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Introduction
Course outlines

e Introduction:

[ Mathematical preliminaries:

wsets, relations, functions,sequences, graphs, trees, proof by
induction, definition by induction (recursion).

[0 Basics of formal languages:

walphabet, word, sentence, concatenation ,union, iteration [= Kleene
star], language, infinity of languages, finite representations of
languages

e PART I: Finite Automata and Regular Sets

0 DFA,NFA,regular expressions and their equivalence
0 limitation of FASs;

[0 Closure properties of FAs,

0 Optimization of FAs
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course outline (cont'd)

e PART Ill: Pushdown Automata and Context Free
Languages
0 CFGs and CFLs; normal forms of CFG
0 Limitation of CFG; PDAs and their variations,
[ closure properties of CFLs
[0 Equivalence of pda and CFGs; deterministic PDAs
0 parsing (Early or CYK's algorithms)

e PART Ill: Turing Machines and Effective
Computability
0 Turing machine [& its variations] and Equivalence models
0 Universal TMs

[ Decidable and undecidable problems (Recursive sets and
recursively enumerable sets)

| Problems reductions ; Some undecidable problem
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Introduction
Goals of the course

understand the foundation of computation

make precise the meaning of the following terms:

[ [formal] languages, problems, Programs, machines,
computations

[l computable {languages, problems, sets, functions}

understand various models of machines and their
relative power : FA, PDAs, LA (linear bounded
automata), TMs, [register machines, RAMs,...]

study various representations of languages in finite
ways via grammars: RGs, CFGs, CSGs, general PSGs
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Chapter 1 Introduction

Transparenc y No. 1-1



Introduction
Mathematical preliminaries (reviews)

e relations
e induction
e Recursive definitions
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Introduction

Sets

e Basic structure upon which all other (discrete and
continuous ) structures are built.

e a setis a collection of objects.
[ an object is anything of interest, maybe itself a set.

e Definition 1.
[0 A setis a collection of objects.

0 The objects is a set are called the elements or members of
the set.

0 If xis a memebr of a set S, we say S contains x.
0 notation: x eSvs x¢ S

e Ex:In1,2,3,4,5, the collection of 1,3 5 is a set.

7
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Set description

e How to describe a set:?

1. List all its member.
0 the set of all positive odd integer >10 = ?
[0 The set all decimal digits = ?
[ the set of all upper case English letters = ?
[ The set of all nonnegative integers =?

2. Set builder notation:

0 P(x) : a property (or a statement or a proposition) about
objects.

0 e.g., P(x) =*“x>0and x is odd”

0 then {x | P(x) } is the set of objects satisfying property P.
0 P(3)is true =>3 e {x| P(x)}

0 P(2)is false =>2 ¢ {x| P(x)}

8
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Set predicates

Definition 2.
0 Two sets S1, S2 are equal iff they have the same elements

0 S1=S2iff vx (x € S1<=>x € S2)
0 Ex: {1,3,5}={1,5,3} ={1,1,3,3, 5}
o Null set ={} = & =, the collection of no objects.

Def 3’: [empty set] for-all x x ¢ .
Def 3. [subset]

0 A c B iff all elements of A are elements of B.
0 Ac B <=>for-all x (x € A=>x € B)).

e Def3”: AcB=,,AcBNA=B.

e Exercise : Show that: 1. For all set A (Jc A)
02.(AcBNBcA)<=>(A=B) 3.AcT=>A=0

9
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Size or cardinality of a set

Def. 4
0 | A| = the size(cardinality) of A = # of distinct elements of A.

o EX:
{1,3,3,5}| = ?
{H=7
the set of binary digits } | = ?
N|=?; |Z|=7; |{2i|]iinN}=7?
0|R|="7
e Def. 5.
0 A set A is finite iff |A| is a natural number ; o/w it is infinite.

0 Two sets are of the same size (cardinality) iff there is a 1-1
& onto mapping between them.

O O O 3

10
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countability of sets

e Exercise: Show that
01.IN|= |Z]=]| Q| ={4,5,6,...}
02.|R|] =][0,1)]
0 3.|N| # |R|
o Def.
0 A set A is said to be denumerable iff |A| = |N]|.
[ A setis countable (or enumerable) iff either |A| = n for some
nin N or |A| = |N|.
o By exercise 3,
0 Ris not countable.
0 Q and Z is countable.

11
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The power set

Def 6.

0 If Ais a set, then the collection of all subsets of A is also a
set, called the poser set of A and is denoted as P(A) or 2A.

o Ex:
0 P({0,1,2}) = ?
0P({})="7
0 |P({1,2,..., n})| = ?
e Order of elements in a set are indistinguishable. But

sometimes we need to distinguish between (1,3,4)
and (3,4,1) --> ordered n-tuples

12
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More about cardinality

Theorem: for any set A, |A| #|2A].
Pf: (1) The case that A is finite is trivial since |24] = 2|A > |A|
and there is no bijection b/t two finite sets with different sizes.
(2) assume |A| =|24], i.e., there is a bijection f: A -> 2A
Let D={xin A|x ¢ f(x) }. ==>
1. D is a subset of A; Hence
2.3y in A s.t. f(y) = D.
Problem:Isy e D ?
if yes (i.e.,y € D) ==>y ¢ f(y) = D, a contradiction
if no (i.e., y ¢ D) ==>y € f(y) =D, a contradiction too.
So the assumption is false, i.e., there is no bijection b/t A and
2A,
Note: Many proofs of impossibility results about computations
used arguments similar to this.
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Cartesian Products

Def. 7 [n-tuple]

0 If a1,a2,...,an (n > 0) are n objects, then “(a1,a2,...,an)” is a
new object, called an (ordered) n-tuple [ with a; as the ith
elements.

