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1 Introduction

The forecasting of seasonal economic time series is a challenging problem. We approach the

forecasting challenge from a model-based perspective and adopt the unobserved components

time series model. The key feature of this class of models is the decomposition of a time se-

ries into trend, seasonal, cycle and irregular components. Each component is formulated as a

stochastically evolving process over time. The decomposition of an observed time series into

unobserved stochastic processes can provide a better understanding of the dynamic character-

istics of the series and the way these characteristics change over time. The trend component

typically represents the longer term developments of the time series of interest and is often

specified as a smooth function of time. The recurring but persistently changing patterns within

the years are captured by the seasonal component. In economic time series, the cycle compo-

nent can represent the dynamic features associated with the business cycle (or the output gap).

In economic policy, the focus is often on forecasting the variable of interest, not its separate

components. However, we will show that an understanding of the time series decomposition

and the dynamic properties of the underlying components can benefit the forecasting of the

variable of interest.

Unobserved components time series models have a natural state space representation. The

statistical treatment can therefore be based on the Kalman filter and its related methods. The

resulting modelling framework is particularly convenient for the problem of forecasting as we

will illustrate in this contribution. For example, it provides optimal point- and interval forecasts

but it also provides the observation weights for the associated forecasting function. In this way,

forecasts can be expressed directly as functions of past observations.

We present a concise discussion of the forecasting of seasonal economic time series on the

basis of a class of unobserved components time series models. We first introduce the model with

explicit specifications for the components: trend, season, cycle and irregular. The estimation

of parameters is carried out by the method of maximum likelihood in which the likelihood is

evaluated via the Kalman filter. The likelihood is maximized by means of a numerical optimiza-

tion method. Based on the parameter estimates, the components can be estimated using the

observed time series. The actual decomposition of the time series into trend, seasonal, cycle

and irregular can then be visualized. Model adequacy can be diagnosed using the standard

test statistics applied to the standardised one-step ahead prediction errors. This approach to

time series analysis implies a specific approach to the modelling of time series. It is somewhat

different compared to the Box-Jenkins analysis. For example, in the decomposition approach

we do not require the differencing of the time series to a stationary process. The non-stationary

properties of a time series are explicitly formulated by a selection of the components in the de-

composition. The Box-Jenkins approach requires that the series has been differenced to achieve

stationarity. Although the two resulting methodologies are distinct, the model classes both be-

long to the linear Gaussian family of models and both can be formulated as autoregressive

integrated moving average processes.

This chapter is organised as follows. Section 2 provides a comprehensive review of decom-

position models. Section 3 discusses the methodology of state space analysis. We introduce
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the state space model, give illustrations of how decomposition models can be represented in

state space, present the Kalman filter, discuss maximum likelihood estimation of parameters

and present some diagnostic checking statistics. In Section 4 we discuss how forecasts can

be generated as part of the state space analysis and how observation weights of the forecast

function are computed. Multivariate extensions of the decomposition model are discussed in

Section 5. Section 6 concludes.

2 Unobserved components time series models

The univariate unobserved components time series model that is particularly suitable for many

economic data sets is given by

yt = µt + γt + ψt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n, (1)

where µt, γt and εt represent trend, seasonal and irregular components respectively. The trend

and seasonal components are modelled by linear dynamic stochastic processes which depend

on disturbances. The components are formulated in a flexible way and they are allowed to

change over time rather than being deterministic. The disturbances driving the components

are independent of each other. The definitions of the components are given below, but a full

explanation of the underlying rationale can be found in Harvey (1989, Chapter 2) where the

term “Structural Time Series Model” is used in this context. The effectiveness of structural time

series models compared to ARIMA type models is discussed in Harvey, Koopman, and Penzer

(1998). In particular, they stress that time series models based on unobserved components are

effective when messy features are present such as missing values, mixed frequencies (monthly

and quarterly frequencies of time series), outliers, structural breaks and nonlinear non-Gaussian

aspects.

2.1 Trend component

The trend component can be specified in many different ways. A selection of trend specifications

is given below.

Local level - I(1) process: The trend component can simply be modelled as a random walk

process and is then given by

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η), (2)

where NID(0, σ2) refers to a normally independently distributed series with mean zero

and variance σ2. The disturbance series ηt is therefore serially independent and mutually

independent of all other disturbance series related to yt in (1). The initial trend µ1 is for

simplicity treated as an unknown coefficient that needs to be estimated together with the

unknown variance σ2
η. The estimation of parameters is discussed in Section 3.4.

In specification (2) the trend component is an I(1) process. When this trend is included

in the decomposition of yt, the time series yt is at least I(1) as well. Harvey (1989, §2.3.6)
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defines the local level model as yt = µt + εt with µt given by (2). In case σ2
η = 0, the

observations from a local level model are generated by a NID process with constant mean

µ1 and a constant variance σ2.

