
 formal Language

 Transparency No. 1-1

Formal Language and

Automata Theory

Introduction

 Transparency No. 1-2

Course outlines

 Introduction:

 Mathematical preliminaries:

sets, relations, functions,sequences, graphs, trees, proof by

induction, definition by induction (recursion).

 Basics of formal languages:

alphabet, word, sentence, concatenation ,union, iteration [= Kleene

star], language, infinity of languages, finite representations of

languages

 PART I: Finite Automata and Regular Sets

 DFA,NFA,regular expressions and their equivalence

 limitation of FAs;

 Closure properties of FAs,

 Optimization of FAs

Introduction

 Transparency No. 1-3

course outline (cont'd)

 PART II: Pushdown Automata and Context Free

Languages

 CFGs and CFLs; normal forms of CFG

 Limitation of CFG; PDAs and their variations,

 closure properties of CFLs

 Equivalence of pda and CFGs; deterministic PDAs

 parsing (Early or CYK's algorithms)

 PART III: Turing Machines and Effective

Computability

 Turing machine [& its variations] and Equivalence models

 Universal TMs

 Decidable and undecidable problems (Recursive sets and

recursively enumerable sets)

 Problems reductions ; Some undecidable problems

Introduction

 Transparency No. 1-4

Goals of the course

 understand the foundation of computation

 make precise the meaning of the following terms:

 [formal] languages, problems, Programs, machines,

computations

 computable {languages, problems, sets, functions}

 understand various models of machines and their

relative power : FA, PDAs, LA (linear bounded

automata), TMs, [register machines, RAMs,...]

 study various representations of languages in finite

ways via grammars: RGs, CFGs, CSGs, general PSGs

 formal Language

 Transparency No. 1-1

Chapter 1 Introduction

Introduction

 Transparency No. 1-6

Mathematical preliminaries (reviews)

 sets (skipped)

 functions (skipped)

 relations

 induction

 Recursive definitions

Introduction

 Transparency No. 1-7

7

 Sets

 Basic structure upon which all other (discrete and

continuous) structures are built.

 a set is a collection of objects.

 an object is anything of interest, maybe itself a set.

 Definition 1.

 A set is a collection of objects.

 The objects is a set are called the elements or members of

the set.

 If x is a memebr of a set S, we say S contains x.

 notation: x S vs x S

 Ex: In 1,2,3,4,5, the collection of 1,3 5 is a set.

Introduction

 Transparency No. 1-8

8

Set description

 How to describe a set:?

1. List all its member.
 the set of all positive odd integer >10 = ?

 The set all decimal digits = ?

 the set of all upper case English letters = ?

 The set of all nonnegative integers = ?

2. Set builder notation:
 P(x) : a property (or a statement or a proposition) about

objects.

 e.g., P(x) = “ x > 0 and x is odd”

 then {x | P(x) } is the set of objects satisfying property P.

 P(3) is true => 3 {x | P(x)}

 P(2) is false => 2 {x | P(x)}

Introduction

 Transparency No. 1-9

9

Set predicates

Definition 2.

 Two sets S1, S2 are equal iff they have the same elements

 S1 = S2 iff "x (x S1 <=> x S2)

 Ex: {1,3,5} = {1,5,3} = {1,1,3,3, 5}

 Null set ={} = =def the collection of no objects.

Def 3’: [empty set] for-all x x.
Def 3. [subset]

 A B iff all elements of A are elements of B.

 A B <=> for-all x (x A => x B)).

 Def 3’’: A B =def A B /\ A B.

 Exercise : Show that: 1. For all set A (

 2. (A B /\ B A) <=> (A = B) 3. A

Introduction

 Transparency No. 1-10

10

Size or cardinality of a set

Def. 4

 | A | = the size(cardinality) of A = # of distinct elements of A.

 Ex:

 |{1,3,3,5}| = ?

 |{}| = ?

 | the set of binary digits } | = ?

 |N| = ? ; |Z| = ? ; | {2i | i in N} = ?

 |R| = ?

 Def. 5.

 A set A is finite iff |A| is a natural number ; o/w it is infinite.

 Two sets are of the same size (cardinality) iff there is a 1-1

& onto mapping between them.

Introduction

 Transparency No. 1-11

11

countability of sets

 Exercise: Show that

 1. |N| = |Z| = | Q | = {4,5,6,...}

 2. |R| = | [0, 1) |

 3. |N| |R|

 Def.

 A set A is said to be denumerable iff |A| = |N|.

 A set is countable (or enumerable) iff either |A| = n for some

n in N or |A| = |N|.

 By exercise 3,

 R is not countable.

 Q and Z is countable.

Introduction

 Transparency No. 1-12

12

The power set

Def 6.

 If A is a set, then the collection of all subsets of A is also a

set, called the poser set of A and is denoted as P(A) or 2A.

 Ex:

 P({0,1,2}) = ?

 P({}) = ?

 |P({1,2,..., n})| = ?

 Order of elements in a set are indistinguishable. But

sometimes we need to distinguish between (1,3,4)

and (3,4,1) --> ordered n-tuples

Introduction

 Transparency No. 1-13

More about cardinality

Theorem: for any set A, |A| |2A|.

Pf: (1) The case that A is finite is trivial since |2A| = 2|A| > |A|

 and there is no bijection b/t two finite sets with different sizes.

(2) assume |A| = |2A|, i.e., there is a bijection f: A -> 2A.

 Let D = {x in A | x f(x) }. ==>

 1. D is a subset of A; Hence

 2. $y in A s.t. f(y) = D.

 Problem: Is y D ?

 if yes (i.e., y D) ==> y f(y) = D, a contradiction

 if no (i.e., y D) ==> y f(y) =D, a contradiction too.

 So the assumption is false, i.e., there is no bijection b/t A and

2A.

Note: Many proofs of impossibility results about computations

used arguments similar to this.