0 Any orderd 2-tuple is called a pair.

0 (a1,a2,...,am) = (b1,b2,...,bn) iff

wm=nand fori=1,.,na=b

Def. 8: [Cartesian product]
AxB={(a,b)]ainAANbinB}
A1 x A2 x ...x An =def {(a1l,...,an) | ai in Ai }.

Ex: A={1,2},B={ab,c},C={0,1}
1. AxB=? ;2.BxA=7?
3.Ax{}=? ;4. AxBxC=?

14
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Set operations

e union, intersection, difference , complement,
e Definition.

1. AuB={|xinAorxinB}

2. AnB={x|xinAand xin B}
3.A-B={x|xinAbutxnotinB}

4. ~A=U-A

5.1f An B = {} => call A and B disjoint.

15
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Set identites

o |dentity laws: A??7=A

e Domination law: U??2=U; {3??7={}

e |dempotent law: A?A=A;

e complementation: ~~A = A

e commutative : A?B=B?A

e Associative: A?B?C)=(A?B)?C
e Distributive: A?B?2C)="7?

e DeMoregan laws: ~(A?B)=~A7?~B

Note: Any set of objects satisfying all the above laws is
called a Boolean algebra.

16
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Prove set equality

1. Show that ~(A U B) = ~A n~B by show that
01.~AuB)c~An~B
0 2.~An~Bc~(AuB)

o pf: (By definition) Let x be any element in ~AuUB)...

2. show (1) by using set builder and logical equivalence.
3. Show distributive law by using membership table.
4. show ~(Au (BN C)) = (~C n~B) U ~A by set identities.

17
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Functions

e Def. 1 [functions] A, B: two sets

1. a function f from A to B is a set of pairs (x, y) in AxB s.t., for
each x in A there is at most one y in B s.t. (x,y) in f.

2. if (x,y) in f, we write f(x) = vy.
3. f:A ->B means f is a function from A to B.
Def. 2. If f:A -> B ==>
1. A: the domain of f; B: the codomain of f
if f(a)=b =>
2. b is the image of a; 3. ais the preimage of b
4. range(f) = {y | Ix s.t. f(x) = y} = f(A).
5. preimage(f) = {x | $ y s.t. f(x) =y } = f1(B).
6. f is total iff 1(B) = A.

18
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Types of functions

o Def 4.

f: AxB; S:asubsetof A,
T: a subset of B

1. f(S) =4 {y|3IxinSs.t.f(x)=y}
2. fFI(T) =4 {X|qyinTs.t.f(x) =y}

Def. [1-1, onto, injection, surjection, bijection]
f: A ->B.

0 fis 1-1 (an injection) iff f(x)=(fy) =>x=Yy.

0 f is onto (surjective, a surjection) iff f(A) =B

0 fis 1-1 & onto <=> f is bijective (a bijection, 1-1
correspondence)

19
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Relations

o A, B: two sets

0 AxB (Cartesian Product of A and B) is the set of all ordered
pairs {<a,b>|aeAandb e B}.

0 Examples:
A={1,2,3}, B={4,5,6}=>AxB= ?

e A1,A2,...,An (n > 0): n sets
0 A1xA2x...xAn = {<a1,a2,...,.an>| ai € Ai }.
[ Example:
1. A1={1,2},A2={a,b},A3={x,y} ==> |A1xA2xA3| = ?
2. AM1={}, A2={a,b} => A1xA2 =7
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Binary relations

e Binary relation:
0 A,B: two sets
0 A binary relation R between A and B is any subset of AxB.
[ Example:
If A={1,2,3}, B ={4,5,6}, then which of the following is a
binary relation between A and B ?
R1 = {<1,4>, <1,5>, <2,6> }
R2 = {}
R3 = {1,2,3,4}
R4 = {<1,2>, <3,4>, <5,6> }
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Terminoloqy about binary relations

R: a binary relation between A and B (l.e., a subset

of AxB), then
0 The domain of R:
dom(R) ={x e A|3dy e Bs.t. <x,y> € R}
0 The range of R:
range(R) ={y € B, |3 x € A, s.t., <x,y> € R}
0 <x,y> € Ris usually writtenas x R y.
o If A =B, then R is simply called a relation over(on)
A

e An n-tuple relation R among A1,A2,...,An is any
subset of A1xA2...xAn, n is called the arity of R

o If A1=A2=...=An=A => R is called an n-tuple relation
(on A),.
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Operations on relations (and functions)

Rc AxB; S =B x C: two relations

composition of R and S:

0 R-S ={<a,c>|thereis bin B s.t., <a,b>in R and <b,c> in
S}

Identity relation: I, = {<a,a>|ain A}
Converse relation: R1 = {<b,a>| <a,b>in R}
f:A -> B; g: B->C: two functions, then

g-f:A->C defined by g-f(x) = g(f(x)).
Note: function and relation compositions are
associative, l.e., for any function or relation f,g,h,

f- (9-h) = (f-g) -h
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Properties of binary relations

e R: A binary relation on S,

1. R is reflexive iff for all xin S, x R x.

2. R is irreflexive iff for all x in S, not x R x.

3. R is symmetric iff for all x, y in S, xRy => yRx.

4. R is asymmetric iff for all x,y in S, xRy => not yRx.

5. R is antisymmetric iff for all X,y in S, xRy and yRx => x=y.
6. R is transitive iff for all x,y,z in S, xRy and yRz => xRz.