Local linear trend - I(2) process: An extension of the random walk trend is obtained by

including a stochastic drift component

µt+1 = µt + βt + ηt, βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ), (3)

where the disturbance series ηt is as in (2). The initial values µ1 and β1 are treated

as unknown coefficients. Harvey (1989, §2.3.6) defines the local linear trend model as

yt = µt + εt with µt given by (3).

In case σ2
ζ = 0, the trend (3) reduces to an I(1) process given by µt+1 = µt+β1 +ηt where

the drift β1 is fixed. This specification is referred to as a random walk plus drift process.

If in addition σ2
η = 0, the trend reduces to the deterministic linear trend µt+1 = µ1 + β1t.

When σ2
η = 0 and σ2

ζ > 0, the trend µt in (3) remains an I(2) process and is known as

the integrated random walk process which can be visualised as a smooth trend function.

Trend with stationary drift - I(1) process: To extend the random walk trend with a drift

component but to keep the trend as an I(1) process, we can include a stationary stochastic

drift component to obtain

µt+1 = µt + βt + ηt, βt+1 = ϕββt + ζt, (4)

with autoregressive coefficient 0 < ϕβ < 1 and where the disturbance series ηt and ζt are

as in (3). The restriction for ϕβ is necessary to have a stationary process for the drift

βt. In this case, the initial variable µ1 is treated as an unknown coefficient while the

initial drift is specified as β1 ∼ N(0, σ2
ζ / 1− ϕ2

β). The stationary drift process for βt can

be generalised to a higher order autoregressive process and can include moving average

terms. However, in practice it may be difficult to empirically identify such drift processes

without very large data samples.

Higher-order smooth trend - I(k) process: The local linear trend (3) with σ2
η = 0 is a

smooth I(2) process. The smooth trend component can alternatively be specified as

∆2µt+2 = ζt where the initial variables µ1 and µ2 = µ1 + β1 are treated as unknown

coefficients. To enforce more smoothness in the trend component, we can generalise

the smooth trend specification by ∆kµt+k = ζt where the initial variables µ1, . . . , µk are

treated as unknown coefficients for k = 1, 2, . . .. In the usual way, we can specify the

higher-order smooth trend component by µt = µ
(k)
t where

µ
(j)
t+1 = µ

(j)
t + µ

(j−1)
t , µ

(0)
t = ζt, (5)

for j = k, k − 1, . . . , 1 and where the disturbance series ζt is as in (3). In case k = 2, we

obtain the smooth trend model (3) with σ2
η = 0 where µt = µ

(2)
t and βt = µ

(1)
t . This trend

specification is considered and discussed in more detail by Gomez (2001).
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Trend with smooth stationary drift - I(1) process: Although the smoothness of a trend

is a desirable feature for many economic time series, the fact that the smooth trend is an

I(k) process is less convincing. We therefore propose a smooth I(1) trend as given by

µt+1 = µt + β
(m)
t , β

(j)
t+1 = ϕββ

(j)
t + β

(j−1)
t , β

(0)
t = ζt, (6)

for j = m,m − 1, . . . , 1 and where the disturbance series ζt is as in (3). In case m = 1,

we obtain the trend with stationary drift model (4) with σ2
η = 0 where βt = β

(1)
t . The

autoregressive coefficient 0 < ϕβ < 1 is the same for each β
(j)
t+1 with j = m,m− 1, . . . , 1.

This restriction can be lifted by having different autoregressive coefficients for each j but

generally the parsimonious specification (6) is preferred.

2.2 Seasonal component

To account for the seasonal variation in a time series, the component γt is included in model

(1). More specifically, γt represents the seasonal effect at time t that is associated with season

s = s(t) with s = 1, . . . , S where S is the seasonal length (S = 4 for quarterly data and S = 12

for monthly data). The time-varying seasonal can be established in different ways.

Fixed dummy seasonal: In case the seasonal pattern is fixed over time, we have S sea-

sonal effects γ1, . . . γS which are taken as unknown coefficients that need to be estimated

together with the other coefficients in the model. The seasonal effects must have the prop-

erty that they sum to zero over the full year to make sure that they are not confounded

with the trend component, that is

γ1 + . . .+ γS = 0, γt = γt−S, t = S + 1, . . . , n. (7)

When we have the regression model yt = µ1 + γt + εt with fixed constant µ1, and fixed

seasonal effects, the summing-to-zero constraint is required to present multicollinearity.

The constraint

γS = −γS−1 − . . .− γ1
ensures the seasonal effects sum to zero. In effect, we have S − 1 unknown seasonal

coefficients that need to be estimated.

