Formal Language and Automata Theory

Course outlines

- Introduction:
- Mathematical preliminaries:

Osets, relations, functions,sequences, graphs, trees, proof by induction, definition by induction (recursion).
\square Basics of formal languages:
Oalphabet, word, sentence, concatenation ,union, iteration [= Kleene star], language, infinity of languages, finite representations of languages

- PART I: Finite Automata and Regular Sets
— DFA,NFA,regular expressions and their equivalence
— limitation of FAs;
— Closure properties of FAs,
— Optimization of FAs
- PART II: Pushdown Automata and Context Free Languages
- CFGs and CFLs; normal forms of CFG
\square Limitation of CFG; PDAs and their variations,
\square closure properties of CFLs
\square Equivalence of pda and CFGs; deterministic PDAs
- parsing (Early or CYK's algorithms)
- PART III: Turing Machines and Effective Computability
- Turing machine [\& its variations] and Equivalence models
\square Universal TMs
\square Decidable and undecidable problems (Recursive sets and recursively enumerable sets)
\square Problems reductions; Some undecidable

Goals of the course

- understand the foundation of computation
- make precise the meaning of the following terms:
[[formal] languages, problems, Programs, machines, computations
\square computable \{languages, problems, sets, functions \}
- understand various models of machines and their relative power : FA, PDAs, LA (linear bounded automata), TMs, [register machines, RAMs,...]
- study various representations of languages in finite ways via grammars: RGs, CFGs, CSGs, general PSGs
formal Language

Chapter 1 Introduction

Mathematical preliminaries (reviews)

- sets (skipped)
- functions (skipped)
- relations
- induction
- Recursive definitions
- Basic structure upon which all other (discrete and continuous) structures are built.
- a set is a collection of objects.

I an object is anything of interest, maybe itself a set.

- Definition 1.
] A set is a collection of objects.
\square The objects is a set are called the elements or members of the set.
— If x is a memebr of a set S, we say S contains x.
\square notation: $x \in S$ vs $x \notin S$
- Ex: In 1,2,3,4,5, the collection of 1,35 is a set.

Set description

- How to describe a set:?

1. List all its member.
(the set of all positive odd integer >10=?
\square The set all decimal digits = ?
\square the set of all upper case English letters = ?
\square The set of all nonnegative integers = ?
2. Set builder notation:
$\square \mathbf{P}(\mathbf{x})$: a property (or a statement or a proposition) about objects.
\square e.g., $P(x)=$ " $x>0$ and x is odd"
\square then $\{x \mid P(x)\}$ is the set of objects satisfying property P.

- $P(3)$ is true $=>3 \in\{x \mid P(x)\}$
- $P(2)$ is false $=>2 \notin\{x \mid P(x)\}$

Set predicates

Definition 2.

\square Two sets $\mathrm{S} 1, \mathrm{~S} 2$ are equal iff they have the same elements
(S1 = S2 iff $\forall x(x \in \mathbf{S 1} \Leftrightarrow x \in \mathbf{S} 2)$
— Ex: $\{1,3,5\}=\{1,5,3\}=\{1,1,3,3,5\}$

- Null set $=\{ \}=\varnothing={ }_{\text {def }}$ the collection of no objects.

Def 3': [empty set] for-all $x \times \notin$.
Def 3. [subset]
$\square A \subseteq B$ iff all elements of A are elements of B.
$\square A \subseteq B<\Rightarrow$ for-all $x(x \in A=>x \in B)$).

- Def $3^{\prime \prime}: A \subset B=_{\text {def }} A \subseteq B / A \neq B$.
- Exercise : Show that: 1. For all set $A(\varnothing \subseteq A)$

प 2. $(A \subseteq B \wedge B \subseteq A) \Leftrightarrow(A=B) \quad$ 3. $A \subseteq \varnothing \Rightarrow A=\varnothing$

Size or cardinality of a set

ㅁ $|\mathrm{A}|=$ the size(cardinality) of $\mathrm{A}=$ \# of distinct elements of A .

- Ex:
- |\{1,3,3,5\}|=?

ㅁ |\{\}|=?
ㅁ the set of binary digits \}|=?

- |N|=? ; $|\mathrm{Z}|=$? ; | $\{\mathbf{2 i} \mid \mathrm{i}$ in $\mathbf{N}\}=$?

ㅁ $|\mathrm{R}|=$?

- Def. 5.
$\square A$ set A is finite iff $|A|$ is a natural number ; o/w it is infinite.
\square Two sets are of the same size (cardinality) iff there is a 1-1 \& onto mapping between them.

countability of sets

- Exercise: Show that
- 1. $|N|=|Z|=|Q|=\{4,5,6, \ldots\}$
- 2. $|R|=|[0,1)|$
- 3. $|\mathrm{N}| \neq|\mathrm{R}|$
- Def.
$\square A$ set A is said to be denumerable iff $|A|=|N|$.
\square A set is countable (or enumerable) iff either $|\mathbf{A}|=\mathbf{n}$ for some n in N or $|\mathrm{A}|=|\mathbf{N}|$.
- By exercise 3,
$\square R$ is not countable.
$\square Q$ and Z is countable.

The power set

Def 6.
— If A is a set, then the collection of all subsets of A is also a set, called the poser set of A and is denoted as $P(A)$ or 2^{A}.

- Ex:
- $P(\{0,1,2\})=$?
- $\mathbf{P}(\})=$?

ㅁ $|\mathbf{P}(\{1,2, \ldots, n\})|=$?

- Order of elements in a set are indistinguishable. But sometimes we need to distinguish between $(1,3,4)$ and (3,4,1) --> ordered n-tuples

More about cardinality

Theorem: for any set $\mathrm{A},|\mathrm{A}| \neq\left|2^{\mathrm{A}}\right|$.
Pf: (1) The case that A is finite is trivial since $\left|2^{A}\right|=2^{|A|}>|A|$ and there is no bijection b/t two finite sets with different sizes.
(2) assume $|A|=\left|2^{A}\right|$, i.e., there is a bijection $f: A->2^{A}$.

$$
\text { Let } D=\{x \text { in } A \mid x \notin f(x)\} .==>
$$

1. D is a subset of A; Hence
2. $\exists \mathrm{y}$ in A s.t. $\mathrm{f}(\mathrm{y})=\mathrm{D}$.

Problem: Is $y \in D$?
if yes (i.e., $y \in D$) $==>y \notin f(y)=D$, a contradiction if no (i.e., $y \notin D$) $==>y \in f(y)=D$, a contradiction too.
So the assumption is false, i.e., there is no bijection b/t A and $2{ }^{\text {A. }}$
Note: Many proofs of impossibility results about computations used arguments similar to this.