Graph realization of a binary relation and its properties.

rule: if xRy then draw an
arc fromxonleftStoy
on right S.
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Examples

e The relation < on the set of natural numbers N.

What properties does < satisfy ?
0 ref. irref, or neither ?
0 symmetric, asymmetric or antisymmetric ?
0 transitive ?

e The relation > on the set of natural numbers N.
e The divide | relation on integers N ?
0 x|y iff x dividesy. (eg.2]| 10, but not 3 | 10)
What properties do > and | satisfy ?

e The BROTHER relation on males (or on all people)
0 (x,y) € BROTHER iff x is y’s brother.

e The ANCESTOR relation on a family.
0 (x,y) € ANCESTOR if x is an ancestor of y.

What properties does BROTHER(ANCESTOR) have?
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Properties of relations

e R: abinary relationon S
1. R is a preorder iff it is ref. and trans.

2. R is a partial order (p.o.) iff R is ref.,trans. and antisym.
(usually written as <).

3. Ris a strict portial order (s.p.o) iff it is irref. and transitive.
0 usually written <.

4. R is a total (or linear) order iff it is a partial order and every
two element are comparable (i.e., for all x,y either xRy or
yRX.)

5. R is an equivalence relation iff it is ref. sym. and trans.

e If Ris a preorder (resp. po or spo) then (S,R) is called a
preorder set (resp. poset, strict poset).

e What order set do (N, <), (N, <) and (N, |) belong to ?
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Properties of ordered set

e (S, <): aposet, X: a subset of S.

1. b in X is the Jeast (or called minimum) element of X iff b < x for
all x in X.

2. b in X is the greatest (or called maxmum or largest) element of
Xiff X<b forall xin X.

o Least element and greatest element, if existing, is unigue for
any subset X of a poset (S, <)

pf: let x, y be least elements of X.
Then, x<y and y< x. So by antisym. of <, x = y.

3. Xia a chain iff (X,R) is a linear order(, i.e., for all x,y in X,
either x<y or y<x).

4. bin S is a lower bound (resp., upper bound) of X iff

b<x (resp.,x<b)forall xin X.
[ Note: b may or may not belong to X.
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Properties of oredered sets

o (S, <):aposet, X: a nonempty subset of S.
5. b in Xis minimal in X iff there is no element less
than it.
0 i.e., there is no xin X, s.t., (x <b),
0 or “forall x, x<b =>x=b.”
6. b in X is a maximal element of X iff there is no
element greater then it.
0 i.e., there is no x in X, s.t., (b < X),
0 or “for all x, b <x => x=b.”
e Note:

1.Every maximum element is maximal, but not the
converse in general.

2. Maximal and minimal are not unique in general.
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well-founded set and minimum conditions

e (S,5) : a poset ([RFFEE)-
1.<is said to be well-founded ( EZ: %) iff there is no

infinite descending sequence. (i.e., there is no infinite
sequence x1,x2,x3,.... s.t., x1 > x2 > x3 >... ).

[0 Note: x>y meansy<x (i.e.,y<xandy = x)
0 if <is well-founded => (S,<) is called a well-founded set.

2. (S,X) is said to satisfy the minimal condition iff every
nonempty subset of S has a minimal element.

e (S, <): atotal ordered set (&F£).

3.< is said to be a well-ordering(E F¢) iff every
nonempty subset of S has a least element.

0 If <is well ordered, then (S,<) is called a well-ordered set.
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Examples of ordered sets

e Among the relations (N,<), (N,>), (N, |), (£, <), (Z,>),
(Z,]) and (R, <),

1. Which are well-founded ?
2. Which are well-ordered ?
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Equivalence of well-foundness and minimal condition

e (S,<)is well-founded (w.f.) iff it satisfies the minimal
conditions (m.c.).

pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f.
(1) Let x1,x2,... be any infinite sequence s.t. x1 >x2 > x3 >....
Now let X={x1,x2,...}. X obviously has no minimal element.
S thus does not satisfy m.c.

(2) Let X be any nonempty subset of S w/o minimal elements. Now
(*) choose arbitrarily an element a1 from X and let
X1={x|x e Xand a1 > x} (i.e. the set of all elements in X <a1).
Since a1 is not minimal, X1 is nonempty and has also no minimal element.

We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and
obtain an infinite descending sequence a1 >a2 > a3 > ...

Hence S is not w.f.
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A general proof scheme to show the infinity of a set

o Let P be a property of sets and C =4 { X | P(X) holds }. If there

exists a function f : C - C satisfying the property: forall set X € C
(i.e, P(X) holds),

0 1. f(X) is a nonempty proper subset of X,
1 (i.e., f(X) 2z, {(X) # X and f(X) < X), and
0 2.fpreserves property P
0 (l.e., P(X) implies P(f(X), or XeC => {(X)eC),
then all sets X with property P are infinite .
Pf: Let X,,X4,...,X,... be an infinite sequence of sets
with X, = X and X,,, =4¢ f(X,) = f(f(X,,)) = ... = f<1(X).
Since X = X, has property P and f preserves P, by induction
on k, all X, has property P. And by (1) X, < f(X,) = X, for all k.
Now the sequence X,-X;, X;-X,, X,-X,,.... IS an infinite sequence of
nonempty and disjoint subsets of X. X thus is infinite.
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Variants of Inductions

e Mathematical Induction:

[0 To prove a property P(n) holds for all natural number n € N,
it suffices to show that

(1) P(0) holds --- (base step) and

(2) For all n € N, p(n) => p(n+1) --- (induction step)
WP(n) in (2) is called induction hypothesis (h.p.)