Time-varying dummy seasonal: It is usually more appropriate to allow the seasonal pat-

tern to change (slowly) over time. For this purpose we can relax the summing-to-zero

constraint by replacing it with the stochastic equation given by

γt+1 = −γt − . . .− γt−S+2 + ωt, γt+j = γt+j−S, ωt ∼ NID(0, σ2
ω), (8)

where the disturbance series ωt is serially independent and mutually independent of all

other disturbance series, for t = S − 1, . . . , n and j = 2, . . . , S − 1. The initial variables

γS−1, . . . , γ1 are treated as unknown coefficients. When the disturbance variance σ2
ω = 0,

we return to the case of fixed seasonal effects. When the variance is large, the seasonal

pattern will vary quickly over time.
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Fixed trigonometric seasonal: A deterministic seasonal pattern can also be constructed

from a set of sine and cosine functions. In this case the seasonal component γt is specified

as a sum of trigonometric cycles with seasonal frequencies. Specifically, we have

γt =

bS/2c∑
j=1

γj,t, γj,t = aj cos(λjt− bj), (9)

where b · c is the floor function, γj,t is the cosine function with amplitude aj, phase bj,

and seasonal frequency λj = 2πj/S (measured in radians) for j = 1, . . . , bS/2c and t =

1, . . . , n. The seasonal effects are based on coefficients aj and bj. Given the trigonometric

identities

cos(λ± ξ) = cosλ cos ξ ∓ sinλ sin ξ, sin(λ± ξ) = cosλ sin ξ ± sinλ cos ξ, (10)

we can express γj,t as the sine-cosine wave

γj,t = δc,j cos(λjt) + δs,j sin(λjt), (11)

where δc,j = aj cos bj and δs,j = aj sin bj. The reverse transformation is aj = δ2c,j + δ2s,j and

bj = tan−1(δs,j / δc,j). The seasonal effects are alternatively represented by coefficients δc,j
and δs,j. When S is odd, the number of seasonal coefficients is S−1 by construction. For

S even, variable δs,j drops out in (11) for j = S/2 since frequency λj = π and sin(πt) = 0.

Hence for any seasonal length S > 1 we have S − 1 seasonal coefficients as in the fixed

dummy seasonal case.

The evaluation of each γj,t can be carried out recursively in t. By repeatedly applying

the trigonometric identities (10), we can express γj,t as the recursive expression(
γj,t+1

γ+j,t+1

)
=

[
cosλj sinλj
− sinλj cosλj

](
γj,t
γ+j,t

)
, (12)

with γj,0 = δc,j and γ+j,0 = δs,j for j = 1, . . . , bS/2c. The variable γ+j,t appears by con-

struction as an auxiliary variable. It follows that the seasonal effect γt is a linear function

of the variables γj,t and γ+j,t for j = 1, . . . , bS/2c (in case S is even, γ+j,t drops out for

j = S/2).

Time-varying trigonometric seasonal: The recursive evaluation of the seasonal variables

in (12) allows the introduction of a time-varying trigonometric seasonal function. We

obtain the stochastic trigonometric seasonal component γt by having(
γj,t+1

γ+j,t+1

)
=

[
cosλj sinλj
− sinλj cosλj

](
γj,t
γ+j,t

)
+

(
ωj,t
ω+
j,t

)
,

(
ωj,t
ω+
j,t

)
∼ NID(0, σ2

ωI2), (13)

with λj = 2πj/S for j = 1, . . . , bS/2c and t = 1, . . . , n. The S−1 initial variables γj,1 and

γ+j,1 are treated as unknown coefficients. The seasonal disturbance series ωj,t and ω+
j,t are

serially and mutually independent, and are also independent of all the other disturbance

5



series. In case σ2
ω = 0, equation (13) reduces to (12). The variance σ2

ω is common to

all disturbances associated with different seasonal frequencies. These restrictions can be

lifted and different seasonal variances for different frequencies λj can be considered for

j = 1, . . . , bS/2c.

Harvey (1989, §§2.3-2.5) studies the statistical properties of time-varying seasonal pro-

cesses in more detail. He concludes that the time-varying trigonometric seasonal evolves more

smoothly over time than time-varying dummy seasonals. [SJ: expand on this ..., see work of

Tommaso]

2.3 Cycle component

To capture the business cyclefeatures of a time series, we need to include a stationary cycle

component in the model. Various stochastic specifications of the cycle component can be

considered.

Autoregressive moving average process: The cycle component ψt can be formulated as a

stationary autoregressive moving average (ARMA) process and given by

ϕψ(L)ψt+1 = ϑψ(L)ξt, ξt ∼ NID(0, σ2
ξ ), (14)

where ϕψ(L) is the autoregressive polynomial in the lag operator L of order p with co-

efficients ϕψ,1, . . . , ϕψ,p and ϑψ(L) is the moving average polynomial of order q with co-

efficients ϑψ,1, . . . , ϑψ,q. The requirement of stationarity applies to the autoregressive

polynomial ϕψ(L) and states that the roots of |ϕψ(L)| = 0 lie outside the unit circle. The

theoretical autocorrelation function of an ARMA process has cyclical properties when

the roots of |ϕψ(L)| = 0 are within the complex range. It requires p > 1. In this case

the autocorrelations converge to zero with increasing lags but the convergence pattern

is cyclical. It implies that the time series itself has cyclical dynamic properties. Once

the autoregressive coefficients are estimated, it can be established whether the empirical

model with ψt as in (14) has detected cyclical dynamics in the time series. The economic

cycle decomposition model of Clark (1987) includes a stationary ARMA component with

order p = 2 and q = 0.

