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Course outlines 

 Introduction: 

 Mathematical preliminaries: 

sets, relations, functions,sequences, graphs, trees, proof by 

induction, definition by induction (recursion). 

 Basics of formal languages: 

alphabet, word, sentence, concatenation ,union, iteration [= Kleene 

star], language, infinity of languages, finite representations of 

languages 

 PART I: Finite Automata and Regular Sets  

  DFA,NFA,regular expressions and their equivalence 

  limitation of FAs;  

 Closure properties of FAs,  

 Optimization of FAs  
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course outline (cont'd) 

 PART II: Pushdown Automata and Context Free 

Languages  

 CFGs and CFLs; normal forms of CFG 

 Limitation of CFG; PDAs and their variations, 

 closure properties of CFLs 

 Equivalence of pda and CFGs; deterministic PDAs 

 parsing (Early or CYK's algorithms) 

 PART III: Turing Machines and Effective 

Computability  

 Turing machine [& its variations] and Equivalence models 

 Universal TMs 

 Decidable and undecidable problems (Recursive sets and 

recursively enumerable sets) 

 Problems reductions ; Some undecidable problems 
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Goals of the course 

 understand the foundation of computation 

 make precise the meaning of the following terms: 

 [formal] languages, problems, Programs, machines, 

computations 

 computable {languages, problems, sets, functions} 

 understand various models of machines and their 

relative power : FA, PDAs, LA (linear bounded 

automata), TMs, [register machines, RAMs,...] 

 study various representations of languages in finite 

ways via grammars: RGs, CFGs, CSGs, general PSGs  
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Chapter 1 Introduction 
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Mathematical preliminaries (reviews) 

 sets (skipped) 

 functions (skipped) 

 relations 

 induction 

 Recursive definitions 
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 Sets 

 Basic structure upon which all other (discrete and 

continuous ) structures are built. 

 a set is a collection of objects. 

 an object is anything of interest, maybe itself a set. 

 Definition 1.  

  A set is a collection of objects. 

  The objects is a set are called the elements or members of 

the set.  

  If x is a memebr of a set S, we say S contains x. 

 notation: x S vs  x S 

 Ex: In 1,2,3,4,5, the collection of 1,3 5 is a set.  
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Set description 

 How to describe a set:? 

1. List all its member. 
  the set of  all positive odd integer >10 = ? 

 The set all decimal digits = ? 

 the set of all upper case English letters = ? 

 The set of all nonnegative integers = ? 

2. Set builder notation: 
 P(x) : a property (or a statement or a proposition) about 

objects. 

 e.g., P(x) = “ x > 0 and x is odd” 

 then {x | P(x) } is the set of objects satisfying property P. 

  P(3) is true => 3   {x | P(x)} 

  P(2) is false => 2   {x | P(x)} 
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Set predicates 

Definition 2.  

 Two sets S1, S2 are equal iff they have the same elements 

 S1 = S2 iff "x (x S1 <=> x  S2) 

 Ex:   {1,3,5} = {1,5,3} = {1,1,3,3, 5} 

 Null set ={} =  =def the collection of no objects. 

Def 3’: [empty set] for-all x x. 
Def 3. [subset]  

 A  B iff all elements of A are elements of B. 

 A  B <=> for-all x (x  A => x  B)). 

 Def 3’’: A  B =def A  B /\ A  B. 

 Exercise : Show that:  1. For all set A (

 2. (A  B /\ B  A) <=> (A = B)      3. A   
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Size or cardinality of a set 

Def. 4 

 | A | = the size(cardinality) of A = # of distinct elements of A. 

 Ex: 

 |{1,3,3,5}| = ? 

 |{}| = ? 

 | the set of binary digits } | = ? 

 |N| = ?  ;  |Z| = ? ;  | {2i | i in N} = ?  

 |R| = ? 

 Def. 5. 

 A set A is finite iff |A| is a natural number ; o/w it is infinite. 

 Two sets are of the same size (cardinality) iff there is a 1-1 

& onto mapping between them.   
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countability of sets 

 Exercise: Show that 

 1. |N| =  |Z| = | Q | = {4,5,6,...} 

 2. |R|  = | [0, 1) | 

 3. |N|    |R|       

 Def. 

 A set A is said to be denumerable  iff |A| = |N|. 

 A set is countable (or enumerable) iff either |A| = n for some 

n in N or |A| = |N|. 

 By exercise 3,  

 R is not countable. 

 Q  and Z is countable.  
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The power set 

Def 6.  

 If A is a set, then the collection of all subsets of A is also a 

set, called the poser set of A and is denoted as P(A) or 2A. 

 Ex: 

 P({0,1,2}) = ? 

 P({}) = ? 

 |P({1,2,..., n})| = ? 

 Order of elements in a set are indistinguishable. But  

sometimes we need to distinguish between (1,3,4) 

and (3,4,1)  --> ordered n-tuples  
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More about cardinality 

Theorem: for any set A, |A| |2A|. 

Pf: (1) The case that A is finite is trivial since |2A| = 2|A| > |A| 

  and there is no bijection b/t two finite sets with different sizes. 

(2) assume |A| = |2A|, i.e., there is a bijection f: A -> 2A. 

   Let  D = {x in A | x  f(x) }. ==> 

  1. D is a subset of A; Hence 

  2. $y in A s.t. f(y) = D. 

 Problem: Is y  D ? 

  if yes (i.e., y  D)  ==> y  f(y) = D, a contradiction 

  if no (i.e., y  D) ==> y  f(y) =D, a contradiction too. 

 So the assumption is false, i.e., there is no bijection b/t A and 

2A. 

Note: Many proofs of impossibility results about computations 

used arguments similar to this.  
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Cartesian Products 

Def. 7 [n-tuple] 
 If a1,a2,...,an (n > 0) are n objects, then “(a1,a2,...,an)”  is a 

new object, called an (ordered) n-tuple [ with ai as the ith 
elements. 