0 P(0), V n (P(n) => P(n+1))
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Well-order Induction

e Well-order induction:
0 (S,<) a well-ordered set; P(x): a property about S.

0 To show that P(x) holds for all xeS, it suffices to show
(1) P(x,,,,) holds where x_,,, is the least element of S. --- (base step)
(2) for all xeS, if (for all yeS y < x => P(y)) then p(x) ---(ind. step)

w (1) is a special case of (2) [i.e., (2) implies (1)]
W (forallyinS y<x=>P(y)) in (2) is called the ind. hyp. of (2).

* P(Xyin): VY [(VX.x<y=>P(x) )=>P(y)
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Variants of inductions

o Well-founded induction (WI ):

0 (S, <) a well-founded set. P(x) a property about S.

0 WI says that to prove that P(x) holds for all x in S, it
suffices to show that
(1) P(x) holds for all minimal elements x in S --- base step, and
(2) forallyin S, (forallzin S z <y =>P(z)) => p(y) ---ind. step
w (1) has already been implied by (2)
W (forallzin S z<y=>P(z))in (2) is the ind. hyp. of the proof.

0 forall minimal x, P(x), Vy][(Vz, z<y =>P(x))=>P(y)]

Vx P(x)
e Facts: w.f. Ind. => well-ordered ind. => math ind.

0 (l.e., If w.find. is true, then so is well-ordered ind. and
if well-ordered ind. is true , then so is math. ind.)
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Correctness of WI

o (S,X):awell-founded set. P(x) : a property about S.
Then P(x) holds for all x € S, if
(1) P(x) holds for all minimal elements x € S --- base step, and

(2)forally € S, (forallz e S z <y =>P(z)) => p(y) ---ind. Step
pf: Suppose WI is incorrect. Then there must exist (S,<) satisfying (1)(2) but

the set NP ={ x| x € S and P(x) is not true } is not empty. (*)
==> Let xm be any minimal element of NP.
case (1): xm is minimal in S. --> impossible! (violating (1) )
since if xm is minimal in S, by (1), P(xm) holds and xm ¢ NP.
case (2): xm is not minimal in S. --> still impossible!
xm not minimalinS==>L={y |y € SNy <xm}is not empty.
==>L N NP={} (o/wxm would not be minimal in NP.)
==> (ind. hyp. holds for xm , i.e., forall z € S, z < xm => p(z) is true )
==> (by (2).) p(xm) holds ==> xm ¢ NP.
case(1) and (2) imply NP has no minimal element and hence is empty,

which contradicts with (*). Hence the assumption that Wl is incorrect is
wrong.

Transparency No. 1-36



Introduction
Definition by induction (or recursion)

e Consider the following ways of defining a set.

1. the set of even numbers Even ={0,2,4,...}:
0 Initial rule : Oe Even.
0 closure rule: if x € Even then x +2 € Even.
2. The set of strings X+ over an alphabets ¥ = {a,b,...,z}
O Initial: if x € X, then “X” eX+.
0 closure: If xeX and “a” €X+, then “xa” e >*.
3. The set (Z°) of integer lists.
0 Initial: [ ] is a (integer) list,
0 closure: If x is an integer and [L] is a list, then [x L] is a list.
Seg.,[1,[41,[34],[234],[5234]

e Problem: All definitions well-defined? What's wrong?
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Problems about recursive definition

e The above definitions are incomplete in that there are
multiple sets satisfy each definition

e Example:
0 Let Ni={0,2,4,6,..} U{2i+1, 2i+3, ...}.
0 Then {0,2,4,6,...} and N, (i > 0) all satisfy Def. 1.

e Among {0,2,4,6,...} and N. (i> 0), which one is our
intended set ?

e How to overcome the incompleteness ?

e Relationship between {0,2,4,...} and the collection of
sets satisfying the definitions?
0 {0,2,4,...} is the least set among all sets.
0 {0,2,4,...} is equal to the intersection of all sets.

0 Every other set contains some elements which are not
grounded in the sense that they have no proof (or derivation).
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General form of inductively defining a set (or domain)

e (:aset, Init: a subset of O
F: a set of functions/rules on Q,

e we define a subset A of Q as follows:

1. Initialization: Every element of Init is an element of A.
(or simply Init c A)

2. closure: If :Q"->Q in F and t,,...,t, are members of A,

then so is f(t,,...,t,)
3. plus one of the following 3 phrases.

