Remove @-productions and duplicates
Step 1: Find set of nullable variables

Nullable variables: Variables that can be replaced by null (). If A *@ @-thenA is a
nullable variable.

In the grammar with productions S @ ABA, A @ aA | ¢, B @ bB | @, A is nullable because
of the production A @ @. B is nullable because of the production B-@ . S is nullable
because both A and B are nullable.

Step 1: Algorithm to find nullable variables

V: set of variables

NO <{A|AinV, production A > ¢}

repeat

Ni € N U{AJAinV, A >a, ain NG}

until N; = N1

« Step 2: For each production‘of the form A @@w, create all possible productions of the form
A @@w’, where w’ is_abtained fromw by removing one or more occurrences of nullable
variables

« Example:

S > ABA |BA'|AA |AB|A |B | €

A->aAle0la

B >bB|¢olb

+ Step 3: The desired grammar consists of the original productions together with the
productions constructed in step 2, minus any productions of the form A ¢ ¢

« Example:

S >ABA |BA |AA |AB |A|B

A->aAla

B->bB|b

PROBLEM:
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G = ({S,AB,D}, {a}, { S >aS|AB, A > ¢¢, B> ¢, D >b},S)
» Solution:

Nullable variables = {S, A, B}

New Set of productions:

S >aS|a

S>AB |A|B

D ->b

G1l= ({S,B,D}, {a}, { S >aS|a]AB|A|B, D =>b}, S)

* Eliminate @ €- productions from the grammar

Eliminate unit production
Definition:
« Unit production is of form A @B, A and B are variables

Unit productions could complicate certain proofs andthey also introduce extra steps into
derivations that technically need not be there. The algerithmfor eliminating unit productions

from the set of production P is given below:

« Algorithm

1. Add all non unit productions#o.P1

2. For each unit production’A @ @B, add to P1 all productions A ¢@ @, where B 99 @@is a
non-unit production in,P.

3. Delete all the unit productions

Example (1):* Consider the grammar with production
S >_ABA |BA |AA'|AB |A|B
A->aA|a
B >bBib
Solution:
— Unit productions are S >A, S>B
— A and B are derivable
— Add productions from derivable
S-> ABA |BA |AA |AB |A|B|aA|a|bB|b
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A->aAla
B>bB|b
— Remove unit productions
S > ABA |BA |AA |AB |aA|a|bB|b
A->aAla
B>bB|b
Example (2): S >Aa|B, A >al|bc|B, B> A|bb
Solution — Unit productions are
S->B,A->B,B>A AandB are derivable
— Add productions from derivable and eliminate unit productions
S>bb|albc
A > a| bc|bb
B>bb|albc
Example (3) : Eliminate useless symbols, ¢-productions and unit productions from S
— a|aA[B|C,A - aB[¢, B > aA, C > ¢CD; D > ddd
Soulution- Eliminate ¢ @-productions
Nullable = {A}
P, = {S = alaA|B|C, A = aB,"B. 2> aAla, C > cCD, D - ddd}
-- Eliminate unit productions
Unit productions: S =B, S = C Derivable variables:B & C
P, = {S = a|aA| cCD, A 2> aB, B> aAl|a, C > cCD, D~ ddd}
— Eliminate useless symbols
« After eliminate non generating symbols

P; = {S > alaA, A 2aB, B > aA|a, D —ddd}

« After eliminate’symbols that are non reachable

0=0FONO.

P,={S > alaA, A -->aB, B -->aA|a}
« So the equivalent grammar G1 = ({S,A,B}, {a}, {S -->a|aA, A -->aB, B -->aA|a}, S)

Simplified Grammar:
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If you have to get a grammar without @ - productions, useless symbols and unit productions,
follow the sequence given below:

1. Eliminate @ - productions from G and obtain G1
2. Eliminate unit productions from G1 and obtain G2
3. Eliminate useless symbols from G2and obtain G3

Chomsky Normal Form (CNF)
« Every nonempty CFL without €, has a grammar with productions of the form
1. A --> BC, where A, B, C 99V
2.A -->a,where A @9V and a 9OT
« Algorithm:
1. Eliminate useless symbols, @ €-productions and unit productions from the grammar
2. Elimination of terminals on RHS of a production
a) Add all productions of the form A --> BC or A -->ato Py
b) Consider a production A -->X1X;...X, with some terminals-of RHS. If X; is a terminal say
a;, then add a new variable C;i to V1 and a“hew _production C,i -->ai to P1. Replace Xi in A
production of P by G,
c) Consider A -->X;X;...X,, wheren @3:and all X;’s are
variables. Introduce new produgtions A.-->X1C1,
Ci-->XoCy, ..., Chp > XpaXy to Prand.Cy, Cy, ... ,Cop to 'V
Example (4): Convert to' CNFE:
S -->aAD, A --> aB( bAB; B -->b, D -->d
Solution — Stepl: Simplify,the grammar
s already:simplified
—Step2a: Elimination of terminals on RHS

§-->aAD to S --> C,AD, C;-->a

A-->aBto A -->C,B

A -->bAB to A --> CLAB, Cp-->b

— Step2b: Reduce RHS with 2 variables
S-->CAD to S --> C,Cyq, G -->AD
A --> CpAB to A --> CpCy, C-->AB

» Grammar converted to CNF:
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G1=({S,A,B,D,C,,CCy,Cy}, {a,b},
{S --> C,C,A --> C,B| CpCy, Cy-->a, Cp-->b, C; -->AD, C,-->AB}, S)
Example (5): Convert to CNF:P={S -->ASB | @, A --> aAS | a, B -->SbS | A | bb}
Solution: — Step1: Simplify the grammar
« Eliminate @€-productions (S -->@)
P1={S -->ASB|AB, A -->aAS|aAla, B-->SbS|Sb|bS|b|AJbb}
« Eliminate unit productions (B-->A)
P,={S -->ASB|AB, A -->aAS|aA|a, B-->SbS|Sb|bS|b|bblaAS|aAla}
« Eliminate useless symbols: no useless symbols
— Step2: Convert to CNF
P3={S -->AC41/AB, A --> C.C2|C.Ala, B -->SC3 | SCp | @S] CoG| C.Co|CaAla, Ca--
>a, Cp -->b, C1 -->SB, C; -->AS, C3 --> C,S }