Time-varying trigonometric cycle: Another stochastic formulation of the cycle component

can be based on a time-varying trigonometric process such as (13) with frequency λc as-

sociated with the typical length of a business cycle, say between 1.5 and 8 years according

to Burns and Mitchell (1946). We obtain(
ψt+1

ψ+
t+1

)
= ϕψ

[
cosλc sinλc
− sinλc cosλc

](
ψt
ψ+
t

)
+

(
κt
κ+t

)
, (15)

where the discount factor 0 < ϕψ < 1 is introduced to enforce a stationary process for

the stochastic cycle component. The disturbances and the initial conditions for the cycle
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variables are given by(
κt
κ+t

)
∼ NID(0, σ2

κI2),

(
ψ1

ψ+
1

)
∼ NID

(
0,

σ2
κ

1− ϕ2
ψ

I2

)
,

where the cyclical disturbance series κt and κ+t are serially independent and mutually

independent, also with respect to all other disturbance series. The coefficients ϕψ, λc and

σ2
κ are unknown and need to be estimated together with the other parameters.

The stochastic cycle specification is discussed by Harvey (1989, §2.3-2.5), where it is

argued that the process (15) is the same as the ARMA process (14) with p = 2 and q = 1

when the roots are complex.

Smooth time-varying trigonometric cycle: To enforce smoothness upon a cycle compo-

nent in the model, we can modify the cycle specification to let it have so-called bandpass

filter properties. For this purpose, Harvey and Trimbur (2003) proposes the specification

ψt = ψ
(m)
t where(

ψ
(j)
t+1

ψ
(j)+
t+1

)
= ϕψ

[
cosλc sinλc
− sinλc cosλc

](
ψ

(j)
t

ψ
(j)+
t

)
+

(
ψ

(j−1)
t

ψ
(j−1)+
t

)
, (16)

for j = m,m− 1, . . . , 1 and where(
ψ

(0)
t

ψ
(0)+
t

)
=

(
κt
κt

)
∼ NID(0, σ2

κI2),

for t = 1, . . . , n. The initial conditions for this stationary process need to be derived and

are provided by Trimbur (2002).

Multiple cycles The dynamic specification of a cycle may be more intricate than the one

given above. When a satisfactory description of the cycle dynamics is not found by a

single component, a set of multiple cycle components can be considered, such as:

ψt =
J∑
j=1

ψj,t,

where each ψj,t can be modelled as an independent cycle process, which is specified as one

of the cycle processes described above. For example, if the time-varying trigonometric

cycle is adopted for each ψj,t, a different cycle frequency λc should be associated with ψj,t.

In this way we may empirically identify shorter and longer cyclical dynamics from a time

series simultaneously.

2.4 Regression component

The basic model (1) may provide a succesful description of the time series, although it may

sometimes be necessary to include additional components in (1). For example, seasonal eco-

nomic time series are often affected by trading day effects and holiday effects which can affect
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the dynamic behaviour in the series. In other cases it is evident that a set of explanatory

variables need to be included in the model in order to capture specific (dynamic) variations in

the time series. The explanatory variables can also be used to allow for outliers and breaks in

the time series. Therefore, we extend the decomposition with a multiple regression effect,

yt = µt + γt + ψt + x′tδ + εt, et ∼ NID(0, σ2
ε), (17)

for t = 1, . . . , n, and where xt is a K vector of predetermined covariates and δ is a K×1 vector

of regression coefficients. Since all components are allowed to change over time, elements of δ

can also be allowed to change over time. A typical specification for a time-varying element in

δ is one of those discussed as a time-varying trend function.

3 Linear Gaussian state space models

The state space form provides a unified representation of a wide range of linear time series

models, see Harvey (1989), Kitagawa and Gersch (1996) and Durbin and Koopman (2001).

The linear Gaussian state space form consists of a transition equation and a measurement

equation. We formulate the model as in de Jong (1991), so that:

yt = Ztαt +Gtεt, αt+1 = Ttαt +Htεt, εt ∼ NID (0, I) , (18)

for t = 1, . . . , n, and where εt is a vector of serially independent disturbance series. The

m× 1 state vector αt contains the unobserved components and their associated variables. The

measurement equation is the first equation in (18) and it relates the observation yt to the state

vector αt through the signal Ztαt. The transition equation is the second equation in (18) and

it is used to formulate the dynamic processes of the unobserved components in a companion

form. The (possibly time-varying) deterministic matrices Tt, Zt, Ht and Gt are referred to as

system matrices and they will be often sparse selection matrices.

