Formal Language and Automata Theory

Course outlines

- Introduction:
 - Mathematical preliminaries:
 - Sets, relations, functions, sequences, graphs, trees, proof by induction, definition by induction (recursion).
 - □ Basics of formal languages:
 - ♣alphabet, word, sentence, concatenation ,union, iteration [= Kleene star], language, infinity of languages, finite representations of languages
- PART I: Finite Automata and Regular Sets
 - □ DFA,NFA,regular expressions and their equivalence
 - ☐ limitation of FAs;
 - ☐ Closure properties of FAs,
 - Optimization of FAs

course outline (cont'd)

- PART II: Pushdown Automata and Context Free Languages
 - ☐ CFGs and CFLs; normal forms of CFG
 - ☐ Limitation of CFG; PDAs and their variations,
 - Closure properties of CFLs
 - ☐ Equivalence of pda and CFGs; deterministic PDAs
 - parsing (Early or CYK's algorithms)
- PART III: Turing Machines and Effective Computability
 - □ Turing machine [& its variations] and Equivalence models
 - Universal TMs
 - Decidable and undecidable problems (Recursive sets and recursively enumerable sets)
 - ☐ Problems reductions; Some undecidable problems
 Transparency No. 1-4

Goals of the course

- understand the foundation of computation
- make precise the meaning of the following terms:
 - [Incomplete of the computations] [formal] languages, problems, Programs, machines, computations
 - computable {languages, problems, sets, functions}
- understand various models of machines and their relative power: FA, PDAs, LA (linear bounded automata), TMs, [register machines, RAMs,...]
- study various representations of languages in finite ways via grammars: RGs, CFGs, CSGs, general PSGs

Chapter 1 Introduction

Mathematical preliminaries (reviews)

- sets (skipped)
- functions (skipped)
- relations
- induction
- Recursive definitions

<u>Sets</u>

- Basic structure upon which all other (discrete and continuous) structures are built.
- a set is a collection of objects.
 - ☐ an object is anything of interest, maybe itself a set.
- Definition 1.
 - □ A set is a collection of objects.
 - ☐ The objects is a set are called the elements or members of the set.
 - If x is a memebr of a set S, we say S contains x.
 - \square notation: $x \in S$ vs $x \notin S$
- Ex: In 1,2,3,4,5, the collection of 1,3 5 is a set.

Set description

- How to describe a set:?
- 1. List all its member.
 - \Box the set of all positive odd integer >10 = ?
 - ☐ The set all decimal digits = ?
 - ☐ the set of all upper case English letters = ?
 - ☐ The set of all nonnegative integers = ?
- 2. Set builder notation:
 - P(x): a property (or a statement or a proposition) about objects.
 - \Box e.g., P(x) = "x > 0 and x is odd"
 - \Box then $\{x \mid P(x)\}$ is the set of objects satisfying property P.
 - \Box P(3) is true => 3 \in {x | P(x)}
 - \square P(2) is false => 2 \notin {x | P(x)}

Set predicates

Definition 2.

- ☐ Two sets S1, S2 are equal iff they have the same elements
- □ S1 = S2 iff ∀x (x ∈ S1 <=> x ∈ S2)
- \Box Ex: $\{1,3,5\} = \{1,5,3\} = \{1,1,3,3,5\}$
- Null set ={} = \emptyset =_{def} the collection of no objects.
- Def 3': [empty set] for-all $x x \notin \emptyset$.
- Def 3. [subset]
 - \square A \subseteq B iff all elements of A are elements of B.
 - \Box A \subseteq B <=> for-all x (x \in A => x \in B)).
- Def 3": A ⊂ B = def A ⊆ B \ A ≠ B.
- Exercise : Show that: 1. For all set A ($\emptyset \subseteq A$)
 - \square 2. (A \subseteq B \land B \subseteq A) <=> (A = B) 3. A \subseteq \varnothing => A = \varnothing

Size or cardinality of a set

Def. 4

□ | A | = the size(cardinality) of A = # of distinct elements of A.

Ex:

- □ |{}| = ?
- □ | the set of binary digits } | = ?
- $| |N| = ? ; |Z| = ? ; | {2i | i in N} = ?$
- □ |R| = ?

Def. 5.

- ☐ A set A is finite iff |A| is a natural number; o/w it is infinite.
- Two sets are of the same size (cardinality) iff there is a 1-1
 a onto mapping between them.

countability of sets

- Exercise: Show that
 - \Box 1. $|N| = |Z| = |Q| = \{4,5,6,...\}$
 - □ 2. |R| = | [0, 1) |
 - \square 3. $|N| \neq |R|$
- Def.
 - \square A set A is said to be denumerable iff |A| = |N|.
 - □ A set is countable (or enumerable) iff either |A| = n for some
 n in N or |A| = |N|.
- By exercise 3,
 - ☐ R is not countable.
 - Q and Z is countable.

The power set

Def 6.

□ If A is a set, then the collection of all subsets of A is also a set, called the poser set of A and is denoted as P(A) or 2^A.

Ex:

- $\Box P(\{0,1,2\}) = ?$
- $\Box P(\{\}) = ?$
- $|P(\{1,2,...,n\})| = ?$
- Order of elements in a set are indistinguishable. But sometimes we need to distinguish between (1,3,4) and (3,4,1) --> ordered n-tuples

More about cardinality

Theorem: for any set A, $|A| \neq |2^A|$.

Pf: (1) The case that A is finite is trivial since $|2^{A}| = 2^{|A|} > |A|$ and there is no bijection b/t two finite sets with different sizes.

(2) assume $|A| = |2^A|$, i.e., there is a bijection f: A -> 2^A .

Let
$$D = \{x \text{ in } A \mid x \notin f(x) \}. ==>$$

- 1. D is a subset of A; Hence
- 2. \exists y in A s.t. f(y) = D.

Problem: Is $y \in D$?

if yes (i.e., $y \in D$) ==> $y \notin f(y) = D$, a contradiction if no (i.e., $y \notin D$) ==> $y \in f(y) = D$, a contradiction too.