3.1 A is the least subset of Q with the above two properties.

3.2 Ais the intersection of all subsets of Q with property 1,2.

3.3 Only elements of Q obtainable by a finite number of
applications of rules 1 and 2 are elements of A.
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How to derive an object from an inductive defiintion

e (): a set, Init: a subset of O
F: a set of functions on Q,
Given Init and F, an object x €Q is said to be

derivable from Init and F if there is a finite sequence
X4,X5,...X, Of objects of Q) such that

1.X =X,
2.for all 1<k< n, either
2.1 x, € Init --- (x, is an axiom) or
2.2 x, = f(tq,...,t ) where feF and {t,,...,t }<={X4,....X1}-
--- (X, Is got from closure rule)

The sequence is called a derivation(or deduction,proof) of
X.
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Introduction

e O=Z7, Init:={2}, F ={x5, add5, +}

e Then 54 is derivable since

1. 2, ---axiom
2. 7, ---add5(2)
3.9, -—-+(2,7)
4. 45, ---- x5(9)
5. 54 ---- +(9,45)

= = -———+45
2 2 7
= T J— +5
2 7 9
---------- + X5
9 45

54
derivation (proof ;deduction) tree for 54

IS a derivation of 54. The length of the derivation is 5.
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Define functions on recursively defined domains

e Once a domain A is defined inductively. We can
define functions on the domain according to the
following recursive scheme:

e A functionv : A 2 C, can be defined as follows:

[ basis case: specify the value v(t) of t for each primitive
object t in Init.

[ recursive case: specify the value v(f(t,,t,,...,t,)) of
every compound object f(t,,t,,...,t ) in terms of the
values v(t,),v(t,),...,v(t,) of smaller composing objects
t,,....t, ,forallf eFandt,,....t eA.
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Example
e Consider the following functions defined on integer lists:

sum : integer List(denoted Z*)-> Z
with sum (L) =,,sum of all integers in L.

e We can define sum by recursion as follows:

[ Basis case: specify the value sum (L) of L for each
primitive L in Init={[] }.

0 ==> basis: sum([]) = O.

[ Recursive case: specify the value sum (£ (tl1,...,tn))
of element £(tl1,...,tn)foreachfeF and t,,...t EA=
Z*.

0 ==> Recursion: where F = {f | f,([L']) =[x L’], xeZ}

0 For any list of integers L of the form [x L’],

sum(L) = sum([x L']) = x + sum([L’])
Ex: sum([4,3,2])=4+4+sum([3,2])=4+3+sum([2])=4+3+2+sum([])
=44+ 342 + 0 = 9.
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Define functions on recursively defined domains

e More example:
0 #a : £*-> N with #a(x) =, number of a’s in string x.

e Now we can define #a as follows:

[ Basis case: specify the value #a(“x”) of “x” for each x in X.
==>#a(“a”) =1; #a(“y”’)=0ify =a.

[ Recursive case: specify the value #a(“dz”) of element “dz”
for each d €X and “z”eX *.

1 ==>foranyd € ¥ and “z” € X*,
1 then #a(“dy”) =1 + #a(“y”)ifd=a and
1 #a(“dy”)= #a("y”) ifd=a

e But are such kind of definitions well defined?
0 A sufficient condition: If the recursively defined domain is

0 not ambiguous (i.e., multi-defined)l.e., there is only one
way to form (or derive ) each element in the domain.
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Example of a multi-defined(ambigquous) Domain

o Arithmetic Expression (AExp € X¥) :

[0 Init: Constants a,b,c,... and variables x,y,z,... are
arithmetic expressions

0 Closure: If a and B are arithmetic expressions then so
are o+, o—f, —a, a X B .
e ambiguous arithmetic expressions:
02-3x5; x-y+2
0 two ways to form “2 -3 x 5 “:
01. 2, 3,2-3,5, 2-3 x5.

02 2,3, 5 3x5,2-3x5. ‘
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Problem for ambiguous defintions

e Define the fucntion val : AExp > Z as follows:

o Basis case:
0 val(c) = c where c is an integer constant.
0 val(x) = 0 where x is a variable.

e Recursion : where a and 3 are expressions
0 val(o+p) = val(a) + val(p)
0 val(o-B) = val(ar) — val(p)
0 val(a* B )= val(a) * Val()

e Then there are two possible values for 2 —3 * 5.
0 val(2-3*5)=val(2) — val(3 * 5) = 2 — [val(3) * val(5)] =2 — 15 = -13.
0 val(2 -3 *5) =val(2-3) * val(5) = [val(2) — val(3)] * 5
[] =-1*5 =-5.

e As aresult, the function val is not well-defined !!

Transparency No. 1-46



Introduction
Structural induction

e A: an inductively defined domain
P(x): a property on A.
e To show that P(x) holds for all x in A, it suffices to show
[0 Basis step: P(x) holds for all x in Init.
0 Ind. step: P(t,),...,P(t)=> P(f(t,,...,t ) for all fin F,
and for all t_1,...,tn in A.

e Example: show P(x)= #a(x) > 0 holds for all x.

[0 Basis step: x € Init = {“a”,”’b”,”c”,...})
o x=“a”=>#a(x)=12=>0.
wXx=“a” =>#a(x)=02=0

[ Ind. step: x = “dy” where d is any element in X and “y” is any

element in X*.

By ind. hyp. #a(“y”) > 0. hence
wifd=a =>#a(“dy”)=1+#a("y”) =0
wifdza => #a(“dy”) =#a("y”)=>0.
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More example:

Define the set of labeled binary trees as follows:
>. a set of labels ={a,b,c,..}
I'=2U/{(, )}, I'* =the set of strings over I.