Cartesian Products

Def. 7 [n-tuple]

- If $a 1, a 2, \ldots, a n(n>0)$ are n objects, then "($a 1, a 2, \ldots, a n$)" is a new object, called an (ordered) n-tuple [with a_{i} as the ith elements.
\square Any orderd 2-tuple is called a pair.
- (a1,a2,...,am) = (b1,b2,..,bn) iff

$$
\theta m=n \text { and } \quad \text { for } i=1, . ., n a_{i}=b_{i}
$$

Def. 8: [Cartesian product]
$A \times B={ }_{\text {def }}\{(a, b) \mid a$ in $A \Lambda b$ in $B\}$ $A 1 \times A 2 x \ldots x A n=\operatorname{def}\{(a 1, \ldots, a n) \mid a i \operatorname{in} A i\}$.

Ex: $A=\{1,2\}, B=\{a, b, c\}, C=\{0,1\}$

1. $A \times B=$? ; 2. $B \times A=$?
2. $A \times\{ \}=$? ;4. $A \times B \times C=$?

Set operations

- union, intersection, difference, complement,
- Definition.

1. $A \cup B=\{x \mid x$ in A or x in $B\}$
2. $A \cap B=\{x \mid x$ in A and x in $B\}$
3. $A-B=\{x \mid x$ in A but x not in $B\}$
4. $\sim A=U-A$
5. If $A \cap B=\{ \}=>$ call A and B disjoint.

Set identites

Identity laws:

- Domination law:
- Idempotent law:
- complementation:
- commutative :
- Associative:
- Distributive:
- DeMoregan laws:

A? ? = A
U ? ? = U; \{\} ?? = \{\}
A? A = A;
$\sim \sim A=A$
$A ? B=B ? A$
A ? $(B$? C $)=(A$? $B)$? C
A ? $(B$? $C)=$?
$\sim(A$? $B)=\sim A$? ~B

Note: Any set of objects satisfying all the above laws is called a Boolean algebra.

Prove set equality

1. Show that $\sim(A \cup B)=\sim A \cap \sim B$ by show that
\square 1. $\sim(A \cup B) \subseteq \sim A \cap \sim B$

- 2. $\sim A \cap \sim B \subseteq \sim(A \cup B)$
- pf: (By definition) Let x be any element in $\sim(A \cup B)$...

2. show (1) by using set builder and logical equivalence.
3. Show distributive law by using membership table.
4. show $\sim(A \cup(B \cap C))=(\sim C \cap \sim B) \cup \sim A$ by set identities.

Functions

- Def. 1 [functions] A, B: two sets

1. a function f from A to B is a set of pairs (x, y) in $A x B$ s.t., for each x in A there is at most one y in B s.t. (x, y) in f.
2. if (x, y) in f, we write $f(x)=y$.
3. f :A ->B means f is a function from A to B.

Def. 2. If f:A -> B ==>

1. A : the domain of $f ; B$: the codomain of f
if $f(a)=b=>$
2. b is the image of $a ; 3$. a is the preimage of b
3. $\operatorname{range}(f)=\{y \mid \exists x$ s.t. $f(x)=y\}=f(A)$.
4. preimage $(f)=\{x \mid \$ y$ s.t. $f(x)=y\}=f^{-1}(B)$.
5. f is total iff $f^{-1}(B)=A$.

Types of functions

- Def 4.
f: A x B; S: a subset of A,
T: a subset of B

1. $f(S)={ }_{\text {def }}\{y \mid \exists x$ in S s.t. $f(x)=y\}$
2. $f^{-1}(T)={ }_{\text {def }}\{x \mid \exists y$ in T s.t. $f(x)=y\}$

Def. [1-1, onto, injection, surjection, bijection]
f: A -> B.
$\square \mathrm{f}$ is $\mathbf{1 - 1}$ (an injection) iff $\mathrm{f}(\mathrm{x})=(\mathrm{fy})=>\mathrm{x}=\mathrm{y}$.
$\square f$ is onto (surjective, a surjection) iff $f(A)=B$
$\square f$ is $1-1 \&$ onto <=> f is bijective (a bijection, 1-1 correspondence)

Relations

- A, B: two sets
— AxB (Cartesian Product of A and B) is the set of all ordered pairs $\{<a, b>\mid a \in A$ and $b \in B\}$.
- Examples:

$$
A=\{1,2,3\}, B=\{4,5,6\} \Rightarrow A x B=?
$$

- $A 1, A 2, \ldots, A n(n>0): n$ sets
— A1xA2x...xAn = \{<a1,a2,...,an>|ai $\in A i\}$.
- Example:

1. $A 1=\{1,2\}, A 2=\{a, b\}, A 3=\{x, y\}==>|A 1 \times A 2 x A 3|=$?
2. $A 1=\{ \}, A 2=\{a, b\}=>A 1 x A 2=$?

Binary relations

- Binary relation:
— A,B: two sets
\square A binary relation R between A and B is any subset of $A x B$.
- Example:

If $A=\{1,2,3\}, B=\{4,5,6\}$, then which of the following is a binary relation between A and B ?

$$
\begin{aligned}
& \text { R1 }=\{\langle 1,4\rangle,\langle 1,5\rangle,\langle 2,6\rangle\} \\
& \text { R2 }=\{ \} \\
& \text { R3 }=\{1,2,3,4\} \\
& \text { R4 }=\{<1,2\rangle,\langle 3,4\rangle,\langle 5,6\rangle\}
\end{aligned}
$$

Terminology about binary relations

- R: a binary relation between A and B (l.e., a subset of $A x B$), then
\square The domain of R :
$\operatorname{dom}(R)=\{x \in A \mid \exists y \in B$ s.t. $\langle x, y>\in R\}$
\square The range of R :
range $(R)=\{y \in B, \mid \exists x \in A$, s.t., $\langle x, y>\in R\}$
$\square\langle x, y\rangle \in R$ is usually written as $x R y$.
- If $A=B$, then R is simply called a relation over(on) A.
- An n-tuple relation R among $A 1, A 2, \ldots, A n$ is any subset of $A 1 x A 2 \ldots x A n, n$ is called the arity of R
- If $A 1=A 2=\ldots=A n=A=>R$ is called an n-tuple relation (on A),

Operations on relations (and functions)

- $R \subseteq A x B ; S \subseteq B \times C$: two relations
- composition of R and S :
$\square R \cdot S=\{<a, c>\mid$ there is b in B s.t., $\langle a, b>$ in R and $<b, c>$ in S \}.
- Identity relation: $\mathrm{I}_{\mathrm{A}}=\{<a, a>\mid a$ in A$\}$
- Converse relation: $R^{-1}=\{<b, a>\mid<a, b>$ in $R\}$
- $f: A$-> $B ; g: B->C:$ two functions, then $g \cdot f: A->C$ defined by $g \cdot f(x)=g(f(x))$.
- Note: function and relation compositions are associative, l.e., for any function or relation f, g, h, $f \cdot(g \cdot h)=(f \cdot g) \cdot h$

Properties of binary relations

- R: A binary relation on S,

1. R is reflexive iff for all x in $S, x R x$.
2. R is irreflexive iff for all x in S, not $x R x$.
3. R is symmetric iff for all x, y in $S, x R y=>y R x$.
4. R is asymmetric iff for all x, y in $S, x R y=>$ not $y R x$.
5. R is antisymmetric iff for all x, y in $S, x R y$ and $y R x=>x=y$.
6. R is transitive iff for all x, y, z in $S, x R y$ and $y R z=>x R z$.

