
 formal Language

 Transparency No. 1-1

Formal Language and

Automata Theory

Introduction

 Transparency No. 1-2

Course outlines

 Introduction:

 Mathematical preliminaries:

sets, relations, functions,sequences, graphs, trees, proof by

induction, definition by induction (recursion).

 Basics of formal languages:

alphabet, word, sentence, concatenation ,union, iteration [= Kleene

star], language, infinity of languages, finite representations of

languages

 PART I: Finite Automata and Regular Sets

 DFA,NFA,regular expressions and their equivalence

 limitation of FAs;

 Closure properties of FAs,

 Optimization of FAs

Introduction

 Transparency No. 1-3

course outline (cont'd)

 PART II: Pushdown Automata and Context Free

Languages

 CFGs and CFLs; normal forms of CFG

 Limitation of CFG; PDAs and their variations,

 closure properties of CFLs

 Equivalence of pda and CFGs; deterministic PDAs

 parsing (Early or CYK's algorithms)

 PART III: Turing Machines and Effective

Computability

 Turing machine [& its variations] and Equivalence models

 Universal TMs

 Decidable and undecidable problems (Recursive sets and

recursively enumerable sets)

 Problems reductions ; Some undecidable problems

Introduction

 Transparency No. 1-4

Goals of the course

 understand the foundation of computation

 make precise the meaning of the following terms:

 [formal] languages, problems, Programs, machines,

computations

 computable {languages, problems, sets, functions}

 understand various models of machines and their

relative power : FA, PDAs, LA (linear bounded

automata), TMs, [register machines, RAMs,...]

 study various representations of languages in finite

ways via grammars: RGs, CFGs, CSGs, general PSGs

 formal Language

 Transparency No. 1-1

Chapter 1 Introduction

Introduction

 Transparency No. 1-6

Mathematical preliminaries (reviews)

 sets (skipped)

 functions (skipped)

 relations

 induction

 Recursive definitions

Introduction

 Transparency No. 1-7

7

 Sets

 Basic structure upon which all other (discrete and

continuous) structures are built.

 a set is a collection of objects.

 an object is anything of interest, maybe itself a set.

 Definition 1.

 A set is a collection of objects.

 The objects is a set are called the elements or members of

the set.

 If x is a memebr of a set S, we say S contains x.

 notation: x S vs x S

 Ex: In 1,2,3,4,5, the collection of 1,3 5 is a set.

Introduction

 Transparency No. 1-8

8

Set description

 How to describe a set:?

1. List all its member.
 the set of all positive odd integer >10 = ?

 The set all decimal digits = ?

 the set of all upper case English letters = ?

 The set of all nonnegative integers = ?

2. Set builder notation:
 P(x) : a property (or a statement or a proposition) about

objects.

 e.g., P(x) = “ x > 0 and x is odd”

 then {x | P(x) } is the set of objects satisfying property P.

 P(3) is true => 3  {x | P(x)}

 P(2) is false => 2  {x | P(x)}

Introduction

 Transparency No. 1-9

9

Set predicates

Definition 2.

 Two sets S1, S2 are equal iff they have the same elements

 S1 = S2 iff "x (x S1 <=> x  S2)

 Ex: {1,3,5} = {1,5,3} = {1,1,3,3, 5}

 Null set ={} =  =def the collection of no objects.

Def 3’: [empty set] for-all x x.
Def 3. [subset]

 A  B iff all elements of A are elements of B.

 A  B <=> for-all x (x  A => x  B)).

 Def 3’’: A  B =def A  B /\ A  B.

 Exercise : Show that: 1. For all set A (

 2. (A  B /\ B  A) <=> (A = B) 3. A 

Introduction

 Transparency No. 1-10

10

Size or cardinality of a set

Def. 4

 | A | = the size(cardinality) of A = # of distinct elements of A.

 Ex:

 |{1,3,3,5}| = ?

 |{}| = ?

 | the set of binary digits } | = ?

 |N| = ? ; |Z| = ? ; | {2i | i in N} = ?

 |R| = ?

 Def. 5.

 A set A is finite iff |A| is a natural number ; o/w it is infinite.

 Two sets are of the same size (cardinality) iff there is a 1-1

& onto mapping between them.

Introduction

 Transparency No. 1-11

11

countability of sets

 Exercise: Show that

 1. |N| = |Z| = | Q | = {4,5,6,...}

 2. |R| = | [0, 1) |

 3. |N|  |R|

 Def.

 A set A is said to be denumerable iff |A| = |N|.

 A set is countable (or enumerable) iff either |A| = n for some

n in N or |A| = |N|.

 By exercise 3,

 R is not countable.

 Q and Z is countable.

Introduction

 Transparency No. 1-12

12

The power set

Def 6.

 If A is a set, then the collection of all subsets of A is also a

set, called the poser set of A and is denoted as P(A) or 2A.

 Ex:

 P({0,1,2}) = ?

 P({}) = ?

 |P({1,2,..., n})| = ?

 Order of elements in a set are indistinguishable. But

sometimes we need to distinguish between (1,3,4)

and (3,4,1) --> ordered n-tuples

Introduction

 Transparency No. 1-13

More about cardinality

Theorem: for any set A, |A| |2A|.

Pf: (1) The case that A is finite is trivial since |2A| = 2|A| > |A|

 and there is no bijection b/t two finite sets with different sizes.

(2) assume |A| = |2A|, i.e., there is a bijection f: A -> 2A.

 Let D = {x in A | x  f(x) }. ==>

 1. D is a subset of A; Hence

 2. $y in A s.t. f(y) = D.

 Problem: Is y  D ?

 if yes (i.e., y  D) ==> y  f(y) = D, a contradiction

 if no (i.e., y  D) ==> y  f(y) =D, a contradiction too.

 So the assumption is false, i.e., there is no bijection b/t A and

2A.