 Any orderd 2-tuple is called a pair. 

 (a1,a2,...,am) = (b1,b2,...,bn)  iff  
m = n and    for i = 1,..,n ai = bi. 

 

Def. 8: [Cartesian product] 
  A x B =def {(a,b) | a in A /\ b in B } 
  A1 x A2 x ...x An =def  {(a1,...,an) | ai in Ai }. 
 
Ex: A = {1,2}, B = {a,b,c} , C = {0,1} 
 1. A x B = ?  ; 2. B x A = ? 
 3. A x {} = ?   ;4. A x B x C = ? 
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 Set operations 

 union, intersection, difference , complement, 

 Definition.  

 1. A B = {x | x in A or x in B } 

 2. A B = {x | x in A and x in B } 

 3. A - B = {x | x in A but x not in B } 

 4. ~ A = U - A 

 5. If A  B = {} => call A and B disjoint. 
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Set identites 

 Identity laws:                  A ? ? = A 

 Domination law:             U ? ? = U;   {} ?? = {} 

 Idempotent law:             A ? A = A ; 

 complementation:         ~~A = A 

 commutative :               A ? B = B ? A 

 Associative:                  A ? (B ? C) = (A ? B ) ? C 

 Distributive:                  A ? (B ? C) = ? 

 DeMoregan laws:         ~(A ? B) = ~A ? ~B  

 

Note: Any set of objects satisfying all the above laws is 
called a Boolean algebra. 
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Prove set equality 

1. Show that ~(A  B) = ~A ~B by show that  

 1. ~(A  B)~A ~B  

 2. ~A ~B ~(A  B)  

 pf: (By definition) Let x be any element in ~(A  B)...

 

2. show (1) by using set builder and logical equivalence. 

 

3. Show distributive law by using membership table. 

 

4. show ~(A (B C)) = (~C ~B) ~A by set identities. 
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 Functions 

 Def. 1 [functions]     A, B: two sets 

  1. a function f from A to B is a set of pairs (x,  y) in AxB s.t., for 

each x in A there is at most one y in B s.t. (x,y) in f. 

  2. if (x,y) in f, we write f(x) = y. 

  3. f :A ->B means f is a function from A to B. 

Def. 2. If f:A -> B ==> 

 1. A: the domain of f;   B: the codomain of f 

  if f(a)=b =>  

   2. b is the image of a;   3. a is the preimage of b 

   4. range(f) = {y | $x s.t. f(x) = y} = f(A). 

   5. preimage(f) = {x | $ y s.t. f(x) = y } = f-1(B). 

   6. f is total iff  f-1(B) = A. 
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Types of functions 

 Def 4.   

   f: A x B;   S: a subset of A, 

              T: a subset of B 

  1.  f(S) =def   {y | $x in S s.t. f(x) = y } 

  2.  f-1(T) =def {x | $y in T s.t. f(x) = y } 

 

Def. [1-1, onto, injection, surjection, bijection] 

 f: A -> B. 

 f is 1-1 (an injection) iff  f(x)=(fy) => x = y. 

 f  is  onto (surjective, a surjection) iff  f(A) = B 

 f is 1-1 & onto <=> f is bijective (a bijection, 1-1 

correspondence)  
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Relations 

 A, B: two sets 

 AxB (Cartesian Product of A and B) is the set of all ordered 

pairs {<a,b> | a  A and b   B }. 

 Examples: 

    A= {1,2,3}, B= {4,5,6} => AxB =   ?         

 

 A1,A2,...,An (n > 0): n sets 

 A1xA2x...xAn = {<a1,a2,...,an> | ai   Ai  }. 

 Example: 

  1. A1={1,2},A2={a,b},A3={x,y} ==> |A1xA2xA3| =  ? 

   2. A1= {}, A2={a,b}  => A1xA2 = ? 
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Binary relations 

 Binary relation: 

 A,B: two sets 

 A binary relation R between A and B is any subset of AxB. 

 Example:  

  If A={1,2,3}, B ={4,5,6},  then which of the following is a 

binary relation between A and B ? 

 R1 = {<1,4>, <1,5>, <2,6> } 

 R2 = {} 

 R3 = {1,2,3,4} 

 R4 = {<1,2>, <3,4>, <5,6> } 
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Terminology about binary relations 

 R: a binary relation between A and B (I.e., a subset 

of AxB), then 

 The domain of  R: 

     dom(R)  = {x  A | $ y   B s.t. <x,y>  R} 

 The range of R: 

     range(R) ={y   B, | $ x  A, s.t., <x,y>   R} 

 <x,y>   R is usually written as x R y. 

 If A = B, then R is simply called a relation over(on) 

A. 

 An n-tuple relation R among A1,A2,...,An is any 
subset of A1xA2...xAn, n is called the arity of R 

 If A1=A2=...=An=A => R is called an n-tuple relation 

(on A),. 
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Operations on relations (and functions) 

 R  AxB; S  B x C: two relations 

 composition of R and S: 

 R · S = {<a,c> | there is b in B s.t., <a,b> in R and <b,c> in 

S }. 

 Identity relation: IA = {<a,a> | a in A } 

 Converse relation: R-1 = {<b,a> | <a,b> in R } 

 f:A -> B; g: B->C: two functions, then 

  g·f:A->C defined by g·f(x) = g(f(x)). 

 Note: function and relation compositions are 

associative, I.e., for any function or relation f,g,h, 

    f· (g·h) = (f·g) ·h 
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Properties of binary relations 

 R: A binary relation on S, 

1. R is reflexive iff  for all x in S, x R x. 

2. R is irreflexive iff for all x in S, not x R x. 

3. R is symmetric iff for all x, y in S, xRy => yRx. 

4. R is asymmetric iff for all x,y in S, xRy => not yRx. 

5. R is antisymmetric iff for all x,y in S, xRy and yRx => x=y. 

6. R is transitive iff for all x,y,z in S, xRy and yRz => xRz. 

 

Graph realization of a binary relation and its properties. 

 
x x 

y y 

s s 

rule: if xRy then draw an 

   arc from x on left S to y  

   on right S. 
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Examples 

 The relation  on the set of natural numbers N. 