Graph realization of a binary relation and its properties.

rule: if $x R y$ then draw an arc from x on left S to y on right S .

Examples

- The relation \leq on the set of natural numbers \mathbf{N}. What properties does \leq satisfy ?
- ref. irref, or neither?
- symmetric, asymmetric or antisymmetric ?
[transitive?
- The relation > on the set of natural numbers \mathbf{N}.
- The divide | relation on integers \mathbf{N} ?
$\mathrm{Cx} \mid \mathrm{y}$ iff x divides y . (eg. $2 \mid 10$, but not $3 \mid 10$) What properties do $>$ and | satisfy ?
- The BROTHER relation on males (or on all people)
$\square(x, y) \in$ BROTHER iff x is y 's brother.
- The ANCESTOR relation on a family.
$\square(x, y) \in$ ANCESTOR if x is an ancestor of y.
What properties does BROTHER(ANCESTOR) have?

Properties of relations

- R: a binary relation on S

1. R is a preorder iff it is ref. and trans.
2. R is a partial order (p.o.) iff R is ref.,trans. and antisym. (usually written as \leq).
3. R is a strict portial order (s.p.o) iff it is irref. and transitive.
\square usually written <.
4. R is a total (or linear) order iff it is a partial order and every two element are comparable (i.e., for all x, y either $x R y$ or yRx.)
5. R is an equivalence relation iff it is ref. sym. and trans.

- If R is a preorder (resp. po or spo) then (S, R) is called a preorder set (resp. poset, strict poset).
- What order set do ($\mathbf{N},<$) , (\mathbf{N}, \leq) and ($\mathrm{N}, \mid)$ belong to ?

Properties of ordered set

(S, \leq) : a poset, X : a subset of S.

1. \mathbf{b} in \mathbf{X} is the least (or called minimum) element of \mathbf{X} iff $\mathbf{b} \leq \mathbf{x}$ for all x in X.
2. b in X is the greatest (or called maxmum or largest) element of \mathbf{X} iff $\mathbf{X} \leq \boldsymbol{b}$ for all \mathbf{x} in \mathbf{X}.

- Least element and greatest element, if existing, is unigue for any subset X of a poset (S, \leq)
pf: let x, y be least elements of X.
Then, $x \leq y$ and $y \leq x$. So by antisym. of $\leq, x=y$.

3. X ia a chain iff (X, R) is a linear order(, i.e., for all x, y in X, either $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x})$.
4. b in S is a lower bound (resp., upper bound) of X iff $b \leq x$ (resp., $x \leq b$) for all x in X.
\square Note: b may or may not belong to X.

Properties of oredered sets

- (S, \leq) : a poset, X : a nonempty subset of S.

5. b in X is minimal in X iff there is no element less than it.
\square i.e., there is no x in X, s.t., $(x<b)$,
or "for all $x, x \leq b=>x=b$."
6. b in X is a maximal element of X iff there is no element greater then it.
\square i.e., there is no x in X, s.t., $(b<x)$,
D or "for all $\mathrm{x}, \mathrm{b} \leq \mathrm{x}=>\mathrm{x}=\mathrm{b}$."

- Note:
1.Every maximum element is maximal, but not the converse in general.

2. Maximal and minimal are not unique in general.

well－founded set and minimum conditions

－(S, \leq) ：a poset（偏序集）．
$1 . \leq$ is said to be well－founded（良基性）iff there is no infinite descending sequence．（i．e．，there is no infinite sequence $x 1, x 2, x 3, \ldots$. s．t．，$x 1>x 2>x 3>\ldots$ ）．
\square Note：$x>y$ means $y<x$（i．e．，$y \leq x$ and $y=x$ ）
\square if \leq is well－founded $=>(S, \leq)$ is called a well－founded set．
2．(S, \leq) is said to satisfy the minimal condition iff every nonempty subset of S has a minimal element．
－（ S, \leq ）：a total ordered set（全序集）．
$3 . \leq$ is said to be a well－ordering（良序）iff every nonempty subset of \mathbf{S} has a least element．
\square If \leq is well ordered，then (S, \leq) is called a well－ordered set．

Examples of ordered sets

- Among the relations (N, \leq), (N, \geq), ($\mathrm{N}, \mid),(\mathrm{Z}, \leq),(\mathrm{Z}, \geq)$, (Z, \mid) and (R, \leq),

1. Which are well-founded?
2. Which are well-ordered?

Equivalence of well-foundness and minimal condition

- ($(, \leq \leq)$ is well-founded (w.f.) iff it satisfies the minimal conditions (m.c.).
pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f.
(1) Let $x 1, x 2, \ldots$ be any infinite sequence s.t. $x 1>x 2>x 3>\ldots$.

Now let $\mathrm{X}=\{\mathrm{x} 1, \mathrm{x} 2, \ldots\}$. X obviously has no minimal element. S thus does not satisfy m.c.
(2) Let X be any nonempty subset of S w/o minimal elements. Now
${ }^{(*)}$ choose arbitrarily an element a1 from X and let

$$
X 1=\{x \mid x \in X \text { and } a 1>x\} \text { (i.e. the set of all elements in } X<a 1 \text {). }
$$

Since $a 1$ is not minimal, X 1 is nonempty and has also no minimal element.
We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and obtain an infinite descending sequence a1 > a2 > a3> ...
Hence S is not w.f.

A general proof scheme to show the infinity of a set

- Let P be a property of sets and $C={ }_{\text {def }}\{X \mid P(X)$ holds $\}$. If there exists a function $f: C \rightarrow C$ satisfying the property: forall set $X \in C$ (i.e, $P(X)$ holds),
[1. $f(X)$ is a nonempty proper subset of X,
$\square \quad$ (i.e., $f(X) \neq \varnothing, f(X) \neq X$ and $f(X) \subset X$), and
\square 2. f preserves property P
- (I.e., $P(X)$ implies $P(f(X)$, or $X \in C=>f(X) \in C)$, then all sets X with property P are infinite.
Pf: Let $X_{0}, X_{1}, \ldots, X_{k}, \ldots$ be an infinite sequence of sets
with $X_{0}=X$ and $X_{k+1}=_{\text {def }} f\left(X_{k}\right)=f\left(f\left(X_{k-1}\right)\right)=\ldots=f^{k+1}(X)$.
Since $X=X_{0}$ has property P and f preserves P, by induction on k, all X_{k} has property P. And by (1) $X_{k} \subset f\left(X_{k}\right)=X_{k+1}$ for all k. Now the sequence $X_{0}-X_{1}, X_{1}-X_{2}, X_{2}-X_{3}, \ldots$ is an infinite sequence of nonempty and disjoint subsets of X. X thus is infinite.