Note: Many proofs of impossibility results about computations

used arguments similar to this.

Introduction

 Transparency No. 1-14

14

Cartesian Products

Def. 7 [n-tuple]
 If a1,a2,...,an (n > 0) are n objects, then “(a1,a2,...,an)” is a

new object, called an (ordered) n-tuple [with ai as the ith
elements.

 Any orderd 2-tuple is called a pair.

 (a1,a2,...,am) = (b1,b2,...,bn) iff
m = n and for i = 1,..,n ai = bi.

Def. 8: [Cartesian product]
 A x B =def {(a,b) | a in A /\ b in B }
 A1 x A2 x ...x An =def {(a1,...,an) | ai in Ai }.

Ex: A = {1,2}, B = {a,b,c} , C = {0,1}
 1. A x B = ? ; 2. B x A = ?
 3. A x {} = ? ;4. A x B x C = ?

Introduction

 Transparency No. 1-15

15

 Set operations

 union, intersection, difference , complement,

 Definition.

 1. A B = {x | x in A or x in B }

 2. A B = {x | x in A and x in B }

 3. A - B = {x | x in A but x not in B }

 4. ~ A = U - A

 5. If A  B = {} => call A and B disjoint.

Introduction

 Transparency No. 1-16

16

Set identites

 Identity laws: A ? ? = A

 Domination law: U ? ? = U; {} ?? = {}

 Idempotent law: A ? A = A ;

 complementation: ~~A = A

 commutative : A ? B = B ? A

 Associative: A ? (B ? C) = (A ? B) ? C

 Distributive: A ? (B ? C) = ?

 DeMoregan laws: ~(A ? B) = ~A ? ~B

Note: Any set of objects satisfying all the above laws is
called a Boolean algebra.

Introduction

 Transparency No. 1-17

17

Prove set equality

1. Show that ~(A  B) = ~A ~B by show that

 1. ~(A  B)~A ~B

 2. ~A ~B ~(A  B)

 pf: (By definition) Let x be any element in ~(A  B)...

2. show (1) by using set builder and logical equivalence.

3. Show distributive law by using membership table.

4. show ~(A (B C)) = (~C ~B) ~A by set identities.

Introduction

 Transparency No. 1-18

18

 Functions

 Def. 1 [functions] A, B: two sets

 1. a function f from A to B is a set of pairs (x, y) in AxB s.t., for

each x in A there is at most one y in B s.t. (x,y) in f.

 2. if (x,y) in f, we write f(x) = y.

 3. f :A ->B means f is a function from A to B.

Def. 2. If f:A -> B ==>

 1. A: the domain of f; B: the codomain of f

 if f(a)=b =>

 2. b is the image of a; 3. a is the preimage of b

 4. range(f) = {y | $x s.t. f(x) = y} = f(A).

 5. preimage(f) = {x | $ y s.t. f(x) = y } = f-1(B).

 6. f is total iff f-1(B) = A.

Introduction

 Transparency No. 1-19

19

Types of functions

 Def 4.

 f: A x B; S: a subset of A,

 T: a subset of B

 1. f(S) =def {y | $x in S s.t. f(x) = y }

 2. f-1(T) =def {x | $y in T s.t. f(x) = y }

Def. [1-1, onto, injection, surjection, bijection]

 f: A -> B.

 f is 1-1 (an injection) iff f(x)=(fy) => x = y.

 f is onto (surjective, a surjection) iff f(A) = B

 f is 1-1 & onto <=> f is bijective (a bijection, 1-1

correspondence)

Introduction

 Transparency No. 1-20

Relations

 A, B: two sets

 AxB (Cartesian Product of A and B) is the set of all ordered

pairs {<a,b> | a  A and b  B }.

 Examples:

 A= {1,2,3}, B= {4,5,6} => AxB = ?

 A1,A2,...,An (n > 0): n sets

 A1xA2x...xAn = {<a1,a2,...,an> | ai  Ai }.

 Example:

 1. A1={1,2},A2={a,b},A3={x,y} ==> |A1xA2xA3| = ?

 2. A1= {}, A2={a,b} => A1xA2 = ?

Introduction

 Transparency No. 1-21

Binary relations

 Binary relation:

 A,B: two sets

 A binary relation R between A and B is any subset of AxB.

 Example:

 If A={1,2,3}, B ={4,5,6}, then which of the following is a

binary relation between A and B ?

 R1 = {<1,4>, <1,5>, <2,6> }

 R2 = {}

 R3 = {1,2,3,4}

 R4 = {<1,2>, <3,4>, <5,6> }

Introduction

 Transparency No. 1-22

Terminology about binary relations

 R: a binary relation between A and B (I.e., a subset

of AxB), then

 The domain of R:

 dom(R) = {x  A | $ y  B s.t. <x,y>  R}

 The range of R:

 range(R) ={y  B, | $ x  A, s.t., <x,y>  R}

 <x,y>  R is usually written as x R y.

 If A = B, then R is simply called a relation over(on)

A.

 An n-tuple relation R among A1,A2,...,An is any
subset of A1xA2...xAn, n is called the arity of R

 If A1=A2=...=An=A => R is called an n-tuple relation

(on A),.

Introduction

 Transparency No. 1-23

Operations on relations (and functions)

 R  AxB; S  B x C: two relations

 composition of R and S:

 R · S = {<a,c> | there is b in B s.t., <a,b> in R and <b,c> in

S }.

 Identity relation: IA = {<a,a> | a in A }

 Converse relation: R-1 = {<b,a> | <a,b> in R }

 f:A -> B; g: B->C: two functions, then

 g·f:A->C defined by g·f(x) = g(f(x)).