  What properties does  satisfy ?  
  ref. irref, or neither ? 

  symmetric, asymmetric or antisymmetric ? 

  transitive ?  

 The relation  on the set of natural numbers N. 

 The divide | relation on integers N ?  
 x | y iff x  divides y. (eg. 2 | 10, but not 3 | 10) 

  What properties do   and | satisfy ? 

 The BROTHER relation on males (or on all people) 
 (x,y)  BROTHER iff x is y’s brother. 

 The ANCESTOR relation on a family. 
 (x,y)  ANCESTOR if x is an ancestor of y.  

 What properties does BROTHER(ANCESTOR) have? 
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Properties of relations 

 R: a binary relation on S 

1. R is a preorder iff it is ref. and trans. 

2. R is a partial order (p.o.) iff R is ref.,trans. and antisym. 

(usually written as  ). 

3. R is a strict portial order (s.p.o) iff it is irref. and transitive. 

 usually written <.    

4. R is a total (or linear) order iff it is a partial order and every 

two element are comparable (i.e., for all x,y either xRy or 

yRx.) 

5. R is an equivalence relation iff it is ref. sym. and trans. 

 If R is a preorder (resp. po or spo) then (S,R) is called a 

preorder set (resp. poset, strict poset). 

 What order set do (N, <) , (N, ) and (N, |) belong to ? 
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Properties of ordered set 

 (S, ): a poset, X: a subset of S. 

1. b in X is the least (or called minimum) element of X iff b x for 

all x in X.  

2. b in X is the greatest (or called maxmum or largest) element of 

X iff X  b for all x in X.  

 Least element and greatest element, if existing, is unigue for 

any subset X of a poset (S,  ) 

pf:  let x, y be least elements of X. 

         Then, x y and y x. So by antisym. of , x = y. 

3.  X ia a chain iff (X,R) is a linear order(, i.e., for all  x, y in X, 

either xy or yx) . 

4. b in S is a lower bound (resp., upper bound) of X iff 

    bx  (resp., xb) for all x in X. 

 Note: b may or may not belong to X. 
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Properties of oredered sets 

 (S, ) : a poset, X: a nonempty subset of S. 

5. b in X is minimal in X iff there is no element less 
than it. 
 i.e., there is no x in X, s.t., (x < b),  

 or  “for all x, x b => x =b.”  

6. b in X is a maximal element of X iff there is no 
element greater then it. 
 i.e., there is no x in X, s.t., (b < x),  

 or  “for all x, b  x => x=b.”  

 Note: 

1.Every maximum element is maximal, but not the 
converse in general. 

2. Maximal and minimal are not unique in general. 
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well-founded set and minimum conditions 

 (S,) : a poset (偏序集).  

. is said to be well-founded (良基性) iff there is no 

infinite descending sequence. (i.e., there is no infinite 

sequence x1,x2,x3,.... s.t., x1 > x2 > x3 >... ). 

 Note: x > y means y < x (i.e., y x and y = x) 

 if is well-founded => (S,) is called a well-founded set. 

2. (S,) is said to satisfy the minimal condition iff every 

nonempty subset of S has a minimal element. 

 (S,  ): a total ordered set (全序集). 

. is said to be a well-ordering(良序) iff  every 

nonempty subset of S has a least element.  

 If is well ordered, then (S,) is called a well-ordered set. 
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Examples of ordered sets 

 Among the relations (N, ), (N, ), (N, |), (Z, ), (Z,), 

(Z,|) and (R, ), 

1. Which are well-founded ? 

2. Which are well-ordered ? 
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Equivalence of well-foundness and minimal condition 

 (S,) is well-founded (w.f.)  iff it satisfies the minimal 

conditions (m.c.). 

pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f. 

  (1) Let x1,x2,... be any infinite sequence s.t. x1 > x2 > x3 >... . 

       Now let X={x1,x2,...}. X obviously has no minimal element. 

       S thus does not satisfy m.c. 

 

  (2) Let X be any nonempty subset of S w/o minimal elements. Now 

     (*) choose arbitrarily an element a1 from X and let  

          X1 = {x | x  X and a1 > x } (i.e. the set of all elements in X < a1 ). 

   Since a1 is not minimal, X1 is nonempty and has also no minimal element. 

   We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and 

obtain an infinite descending  sequence a1 > a2 > a3 > ...  

   Hence S is not w.f. 
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A general proof scheme to show the infinity of  a set  

 Let P be a property of sets and C =def { X | P(X) holds }. If there 

exists a function f : C  C satisfying the property:  forall set X  C 

(i.e, P(X) holds),  

  1. f(X) is a nonempty proper subset of X, 

       (i.e., f(X) , f(X)  X and f(X)  X),  and 

  2. f preserves property P  

     (I.e., P(X) implies P(f(X), or XC => f(X)C), 

   then  all sets X with property P are infinite .  

Pf: Let X0,X1,…,Xk,… be an infinite sequence of sets   

 with X0 = X and Xk+1 =def  f(Xk) = f(f(Xk-1)) = … = fk+1(X). 

 Since X = X0 has property P and f preserves P, by induction   

 on k, all Xk has property P.  And by (1)  Xk  f(Xk) = Xk+1 for all k.   

 Now the sequence X0-X1, X1-X2, X2-X3,…. is an infinite sequence of  

   nonempty and disjoint subsets of X. X thus is infinite. 
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Variants of Inductions 

 Mathematical Induction: 
 To prove a property P(n) holds for all natural number n  N, 

it suffices to show that 

(1)  P(0) holds   --- (base step) and 

(2) For all n  N, p(n) => p(n+1) --- (induction step) 
P(n) in (2) is called induction hypothesis (h.p.) 

