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Course outlines 

 Introduction: 

 Mathematical preliminaries: 

sets, relations, functions,sequences, graphs, trees, proof by 

induction, definition by induction (recursion). 

 Basics of formal languages: 

alphabet, word, sentence, concatenation ,union, iteration [= Kleene 

star], language, infinity of languages, finite representations of 

languages 

 PART I: Finite Automata and Regular Sets  

  DFA,NFA,regular expressions and their equivalence 

  limitation of FAs;  

 Closure properties of FAs,  

 Optimization of FAs  
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course outline (cont'd) 

 PART II: Pushdown Automata and Context Free 

Languages  

 CFGs and CFLs; normal forms of CFG 

 Limitation of CFG; PDAs and their variations, 

 closure properties of CFLs 

 Equivalence of pda and CFGs; deterministic PDAs 

 parsing (Early or CYK's algorithms) 

 PART III: Turing Machines and Effective 

Computability  

 Turing machine [& its variations] and Equivalence models 

 Universal TMs 

 Decidable and undecidable problems (Recursive sets and 

recursively enumerable sets) 

 Problems reductions ; Some undecidable problems 
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Goals of the course 

 understand the foundation of computation 

 make precise the meaning of the following terms: 

 [formal] languages, problems, Programs, machines, 

computations 

 computable {languages, problems, sets, functions} 

 understand various models of machines and their 

relative power : FA, PDAs, LA (linear bounded 

automata), TMs, [register machines, RAMs,...] 

 study various representations of languages in finite 

ways via grammars: RGs, CFGs, CSGs, general PSGs  
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Chapter 1 Introduction 
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Mathematical preliminaries (reviews) 

 sets (skipped) 

 functions (skipped) 

 relations 

 induction 

 Recursive definitions 
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 Sets 

 Basic structure upon which all other (discrete and 

continuous ) structures are built. 

 a set is a collection of objects. 

 an object is anything of interest, maybe itself a set. 

 Definition 1.  

  A set is a collection of objects. 

  The objects is a set are called the elements or members of 

the set.  

  If x is a memebr of a set S, we say S contains x. 

 notation: x S vs  x S 

 Ex: In 1,2,3,4,5, the collection of 1,3 5 is a set.  
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Set description 

 How to describe a set:? 

1. List all its member. 
  the set of  all positive odd integer >10 = ? 

 The set all decimal digits = ? 

 the set of all upper case English letters = ? 

 The set of all nonnegative integers = ? 

2. Set builder notation: 
 P(x) : a property (or a statement or a proposition) about 

objects. 

 e.g., P(x) = “ x > 0 and x is odd” 

 then {x | P(x) } is the set of objects satisfying property P. 

  P(3) is true => 3   {x | P(x)} 

  P(2) is false => 2   {x | P(x)} 
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Set predicates 

Definition 2.  

 Two sets S1, S2 are equal iff they have the same elements 

 S1 = S2 iff "x (x S1 <=> x  S2) 

 Ex:   {1,3,5} = {1,5,3} = {1,1,3,3, 5} 

 Null set ={} =  =def the collection of no objects. 

Def 3’: [empty set] for-all x x. 
Def 3. [subset]  

 A  B iff all elements of A are elements of B. 

 A  B <=> for-all x (x  A => x  B)). 

 Def 3’’: A  B =def A  B /\ A  B. 

 Exercise : Show that:  1. For all set A (

 2. (A  B /\ B  A) <=> (A = B)      3. A   
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Size or cardinality of a set 

Def. 4 

 | A | = the size(cardinality) of A = # of distinct elements of A. 

 Ex: 

 |{1,3,3,5}| = ? 

 |{}| = ? 

 | the set of binary digits } | = ? 

 |N| = ?  ;  |Z| = ? ;  | {2i | i in N} = ?  

 |R| = ? 

 Def. 5. 

 A set A is finite iff |A| is a natural number ; o/w it is infinite. 

 Two sets are of the same size (cardinality) iff there is a 1-1 

& onto mapping between them.   
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countability of sets 

 Exercise: Show that 

 1. |N| =  |Z| = | Q | = {4,5,6,...} 

 2. |R|  = | [0, 1) | 

 3. |N|    |R|       

 Def. 

 A set A is said to be denumerable  iff |A| = |N|. 

 A set is countable (or enumerable) iff either |A| = n for some 

n in N or |A| = |N|. 

 By exercise 3,  

 R is not countable. 

 Q  and Z is countable.  
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The power set 

Def 6.  

 If A is a set, then the collection of all subsets of A is also a 

set, called the poser set of A and is denoted as P(A) or 2A. 

 Ex: 

 P({0,1,2}) = ? 

 P({}) = ? 

 |P({1,2,..., n})| = ? 

 Order of elements in a set are indistinguishable. But  

sometimes we need to distinguish between (1,3,4) 

and (3,4,1)  --> ordered n-tuples  



Introduction 

  Transparency No. 1-13 

More about cardinality 

Theorem: for any set A, |A| |2A|. 

Pf: (1) The case that A is finite is trivial since |2A| = 2|A| > |A| 

  and there is no bijection b/t two finite sets with different sizes. 

(2) assume |A| = |2A|, i.e., there is a bijection f: A -> 2A. 

   Let  D = {x in A | x  f(x) }. ==> 

  1. D is a subset of A; Hence 

  2. $y in A s.t. f(y) = D. 

 Problem: Is y  D ? 

  if yes (i.e., y  D)  ==> y  f(y) = D, a contradiction 

  if no (i.e., y  D) ==> y  f(y) =D, a contradiction too. 

 So the assumption is false, i.e., there is no bijection b/t A and 

2A. 

Note: Many proofs of impossibility results about computations 

used arguments similar to this.  
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Cartesian Products 

Def. 7 [n-tuple] 
 If a1,a2,...,an (n > 0) are n objects, then “(a1,a2,...,an)”  is a 

new object, called an (ordered) n-tuple [ with ai as the ith 
elements. 