So the assumption is false, i.e., there is no bijection b/t A and 2^A.

Note: Many proofs of impossibility results about computations used arguments similar to this.

Cartesian Products

Def. 7 [n-tuple]

- If a1,a2,...,an (n > 0) are n objects, then "(a1,a2,...,an)" is a new object, called an (ordered) n-tuple [with a_i as the ith elements.
- ☐ Any orderd 2-tuple is called a pair.
- ☐ (a1,a2,...,am) = (b1,b2,...,bn) iff �m = n and for i = 1,..,n $a_i = b_i$.

Def. 8: [Cartesian product] A x B = {(a,b) | a in A /\ b in B } A1 x A2 x ...x An = def {(a1,...,an) | ai in Ai }.

Set operations

- union, intersection, difference, complement,
- Definition.
- 1. $A \cup B = \{x \mid x \text{ in } A \text{ or } x \text{ in } B \}$
- 2. $A \cap B = \{x \mid x \text{ in } A \text{ and } x \text{ in } B \}$
- 3. $A B = \{x \mid x \text{ in } A \text{ but } x \text{ not in } B \}$
- $4. \sim A = U A$
- 5. If $A \cap B = \{\} =$ call A and B disjoint.

Set identites

- Identity laws:
 A ? ? = A
- Domination law:
 U?? = U; {}?? = {}
- Idempotent law: A?A=A;
- complementation: ~~A = A
- commutative : A?B=B?A
- Associative: A ? (B ? C) = (A ? B) ? C
- Distributive: A ? (B ? C) = ?
- DeMoregan laws: ~(A ? B) = ~A ? ~B

Note: Any set of objects satisfying all the above laws is called a Boolean algebra.

Prove set equality

- 1. Show that \sim (A \cup B) = \sim A \cap \sim B by show that
- pf: (By definition) Let x be any element in ~(A∪B)...
- 2. show (1) by using set builder and logical equivalence.
- 3. Show distributive law by using membership table.
- 4. show \sim (A \cup (B \cap C)) = (\sim C $\cap \sim$ B) \cup \sim A by set identities.

Functions

- Def. 1 [functions] A, B: two sets
 - 1. a function f from A to B is a set of pairs (x, y) in AxB s.t., for each x in A there is at most one y in B s.t. (x,y) in f.
 - 2. if (x,y) in f, we write f(x) = y.
 - 3. f : A -> B means f is a function from A to B.

Def. 2. If f:A -> B ==>

- 1. A: the domain of f; B: the codomain of f if f(a)=b =>
- 2. b is the image of a; 3. a is the preimage of b
- 4. range(f) = $\{y \mid \exists x \text{ s.t. } f(x) = y\} = f(A)$.
- 5. preimage(f) = $\{x \mid y \text{ s.t. } f(x) = y \} = f^{-1}(B)$.
- 6. f is total iff $f^{-1}(B) = A$.

Types of functions

- Def 4.
 - f: A x B; S: a subset of A,

T: a subset of B

- 1. $f(S) =_{def} \{y \mid \exists x \text{ in } S \text{ s.t. } f(x) = y \}$
- 2. $f^{-1}(T) =_{def} \{x \mid \exists y \text{ in } T \text{ s.t. } f(x) = y \}$
- Def. [1-1, onto, injection, surjection, bijection]

f: A -> B.

- \Box f is 1-1 (an injection) iff f(x)=(fy)=>x=y.
- \Box f is onto (surjective, a surjection) iff f(A) = B
- f is 1-1 & onto <=> f is bijective (a bijection, 1-1 correspondence)

Relations

- A, B: two sets
 - □ AxB (Cartesian Product of A and B) is the set of all ordered pairs {<a,b> | a ∈ A and b ∈ B }.
 - ☐ Examples:

$$A = \{1,2,3\}, B = \{4,5,6\} => AxB = ?$$

- A1,A2,...,An (n > 0): n sets
 - □ A1xA2x...xAn = {<a1,a2,...,an> | ai ∈ Ai }.
 - Example:
 - 1. $A1=\{1,2\}, A2=\{a,b\}, A3=\{x,y\} ==> |A1xA2xA3| = ?$
 - 2. $A1= \{\}, A2=\{a,b\} => A1xA2 = ?$

Binary relations

- Binary relation:
 - ☐ A,B: two sets
 - ☐ A binary relation R between A and B is any subset of AxB.
 - ☐ Example:

If A={1,2,3}, B ={4,5,6}, then which of the following is a binary relation between A and B?

Terminology about binary relations

- R: a binary relation between A and B (I.e., a subset of AxB), then
 - ☐ The domain of R: $dom(R) = \{x \in A \mid \exists y \in B \text{ s.t. } \langle x,y \rangle \in R\}$
 - □ The range of R:
 range(R) ={y ∈ B, |∃x ∈ A, s.t., <x,y> ∈ R}
 - \Box <x,y> \in R is usually written as x R y.
- If A = B, then R is simply called a relation over(on)
 A.
- An n-tuple relation R among A1,A2,...,An is any subset of A1xA2...xAn, n is called the arity of R
- If A1=A2=...=An=A => R is called an n-tuple relation (on A),.

Operations on relations (and functions)

- R ⊆ AxB; S ⊆ B x C: two relations
- composition of R and S:
 - □ R · S = {<a,c> | there is b in B s.t., <a,b> in R and <b,c> in S }.
- Identity relation: I_A = {<a,a> | a in A }
- Converse relation: R⁻¹ = {<b,a> | <a,b> in R }
- f:A -> B; g: B->C: two functions, then
 g·f:A->C defined by g·f(x) = g(f(x)).
- Note: function and relation compositions are associative, l.e., for any function or relation f,g,h,
 f· (g·h) = (f·g) ·h

Properties of binary relations

- R: A binary relation on S,
- 1. R is reflexive iff for all x in S, x R x.
- 2. R is *irreflexive* iff for all x in S, not x R x.
- 3. R is *symmetric* iff for all x, y in S, xRy => yRx.
- 4. R is asymmetric iff for all x,y in S, xRy => not yRx.
- 5. R is antisymmetric iff for all x,y in S, xRy and yRx => x=y.
- 6. R is *transitive* iff for all x,y,z in S, xRy and yRz => xRz.