 

 P(0), " n (P(n) => P(n+1)) 

 -------------------------------------------MI1  

              " n P(n)         

 

 P(0), "n  ( (P(0)/\...p(n-1)) ) => P(n) ) 

 -------------------------------------------------MI2 

            "n P(n) 

= "m. m<n  P(m) // Ind. Hyp. 
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Well-order Induction 

 Well-order induction: 

 (S, ) a well-ordered set; P(x): a property about S. 

 To show that P(x) holds for all xS, it suffices to show 

(1) P(xmin) holds where xmin is the least element of S. --- (base step) 

(2) for all xS, if (for all yS  y < x => P(y)) then p(x) ---(ind. step) 

 

 (1) is a special case of (2) [i.e., (2) implies (1)] 

 (for all y in S  y < x => P(y)) in (2) is called the ind. hyp. of (2). 

 

  P(Xmin),  "y [ ("x. x< y =>P(x)  ) => P(y) 

    --------------------------------------------------------------- WI 

                "x P(x)  
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Variants of inductions 

  Well-founded induction (WI ): 

 (S, ) a well-founded set. P(x) a property about S. 

 WI  says that to prove that P(x) holds for all x in S, it 

suffices to show that 

(1) P(x) holds for all minimal elements x in S --- base step, and 

(2) for all y in S, (for all z in S  z < y => P(z)) => p(y) ---ind. step 

 (1) has already been implied by (2) 

 (for all z in S  z < y => P(z)) in (2) is the ind. hyp. of the proof. 

 

    forall minimal x, P(x),      "y [ ("z,  z<y =>P(x) ) => P(y) ] 

           -------------------------------------------------------------------------- WI 

                                           "x P(x)  

 Facts:  w.f. Ind. => well-ordered ind. => math ind. 

 (I.e., If w.f ind. is true, then so is well-ordered ind. and 

    if well-ordered ind. is true , then so is math. ind.) 
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Correctness of  WI 

 (S,) : a well-founded set.      P(x) : a property about S. 

  Then P(x) holds for all x  S, if  
(1) P(x) holds for all minimal elements x  S --- base step, and 

(2) for all y  S, (for all z  S  z < y => P(z)) => p(y) ---ind. Step 
pf:  Suppose WI is incorrect. Then there must exist (S,) satisfying (1)(2) but 

      the set NP = { x | x   S and P(x) is not true } is not empty. (*)  

 ==> Let xm be any minimal element of NP. 

 case (1): xm is minimal in S. --> impossible! (violating (1) ) 

       since if xm is minimal in S, by (1), P(xm) holds and xm  NP. 

 case (2): xm is not minimal in S. --> still impossible!   

             xm not minimal in S ==> L = {y | y  S /\ y < xm } is not empty. 

      ==> L  NP = { }  (o/w xm would not be minimal in NP.) 

     ==> (ind. hyp. holds for xm , i.e., for all z  S, z < xm => p(z) is true ) 

     ==> (by (2).) p(xm) holds ==> xm NP.    

 case(1) and (2) imply NP has no minimal element and hence is empty, 
which contradicts with (*). Hence the assumption that WI is incorrect is 
wrong.   
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Definition by induction (or recursion) 

 Consider the following ways of defining a set. 

1. the set of even numbers Even = {0,2,4,...}: 
 Initial rule   :  0 Even. 

 closure rule:  if x Even then x +2 ven. 

2. The set of strings S+ over an alphabets S = {a,b,...,z} 
 Initial:  if x S, then “x” S+. 

 closure:  If xS and “a” S+, then “xa” S+. 

3. The set (Z*) of  integer lists. 
 Initial: [ ] is a (integer) list, 

 closure: If x is an integer and [L] is a list, then [x L] is a list.  
 e.g., [ ], [4 ], [3 4], [2 3 4], [5 2 3 4] 

 

 Problem: All definitions well-defined? What’s wrong? 
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Problems about recursive definition 

 The above definitions are incomplete in that there are 
multiple sets satisfy each definition 

 Example: 
 Let Ni = {0,2,4,6,...} U { 2i+1, 2i+3, ...}. 

 Then {0,2,4,6,...} and Ni (i >0  all satisfy Def. 1. 

 Among {0,2,4,6,...} and Ni (i >  0) , which one is our 
intended set ? 

 How to overcome the incompleteness ? 

 Relationship between {0,2,4,...} and the collection of 
sets satisfying the definitions? 
 {0,2,4,...} is the least set among all sets. 

 {0,2,4,...} is equal to the intersection of all sets. 

 Every other set contains some elements which are not 
grounded in the sense that they have no proof (or derivation). 
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General form of inductively defining a set  (or domain)   

  W: a set,  Init: a subset of W   

    F: a set of functions/rules  on W, 

  we define a subset  D of W  as follows: 

 1. Initialization:  Every element of Init is an element of D. 

                       (or simply Init  D) 

 2. closure: If f:Wn->W in F and t1,...,tn are members of D, 

                    then so is f(t1,...,tn) 

 3. plus one of the following 3 phrases. 

 3.1 D is the least subset of W with the above two properties. 

 3.2 D is the intersection of all subsets of W with property 1,2.  

 3.3 Only elements of Wobtainable by a finite number of 
applications of rules 1 and 2 are elements of D. 
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How to derive an object from an inductive defiintion 

 W: a set,      Init: a subset of W   

     F: a set of functions on W, 

Given Init and F,  an object x W is said to be  

derivable from Init and F if there is a finite sequence 
x1,x2,…xn of objects of Wsuch that 

1.x = xn, 

2. for all 1k n, either 

  2.1 xk  Init   --- (xk is an axiom) or 

  2.2 xk = f(t1,…,tn) where fF and {t1,…,tn}{x1,…,xk-1}.                