 Any orderd 2-tuple is called a pair. 

 (a1,a2,...,am) = (b1,b2,...,bn)  iff  
m = n and    for i = 1,..,n ai = bi. 

 

Def. 8: [Cartesian product] 
  A x B =def {(a,b) | a in A /\ b in B } 
  A1 x A2 x ...x An =def  {(a1,...,an) | ai in Ai }. 
 
Ex: A = {1,2}, B = {a,b,c} , C = {0,1} 
 1. A x B = ?  ; 2. B x A = ? 
 3. A x {} = ?   ;4. A x B x C = ? 
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 Set operations 

 union, intersection, difference , complement, 

 Definition.  

 1. A B = {x | x in A or x in B } 

 2. A B = {x | x in A and x in B } 

 3. A - B = {x | x in A but x not in B } 

 4. ~ A = U - A 

 5. If A  B = {} => call A and B disjoint. 
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Set identites 

 Identity laws:                  A ? ? = A 

 Domination law:             U ? ? = U;   {} ?? = {} 

 Idempotent law:             A ? A = A ; 

 complementation:         ~~A = A 

 commutative :               A ? B = B ? A 

 Associative:                  A ? (B ? C) = (A ? B ) ? C 

 Distributive:                  A ? (B ? C) = ? 

 DeMoregan laws:         ~(A ? B) = ~A ? ~B  

 

Note: Any set of objects satisfying all the above laws is 
called a Boolean algebra. 
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Prove set equality 

1. Show that ~(A  B) = ~A ~B by show that  

 1. ~(A  B)~A ~B  

 2. ~A ~B ~(A  B)  

 pf: (By definition) Let x be any element in ~(A  B)...

 

2. show (1) by using set builder and logical equivalence. 

 

3. Show distributive law by using membership table. 

 

4. show ~(A (B C)) = (~C ~B) ~A by set identities. 
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 Functions 

 Def. 1 [functions]     A, B: two sets 

  1. a function f from A to B is a set of pairs (x,  y) in AxB s.t., for 

each x in A there is at most one y in B s.t. (x,y) in f. 

  2. if (x,y) in f, we write f(x) = y. 

  3. f :A ->B means f is a function from A to B. 

Def. 2. If f:A -> B ==> 

 1. A: the domain of f;   B: the codomain of f 

  if f(a)=b =>  

   2. b is the image of a;   3. a is the preimage of b 

   4. range(f) = {y | $x s.t. f(x) = y} = f(A). 

   5. preimage(f) = {x | $ y s.t. f(x) = y } = f-1(B). 

   6. f is total iff  f-1(B) = A. 
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Types of functions 

 Def 4.   

   f: A x B;   S: a subset of A, 

              T: a subset of B 

  1.  f(S) =def   {y | $x in S s.t. f(x) = y } 

  2.  f-1(T) =def {x | $y in T s.t. f(x) = y } 

 

Def. [1-1, onto, injection, surjection, bijection] 

 f: A -> B. 

 f is 1-1 (an injection) iff  f(x)=(fy) => x = y. 

 f  is  onto (surjective, a surjection) iff  f(A) = B 

 f is 1-1 & onto <=> f is bijective (a bijection, 1-1 

correspondence)  
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Relations 

 A, B: two sets 

 AxB (Cartesian Product of A and B) is the set of all ordered 

pairs {<a,b> | a  A and b   B }. 

 Examples: 

    A= {1,2,3}, B= {4,5,6} => AxB =   ?         

 

 A1,A2,...,An (n > 0): n sets 

 A1xA2x...xAn = {<a1,a2,...,an> | ai   Ai  }. 

 Example: 

  1. A1={1,2},A2={a,b},A3={x,y} ==> |A1xA2xA3| =  ? 

   2. A1= {}, A2={a,b}  => A1xA2 = ? 
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Binary relations 

 Binary relation: 

 A,B: two sets 

 A binary relation R between A and B is any subset of AxB. 

 Example:  

  If A={1,2,3}, B ={4,5,6},  then which of the following is a 

binary relation between A and B ? 

 R1 = {<1,4>, <1,5>, <2,6> } 

 R2 = {} 

 R3 = {1,2,3,4} 

 R4 = {<1,2>, <3,4>, <5,6> } 
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Terminology about binary relations 

 R: a binary relation between A and B (I.e., a subset 

of AxB), then 

 The domain of  R: 

     dom(R)  = {x  A | $ y   B s.t. <x,y>  R} 

 The range of R: 

     range(R) ={y   B, | $ x  A, s.t., <x,y>   R} 

 <x,y>   R is usually written as x R y. 

 If A = B, then R is simply called a relation over(on) 

A. 

 An n-tuple relation R among A1,A2,...,An is any 
subset of A1xA2...xAn, n is called the arity of R 

 If A1=A2=...=An=A => R is called an n-tuple relation 

(on A),. 
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Operations on relations (and functions) 

 R  AxB; S  B x C: two relations 

 composition of R and S: 

 R · S = {<a,c> | there is b in B s.t., <a,b> in R and <b,c> in 

S }. 

 Identity relation: IA = {<a,a> | a in A } 

 Converse relation: R-1 = {<b,a> | <a,b> in R } 

 f:A -> B; g: B->C: two functions, then 

  g·f:A->C defined by g·f(x) = g(f(x)). 

 Note: function and relation compositions are 

associative, I.e., for any function or relation f,g,h, 

    f· (g·h) = (f·g) ·h 
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Properties of binary relations 

 R: A binary relation on S, 

1. R is reflexive iff  for all x in S, x R x. 

2. R is irreflexive iff for all x in S, not x R x. 

3. R is symmetric iff for all x, y in S, xRy => yRx. 

4. R is asymmetric iff for all x,y in S, xRy => not yRx. 

5. R is antisymmetric iff for all x,y in S, xRy and yRx => x=y. 

6. R is transitive iff for all x,y,z in S, xRy and yRz => xRz. 

 

Graph realization of a binary relation and its properties. 

 
x x 

y y 

s s 

rule: if xRy then draw an 

   arc from x on left S to y  

   on right S. 
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Examples 

 The relation  on the set of natural numbers N. 