3.1 Unobserved component models in state space form

To illustrate how the unobserved components discussed in Section 2 can be formulated in the

state space form (18), we discuss a number of illustrations.

Basic decomposition model Consider the model yt = µt + γt + εt with trend component µt
as in (3), seasonal component γt as in (8) with seasonal length S = 4 (quarterly data)

and irregular εt as in (1). We require a state vector of five elements and a disturbance

vector of four elements; they are given by

αt = (µt, βt, γt, γt−1, γt−2)
′ , εt = (εt, ηt, ζt, ωt)

′ .

The state space formulation of the basic decomposition model is given by (18) with the
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system matrices

Tt =


1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0

 , Ht =


0 ση 0 0

0 0 σζ 0

0 0 0 σω
0 0 0 0

0 0 0 0

 ,

Zt =
(

1 0 1 0 0
)
, Gt =

(
σε 0 0 0

)
.

Here the system matrices Tt, Ht, Zt and Gt do not depend on t; the matrices are time-

invariant. The variances of the disturbances are unknown and need to be estimated.

They are σ2
η, σ

2
ζ , σ

2
ω and σ2

ε . It is common practive to transform the variance into logs

for the purpose of estimation; we estimate log-variances which can be estimated without

constraints. The unknown parameters are collected in the 4 × 1 parameter vector θ.

Estimation of θ can be carried out by the method of maximum likelihood; see §3.4.

For the trend component µt in (3) the initial variables µ1 and β1 are treated as unknown

coefficients. For the dummy seasonal component γt in (8) with S = 4, the initial variables

γ1, γ0 and γ−1 are also treated as unknown coefficients. Given the composition of the

state vector above, we can treat α1 as a vector of unknown coeffients. We can estimate

α1 simultaneously with θ by the method of maximum likelihood or we can concentrate

α1 from the likelihood function; see §3.4.

Smooth trend plus ARMA model Consider the model yt = µt + ψt + εt with trend com-

ponent µt as in (5) with k = 3, cycle component γt as the ARMA process (14) with p = 2

and q = 1 and irregular εt as in (1). The state and disturbance vectors are given by

αt =
(
µ
(3)
t , µ

(2)
t , µ

(1)
t , ψt, α5,t

)′
, εt = (εt, ζt, ξt)

′ .

The state space formulation has the system matrices

Tt =


1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 ϕψ,1 1

0 0 0 ϕψ,2 0

 , Ht =


0 0 0

0 0 0

0 σζ 0

0 0 1

0 0 ϑψ,1σξ

 ,

Zt =
(

1 0 0 1 0
)
, Gt =

(
σε 0 0

)
.

The system matrices are time-invariant. The unknown disturbance variances need to

be estimated together with the ARMA coefficients ϕψ,1, ϕψ,2 and ϑψ,1. In particular,

we estimate three log-variances and transform the ARMA coefficients such that ψt is

stationary and the moving average polynomial ϑψ(L) is non-invertible. The unknown

parameters are collected in the 6× 1 parameter vector θ.
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For the smooth trend component µt in (5) the initial variables µ
(3)
1 , µ

(2)
1 and µ

(1)
1 are

treated as unknown coefficients. The initial conditions for the ARMA process can be

determined from the unconditional autocovariance function; see §3.4. In this case we

treat a part of the initial state vector as unknown coeffients (first three elements) while

for the remaining part we need to derive its statistical properties.

Random walk plus smooth cycle model Consider the model yt = µt + ψt + εt with the

random walk process µt as in (2), cycle component γt as the smooth cycle process (16)

with m = 2, and irregular εt as in (1). The state and disturbance vectorsare given by

αt =
(
µt, ψ

(2)
t , ψ

(2)+
t , ψ

(1)
t , ψ

(1)+
t

)′
, εt =

(
εt, ηt, κt, κ

+
t

)′
,

and the corresponding system matrices by

Tt =


1 0 0 0 0

0 T 22
t T 23

t 1 0

0 −T 23
t T 22

t 0 1

0 0 0 T 22
t T 23

t

0 0 0 −T 23
t T 22

t

 , Ht =


0 ση 0 0

0 0 0 0

0 0 0 0

0 0 σκ 0

0 0 0 σκ

 ,

Zt =
(

1 1 0 0 0
)
, Gt =

(
σε 0 0 0

)
,

where T 22
t = ϕψ cosλc and T 23

t = ϕψ sinλc. The system matrices are time-invariant. The

unknown disturbance variances need to be estimated together with the discount factor

ϕψ and cycle frequency λc. In particular, we consider three log-variances and enforce

restrictions 0 < ϕψ < 1 and 0 < λc < π via transformations. The unknown parameters

are collected in the 5× 1 parameter vector θ.