                         --- (xk is got from closure rule) 

 

The sequence is called a derivation(or deduction,proof) of 
x. 
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Examples 

 W= Z,      Init: = {2} ,    F = { x5, add5, +} 

 Then 54 is derivable since 

 

 

1.  2,    --- axiom 

2.  7,    --- add5(2) 

3.  9,    --- +(2,7) 

4.  45,  ---- x5(9) 

5.  54   ---- +(9,45) 

 

is a derivation of 54. The length of the derivation is 5. 

 

                          = 

                          2 

        =           =  ----+5 

        2           2    7 

=    -----+5    --------+5 

2      7             9 

----------+      ---------x5 

   9,                 45 

--------------------------- + 

        54              

derivation (proof ;deduction) tree for 54 
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Define functions on recursively defined domains 

 Once a domain D is defined inductively. We can 

define functions on the domain according to the 

following recursive scheme: 

 A function v : D  C, can be defined as follows: 

 basis case: specify the value v(t) of t for each primitive 

object t in Init. 

 recursive case: specify the value v(f(t1,t2,…,tn)) of 

every compound object f(t1,t2,…,tn) in terms of the 

values v(t1),v(t2),…,v(tn) of smaller composing objects 

t1,…,tn , for all f F and t1,…,tnD. 
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Example 

 Consider the following functions defined on integer lists:  

sum : integer List(denoted Z*) Z  

with sum(L) =def sum of all integers in L. 

 We can define sum by recursion as follows: 

 Basis case: specify the value sum(L) of L for each 

primitive L in Init = { [] }. 

 ==> basis: sum([]) = 0. 

 Recursive case: specify the value sum(f(t1,...,tn)) 

of element f(t1,...,tn)for each f ∈ F and t1,...,tn ∈ D= 

Z+. 

 ==> Recursion: where F = { fx | fx([L’]) = [x L’],  xZ } 

     For any list of integers L of the form [x L’], 

   sum(L) = sum([x L’]) = x + sum([L’])   

Ex: sum([4,3,2])=4+sum([3,2])=4+3+sum([2])=4+3+2+sum([])     

   = 4 + 3 +2 + 0 = 9. 
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Define functions on recursively defined domains 

 More example:  
 #a : S+

 N with #a(x) =def number of a’s in string x. 

 Now we can define #a as follows: 
 Basis case: specify the value #a(“x”) of “x” for each x in  S.   

==> #a(“a”) = 1 ; #a(“y”) = 0 if y  a. 

 Recursive case: specify the value #a(“dz”) of element “dz” 
for each d ∈S and  “z”∈S +. 

      ==> for any d  S  and “z”  S+ , 

            then #a(“dy”) = 1 + #a(“y”) if d = a   and 

                     #a(“dy”) =      #a(“y”)  if d  a 

 But are such kind of definitions well defined?  
 A sufficient condition: If the recursively defined domain is 

 not ambiguous (i.e., multi-defined)I.e., there is only one 
way to form (or derive ) each element in the domain.                         
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Example of a multi-defined(ambiguous) Domain 

 Arithmetic Expression (AExp ⊆ S*) : 

 Init: Constants a,b,c,… and variables x,y,z,… are 

arithmetic expressions 

 Closure: If a and b are arithmetic expressions then so 

are a+b, a-b, -a, ax b . 

 ambiguous arithmetic expressions: 

 2 – 3 x 5 ;    x – y + 2 

 two ways to form “ 2 – 3 x 5 “: 

 1.  2,  3, 2-3, 5, 2-3 x 5. 

 2.  2, 3,  5,  3x5, 2- 3x 5. 

 

x 

-

5 3 2 

-

x 

5 3 2 
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Problem for ambiguous defintions 

 Define the fucntion val : AExp  Z  as follows: 

 Basis case:  

 val(c) = c where c is an integer constant. 

 val(x) = 0 where x is a variable. 

 Recursion : where a and b are expressions 

 val(a+b) = val(a) + val(b) 

 val(a-b) = val(a) – val(b) 

 val(a * b ) = val(a) * Val(b) 

 

 Then there are two possible values for 2 – 3 * 5. 

 val( 2 - 3 * 5 ) =val(2) – val(3 * 5) = 2 – [val(3) * val(5)] = 2 – 15 = -13. 

 val( 2 – 3 * 5) = val(2-3) * val(5) = [val(2) – val(3)] * 5 

                      = -1 * 5     = -5. 

 As a result, the function val is not well-defined !! 
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Structural induction 

    D:  an inductively defined domain 

    P(x): a property on D. 

 To show that P(x) holds  for all x in D, it suffices to show 

 Basis step: P(x) holds for all x in Init.  

 Ind. step:  P(t1),...,P(tn) => P(f(t1,...,tn)) for all f in F, 

                     and for all t1,...,tn in D.  

 Example:  show P(x)#a(x)  0 holds for all x. 

 Basis step: x  Init = {“a”,”b”,”c”,...}) 

  x = “a” => #a(x) = 1  0. 

 x “a” => #a(x) = 0 0 

 Ind. step: x = “dy” where d is any element in Sand  “y” is any 

element in S+. 

By ind. hyp.  #a(“y”)  0. hence 

 if d = a    => #a( “dy” ) = 1 + #a(“y”) 0 

 if da    =>  #a(“dy”)   = #a(“y”)  0.  
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More example: 

 Define the set of  labeled binary trees as follows: 

 S:  a set of labels = {a,b,c,..} 

 G = S U {(, )}, G* = the set of strings over G. 

 TS is a subset of G* defined inductively as follows: 
 Init: () is a tree.   // no more written as “()”  

 closure: if x is a label, and L and R are trees, 

        then (x L R) is a tree.  

 Example / counterexample: 
 (),   (a ()()),   ((a) (b) ())  . 