Exercises:

* Convert to CNF:

1. S -->aSa|bSb|a|bjaa|bb

2.S -->bAlaB, A -->bAAlaS|a, B -->aBB|bS|b

3.S-->Aba, A -->aab, B -->AC

4.S -->0A0|1B1|BB, A -->G'B --3S|A, € -->S| @

5.S -->aAa|bBb| @, A -C|a, B -->C|b, C -->CDE|@, D -->A|BJab

6.2:ThePumpingLemmaforCFL

The pumping lemma for regular languages states that every sufficiently long string in a
regular language contains a short sub-string that can be pumped. That is, inserting as many
copies of the sub-string as we like always yields a string in the regular language.

The pumping lemma for CFL’s states that there are always two short sub-strings close
together that can be repeated, both the same number of times, as oftenas we like.

For example, consider a
CFL L={a"b" | n @ 1}. Equivalent CNF grammar is having productions S @ AC | AB, A ¢
a, B @ b, C ¢ SB. The parse tree for the string a%b%#

is given in figure 1- Both leftmost derivation and rightmost derivation have same parse tree
because the grammar is unambiguous.
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a a a A B b b b
VAR SR A § \ LU AN
0 a a a a b b b

Figure 2: Extended Parse tree for

Figure : Parse tree for a*b*

Extend the tree by duplicating the terminals generated at each level on all lower levels. The

extended parse tree for the string a%b%

is given in figure 2. Number of symbols at each level is at most twice of previous level. 1
symbols at level 0, 2 symbols atl, 4 symbols at 2 ...21 symbols at level i. To have 2"
symbols at bottom level, tree must be*havingatleast depth of nand level of at least n+1.

Pumping Lemma Theofem:
Let L be a CFL. Then there exists a constant k€ O such that if z is any string in L such that |z

@ k, then we can write z'="uvwxy such that

1. |vwx| @k (that is, the middle portion is not too long).
2. VX @ @ (sincev and x are the pieces to be “pumped”, at least one of the strings we
pump must not be empty).

3. Foralli4 0, uviwxly is in L.
Proof:

The parse tree for a grammar G in CNF will be a binary tree. Let k = 2n+1 where nis the
number of variables of G. Suppose z€ L(G) and |z| @ k. Any parse tree for z must be of
depth at least n+1. The longest path in the parse tree is at least n+1, so this path must contain
at least n+1 occurrences of the variables. By pigeonhole principle, some variables occur more
than once along the path. Reading from bottom to top, consider the first pair of same variable
along the path. Say X has 2 occurrences. Break z into uvwxy such that w is the string of
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terminals generated at the lower occurrence of X and vwx is the string generated by upper
occurrence of X.

Example parse tree:
For the above example S has repeated occurrences, and the parse tree is shown in figure 3. w

= ab is the string generated by lower occurrence of S and vwx = aabb is the string generated
by upper occurrence of S. So here u=aa, v=a, w=ab, x=b, y=bb.

/ N\
A C
s/ 7N
a S B
/7 /N A
a A C b T = @ {= @
/ /@\B \» '\ -
a a A C
VAR AR S VEPWALY {\¥
a a A C b b A B
;7 /7 AR 2 B
a a a B b b VAR AN \ / \
/ VAR S AN \ XN a A B h b
a a a A B b b b / / N a
VAR SR S 4 \ AR AN \ J
a a a a b b b b 1 4 b b
oy eyt Syt Ny v A W
u v W X y v W X

Figure 3: Parse tree for a*b*

. Fi 4: sub-
with repeated occurrences of S igure 4: sub- trees

Let T be the subtree rooted at upper occurrence-of S andt be subtree rooted at lower

occurrence of S. These parse trees ate shown Jin figure 4. To get uvzwxzy @L, cut out t and

replace it with copy of T. The parse tree for uvzwxzy @L is given in figure 5. Cutting out t

and replacing it with copy.©f T as many-times to get a valid parse tree for uviwxly for i ¢ 1.

s S
/\
A C /\
7 74" A c\
a 8 B /7 7/
/7 /N \ a S
/a/A C\ l)\ / 7\ \
al a B b a A C ]
AN ¥ AN
s e o 4 alfé B b
Iy AN ¢ St
a/ naB b b / 7/ }/\ Y A
VANV VRV AL S S N a a A B b b
a 4 a A C b b b A\
/17 LSRN
/ L / N AN
n/xa S) B b b b T & b b b
SN\ N /7 = A\
u a A B b x y a a W b b
s . T
a a b b r \\
a a b b
Y e — e —

Figure 5: Parse tree .
Figure 6: Parse tree for

To get uwy @ L, cut T out of the original tree and replace it with t to get a parse tree of
uOwx0y = uwy as shown in figure 6.

Pumping Lemma game:
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To show thata language L is not a CFL, assume L is context free.
Choose an “appropriate” string z in L
Express z = uvwxy following rules of pumping lemma

Show that uvkwxKy is not in L, for some k
The above contradicts the Pumping Lemma
Our assumption that L is context free is wrong

ok wNh

Example:
Show that L = {aibici | i @1} is not CFL

Solution:

Assume L is CFL. Choose an appropriate z = a"b"c" = uvwxy. Since |vwx| € nithen'vwx can
either consists of

1. All a’sorallb’sorall c’s

2. Some a’s and some b’s

3. Some b’s and some ¢’s
Case 1: vwx consists of all a’s
If z=a2b2c2 andu= @, v =2aw= ¢, x =aandy = bZc then, uv2wx2y will be a#b2c2¢L
Case 2: vwx consists of some a’s andsome b’s
If z=a2b2c2 andu=a,v = a W=, X'=b,/y =bcZ thenuv2wx2y will bea3b3c2 §L
Case 3: vwx consists of someb’s and some c’s

If z=a2b2c2 and U a2byv=b,W=c x = 9,V = ¢ thenuv2wx2y will be a2b3c2 §L

If you considerany of the’above 3 cases, uv2wx2y will not be having an equal number of a’s,

b’s and-€’s. But Pumping Lemma says uv2wx2y @L. Can’t contradict the pumping lemma!
Our original assumption must be wrong. So L is not context-free.