For the random walk component µt in (2), the initial variables µ1 is treated as an unknown

coefficient. The initial conditions for the smooth cycle process can be obtained from

Trimbur (2002). The first element of the initial state vector is treated as unknown while

the remaining part has known statistical properties.

3.2 Kalman filter

Consider the linear Gaussian state space model (18). The predictive estimator of the state

vector αt+1 is based on observations y1, . . . , yt. The Kalman filter computes the minimum

mean square linear estimator (MMSLE) of the state vector αt+1 conditional on the observations

y1, . . . , yt, denoted by at+1|t, together with its mean square error (MSE) matrix, denoted by

Pt+1|t. We will also refer to at+1|t as the state prediction estimate and with Pt+1|t as its state

prediction error variance matrix. The Kalman filter is given by

vt = yt − Ztat|t−1, Ft = ZtPt|t−1Z
′
t +GtG

′
t,

Mt = TtPt|t−1Z
′
t +HtG

′
t, t = 1, . . . , n,

at+1|t = Ttat|t−1 +Ktvt, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t −KtM

′
t ,

(19)
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with Kalman gain matrix Kt = MtF
−1
t , and for particular initial values a1|0 and P1|0. The

one-step ahead prediction error is vt = yt − E(yt|y1, . . . , yt−1) with variance Var(vt) = Ft. The

innovations have mean zero and are serially independent by construction so that E(vtv
′
s) = 0

for t 6= s and t, s = 1, . . . , n.

Before the MMSLE at+1|t and the MSE Pt+1|t are computed in the Kalman filter, the MMSLE

of the state vector αt conditional on y1, . . . , yt, denoted by at|t, and its corresponding MSE

matrix, denoted by Pt|t, can be computed as

at|t = at|t−1 + Pt|t−1Z
′
tF
−1
t vt, Pt|t = Pt|t−1 − Pt|t−1Z ′tF−1t ZtPt|t−1, (20)

It then follows that

at+1|t = Ttat|t, Pt+1|t = TtPt|tT
′
t +HtH

′
t.

Formal proofs of the Kalman filter can be found in Anderson and Moore (1979), Harvey (1989)

and Durbin and Koopman (2001). However, the proof of the Kalman filter and related results

can be derived by the use of the following basic lemma.

Recursive lemma: Suppose that x, y and z are random vectors of arbitrary orders that are

jointly normally distributed with means µp and (co)variances Σpq = E [(p− µp)(q − µq)′]
for p, q = x, y, z and with µz = 0 and Σyz = 0. The sympols x, y, z, p, q, µ and Σ are

employed for convenience and these definitions hold only here. Then:

E(x|y, z) = E(x|y) + ΣxzΣ
−1
zz z, Var(x|y, z) = Var(x|y)− ΣxzΣ

−1
zz Σzx.

The proof of this lemma can be obtained from multivariate normal regression theory, see, for

example, Anderson (1984). The elementary nature of this lemma drives home the point that

the theoretical basis of state space analysis is simple.

3.3 Likelihood evaluation

The Kalman filter can be used to evaluate the Gaussian likelihood function via the prediction

error decomposition, see Schweppe (1965), Jones (1980) and Harvey (1989, Section 3.4). Given

a model as described in Section 2 for yt, we denote the joint density of y1, . . . , yn by p(y1, . . . , yn)

and the prediction error decomposition is then given by

p(y1, . . . , yn) = p(y1)
n∏
t=2

p(yt|y1, . . . , yt−1).

The predictive density p(yt|y1, . . . , yt−1) is Gaussian and has mean E(yt|y1, . . . , yt−1) = Ztat|t−1
and variance Var(yt|y1, . . . , yt−1) = ZtPt|t−1Z

′
t+GtG

′
t = Ft. For a realized time series y1, . . . , yn,

the log-likelihood function is given by

` = log p (y1, . . . , yn) =
n∑
t=1

log p (yt|y1, . . . , yt−1)

= −n
2

log (2π)− 1

2

n∑
t=1

log |Ft| −
1

2

n∑
t=1

v′tF
−1
t vt. (21)
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The one-step ahead prediction errors vt and their variances Ft are computed by the Kalman

filter for a given value of the parameter vector θ. To make it explicit that the likelihood is a

function of the parameter vector, we write ` = `(θ).

3.4 Parameter estimation

In a state space analysis we are faced with two groups of parameters that need to be estimated

for a given model specification. The first group is contained in parameter vector θ, see §3.1 for

an illustration. The second group are the initial variables for the unobserved (non-stationary)

processes and the regression coefficients such as δ in (17). The initial conditions for unobserved

stationary processes can be derived from the theoretical autocorrelation function.