Graph realization of a binary relation and its properties.

rule: if xRy then draw an arc from x on left S to y on right S.

Examples

- The relation ≤ on the set of natural numbers N.
 - What properties does ≤ satisfy?
 - ☐ ref. irref, or neither?
 - □ symmetric, asymmetric or antisymmetric?
 - ☐ transitive?
- The relation > on the set of natural numbers N.
- The divide | relation on integers N ?
 - □ x | y iff x divides y. (eg. 2 | 10, but not 3 | 10)
 - What properties do > and | satisfy ?
- The BROTHER relation on males (or on all people)
 - \Box (x,y) \in BROTHER iff x is y's brother.
- The ANCESTOR relation on a family.
 - \Box (x,y) \in ANCESTOR if x is an ancestor of y.

What properties does BROTHER(ANCESTOR) have?

Properties of relations

- R: a binary relation on S
- 1. R is a *preorder* iff it is ref. and trans.
- 2. R is a *partial order* (p.o.) iff R is ref.,trans. and antisym. (usually written as ≤).
- 3. R is a <u>strict portial order</u> (s.p.o) iff it is irref. and transitive.

 □ usually written <.
- 4. R is a <u>total (or linear) order</u> iff it is a partial order and every two element are *comparable* (i.e., for all x,y either xRy or yRx.)
- 5. R is an equivalence relation iff it is ref. sym. and trans.
- If R is a preorder (resp. po or spo) then (S,R) is called a preorder set (resp. poset, strict poset).
- What order set do (N, <), (N, ≤) and (N, |) belong to ?

Properties of ordered set

- (S, ≤): a poset, X: a subset of S.
- 1. b in X is the *least (or called minimum) element* of X iff b ≤ x for all x in X.
- 2. b in X is the greatest (or called maxmum or largest) element of X iff $X \le b$ for all x in X.
- Least element and greatest element, if existing, is unigue for any subset X of a poset (S, ≤)
- pf: let x, y be least elements of X.
 - Then, $x \le y$ and $y \le x$. So by antisym. of \le , x = y.
- 3. X ia a chain iff (X,R) is a linear order(, i.e., for all x, y in X, either x≤y or y≤x).
- 4. b in S is a lower bound (resp., upper bound) of X iff b ≤ x (resp., x ≤ b) for all x in X.
 - □ Note: b may or may not belong to X.

Properties of oredered sets

- (S, ≤) : a poset, X: a nonempty subset of S.
- 5. b in X is *minimal* in X iff there is no element less than it.
 - \Box i.e., there is no x in X, s.t., (x < b),
 - \square or "for all x, x \leq b => x =b."
- 6. b in X is a <u>maximal</u> element of X iff there is no element greater then it.
 - \Box i.e., there is no x in X, s.t., (b < x),
 - \square or "for all x, b \leq x => x=b."
- Note:
- 1.Every maximum element is maximal, but not the converse in general.
- 2. Maximal and minimal are not unique in general.

well-founded set and minimum conditions

- (S,≤) : a poset (偏序集).
- 1. ≤ is said to be *well-founded* (良基性) iff there is no infinite descending sequence. (i.e., there is no infinite sequence x1,x2,x3,.... s.t., x1 > x2 > x3 >...).
 - □ Note: x > y means y < x (i.e., $y \le x$ and y = x)
 - \Box if ≤ is well-founded => (S,≤) is called a well-founded set.
- 2. (S,≤) is said to satisfy *the minimal condition* iff every nonempty subset of S has a minimal element.
- (S, ≤): a total ordered set (全序集).
- 3. ≤ is said to be a well-ordering(良序) iff every nonempty subset of S has a least element.
 - ☐ If \leq is well ordered, then (S, \leq) is called a well-ordered set.

Examples of ordered sets

- Among the relations (N,≤), (N,≥), (N, |), (Z, ≤), (Z,≥),
 (Z,|) and (R, ≤),
- 1. Which are well-founded?
- 2. Which are well-ordered?

Equivalence of well-foundness and minimal condition

- (S,≤) is well-founded (w.f.) iff it satisfies the minimal conditions (m.c.).
- pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f.
 - (1) Let x1,x2,... be any infinite sequence s.t. x1 > x2 > x3 >... .

 Now let X={x1,x2,...}. X obviously has no minimal element.

 S thus does not satisfy m.c.
 - (2) Let X be any nonempty subset of S w/o minimal elements. Now
 - (*) choose arbitrarily an element a1 from X and let

 $X1 = \{x \mid x \in X \text{ and } a1 > x \}$ (i.e. the set of all elements in X < a1).

Since a1 is not minimal, X1 is nonempty and has also no minimal element.

We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and obtain an infinite descending sequence a1 > a2 > a3 > ...

Hence S is not w.f.

A general proof scheme to show the infinity of a set

- Let P be a property of sets and C =_{def} { X | P(X) holds }. If there exists a function f : C → C satisfying the property: forall set X ∈ C (i.e, P(X) holds),
 - ☐ 1. f(X) is a nonempty proper subset of X,
 - \square (i.e., $f(X) \neq \emptyset$, $f(X) \neq X$ and $f(X) \subset X$), and
 - 2. f preserves property P
 - \square (I.e., P(X) implies P(f(X), or X \in C => f(X) \in C),

then all sets X with property P are infinite.

Pf: Let $X_0, X_1, ..., X_k, ...$ be an infinite sequence of sets

with $X_0 = X$ and $X_{k+1} =_{def} f(X_k) = f(f(X_{k-1})) = \dots = f^{k+1}(X)$.

Since $X = X_0$ has property P and f preserves P, by induction

on k, all X_k has property P. And by (1) $X_k \subset f(X_k) = X_{k+1}$ for all k.

Now the sequence X_0 - X_1 , X_1 - X_2 , X_2 - X_3 ,.... is an infinite sequence of nonempty and disjoint subsets of X. X thus is infinite.