  What properties does  satisfy ?  
  ref. irref, or neither ? 

  symmetric, asymmetric or antisymmetric ? 

  transitive ?  

 The relation  on the set of natural numbers N. 

 The divide | relation on integers N ?  
 x | y iff x  divides y. (eg. 2 | 10, but not 3 | 10) 

  What properties do   and | satisfy ? 

 The BROTHER relation on males (or on all people) 
 (x,y)  BROTHER iff x is y’s brother. 

 The ANCESTOR relation on a family. 
 (x,y)  ANCESTOR if x is an ancestor of y.  

 What properties does BROTHER(ANCESTOR) have? 
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Properties of relations 

 R: a binary relation on S 

1. R is a preorder iff it is ref. and trans. 

2. R is a partial order (p.o.) iff R is ref.,trans. and antisym. 

(usually written as  ). 

3. R is a strict portial order (s.p.o) iff it is irref. and transitive. 

 usually written <.    

4. R is a total (or linear) order iff it is a partial order and every 

two element are comparable (i.e., for all x,y either xRy or 

yRx.) 

5. R is an equivalence relation iff it is ref. sym. and trans. 

 If R is a preorder (resp. po or spo) then (S,R) is called a 

preorder set (resp. poset, strict poset). 

 What order set do (N, <) , (N, ) and (N, |) belong to ? 

    



Introduction 

  Transparency No. 1-27 

Properties of ordered set 

 (S, ): a poset, X: a subset of S. 

1. b in X is the least (or called minimum) element of X iff b x for 

all x in X.  

2. b in X is the greatest (or called maxmum or largest) element of 

X iff X  b for all x in X.  

 Least element and greatest element, if existing, is unigue for 

any subset X of a poset (S,  ) 

pf:  let x, y be least elements of X. 

         Then, x y and y x. So by antisym. of , x = y. 

3.  X ia a chain iff (X,R) is a linear order(, i.e., for all  x, y in X, 

either xy or yx) . 

4. b in S is a lower bound (resp., upper bound) of X iff 

    bx  (resp., xb) for all x in X. 

 Note: b may or may not belong to X. 
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Properties of oredered sets 

 (S, ) : a poset, X: a nonempty subset of S. 

5. b in X is minimal in X iff there is no element less 
than it. 
 i.e., there is no x in X, s.t., (x < b),  

 or  “for all x, x b => x =b.”  

6. b in X is a maximal element of X iff there is no 
element greater then it. 
 i.e., there is no x in X, s.t., (b < x),  

 or  “for all x, b  x => x=b.”  

 Note: 

1.Every maximum element is maximal, but not the 
converse in general. 

2. Maximal and minimal are not unique in general. 



Introduction 

  Transparency No. 1-29 

well-founded set and minimum conditions 

 (S,) : a poset (偏序集).  

. is said to be well-founded (良基性) iff there is no 

infinite descending sequence. (i.e., there is no infinite 

sequence x1,x2,x3,.... s.t., x1 > x2 > x3 >... ). 

 Note: x > y means y < x (i.e., y x and y = x) 

 if is well-founded => (S,) is called a well-founded set. 

2. (S,) is said to satisfy the minimal condition iff every 

nonempty subset of S has a minimal element. 

 (S,  ): a total ordered set (全序集). 

. is said to be a well-ordering(良序) iff  every 

nonempty subset of S has a least element.  

 If is well ordered, then (S,) is called a well-ordered set. 
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Examples of ordered sets 

 Among the relations (N, ), (N, ), (N, |), (Z, ), (Z,), 

(Z,|) and (R, ), 

1. Which are well-founded ? 

2. Which are well-ordered ? 
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Equivalence of well-foundness and minimal condition 

 (S,) is well-founded (w.f.)  iff it satisfies the minimal 

conditions (m.c.). 

pf: scheme: (1) not w.f => not m.c. (2) not m.c. => not w.f. 

  (1) Let x1,x2,... be any infinite sequence s.t. x1 > x2 > x3 >... . 

       Now let X={x1,x2,...}. X obviously has no minimal element. 

       S thus does not satisfy m.c. 

 

  (2) Let X be any nonempty subset of S w/o minimal elements. Now 

     (*) choose arbitrarily an element a1 from X and let  

          X1 = {x | x  X and a1 > x } (i.e. the set of all elements in X < a1 ). 

   Since a1 is not minimal, X1 is nonempty and has also no minimal element. 

   We can then repeat the procedure (*) infinitely to find a2, X2, a3, X3,... and 

obtain an infinite descending  sequence a1 > a2 > a3 > ...  

   Hence S is not w.f. 
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A general proof scheme to show the infinity of  a set  

 Let P be a property of sets and C =def { X | P(X) holds }. If there 

exists a function f : C  C satisfying the property:  forall set X  C 

(i.e, P(X) holds),  

  1. f(X) is a nonempty proper subset of X, 

       (i.e., f(X) , f(X)  X and f(X)  X),  and 

  2. f preserves property P  

     (I.e., P(X) implies P(f(X), or XC => f(X)C), 

   then  all sets X with property P are infinite .  

Pf: Let X0,X1,…,Xk,… be an infinite sequence of sets   

 with X0 = X and Xk+1 =def  f(Xk) = f(f(Xk-1)) = … = fk+1(X). 

 Since X = X0 has property P and f preserves P, by induction   

 on k, all Xk has property P.  And by (1)  Xk  f(Xk) = Xk+1 for all k.   

 Now the sequence X0-X1, X1-X2, X2-X3,…. is an infinite sequence of  

   nonempty and disjoint subsets of X. X thus is infinite. 
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Variants of Inductions 

 Mathematical Induction: 
 To prove a property P(n) holds for all natural number n  N, 

it suffices to show that 

(1)  P(0) holds   --- (base step) and 

(2) For all n  N, p(n) => p(n+1) --- (induction step) 
P(n) in (2) is called induction hypothesis (h.p.) 