 Note: function and relation compositions are

associative, I.e., for any function or relation f,g,h,

 f· (g·h) = (f·g) ·h

Introduction

 Transparency No. 1-24

Properties of binary relations

 R: A binary relation on S,

1. R is reflexive iff for all x in S, x R x.

2. R is irreflexive iff for all x in S, not x R x.

3. R is symmetric iff for all x, y in S, xRy => yRx.

4. R is asymmetric iff for all x,y in S, xRy => not yRx.

5. R is antisymmetric iff for all x,y in S, xRy and yRx => x=y.

6. R is transitive iff for all x,y,z in S, xRy and yRz => xRz.

Graph realization of a binary relation and its properties.

x x

y y

s s

rule: if xRy then draw an

 arc from x on left S to y

 on right S.

Introduction

 Transparency No. 1-25

Examples

 The relation  on the set of natural numbers N.

 What properties does  satisfy ?
 ref. irref, or neither ?

 symmetric, asymmetric or antisymmetric ?

 transitive ?

 The relation  on the set of natural numbers N.

 The divide | relation on integers N ?
 x | y iff x divides y. (eg. 2 | 10, but not 3 | 10)

 What properties do  and | satisfy ?

 The BROTHER relation on males (or on all people)
 (x,y)  BROTHER iff x is y’s brother.

 The ANCESTOR relation on a family.
 (x,y)  ANCESTOR if x is an ancestor of y.

 What properties does BROTHER(ANCESTOR) have?

Introduction

 Transparency No. 1-26

Properties of relations

 R: a binary relation on S

1. R is a preorder iff it is ref. and trans.

2. R is a partial order (p.o.) iff R is ref.,trans. and antisym.

(usually written as ).

3. R is a strict portial order (s.p.o) iff it is irref. and transitive.

 usually written <.

4. R is a total (or linear) order iff it is a partial order and every

two element are comparable (i.e., for all x,y either xRy or

yRx.)

5. R is an equivalence relation iff it is ref. sym. and trans.

 If R is a preorder (resp. po or spo) then (S,R) is called a

preorder set (resp. poset, strict poset).

 What order set do (N, <) , (N, ) and (N, |) belong to ?

Introduction

 Transparency No. 1-27

Properties of ordered set

 (S, ): a poset, X: a subset of S.

1. b in X is the least (or called minimum) element of X iff b x for

all x in X.

2. b in X is the greatest (or called maxmum or largest) element of

X iff X  b for all x in X.

 Least element and greatest element, if existing, is unigue for

any subset X of a poset (S, )

pf: let x, y be least elements of X.

 Then, x y and y x. So by antisym. of , x = y.

3. X ia a chain iff (X,R) is a linear order(, i.e., for all x, y in X,

either xy or yx) .

4. b in S is a lower bound (resp., upper bound) of X iff

 bx (resp., xb) for all x in X.

 Note: b may or may not belong to X.

Introduction

 Transparency No. 1-28

Properties of oredered sets

 (S, ) : a poset, X: a nonempty subset of S.

5. b in X is minimal in X iff there is no element less
than it.
 i.e., there is no x in X, s.t., (x < b),

 or “for all x, x b => x =b.”

6. b in X is a maximal element of X iff there is no
element greater then it.
 i.e., there is no x in X, s.t., (b < x),

 or “for all x, b  x => x=b.”

 Note:

1.Every maximum element is maximal, but not the
converse in general.

2. Maximal and minimal are not unique in general.

Introduction

 Transparency No. 1-29

well-founded set and minimum conditions

 (S,) : a poset (偏序集).

. is said to be well-founded (良基性) iff there is no

infinite descending sequence. (i.e., there is no infinite

sequence x1,x2,x3,.... s.t., x1 > x2 > x3 >...).

 Note: x > y means y < x (i.e., y x and y = x)

 if is well-founded => (S,) is called a well-founded set.

2. (S,) is said to satisfy the minimal condition iff every

nonempty subset of S has a minimal element.

 (S, ): a total ordered set (全序集).

. is said to be a well-ordering(良序) iff every

nonempty subset of S has a least element.

 If is well ordered, then (S,) is called a well-ordered set.

Introduction

 Transparency No. 1-30

Examples of ordered sets

 Among the relations (N,), (N,), (N, |), (Z, ), (Z,),

(Z,|) and (R, ),

1. Which are well-founded ?

2. Which are well-ordered ?

Introduction

 Transparency No. 1-31

Equivalence of well-foundness and minimal condition

 (S,) is well-founded (w.f.) iff it satisfies the minimal

conditions (m.c.).

pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f.

 (1) Let x1,x2,... be any infinite sequence s.t. x1 > x2 > x3 >... .

 Now let X={x1,x2,...}. X obviously has no minimal element.

 S thus does not satisfy m.c.

 (2) Let X be any nonempty subset of S w/o minimal elements. Now

 (*) choose arbitrarily an element a1 from X and let

 X1 = {x | x  X and a1 > x } (i.e. the set of all elements in X < a1).

 Since a1 is not minimal, X1 is nonempty and has also no minimal element.

 We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and

obtain an infinite descending sequence a1 > a2 > a3 > ...

 Hence S is not w.f.

Introduction

 Transparency No. 1-32

A general proof scheme to show the infinity of a set

 Let P be a property of sets and C =def { X | P(X) holds }. If there

exists a function f : C  C satisfying the property: forall set X  C

(i.e, P(X) holds),

 1. f(X) is a nonempty proper subset of X,

 (i.e., f(X) , f(X)  X and f(X)  X), and

 2. f preserves property P

 (I.e., P(X) implies P(f(X), or XC => f(X)C),

 then all sets X with property P are infinite .

Pf: Let X0,X1,…,Xk,… be an infinite sequence of sets

 with X0 = X and Xk+1 =def f(Xk) = f(f(Xk-1)) = … = fk+1(X).

 Since X = X0 has property P and f preserves P, by induction

 on k, all Xk has property P. And by (1) Xk  f(Xk) = Xk+1 for all k.

 Now the sequence X0-X1, X1-X2, X2-X3,…. is an infinite sequence of

 nonempty and disjoint subsets of X. X thus is infinite.