Introduction

 Transparency No. 1-14

14

Cartesian Products

Def. 7 [n-tuple]
 If a1,a2,...,an (n > 0) are n objects, then “(a1,a2,...,an)” is a

new object, called an (ordered) n-tuple [with ai as the ith
elements.

 Any orderd 2-tuple is called a pair.

 (a1,a2,...,am) = (b1,b2,...,bn) iff
m = n and for i = 1,..,n ai = bi.

Def. 8: [Cartesian product]
 A x B =def {(a,b) | a in A /\ b in B }
 A1 x A2 x ...x An =def {(a1,...,an) | ai in Ai }.

Ex: A = {1,2}, B = {a,b,c} , C = {0,1}
 1. A x B = ? ; 2. B x A = ?
 3. A x {} = ? ;4. A x B x C = ?

Introduction

 Transparency No. 1-15

15

 Set operations

 union, intersection, difference , complement,

 Definition.

 1. A B = {x | x in A or x in B }

 2. A B = {x | x in A and x in B }

 3. A - B = {x | x in A but x not in B }

 4. ~ A = U - A

 5. If A B = {} => call A and B disjoint.

Introduction

 Transparency No. 1-16

16

Set identites

 Identity laws: A ? ? = A

 Domination law: U ? ? = U; {} ?? = {}

 Idempotent law: A ? A = A ;

 complementation: ~~A = A

 commutative : A ? B = B ? A

 Associative: A ? (B ? C) = (A ? B) ? C

 Distributive: A ? (B ? C) = ?

 DeMoregan laws: ~(A ? B) = ~A ? ~B

Note: Any set of objects satisfying all the above laws is
called a Boolean algebra.

Introduction

 Transparency No. 1-17

17

Prove set equality

1. Show that ~(A B) = ~A ~B by show that

 1. ~(A B)~A ~B

 2. ~A ~B ~(A B)

 pf: (By definition) Let x be any element in ~(A B)...

2. show (1) by using set builder and logical equivalence.

3. Show distributive law by using membership table.

4. show ~(A (B C)) = (~C ~B) ~A by set identities.

Introduction

 Transparency No. 1-18

18

 Functions

 Def. 1 [functions] A, B: two sets

 1. a function f from A to B is a set of pairs (x, y) in AxB s.t., for

each x in A there is at most one y in B s.t. (x,y) in f.

 2. if (x,y) in f, we write f(x) = y.

 3. f :A ->B means f is a function from A to B.

Def. 2. If f:A -> B ==>

 1. A: the domain of f; B: the codomain of f

 if f(a)=b =>

 2. b is the image of a; 3. a is the preimage of b

 4. range(f) = {y | $x s.t. f(x) = y} = f(A).

 5. preimage(f) = {x | $ y s.t. f(x) = y } = f-1(B).

 6. f is total iff f-1(B) = A.

Introduction

 Transparency No. 1-19

19

Types of functions

 Def 4.

 f: A x B; S: a subset of A,

 T: a subset of B

 1. f(S) =def {y | $x in S s.t. f(x) = y }

 2. f-1(T) =def {x | $y in T s.t. f(x) = y }

Def. [1-1, onto, injection, surjection, bijection]

 f: A -> B.

 f is 1-1 (an injection) iff f(x)=(fy) => x = y.

 f is onto (surjective, a surjection) iff f(A) = B

 f is 1-1 & onto <=> f is bijective (a bijection, 1-1

correspondence)

Introduction

 Transparency No. 1-20

Relations

 A, B: two sets

 AxB (Cartesian Product of A and B) is the set of all ordered

pairs {<a,b> | a A and b B }.

 Examples:

 A= {1,2,3}, B= {4,5,6} => AxB = ?

 A1,A2,...,An (n > 0): n sets

 A1xA2x...xAn = {<a1,a2,...,an> | ai Ai }.

 Example:

 1. A1={1,2},A2={a,b},A3={x,y} ==> |A1xA2xA3| = ?

 2. A1= {}, A2={a,b} => A1xA2 = ?

Introduction

 Transparency No. 1-21

Binary relations

 Binary relation:

 A,B: two sets

 A binary relation R between A and B is any subset of AxB.

 Example:

 If A={1,2,3}, B ={4,5,6}, then which of the following is a

binary relation between A and B ?

 R1 = {<1,4>, <1,5>, <2,6> }

 R2 = {}

 R3 = {1,2,3,4}

 R4 = {<1,2>, <3,4>, <5,6> }

Introduction

 Transparency No. 1-22

Terminology about binary relations

 R: a binary relation between A and B (I.e., a subset

of AxB), then

 The domain of R:

 dom(R) = {x A | $ y B s.t. <x,y> R}

 The range of R:

 range(R) ={y B, | $ x A, s.t., <x,y> R}

 <x,y> R is usually written as x R y.

 If A = B, then R is simply called a relation over(on)

A.

 An n-tuple relation R among A1,A2,...,An is any
subset of A1xA2...xAn, n is called the arity of R

 If A1=A2=...=An=A => R is called an n-tuple relation

(on A),.

Introduction

 Transparency No. 1-23

Operations on relations (and functions)

 R AxB; S B x C: two relations

 composition of R and S:

 R · S = {<a,c> | there is b in B s.t., <a,b> in R and <b,c> in

S }.

 Identity relation: IA = {<a,a> | a in A }

 Converse relation: R-1 = {<b,a> | <a,b> in R }

 f:A -> B; g: B->C: two functions, then

 g·f:A->C defined by g·f(x) = g(f(x)).