Example:
Show that L = {ww |w {0, 1}*} is not CFL

Solution:
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Assume L is CFL. It is sufficient to show that L1= {0M1N0M1N | m,n ¢ 0}, where n is

pumping lemma constant, is a CFL. Pick any z = 0N1NON1N = uvwxy, satisfying the
conditions |vwx| @ nand vx ¢@.

This language we prove by taking the caseof i = 0, in the pumping lemma satisfying the
condition uv'wxly for i 0.

z is having a length of 4n. So if [vwx| € n, then |uwy| @ 3n. According to pumping lemma,
uwy @ L. Then uwy will be some string in the form of tt, where t is repeating. if.so, n |t| @
3n/2.

Suppose vwx is within first n 0's: let vx consists of k 0°s. Then uwy begins with 0R=K1n

luwy| = 4n-k. If uwy is some repeating string tt, then |t| =2n-k/2. t does.end in O but tt ends
with 1. So second t is not a repetition of first t.

Example: z = 03130313, vx = 02then uwy = tt = 0130313, so first t = 0130 and second t =
0213. Both t's are not same.

Suppose vwx consists of 15t block of 0’s:and first block of 1's: vx consists of only 0’s if
x= €, then uwy is not in the form tt. If vx has at least one 1, then |t| is at least 3n/2 and first t
ends with a0, not a 1.

Very similar explanations could be given for the cases of vwx consists of first block of 1's

and vwx consists of It block of I”s and 2™ block of 0’s. In all cases uwy is expected to be in
the form of tt. But first't and\second t are not the same string. So uwy is not in L and L is not
context free.
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Example:
Show that L={011J2i3) |i ¢ 1,j 1} is not CFL
Solution:

Assume L is CFL. Pick z = uvwxy = 0n112N3N where [vwx| ¢ nand vx ¢ ¢
. Vwx can consist of a substring of one of the symbols or straddles of two adjacentsymbols.

Case 1: vwx consists of a substring of one of the symbols

Then uwy has n of 3 different symbols and fewer than n of 4th symbol. Then twy is not in L.
Case 2: vwx consists of 2 adjacent symbols say 1 & 2

Then uwy is missing some 1’s or 2’s and uwy is not in L.
If we consider any combinations of above cases, we getduwy, which is not CFL. This

contradicts the assumption. So L is not a CFL.

6.3:ClosurePropertiesof CFL

Many operations on Context Free Languages (CFL) guarantee to produce CFL. A few do not

produce CFL. Closure properties consider operations on CFL that are guaranteed to produce
a CFL. The CFL’s are closed under substitution, union, concatenation, closure (star),
reversal, homomorphism and inverse. homomorphism. CFL’s are not closed under
intersection (but the intersection of a CFL and a regular language is always a CFL),

complementation, and set<difference.

I Substitution:

By substitution_ operation, each symbol in the strings of one language is replaced by an entire
CFL language

iExampIe:
S(0) = {a"h| @1}, S(1)={aa,bb} is a substitution on alphabet ¢ ={0, 1}.
Theorem:

If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, then s(L) is a
CFL.

Proof:
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Let G = (V, @, P, S) be grammar forthe CFL L. Let Ga = (Va, Ta, Pa, Sa) be the grammar
corresponding to each terminal a @ @ and V @ Va = @. ThenG@= (VQ, T@, P9, S) is a
grammar for s(L) where

e V@ =V Vi

e T@=unionofTa's allfora @ @

[ ]
e P@ consists of

All productions inany Pa fora @ @

OO0 o0oo

0 The productions of P, with each'terminal a‘is'replaced by Sa everywhere a
occurs.

Example:

L = {ON1N| n @ 1}, generated, by the grammar S @ 0S1 | 01, s(0) = {a"b™M | m @ n},
generated by the grammar S_ @ aSb | A; A9 aA | ab, s(1) = {ab, abc}, generated by the

grammar S @ abA, A @ c|@
. Rename second and third S’s.to SO and S1, respectively. Rename second A to B. Resulting

grammars are:
S ¢ 0S1j01
S0 €.4S0b. | A; A-@aA|ab
S1@ abB;B @ c| @

In the first grammar replace 0 by SQ and 1 by S1. The resulted grammar after substitution is:
S @ S0SS1S0S1
S0@-asSob | A; A @aA |ab S19abB; B c| @

IL Application of substitution:
a. Closure under union of CFL’s L1 and L2:
Use L={a, b}, s(a)=L1 and s(b)=L2. Then s(L)= L1 ¢ L2.