Variants of Inductions

- Mathematical Induction:
 - \square To prove a property P(n) holds for all natural number $n \in \mathbb{N}$, it suffices to show that
 - (1) P(0) holds --- (base step) and
 - (2) For all $n \in \mathbb{N}$, p(n) => p(n+1) --- (induction step)
 - **♥**P(n) in (2) is called *induction hypothesis* (h.p.)
 - \square P(0), \forall n (P(n) => P(n+1))
 - □ ------MI1
 -] ∀ n P(n)

 $= \forall m. m < n \rightarrow P(m) // Ind. Hyp.$

- $\square P(0), \forall n (\underline{(P(0)/\dots p(n-1))}) \Rightarrow P(n))$
- -----MI2
- □ ∀n **P(n)**

Well-order Induction

- Well-order induction:
 - \Box (S, \leq) a well-ordered set; P(x): a property about S.
 - \square To show that P(x) holds for all $x \in S$, it suffices to show
 - (1) $P(x_{min})$ holds where x_{min} is the least element of S. --- (base step)
 - (2) for all $x \in S$, if (for all $y \in S$ $y < x \Rightarrow P(y)$) then p(x) ---(ind. step)
 - (1) is a special case of (2) [i.e., (2) implies (1)]
 - \bigcirc (for all y in S y < x => P(y)) in (2) is called the ind. hyp. of (2).
- $P(X_{min})$, $\forall y [(\forall x. x < y => P(x)) => P(y)$

-----V

 $\forall x P(x)$

Variants of inductions

- Well-founded induction (WI):
 - \square (S, \leq) a well-founded set. P(x) a property about S.
 - ☐ WI says that to prove that P(x) holds for all x in S, it suffices to show that
 - (1) P(x) holds for all minimal elements x in S --- base step, and
 - (2) for all y in S, (for all z in S $z < y \Rightarrow P(z)$) $\Rightarrow p(y) ---ind.$ step
 - (1) has already been implied by (2)
 - \circlearrowleft (for all z in S z < y => P(z)) in (2) is the ind. hyp. of the proof.
 - I forall minimal x, P(x), $\forall y [(\forall z, z < y = > P(x)) = > P(y)]$

------WI

 $\forall x P(x)$

- Facts: w.f. Ind. => well-ordered ind. => math ind.
 - [] (I.e., If w.f ind. is true, then so is well-ordered ind. and if well-ordered ind. is true, then so is math. ind.)

Correctness of WI

wrong.

• (S,\leq) : a well-founded set. P(x): a property about S. Then P(x) holds for all $x \in S$, if (1) P(x) holds for all minimal elements $x \in S$ --- base step, and (2) for all $y \in S$, (for all $z \in S$ $z < y \Rightarrow P(z)$) \Rightarrow p(y) ---ind. Step pf: Suppose WI is incorrect. Then there must exist (S,≤) satisfying (1)(2) but the set NP = $\{x \mid x \in S \text{ and } P(x) \text{ is not true } \}$ is not empty. (*) ==> Let xm be any minimal element of NP. case (1): xm is minimal in S. --> impossible! (violating (1)) since if xm is minimal in S, by (1), P(xm) holds and $xm \notin NP$. case (2): xm is not minimal in S. --> still impossible! xm not minimal in $S ==> L = \{y \mid y \in S \land y < xm \}$ is not empty. $==> L \cap NP = \{ \}$ (o/w xm would not be minimal in NP.) ==> (ind. hyp. holds for xm , i.e., for all $z \in S$, z < xm => p(z) is true) ==> (by (2).) p(xm) holds ==> xm \notin NP. case(1) and (2) imply NP has no minimal element and hence is empty, which contradicts with (*). Hence the assumption that WI is incorrect is

Definition by induction (or recursion)

- Consider the following ways of defining a set.
- **1**. the set of even numbers Even = $\{0,2,4,...\}$:
 - □ Initial rule : 0∈ Even.
 - \square closure rule: if $x \in Even then <math>x + 2 \in Even$.
- 2. The set of strings Σ^+ over an alphabets $\Sigma = \{a,b,...,z\}$
 - □ Initial: if $x \in \Sigma$, then "x" $\in \Sigma$ +.
 - \square closure: If $x \in \Sigma$ and " α " $\in \Sigma$ +, then " $x\alpha$ " $\in \Sigma$ +.
- 3. The set (Z^*) of integer lists.
 - □ Initial: [] is a (integer) list,
 - ☐ closure: If x is an integer and [L] is a list, then [x L] is a list.
 - **o** e.g., [], [4], [34], [234], [5234]
- Problem: All definitions well-defined? What's wrong?

Problems about recursive definition

- The above definitions are incomplete in that there are multiple sets satisfy each definition
- Example:
 - \Box Let Ni = {0,2,4,6,...} U { 2i+1, 2i+3, ...}.
 - \square Then $\{0,2,4,6,...\}$ and N_i (i > 0) all satisfy Def. 1.
- Among {0,2,4,6,...} and N_i (i > 0), which one is our intended set?
- How to overcome the incompleteness?
- Relationship between {0,2,4,...} and the collection of sets satisfying the definitions?
 - \square {0,2,4,...} is the least set among all sets.
 - [] {0,2,4,...} is equal to the intersection of all sets.
 - Every other set contains some elements which are <u>not</u> grounded in the sense that they have no proof (or derivation).

General form of inductively defining a set (or domain)

- Ω: a set, Init: a subset of Ω
 F: a set of functions/rules on Ω,
- we define a subset Δ of Ω as follows:
- 1. Initialization: Every element of Init is an element of Δ . (or simply Init $\subseteq \Delta$)
- 2. closure: If $f:\Omega^n \to \Omega$ in F and $t_1,...,t_n$ are members of Δ , then so is $f(t_1,...,t_n)$
- 3. plus one of the following 3 phrases.
 - 3.1 Δ is the least subset of Ω with the above two properties.
 - 3.2Δ is the intersection of all subsets of Ω with property 1,2.
 - 3.3 Only elements of Ω obtainable by a finite number of applications of rules 1 and 2 are elements of Δ .