 Note: function and relation compositions are

associative, I.e., for any function or relation f,g,h,

 f· (g·h) = (f·g) ·h

Introduction

 Transparency No. 1-24

Properties of binary relations

 R: A binary relation on S,

1. R is reflexive iff for all x in S, x R x.

2. R is irreflexive iff for all x in S, not x R x.

3. R is symmetric iff for all x, y in S, xRy => yRx.

4. R is asymmetric iff for all x,y in S, xRy => not yRx.

5. R is antisymmetric iff for all x,y in S, xRy and yRx => x=y.

6. R is transitive iff for all x,y,z in S, xRy and yRz => xRz.

Graph realization of a binary relation and its properties.

x x

y y

s s

rule: if xRy then draw an

 arc from x on left S to y

 on right S.

Introduction

 Transparency No. 1-25

Examples

 The relation on the set of natural numbers N.

 What properties does satisfy ?
 ref. irref, or neither ?

 symmetric, asymmetric or antisymmetric ?

 transitive ?

 The relation on the set of natural numbers N.

 The divide | relation on integers N ?
 x | y iff x divides y. (eg. 2 | 10, but not 3 | 10)

 What properties do and | satisfy ?

 The BROTHER relation on males (or on all people)
 (x,y) BROTHER iff x is y’s brother.

 The ANCESTOR relation on a family.
 (x,y) ANCESTOR if x is an ancestor of y.

 What properties does BROTHER(ANCESTOR) have?

Introduction

 Transparency No. 1-26

Properties of relations

 R: a binary relation on S

1. R is a preorder iff it is ref. and trans.

2. R is a partial order (p.o.) iff R is ref.,trans. and antisym.

(usually written as).

3. R is a strict portial order (s.p.o) iff it is irref. and transitive.

 usually written <.

4. R is a total (or linear) order iff it is a partial order and every

two element are comparable (i.e., for all x,y either xRy or

yRx.)

5. R is an equivalence relation iff it is ref. sym. and trans.

 If R is a preorder (resp. po or spo) then (S,R) is called a

preorder set (resp. poset, strict poset).

 What order set do (N, <) , (N,) and (N, |) belong to ?

Introduction

 Transparency No. 1-27

Properties of ordered set

 (S,): a poset, X: a subset of S.

1. b in X is the least (or called minimum) element of X iff b x for

all x in X.

2. b in X is the greatest (or called maxmum or largest) element of

X iff X b for all x in X.

 Least element and greatest element, if existing, is unigue for

any subset X of a poset (S,)

pf: let x, y be least elements of X.

 Then, x y and y x. So by antisym. of , x = y.

3. X ia a chain iff (X,R) is a linear order(, i.e., for all x, y in X,

either xy or yx) .

4. b in S is a lower bound (resp., upper bound) of X iff

 bx (resp., xb) for all x in X.

 Note: b may or may not belong to X.

Introduction

 Transparency No. 1-28

Properties of oredered sets

 (S,) : a poset, X: a nonempty subset of S.

5. b in X is minimal in X iff there is no element less
than it.
 i.e., there is no x in X, s.t., (x < b),

 or “for all x, x b => x =b.”

6. b in X is a maximal element of X iff there is no
element greater then it.
 i.e., there is no x in X, s.t., (b < x),

 or “for all x, b x => x=b.”

 Note:

1.Every maximum element is maximal, but not the
converse in general.

2. Maximal and minimal are not unique in general.

Introduction

 Transparency No. 1-29

well-founded set and minimum conditions

 (S,) : a poset (偏序集).

. is said to be well-founded (良基性) iff there is no

infinite descending sequence. (i.e., there is no infinite

sequence x1,x2,x3,.... s.t., x1 > x2 > x3 >...).

 Note: x > y means y < x (i.e., y x and y = x)

 if is well-founded => (S,) is called a well-founded set.

2. (S,) is said to satisfy the minimal condition iff every

nonempty subset of S has a minimal element.

 (S,): a total ordered set (全序集).

. is said to be a well-ordering(良序) iff every

nonempty subset of S has a least element.

 If is well ordered, then (S,) is called a well-ordered set.

Introduction

 Transparency No. 1-30

Examples of ordered sets

 Among the relations (N,), (N,), (N, |), (Z,), (Z,),

(Z,|) and (R,),

1. Which are well-founded ?

2. Which are well-ordered ?

Introduction

 Transparency No. 1-31

Equivalence of well-foundness and minimal condition

 (S,) is well-founded (w.f.) iff it satisfies the minimal

conditions (m.c.).

pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f.

 (1) Let x1,x2,... be any infinite sequence s.t. x1 > x2 > x3 >... .

 Now let X={x1,x2,...}. X obviously has no minimal element.

 S thus does not satisfy m.c.

 (2) Let X be any nonempty subset of S w/o minimal elements. Now

 (*) choose arbitrarily an element a1 from X and let

 X1 = {x | x X and a1 > x } (i.e. the set of all elements in X < a1).

 Since a1 is not minimal, X1 is nonempty and has also no minimal element.

 We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and

obtain an infinite descending sequence a1 > a2 > a3 > ...

 Hence S is not w.f.

Introduction

 Transparency No. 1-32

A general proof scheme to show the infinity of a set

 Let P be a property of sets and C =def { X | P(X) holds }. If there

exists a function f : C C satisfying the property: forall set X C

(i.e, P(X) holds),

 1. f(X) is a nonempty proper subset of X,

 (i.e., f(X) , f(X) X and f(X) X), and

 2. f preserves property P

 (I.e., P(X) implies P(f(X), or XC => f(X)C),

 then all sets X with property P are infinite .

Pf: Let X0,X1,…,Xk,… be an infinite sequence of sets

 with X0 = X and Xk+1 =def f(Xk) = f(f(Xk-1)) = … = fk+1(X).

 Since X = X0 has property P and f preserves P, by induction

 on k, all Xk has property P. And by (1) Xk f(Xk) = Xk+1 for all k.

 Now the sequence X0-X1, X1-X2, X2-X3,…. is an infinite sequence of

 nonempty and disjoint subsets of X. X thus is infinite.