 

 P(0), " n (P(n) => P(n+1)) 

 -------------------------------------------MI1  

              " n P(n)         

 

 P(0), "n  ( (P(0)/\...p(n-1)) ) => P(n) ) 

 -------------------------------------------------MI2 

            "n P(n) 

= "m. m<n  P(m) // Ind. Hyp. 
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Well-order Induction 

 Well-order induction: 

 (S, ) a well-ordered set; P(x): a property about S. 

 To show that P(x) holds for all xS, it suffices to show 

(1) P(xmin) holds where xmin is the least element of S. --- (base step) 

(2) for all xS, if (for all yS  y < x => P(y)) then p(x) ---(ind. step) 

 

 (1) is a special case of (2) [i.e., (2) implies (1)] 

 (for all y in S  y < x => P(y)) in (2) is called the ind. hyp. of (2). 

 

  P(Xmin),  "y [ ("x. x< y =>P(x)  ) => P(y) 

    --------------------------------------------------------------- WI 

                "x P(x)  
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Variants of inductions 

  Well-founded induction (WI ): 

 (S, ) a well-founded set. P(x) a property about S. 

 WI  says that to prove that P(x) holds for all x in S, it 

suffices to show that 

(1) P(x) holds for all minimal elements x in S --- base step, and 

(2) for all y in S, (for all z in S  z < y => P(z)) => p(y) ---ind. step 

 (1) has already been implied by (2) 

 (for all z in S  z < y => P(z)) in (2) is the ind. hyp. of the proof. 

 

    forall minimal x, P(x),      "y [ ("z,  z<y =>P(x) ) => P(y) ] 

           -------------------------------------------------------------------------- WI 

                                           "x P(x)  

 Facts:  w.f. Ind. => well-ordered ind. => math ind. 

 (I.e., If w.f ind. is true, then so is well-ordered ind. and 

    if well-ordered ind. is true , then so is math. ind.) 
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Correctness of  WI 

 (S,) : a well-founded set.      P(x) : a property about S. 

  Then P(x) holds for all x  S, if  
(1) P(x) holds for all minimal elements x  S --- base step, and 

(2) for all y  S, (for all z  S  z < y => P(z)) => p(y) ---ind. Step 
pf:  Suppose WI is incorrect. Then there must exist (S,) satisfying (1)(2) but 

      the set NP = { x | x   S and P(x) is not true } is not empty. (*)  

 ==> Let xm be any minimal element of NP. 

 case (1): xm is minimal in S. --> impossible! (violating (1) ) 

       since if xm is minimal in S, by (1), P(xm) holds and xm  NP. 

 case (2): xm is not minimal in S. --> still impossible!   

             xm not minimal in S ==> L = {y | y  S /\ y < xm } is not empty. 

      ==> L  NP = { }  (o/w xm would not be minimal in NP.) 

     ==> (ind. hyp. holds for xm , i.e., for all z  S, z < xm => p(z) is true ) 

     ==> (by (2).) p(xm) holds ==> xm NP.    

 case(1) and (2) imply NP has no minimal element and hence is empty, 
which contradicts with (*). Hence the assumption that WI is incorrect is 
wrong.   
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Definition by induction (or recursion) 

 Consider the following ways of defining a set. 

1. the set of even numbers Even = {0,2,4,...}: 
 Initial rule   :  0 Even. 

 closure rule:  if x Even then x +2 ven. 

2. The set of strings S+ over an alphabets S = {a,b,...,z} 
 Initial:  if x S, then “x” S+. 

 closure:  If xS and “a” S+, then “xa” S+. 

3. The set (Z*) of  integer lists. 
 Initial: [ ] is a (integer) list, 

 closure: If x is an integer and [L] is a list, then [x L] is a list.  
 e.g., [ ], [4 ], [3 4], [2 3 4], [5 2 3 4] 

 

 Problem: All definitions well-defined? What’s wrong? 
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Problems about recursive definition 

 The above definitions are incomplete in that there are 
multiple sets satisfy each definition 

 Example: 
 Let Ni = {0,2,4,6,...} U { 2i+1, 2i+3, ...}. 

 Then {0,2,4,6,...} and Ni (i >0  all satisfy Def. 1. 

 Among {0,2,4,6,...} and Ni (i >  0) , which one is our 
intended set ? 

 How to overcome the incompleteness ? 

 Relationship between {0,2,4,...} and the collection of 
sets satisfying the definitions? 
 {0,2,4,...} is the least set among all sets. 

 {0,2,4,...} is equal to the intersection of all sets. 

 Every other set contains some elements which are not 
grounded in the sense that they have no proof (or derivation). 
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General form of inductively defining a set  (or domain)   

  W: a set,  Init: a subset of W   

    F: a set of functions/rules  on W, 

  we define a subset  D of W  as follows: 

 1. Initialization:  Every element of Init is an element of D. 

                       (or simply Init  D) 

 2. closure: If f:Wn->W in F and t1,...,tn are members of D, 

                    then so is f(t1,...,tn) 

 3. plus one of the following 3 phrases. 

 3.1 D is the least subset of W with the above two properties. 

 3.2 D is the intersection of all subsets of W with property 1,2.  

 3.3 Only elements of Wobtainable by a finite number of 
applications of rules 1 and 2 are elements of D. 
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How to derive an object from an inductive defiintion 

 W: a set,      Init: a subset of W   

     F: a set of functions on W, 

Given Init and F,  an object x W is said to be  

derivable from Init and F if there is a finite sequence 
x1,x2,…xn of objects of Wsuch that 

1.x = xn, 

2. for all 1k n, either 

  2.1 xk  Init   --- (xk is an axiom) or 

  2.2 xk = f(t1,…,tn) where fF and {t1,…,tn}{x1,…,xk-1}.                