How to derive an object from an inductive defiintion

- Ω : a set, Init: a subset of Ω
 - F: a set of functions on Ω ,

Given Init and F, an object $x \in \Omega$ is said to be derivable from Init and F if there is a finite sequence $x_1,x_2,...x_n$ of objects of Ω such that

- $1. x = x_n,$
- 2. for all $1 \le k \le n$, either
 - $2.1 x_k \in Init$ --- (x_k is an axiom) or
 - 2.2 $x_k = f(t_1,...,t_n)$ where $f \in F$ and $\{t_1,...,t_n\} \subseteq \{x_1,...,x_{k-1}\}$.
 - --- (x_k is got from closure rule)

The sequence is called a derivation(or deduction, proof) of x.

Examples

- $\Omega = Z$, Init: = {2}, F = { x5, add5, +}
- Then 54 is derivable since

$$3. 9, --- + (2,7)$$

is a derivation of 54. The length of the derivation is 5.

Define functions on recursively defined domains

- Once a domain ∆ is defined inductively. We can define functions on the domain according to the following recursive scheme:
- A function $v : \Delta \rightarrow C$, can be defined as follows:
 - basis case: specify the value v(t) of t for each primitive object t in Init.
 - □ recursive case: specify the value $v(f(t_1, t_2, ..., t_n))$ of every compound object $f(t_1, t_2, ..., t_n)$ in terms of the values $v(t_1), v(t_2), ..., v(t_n)$ of smaller composing objects $t_1, ..., t_n$, for all $f \in F$ and $t_1, ..., t_n \in \Delta$.

Example

Consider the following functions defined on integer lists:

```
sum : integer List(denoted Z^*) \rightarrow Z with sum(L) = sum of all integers in L.
```

- We can define sum by recursion as follows:
 - □ Basis case: specify the value sum(L) of L for each primitive L in Init = { [] }.
 - $\square ==> basis: sum([]) = 0.$
 - □ Recursive case: specify the value sum(f(t1,...,tn)) of element f(t1,...,tn) for each $f \in F$ and $t_1,...,t_n \in \Delta = Z^+$.
 - \square ==> Recursion: where F = { $f_x | f_x([L']) = [x L'], x \in \mathbb{Z}$ }
 - ☐ For any list of integers L of the form [x L'],

```
sum(L) = sum([x L']) = x + sum([L'])
```

Ex:
$$sum([4,3,2])=4+sum([3,2])=4+3+sum([2])=4+3+2+sum([])$$

$$= 4 + 3 + 2 + 0 = 9.$$

Define functions on recursively defined domains

- More example:
 - □ #a : Σ^+ N with #a(x) =_{def} number of a's in string x.
- Now we can define #a as follows:
 - □ Basis case: specify the value #a("x") of "x" for each x in Σ. ==> #a("a") = 1 ; #a("y") = 0 if y ≠ a.
 - □ Recursive case: specify the value #a("dz") of element "dz" for each d ∈Σ and "z"∈Σ $^+$.
 - \square ==> for any $d \in \Sigma$ and "z" $\in \Sigma^+$,
 - □ then #a("dy") = 1 + #a("y") if d = a and
 - □ $\#a("dy") = \#a("y") \text{ if } d \neq a$
- But are such kind of definitions well defined?
 - ☐ A sufficient condition: If the recursively defined domain is
 - not ambiguous (i.e., multi-defined)I.e., there is only one way to form (or derive) each element in the domain.

Example of a multi-defined(ambiguous) Domain

- Arithmetic Expression (AExp $\subseteq \Sigma^*$):
 - Init: Constants a,b,c,... and variables x,y,z,... are arithmetic expressions
 - □ Closure: If α and β are arithmetic expressions then so are α + β , α - β , $-\alpha$, α x β .

ambiguous arithmetic expressions:

 \Box two ways to form "2-3 x 5":

 \square 2. 2, 3, 5, 3x5, 2-3x 5.

Problem for ambiguous defintions

- Define the fucntion val : AExp → Z as follows:
- Basis case:
 - \Box val(c) = c where c is an integer constant.
 - \Box val(x) = 0 where x is a variable.
- Recursion : where α and β are expressions
 - \square val(α + β) = val(α) + val(β)

 - \square val($\alpha * \beta$) = val(α) * Val(β)
- Then there are two possible values for 2 3 * 5.
 - \Box val(2 3 * 5) =val(2) val(3 * 5) = 2 [val(3) * val(5)] = 2 15 = -13.
 - \Box val(2-3 * 5) = val(2-3) * val(5) = [val(2) val(3)] * 5
 - \Box = -1 * 5 = -5.
- As a result, the function val is not well-defined!!

Structural induction

- Δ : an inductively defined domain
 - P(x): a property on Δ .
- To show that P(x) holds for all x in Δ , it suffices to show
 - ☐ Basis step: P(x) holds for all x in Init.
 - □ Ind. step: $\underline{P(t_1),...,P(t_n)} => P(f(t_1,...,t_n))$ for all f in F, and for all $t_1,...,t_n$ in Δ .
- Example: show $P(x) = \#a(x) \ge 0$ holds for all x.
 - ☐ Basis step: $x \in Init = {\text{"a","b","c",...}}$
 - $x = a^2 = 4a(x) = 1 \ge 0.$
 - $x \neq a$ => #a(x) = 0 ≥ 0
 - Ind. step: x = "dy" where d is any element in Σ and "y" is any element in Σ^+ .

By ind. hyp. $\#a("y") \ge 0$. hence

② if d = a =>
$$\#$$
a("dy") = 1 + $\#$ a("y") ≥0

② if d≠ a =>
$$\#a("dy") = \#a("y") ≥ 0$$
.