Variants of Inductions

Mathematical Induction:

\square To prove a property $P(n)$ holds for all natural number $n \in N$, it suffices to show that
(1) $P(0)$ holds --- (base step) and
(2) For all $n \in N, p(n)=>p(n+1)$--- (induction step)
$\omega \mathrm{P}(\mathrm{n})$ in (2) is called induction hypothesis (h.p.)
$\square P(0), \forall n(P(n)=>P(n+1))$
] ---M11
■ $\quad \forall \mathrm{nP}$ (n)

$$
=\forall \mathrm{m} . \mathrm{m}<\mathrm{n} \rightarrow \mathrm{P}(\mathrm{~m}) / / \text { Ind. Hyp. }
$$

$\square P(0), \forall n((P(0) / \Lambda \ldots p(n-1)))=>P(n))$
$\forall \mathbf{n P (n)}$

Well-order Induction

- Well-order induction:

$\square(S, \leq)$ a well-ordered set; $P(x)$: a property about S.
\square To show that $P(x)$ holds for all $x \in S$, it suffices to show
(1) $P\left(x_{\text {min }}\right)$ holds where $x_{\text {min }}$ is the least element of S. --- (base step)
(2) for all $x \in S$, if (for all $y \in S \quad y<x=>P(y)$) then $p(x)$---(ind. step)
θ (1) is a special case of (2) [i.e., (2) implies (1)]
θ (for all y in S y < $x=>P(y)$) in (2) is called the ind. hyp. of (2).

- $P\left(X_{\text {min }}\right), \forall y[(\forall x . x<y=>P(x))=>P(y)$

Variants of inductions

Well-founded induction (WI):

$\square(S, \leq)$ a well-founded set. $P(x)$ a property about S.
\square WI says that to prove that $P(x)$ holds for all x in S, it suffices to show that
(1) $P(x)$ holds for all minimal elements x in S--- base step, and
(2) for all y in S, (for all z in $S z<y=>P(z)$) $=>p(y)$--ind. step
θ (1) has already been implied by (2)
O (for all z in $S z<y=>P(z)$) in (2) is the ind. hyp. of the proof.
[forall minimal $\mathrm{x}, \mathrm{P}(\mathrm{x}), \quad \forall \mathrm{y}[(\forall \mathrm{z}, \mathrm{z}<\mathrm{y}=>\mathrm{P}(\mathrm{x}))=\mathrm{P}(\mathrm{y})]$

$$
\forall x P(x)
$$

- Facts: w.f. Ind. => well-ordered ind. => math ind.
\square (I.e., If w.f ind. is true, then so is well-ordered ind. and if well-ordered ind. is true, then so is math. ind.)
- (S, \leq) : a well-founded set. $P(x)$: a property about S.

Then $P(x)$ holds for all $x \in S$, if
(1) $P(x)$ holds for all minimal elements $x \in S$--- base step, and (2) for all $y \in S$, (for all $z \in S \quad z<y=>P(z))=>p(y)$---ind. Step
pf: Suppose WI is incorrect. Then there must exist (S, \leq) satisfying (1)(2) but the set $N P=\{x \mid x \in S$ and $P(x)$ is not true $\}$ is not empty. (*)
==> Let xm be any minimal element of NP.
case (1): xm is minimal in S. --> impossible! (violating (1))
since if xm is minimal in S , by (1), $\mathrm{P}(\mathrm{xm})$ holds and $\mathrm{xm} \notin \mathrm{NP}$.
case (2): xm is not minimal in S . --> still impossible!
$x m$ not minimal in $S==>L=\{y \mid y \in S \Lambda y<x m\}$ is not empty.
$==>L \cap N P=\{ \}$ (o/w xm would not be minimal in NP.)
==> (ind. hyp. holds for $x m$, i.e., for all $z \in S, z<x m=>p(z)$ is true) $==>$ (by (2).) $p(x m)$ holds $==>x m \notin N P$.
case(1) and (2) imply NP has no minimal element and hence is empty, which contradicts with (*). Hence the assumption that WI is incorrect is wrong.

Definition by induction (or recursion)

- Consider the following ways of defining a set.

1. the set of even numbers Even $=\{0,2,4, \ldots\}$:
\square Initial rule : $0 \in$ Even.
\square closure rule: if $x \in$ Even then $x+2 \in$ Even.
2. The set of strings Σ^{+}over an alphabets $\Sigma=\{a, b, \ldots, z\}$
\square Initial: if $x \in \Sigma$, then " x " $\in \Sigma^{+}$.
\square closure: If $x \in \Sigma$ and " α " $\in \Sigma^{+}$, then " $x \alpha$ " $\in \Sigma^{+}$.
3. The set (Z^{*}) of integer lists.

- Initial: [] is a (integer) list,
\square closure: If x is an integer and $[L]$ is a list, then $[x L]$ is a list. © e.g., [], [4], [34], [2 34 4], [5 23 4]
- Problem: All definitions well-defined? What's wrong?

Problems about recursive definition

- The above definitions are incomplete in that there are multiple sets satisfy each definition
- Example:
\square Let $\mathrm{Ni}=\{0,2,4,6, \ldots\} \cup\{2 i+1,2 i+3, \ldots\}$.
(Then $\{0,2,4,6, \ldots\}$ and $N_{i}(i>0)$ all satisfy Def. 1.
- Among $\{0,2,4,6, \ldots\}$ and $\mathrm{N}_{\mathrm{i}}(\mathrm{i}>0)$, which one is our intended set?
- How to overcome the incompleteness ?
- Relationship between $\{0,2,4, \ldots\}$ and the collection of sets satisfying the definitions?
$\square\{0,2,4, \ldots\}$ is the least set among all sets.
] $\{0,2,4, \ldots\}$ is equal to the intersection of all sets.
\square Every other set contains some elements which are not grounded in the sense that they have no proof (or derivation).

General form of inductively defining a set (or domain)

- Ω : a set, Init: a subset of Ω

F: a set of functions/rules on Ω,

- we define a subset Δ of Ω as follows:

1. Initialization: Every element of Init is an element of Δ. (or simply Init $\subseteq \Delta$)
2. closure: If $f: \Omega^{n}->\Omega$ in F and t_{1}, \ldots, t_{n} are members of Δ, then so is $f\left(t_{1}, \ldots, t_{n}\right)$
3. plus one of the following 3 phrases.
3.1Δ is the least subset of Ω with the above two properties.
3.2Δ is the intersection of all subsets of Ω with property 1,2 .
3.3 Only elements of Ω obtainable by a finite number of applications of rules 1 and 2 are elements of Δ.

- Ω : a set, Init: a subset of Ω
F : a set of functions on Ω,
Given Init and F, an object $x \in \Omega$ is said to be derivable from Init and F if there is a finite sequence
$\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ of objects of Ω such that

1. $x=x_{n}$,
2. for all $1 \leq k \leq n$, either
$2.1 x_{k} \in$ Init -- (x_{k} is an axiom) or
$2.2 x_{k}=f\left(t_{1}, \ldots, t_{n}\right)$ where $f \in F$ and $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq\left\{x_{1}, \ldots, x_{k-1}\right\}$. --- (x_{k} is got from closure rule)

The sequence is called a derivation(or deduction,proof) of x.