                         --- (xk is got from closure rule) 

 

The sequence is called a derivation(or deduction,proof) of 
x. 
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Examples 

 W= Z,      Init: = {2} ,    F = { x5, add5, +} 

 Then 54 is derivable since 

 

 

1.  2,    --- axiom 

2.  7,    --- add5(2) 

3.  9,    --- +(2,7) 

4.  45,  ---- x5(9) 

5.  54   ---- +(9,45) 

 

is a derivation of 54. The length of the derivation is 5. 

 

                          = 

                          2 

        =           =  ----+5 

        2           2    7 

=    -----+5    --------+5 

2      7             9 

----------+      ---------x5 

   9,                 45 

--------------------------- + 

        54              

derivation (proof ;deduction) tree for 54 
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Define functions on recursively defined domains 

 Once a domain D is defined inductively. We can 

define functions on the domain according to the 

following recursive scheme: 

 A function v : D  C, can be defined as follows: 

 basis case: specify the value v(t) of t for each primitive 

object t in Init. 

 recursive case: specify the value v(f(t1,t2,…,tn)) of 

every compound object f(t1,t2,…,tn) in terms of the 

values v(t1),v(t2),…,v(tn) of smaller composing objects 

t1,…,tn , for all f F and t1,…,tnD. 
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Example 

 Consider the following functions defined on integer lists:  

sum : integer List(denoted Z*) Z  

with sum(L) =def sum of all integers in L. 

 We can define sum by recursion as follows: 

 Basis case: specify the value sum(L) of L for each 

primitive L in Init = { [] }. 

 ==> basis: sum([]) = 0. 

 Recursive case: specify the value sum(f(t1,...,tn)) 

of element f(t1,...,tn)for each f ∈ F and t1,...,tn ∈ D= 

Z+. 

 ==> Recursion: where F = { fx | fx([L’]) = [x L’],  xZ } 

     For any list of integers L of the form [x L’], 

   sum(L) = sum([x L’]) = x + sum([L’])   

Ex: sum([4,3,2])=4+sum([3,2])=4+3+sum([2])=4+3+2+sum([])     

   = 4 + 3 +2 + 0 = 9. 
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Define functions on recursively defined domains 

 More example:  
 #a : S+

 N with #a(x) =def number of a’s in string x. 

 Now we can define #a as follows: 
 Basis case: specify the value #a(“x”) of “x” for each x in  S.   

==> #a(“a”) = 1 ; #a(“y”) = 0 if y  a. 

 Recursive case: specify the value #a(“dz”) of element “dz” 
for each d ∈S and  “z”∈S +. 

      ==> for any d  S  and “z”  S+ , 

            then #a(“dy”) = 1 + #a(“y”) if d = a   and 

                     #a(“dy”) =      #a(“y”)  if d  a 

 But are such kind of definitions well defined?  
 A sufficient condition: If the recursively defined domain is 

 not ambiguous (i.e., multi-defined)I.e., there is only one 
way to form (or derive ) each element in the domain.                         
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Example of a multi-defined(ambiguous) Domain 

 Arithmetic Expression (AExp ⊆ S*) : 

 Init: Constants a,b,c,… and variables x,y,z,… are 

arithmetic expressions 

 Closure: If a and b are arithmetic expressions then so 

are a+b, a-b, -a, ax b . 

 ambiguous arithmetic expressions: 

 2 – 3 x 5 ;    x – y + 2 

 two ways to form “ 2 – 3 x 5 “: 

 1.  2,  3, 2-3, 5, 2-3 x 5. 

 2.  2, 3,  5,  3x5, 2- 3x 5. 

 

x 

-

5 3 2 

-

x 

5 3 2 
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Problem for ambiguous defintions 

 Define the fucntion val : AExp  Z  as follows: 

 Basis case:  

 val(c) = c where c is an integer constant. 

 val(x) = 0 where x is a variable. 

 Recursion : where a and b are expressions 

 val(a+b) = val(a) + val(b) 

 val(a-b) = val(a) – val(b) 

 val(a * b ) = val(a) * Val(b) 

 

 Then there are two possible values for 2 – 3 * 5. 

 val( 2 - 3 * 5 ) =val(2) – val(3 * 5) = 2 – [val(3) * val(5)] = 2 – 15 = -13. 

 val( 2 – 3 * 5) = val(2-3) * val(5) = [val(2) – val(3)] * 5 

                      = -1 * 5     = -5. 

 As a result, the function val is not well-defined !! 
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Structural induction 

    D:  an inductively defined domain 

    P(x): a property on D. 

 To show that P(x) holds  for all x in D, it suffices to show 

 Basis step: P(x) holds for all x in Init.  

 Ind. step:  P(t1),...,P(tn) => P(f(t1,...,tn)) for all f in F, 

                     and for all t1,...,tn in D.  

 Example:  show P(x)#a(x)  0 holds for all x. 

 Basis step: x  Init = {“a”,”b”,”c”,...}) 

  x = “a” => #a(x) = 1  0. 

 x “a” => #a(x) = 0 0 

 Ind. step: x = “dy” where d is any element in Sand  “y” is any 

element in S+. 

By ind. hyp.  #a(“y”)  0. hence 

 if d = a    => #a( “dy” ) = 1 + #a(“y”) 0 

 if da    =>  #a(“dy”)   = #a(“y”)  0.  
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More example: 

 Define the set of  labeled binary trees as follows: 

 S:  a set of labels = {a,b,c,..} 

 G = S U {(, )}, G* = the set of strings over G. 

 TS is a subset of G* defined inductively as follows: 
 Init: () is a tree.   // no more written as “()”  

 closure: if x is a label, and L and R are trees, 

        then (x L R) is a tree.  

 Example / counterexample: 
 (),   (a ()()),   ((a) (b) ())  . 

 For tree T, let lf(T) = #of ‘(‘  ,lb(T) =# of labels, and 

   e(T) = number of empty subtrees “()” in T. All can be   

   defined inductively as follows: 
 basis:       lf(()) = 1;              lb(()) = 0;            e(()) = 1. 

 recursive: lf( (x L R) ) = 1+ lf(L) + lf(R); 

         lb( (x L R) ) = 1 + lb(L) +lb(R) ; e( (x L R) ) = e(L) + e(R).  
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More example(cont’d) 

 Use structural ind. to prove properties of trees. 