How t
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o get grammar forlL] @ L2 ?
Add new start symbol S and rules S @ S1|S2

Thegrammar forL1 @ L2isG =(V, T, P, S) whereV = {V1 @ V2 @ S}, S (V1 ¢ V2)
andP={P19 P29 {S9S1|S2}}

Example:
L1 = {a"b" | n @ 0}, L2 = {b"a" | n @ 0}. Their corresponding grammars are
G1:S1@aSib | @, G2:S2@bS2a | &
The grammar forL1 @ L2 is
G = ({S, 51,52}, {a, b}, {S € S1[52, 51 @ aS1b | 9,52 @ bS2a},.S).
b. Closure under concatenation of CFL's L1 and L2:
Let L={ab}, s(a)=L1 and s(b)=L2. Then s(L)=L1L?
How to get grammar for L1L2?
Add new start symbol and rule S €.81S2

The grammar for L1L2 is G = (V,.T, P, S) whereV =V1 @ V2 @ {S},S@ V1 @ V2
and P =P1 @ P2 @ {S ¢.5152}

Example:
L1 = {ahbn | n‘@ 03, L2.= gbNan | n @ 0} then L1L2 = {anb{ntm}am|n, m ¢ 0}

Their cofresponding grammars are
G1:S19aS1b | @, G2:S2bS2a | @

Thegrammar for L1L2 is
G =({S, S1, 52}, {a, b}, {S ¢ S1S2,S1 @ aS1b | @, S2 @ bS2a}, S).

c. Closure under Kleene’s star (closure * and positive closure *) of CFL's L1:
Let L = {a}* (orL = {a}*) and s(a) = L1. Then s(L) = L1* (ors(L) = L1%).
Example:

L1 = {a"b" | n @ 0} (L1)* = {a{n1l}p{nl}  a{nk}p{nk} |k @ Oand ni @ Oforall i}
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12 = {a{in?%} | n ¢ 13, (L2)* = a*

How t
o get grammar for (L1)*:

Add new start symbol S and rules S ¢ SS1 | .

The grammarfor (L1)* is
G=(V, T PS) whereV =V1 {S}, S ¢ V1,
P=P19{S9SS1|9¢}

d. Closure under homomorphism of CFL L for every ai§ ¢:

Suppose L is a CFL over alphabet @ and his a homomorphism on @.let sde a substitution
that replaces every a @ @, by h(a). ie s(@) = {h()}. Then h(L) = s(L). ie h(L)
={h(a1)...h(ak) | k @ 0} where h(aj) is ahomomorphism for every ai @ 4.

III. Closure under

1V. Reversal:

L is a CFL, so LR is a CFL. It is enoughsto reverse .each production of a CFL forL, i.e., to
substitute each production A¢ @ by A@R.

IV. Intersection:
The CFL’s are not closed.dnder intersection

Example:
The language L = {0B1P27%| n @ 1} is not context-free. But L1 = {0"1N2' |n@ 1,i @ 1} is a
CFLand L2£40/1M2N |\ n4'1,i ¢ 1} isalsoaCFL. ButL =Ll L2.

Corresponding grammars for L1: S@AB; A@OALl | 01; B@2B | 2 and corresponding
grammars fork2:.S @AB; A@OA | 0; B1B2 | 12.

However, L'= L1 ¢ L2, thus intersection of CFL’s is not CFL

Intersection of
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a. CFL and Regular Language:

Theorem: If Lis CFL and R is aregular language, then L ¢ R is a CFL.

yEA Accept/
’ AND Reject
»
PDA I
Stack

Figure 1: PDA forL n R
Proof:

P=(Qp &, 9 9p gp. Zo, Fp) be PDA to accept L by final state. Let A-=AQx @, @4 da Fa)
for DFA to accept the Regular Language R. To get L ¢ R, ‘wehave toTun a Finite Automata

in parallel with a push down automata as shown in figure:l. Construct PDA P = (Q, @, 9.
9. 9o, Zo, F) where

e Q=(QpXQa)

* do = (qp g

o F=(FeX Fa)

o @ isintheform @ ((q, p), a, X)»=((r,"s), g) such that
1. s= @alp a)

2. (r,g)isin @p(q, a,X)

That is for each move of{PDA P, we‘make the same move in PDA P and also we carry
along the state of DFA “Alin‘a second component of P. P€ accepts a string w if and only if
both P and A acceptw.ie w is in' ¢ R. The moves ((qp, ga), W, Z) |-*P@ ((q, p), @, @) are
possible if and only:if" (qp,w, Z) |-*P (9, ¢.9) moves and p = §*(ga, W) transitions are
possible.

CFL and RL properties:
Theorem: The following are true about CFL’s L, L1, and L2, and a regular language R.
1. Closure of CFL’s under set-difference with a regular language.
.
1. L-RisaCFL.

Proof:
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R is regular and regular language is closed under complement. So RC is also regular. We

know that L - R = L ¢ RC. We have already proved the closure of intersection of a CFL
and aregular language. So CFL is closed under set difference with a Regular language.

2. CFL is not closed under complementation

LC is not necessarily a CFL

Proof:

Assume that CFLs were closed under complement. e if L is a CFLsthen LC is a'CFL.
Since CFLs are closed under union, L1C @ L2C is a CFL. By ourassumption (L1 ¢
LbGCis aCFL. But (L1€ 73 LOC -1 @ L2, which we just showed isn’t necessarily
a CFL. Contradiction! . So our assumption is false. CFL is.not” closed under
complementation.

CFLs are not closed under set-difference.

ie
L1 - L2 is not necessarily a CFL.

Proof:

Let L1 = * - L. @* is redular and.is also CFL. But @* - L = LC. If CFLs were closed

under set difference, then'@* =L = LC  would always be a CFL. But CFL's are not
closed under complementation. So CFLs are not closed under set-difference.
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Assignment questions
1.Using pumping lemma for CFL prove that below languages are not context free

1. {OP|pisaprime}
2. {a"bhci |i @ n}

2.Eliminate the non-generating symbols fromS — aS|A | C, A —a, B —aa, . C=>aCb
3.Eliminate non-reachable symbols from G= ({S, A}, {a}, {S = a, A —a}, S)

4.Draw the dependency graph as given above. A is non-reachable from S. After.eliminating
A Gl= ({S}, {a}, {S—a}, S)

5. Eliminate non-reachable symbols fromS —> aS| A, A — a, B —aa

6.Eliminate useless symbols from the grammar with productions S. = AB | CA, B —=BC |
AB, A—a,C—AB |b
7.Eliminate useless symbols from the grammar

P={S = aAa, A =Sb| bCC, C —abb, E —.aC}

P={S —>aBa|BC, A —>aC|BCC, C —a,B =>bcc, D= E, E —d}
P={S — aAa, A = bBB, B = ab, C — aB} ’
P={S—aS|AB, A—DbA B = AA}
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UNIT -7:
INTRODUCTION TO TURING MACHINES

7.1 problems that computers cannot solve

7.2 The turing machine

7.3programming techniques for turing machines
7.4 extensions to the basic turing machines

7.5 turing machines and computers
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7.1 :Problems that computers cannot solve

7.2 The Turing machine

Definition:

A Turing Machine (TM) is an abstract, mathematical model that-describes what can and
cannot be computed. A Turing Machine consists of@aitape of infinite length, on which input is
provided as a finite sequence of symbols. A head reads the“input tape. The Turing Machine
starts at “start state” So. On reading an input symbol it.optionally replaces it with another
symbol, changes its internal state and moves onecell to;the right or left.