More example:

- Define the set of labeled binary trees as follows:
- Σ : a set of labels = {a,b,c,..}
- $\Gamma = \Sigma \cup \{(,)\}, \Gamma^* = \text{the set of strings over } \Gamma$.
- T_{Σ} is a subset of Γ^* defined inductively as follows:
 - ☐ Init: () is a tree. // no more written as "()"
 - ☐ closure: if x is a label, and L and R are trees, then (x L R) is a tree.
- Example / counterexample:
 - \Box (), (a ()()), ((a) (b) ())
- For tree T, let If(T) = #of '(', Ib(T) = # of labels, and e(T) = number of empty subtrees "()" in T. All can be defined inductively as follows:
 - □ basis: lf(()) = 1; lb(()) = 0; e(()) = 1.
 - \square recursive: If((x L R)) = 1+ If(L) + If(R);

More example(cont'd)

- Use structural ind. to prove properties of trees.
- Show that for all tree T in T_{Σ} : $P(T) \equiv_{def}$

$$If(T) = Ib(T) + e(T)$$

holds for all tree T.

- ☐ Basis step[T = ()] : If(()) = 1, Ib(()) = 0, e(()) = 1 => P(()) holds.
- ☐ <u>ind. step[</u> T= (x L R) where x: any label, L, R: any trees] :

assume (ind.hyp.:)
$$If(L) = Ib(L) + e(L)$$
 and

$$If(R) = Ib(R) + e(R)$$
. Then

$$If((x L R)) = 1 + If(L) + If(R) = 1 + Ib(L) + Ib(R) + e(L) + e(R)$$

$$e((x L R)) = e(L) + e(R)$$

$$lb((x L R)) = 1 + lb(L) + lb(R)$$

$$==> If((X L R)) = Ib((X L R)) + e((X L R)).$$

Exercise

- Let Z* be the domain of integer lists as defined inductively at slide 36. Let append: Z* x Z* -> Z* be the binary function on Z* such that, given x and y, append(x,y) will form a list equal to the concatenation of x and y. For instance, append([1], [2 3]) = [1 2 3] and append([2 3 4],[2 1]) = [2 3 4 2 1].
- 1. Give an inductive definition of append(x,y) according to (the structure of) its first argument x.
- Prove by induction that for all integer lists x and y, sum(x) + sum(y) = sum(append(x,y)), where the function sum was defined at slide 42.

2. Basics of formal languages

What is a language?

The meaning triangle:

Different levels of language analysis

- phonetic and phonological analysis(語音與音韻分析)
 - determine how words are related to sounds that realize them; required for speech understanding.
 - Phonetics concerns itself with the production, transmission, and perception of the *physical* phenomena(<u>phones</u>) which are abstracted in the mind to constitute these speech sounds or signs.
 - □ Phonology concerns itself with systems of <u>phonemes</u> (音位), abstract cognitive units of speech sound or sign which distinguish the words of a language.
 - □ Ex: k in 'kill' and 'skill' are two phones [k],[g] but same phoneme /k/; book(單數) → books (多數)
- morphological analysis: (詞彙分析;構詞學)
 - □ determine how words are formed from more basic meaning units called "morphemes". (詞 素)
 - ☐ morpheme: primitive unit of meaning in a language.
 - Geg: friendly = friend + ly; luckily = lucky + ly

Levels of language analysis

- syntax analysis: (語法分析)
 - determine how words can be put together to form correct sentences.
 - determine what structure role each word plays in the sentence.
 - determine what phrases are subparts of what other parts.
 - ex: John saw his friend with a telescope
 - => S[NP[noun:'John'] // one more result not listed!
 - □ VP[verb: 'saw',
 - NP[NP[possessivePronoun:'his', noun: 'friend']]
 - PP[prep: 'with', NP [art: 'a' noun:'telescope]]]]
- Semantics analysis: (語意分析)
 - determine what words mean and how these meanings combine in sentence to form sentence meanings. context independent.
 - Possible analysis result of the previous example:
 - person(j), person(f), name(j,'John'), time(t), friend(f,j) //?
 - see(j, f, t), before(t, now), possess(f, te, t).

Levels of language analysis

- Pragmatic analysis: (語用分析)
 - studies the ways in which context contributes to meaning
 - Concern how sentences are used in different situation and how use affects the interpretation of sentences.
 - ex: Would you mind opening the door?
 - John saw his friend with a telescope.
- Discourse analysis (篇章或對話分析),...
 - 【代名詞解析,文句的資接與連貫等。
 - Ex: Wang has a friend. John saw him (Wang or Wang's friend?) with a telescope yesterday.
- World knowledge,...
- Languages (including natural and programming languages)
 contains many facets, each an active research domain of Al,
 linguistics, psychology, philosophy, cognitive science and
 mathematics.

What are formal languages

 In the study of formal languages we care about only the well-formedness/membership, but not the meaning of sentences in a language.

Ex1: Our usual decimal language of positive numbers?

- Problem: Which of the following are well-formed [representation of] numbers:
 - (1) 128 (2) 0023 (3) 44ac (4) 3327
- □ Let L be the set of all well-formed [representations of] numbers. ==> 123, 3327 in L but 0023, 44ac not in L.
- □ So according to the view of FL, The usual decimal language of positive numbers (i.e., L) is just the set :
- \[\{ x | x \ is a finite sequence of digits \ w/t \ leading zeros \}.
- Note: FL don't care about that string '134' corresponds to the (abstract) positive number whose binary representation is 10000000 –It's the job of semantics.