Introduction

 Transparency No. 1-33

Variants of Inductions

 Mathematical Induction:
 To prove a property P(n) holds for all natural number n N,

it suffices to show that

(1) P(0) holds --- (base step) and

(2) For all n N, p(n) => p(n+1) --- (induction step)
P(n) in (2) is called induction hypothesis (h.p.)

 P(0), " n (P(n) => P(n+1))

 ---MI1

 " n P(n)

 P(0), "n ((P(0)/\...p(n-1))) => P(n))

 ---MI2

 "n P(n)

= "m. m<n P(m) // Ind. Hyp.

Introduction

 Transparency No. 1-34

Well-order Induction

 Well-order induction:

 (S,) a well-ordered set; P(x): a property about S.

 To show that P(x) holds for all xS, it suffices to show

(1) P(xmin) holds where xmin is the least element of S. --- (base step)

(2) for all xS, if (for all yS y < x => P(y)) then p(x) ---(ind. step)

 (1) is a special case of (2) [i.e., (2) implies (1)]

 (for all y in S y < x => P(y)) in (2) is called the ind. hyp. of (2).

 P(Xmin), "y [("x. x< y =>P(x)) => P(y)

 --- WI

 "x P(x)

Introduction

 Transparency No. 1-35

Variants of inductions

 Well-founded induction (WI):

 (S,) a well-founded set. P(x) a property about S.

 WI says that to prove that P(x) holds for all x in S, it

suffices to show that

(1) P(x) holds for all minimal elements x in S --- base step, and

(2) for all y in S, (for all z in S z < y => P(z)) => p(y) ---ind. step

 (1) has already been implied by (2)

 (for all z in S z < y => P(z)) in (2) is the ind. hyp. of the proof.

 forall minimal x, P(x), "y [("z, z<y =>P(x)) => P(y)]

 -- WI

 "x P(x)

 Facts: w.f. Ind. => well-ordered ind. => math ind.

 (I.e., If w.f ind. is true, then so is well-ordered ind. and

 if well-ordered ind. is true , then so is math. ind.)

Introduction

 Transparency No. 1-36

Correctness of WI

 (S,) : a well-founded set. P(x) : a property about S.

 Then P(x) holds for all x S, if
(1) P(x) holds for all minimal elements x S --- base step, and

(2) for all y S, (for all z S z < y => P(z)) => p(y) ---ind. Step
pf: Suppose WI is incorrect. Then there must exist (S,) satisfying (1)(2) but

 the set NP = { x | x S and P(x) is not true } is not empty. (*)

 ==> Let xm be any minimal element of NP.

 case (1): xm is minimal in S. --> impossible! (violating (1))

 since if xm is minimal in S, by (1), P(xm) holds and xm NP.

 case (2): xm is not minimal in S. --> still impossible!

 xm not minimal in S ==> L = {y | y S /\ y < xm } is not empty.

 ==> L NP = { } (o/w xm would not be minimal in NP.)

 ==> (ind. hyp. holds for xm , i.e., for all z S, z < xm => p(z) is true)

 ==> (by (2).) p(xm) holds ==> xm NP.

 case(1) and (2) imply NP has no minimal element and hence is empty,
which contradicts with (*). Hence the assumption that WI is incorrect is
wrong.

Introduction

 Transparency No. 1-37

Definition by induction (or recursion)

 Consider the following ways of defining a set.

1. the set of even numbers Even = {0,2,4,...}:
 Initial rule : 0 Even.

 closure rule: if x Even then x +2 ven.

2. The set of strings S+ over an alphabets S = {a,b,...,z}
 Initial: if x S, then “x” S+.

 closure: If xS and “a” S+, then “xa” S+.

3. The set (Z*) of integer lists.
 Initial: [] is a (integer) list,

 closure: If x is an integer and [L] is a list, then [x L] is a list.
 e.g., [], [4], [3 4], [2 3 4], [5 2 3 4]

 Problem: All definitions well-defined? What’s wrong?

Introduction

 Transparency No. 1-38

Problems about recursive definition

 The above definitions are incomplete in that there are
multiple sets satisfy each definition

 Example:
 Let Ni = {0,2,4,6,...} U { 2i+1, 2i+3, ...}.

 Then {0,2,4,6,...} and Ni (i >0 all satisfy Def. 1.

 Among {0,2,4,6,...} and Ni (i > 0) , which one is our
intended set ?

 How to overcome the incompleteness ?

 Relationship between {0,2,4,...} and the collection of
sets satisfying the definitions?
 {0,2,4,...} is the least set among all sets.

 {0,2,4,...} is equal to the intersection of all sets.

 Every other set contains some elements which are not
grounded in the sense that they have no proof (or derivation).

Introduction

 Transparency No. 1-39

General form of inductively defining a set (or domain)

 W: a set, Init: a subset of W

 F: a set of functions/rules on W,

 we define a subset D of W as follows:

 1. Initialization: Every element of Init is an element of D.

 (or simply Init D)

 2. closure: If f:Wn->W in F and t1,...,tn are members of D,

 then so is f(t1,...,tn)

 3. plus one of the following 3 phrases.

 3.1 D is the least subset of W with the above two properties.

 3.2 D is the intersection of all subsets of W with property 1,2.

 3.3 Only elements of Wobtainable by a finite number of
applications of rules 1 and 2 are elements of D.

Introduction

 Transparency No. 1-40

How to derive an object from an inductive defiintion

 W: a set, Init: a subset of W

 F: a set of functions on W,

Given Init and F, an object x W is said to be

derivable from Init and F if there is a finite sequence
x1,x2,…xn of objects of Wsuch that

1.x = xn,

2. for all 1k n, either

 2.1 xk Init --- (xk is an axiom) or

 2.2 xk = f(t1,…,tn) where fF and {t1,…,tn}{x1,…,xk-1}.