Notation for the Turing Machine™:

T™M =<S, T, So, @, H> where,

S is aset:of TM states

T is a set of tape symbols

So is the start state

He@S is a set of halting states

@ :SxT @SXT x {LLR} is the transition function

{L,R} is direction in which the head moves

L : Left R: Right
input symbols on infinite length tape

-

\ head
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The Turing machine model uses an infinite tape asits unlimited memory. (This is important
because it helps to show that there are tasks that these machines cannot perform, even though
unlimited memory and unlimited time is given.) The input symbols occupy some of the
tape’s cells, and other cells contain blank symbols.

Some of the characteristics of a Turing machine are:
1. Thesymbols can be both read from the tape and written on it.
2. The TM head can move in either directions — Left or Right.
3. Thetape is of infinite length
4. The special states, Halting states and Accepting states, take immediate effect.

Solved examples:

TMExamplel:

Turing Machine U+1:

Given astring of 1s on a tape (followed by an infinite.number of 0s),’add one more 1 at the
end of the string.

Input : #111100000000.......

90000090
Output : #1111100000000..........

Initially the TM is in Start state So. Move right as long as the input symbol is 1. When aQ is
encountered, replace it with 1 and halt.

Transitions:

So, 1) — (S0, 1, R)

(So,0) —» (h, 1, STOP)

TMExample2 :

T™M: X-Y
Given two unary:numbers x and y, compute [x-y| using a TM. For purposes of simplicity we
shall beising multiple tape symbols.

Ex5 (11111) =3 (111) = 2 (11)
#11111b1110000..... ¢
# 11b _ 000...

a) Stamp out the first 1 of x and seek the first 1 of y.

(So, 1) — (S1, . R)
(So, b) = (h, b,STOP)
(S 1) — (S1 L R)
(S b) —» (S2 b R)
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b) Once the first 1 of y is reached, stamp it out. If instead the input ends, then y has finished.
But in x, we have stamped out one extra 1, which we should replace. So, go to some state s5
which can handle this.

(S22 1) — Ss3,_ L)
(S2.) — (52 R)
(S, 0) — (S5, 0, L)

c) State s3 is when corresponding 1s from both x and y have been stamped out. Now go back
to x to find the next 1 to stamp. While searching for the next 1 from x, if we reach'the head of
tape, then stop.

S3, ) — (53, _ b
(S3,b)  —> (S4, b, L)
(G4, 1) — (Sa 1, L)
(Sa, ) — (S0, R)
(S4, #) — (h, #,STOP)

d) State s5is when y ended while we were looking for a'l to stamp. This means we have
stamped out one extra 1 in x. So, go back to x, and“replace the blank character with 1 and
stop the process.

Ss, ) > (Ss - D)
(Ss,b)  —> (Se b, L)
Se 1) — Se L L)
(Se, ) — (h,1,STOP)

Solved examples:

TMExamplel: Design a Turing-Machine to recognize 0"1M2"
ex: #000111222 [ ...

Step 1: Stamp the first Qwith X, then seek the first 1 and stamp it with Y, and then seek the
first 2 and stamp it with Z and then move left.

(So,0—( S1,X.R
(S1,0)—(S1,0.R
(S1,)—( S2,Y.R
($2,1)—>(S2,1,R)
(§2,2)—(S83,Z,L)

So = Start State, seeking 0, stamp it with X
S1 =Seeking 1, stamp it with Y
S2 =Seeking 2, stamp it with Z
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Step 2: Move left until an X is reached, then move one step right.
(S3,1)—(S3,1,L)

(S3,Y)=(S3,Y.L)

(§3,0)—(S83,0,L)

(S3,X)—=(S0.X.R)

S3 =Seeking X, to repeat the process.

Step 3:Move right until the end of the input denoted by blank(4) is feached passing through
XY Z s only, then the accepting state Sa is reached.

(So0,Y)—(S4,Y,R)
(S4,Y)—>(S4,Y,R)
(Sa,z

(S4

)—(S4,Z,R)
—(SA,

STO’)

S4 = Seeking blank

These are the transitions that result in halting states.

S4,1)7(h,1,STOP)
S4,2)~(h,2,STOP)
Sa,—(Sa

STOD)

(
(

(

(So, L) (h1,STCR)
(So) 2h7—2£STQ°)—’()
(31 2h,2,STCP)
(S

( STCF’>

TMExample? : Design a Turing machine to accept a Palindrome

ex: #1011101 ...
Step 1: Stamp the first character (0/1) with _, then seek the last character by moving till a _ is
reached. If the last character is not 0/1 (as required) then halt the process immediately.

$0,0)-(51, ,)
So,1)(S2, ,)
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Step 2: If the last character is 0/1 accordingly, then move left until atblank is reached to start
the process agai-.

(S3,0)—>(S4, )
$4,1)-(S54,1,L)
,0—(S4,0,L)
(S0, )

(Se, )
—(S, lL)
,0)—(S670,L)
(56

(
(S4
(S4
(85 1)
(S6,1)
(Se
(S

Step 3 : If ablank ("2 )fis reached when seeking next pair of characters to match or when
seeking a matching character, then accepting state is reached.