Maximum likelihood estimation of θ: The log-likelihood function (21) can be maximised

with respect to θ numerically using a numerical quasi-Newton method. For example, the

method of Broyden-Fletcher-Goldfarb-Shanno (BFGS) is generally regarded as computa-

tionally efficient in terms of convergence speed and numerical stability; see Nocedal and

Wright (1999). The BFGS iterative optimization method is based on information from

the gradient (or score). Analytical and computationally fast methods for computing the

score for a current value of θ in a state space analysis are developed by Koopman and

Shephard (1992). The BFGS method is terminated when some pre-chosen convergence

criterion is satisfied. The convergence criterion is usually based on the gradient evaluated

at the current estimate, the parameter change compared to the previous estimate or the

likelihood value change compared to the previous estimate. The number of iterations

required to satisfy these criteria depends on the choice of the initial parameter values, the

tightness of the chosen criterion and the shape of the likelihood surface.

An alternative method for maximum likelihood estimation is the EM-algorithm; see

Shumway and Stoffer (1982) and Watson and Engle (1983) in the context of a state

space analysis. The basic EM procedure works roughly as follows. Consider the joint

density p(y1, . . . , yn, α1, . . . , αn). The Expectation (E) step takes the expectation of the

components of the joint density conditional on y1, . . . , yn and the Maximization (M) step

maximizes the resulting expression with respect to θ. The E step mainly consists of eval-

uating the estimated state vector using a smoothing algorithm related to the Kalman

filter. The M step is usually done analytically and is simpler than maximizing the full

likelihood function directly. Given the ”new” estimate of θ from the M step, we return

to the E step and evaluate the smoothed estimates based on the new estimate. This it-

erative procedure converges to the maximum likelihood estimate of θ. Under fairly weak

conditions it can be proven that each iteration of the EM algorithm increases the value of

the likelihood. The EM converges to a maximum of the likelihood as a result. In practice

it is often found that while the EM gets to a neighbourhood of the maximum quickly,

it converges to the maximum slowly. Therefore a mix of EM and direct maximization

is often advocated. In case θ only contains parameters in Gt and Ht, Koopman (1993)

shows that the EM can be modified toward a fast and simple procedure.
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Estimation of initial and regression coefficients: The non-stationary trend and seasonal

components as discussed in Section 2 rely on initial variables that are treated as fixed

unknown coefficients. When regression effects are added to the model, we also have

fixed unknown regression coefficients. In the illustrations in §3.1 it is shown that these

initial and regression coefficients are collectively placed in the initial state vector α1. The

estimation of these coefficients is therefore subsumed in the estimation of the initial state

vector α1.

A straightforward approach to the estimation of α1 is to estimate it jointly with θ by the

method of maximum likelihood as discussed above. However, numerical problems may

arise when the likelihood function is maximised with respect to a parameter vector of a

high dimension. Fortunately, the direct maximization with respect to α1 can be avoided

since the one-step ahead prediction error vt is a linear function of the initial state α1,

that is vt = vot + vαt α1 where vot is equal to vt when the Kalman filter (19) is started with

a1|0 = 0 and P1|0 = 0 and vαt is a function of the system matrices Zt, Tt, Gt and Ht.

Given this linear dependence, the initial state vector can be concentrated out from the

log-likelihood function in the usual way. We then maximize the concentrated likelihood

with respect to θ. The implementation of this approach is developed by Rosenberg (1973).

Tunnicliffe-Wilson (1989) and Harvey and Shephard (1990) argue that the maximum like-

lihood estimation of α1 can affect the estimation of unknown variances in θ; for example,

it increases the probability that a variance is estimated as zero while the true variance

is not zero. They advocate the estimation of θ via the maximimization of a marginal

or diffuse likelihood function. In a state space analysis, this approach can be embedded

within a unified treatment for the initialization of the Kalman filter with respect to initial

and regression coefficients; see Ansley and Kohn (1985), de Jong (1991) and Koopman

(1997).

Stationary conditions of initial state: When the state vector only represents stationary

variables, the initial conditions for α1 can be obtained from the theoretical autocovariance

function. In a time-invariant stationary state space model we have αt+1 = Tαt+Hεt with

E(αt) = 0 and P = Var(αt) for t = 1, . . . , n. It follows that P = TPT+HH ′ with solution

vec(P ∗) = (I − T ⊗ T )−1vec(HH ′).

Since this solution also applies to α1, we can initialize the Kalman filter (19) with a1|0 = 0

and P1|0 = P ∗.

In most models, the initial state vector α1 contains initial and regression coefficients as

well as stationary variables; see also the illustrations in §3.1. The Kalman filter initializa-

tion treatments of de Jong (1991) and Koopman (1997) account for such general model

specifications.

13



3.5 Diagnostic checking

The assumptions underlying the models in Section 2 are that all disturbances, such as εt, ηt and

κt, are normally distributed and serially and mutually independent with constant variances.