 --- (xk is got from closure rule)

The sequence is called a derivation(or deduction,proof) of
x.

Introduction

 Transparency No. 1-41

Examples

 W= Z, Init: = {2} , F = { x5, add5, +}

 Then 54 is derivable since

1. 2, --- axiom

2. 7, --- add5(2)

3. 9, --- +(2,7)

4. 45, ---- x5(9)

5. 54 ---- +(9,45)

is a derivation of 54. The length of the derivation is 5.

 =

 2

 = = ----+5

 2 2 7

= -----+5 --------+5

2 7 9

----------+ ---------x5

 9, 45

--------------------------- +

 54

derivation (proof ;deduction) tree for 54

Introduction

 Transparency No. 1-42

Define functions on recursively defined domains

 Once a domain D is defined inductively. We can

define functions on the domain according to the

following recursive scheme:

 A function v : D C, can be defined as follows:

 basis case: specify the value v(t) of t for each primitive

object t in Init.

 recursive case: specify the value v(f(t1,t2,…,tn)) of

every compound object f(t1,t2,…,tn) in terms of the

values v(t1),v(t2),…,v(tn) of smaller composing objects

t1,…,tn , for all f F and t1,…,tnD.

Introduction

 Transparency No. 1-43

Example

 Consider the following functions defined on integer lists:

sum : integer List(denoted Z*) Z

with sum(L) =def sum of all integers in L.

 We can define sum by recursion as follows:

 Basis case: specify the value sum(L) of L for each

primitive L in Init = { [] }.

 ==> basis: sum([]) = 0.

 Recursive case: specify the value sum(f(t1,...,tn))

of element f(t1,...,tn)for each f ∈ F and t1,...,tn ∈ D=

Z+.

 ==> Recursion: where F = { fx | fx([L’]) = [x L’], xZ }

 For any list of integers L of the form [x L’],

 sum(L) = sum([x L’]) = x + sum([L’])

Ex: sum([4,3,2])=4+sum([3,2])=4+3+sum([2])=4+3+2+sum([])

 = 4 + 3 +2 + 0 = 9.

Introduction

 Transparency No. 1-44

Define functions on recursively defined domains

 More example:
 #a : S+

 N with #a(x) =def number of a’s in string x.

 Now we can define #a as follows:
 Basis case: specify the value #a(“x”) of “x” for each x in S.

==> #a(“a”) = 1 ; #a(“y”) = 0 if y a.

 Recursive case: specify the value #a(“dz”) of element “dz”
for each d ∈S and “z”∈S +.

 ==> for any d S and “z” S+ ,

 then #a(“dy”) = 1 + #a(“y”) if d = a and

 #a(“dy”) = #a(“y”) if d a

 But are such kind of definitions well defined?
 A sufficient condition: If the recursively defined domain is

 not ambiguous (i.e., multi-defined)I.e., there is only one
way to form (or derive) each element in the domain.

Introduction

 Transparency No. 1-45

Example of a multi-defined(ambiguous) Domain

 Arithmetic Expression (AExp ⊆ S*) :

 Init: Constants a,b,c,… and variables x,y,z,… are

arithmetic expressions

 Closure: If a and b are arithmetic expressions then so

are a+b, a-b, -a, ax b .

 ambiguous arithmetic expressions:

 2 – 3 x 5 ; x – y + 2

 two ways to form “ 2 – 3 x 5 “:

 1. 2, 3, 2-3, 5, 2-3 x 5.

 2. 2, 3, 5, 3x5, 2- 3x 5.

x

-

5 3 2

-

x

5 3 2

Introduction

 Transparency No. 1-46

Problem for ambiguous defintions

 Define the fucntion val : AExp Z as follows:

 Basis case:

 val(c) = c where c is an integer constant.

 val(x) = 0 where x is a variable.

 Recursion : where a and b are expressions

 val(a+b) = val(a) + val(b)

 val(a-b) = val(a) – val(b)

 val(a * b) = val(a) * Val(b)

 Then there are two possible values for 2 – 3 * 5.

 val(2 - 3 * 5) =val(2) – val(3 * 5) = 2 – [val(3) * val(5)] = 2 – 15 = -13.

 val(2 – 3 * 5) = val(2-3) * val(5) = [val(2) – val(3)] * 5

 = -1 * 5 = -5.

 As a result, the function val is not well-defined !!

Introduction

 Transparency No. 1-47

Structural induction

 D: an inductively defined domain

 P(x): a property on D.

 To show that P(x) holds for all x in D, it suffices to show

 Basis step: P(x) holds for all x in Init.

 Ind. step: P(t1),...,P(tn) => P(f(t1,...,tn)) for all f in F,

 and for all t1,...,tn in D.

 Example: show P(x)#a(x) 0 holds for all x.

 Basis step: x Init = {“a”,”b”,”c”,...})

 x = “a” => #a(x) = 1 0.

 x “a” => #a(x) = 0 0

 Ind. step: x = “dy” where d is any element in Sand “y” is any

element in S+.

By ind. hyp. #a(“y”) 0. hence

 if d = a => #a(“dy”) = 1 + #a(“y”) 0

 if da => #a(“dy”) = #a(“y”) 0.

Introduction

 Transparency No. 1-48

More example:

 Define the set of labeled binary trees as follows:

 S: a set of labels = {a,b,c,..}

 G = S U {(,)}, G* = the set of strings over G.

 TS is a subset of G* defined inductively as follows:
 Init: () is a tree. // no more written as “()”

 closure: if x is a label, and L and R are trees,

 then (x L R) is a tree.

 Example / counterexample:
 (), (a ()()), ((a) (b) ()) .