 Show that for all tree T in TS :  P(T) def 

        lf(T) = lb(T) + e(T)   

     holds for all tree T. 

 Basis step[ T = () ] :  lf(()) = 1, lb(())=0, e(())=1 => P(()) holds. 

 ind. step[ T= (x L R) where x: any label, L, R: any trees] : 

   assume (ind.hyp.:) lf(L) = lb(L) + e(L) and 

                                   lf(R) = lb(R) + e(R ). Then 

 lf( (x L R) ) = 1 + lf(L) + lf(R) = 1 +lb(L) +lb(R) + e(L) +e(R) 

 e( (x L R) ) = e(L) +e(R) 

 lb( (x L R) ) =1 + lb(L) + lb(R) 

==> lf((X L R)) = lb((X L R)) + e((X L R)). 
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Exercise 

 Let Z* be the domain of integer lists as defined inductively 

at slide 36. Let append : Z* x Z* -> Z* be the binary 

function on Z* such that, given x and y, append(x,y) will 

form a list equal to the concatenation of x and y. For 

instance, append([1], [ 2 3]) = [1 2 3] and append([2 3 

4],[2 1]) = [2 3 4 2 1]. 

1.Give an inductive definition of append(x,y) according to 

(the structure of) its first argument x. 

2.  Prove by induction that for all integer lists x and y,  

     sum(x) + sum(y)  = sum(append(x,y)), 

     where the function sum was defined at slide 42. 
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2.  Basics of formal languages 

 What is a language ? 

 

 

 

 

 

 

 

 

 

                            The meaning triangle: 

 

 minds 

language External  

world 

refers to 

stand for 

symbolize 



Introduction 

  Transparency No. 1-52 

Different levels of language analysis 

 phonetic and phonological analysis(語音與音韻分析) 
 determine how words are related to sounds that realize them; 

required for speech understanding.  

 Phonetics concerns itself with the production, transmission, and 
perception of the physical phenomena(phones) which are 
abstracted in the mind to constitute these speech sounds or 
signs. 

 Phonology concerns itself with systems of phonemes (音位), 
abstract cognitive units of speech sound or sign which 
distinguish the words of a language. 

 Ex: k in 'kill' and 'skill' are two phones [k],[g] but same phoneme 
/k/;  book(單數)  books (多數) 

 morphological analysis: (詞彙分析;構詞學) 

 determine how words are formed from more basic meaning 
units called "morphemes". (詞 素) 

 morpheme:   primitive unit of meaning in a language. 
eg: friendly = friend + ly;  luckily = lucky + ly 

http://en.wikipedia.org/wiki/Phonetics
http://en.wikipedia.org/wiki/Phonology
http://zh.wikipedia.org/wiki/%E8%AF%AD%E9%9F%B3%E5%AD%A6
http://zh.wikipedia.org/wiki/%E9%9F%B3%E9%9F%B5%E5%AD%A6
http://en.wikipedia.org/wiki/Phone_%28phonetics%29
http://en.wikipedia.org/wiki/Phoneme
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8
http://zh.wikipedia.org/wiki/%E6%A7%8B%E8%A9%9E%E5%AD%B8
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Levels of language analysis 

 syntax analysis: (語法分析) 
 determine how words can be put together to form correct 

sentences. 

 determine what structure role each word plays in the sentence. 

 determine what phrases are subparts of what other parts. 

 ex: John saw his friend with a telescope  

   =>  S[ NP[ noun:'John' ]          // one more result not listed! 

              VP[ verb: 'saw',  

                     NP[ NP[ possessivePronoun:'his', noun: 'friend'] ] 

                            PP[ prep: 'with',  NP [ art: 'a' noun:'telescope]]]] 

 Semantics analysis : (語意分析) 

 determine what words mean and how these meanings combine 

in sentence to form sentence meanings.  context independent. 

 Possible analysis result of the previous example:   

   person(j),  person(f), name(j,'John'), time(t),  friend(f,j) //? 

   see(j, f, t), before(t, now), possess(f, te, t). 

http://zh.wikipedia.org/wiki/%E8%AA%9E%E6%B3%95%E5%AD%B8
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%BE%A9%E5%AD%B8
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Levels of language analysis 

 Pragmatic analysis: (語用分析) 

 studies the ways in which context contributes to meaning 

 concern how sentences are used in different situation and how 

use affects the interpretation of sentences. 

 ex: Would you mind opening the door? 

       John saw his friend with a telescope . 

 Discourse analysis (篇章或對話分析) ,... 

 代名詞解析，文句的銜接與連貫等。 

 Ex: Wang has a friend. John saw him (Wang or Wang's friend?) 

with a telescope yesterday. 

 World knowledge,... 

 Languages (including natural and programming languages) 

contains many facets, each an active research domain of AI, 

linguistics, psychology, philosophy, cognitive science and 

mathematics. 

 

http://en.wikipedia.org/wiki/Pragmatics
http://zh.wikipedia.org/wiki/%E8%AA%9E%E7%94%A8%E5%AD%B8
http://en.wikipedia.org/wiki/Discourse_analysis
http://zh.wikipedia.org/wiki/%E7%AF%87%E7%AB%A0%E5%88%86%E6%9E%90
http://en.wikipedia.org/wiki/Cohesion_%28linguistics%29
http://en.wikipedia.org/wiki/Coherence_(linguistics)
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What are formal languages 

 In the study of formal languages we care about only the 

well-formedness/membership, but not the meaning of 

sentences in a language. 

 Ex1: Our usual decimal language of positive numbers ? 

 Problem: Which of the following are well-formed 

[representation of] numbers: 

 (1) 128  (2) 0023    (3) 44ac   (4) 3327 

 Let L be the set of all well-formed [representations of ] 

numbers. ==> 123, 3327 in L but 0023, 44ac not in L. 