 For tree T, let lf(T) = #of ‘(‘  ,lb(T) =# of labels, and 

   e(T) = number of empty subtrees “()” in T. All can be   

   defined inductively as follows: 
 basis:       lf(()) = 1;              lb(()) = 0;            e(()) = 1. 

 recursive: lf( (x L R) ) = 1+ lf(L) + lf(R); 

         lb( (x L R) ) = 1 + lb(L) +lb(R) ; e( (x L R) ) = e(L) + e(R).  
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More example(cont’d) 

 Use structural ind. to prove properties of trees. 

 Show that for all tree T in TS :  P(T) def 

        lf(T) = lb(T) + e(T)   

     holds for all tree T. 

 Basis step[ T = () ] :  lf(()) = 1, lb(())=0, e(())=1 => P(()) holds. 

 ind. step[ T= (x L R) where x: any label, L, R: any trees] : 

   assume (ind.hyp.:) lf(L) = lb(L) + e(L) and 

                                   lf(R) = lb(R) + e(R ). Then 

 lf( (x L R) ) = 1 + lf(L) + lf(R) = 1 +lb(L) +lb(R) + e(L) +e(R) 

 e( (x L R) ) = e(L) +e(R) 

 lb( (x L R) ) =1 + lb(L) + lb(R) 

==> lf((X L R)) = lb((X L R)) + e((X L R)). 
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Exercise 

 Let Z* be the domain of integer lists as defined inductively 

at slide 36. Let append : Z* x Z* -> Z* be the binary 

function on Z* such that, given x and y, append(x,y) will 

form a list equal to the concatenation of x and y. For 

instance, append([1], [ 2 3]) = [1 2 3] and append([2 3 

4],[2 1]) = [2 3 4 2 1]. 

1.Give an inductive definition of append(x,y) according to 

(the structure of) its first argument x. 

2.  Prove by induction that for all integer lists x and y,  

     sum(x) + sum(y)  = sum(append(x,y)), 

     where the function sum was defined at slide 42. 
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2.  Basics of formal languages 

 What is a language ? 

 

 

 

 

 

 

 

 

 

                            The meaning triangle: 

 

 minds 

language External  

world 

refers to 

stand for 

symbolize 
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Different levels of language analysis 

 phonetic and phonological analysis(語音與音韻分析) 
 determine how words are related to sounds that realize them; 

required for speech understanding.  

 Phonetics concerns itself with the production, transmission, and 
perception of the physical phenomena(phones) which are 
abstracted in the mind to constitute these speech sounds or 
signs. 

 Phonology concerns itself with systems of phonemes (音位), 
abstract cognitive units of speech sound or sign which 
distinguish the words of a language. 

 Ex: k in 'kill' and 'skill' are two phones [k],[g] but same phoneme 
/k/;  book(單數)  books (多數) 

 morphological analysis: (詞彙分析;構詞學) 

 determine how words are formed from more basic meaning 
units called "morphemes". (詞 素) 

 morpheme:   primitive unit of meaning in a language. 
eg: friendly = friend + ly;  luckily = lucky + ly 

http://en.wikipedia.org/wiki/Phonetics
http://en.wikipedia.org/wiki/Phonology
http://zh.wikipedia.org/wiki/%E8%AF%AD%E9%9F%B3%E5%AD%A6
http://zh.wikipedia.org/wiki/%E9%9F%B3%E9%9F%B5%E5%AD%A6
http://en.wikipedia.org/wiki/Phone_%28phonetics%29
http://en.wikipedia.org/wiki/Phoneme
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8
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Levels of language analysis 

 syntax analysis: (語法分析) 
 determine how words can be put together to form correct 

sentences. 

 determine what structure role each word plays in the sentence. 

 determine what phrases are subparts of what other parts. 

 ex: John saw his friend with a telescope  

   =>  S[ NP[ noun:'John' ]          // one more result not listed! 

              VP[ verb: 'saw',  

                     NP[ NP[ possessivePronoun:'his', noun: 'friend'] ] 

                            PP[ prep: 'with',  NP [ art: 'a' noun:'telescope]]]] 

 Semantics analysis : (語意分析) 

 determine what words mean and how these meanings combine 

in sentence to form sentence meanings.  context independent. 

 Possible analysis result of the previous example:   

   person(j),  person(f), name(j,'John'), time(t),  friend(f,j) //? 

   see(j, f, t), before(t, now), possess(f, te, t). 

http://zh.wikipedia.org/wiki/%E8%AA%9E%E6%B3%95%E5%AD%B8
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%BE%A9%E5%AD%B8
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Levels of language analysis 

 Pragmatic analysis: (語用分析) 

 studies the ways in which context contributes to meaning 

 concern how sentences are used in different situation and how 

use affects the interpretation of sentences. 

 ex: Would you mind opening the door? 

       John saw his friend with a telescope . 

 Discourse analysis (篇章或對話分析) ,... 

 代名詞解析，文句的銜接與連貫等。 

 Ex: Wang has a friend. John saw him (Wang or Wang's friend?) 

with a telescope yesterday. 

 World knowledge,... 

 Languages (including natural and programming languages) 

contains many facets, each an active research domain of AI, 

linguistics, psychology, philosophy, cognitive science and 

mathematics. 

 

http://en.wikipedia.org/wiki/Pragmatics
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%94%A8%E5%AD%B8
http://en.wikipedia.org/wiki/Discourse_analysis
http://zh.wikipedia.org/wiki/%E7%AF%87%E7%AB%A0%E5%88%86%E6%9E%90
http://en.wikipedia.org/wiki/Cohesion_%28linguistics%29
http://en.wikipedia.org/wiki/Coherence_(linguistics)
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What are formal languages 

 In the study of formal languages we care about only the 

well-formedness/membership, but not the meaning of 

sentences in a language. 

 Ex1: Our usual decimal language of positive numbers ? 

 Problem: Which of the following are well-formed 

[representation of] numbers: 

 (1) 128  (2) 0023    (3) 44ac   (4) 3327 

 Let L be the set of all well-formed [representations of ] 

numbers. ==> 123, 3327 in L but 0023, 44ac not in L. 