 For tree T, let lf(T) = #of ‘(‘ ,lb(T) =# of labels, and

 e(T) = number of empty subtrees “()” in T. All can be

 defined inductively as follows:
 basis: lf(()) = 1; lb(()) = 0; e(()) = 1.

 recursive: lf((x L R)) = 1+ lf(L) + lf(R);

 lb((x L R)) = 1 + lb(L) +lb(R) ; e((x L R)) = e(L) + e(R).

Introduction

 Transparency No. 1-49

More example(cont’d)

 Use structural ind. to prove properties of trees.

 Show that for all tree T in TS : P(T) def

 lf(T) = lb(T) + e(T)

 holds for all tree T.

 Basis step[T = ()] : lf(()) = 1, lb(())=0, e(())=1 => P(()) holds.

 ind. step[T= (x L R) where x: any label, L, R: any trees] :

 assume (ind.hyp.:) lf(L) = lb(L) + e(L) and

 lf(R) = lb(R) + e(R). Then

 lf((x L R)) = 1 + lf(L) + lf(R) = 1 +lb(L) +lb(R) + e(L) +e(R)

 e((x L R)) = e(L) +e(R)

 lb((x L R)) =1 + lb(L) + lb(R)

==> lf((X L R)) = lb((X L R)) + e((X L R)).

Introduction

 Transparency No. 1-50

Exercise

 Let Z* be the domain of integer lists as defined inductively

at slide 36. Let append : Z* x Z* -> Z* be the binary

function on Z* such that, given x and y, append(x,y) will

form a list equal to the concatenation of x and y. For

instance, append([1], [2 3]) = [1 2 3] and append([2 3

4],[2 1]) = [2 3 4 2 1].

1.Give an inductive definition of append(x,y) according to

(the structure of) its first argument x.

2. Prove by induction that for all integer lists x and y,

 sum(x) + sum(y) = sum(append(x,y)),

 where the function sum was defined at slide 42.

Introduction

 Transparency No. 1-51

2. Basics of formal languages

 What is a language ?

 The meaning triangle:

 minds

language External

world

refers to

stand for

symbolize

Introduction

 Transparency No. 1-52

Different levels of language analysis

 phonetic and phonological analysis(語音與音韻分析)
 determine how words are related to sounds that realize them;

required for speech understanding.

 Phonetics concerns itself with the production, transmission, and
perception of the physical phenomena(phones) which are
abstracted in the mind to constitute these speech sounds or
signs.

 Phonology concerns itself with systems of phonemes (音位),
abstract cognitive units of speech sound or sign which
distinguish the words of a language.

 Ex: k in 'kill' and 'skill' are two phones [k],[g] but same phoneme
/k/; book(單數) books (多數)

 morphological analysis: (詞彙分析;構詞學)

 determine how words are formed from more basic meaning
units called "morphemes". (詞 素)

 morpheme: primitive unit of meaning in a language.
eg: friendly = friend + ly; luckily = lucky + ly

http://en.wikipedia.org/wiki/Phonetics
http://en.wikipedia.org/wiki/Phonology
http://zh.wikipedia.org/wiki/%E8%AF%AD%E9%9F%B3%E5%AD%A6
http://zh.wikipedia.org/wiki/%E9%9F%B3%E9%9F%B5%E5%AD%A6
http://en.wikipedia.org/wiki/Phone_%28phonetics%29
http://en.wikipedia.org/wiki/Phoneme
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8

Introduction

 Transparency No. 1-53

Levels of language analysis

 syntax analysis: (語法分析)
 determine how words can be put together to form correct

sentences.

 determine what structure role each word plays in the sentence.

 determine what phrases are subparts of what other parts.

 ex: John saw his friend with a telescope

 => S[NP[noun:'John'] // one more result not listed!

 VP[verb: 'saw',

 NP[NP[possessivePronoun:'his', noun: 'friend']]

 PP[prep: 'with', NP [art: 'a' noun:'telescope]]]]

 Semantics analysis : (語意分析)

 determine what words mean and how these meanings combine

in sentence to form sentence meanings. context independent.

 Possible analysis result of the previous example:

 person(j), person(f), name(j,'John'), time(t), friend(f,j) //?

 see(j, f, t), before(t, now), possess(f, te, t).

http://zh.wikipedia.org/wiki/%E8%AA%9E%E6%B3%95%E5%AD%B8
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%BE%A9%E5%AD%B8

Introduction

 Transparency No. 1-54

Levels of language analysis

 Pragmatic analysis: (語用分析)

 studies the ways in which context contributes to meaning

 concern how sentences are used in different situation and how

use affects the interpretation of sentences.

 ex: Would you mind opening the door?

 John saw his friend with a telescope .

 Discourse analysis (篇章或對話分析) ,...

 代名詞解析，文句的銜接與連貫等。

 Ex: Wang has a friend. John saw him (Wang or Wang's friend?)

with a telescope yesterday.

 World knowledge,...

 Languages (including natural and programming languages)

contains many facets, each an active research domain of AI,

linguistics, psychology, philosophy, cognitive science and

mathematics.

http://en.wikipedia.org/wiki/Pragmatics
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%94%A8%E5%AD%B8
http://en.wikipedia.org/wiki/Discourse_analysis
http://zh.wikipedia.org/wiki/%E7%AF%87%E7%AB%A0%E5%88%86%E6%9E%90
http://en.wikipedia.org/wiki/Cohesion_%28linguistics%29
http://en.wikipedia.org/wiki/Coherence_(linguistics)

Introduction

 Transparency No. 1-55

What are formal languages

 In the study of formal languages we care about only the

well-formedness/membership, but not the meaning of

sentences in a language.

 Ex1: Our usual decimal language of positive numbers ?

 Problem: Which of the following are well-formed

[representation of] numbers:

 (1) 128 (2) 0023 (3) 44ac (4) 3327

 Let L be the set of all well-formed [representations of]

numbers. ==> 123, 3327 in L but 0023, 44ac not in L.

 So according to the view of FL, The usual decimal language

of positive numbers (i.e., L) is just the set :

 { x | x is a finite sequence of digits w/t leading zeros }.