Examples

$\Omega=Z, \quad$ Init: $=\{2\}, \quad F=\{x 5$, add5,+$\}$

- Then 54 is derivable since

$$
\begin{array}{|ll}
\text { 1. } 2, & ---a x i o m \\
\text { 2. } 7, & ---a d d 5(2) \\
\text { 3. } & 9, \\
\text { 4.-- } & +(2,7) \\
\text { 4. } 45, & ---x 5(9) \\
5 . & 54
\end{array}---+(9,45)
$$

is a derivation of 54 . The length of the derivation is 5 .

Define functions on recursively defined domains

- Once a domain Δ is defined inductively. We can define functions on the domain according to the following recursive scheme:
- A function v: $\Delta \rightarrow \mathrm{C}$, can be defined as follows:
\square basis case: specify the value $v(t)$ of t for each primitive object t in Init.
\square recursive case: specify the value $v\left(f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)$ of every compound object $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in terms of the values $\mathrm{v}\left(\mathrm{t}_{1}\right), \mathrm{v}\left(\mathrm{t}_{2}\right), \ldots, \mathrm{v}\left(\mathrm{t}_{\mathrm{n}}\right)$ of smaller composing objects t_{1}, \ldots, t_{n}, for all $f \in F$ and $t_{1}, \ldots, t_{n} \in \Delta$.

Example

- Consider the following functions defined on integer lists:
sum : integer List(denoted Z^{*}) \rightarrow Z
with sum (L) $=_{\text {def }}$ sum of all integers in L.
- We can define sum by recursion as follows:
\square Basis case: specify the value sum (L) of L for each primitive L in Init = \{ [] \}.
[==> basis: sum([]) = 0 .
\square Recursive case: specify the value sum ($\mathrm{f}(\mathrm{t} 1, \ldots, \mathrm{tn}$)) of element $f(t 1, \ldots, t n)$ for each $f \in F$ and $t_{1}, \ldots, t_{n} \in \Delta=$ Z^{+}.
$\square==>$ Recursion: where $F=\left\{f_{x} \mid f_{x}\left(\left[L^{\prime}\right]\right)=\left[x L^{\prime}\right], x \in Z\right\}$
〕. For any list of integers L of the form [x L'],

$$
\operatorname{sum}(L)=\operatorname{sum}\left(\left[x L^{\prime}\right]\right)=x+\operatorname{sum}\left(\left[L^{\prime}\right]\right)
$$

Ex: $\operatorname{sum}([4,3,2])=4+\operatorname{sum}([3,2])=4+3+\operatorname{sum}([2])=4+3+2+\operatorname{sum}([])$

$$
=4+3+2+0=9 .
$$

Define functions on recursively defined domains

- More example:
— \#a : $\Sigma^{+} \rightarrow \mathrm{N}$ with $\# \mathrm{~A}(\mathrm{x})=_{\text {def }}$ number of $\mathrm{a}^{\prime} \mathrm{s}$ in string x .
- Now we can define \#a as follows:
— Basis case: specify the value \#a("x") of "x" for each x in Σ. ==> \#a("a") = 1 ; \#a(" $y ")=0$ if $y \neq a$.
— Recursive case: specify the value \#a("dz") of element "dz" for each $d \in \Sigma$ and " z " $\in \Sigma \Sigma^{+}$.
] $==>$ for any $d \in \Sigma$ and " z " $\in \Sigma^{+}$,
[then \#a("dy") = $1+\# a(" y ")$ if $d=a$ and
I
\#a("dy") = \#a("y") if d=a
- But are such kind of definitions well defined?
— A sufficient condition: If the recursively defined domain is
[not ambiguous (i.e., multi-defined)l.e., there is only one way to form (or derive) each element in the domain.

Example of a multi-defined(ambiguous) Domain

- Arithmetic Expression (AExp $\subseteq \Sigma^{*}$) :
(Init: Constants a, b, c, \ldots and variables x, y, z, \ldots are arithmetic expressions
- Closure: If α and β are arithmetic expressions then so are $\alpha+\beta, \alpha-\beta,-\alpha, \alpha \times \beta$.
- ambiguous arithmetic expressions:
- $2-3 \times 5$; $\quad x-y+2$
- two ways to form " 2-3x5 ":
(1. 2, 3, 2-3, 5, 2-3 x 5 .

प 2. 2, 3, 5, $3 \times 5,2-3 \times 5$.

- Define the fucntion val : AExp $\rightarrow \mathbf{Z}$ as follows:
- Basis case:
$\square \operatorname{val}(c)=c$ where c is an integer constant.
$\square \operatorname{val}(x)=0$ where x is a variable.
- Recursion : where α and β are expressions
$\square \operatorname{val}(\alpha+\beta)=\operatorname{val}(\alpha)+\operatorname{val}(\beta)$
$\square \operatorname{val}(\alpha-\beta)=\operatorname{val}(\alpha)-\operatorname{val}(\beta)$
$\square \operatorname{val}(\alpha * \beta)=\operatorname{val}(\alpha) * \operatorname{Val}(\beta)$
- Then there are two possible values for $2-3$ * 5 .
$\square \operatorname{val}(2-3 * 5)=\operatorname{val}(2)-\operatorname{val}(3 * 5)=2-[\operatorname{val}(3) * \operatorname{val}(5)]=2-15=-13$.
$\square \operatorname{val}(2-3 * 5)=\operatorname{val}(2-3) * \operatorname{val}(5)=[\operatorname{val}(2)-\operatorname{val}(3)] * 5$
$\square=-1 * 5=-5$.
- As a result, the function val is not well-defined !!

Structural induction

Δ : an inductively defined domain
$P(x)$: a property on Δ.

- To show that $P(x)$ holds for all x in Δ, it suffices to show
\square Basis step: $P(x)$ holds for all x in Init.
 and for all t_{1}, \ldots, t_{n} in Δ.
- Example: show $P(x) \equiv \# a(x) \geq 0$ holds for all x.
— Basis step: $x \in$ Init = \{"a","b","c",..\}\})
$0 x=$ "a" => \#a(x) = $1 \geq 0$.
c) $x \neq$ "a" $=>\# a(x)=0 \geq 0$

〕 Ind. step: $x=$ "dy" where d is any element in Σ and " y " is any element in Σ^{+}.
By ind. hyp. \#a(" y ") ≥ 0. hence
0 if $d=a \quad=>\# a(" d y ")=1+\# a(" y ") \geq 0$
0 if $d \neq a \quad=>\quad \#$ ("dy") $=\# a(" y ") \geq 0$.

More example:

- Define the set of labeled binary trees as follows:
- Σ : a set of labels $=\{a, b, c, .$.
- $\Gamma=\Sigma \cup\{()\},, \Gamma^{*}=$ the set of strings over Γ.
- T_{Σ} is a subset of Γ^{*} defined inductively as follows:

I Init: () is a tree. // no more written as "()"
\square closure: if x is a label, and L and R are trees, then ($x L R$) is a tree.