(83, —(S A
(§5)=(S A o)

(So0,—=(S A,

',STOD)

srcr)

The sequence of events for the above given input are as follows:

#5010101 __
#_550101 __
#_057101 __
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#_0101sg
#_010sg
# 550101 __
# 590101 __
# ___ sg
# __ SA

ModularizationofTMs

Designing complex TM s can be done using modular approach. The main problem can be
divided into sequence of modules. Inside each module, thefe could be several state
transitions.

For example, the problem of designing Turing machine to recognize the language 0"1"2" can
be divided into modules such as 0-stamper, 1-stampet;-f-seekeP; 1-seeker, 2-seeker and 2-
stamper. The associations between the mogules’are shown.in the foIIowigg figure:

T™M: 0"1"2" _ | O-Stgmper 1-Seeker
v

1-Stamper
v

2-Seeker

2-Stamper

<« | 0-Seeker

Load-— Decode — Execute — Store

UniversalTuringMachine

A Universal Turing Machine UTM takes an encoding of a TM and the input data as its input
in its tape and behaves as that TM on the input data.

A TM spec could be as follows:

CITSTUDENTS.IN Page 103



FLAT 10CS56

™ = (5,S0,H,T,d)

Suppose, S={a,b,c,d}, SO=a, H={b,d} T={0,1}
0 :@0) ®1R), (@1l (c1lR),

(c,0) (d,0,R) and so on

then TM spec:

$abcd$a$hbd$01$a0b1Ralc1RcOdOR.......

where $is delimiter

This spec along with the actual input data would be the input to the UTM.
This can be encoded in binary by assigning numbers to each of the characters“appearing.in
the TM spec.

The encoding can be as follows:
$ : 0000 0:0101
a: 0001 1:0110
b : 0010 L:0111
c: 0011 R :1000
d: 0100
Sothe TM spec given in previous slide can be encodedas:
0000.0001.0010.0011.0100.0000.0001.0000.0010.0100~......
Hence TM spec can be regarded just as a number;

Sequence of actions in UTM:
Initially UTM s in the start state SO,

Load the input which is®TM spec.

Go back and find which transition to apply.
Make changes, where necessary.

Then store the.changes.

Then repeatthe steps with-next input.

Hence, the sequence goes-through the cycle:

> L oad— Decode— E xecute — Store—

7.3:ExtensionstoTuringMachines

Proving Equivalence
For any two machines M1 from class C1 and M2 from class C2:

M2 is said to be at least as expressive as M1
if L(M2) = L(M1) or if M2 can simulate M1.

M1 is said to be at least as expressive as M2
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if L(M1) = L(M2) or if M1 can simulate M2.

Composite Tape TMs

Track O

o o
o
=
_ O
=
_ O

Track 1

A composite tape consists of many tracks which can be read or written simultaneously:

A composite tape TM (CTM) contains more than one tracks in its tape.

Equivalence of CTMs and TMs
A CTM is simply a TM with a complex alphabet..

T=A{a b, c d}
T’ = {00, 01, 10, 11}

Turing Machines with Stay Option

Turing Machines with stay gptionshas athird option for movement of the TM head:
left, right or stay.

STM =<S, T, @, s;H>
@:SxTaSxTx{L, RyS}
Equivalence of STMs-and TMs

STM = TM:
Just.don’t use'the S option...

™™ = STM:
For L and R moves of a given STM build a TM that moves correspondingly L or R...
™™ =STM:

For S moves of the STM, do the following:
1.Move right,
2.Move back left without changing the tape
3.STM: @(s.a) |-- (s",b,S)
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TM: @(s.a) |- ("', b, R)
0(5”1*) |__ (S’,*, L)

2-way Infinite Turing Machine

In a2-way infinite TM (2TM), the tape is infinite on both sides.
There is no # that delimits the left end of the tape.
Equivalence of 2TMs and TMs

2TM = TM:
Just don’t use the left part of the tape...
™ =2TM:

Simulate a 2-way infinite tape on a one-way infinite tape...

Multi-tape Turing Machines

A multi-tape TM (MTM) utilizessmany tapes.

|||D‘

Equivalence of MTMs and TMs

MTM =M
Use just the first tape...
™ = MTM:

Reduction of multiple tapes to a single tape.

Consider an MTM having m tapes. A single tape TM that is equivalent can be constructed by
reducing m tapes to a single tape.
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oo

T™M [0 Bo CO AL BI C1 A2 B2 C2 A3 83.. |

Non-deterministic TM

A non-deterministic TM (NTM) is defined as:
NTM =<S, T, s0, ¢, H>

where §:S x T a25XTx{L,R}
Ex: (s2,a) a {(s3,b,L) (s4,a,R)}

Equivalence of NTMs and TMs
A “concurrent” view of an NI M:

(s2,a) a {(s3,b,L)(s4,.a4R)}
e at(s2,a), two TMs are spawned:
(s2,a) a (s3,b:L)
(s2,a)@(s4,a,R)
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Unit-8: Undesirability

8.1: A language that is not recursively enumerable
8.2: aun decidable problem that is\RE
8.3: Posts correspondentce problem

8.4: other undecidable problem
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8.1: A language that is not recursively enumerable

Decidable
A problem P is decidable if it can be solved by a Turing machine T that always halt.
(We say that P has an effective algorithm.)

Note thatthe corresponding language of a decidable problem is recursive.
Undecidable

A problem is undecidable if it cannot be solved by any Turing machine that halts on
all inputs.

Note that the corresponding language of an undecidable problem is non-recursive.
Complements of Recursive Languages

Theorem: If L is arecursive language, L is also recursive.