Introduction

 Transparency No. 1-33

Variants of Inductions

 Mathematical Induction:
 To prove a property P(n) holds for all natural number n  N,

it suffices to show that

(1) P(0) holds --- (base step) and

(2) For all n  N, p(n) => p(n+1) --- (induction step)
P(n) in (2) is called induction hypothesis (h.p.)

 P(0), " n (P(n) => P(n+1))

 ---MI1

 " n P(n)

 P(0), "n ((P(0)/\...p(n-1))) => P(n))

 ---MI2

 "n P(n)

= "m. m<n  P(m) // Ind. Hyp.

Introduction

 Transparency No. 1-34

Well-order Induction

 Well-order induction:

 (S,) a well-ordered set; P(x): a property about S.

 To show that P(x) holds for all xS, it suffices to show

(1) P(xmin) holds where xmin is the least element of S. --- (base step)

(2) for all xS, if (for all yS y < x => P(y)) then p(x) ---(ind. step)

 (1) is a special case of (2) [i.e., (2) implies (1)]

 (for all y in S y < x => P(y)) in (2) is called the ind. hyp. of (2).

 P(Xmin), "y [("x. x< y =>P(x)) => P(y)

 --- WI

 "x P(x)

Introduction

 Transparency No. 1-35

Variants of inductions

 Well-founded induction (WI):

 (S, ) a well-founded set. P(x) a property about S.

 WI says that to prove that P(x) holds for all x in S, it

suffices to show that

(1) P(x) holds for all minimal elements x in S --- base step, and

(2) for all y in S, (for all z in S z < y => P(z)) => p(y) ---ind. step

 (1) has already been implied by (2)

 (for all z in S z < y => P(z)) in (2) is the ind. hyp. of the proof.

 forall minimal x, P(x), "y [("z, z<y =>P(x)) => P(y)]

 -- WI

 "x P(x)

 Facts: w.f. Ind. => well-ordered ind. => math ind.

 (I.e., If w.f ind. is true, then so is well-ordered ind. and

 if well-ordered ind. is true , then so is math. ind.)

Introduction

 Transparency No. 1-36

Correctness of WI

 (S,) : a well-founded set. P(x) : a property about S.

 Then P(x) holds for all x  S, if
(1) P(x) holds for all minimal elements x  S --- base step, and

(2) for all y  S, (for all z  S z < y => P(z)) => p(y) ---ind. Step
pf: Suppose WI is incorrect. Then there must exist (S,) satisfying (1)(2) but

 the set NP = { x | x  S and P(x) is not true } is not empty. (*)

 ==> Let xm be any minimal element of NP.

 case (1): xm is minimal in S. --> impossible! (violating (1))

 since if xm is minimal in S, by (1), P(xm) holds and xm  NP.

 case (2): xm is not minimal in S. --> still impossible!

 xm not minimal in S ==> L = {y | y  S /\ y < xm } is not empty.

 ==> L  NP = { } (o/w xm would not be minimal in NP.)

 ==> (ind. hyp. holds for xm , i.e., for all z  S, z < xm => p(z) is true)

 ==> (by (2).) p(xm) holds ==> xm NP.

 case(1) and (2) imply NP has no minimal element and hence is empty,
which contradicts with (*). Hence the assumption that WI is incorrect is
wrong.

Introduction

 Transparency No. 1-37

Definition by induction (or recursion)

 Consider the following ways of defining a set.

1. the set of even numbers Even = {0,2,4,...}:
 Initial rule : 0 Even.

 closure rule: if x Even then x +2 ven.

2. The set of strings S+ over an alphabets S = {a,b,...,z}
 Initial: if x S, then “x” S+.

 closure: If xS and “a” S+, then “xa” S+.

3. The set (Z*) of integer lists.
 Initial: [] is a (integer) list,

 closure: If x is an integer and [L] is a list, then [x L] is a list.
 e.g., [], [4], [3 4], [2 3 4], [5 2 3 4]

 Problem: All definitions well-defined? What’s wrong?

Introduction

 Transparency No. 1-38

Problems about recursive definition

 The above definitions are incomplete in that there are
multiple sets satisfy each definition

 Example:
 Let Ni = {0,2,4,6,...} U { 2i+1, 2i+3, ...}.

 Then {0,2,4,6,...} and Ni (i >0 all satisfy Def. 1.

 Among {0,2,4,6,...} and Ni (i > 0) , which one is our
intended set ?

 How to overcome the incompleteness ?

 Relationship between {0,2,4,...} and the collection of
sets satisfying the definitions?
 {0,2,4,...} is the least set among all sets.

 {0,2,4,...} is equal to the intersection of all sets.

 Every other set contains some elements which are not
grounded in the sense that they have no proof (or derivation).

Introduction

 Transparency No. 1-39

General form of inductively defining a set (or domain)

 W: a set, Init: a subset of W

 F: a set of functions/rules on W,

 we define a subset D of W as follows:

 1. Initialization: Every element of Init is an element of D.

 (or simply Init  D)

 2. closure: If f:Wn->W in F and t1,...,tn are members of D,

 then so is f(t1,...,tn)

 3. plus one of the following 3 phrases.

 3.1 D is the least subset of W with the above two properties.

 3.2 D is the intersection of all subsets of W with property 1,2.

 3.3 Only elements of Wobtainable by a finite number of
applications of rules 1 and 2 are elements of D.

Introduction

 Transparency No. 1-40

How to derive an object from an inductive defiintion

 W: a set, Init: a subset of W

 F: a set of functions on W,

Given Init and F, an object x W is said to be

derivable from Init and F if there is a finite sequence
x1,x2,…xn of objects of Wsuch that

1.x = xn,

2. for all 1k n, either

 2.1 xk  Init --- (xk is an axiom) or

 2.2 xk = f(t1,…,tn) where fF and {t1,…,tn}{x1,…,xk-1}.