- Example / counterexample:
- (),
(a ()()), ((a) (b) ()).
- For tree T, let $\operatorname{lf}(T)=\#$ of ${ }^{`}\left({ }^{‘}, \mathrm{lb}(\mathrm{T})=\#\right.$ of labels, and $e(T)=$ number of empty subtrees "()" in T. All can be defined inductively as follows:
\square basis:
$\operatorname{lf(}())=1$;
$\operatorname{lb}(())=0 ;$
$e(())=1$.
\square recursive: $\mathrm{If}((x$ L R)) $=1+\mathrm{If}(\mathrm{L})+\mathrm{If}(\mathrm{R})$;
I

$$
\operatorname{lb}((x L R))=1+\operatorname{lb}(L)+\operatorname{lb}(R) ; e((x L R))=e(L)+e(R)
$$

More example(cont'd)

- Use structural ind. to prove properties of trees.
- Show that for all tree T in $T_{\Sigma}: P(T) \equiv_{\text {def }}$

$$
\operatorname{lf}(T)=\operatorname{lb}(T)+e(T)
$$

holds for all tree T .

- Basis step[$T=()]: \operatorname{lf}(())=1, \operatorname{lb}(())=0, e(())=1=>P(())$ holds.
\square ind. step[$T=(x L R)$ where x : any label, L, R : any trees] : assume (ind.hyp.:) $\operatorname{lf}(\mathrm{L})=\mathrm{lb}(\mathrm{L})+\mathrm{e}(\mathrm{L})$ and

$$
\operatorname{lf}(R)=\operatorname{lb}(R)+e(R) \text {. Then }
$$

$$
\operatorname{lf}((x L R))=1+\operatorname{lf}(L)+\operatorname{lf}(R)=1+\operatorname{lb}(L)+\operatorname{lb}(R)+e(L)+e(R)
$$

$$
e((x L R))=e(L)+e(R)
$$

$$
\operatorname{lb}((x L R))=1+\operatorname{lb}(L)+\operatorname{lb}(R)
$$

$==>\operatorname{lf}((X L R))=l b((X L R))+e((X L R))$.

Exercise

- Let Z^{*} be the domain of integer lists as defined inductively at slide 36. Let append: $Z^{*} \times Z^{*}->Z^{*}$ be the binary function on Z^{*} such that, given x and y, append (x, y) will form a list equal to the concatenation of x and y. For instance, append([1], [23$])=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and append([2 3 4],[2 1]) = [lllllll 33421$].$

1. Give an inductive definition of append (x, y) according to (the structure of) its first argument x.
2. Prove by induction that for all integer lists x and y, $\operatorname{sum}(x)+\operatorname{sum}(y)=\operatorname{sum}(\operatorname{append}(x, y))$, where the function sum was defined at slide 42.
3. Basics of formal languages

What is a language ?

The meaning triangle:

Different levels of language analysis

and
 analysis（語音與音韻分析）

\square determine how words are related to sounds that realize them； required for speech understanding．
\square Phonetics concerns itself with the production，transmission，and perception of the physical phenomena（phones）which are abstracted in the mind to constitute these speech sounds or signs．
— Phonology concerns itself with systems of phonemes（音位）， abstract cognitive units of speech sound or sign which distinguish the words of a language．
— Ex： \mathbf{k} in＇kill＇and＇skill＇are two phones［k］，［g］but same phoneme $/ k / ;$ book（單數）\rightarrow books（多數）
－morphological analysis：（詞彙分析；構詞學）
\square determine how words are formed from more basic meaning units called＂morphemes＂．（詞 素）
\square morpheme：primitive unit of meaning in a language．
©eg：friendly＝friend＋ly；luckily＝lucky＋ly
\square determine how words can be put together to form correct sentences．
\square determine what structure role each word plays in the sentence．
\square determine what phrases are subparts of what other parts．
\square ex：John saw his friend with a telescope
［＝＞S［ NP［ noun：＇John＇］／／one more result not listed！
VP［ verb：＇saw＇，
NP［ NP［ possessivePronoun：＇his＇，noun：＇friend＇］］
प PP［ prep：＇with＇，NP［ art：＇a＇noun：＇telescope］］］］
－Semantics analysis：（語意分析）
\square determine what words mean and how these meanings combine in sentence to form sentence meanings．context independent．
－Possible analysis result of the previous example：
［ person（j），person（f），name（j，＇John＇），time（t），friend（f，j）／／？ see（j，f，t），before（t，now），possess（f，te，t）．
\square studies the ways in which context contributes to meaning
［ concern how sentences are used in different situation and how use affects the interpretation of sentences．
\square ex：Would you mind opening the door？
■ John saw his friend with a telescope．

- Discourse analysis（篇章或對話分析），．．．
- 代名詞解析，文句的銜接與連貫等。
— Ex：Wang has a friend．John saw him（Wang or Wang＇s friend？） with a telescope yesterday．
－World knowledge，．．．
－Languages（including natural and programming languages） contains many facets，each an active research domain of AI， linguistics，psychology，philosophy，cognitive science and mathematics．

What are formal languages

- In the study of formal languages we care about only the well-formedness/membership, but not the meaning of sentences in a language.
Ex1: Our usual decimal language of positive numbers?
- Problem: Which of the following are well-formed [representation of] numbers:
(1) 128 (2) 0023
(3) 44ac
(4) 3327
[Let L be the set of all well-formed [representations of] numbers. ==> 123, 3327 in L but 0023, 44ac not in L.
\square So according to the view of FL, The usual decimal language of positive numbers (i.e., L) is just the set :
$\square \quad\{x \mid x$ is a finite sequence of digits w/t leading zeros \}.
[Note: FL don't care about that string '134' corresponds to the (abstract) positive number whose binary representation is 10000000 -lt's the job of semantics.

Definition 2.1

An alphabet Σ（or vocabulary；字母集）is a finite set．
（ Ex：decimal＿alphabet $=\{0,1,2,3,4,5,6,7,8,9\}$
〕 binary＿digit $=\{0,1\}$ ；Hexidecimal－alphabet $=\{0, . ., 9, A, . ., \mathrm{F}\}$
— alphabet－of－English－sentences＝\｛a，word，good，luckily，．．．\}
— alphabet－of－English－words＝\｛a，．．．，z，A，．．．，Z\}
－Elements of an alphabet are called letters or symbols
－A string（or word or sentence）over Σ is a finite sequence of elements of Σ ．
— Ex：if $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ then＂aabaa＂is a string over Σ of length 5 ．
\square Note：A string $x=x_{0} x_{1} \ldots x_{n-1}$ of length n is in fact viewed as a function
■ $x:[0 . . n) \rightarrow \Sigma$ such that $x(k)=x_{k}$ for k in $[0, n)$ ．
－The length of a string x ，denoted $|x|$ ，is the number of symbols in x．ex：｜abbaa｜＝ 5 ．
－There is a unique string of length 0 ，called the null string or empty string，and is denoted by ε（or λ ）

Definition 2.1 (cont'd)

$\Sigma^{*}=_{\text {def }}$ the set of all strings over Σ.
— Ex: $\{a, b\}^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, . .$.
$\square \quad\{a\}^{*}=\{\varepsilon, a, a a, a a a, a a a a, .\}=.\left\{a^{n} \mid n \geq 0\right\}$.
$\square \quad\left\}^{*}=\right.$? ($\}$ or $\{\varepsilon\}$ or ε ?)