T, is a subset of I'* defined inductively as follows:
0 Init: () is a tree. // no more written as “()”
0 closure: if x is a label, and L and R are trees,
then (x L R) is a tree.

e Example / counterexample:
0 (), (@ )0), ((@) (b) () -
o Fortree T, let If(T) = #of ‘(" ,Ib(T) =# of labels, and
e(T) = number of empty subtrees “()" in T. All can be

defined inductively as follows:
0 basis:  If(()) = 1; Ib(()) = 0; e(()) = 1.
0 recursive: If( (x L R) ) =1+ If(L) + If(R);
i Ib( (xLR))=1+Ib(L) +Ib(R); e( (x L R)) = e(L) + e(R).
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More example(cont’d)

e Use structural ind. to prove properties of trees.
o Show that for all tree T in Ty : P(T) =y
If(T) = Ib(T) + e(T)
holds for all tree T.
0 Basisstep[ T=()]: If(()) =1, Ib(())=0, e(())=1 => P(()) holds.
0 ind. step[ T= (x L R) where x: any label, L, R: any trees] :
assume (ind.hyp.:) If(L) = Ib(L) + e(L) and
If(R) = Ib(R) + e(R ). Then
If( (x L R) ) =1 + If(L) + If(R) = 1 +Ib(L) +Ib(R) + e(L) +&(R)
e((xLR))=e(l)+e(R)
Ib( (x L R) ) =1+ Ib(L) + Ib(R)
==> If((X L R)) = Ib((X L R)) + e((X L R)).
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Exercise

e Let Z" be the domain of integer lists as defined inductively
at slide 36. Let append : Z" x Z" -> Z" be the binary
function on Z" such that, given x and y, append(x,y) will
form a list equal to the concatenation of x and y. For
iInstance, append([1],[ 2 3]) = [1 2 3] and append([2 3
41,[121]) =[23 4 2 1].

1. Give an inductive definition of append(x,y) according to
(the structure of) its first argument x.

2. Prove by induction that for all integer lists x and v,
sum(x) + sum(y) = sum(append(x,y)),
where the function sum was defined at slide 42.
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2. Basics of formal languages

What is a language ?

symbolize

=

A

stand for

The meaning triangle:
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Different levels of lanquage analysis

and analysis(  H1  43H7)

determine how words are related to sounds that realize them;
required for speech understanding.

Phonetics concerns itself with the production, transmission, and
perception of the physical phenomena( ) which are
abstracted in the mind to constitute these speech sounds or
signs.

Phonology concerns itself with systems of (F1r),
abstract cognitive units of speech sound or sign which
distinguish the words of a language.

Ex: k in 'kill' and 'skill' are two phones [k],[g] but same phoneme

/kl; book(EER:) > books (%))

: (B IIHT )
determine how words are formed from more basic meaning
units called "morphemes". (55 %)

morpheme: primitive unit of meaning in a language.
weg: friendly = friend + ly; luckily = lucky + ly
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Introduction

Levels of language analysis

e syntax analysis: ( )

0 determine how words can be put together to form correct
sentences.

determine what structure role each word plays in the sentence.
determine what phrases are subparts of what other parts.
ex: John saw his friend with a telescope
=> S[ NP[ noun:'John’] /[ one more result not listed!
VP[ verb: 'saw’,
NP[ NP[ possessivePronoun:‘his’, noun: 'friend’] ]
PP[ prep: 'with’, NP [ art: 'a' noun:'telescopel]]]]

e Semantics analysis : ( )

0 determine what words mean and how these meanings combine
in sentence to form sentence meanings. context independent.

[0 Possible analysis result of the previous example:
0 person(j), person(f), name(j,'"John’), time(t), friend(f,j) //?
0 see(j,f, t), before(t, now), possess(f, te, t).

[ Y N [ [ S [ [ (R
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Introduction
Levels of language analysis

: ( )
0 studies the ways in which context contributes to meaning

0 concern how sentences are used in different situation and how
use affects the interpretation of sentences.

0 ex: Would you mind opening the door?
1 John saw his friend with a telescope .

( ) ,-..
0 AT Xy B Fo
0 Ex: Wang has a friend. John saw him (Wang or Wang's friend?)
with a telescope yesterday.
World knowledge,...

Languages (including natural and programming languages)
contains many facets, each an active research domain of Al,
linguistics, psychology, philosophy, cognitive science and
mathematics.
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Introduction

What are formal languages

¢ |n the study of formal languages we care about only the
well-formedness/membership, but not the meaning of
sentences in a language.

Ex1: Our usual decimal language of positive numbers ?

0 Problem: Which of the following are well-formed
[representation of] numbers:
(1) 128 (2) 0023 (3) 44ac (4) 3327
[ Let L be the set of all well-formed [representations of ]
numbers. ==> 123, 3327 in L but 0023, 44ac notin L.

[ So according to the view of FL, The usual decimal language
of positive numbers (i.e., L) is just the set :

{ x| x is a finite sequence of digits w/t leading zeros }.