 --- (xk is got from closure rule)

The sequence is called a derivation(or deduction,proof) of
x.

Introduction

 Transparency No. 1-41

Examples

 W= Z, Init: = {2} , F = { x5, add5, +}

 Then 54 is derivable since

1. 2, --- axiom

2. 7, --- add5(2)

3. 9, --- +(2,7)

4. 45, ---- x5(9)

5. 54 ---- +(9,45)

is a derivation of 54. The length of the derivation is 5.

 =

 2

 = = ----+5

 2 2 7

= -----+5 --------+5

2 7 9

----------+ ---------x5

 9, 45

--------------------------- +

 54

derivation (proof ;deduction) tree for 54

Introduction

 Transparency No. 1-42

Define functions on recursively defined domains

 Once a domain D is defined inductively. We can

define functions on the domain according to the

following recursive scheme:

 A function v : D  C, can be defined as follows:

 basis case: specify the value v(t) of t for each primitive

object t in Init.

 recursive case: specify the value v(f(t1,t2,…,tn)) of

every compound object f(t1,t2,…,tn) in terms of the

values v(t1),v(t2),…,v(tn) of smaller composing objects

t1,…,tn , for all f F and t1,…,tnD.

Introduction

 Transparency No. 1-43

Example

 Consider the following functions defined on integer lists:

sum : integer List(denoted Z*) Z

with sum(L) =def sum of all integers in L.

 We can define sum by recursion as follows:

 Basis case: specify the value sum(L) of L for each

primitive L in Init = { [] }.

 ==> basis: sum([]) = 0.

 Recursive case: specify the value sum(f(t1,...,tn))

of element f(t1,...,tn)for each f ∈ F and t1,...,tn ∈ D=

Z+.

 ==> Recursion: where F = { fx | fx([L’]) = [x L’], xZ }

 For any list of integers L of the form [x L’],

 sum(L) = sum([x L’]) = x + sum([L’])

Ex: sum([4,3,2])=4+sum([3,2])=4+3+sum([2])=4+3+2+sum([])

 = 4 + 3 +2 + 0 = 9.

Introduction

 Transparency No. 1-44

Define functions on recursively defined domains

 More example:
 #a : S+

 N with #a(x) =def number of a’s in string x.

 Now we can define #a as follows:
 Basis case: specify the value #a(“x”) of “x” for each x in S.

==> #a(“a”) = 1 ; #a(“y”) = 0 if y  a.

 Recursive case: specify the value #a(“dz”) of element “dz”
for each d ∈S and “z”∈S +.

 ==> for any d  S and “z”  S+ ,

 then #a(“dy”) = 1 + #a(“y”) if d = a and

 #a(“dy”) = #a(“y”) if d  a

 But are such kind of definitions well defined?
 A sufficient condition: If the recursively defined domain is

 not ambiguous (i.e., multi-defined)I.e., there is only one
way to form (or derive) each element in the domain.

Introduction

 Transparency No. 1-45

Example of a multi-defined(ambiguous) Domain

 Arithmetic Expression (AExp ⊆ S*) :

 Init: Constants a,b,c,… and variables x,y,z,… are

arithmetic expressions

 Closure: If a and b are arithmetic expressions then so

are a+b, a-b, -a, ax b .

 ambiguous arithmetic expressions:

 2 – 3 x 5 ; x – y + 2

 two ways to form “ 2 – 3 x 5 “:

 1. 2, 3, 2-3, 5, 2-3 x 5.

 2. 2, 3, 5, 3x5, 2- 3x 5.

x

-

5 3 2

-

x

5 3 2

Introduction

 Transparency No. 1-46

Problem for ambiguous defintions

 Define the fucntion val : AExp  Z as follows:

 Basis case:

 val(c) = c where c is an integer constant.

 val(x) = 0 where x is a variable.

 Recursion : where a and b are expressions

 val(a+b) = val(a) + val(b)

 val(a-b) = val(a) – val(b)

 val(a * b) = val(a) * Val(b)

 Then there are two possible values for 2 – 3 * 5.

 val(2 - 3 * 5) =val(2) – val(3 * 5) = 2 – [val(3) * val(5)] = 2 – 15 = -13.

 val(2 – 3 * 5) = val(2-3) * val(5) = [val(2) – val(3)] * 5

 = -1 * 5 = -5.

 As a result, the function val is not well-defined !!

Introduction

 Transparency No. 1-47

Structural induction

 D: an inductively defined domain

 P(x): a property on D.

 To show that P(x) holds for all x in D, it suffices to show

 Basis step: P(x) holds for all x in Init.

 Ind. step: P(t1),...,P(tn) => P(f(t1,...,tn)) for all f in F,

 and for all t1,...,tn in D.

 Example: show P(x)#a(x)  0 holds for all x.

 Basis step: x  Init = {“a”,”b”,”c”,...})

 x = “a” => #a(x) = 1  0.

 x “a” => #a(x) = 0 0

 Ind. step: x = “dy” where d is any element in Sand “y” is any

element in S+.

By ind. hyp. #a(“y”)  0. hence

 if d = a => #a(“dy”) = 1 + #a(“y”) 0

 if da => #a(“dy”) = #a(“y”)  0.

Introduction

 Transparency No. 1-48

More example:

 Define the set of labeled binary trees as follows:

 S: a set of labels = {a,b,c,..}

 G = S U {(,)}, G* = the set of strings over G.

 TS is a subset of G* defined inductively as follows:
 Init: () is a tree. // no more written as “()”

 closure: if x is a label, and L and R are trees,

 then (x L R) is a tree.

 Example / counterexample:
 (), (a ()()), ((a) (b) ()) .