 So according to the view of FL, The usual decimal language 

of positive numbers (i.e., L) is just the set : 

   { x | x is a finite sequence of digits w/t leading zeros }. 

 Note: FL don't care about that string '134' corresponds to the (abstract) 

positive number whose binary representation is 10000000 –It’s the job 

of semantics. 
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Definition 2.1 

 An alphabet S (or vocabulary; 字母集) is a finite set. 

 Ex: decimal_alphabet = {0,1,2,3,4,5,6,7,8,9} 

   binary_digit = {0,1}; Hexidecimal-alphabet = {0,..,9,A,..,F} 

   alphabet-of-English-sentences = {a, word, good, luckily,...} 

   alphabet-of-English-words = {a,...,z,A,...,Z} 

 Elements of an alphabet are called letters or symbols 

 A string (or word or sentence) over S  is a finite sequence of 

elements of S. 

 Ex: if S = {a,b} then “aabaa” is a string over S of length 5. 

 Note: A string x = x0 x1 … xn-1 of length n is in fact viewed as a function  

           x: [0..n) S such that x(k) = xk for k in [0,n). 

 The length of a string x, denoted |x|, is the number of symbols 

in x. ex: |abbaa| = 5. 

 There is a unique string of length 0, called the null string or 

empty string, and is denoted by e (or l) 
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Definition 2.1 (cont'd) 

 S* =def the set of all strings over S. 

 Ex: {a,b}* = {e,a,b,aa,ab,ba,bb,aaa,...} 

        {a}* = {e,a,aa,aaa,aaaa,...} = {an | n  0}. 

        {}* = ?    ( {} or {e} or e ?)  

 Note the difference b/t sets and strings: 

 {a,b} = {b,a} but ab  ba. 

 {a,a,b} = {a,b} but aab  ab 

 So what's a (formal) language ? 

 A language over S is a set of strings over S (i.e., a 

subset of S*).  Ex: let S = {0,...,9} then all the followings 

are languages over S. 

  1. {e}   2. {}   3. {0,...,9} = S  4. {x | x  S* and has no leading 

0s}  5. S5 = {x |  |x| = 5} 6. S* = {x | |x| is finite } 
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Examples of practical formal languages 

Ex: Let D be the set of all ASCII codes. 

 a C program is simply a finite string over D satisfying all 

syntax rules of C. 

 C-language =def { x | x is a well-formed C program over D }. 

 PASCAL-language = {x | x is a well-formed PASCAL 

program over D }. 

Similarly, let ENG-DIC = The set of all English lexicons 

  = { John, Mary, is, are, a, an, good, bad, boys, girl,..}  

 an English sentence is simply a string over ENG-DIC 

 ==> English =def {x | x is a legal English sentence over END-

DIC} ==> 

 1.John is a good boy .   English. 

 2. |John is a good boy . | = ? 
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issues about formal languages 

 Why need formal languages? 

 for specification (specifying programs, meanings etc.) 

 i.e., basic tools for communications b/t people and 

machines. 

 although FL does not provide all needed theoretical 

framework for subsequent (semantic processing...) 

processing, it indeed provides a necessary start, w/t which 

subsequent processing would be impossible -- first level of 

abstraction. 

 Many basic problems [about computation] can be 

investigated at this level.    

 How to specify(or represent) a language ? 

 Notes: All useful natural or programming languages  

contain infinite number of strings (or programs and 

sentences) 
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How to specify a language 

 principles: 1. must be precise and no ambiguity among 
users of the language: 2. efficient for machine processing 

 tools:  

 1. traditional mathematical notations: 

 A = {x | |x| < 3 and x  {a,b}} = {e,a,b,aa,ab,ba,bb} 

 problem:  in general not machine understandable. 

 2. via programs (or machines) : 

   P: a program; L(P) =def {x | P return 'ok' on input string x} 
 precise, no ambiguity, machine understandable. 

 hard to understand for human users !!  

 3. via grammars: (easy for human to understand) 
Ex:  noun :=  book | boy | jirl | John | Mary 

        art := a | an | the   ; prep := on | under | of | ... 

       adj := good | bad | smart | ... 

     NP := noun | art noun | NP PP | ... 

     PP := prep NP  ==> 'the man on the bridge'   PP. 
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Non-enumerability of languages  

 Recall that a set is denumerable if it is countably 

infinite. (i.e., A set T is denumerable if there is a 1-1 

and onto mapping b/t T and {0,1,...}) 

 Exercises: If S is finite and nonempty, then  

 1. S* is denumerable (i.e., |S*| = |N| ) 

 2. 2S* (ie., the set of all languages over S) is uncountable. 

   pf: Since |2S*|  |S*| = |N|, hence |2S*| is not countable 
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Operations on strings  

 string concatenations: 

 x,y: two strings ==> x·y is a new string with y appended to 

the tail of x.  i.e., x·y is the function : 

             z : [0, len(x)+len(y) )  Ssuch that  

             z(n)             = x(n)  for 0  n < len(x) and  

             z(len(x)+n) = y(n)  for 0  n < len(y).  

 Some properties of · : 

1. ASSOC: (xy)z = x(yz) ;  2.  Identity: ex = xe = x. 

3. |xy| = |x| + |y|. 

 conventions and abbreviations: 

 S: for alphabet ;        a,b,c: for symbols;  

  x,y,z: for strings;     A,B,C: for languages; 

 x5 for xxxxx; x1 = x ; x0 = e. 

 #a(x) =def number of a's in x. ==> #a(aabbcca) = 3. 
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Operations on languages (i.e, string sets) 

 1. usual set operations: 

 Union: A U B = {x | x  A or x  B } 

           Ex: {a,ab} U { ab, aab} = {a,ab,aab} 

 intersection: A  B = {x | x  A and x  B } 

 complements in S*: ~A =def S* - A =  { x | x not  A} 

 ex: ~{x | |x| is even } = {x | |x| is odd }. 

2. Set concatenations: 

 A·B =def {xy | x  A and y  B }. 