 So according to the view of FL, The usual decimal language 

of positive numbers (i.e., L) is just the set : 

   { x | x is a finite sequence of digits w/t leading zeros }. 

 Note: FL don't care about that string '134' corresponds to the (abstract) 

positive number whose binary representation is 10000000 –It’s the job 

of semantics. 
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Definition 2.1 

 An alphabet S (or vocabulary; 字母集) is a finite set. 

 Ex: decimal_alphabet = {0,1,2,3,4,5,6,7,8,9} 

   binary_digit = {0,1}; Hexidecimal-alphabet = {0,..,9,A,..,F} 

   alphabet-of-English-sentences = {a, word, good, luckily,...} 

   alphabet-of-English-words = {a,...,z,A,...,Z} 

 Elements of an alphabet are called letters or symbols 

 A string (or word or sentence) over S  is a finite sequence of 

elements of S. 

 Ex: if S = {a,b} then “aabaa” is a string over S of length 5. 

 Note: A string x = x0 x1 … xn-1 of length n is in fact viewed as a function  

           x: [0..n) S such that x(k) = xk for k in [0,n). 

 The length of a string x, denoted |x|, is the number of symbols 

in x. ex: |abbaa| = 5. 

 There is a unique string of length 0, called the null string or 

empty string, and is denoted by e (or l) 



Introduction 

  Transparency No. 1-57 

Definition 2.1 (cont'd) 

 S* =def the set of all strings over S. 

 Ex: {a,b}* = {e,a,b,aa,ab,ba,bb,aaa,...} 

        {a}* = {e,a,aa,aaa,aaaa,...} = {an | n  0}. 

        {}* = ?    ( {} or {e} or e ?)  

 Note the difference b/t sets and strings: 

 {a,b} = {b,a} but ab  ba. 

 {a,a,b} = {a,b} but aab  ab 

 So what's a (formal) language ? 

 A language over S is a set of strings over S (i.e., a 

subset of S*).  Ex: let S = {0,...,9} then all the followings 

are languages over S. 

  1. {e}   2. {}   3. {0,...,9} = S  4. {x | x  S* and has no leading 

0s}  5. S5 = {x |  |x| = 5} 6. S* = {x | |x| is finite } 
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Examples of practical formal languages 

Ex: Let D be the set of all ASCII codes. 

 a C program is simply a finite string over D satisfying all 

syntax rules of C. 

 C-language =def { x | x is a well-formed C program over D }. 

 PASCAL-language = {x | x is a well-formed PASCAL 

program over D }. 

Similarly, let ENG-DIC = The set of all English lexicons 

  = { John, Mary, is, are, a, an, good, bad, boys, girl,..}  

 an English sentence is simply a string over ENG-DIC 

 ==> English =def {x | x is a legal English sentence over END-

DIC} ==> 

 1.John is a good boy .   English. 

 2. |John is a good boy . | = ? 
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issues about formal languages 

 Why need formal languages? 

 for specification (specifying programs, meanings etc.) 

 i.e., basic tools for communications b/t people and 

machines. 

 although FL does not provide all needed theoretical 

framework for subsequent (semantic processing...) 

processing, it indeed provides a necessary start, w/t which 

subsequent processing would be impossible -- first level of 

abstraction. 

 Many basic problems [about computation] can be 

investigated at this level.    

 How to specify(or represent) a language ? 

 Notes: All useful natural or programming languages  

contain infinite number of strings (or programs and 

sentences) 
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How to specify a language 

 principles: 1. must be precise and no ambiguity among 
users of the language: 2. efficient for machine processing 

 tools:  

 1. traditional mathematical notations: 

 A = {x | |x| < 3 and x  {a,b}} = {e,a,b,aa,ab,ba,bb} 

 problem:  in general not machine understandable. 

 2. via programs (or machines) : 

   P: a program; L(P) =def {x | P return 'ok' on input string x} 
 precise, no ambiguity, machine understandable. 

 hard to understand for human users !!  

 3. via grammars: (easy for human to understand) 
Ex:  noun :=  book | boy | jirl | John | Mary 

        art := a | an | the   ; prep := on | under | of | ... 

       adj := good | bad | smart | ... 

     NP := noun | art noun | NP PP | ... 

     PP := prep NP  ==> 'the man on the bridge'   PP. 
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Non-enumerability of languages  

 Recall that a set is denumerable if it is countably 

infinite. (i.e., A set T is denumerable if there is a 1-1 

and onto mapping b/t T and {0,1,...}) 

 Exercises: If S is finite and nonempty, then  

 1. S* is denumerable (i.e., |S*| = |N| ) 

 2. 2S* (ie., the set of all languages over S) is uncountable. 

   pf: Since |2S*|  |S*| = |N|, hence |2S*| is not countable 

     
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Operations on strings  

 string concatenations: 

 x,y: two strings ==> x·y is a new string with y appended to 

the tail of x.  i.e., x·y is the function : 

             z : [0, len(x)+len(y) )  Ssuch that  

             z(n)             = x(n)  for 0  n < len(x) and  

             z(len(x)+n) = y(n)  for 0  n < len(y).  

 Some properties of · : 

1. ASSOC: (xy)z = x(yz) ;  2.  Identity: ex = xe = x. 

3. |xy| = |x| + |y|. 

 conventions and abbreviations: 

 S: for alphabet ;        a,b,c: for symbols;  

  x,y,z: for strings;     A,B,C: for languages; 

 x5 for xxxxx; x1 = x ; x0 = e. 

 #a(x) =def number of a's in x. ==> #a(aabbcca) = 3. 
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Operations on languages (i.e, string sets) 

 1. usual set operations: 

 Union: A U B = {x | x  A or x  B } 

           Ex: {a,ab} U { ab, aab} = {a,ab,aab} 

 intersection: A  B = {x | x  A and x  B } 

 complements in S*: ~A =def S* - A =  { x | x not  A} 

 ex: ~{x | |x| is even } = {x | |x| is odd }. 