 For tree T, let lf(T) = #of ‘(‘ ,lb(T) =# of labels, and

 e(T) = number of empty subtrees “()” in T. All can be

 defined inductively as follows:
 basis: lf(()) = 1; lb(()) = 0; e(()) = 1.

 recursive: lf((x L R)) = 1+ lf(L) + lf(R);

 lb((x L R)) = 1 + lb(L) +lb(R) ; e((x L R)) = e(L) + e(R).

Introduction

 Transparency No. 1-49

More example(cont’d)

 Use structural ind. to prove properties of trees.

 Show that for all tree T in TS : P(T) def

 lf(T) = lb(T) + e(T)

 holds for all tree T.

 Basis step[T = ()] : lf(()) = 1, lb(())=0, e(())=1 => P(()) holds.

 ind. step[T= (x L R) where x: any label, L, R: any trees] :

 assume (ind.hyp.:) lf(L) = lb(L) + e(L) and

 lf(R) = lb(R) + e(R). Then

 lf((x L R)) = 1 + lf(L) + lf(R) = 1 +lb(L) +lb(R) + e(L) +e(R)

 e((x L R)) = e(L) +e(R)

 lb((x L R)) =1 + lb(L) + lb(R)

==> lf((X L R)) = lb((X L R)) + e((X L R)).

Introduction

 Transparency No. 1-50

Exercise

 Let Z* be the domain of integer lists as defined inductively

at slide 36. Let append : Z* x Z* -> Z* be the binary

function on Z* such that, given x and y, append(x,y) will

form a list equal to the concatenation of x and y. For

instance, append([1], [2 3]) = [1 2 3] and append([2 3

4],[2 1]) = [2 3 4 2 1].

1.Give an inductive definition of append(x,y) according to

(the structure of) its first argument x.

2. Prove by induction that for all integer lists x and y,

 sum(x) + sum(y) = sum(append(x,y)),

 where the function sum was defined at slide 42.

Introduction

 Transparency No. 1-51

2. Basics of formal languages

 What is a language ?

 The meaning triangle:

 minds

language External

world

refers to

stand for

symbolize

Introduction

 Transparency No. 1-52

Different levels of language analysis

 phonetic and phonological analysis(語音與音韻分析)
 determine how words are related to sounds that realize them;

required for speech understanding.

 Phonetics concerns itself with the production, transmission, and
perception of the physical phenomena(phones) which are
abstracted in the mind to constitute these speech sounds or
signs.

 Phonology concerns itself with systems of phonemes (音位),
abstract cognitive units of speech sound or sign which
distinguish the words of a language.

 Ex: k in 'kill' and 'skill' are two phones [k],[g] but same phoneme
/k/; book(單數)  books (多數)

 morphological analysis: (詞彙分析;構詞學)

 determine how words are formed from more basic meaning
units called "morphemes". (詞 素)

 morpheme: primitive unit of meaning in a language.
eg: friendly = friend + ly; luckily = lucky + ly

http://en.wikipedia.org/wiki/Phonetics
http://en.wikipedia.org/wiki/Phonology
http://zh.wikipedia.org/wiki/%E8%AF%AD%E9%9F%B3%E5%AD%A6
http://zh.wikipedia.org/wiki/%E9%9F%B3%E9%9F%B5%E5%AD%A6
http://en.wikipedia.org/wiki/Phone_%28phonetics%29
http://en.wikipedia.org/wiki/Phoneme
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8

Introduction

 Transparency No. 1-53

Levels of language analysis

 syntax analysis: (語法分析)
 determine how words can be put together to form correct

sentences.

 determine what structure role each word plays in the sentence.

 determine what phrases are subparts of what other parts.

 ex: John saw his friend with a telescope

 => S[NP[noun:'John'] // one more result not listed!

 VP[verb: 'saw',

 NP[NP[possessivePronoun:'his', noun: 'friend']]

 PP[prep: 'with', NP [art: 'a' noun:'telescope]]]]

 Semantics analysis : (語意分析)

 determine what words mean and how these meanings combine

in sentence to form sentence meanings. context independent.

 Possible analysis result of the previous example:

 person(j), person(f), name(j,'John'), time(t), friend(f,j) //?

 see(j, f, t), before(t, now), possess(f, te, t).

http://zh.wikipedia.org/wiki/%E8%AA%9E%E6%B3%95%E5%AD%B8
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%BE%A9%E5%AD%B8

Introduction

 Transparency No. 1-54

Levels of language analysis

 Pragmatic analysis: (語用分析)

 studies the ways in which context contributes to meaning

 concern how sentences are used in different situation and how

use affects the interpretation of sentences.

 ex: Would you mind opening the door?

 John saw his friend with a telescope .

 Discourse analysis (篇章或對話分析) ,...

 代名詞解析，文句的銜接與連貫等。

 Ex: Wang has a friend. John saw him (Wang or Wang's friend?)

with a telescope yesterday.

 World knowledge,...

 Languages (including natural and programming languages)

contains many facets, each an active research domain of AI,

linguistics, psychology, philosophy, cognitive science and

mathematics.

http://en.wikipedia.org/wiki/Pragmatics
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%94%A8%E5%AD%B8
http://en.wikipedia.org/wiki/Discourse_analysis
http://zh.wikipedia.org/wiki/%E7%AF%87%E7%AB%A0%E5%88%86%E6%9E%90
http://en.wikipedia.org/wiki/Cohesion_%28linguistics%29
http://en.wikipedia.org/wiki/Coherence_(linguistics)

Introduction

 Transparency No. 1-55

What are formal languages

 In the study of formal languages we care about only the

well-formedness/membership, but not the meaning of

sentences in a language.

 Ex1: Our usual decimal language of positive numbers ?

 Problem: Which of the following are well-formed

[representation of] numbers:

 (1) 128 (2) 0023 (3) 44ac (4) 3327

 Let L be the set of all well-formed [representations of]

numbers. ==> 123, 3327 in L but 0023, 44ac not in L.