   Ex: {b,ba} {a,ab} = {ba,bab,baa,baab}. 

 

3. Powers of A: An ( n  0) is defined inductively: 

 1. A0 = { e};  An+1 = A·An = A·A·...·A.  ----- n A's 
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Operations on languages (cont'd) 

 Ex: Let A = {ab,abb}. Then 

 1. A0 = ?                2. A1 = ?  3. A2 = ? 4. |A4|=? 

 5. Hence {a,b,c}n = {x  {a,b,c}* | |x| = n } and 

                  An = { x1x2...xn | x1,...,xn  A } 

5. Asterate (or star) A* of A is the union of all finite 

powers of A: 

    A* =def Uk  0 A
K = A0 U A UA2 U A3 U ...  

  = {x1x2...xn | n  0 and xi  A for 1  i  n } 

   notes: 

   1. n can be 0 ==> e  A*. ==> e  {}*. 

   2. If A = S ==> A* = S* = the set of all finite strings  

over S. 
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Properties of  languages operations 

6.  A+ =def the set of all nonzero powers of A 

          =def Uk1 A
k = A U A2 U A3U ... = A A*. 

Properties of languages operations 

 1. associative: U, , · :  

   AU(BUC) = (AUB)UC;  A(BC) = (AB)C; 

   A(BC) = (AB)C   

 2. commutative  : U,: 

 3. Identities: 

  1. A U {} = {}UA = A;  2. A S* = S* A = A; 

   3. {e}A = A{e} = A. 

 4. Annihilator: A{} = {}A = {}. 
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Properties of languages operations (cont'd) 

 5. Distribution laws: 

 AU(BC) = (AUB) (AUC)    ;   A(BUC) = (AB)U(AC)   

 A(BUC) = AB U AC                ; A(BC) = AB AC  (x) 

 Ex: Let A = {a,ab}, B = {b}, C = {e} 

  ==> A(B C) = ?   AB = ?  AC = ?    

  ==> A(BC)          AB AC. 

 Exercise: show that A(BUC) = AB UAC. 

6. De Morgan Laws: ~(AUB) = ?   ~(AB) = ? 

7. Properties about A*: 

 1. A*A* = A* ;     2. A**  = A*;      3. A* = {e}UAA*  

 4. AA* = A*A = A+.    5. {}* = {e}.  

 Exercises: Prove 1~5. (hint: direct from the definition of A*) 
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A language for specifying languages 

 In the term: 'a language for specifying languages', 

the former language is called a metalanguage while 

the later languages are called target languages. 

 So in the C language reference manual, the BNF form is a 

meta language and C itself is the target language. 

 S: an alphabet ;  D = S U { +, *, e, ·, ), ( }; 

  E = D U {~, -} 

 1. The set of all regular expressions is  a subset of D* 

which can be defined inductively as follows: 

 Basis: 1. e,  are regular expressions 

             2. Every symbol a in S is a regular expression. 

 Induction: If a and b are regular expressions then so are 

    (a+b), (a·b), a*. 
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Regular expressions 

 Examples: 

 legal reg. expr. : e,   (a+b)*,  ((a +(b·c))+(e·b)*) 

 illegal reg. expr:  (ab), a + b, ((a + S)) + d, where d  ∉  S. 

 illegal formally but legal if treated as abbreviations: 

    ab  --> (a·b)  ;   a+b --> (a+b); 

    a + bc*  --> (a + (b·c*))  

 Extended regular expressions (EREGs): 

 EREGs are strings over E and can be defined 

inductively as follows: 

 Basis: 1. e,  are EREGs 

             2. Every symbol a in S is an EREG. 

 Induction: If a and b are EREGs then so are 

    (a+b), (a·b), a*, (~a), (ab), (a-b) 
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Languages represented by regular expressions 

 [Extended] regular expressions provides a finite way 
to specify infinite languages. 

 Definition: for each EREG (and hence also REG) a, 
the language (over S) specified (or denoted or 
represented) by a, written L(a), is defined inductively 
as follows:  
 Basis: L(e) = {e}; L() = {}; 

          for each a ∈ S, L(a) = {a}. 

 Induction: assume L(a) and L(b) have been defined for 
EREG a and b. Then 

 L(a+b) = L(a) U L(b);  L(ab) = L(a) L(b);   L(a*) = L(a)*; 

 L(~a) = S* - L(a);   L(a - b) = L(a) - L(b); L(a b) = L(a) L(b). 

 Definition: a language A is said to be regular if A = L(a) for 
some regular expression a.  
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Examples: 

 Let S = {a,b}. Then 
 L( a(a+b)*) = {x | x begins with a } = {a,aa,ab,aaa,aab,aba,...} 

 L(~(a(a+b)*))  = {x | x does not begin with a} 

        = {x | x begins with b } U {e} = L( e + b(a+b)*). 

 Regular expressions and Extended regular 
expressions give us finite ways to specify infinite 
languages. But the following questions need to be 
answered before we can be satisfied with such tools. 
 1. Are EREG or REGs already adequate ? 

 (i.e, For every A ⊆ S*, there is an expression a s.t., L(a) = 
A ? )  ==>  ans: _____. 

 2. For every expression a, is there any [fast] machine that 
can determine if x ∈ L(a) for any input string x ? 

     Ans: _______  
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IS EREG more expressive than REG ? 

 L1, L2: two [meta] languages; 

 we say L1 is at least as expressive as L2 if L(L2) =def  {A | 

there is an expression a in L2 s.t. A = L(a) }  is a subset of 

L(L1). 

 L1 is said to be equivalent to L2 in expressive power iff 

both are at least as expressive as the other. 

 Problem: 

 EREG is at least as expressive as REG since L(REG) is a 

subset of L(EREG) (why?) 

 But does the converse hold ? (i.e, Is it true that for each 

EREG a there is a REG b s.t., L(a) = L(b) ? 

 ans:  _____. 