- Note the difference b/t sets and strings:
$\square\{a, b\}=\{b, a\}$ but $a b \neq b a$.
$\square\{a, a, b\}=\{a, b\}$ but $a b=a b$
- So what's a (formal) language ?
- A language over Σ is a set of strings over Σ (i.e., a subset of Σ^{*}). Ex: let $\Sigma=\{0, \ldots, 9\}$ then all the followings are languages over Σ.
- 1. $\{\varepsilon\}$ 2. $\left\}\right.$ 3. $\{0, \ldots, 9\}=\Sigma 4$. $\left\{x \mid x \in \Sigma^{*}\right.$ and has no leading 0s $\}$ 5. $\Sigma^{5}=\{x| | x \mid=5\} 6 . \Sigma^{*}=\{x| | x \mid$ is finite $\}$

Examples of practical formal languages

Ex: Let Δ be the set of all ASCII codes.
\square a C program is simply a finite string over Δ satisfying all syntax rules of C .

- C-language $=_{\text {def }}\{x \mid x$ is a well-formed C program over $\Delta\}$.
- PASCAL-language $=\{x \mid x$ is a well-formed PASCAL program over $\Delta\}$.
Similarly, let ENG-DIC = The set of all English lexicons
$=\{$ John, Mary, is, are, a, an, good, bad, boys, girl,..\}
\square an English sentence is simply a string over ENG-DIC
$\square==>$ English $=_{\text {def }}\{x \mid x$ is a legal English sentence over ENDDIC $\}==>$
\square 1.John is a good boy . \in English.
— 2. |John is a good boy . | = ?

- Why need formal languages?

\square for specification (specifying programs, meanings etc.)
\square i.e., basic tools for communications b/t people and machines.

- although FL does not provide all needed theoretical framework for subsequent (semantic processing...) processing, it indeed provides a necessary start, w/t which subsequent processing would be impossible -- first level of abstraction.
- Many basic problems [about computation] can be investigated at this level.
- How to specify(or represent) a language ?
- Notes: All useful natural or programming languages contain infinite number of strings (or programs and sentences)

How to specify a language

(principles: 1. must be precise and no ambiguity among users of the language: 2. efficient for machine processing
t tools:
] 1. traditional mathematical notations:
c) $A=\{x| | x \mid<3$ and $x \in\{a, b\}\}=\{e, a, b, a a, a b, b a, b b\}$
o problem: in general not machine understandable.
\square 2. via programs (or machines) :
\square P: a program; $L(P)={ }_{\text {def }}\{x \mid P$ return 'ok' on input string $x\}$
θ precise, no ambiguity, machine understandable.
© hard to understand for human users !!
\square 3. via grammars: (easy for human to understand)
©Ex: noun := book | boy | jirl| John | Mary
(2) art := a | an | the ; prep := on | under | of | ...
(adj := good | bad | smart | ...
(NP := noun | art noun | NP PP | ...
© PP := prep NP ==> 'the man on the bridge' \in PP.

Non-enumerability of languages

- Recall that a set is denumerable if it is countably infinite. (i.e., A set \mathbf{T} is denumerable if there is a 1-1 and onto mapping b/t T and $\{0,1, \ldots\}$)
- Exercises: If Σ is finite and nonempty, then
\square 1. Σ^{*} is denumerable (i.e., $\left|\Sigma^{*}\right|=|N|$)
- 2. $2^{\Sigma^{*}}$ (ie., the set of all languages over Σ) is uncountable.
[pf: Since $\left|2^{\Sigma^{*}}\right| \neq\left|\Sigma^{*}\right|=|N|$, hence $\left|2^{\Sigma^{*}}\right|$ is not countable \square

Operations on strings

string concatenations:
$\square x, y$: two strings $==>x \cdot y$ is a new string with y appended to the tail of x. i.e., $x \cdot y$ is the function :
$\square \quad z:[0, \operatorname{len}(x)+\operatorname{len}(y)) \rightarrow \Sigma$ such that
\square
[

$$
z(n) \quad=x(n) \text { for } 0 \leq n<\operatorname{len}(x) \text { and }
$$

$$
z(\operatorname{len}(x)+n)=y(n) \text { for } 0 \leq n<\operatorname{len}(y)
$$

— Some properties of \cdot :

1. ASSOC: $(x y) z=x(y z) ; 2$. Identity: $\varepsilon x=x \varepsilon=x$.
2. $|x y|=|x|+|y|$.
conventions and abbreviations:
$\square \Sigma$: for alphabet ; a,b,c: for symbols;
— x, y, z : for strings; A, B, C : for languages;
$\square x^{5}$ for $x x x x x ; x^{1}=x ; x^{0}=\varepsilon$.
$\square \# a(x)=_{\text {def }}$ number of a's in $x .==>\# a($ aabbcca $)=3$.

Operations on languages (i.e, string sets)

1. usual set operations:

- Union: A U B = \{x|x $\mid x$ or $x \in B\}$

$$
E x:\{a, a b\} \cup\{a b, a a b\}=\{a, a b, a b b\}
$$

\square intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$
\square complements in $\Sigma^{*}: \sim A=_{\text {def }} \Sigma^{*}-A=\{x \mid x$ not $\in A\}$
प ex: $\sim\{x||x|$ is even $\}=\{x| | x \mid$ is odd $\}$.
2. Set concatenations:
$A \cdot B=_{\text {def }}\{x y \mid x \in A$ and $y \in B\}$.

- Ex: \{b,ba\} $\{a, a b\}=\{b a, b a b, b a a, b a a b\}$.

3. Powers of $A: A^{n}(n \geq 0)$ is defined inductively:
4. $A^{0}=\{\varepsilon\} ; A^{n+1}=A \cdot A^{n}=A \cdot A \cdot \ldots \cdot A .---n A^{\prime} s$

Operations on languages (cont'd)

Ex: Let $A=\{a b, a b b\}$. Then
-1. $\mathrm{A}^{0}=$?
2. $\mathrm{A}^{1}=$?
3. $\mathrm{A}^{2}=$?
4. $\left|A^{4}\right|=$?