 So according to the view of FL, The usual decimal language

of positive numbers (i.e., L) is just the set :

 { x | x is a finite sequence of digits w/t leading zeros }.

 Note: FL don't care about that string '134' corresponds to the (abstract)

positive number whose binary representation is 10000000 –It’s the job

of semantics.

Introduction

 Transparency No. 1-56

Definition 2.1

 An alphabet S (or vocabulary; 字母集) is a finite set.

 Ex: decimal_alphabet = {0,1,2,3,4,5,6,7,8,9}

 binary_digit = {0,1}; Hexidecimal-alphabet = {0,..,9,A,..,F}

 alphabet-of-English-sentences = {a, word, good, luckily,...}

 alphabet-of-English-words = {a,...,z,A,...,Z}

 Elements of an alphabet are called letters or symbols

 A string (or word or sentence) over S is a finite sequence of

elements of S.

 Ex: if S = {a,b} then “aabaa” is a string over S of length 5.

 Note: A string x = x0 x1 … xn-1 of length n is in fact viewed as a function

 x: [0..n) S such that x(k) = xk for k in [0,n).

 The length of a string x, denoted |x|, is the number of symbols

in x. ex: |abbaa| = 5.

 There is a unique string of length 0, called the null string or

empty string, and is denoted by e (or l)

Introduction

 Transparency No. 1-57

Definition 2.1 (cont'd)

 S* =def the set of all strings over S.

 Ex: {a,b}* = {e,a,b,aa,ab,ba,bb,aaa,...}

 {a}* = {e,a,aa,aaa,aaaa,...} = {an | n  0}.

 {}* = ? ({} or {e} or e ?)

 Note the difference b/t sets and strings:

 {a,b} = {b,a} but ab  ba.

 {a,a,b} = {a,b} but aab  ab

 So what's a (formal) language ?

 A language over S is a set of strings over S (i.e., a

subset of S*). Ex: let S = {0,...,9} then all the followings

are languages over S.

 1. {e} 2. {} 3. {0,...,9} = S 4. {x | x  S* and has no leading

0s} 5. S5 = {x | |x| = 5} 6. S* = {x | |x| is finite }

Introduction

 Transparency No. 1-58

Examples of practical formal languages

Ex: Let D be the set of all ASCII codes.

 a C program is simply a finite string over D satisfying all

syntax rules of C.

 C-language =def { x | x is a well-formed C program over D }.

 PASCAL-language = {x | x is a well-formed PASCAL

program over D }.

Similarly, let ENG-DIC = The set of all English lexicons

 = { John, Mary, is, are, a, an, good, bad, boys, girl,..}

 an English sentence is simply a string over ENG-DIC

 ==> English =def {x | x is a legal English sentence over END-

DIC} ==>

 1.John is a good boy .  English.

 2. |John is a good boy . | = ?

Introduction

 Transparency No. 1-59

issues about formal languages

 Why need formal languages?

 for specification (specifying programs, meanings etc.)

 i.e., basic tools for communications b/t people and

machines.

 although FL does not provide all needed theoretical

framework for subsequent (semantic processing...)

processing, it indeed provides a necessary start, w/t which

subsequent processing would be impossible -- first level of

abstraction.

 Many basic problems [about computation] can be

investigated at this level.

 How to specify(or represent) a language ?

 Notes: All useful natural or programming languages

contain infinite number of strings (or programs and

sentences)

Introduction

 Transparency No. 1-60

How to specify a language

 principles: 1. must be precise and no ambiguity among
users of the language: 2. efficient for machine processing

 tools:

 1. traditional mathematical notations:

 A = {x | |x| < 3 and x  {a,b}} = {e,a,b,aa,ab,ba,bb}

 problem: in general not machine understandable.

 2. via programs (or machines) :

 P: a program; L(P) =def {x | P return 'ok' on input string x}
 precise, no ambiguity, machine understandable.

 hard to understand for human users !!

 3. via grammars: (easy for human to understand)
Ex: noun := book | boy | jirl | John | Mary

 art := a | an | the ; prep := on | under | of | ...

 adj := good | bad | smart | ...

 NP := noun | art noun | NP PP | ...

 PP := prep NP ==> 'the man on the bridge'  PP.

Introduction

 Transparency No. 1-61

Non-enumerability of languages

 Recall that a set is denumerable if it is countably

infinite. (i.e., A set T is denumerable if there is a 1-1

and onto mapping b/t T and {0,1,...})

 Exercises: If S is finite and nonempty, then

 1. S* is denumerable (i.e., |S*| = |N|)

 2. 2S* (ie., the set of all languages over S) is uncountable.

 pf: Since |2S*|  |S*| = |N|, hence |2S*| is not countable



Introduction

 Transparency No. 1-62

Operations on strings

 string concatenations:

 x,y: two strings ==> x·y is a new string with y appended to

the tail of x. i.e., x·y is the function :

 z : [0, len(x)+len(y))  Ssuch that

 z(n) = x(n) for 0  n < len(x) and

 z(len(x)+n) = y(n) for 0  n < len(y).

 Some properties of · :

1. ASSOC: (xy)z = x(yz) ; 2. Identity: ex = xe = x.

3. |xy| = |x| + |y|.

 conventions and abbreviations:

 S: for alphabet ; a,b,c: for symbols;

 x,y,z: for strings; A,B,C: for languages;

 x5 for xxxxx; x1 = x ; x0 = e.

 #a(x) =def number of a's in x. ==> #a(aabbcca) = 3.

Introduction

 Transparency No. 1-63

Operations on languages (i.e, string sets)

 1. usual set operations:

 Union: A U B = {x | x  A or x  B }

 Ex: {a,ab} U { ab, aab} = {a,ab,aab}

 intersection: A  B = {x | x  A and x  B }

 complements in S*: ~A =def S* - A = { x | x not  A}

 ex: ~{x | |x| is even } = {x | |x| is odd }.