Transparency No. 1-55

Definition 2.1

- An alphabet Σ (or vocabulary; 字母集) is a finite set.
 - \Box Ex: decimal_alphabet = {0,1,2,3,4,5,6,7,8,9}
 - □ binary_digit = {0,1}; Hexidecimal-alphabet = {0,..,9,A,..,F}
 - ☐ alphabet-of-English-sentences = {a, word, good, luckily,...}
 - □ alphabet-of-English-words = {a,...,z,A,...,Z}
- Elements of an alphabet are called *letters* or *symbols*
- A string (or word or sentence) over Σ is a finite sequence of elements of Σ .
 - \square Ex: if Σ = {a,b} then "aabaa" is a string over Σ of length 5.
 - □ Note: A string $x = x_0 x_1 ... x_{n-1}$ of length n is in fact viewed as a function
 - $\square \qquad x: [0..n) \rightarrow \Sigma \text{ such that } x(k) = x_k \text{ for } k \text{ in } [0,n).$
- The length of a string x, denoted |x|, is the number of symbols in x. ex: |abbaa| = 5.
- There is a unique string of length 0, called the null string or empty string, and is denoted by ϵ (or λ)

Definition 2.1 (cont'd)

- $\Sigma^* =_{def}$ the set of all strings over Σ .
 - \square Ex: $\{a,b\}^* = \{\epsilon,a,b,aa,ab,ba,bb,aaa,...\}$
- Note the difference b/t sets and strings:
 - \Box {a,b} = {b,a} but ab \neq ba.
 - \square {a,a,b} = {a,b} but aab \neq ab
- So what's a (formal) language ?
- A language over Σ is a set of strings over Σ (i.e., a subset of Σ *). Ex: let $\Sigma = \{0,...,9\}$ then all the followings are languages over Σ .
 - □ 1. {ε} 2. {} 3. {0,...,9} = Σ 4. {x | x ∈ Σ* and has no leading 0s} 5. $Σ^5$ = {x | |x| = 5} 6. $Σ^*$ = {x | |x| is finite }

Examples of practical formal languages

Ex: Let Δ be the set of all ASCII codes.

- □ a C program is simply a finite string over ∆ satisfying all syntax rules of C.
- □ C-language $=_{def} \{ x \mid x \text{ is a well-formed C program over } \Delta \}.$
- □ PASCAL-language = $\{x \mid x \text{ is a well-formed PASCAL program over } \Delta \}$.

Similarly, let ENG-DIC = The set of all English lexicons

- = { John, Mary, is, are, a, an, good, bad, boys, girl,..}
 - ☐ an English sentence is simply a string over ENG-DIC

 - \square 1.John is a good boy $. \in English$.
 - □ 2. |John is a good boy . | = ?

issues about formal languages

- Why need formal languages?
 - ☐ for specification (specifying programs, meanings etc.)
 - i.e., basic tools for communications b/t people and machines.
 - although FL does not provide all needed theoretical framework for subsequent (semantic processing...) processing, it indeed provides a necessary start, w/t which subsequent processing would be impossible -- first level of abstraction.
 - Many basic problems [about computation] can be investigated at this level.
- How to specify(or represent) a language ?
 - Notes: All useful natural or programming languages contain infinite number of strings (or programs and sentences)

Transparency No. 1-59

How to specify a language

- principles: 1. must be precise and no ambiguity among users of the language: 2. efficient for machine processing
- ☐ tools:
- ☐ 1. traditional mathematical notations:
 - \triangle A = {x | |x| < 3 and x \in {a,b}} = {e,a,b,aa,ab,ba,bb}
 - problem: in general not machine understandable.
- □ 2. via programs (or machines) :
- ☐ P: a program; $L(P) =_{def} \{x \mid P \text{ return 'ok' on input string } x\}$
 - precise, no ambiguity, machine understandable.
 - hard to understand for human users !!
- □ 3. via grammars: (easy for human to understand)
 - **②**Ex: noun := book | boy | jirl | John | Mary
 - art := a | an | the ; prep := on | under | of | ...
 - adj := good | bad | smart | ...
 - NP := noun | art noun | NP PP | ...
 - \bigcirc PP := prep NP ==> 'the man on the bridge' \in PP.

Non-enumerability of languages

- Recall that a set is denumerable if it is countably infinite. (i.e., A set T is denumerable if there is a 1-1 and onto mapping b/t T and {0,1,...})
- Exercises: If Σ is finite and nonempty, then
 - \Box 1. Σ^* is denumerable (i.e., $|\Sigma^*| = |N|$)
 - \square 2. 2^{Σ^*} (ie., the set of all languages over Σ) is uncountable.
 - □ pf: Since $|2^{\Sigma^*}| \neq |\Sigma^*| = |N|$, hence $|2^{\Sigma^*}|$ is not countable

Operations on strings

- string concatenations:
 - \Box x,y: two strings ==> x·y is a new string with y appended to the tail of x. i.e., x·y is the function :
 - \square z: [0, len(x)+len(y)) $\rightarrow \Sigma$ such that

 - □ Some properties of · :
 - 1. ASSOC: (xy)z = x(yz); 2. Identity: $\varepsilon x = x\varepsilon = x$.
 - 3. |xy| = |x| + |y|.
- conventions and abbreviations:
 - \square Σ : for alphabet; a,b,c: for symbols;
 - □ x,y,z: for strings; A,B,C: for languages;
 - \Box x^5 for xxxxx; $x^1 = x$; $x^0 = \varepsilon$.
 - ☐ #a(x) =_{def} number of a's in x. ==> #a(aabbcca) = 3.

Operations on languages (i.e, string sets)

- 1. usual set operations:
 - ☐ Union: A U B = $\{x \mid x \in A \text{ or } x \in B\}$

Ex: {a,ab} U { ab, aab} = {a,ab,aab}

- □ intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- □ complements in Σ^* : ~A = $\{x \mid x \text{ not } \in A\}$
- \Box ex: \sim {x | |x| is even } = {x | |x| is odd }.
- 2. Set concatenations:
 - $A \cdot B =_{def} \{xy \mid x \in A \text{ and } y \in B \}.$
 - \Box Ex: {b,ba} {a,ab} = {ba,bab,baa,baab}.
- 3. Powers of A: A^n ($n \ge 0$) is defined inductively:
 - 1. $A^0 = \{ \epsilon \}; A^{n+1} = A \cdot A^n = A \cdot A \cdot ... \cdot A$. ---- n A's

Operations on languages (cont'd)

Ex: Let $A = \{ab,abb\}$. Then

- \Box 1. $A^0 = ?$ 2. $A^1 = ?$ 3. $A^2 = ?$ 4. $|A^4| = ?$

☐ 5. Hence $\{a,b,c\}^n = \{x \in \{a,b,c\}^* \mid |x| = n \}$ and

 $A^n = \{ x_1 x_2 ... x_n \mid x_1, ..., x_n \in A \}$

5. Asterate (or star) A* of A is the union of all finite powers of A:

$$A^* =_{def} U_{k \ge 0} A^K = A^0 U A UA^2 U A^3 U ...$$

= $\{x_1x_2...x_n \mid n \ge 0 \text{ and } x_i \in A \text{ for } 1 \ge i \ge n \}$

notes:

- 1. n can be $0 ==> \varepsilon \in A^*$. $==> \varepsilon \in \{\}^*$.
- 2. If $A = \Sigma ==> A^* = \Sigma^* =$ the set of all finite strings over Σ .