Proof: Let M be a TM for L that always halt. We can construct another TM M from

M for L that always halts as follows:
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M
Accept Accep

M [Accept—_
:::>\\‘RQec

— Rejec

A 4

Input

Complements of RE Languages

Theorem: If both alanguage L and its complement L are RE, L is recursive:
Proof: Let M1 and M2 be TM for L and L respectively. We can constructaTM M
from M1 and M2 for L that always halt as follows:

M
. M ——Accept >~ Accept

Input

M 4 Accept -Reject

A Non-recursive RE Language
«  Weare going to give an example\of a RE language that is not recursive, i.e., a
language L that can‘be accepted.by a TM, but there is no TM for L that always halt.
« Again, we need to(make use of the binary encoding of a TM.
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CLd

We will now
look at an
example in
this‘region.

Recursively
Enumerable (RE)

Non-recursively
Enumerable (Non-RE)

A Non-recursive RE Language
« Recall that we can encode each<TM uniguely’as a binary number and enumerate all
TM’sas T1, T2, ..., Tk, ... where the encoded value of the kth TM, i.e., Tk, is k.
« Consider the language Lu:
Lu = {(k, w) | Tk acceptsiinput w}
This is called the universal language.

Universal Language
+ Note that desighing a TM to recognize Lu is the same as solving the problem of given

k and w, decide whether Tk accepts w as its input.
+  Weare going to-show/ that Lu is RE but non-recursive, i.e., Lu can be accepted by a
TM, but there istne”TM for Lu that always halt.
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Universal Turing Machine

 To show that L, is RE, we constructa TM
U, called the universal Turing machine,
such that L, = L(U).

« U is designed in such a way that given k
and w, it will mimic the operation of T, on

input w:
1111110 | |
separa or w

U will move back and forth to mimic T, on‘input w.

Universal TuringMachine

— Accept—— Accept

(k, w) Ty
i.e, k1111110w

U

Why. cannot we use a similar method to construct
aTM for L,?
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Universal Language

« Since there is a TM that accepts L, L, is
RE. We are going to show that L, is non-
recursive.

« If L, is recursive, there isaTM M for L,
that always halt. Then, we can construct a
TM M’ for L as follows:

— Accept T Reject
K | Copy k1111110k M

MI

— Reject - Accept

A Non-recursive RE Language
« Since we have already shown that Ld is non—recursively enumerable, so M” does not
exist and there is no such M.
« Therefore the universal language.iswrecursively enumerable but non-recursive.

Halting Problem
Consider the halting problem:
Given (k,w), determine if Tk halts on w.
It’s corresponding languageis:

Lh = { (k, w) | Tk halts ondnput w}
The halting problem is:also undecidable, i.e., Lh is non-recursive. To show this, >we
can make use‘of the universal language problem.
We want to show that if the halting problem can be solved (decidable), the universal
language probtem can also be solved.
—>Sowe will try'toreduce an instance (a particular problem) in Lu to an instance in
Lh'in such-a.way that if we know the answer for the latter, we will know the answer
for the former.
Class Discussion
Consider a particular instance (k,w) in Lu, i.e., we want to determine if Tk will accept
w.-Construct an instance I=(k’,w’) in Lh from (k,w) so that if we know whether Tk’
will halt on w’, we will know whether Tk will accept w.
Halting Problem

Therefore, if we have a method to solve the halting problem, we can also solve the
universal language problem. (Since forany particular instance I of the universal
language problem, we can construct an instance of the halting problem, solve it and
get the answer forl) However, since the universal problem is undecidable, we can
conclude that the halting problem is also undecidable.
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Modified Post Correspondence Problem

»  We have seen an undecidable problem, that is, given a Turing machine M and an
input w, determine whether M will accept w (universal language problem).

«  Wewill study another undecidable problem that is not related to Turing machine
directly.
Given two lists A and B:

A=wl w2 ...,wk B=x1x2, ..., xk

The problem is to determine if there is a sequence of one or more integers i1, i2, ...,
im such that:
wlwilwi2...wim = x1xilxi2...xim

(wi, xi) is called a corresponding pair.

Example
A B
i W, X;
1 11 1
2 1 111
3 0111 10
4 10 0

This MPCP instance has-a solution: 3, 2, 2, 4:
W1 W3WoWoW5 = X X3%aX5X, = 1101111110

8.2: a un decidable problem that is RE
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Undecidability of PCP

To show that MPCP is undecidable, we will

reduce the universal language problem (ULP) to

MPCP:
Universal _
Language —— A mapping | MPCP
Problem (ULP)

If MPCP can be solved, ULP can also be solved.
Since we have already shown that ULP is un-
decidable, MPCP must also be undecidable.

Mapping ULP to MPCP
« Mapping a universal language problemsinstance ta.an MPCP instance is not as easy.
« InaULP instance, we are given a Tufing machine’M and an input w, we want to
determine if M will accept w. To.map-a/ULP instance to an MPCP instance success-
fully, the mapped MPCP instance should have a solution if and only if M accepts w.

Mapping ULP to MPCP

ULP instance MPCP instance
Construct an
Given: MPCP instance | Two lists:
(T,w) A and B

If T accepts w, the two lists can be matched.
Otherwise, the two lists cannot be matched.

Mapping ULP to MPCP
*  Weassume that the input Turing machine T:
— Never prints a blank
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— Never moves left from its initial head position.
» These assumptions can be made because:

— Theorem (p.346 in Textbook): Every language accepted by a TM M2 will
also be accepted by a TM M1 with the following restrictions: (1) M1’s head
never moves left from its initial position. (2) M1 never writes a blank.

Mapping ULP to MPCP
Given T and w, the idea is to map the transition function of T to strings in the two
lists in such a way that a matching of the two lists will correspond to aconcatenation
ofthetapecontentsateachtimestep.
We will illustrate this with an example first.