2. Set concatenations:

 A·B =def {xy | x  A and y  B }.

 Ex: {b,ba} {a,ab} = {ba,bab,baa,baab}.

3. Powers of A: An (n  0) is defined inductively:

 1. A0 = { e}; An+1 = A·An = A·A·...·A. ----- n A's

Introduction

 Transparency No. 1-64

Operations on languages (cont'd)

 Ex: Let A = {ab,abb}. Then

 1. A0 = ? 2. A1 = ? 3. A2 = ? 4. |A4|=?

 5. Hence {a,b,c}n = {x  {a,b,c}* | |x| = n } and

 An = { x1x2...xn | x1,...,xn  A }

5. Asterate (or star) A* of A is the union of all finite

powers of A:

 A* =def Uk  0 A
K = A0 U A UA2 U A3 U ...

 = {x1x2...xn | n  0 and xi  A for 1  i  n }

 notes:

 1. n can be 0 ==> e  A*. ==> e  {}*.

 2. If A = S ==> A* = S* = the set of all finite strings

over S.

Introduction

 Transparency No. 1-65

Properties of languages operations

6. A+ =def the set of all nonzero powers of A

 =def Uk1 A
k = A U A2 U A3U ... = A A*.

Properties of languages operations

 1. associative: U, , · :

 AU(BUC) = (AUB)UC; A(BC) = (AB)C;

 A(BC) = (AB)C

 2. commutative : U,:

 3. Identities:

 1. A U {} = {}UA = A; 2. A S* = S* A = A;

 3. {e}A = A{e} = A.

 4. Annihilator: A{} = {}A = {}.

Introduction

 Transparency No. 1-66

Properties of languages operations (cont'd)

 5. Distribution laws:

 AU(BC) = (AUB) (AUC) ; A(BUC) = (AB)U(AC)

 A(BUC) = AB U AC ; A(BC) = AB AC (x)

 Ex: Let A = {a,ab}, B = {b}, C = {e}

 ==> A(B C) = ? AB = ? AC = ?

 ==> A(BC) AB AC.

 Exercise: show that A(BUC) = AB UAC.

6. De Morgan Laws: ~(AUB) = ? ~(AB) = ?

7. Properties about A*:

 1. A*A* = A* ; 2. A** = A*; 3. A* = {e}UAA*

 4. AA* = A*A = A+. 5. {}* = {e}.

 Exercises: Prove 1~5. (hint: direct from the definition of A*)

Introduction

 Transparency No. 1-67

A language for specifying languages

 In the term: 'a language for specifying languages',

the former language is called a metalanguage while

the later languages are called target languages.

 So in the C language reference manual, the BNF form is a

meta language and C itself is the target language.

 S: an alphabet ; D = S U { +, *, e, ·,), (};

 E = D U {~, -}

 1. The set of all regular expressions is a subset of D*

which can be defined inductively as follows:

 Basis: 1. e, are regular expressions

 2. Every symbol a in S is a regular expression.

 Induction: If a and b are regular expressions then so are

 (a+b), (a·b), a*.

Introduction

 Transparency No. 1-68

Regular expressions

 Examples:

 legal reg. expr. : e, (a+b)*, ((a +(b·c))+(e·b)*)

 illegal reg. expr: (ab), a + b, ((a + S)) + d, where d ∉ S.

 illegal formally but legal if treated as abbreviations:

 ab --> (a·b) ; a+b --> (a+b);

 a + bc* --> (a + (b·c*))

 Extended regular expressions (EREGs):

 EREGs are strings over E and can be defined

inductively as follows:

 Basis: 1. e, are EREGs

 2. Every symbol a in S is an EREG.

 Induction: If a and b are EREGs then so are

 (a+b), (a·b), a*, (~a), (ab), (a-b)

Introduction

 Transparency No. 1-69

Languages represented by regular expressions

 [Extended] regular expressions provides a finite way
to specify infinite languages.

 Definition: for each EREG (and hence also REG) a,
the language (over S) specified (or denoted or
represented) by a, written L(a), is defined inductively
as follows:
 Basis: L(e) = {e}; L() = {};

 for each a ∈ S, L(a) = {a}.

 Induction: assume L(a) and L(b) have been defined for
EREG a and b. Then

 L(a+b) = L(a) U L(b); L(ab) = L(a) L(b); L(a*) = L(a)*;

 L(~a) = S* - L(a); L(a - b) = L(a) - L(b); L(a b) = L(a) L(b).

 Definition: a language A is said to be regular if A = L(a) for
some regular expression a.

Introduction

 Transparency No. 1-70

Examples:

 Let S = {a,b}. Then
 L(a(a+b)*) = {x | x begins with a } = {a,aa,ab,aaa,aab,aba,...}

 L(~(a(a+b)*)) = {x | x does not begin with a}

 = {x | x begins with b } U {e} = L(e + b(a+b)*).

 Regular expressions and Extended regular
expressions give us finite ways to specify infinite
languages. But the following questions need to be
answered before we can be satisfied with such tools.
 1. Are EREG or REGs already adequate ?

 (i.e, For every A ⊆ S*, there is an expression a s.t., L(a) =
A ?) ==> ans: _____.

 2. For every expression a, is there any [fast] machine that
can determine if x ∈ L(a) for any input string x ?

 Ans: _______

Introduction

 Transparency No. 1-71

IS EREG more expressive than REG ?

 L1, L2: two [meta] languages;

 we say L1 is at least as expressive as L2 if L(L2) =def {A |

there is an expression a in L2 s.t. A = L(a) } is a subset of

L(L1).

 L1 is said to be equivalent to L2 in expressive power iff

both are at least as expressive as the other.

 Problem:

 EREG is at least as expressive as REG since L(REG) is a

subset of L(EREG) (why?)

 But does the converse hold ? (i.e, Is it true that for each

EREG a there is a REG b s.t., L(a) = L(b) ?

 ans: _____.