Properties of languages operations

6. $A^+ =_{def}$ the set of all nonzero powers of A $=_{def} U_{k>1} A^k = A U A^2 U A^3 U ... = A A^*$.

Properties of languages operations

1. associative: U, \cap, \cdot :

$$AU(BUC) = (AUB)UC; A \cap (B \cap C) = (A \cap B) \cap C;$$

$$A(BC) = (AB)C$$

- 2. commutative : U,∩:
- 3. Identities:
 - □ 1. A U {} = {}UA = A; 2. A \cap Σ^* = Σ^* \cap A = A;
 - $\square \quad 3. \{\epsilon\} A = A\{\epsilon\} = A.$
- 4. Annihilator: $A\{\} = \{\}A = \{\}$.

Properties of languages operations (cont'd)

5. Distribution laws:

- □ A(BUC) = AB U AC ; $\underline{A(B \cap C)} = AB \cap AC$ (x)
- \Box Ex: Let A = {a,ab}, B = {b}, C = {ε}
- \square ==> A(B \cap C) = ? AB = ? AC = ?
- $\square ==> A(B \cap C) \qquad AB \cap AC.$
- ☐ Exercise: show that A(BUC) = AB UAC.
- 6. De Morgan Laws: ~(AUB) = ? ~(A∩B) = ?

7. Properties about A*:

- \Box 1. A*A* = A*; 2. A** = A*; 3. A* = {ε}UAA*
- \Box 4. $AA^* = A^*A = A^+$. 5. {}* = { ϵ }.
- □ Exercises: Prove 1~5. (hint: direct from the definition of A*)

A language for specifying languages

- In the term: 'a language for specifying languages', the former language is called a *metalanguage* while the later languages are called *target languages*.
 - ☐ So in the C language reference manual, the BNF form is a meta language and C itself is the target language.
- Σ : an alphabet; $\Delta = \Sigma \cup \{+, *, e, \emptyset, \cdot, \}$, ()
- $E = \Delta \cup \{\sim, \cap, -\}$
- 1. The set of all regular expressions is a subset of ∆* which can be defined inductively as follows:
 - \square Basis: 1. e, \varnothing are regular expressions
 - **2.** Every symbol a in Σ is a regular expression.
 - $\ \square$ Induction: If α and β are regular expressions then so are
 - \Box (α + β), (α - β), α *.

Regular expressions

- Examples:
- \Box legal reg. expr. : e, (a+b)*, ((a +(b·c))+(e·b)*)
- \square illegal reg. expr: (ab), a + b, ((a + Σ)) + d, where d $\notin \Sigma$.
- ☐ illegal formally but legal if treated as abbreviations:
- \Box ab --> (a·b); a+b --> (a+b);
- \Box a + bc* --> (a + (b·c*))
- Extended regular expressions (EREGs):
- EREGs are strings over E and can be defined inductively as follows:
 - \square Basis: 1. e, \varnothing are EREGs
 - **2. Every symbol a in Σ is an EREG.**
 - \Box Induction: If α and β are EREGs then so are
 - \square (α + β), (α - β), α *, (\sim α), (α - β), (α - β)

Languages represented by regular expressions

- [Extended] regular expressions provides a finite way to specify infinite languages.
- Definition: for each EREG (and hence also REG) α , the language (over Σ) specified (or denoted or represented) by α , written L(α), is defined inductively as follows:
 - □ Basis: L(e) = $\{\epsilon\}$; L(\emptyset) = $\{\}$;

 - Induction: assume L(α) and L(β) have been defined for EREG α and β. Then
 - $\Box L(\alpha+\beta) = L(\alpha) U L(\beta); L(\alpha\beta) = L(\alpha) L(\beta); L(\alpha^*) = L(\alpha)^*;$
 - $\Box L(\neg \alpha) = \Sigma^* L(\alpha); \quad L(\alpha \beta) = L(\alpha) L(\beta); \quad L(\alpha \cap \beta) = L(\alpha) \cap L(\beta).$
- **Definition**: a language A is said to be *regular* if A = L(α) for some regular expression α .

Examples:

- Let $\Sigma = \{a,b\}$. Then
 - \Box L(a(a+b)*) = {x | x begins with a } = {a,aa,ab,aaa,aab,aba,...}
 - \Box L(~(a(a+b)*)) = {x | x does not begin with a}
 - \Box = {x | x begins with b } U {ε} = L(e + b(a+b)*).
- Regular expressions and Extended regular expressions give us finite ways to specify infinite languages. But the following questions need to be answered before we can be satisfied with such tools.
 - □ 1. Are EREG or REGs already adequate ?
 - \Box (i.e, For every A \subseteq Σ*, there is an expression α s.t., L(α) = A?) ==> ans: ____.
 - \square 2. For every expression α , is there any [fast] machine that can determine if $x \in L(\alpha)$ for any input string x?
 - ☐ Ans: ____

IS EREG more expressive than REG?

- L1, L2: two [meta] languages;
 - □ we say L1 is at least as expressive as L2 if L(L2) = $_{def}$ {A | there is an expression a in L2 s.t. A = L(a) } is a subset of L(L1).
 - ☐ L1 is said to be equivalent to L2 in expressive power iff both are at least as expressive as the other.
- Problem:
 - □ EREG is at least as expressive as REG since L(REG) is a subset of L(EREG) (why?)
 - **But does the converse hold ? (i.e, Is it true that for each EREG** α there is a REG β s.t., L(α) = L(β) ?
 - □ ans: _____.