2. Set concatenations: 

 A·B =def {xy | x  A and y  B }. 

   Ex: {b,ba} {a,ab} = {ba,bab,baa,baab}. 

 

3. Powers of A: An ( n  0) is defined inductively: 

 1. A0 = { e};  An+1 = A·An = A·A·...·A.  ----- n A's 
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Operations on languages (cont'd) 

 Ex: Let A = {ab,abb}. Then 

 1. A0 = ?                2. A1 = ?  3. A2 = ? 4. |A4|=? 

 5. Hence {a,b,c}n = {x  {a,b,c}* | |x| = n } and 

                  An = { x1x2...xn | x1,...,xn  A } 

5. Asterate (or star) A* of A is the union of all finite 

powers of A: 

    A* =def Uk  0 A
K = A0 U A UA2 U A3 U ...  

  = {x1x2...xn | n  0 and xi  A for 1  i  n } 

   notes: 

   1. n can be 0 ==> e  A*. ==> e  {}*. 

   2. If A = S ==> A* = S* = the set of all finite strings  

over S. 
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Properties of  languages operations 

6.  A+ =def the set of all nonzero powers of A 

          =def Uk1 A
k = A U A2 U A3U ... = A A*. 

Properties of languages operations 

 1. associative: U, , · :  

   AU(BUC) = (AUB)UC;  A(BC) = (AB)C; 

   A(BC) = (AB)C   

 2. commutative  : U,: 

 3. Identities: 

  1. A U {} = {}UA = A;  2. A S* = S* A = A; 

   3. {e}A = A{e} = A. 

 4. Annihilator: A{} = {}A = {}. 
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Properties of languages operations (cont'd) 

 5. Distribution laws: 

 AU(BC) = (AUB) (AUC)    ;   A(BUC) = (AB)U(AC)   

 A(BUC) = AB U AC                ; A(BC) = AB AC  (x) 

 Ex: Let A = {a,ab}, B = {b}, C = {e} 

  ==> A(B C) = ?   AB = ?  AC = ?    

  ==> A(BC)          AB AC. 

 Exercise: show that A(BUC) = AB UAC. 

6. De Morgan Laws: ~(AUB) = ?   ~(AB) = ? 

7. Properties about A*: 

 1. A*A* = A* ;     2. A**  = A*;      3. A* = {e}UAA*  

 4. AA* = A*A = A+.    5. {}* = {e}.  

 Exercises: Prove 1~5. (hint: direct from the definition of A*) 
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A language for specifying languages 

 In the term: 'a language for specifying languages', 

the former language is called a metalanguage while 

the later languages are called target languages. 

 So in the C language reference manual, the BNF form is a 

meta language and C itself is the target language. 

 S: an alphabet ;  D = S U { +, *, e, ·, ), ( }; 

  E = D U {~, -} 

 1. The set of all regular expressions is  a subset of D* 

which can be defined inductively as follows: 

 Basis: 1. e,  are regular expressions 

             2. Every symbol a in S is a regular expression. 

 Induction: If a and b are regular expressions then so are 

    (a+b), (a·b), a*. 
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Regular expressions 

 Examples: 

 legal reg. expr. : e,   (a+b)*,  ((a +(b·c))+(e·b)*) 

 illegal reg. expr:  (ab), a + b, ((a + S)) + d, where d  ∉  S. 

 illegal formally but legal if treated as abbreviations: 

    ab  --> (a·b)  ;   a+b --> (a+b); 

    a + bc*  --> (a + (b·c*))  

 Extended regular expressions (EREGs): 

 EREGs are strings over E and can be defined 

inductively as follows: 

 Basis: 1. e,  are EREGs 

             2. Every symbol a in S is an EREG. 

 Induction: If a and b are EREGs then so are 

    (a+b), (a·b), a*, (~a), (ab), (a-b) 
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Languages represented by regular expressions 

 [Extended] regular expressions provides a finite way 
to specify infinite languages. 

 Definition: for each EREG (and hence also REG) a, 
the language (over S) specified (or denoted or 
represented) by a, written L(a), is defined inductively 
as follows:  
 Basis: L(e) = {e}; L() = {}; 

          for each a ∈ S, L(a) = {a}. 

 Induction: assume L(a) and L(b) have been defined for 
EREG a and b. Then 

 L(a+b) = L(a) U L(b);  L(ab) = L(a) L(b);   L(a*) = L(a)*; 

 L(~a) = S* - L(a);   L(a - b) = L(a) - L(b); L(a b) = L(a) L(b). 

 Definition: a language A is said to be regular if A = L(a) for 
some regular expression a.  
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Examples: 

 Let S = {a,b}. Then 
 L( a(a+b)*) = {x | x begins with a } = {a,aa,ab,aaa,aab,aba,...} 

 L(~(a(a+b)*))  = {x | x does not begin with a} 

        = {x | x begins with b } U {e} = L( e + b(a+b)*). 

 Regular expressions and Extended regular 
expressions give us finite ways to specify infinite 
languages. But the following questions need to be 
answered before we can be satisfied with such tools. 
 1. Are EREG or REGs already adequate ? 

 (i.e, For every A ⊆ S*, there is an expression a s.t., L(a) = 
A ? )  ==>  ans: _____. 

 2. For every expression a, is there any [fast] machine that 
can determine if x ∈ L(a) for any input string x ? 

     Ans: _______  
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IS EREG more expressive than REG ? 

 L1, L2: two [meta] languages; 

 we say L1 is at least as expressive as L2 if L(L2) =def  {A | 

there is an expression a in L2 s.t. A = L(a) }  is a subset of 

L(L1). 

 L1 is said to be equivalent to L2 in expressive power iff 

both are at least as expressive as the other. 

 Problem: 

 EREG is at least as expressive as REG since L(REG) is a 

subset of L(EREG) (why?) 

 But does the converse hold ? (i.e, Is it true that for each 

EREG a there is a REG b s.t., L(a) = L(b) ? 

 ans:  _____. 