 Note: FL don't care about that string '134' corresponds to the (abstract)

positive number whose binary representation is 10000000 –It’s the job

of semantics.

Introduction

 Transparency No. 1-56

Definition 2.1

 An alphabet S (or vocabulary; 字母集) is a finite set.

 Ex: decimal_alphabet = {0,1,2,3,4,5,6,7,8,9}

 binary_digit = {0,1}; Hexidecimal-alphabet = {0,..,9,A,..,F}

 alphabet-of-English-sentences = {a, word, good, luckily,...}

 alphabet-of-English-words = {a,...,z,A,...,Z}

 Elements of an alphabet are called letters or symbols

 A string (or word or sentence) over S is a finite sequence of

elements of S.

 Ex: if S = {a,b} then “aabaa” is a string over S of length 5.

 Note: A string x = x0 x1 … xn-1 of length n is in fact viewed as a function

 x: [0..n) S such that x(k) = xk for k in [0,n).

 The length of a string x, denoted |x|, is the number of symbols

in x. ex: |abbaa| = 5.

 There is a unique string of length 0, called the null string or

empty string, and is denoted by e (or l)

Introduction

 Transparency No. 1-57

Definition 2.1 (cont'd)

 S* =def the set of all strings over S.

 Ex: {a,b}* = {e,a,b,aa,ab,ba,bb,aaa,...}

 {a}* = {e,a,aa,aaa,aaaa,...} = {an | n 0}.

 {}* = ? ({} or {e} or e ?)

 Note the difference b/t sets and strings:

 {a,b} = {b,a} but ab ba.

 {a,a,b} = {a,b} but aab ab

 So what's a (formal) language ?

 A language over S is a set of strings over S (i.e., a

subset of S*). Ex: let S = {0,...,9} then all the followings

are languages over S.

 1. {e} 2. {} 3. {0,...,9} = S 4. {x | x S* and has no leading

0s} 5. S5 = {x | |x| = 5} 6. S* = {x | |x| is finite }

Introduction

 Transparency No. 1-58

Examples of practical formal languages

Ex: Let D be the set of all ASCII codes.

 a C program is simply a finite string over D satisfying all

syntax rules of C.

 C-language =def { x | x is a well-formed C program over D }.

 PASCAL-language = {x | x is a well-formed PASCAL

program over D }.

Similarly, let ENG-DIC = The set of all English lexicons

 = { John, Mary, is, are, a, an, good, bad, boys, girl,..}

 an English sentence is simply a string over ENG-DIC

 ==> English =def {x | x is a legal English sentence over END-

DIC} ==>

 1.John is a good boy . English.

 2. |John is a good boy . | = ?

Introduction

 Transparency No. 1-59

issues about formal languages

 Why need formal languages?

 for specification (specifying programs, meanings etc.)

 i.e., basic tools for communications b/t people and

machines.

 although FL does not provide all needed theoretical

framework for subsequent (semantic processing...)

processing, it indeed provides a necessary start, w/t which

subsequent processing would be impossible -- first level of

abstraction.

 Many basic problems [about computation] can be

investigated at this level.

 How to specify(or represent) a language ?

 Notes: All useful natural or programming languages

contain infinite number of strings (or programs and

sentences)

Introduction

 Transparency No. 1-60

How to specify a language

 principles: 1. must be precise and no ambiguity among
users of the language: 2. efficient for machine processing

 tools:

 1. traditional mathematical notations:

 A = {x | |x| < 3 and x {a,b}} = {e,a,b,aa,ab,ba,bb}

 problem: in general not machine understandable.

 2. via programs (or machines) :

 P: a program; L(P) =def {x | P return 'ok' on input string x}
 precise, no ambiguity, machine understandable.

 hard to understand for human users !!

 3. via grammars: (easy for human to understand)
Ex: noun := book | boy | jirl | John | Mary

 art := a | an | the ; prep := on | under | of | ...

 adj := good | bad | smart | ...

 NP := noun | art noun | NP PP | ...

 PP := prep NP ==> 'the man on the bridge' PP.

Introduction

 Transparency No. 1-61

Non-enumerability of languages

 Recall that a set is denumerable if it is countably

infinite. (i.e., A set T is denumerable if there is a 1-1

and onto mapping b/t T and {0,1,...})

 Exercises: If S is finite and nonempty, then

 1. S* is denumerable (i.e., |S*| = |N|)

 2. 2S* (ie., the set of all languages over S) is uncountable.

 pf: Since |2S*| |S*| = |N|, hence |2S*| is not countable

Introduction

 Transparency No. 1-62

Operations on strings

 string concatenations:

 x,y: two strings ==> x·y is a new string with y appended to

the tail of x. i.e., x·y is the function :

 z : [0, len(x)+len(y)) Ssuch that

 z(n) = x(n) for 0 n < len(x) and

 z(len(x)+n) = y(n) for 0 n < len(y).

 Some properties of · :

1. ASSOC: (xy)z = x(yz) ; 2. Identity: ex = xe = x.

3. |xy| = |x| + |y|.

 conventions and abbreviations:

 S: for alphabet ; a,b,c: for symbols;

 x,y,z: for strings; A,B,C: for languages;

 x5 for xxxxx; x1 = x ; x0 = e.

 #a(x) =def number of a's in x. ==> #a(aabbcca) = 3.

Introduction

 Transparency No. 1-63

Operations on languages (i.e, string sets)

 1. usual set operations:

 Union: A U B = {x | x A or x B }

 Ex: {a,ab} U { ab, aab} = {a,ab,aab}

 intersection: A B = {x | x A and x B }

 complements in S*: ~A =def S* - A = { x | x not A}

 ex: ~{x | |x| is even } = {x | |x| is odd }.

2. Set concatenations:

 A·B =def {xy | x A and y B }.