[0 Note: FL don't care about that string '134' corresponds to the (abstract)
positive number whose binary representation is 10000000 —It’s the job
of semantics.
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Definition 2.1

An alphabet X (or vocabulary; Z£R£E) is a finite set.
0 Ex: decimal_alphabet = {0,1,2,3,4,5,6,7,8,9}
0 binary_digit = {0,1}; Hexidecimal-alphabet = {0,..,9,A,..,F}
[0 alphabet-of-English-sentences = {a, word, good, luckily,...}
0 alphabet-of-English-words = {a,...,z,A,...,Z}
Elements of an alphabet are called /etfers or symbols

A string (or word or sentence) over 2 is a finite sequence of
elements of 2.
0 Ex:if £ ={a,b} then “aabaa” is a string over X of length 5.
0 Note: A string x = x, x, ... X,,_.; of length n is in fact viewed as a function
I x: [0..n) 2 X such that x(k) = x, for k in [0,n).
The length of a string x, denoted |x|, is the number of symbols
in X. ex: |abbaa| =

There is a unique string of length 0, called the null string or
empty string, and is denoted by ¢ (or A)
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Definition 2.1 (cont'd)
2* =, the set of all strings over .
0 Ex: {a,b}* = {¢,a,b,aa,ab,ba,bb,aaa,...}
1 {a}* = {¢,a,aa,aaa,aaaa,...} = {a" | n > 0}.
1 }*=? ({}or{elore?)
Note the difference b/t sets and strings:
0 {a,b} = {b,a} but ab # ba.
0 {a,a,b} = {a,b} but aab # ab
So what's a (formal) language ?

A language over X is a set of strings over 2 (i.e., a
subset of 2¥). Ex: let £ ={0,...,9} then all the followings
are languages over .

0 1.{e} 2.{} 3.{0,...,9} =% 4. {x| x € £* and has no leading
Os} 5.2°={x| |x| =5}6.%* ={x| |x| is finite }
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Examples of practical formal languages

Ex: Let A be the set of all ASCII codes.
[0 a C program is simply a finite string over A satisfying all
syntax rules of C.
0 C-language =,{ x | x is a well-formed C program over A }.
0 PASCAL-language = {x | x is a well-formed PASCAL
program over A }.
Similarly, let ENG-DIC = The set of all English lexicons
= { John, Mary, is, are, a, an, good, bad, boys, girl,..}
[ an English sentence is simply a string over ENG-DIC
0 ==> English =, {x | x is a legal English sentence over END-
DIC} ==>
0 1.John is a good boy . € English.
0 2. |Johnis agood boy.|=?
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issues about formal langquages

e Why need formal languages?
[ for specification (specifying programs, meanings etc.)

0 i.e., basic tools for communications b/t people and
machines.

[ although FL does not provide all needed theoretical
framework for subsequent (semantic processing...)
processing, it indeed provides a necessary start, w/t which
subsequent processing would be impossible -- first level of
abstraction.

[0 Many basic problems [about computation] can be
investigated at this level.

e How to specify(or represent) a language ?

[ Notes: All useful natural or programming languages
contain infinite number of strings (or programs and
sentences)
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How to specify a language

[ principles: 1. must be precise and no ambiguity among
users of the language: 2. efficient for machine processing

0 tools:
0 1. traditional mathematical notations:
wA={x]||x] <3 and x € {a,b}} = {e,a,b,aa,ab,ba,bb}
' problem: in general not machine understandable.
0 2. via programs (or machines) :
0 P:aprogram; L(P) =4 {X | P return 'ok’ on input string x}
s precise, no ambiguity, machine understandable.
' hard to understand for human users !!
0 3. via grammars: (easy for human to understand)
WEX: noun := book | boy | jirl | John | Mary
Dk art:=a|an|the ; prep:=on|under|of]...
Dk adj :=good | bad | smart | ...
w NP :=noun|artnoun|NPPP| ..
v PP :=prep NP ==>'the man on the bridge' € PP.
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Non-enumerability of languages

e Recall that a set is denumerable if it is countably
infinite. (i.e., A set T is denumerable if there is a 1-1
and onto mapping b/t T and {0,1,...})

e Exercises: If X is finite and nonempty, then
0 1. Z* is denumerable (i.e., |*| = [N| )
0 2. 2% (ie., the set of all languages over X) is uncountable.
0 pf: Since |2%°| # |Z*] = IN|, hence |2%’| is not countable
1
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Operations on strings

string concatenations:

0 x,y: two strings ==> x-y is a new string with y appended to
the tail of x. i.e., x'y is the function :

1 z : [0, len(x)+len(y) ) 2 X such that
1 z(n) = x(n) for 0 < n <len(x) and
1 z(len(x)+n) = y(n) for 0 < n <len(y).

[ Some properties of - :
1. ASSOC: (xy)z = x(yz) ; 2. Identity: ex = xg = Xx.

3. Ixy| = x| + |yl
conventions and abbreviations:
0 X: for alphabet ; a,b,c: for symbols;

0 x,y,z: for strings; A,B,C: for languages;
0 x° for xxxxx; x'=x; x0 =¢.

[ #a(x) =4, number of a's in x. ==> #a(aabbcca) = 3.
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Operations on languages (i.e, string sets)

1. usual set operations:
0 Union:AUB={|xeAorxeB}
Ex: {a,ab} U { ab, aab} = {a,ab,aab}
0 intersection: AnB={X|xeAandx € B}
0 complements in £*: ~A = X" - A= {x | x not € A}
0 ex: ~{x | |x| is even } = {x | |x]| is odd }.
2. Set concatenations:
AB=,{xy|xeAandyeB}.
0 Ex: {b,ba} {a,ab} = {ba,bab,baa,baab}.