Example of ULP to MPCP

« Consider the following Turing maching:
T = ({qo: ql}l{oll}l{olll#}l 61 q(), #I {ql})

»

1/0, R

6(q01 1) = (quOl R) 6(q010) = (qllol L)
« Consider inputw=110:
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Example of ULP to MPCP

« Now we will construct an MPCP instance
from T and w. There are five types of
strings in list A and B:

« Starting string (firstpair):
List A List B
# #Q,110#

Example of ULR.to'MPCP

« Strings from the transition function 0:
List A List B
qol 0gg (from d(q,1)=(q,,0.R))
0g40 d;00 (from3(q,,0)=(q;,0,L))
19,0 9,10 (from 8(q,,0)=(q;,0,L))

Example of ULP to MPCP

Strings for copying:

List A List B

# #
0 0
1 1

Example of ULP to MPCP

Strings for consuming the tape symbols at the end:
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List A List B List A List B

0Ogl ql Oqll gl
1qgl g1l 110 gl
ql0 ql 0ql0 gl
qll gl 1q10 gl

Class Discussion
Consider the input w = 101. Construct the corresponding MPCP instance I and show
that T will accept w by giving a solution to L.

Class Discussion (cont’d)

ListA ListB ListA ListB
1. # #0q,101# 9. Oq, of]
2. qpl 0qq 10. 1q; a1
3. 09,0 q,00 11. g,0 o]
4. 1940 q;10 127941 of]
5. # # 13..00:L. 7 o3
6. 0 0 14. 1g40 a
7. 1 1 15./0q;0 a
8. qu## # 16. 19,0 a1

Mapping ULP to MPCP
«  We summarize the mapping as follows. Given T and w, there are five types of strings
in list A and B:
« Starting’string (first pair):
ListA List B
# #qOw#
where q0 is the starting state of T.
Mapping ULP to MPCP
s Strings from the transition function &:

List A List B

qX Yp from 6(qrx)=(p:Y:R)
ZgX pZY from 3(q,X)=(p,Y,L)
q# Yp# from B(q:#)z(p:Y:R)
Zqg# pZY# from 0(q,#)=(p,Y,L)

where Zisanytapesymbolexcepttheblank.
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Mapping ULP to MPCP
« Strings for copying:
List A List B
X X
where X is any tape symbol (including the blank).
Mapping ULP to MPCP
« Strings for consuming the tape symbols at the end:

List A List B

Xq q
qY q
XaqY q

where q is an accepting state, and each X and Y is any tape symboléexcept.the blank.
Mapping ULP to MPCP
+ Ending string:
List A List B
i #
where q is an accepting state.

« Using this mapping, we can prove that the originahULP instance has a solution if and
only if the mapped MPCP instance has a solution: (Textbook, p.402, Theorem 9.19)

8.3 Post's Correspondence Problem

(PCP)
Input: Two sequences, A = wl; ::: ;wkand
B =x1;:::; xk, where each wi and Xi-.is astring

over some alphabet §.

Question: Is there a sequenceil; ::i; im such
that1-ij - kfor1l-j-mand

wil ¢ ¢ ¢wim =xil ¢ ¢ ¢ xim?

Example:
A =1; 10111; 10
B = 111; 10; 0
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Solution: 2.1.1. 3:

wa Wy Wy wWa

~ v S W\-'\/-_—/\—'_\
1 0 1 1 1 1 1 1 0
= Y . & ' Vo

]
)
~
-

=

T3

Given v € {0,1}*, consider the following
instance of MPCP:

° Let wyp = \ and r = $ql')'l’8.
e For each X € I"U {§}, include the pair
(X, X).

eForallgeQ-F,pe@ X, X AT\
include

— (aX Vn if 8fla X)) =Wn VR
= (gX,Yp) if (g, X) = @Y, R;
— (ZqX,pZY) and [$gX, $qB¥Y if
6(q, X) = (p, Y4L);
- (¢8,YpS) if06@B) 5 (p. Y, R);

CITSTUDENTS.IN Page 120



FLAT 10CS56

— (Zq$,pZY ) and (3¢%$.$pBYS) if
4(q,B) = (p,Y,L).
e Foreach g € F, X T, include (Xgq.q),
(qX,q), and (¢%%,9).
It can be shown that this instance has a solution
iff v € L.

Note that this instance has alphabet
QT LU {S}, which is independent of v.

MPCP < PCP:

Let (A, B) be an instance of MPCP over ¥, and
let = and $ be distinct symbols not in X

d.

From A=wy,..., wy., wWe construct
A'=ug,..., wy, ., as follows:

e Insert = after each symbol in w1, by
e Also, insert = before the first; symbol in k.

o Let wy , =§.

From B = 24,. ...z, Meconstruct

| SEPERL, kY .
B'=z,...,2, a\follows:

o Insert = béforereach symbol in 24....,: T

( N
[} Let Tk+1 KD,

It is‘easilyseen that (A. B) has a solution for
MPCP iff\(A”/B’) has a solution for PCP,

Theeonstruction is clearly computable.

8.4: other undecidable problem

A problem P is decidable if it can be solved by a Turing machine T that always halt. (We say
that P has an effective algorithm.)
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Note that the corresponding language of a decidable problem is recursive.
Undecidable

A problem is undecidable if it cannot be solved by any Turing machine that halts on
all inputs.

Note that the corresponding language of an undecidable problem is non-recursive.

Complements of Recursive Languages
Theorem: If L is arecursive language, L is also recursive.
Proof: Let M be aTM for L that always halt. We can construct another TMiM from

M for L that always halts as follows:

M

Accept Accep
M | Accet— Ly
— Rejec >\‘Rejec

\ 4

Input

Complements of RE Languages
Theorem: If both alanguage L andits complement L are RE, L is recursive.
Proof: Let M1 and M2 be TM“for L and L respectively. We can construct a TM M

from M1 and M2 for L that‘always halt'as follows:

— M’ Accept » Accept

Input

> M — Accept -Reject
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ASSIGNMENT QUESTIONS

Unit 8:

1. Explain briefly the following Halting problem

2. What is Post’s Correspondence problem

3. P.t If Lis arecursive language, L is also recursive.
4. define undecidability, decidability
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