 Ex: {b,ba} {a,ab} = {ba,bab,baa,baab}.

3. Powers of A: An (n 0) is defined inductively:

 1. A0 = { e}; An+1 = A·An = A·A·...·A. ----- n A's

Introduction

 Transparency No. 1-64

Operations on languages (cont'd)

 Ex: Let A = {ab,abb}. Then

 1. A0 = ? 2. A1 = ? 3. A2 = ? 4. |A4|=?

 5. Hence {a,b,c}n = {x {a,b,c}* | |x| = n } and

 An = { x1x2...xn | x1,...,xn A }

5. Asterate (or star) A* of A is the union of all finite

powers of A:

 A* =def Uk 0 A
K = A0 U A UA2 U A3 U ...

 = {x1x2...xn | n 0 and xi A for 1 i n }

 notes:

 1. n can be 0 ==> e A*. ==> e {}*.

 2. If A = S ==> A* = S* = the set of all finite strings

over S.

Introduction

 Transparency No. 1-65

Properties of languages operations

6. A+ =def the set of all nonzero powers of A

 =def Uk1 A
k = A U A2 U A3U ... = A A*.

Properties of languages operations

 1. associative: U, , · :

 AU(BUC) = (AUB)UC; A(BC) = (AB)C;

 A(BC) = (AB)C

 2. commutative : U,:

 3. Identities:

 1. A U {} = {}UA = A; 2. A S* = S* A = A;

 3. {e}A = A{e} = A.

 4. Annihilator: A{} = {}A = {}.

Introduction

 Transparency No. 1-66

Properties of languages operations (cont'd)

 5. Distribution laws:

 AU(BC) = (AUB) (AUC) ; A(BUC) = (AB)U(AC)

 A(BUC) = AB U AC ; A(BC) = AB AC (x)

 Ex: Let A = {a,ab}, B = {b}, C = {e}

 ==> A(B C) = ? AB = ? AC = ?

 ==> A(BC) AB AC.

 Exercise: show that A(BUC) = AB UAC.

6. De Morgan Laws: ~(AUB) = ? ~(AB) = ?

7. Properties about A*:

 1. A*A* = A* ; 2. A** = A*; 3. A* = {e}UAA*

 4. AA* = A*A = A+. 5. {}* = {e}.

 Exercises: Prove 1~5. (hint: direct from the definition of A*)

Introduction

 Transparency No. 1-67

A language for specifying languages

 In the term: 'a language for specifying languages',

the former language is called a metalanguage while

the later languages are called target languages.

 So in the C language reference manual, the BNF form is a

meta language and C itself is the target language.

 S: an alphabet ; D = S U { +, *, e, ·,), (};

 E = D U {~, -}

 1. The set of all regular expressions is a subset of D*

which can be defined inductively as follows:

 Basis: 1. e, are regular expressions

 2. Every symbol a in S is a regular expression.

 Induction: If a and b are regular expressions then so are

 (a+b), (a·b), a*.

Introduction

 Transparency No. 1-68

Regular expressions

 Examples:

 legal reg. expr. : e, (a+b)*, ((a +(b·c))+(e·b)*)

 illegal reg. expr: (ab), a + b, ((a + S)) + d, where d ∉ S.

 illegal formally but legal if treated as abbreviations:

 ab --> (a·b) ; a+b --> (a+b);

 a + bc* --> (a + (b·c*))

 Extended regular expressions (EREGs):

 EREGs are strings over E and can be defined

inductively as follows:

 Basis: 1. e, are EREGs

 2. Every symbol a in S is an EREG.

 Induction: If a and b are EREGs then so are

 (a+b), (a·b), a*, (~a), (ab), (a-b)

Introduction

 Transparency No. 1-69

Languages represented by regular expressions

 [Extended] regular expressions provides a finite way
to specify infinite languages.

 Definition: for each EREG (and hence also REG) a,
the language (over S) specified (or denoted or
represented) by a, written L(a), is defined inductively
as follows:
 Basis: L(e) = {e}; L() = {};

 for each a ∈ S, L(a) = {a}.

 Induction: assume L(a) and L(b) have been defined for
EREG a and b. Then

 L(a+b) = L(a) U L(b); L(ab) = L(a) L(b); L(a*) = L(a)*;

 L(~a) = S* - L(a); L(a - b) = L(a) - L(b); L(a b) = L(a) L(b).

 Definition: a language A is said to be regular if A = L(a) for
some regular expression a.

Introduction

 Transparency No. 1-70

Examples:

 Let S = {a,b}. Then
 L(a(a+b)*) = {x | x begins with a } = {a,aa,ab,aaa,aab,aba,...}

 L(~(a(a+b)*)) = {x | x does not begin with a}

 = {x | x begins with b } U {e} = L(e + b(a+b)*).

 Regular expressions and Extended regular
expressions give us finite ways to specify infinite
languages. But the following questions need to be
answered before we can be satisfied with such tools.
 1. Are EREG or REGs already adequate ?

 (i.e, For every A ⊆ S*, there is an expression a s.t., L(a) =
A ?) ==> ans: _____.

 2. For every expression a, is there any [fast] machine that
can determine if x ∈ L(a) for any input string x ?

 Ans: _______

Introduction

 Transparency No. 1-71

IS EREG more expressive than REG ?

 L1, L2: two [meta] languages;

 we say L1 is at least as expressive as L2 if L(L2) =def {A |

there is an expression a in L2 s.t. A = L(a) } is a subset of

L(L1).

 L1 is said to be equivalent to L2 in expressive power iff

both are at least as expressive as the other.

 Problem:

 EREG is at least as expressive as REG since L(REG) is a

subset of L(EREG) (why?)

 But does the converse hold ? (i.e, Is it true that for each

EREG a there is a REG b s.t., L(a) = L(b) ?

 ans: _____.