3. Powers of A: A" ( n > 0) is defined inductively:
1.A={¢g}; A" =A-A"=A-A-..-A. ----- nA's
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Operations on languages (cont'd)

Ex: Let A = {ab,abb}. Then

01.A°=7? 2.A'=7 3.A2=7 4. |A%="?
0 5. Hence {a,b,c}" = {x € {a,b,c}* | [Xx| =n } and
[ A" = { X X5...X,, | Xq;-..,X,, € A}

5. Asterate (or star) A* of A is the union of all finite
powers of A:

A*=U ., AK=AUAUA2UA3U..
={XX5...X, | n=0and x; e Afor1>i>n}

notes:

1.ncan be 0 ==> ¢ ¢ A*. ==> ¢ ¢ {}*.

2.If A =% ==>A*=3* = the set of all finite strings
over X.
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Properties of lanquages operations

6. A* =, the set of all nonzero powers of A
=40t Ut AK=AUA2U A3U ...= A A~
Properties of languages operations
1. associative: U, N, -:
AU(BUC) = (AUB)UC; AN(BNC) = (AnB)NC;
A(BC) = (AB)C
2. commutative : U,N:

3. Identities:
0 1.AU{Q=0UA=A; 2. AnI*=T*nA=A;
0 3.{c}A=A{e} =A.

4. Annihilator: A{} = {}A = {}.
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Properties of lanquages operations (cont'd)

5. Distribution laws:
0 AU(BNC) = (AUB)n (AUC) ; ANn(BUC)=(AnB)U(ANC)
0 A(BUC)=AB UAC ; A(BNC)=AB nAC (x)
0 Ex: Let A = {a,ab}, B = {b}, C = {¢}
0 ==>A(BNnC)=? AB=? AC=7?
0 ==>A(BnC)  ABn AC.
[ Exercise: show that A(BUC) = AB UAC.
6. De Morgan Laws: ~(AUB)=7? ~(AnB)=7?
7. Properties about A*:
01.A*A*=A*; 2. A*™ =A*; 3. A*={c}UAA*
0 4. AA*=A*A=A*". 5. {}*={e}.
[0 Exercises: Prove 1~5. (hint: direct from the definition of A¥)
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A language for specifying languages

In the term: 'a language for specifying languages’,
the former language is called a metalanguage while
the later languages are called target languages.

0 So in the C language reference manual, the BNF form is a
meta language and C itself is the target language.

>: an alphabet; A=XU{+ *¢e,d,-),(};
E=AU{~nN, -}
1. The set of all regular expressions is a subset of A*

which can be defined inductively as follows:

[ Basis: 1. e, O are regular expressions
I 2. Every symbol a in X is a regular expression.
0 Induction: If a and B are regular expressions then so are

0 (a+f), (a-B), o
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Reqular expressions

[ Examples:
0 legal reg. expr. : e, (a+b)*, ((a +(b-c))+(e-b)*)
0 illegal reg. expr: (ab),a+ b, ((a+ X)) +d, whered ¢ X.
0 illegal formally but legal if treated as abbreviations:
0 ab -->(a'b) ; a+b -->(a+b);
0 a+bc* -->(a+(b'c*))
o Extended regular expressions (EREGs):

o EREGs are strings over E and can be defined
inductively as follows:
[0 Basis:1.e, O are EREGs
I 2. Every symbol ain X is an EREG.
0 Induction: If a and § are EREGs then so are

0 (a+B), (a-B), @, (~a), (anB), (a-B)
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Lanquages represented by reqular expressions

o [Extended] regular expressions provides a finite way
to specify infinite languages.

e Definition: for each EREG (and hence also REG) a,
the language (over %) specified (or denoted or
represented) by a, written L(a), is defined inductively
as follows:

0 Basis: L(e) = {c}; L(D) = {};
1 for each a € X, L(a) = {a}.

0 Induction: assume L(a) and L(B) have been defined for
EREG a and . Then

0 L(a+B) = L(a) U L(B); L(af) = L(a) L(B); L(a®)=L(a)";
0 L(~a) =27 - L(a); L(a-B)=L(a)-L(B); Lla nB) = L(a) nL(B).

e Definition: a language A is said to be regular if A = L(a) for
some regular expression o.
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Examples:
o LetX = {a,b}. Then
0 L( a(a+b)*) = {x | x begins with a } = {a,aa,ab,aaa,aab,aba,...}
0 L(~(a(a+b)*)) = {x | x does not begin with a}
1 = {x | x begins with b } U {€} = L( e + b(a+b)*).

e Regular expressions and Extended regular
expressions give us finite ways to specify infinite
languages. But the following questions need to be
answered before we can be satisfied with such tools.

[ 1. Are EREG or REGs already adequate ?
0 (i.e, For every A c X*, there is an expression a s.t., L(a) =
A ?) ==> ans:
0 2. For every expression a, is there any [fast] machine that
can determine if x € L(a) for any input string x ?
0 Ans:
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IS EREG more expressive than REG ?
e L1, L2: two [meta] languages;

0 we say L1 is at least as expressive as L2 if L(L2) =, {A |

there is an expressionainL2s.t. A=L(a)} is a subset of
L(L1).

0 L1 is said to be equivalent to L2 in expressive power iff
both are at least as expressive as the other.

e Problem:

[ EREG is at least as expressive as REG since L(REG) is a
subset of L(EREG) (why?)

[ But does the converse hold ? (i.e, Is it true that for each
EREG a there is a REG B s.t.,, L(a) = L(B) ?

[ ans:
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