- 5. Hence $\{a, b, c\}^{n}=\left\{x \in\{a, b, c\}^{*}| | x \mid=n\right\}$ and
$\square \quad A^{n}=\left\{x_{1} x_{2} \ldots x_{n} \mid x_{1}, \ldots, x_{n} \in A\right\}$

5. Asterate (or star) A^{*} of A is the union of all finite powers of A:

$$
\begin{aligned}
A^{*} & ={ }_{\text {def }} U_{k \geq 0} A^{K}=A^{0} U A U A^{2} U A^{3} U \ldots \\
& =\left\{x_{1} x_{2} \ldots x_{n} \mid n \geq 0 \text { and } x_{i} \in A \text { for } 1 \geq i \geq n\right\}
\end{aligned}
$$

notes:

1. n can be $0==>\varepsilon \in A^{*}$. $==>\varepsilon \in\{ \}^{*}$.
2. If $A=\Sigma==>A^{*}=\Sigma^{*}=$ the set of all finite strings over Σ.

Properties of languages operations

6. $A^{+}={ }_{\text {def }}$ the set of all nonzero powers of A

$$
=_{d e f} U_{k \geq 1} A^{k}=A \cup A^{2} \cup A^{3} U \ldots=A A^{*} .
$$

Properties of languages operations

1. associative: $U, \cap, \cdot:$
$A U(B U C)=(A U B) U C ; A \cap(B \cap C)=(A \cap B) \cap C ;$ $A(B C)=(A B) C$
2. commutative : U, \cap :
3. Identities:

- 1. $\mathrm{A} \cup\left\}=\{ \} \mathrm{UA}=\mathrm{A} ; 2\right.$. $\mathrm{A} \cap \Sigma^{*}=\Sigma^{*} \cap \mathrm{~A}=\mathrm{A}$;
- 3. $\{\varepsilon\} \mathrm{A}=\mathrm{A}\{\varepsilon\}=\mathrm{A}$.

4. Annihilator: $A\}=\{ \} A=\{ \}$.
5. Distribution laws:
$\square A U(B \cap C)=(A U B) \cap(A U C) \quad ; \quad A \cap(B U C)=(A \cap B) U(A \cap C)$
$\square A(B U C)=A B U A C \quad ; A(B \cap C)=A B \cap A C(x)$
\square Ex: Let $A=\{a, a b\}, B=\{b\}, C=\{\varepsilon\}$
$\square==>A(B \cap C)=$? $A B=$? $A C=$?
$\square==>A(B \cap C) \quad A B \cap A C$.
\square Exercise: show that $A(B U C)=A B$ UAC.
6. De Morgan Laws: $\sim(A U B)=$? $\sim(A \cap B)=$?
7. Properties about A^{*} :
-1. $A^{*} A^{*}=A^{*} ; \quad$ 2. $A^{* *}=A^{*} ; \quad$ 3. $A^{*}=\{\varepsilon\} U A A^{*}$
[4. $A A^{*}=A^{*} A=A^{+}$. 5. $\left\}^{*}=\{\varepsilon\}\right.$.

- Exercises: Prove 1~5. (hint: direct from the definition of A^{*})

A language for specifying languages

- In the term: 'a language for specifying languages', the former language is called a metalanguage while the later languages are called target languages.
\square So in the C language reference manual, the BNF form is a meta language and C itself is the target language.
- Σ : an alphabet ; $\Delta=\Sigma \mathrm{U}\left\{+,{ }^{*}, \mathrm{e}, \varnothing, \cdot\right.$,), (\};
- $E=\Delta U\{\sim, \cap,-\}$
- 1. The set of all regular expressions is a subset of Δ^{*} which can be defined inductively as follows:
\square Basis: 1. e, \varnothing are regular expressions
[

2. Every symbol a in Σ is a regular expression.
\square Induction: If α and β are regular expressions then so are
[$\quad(\alpha+\beta),(\alpha \cdot \beta), \alpha^{*}$.

Regular expressions

- Examples:
\square legal reg. expr. : e, (a+b)*, ((a +(b-c))+(e•b)*)
\square illegal reg. expr: (ab), $a+b,((a+\Sigma))+d$, where d $\notin \Sigma$.
\square illegal formally but legal if treated as abbreviations:
— ab --> (a•b) ; a+b --> (a+b);
] a + bc* --> (a + (b•c*))
- Extended regular expressions (EREGs):
- EREGs are strings over E and can be defined inductively as follows:
\square Basis: 1. e, \varnothing are EREGs

2. Every symbol a in Σ is an EREG.

प Induction: If α and β are EREGs then so are
] $(\alpha+\beta),(\alpha \cdot \beta), \alpha^{*},(\sim \alpha),(\alpha \cap \beta),(\alpha-\beta)$ to specify infinite languages.

- Definition: for each EREG (and hence also REG) α, the language (over Σ) specified (or denoted or represented) by α, written $L(\alpha)$, is defined inductively as follows:
\square Basis: $L(e)=\{\varepsilon\} ; L(\varnothing)=\{ \} ;$
\square for each $a \in \Sigma, L(a)=\{a\}$.
\square Induction: assume $L(\alpha)$ and $L(\beta)$ have been defined for EREG α and β. Then
$\square L(\alpha+\beta)=L(\alpha) U L(\beta) ; L(\alpha \beta)=L(\alpha) L(\beta) ; L\left(\alpha^{*}\right)=L(\alpha)^{*} ;$
$\square L(\sim \alpha)=\Sigma^{*}-L(\alpha) ; \quad L(\alpha-\beta)=L(\alpha)-L(\beta) ; L(\alpha \cap \beta)=L(\alpha) \cap L(\beta)$.
- Definition: a language A is said to be regular if $A=L(\alpha)$ for some regular expression α.

Examples:

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Then
$\square \mathrm{L}\left(\mathrm{a}(\mathrm{a}+\mathrm{b})^{*}\right)=\{x \mid x$ begins with $a\}=\{a, a a, a b, a a a, a a b, a b a, .$.
$\square L\left(\sim\left(a(a+b)^{*}\right)\right)=\{x \mid x$ does not begin with $a\}$
$\square \quad=\{x \mid x$ begins with $b\} \cup\{\varepsilon\}=L\left(e+b(a+b)^{*}\right)$.

- Regular expressions and Extended regular expressions give us finite ways to specify infinite languages. But the following questions need to be answered before we can be satisfied with such tools.
- 1. Are EREG or REGs already adequate ?
\square (i.e, For every $A \subseteq \Sigma^{*}$, there is an expression α s.t., $L(\alpha)=$ A ?) ==> ans: \qquad .
(2. For every expression α, is there any [fast] machine that can determine if $x \in L(\alpha)$ for any input string x ?
[Ans: \qquad

IS EREG more expressive than REG ?

- L1, L2: two [meta] languages;
\square we say $L 1$ is at least as expressive as $L 2$ if $L(L 2)=_{\text {def }}\{A \mid$ there is an expression a in $L 2$ s.t. $A=L(a)\}$ is a subset of L(L1).
\square L1 is said to be equivalent to $\mathbf{L} 2$ in expressive power iff both are at least as expressive as the other.
- Problem:
\square EREG is at least as expressive as REG since $L($ REG $)$ is a subset of L(EREG) (why?)
\square But does the converse hold ? (i.e, Is it true that for each EREG α there is a REG β s.t., $L(\alpha)=L(\beta)$?
- ans: \qquad .