Under these assumptions the standardised one-step ahead prediction errors (or prediction resid-

uals) are given by

et =
vt√
Ft
, t = 1, . . . , n, (22)

are also normally distributed and serially independent with unit variance. We can check that

these properties hold by means of the following large-sample diagnostic tests:

Normality: The first four moments of the standardised forecast errors are given by

m1 =
1

n

n∑
t=1

et, mq =
1

n

n∑
t=1

(et −m1)
q, q = 2, 3, 4.

Skewness and kurtosis are denoted by M3 and M4, respectively, and when the model

assumptions are valid they are asymptotically normally distributed as

M3 =
m3√
m3

2

∼ N

(
0,

6

n

)
, M4 =

m4

m2
2

∼ N

(
3,

24

n

)
.

see Bowman and Shenton (1975). Standard statistical tests can be used to check whether

the observed values of M3 and M4 are consistent with their asymptotic densities. They

can also be combined as

MN = n

{
S2

6
+

(K − 3)2

24

}
,

which asymptotically has a χ2 distribution with two degrees of freedom under the null

hypothesis that the normality assumption is valid. The QQ plot is a graphical display

of ordered residuals against their theoretical quantiles. The 45 degree line is taken as a

reference line (the closer the residual plot to this line, the better the match).

Heteroscedasticity: A simple test for heteroscedasticity is obtained by comparing the sum

of squares of two exclusive subsets of the sample. For example, the statistic

H(h) =

∑n
t=n−h+1 e

2
t∑h

t=1 e
2
t

,

is Fh,h-distributed for some preset positive integer h, under the null hypothesis of ho-

moscedasticity.

Serial correlation : The correlogram of the prediction residuals should not reveal significant

serial correlation. A standard portmanteau test statistic for serial correlation is based on

the Box-Ljung statistic suggested by Ljung and Box (1978). This is given by

Q(k) = n(n+ 2)
k∑
j=1

c2j
n− j

,

14



for some positive integer k, where cj is the jth correlation:

cj =
1

nm2

n∑
t=j+1

(et −m1)(et−j −m1).

4 Forecasting

The unobserved component time series model and its state space analysis is used for a model-

based approach to the forecasting of economic time series. A convenient property of the Kalman

filter and related methods is their ability to account for missing observations in a data set. In a

relatively straightforward manner, the filter can be amended when it is confronted with missing

data. Some calculations are skipped while other calculations do not need to be changed. This

feature is of high practical relevance as many data-sets may have some data points missing in

time. In our context, it also offers a solution to the forecasting challenge since we can regard

the future observations as a set of missing observations. As a consequence, the Kalman also

delivers the necessary computations for forecasting.

Since the model is linear, the forecast function for yn+h is a linear function of the observations

y1, . . . , yn, for h = 1, 2, . . .. We first consider forecasts as filling in missing values, and then

describe observation weights.

4.1 Missing values and forecasting

The Kalman filter produces one-step ahead predictions of the state vector as denoted by at+1|t

with its error variance matrices Pt+1|t for t = 1, . . . , n. In the Kalman filter, if yτ is missing,

we do not know its value or its one-step ahead prediction error vτ . The missing information on

vτ can be reflected by having Fτ → ∞ as it indicates that we have no information about vτ .

The consequences of having Fτ →∞ in the Kalman filter is that Kτ → 0 while the remaining

computations in the Kalman filter can still be carried out. The prediction step of the Kalman

filter reduces to

at+1|t = Ttat|t−1, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t, (23)

for t = τ as Fτ →∞. Note that at|t = at|t−1 and Pt|t = Pt|t−1 for t = τ . The implementation of

a Kalman filter with missing data entries is straightforward and relies simply on a conditional

statement: if yt is observed, carry out the Kalman filter as in (19); if yt is missing, carry out

the prediction step (23). Missing entries are allowed throughout the data sample y1, . . . , yn,

individually and in blocks.

The treatment of missing values can be adopted to the computation of forecasts and their

forecast error variances. After the last observation, we add a series of missing values to the

data set and carry on with the Kalman filter. It treats the future observations as missing values

in the way described above. We then effectively obtain the state prediction estimates an+h|n
and its prediction error variance matrix Pn+h|n for h = 1, 2, . . .. The observation forecasts

ŷn+h|n = E(yn+h|y1, . . . , yn) and its error variance matrix Vn+h|n = Var(yn+h − ŷn+h|y1, . . . , yn)
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are then computed by

ŷn+h|h = Zn+han+h|n, Vn+h|n = Zn+hPn+h|nZ
′
n+h +Hn+hH

′
n+h,

for h = 1, 2, . . .. This simple treatment of missing observations and forecasting is one of the

attractions of state space analysis.

4.2 Observation weights of forecast function

It is of interest to know how observations are weighted when forecasting future observations.

For a linear time series model with time-varying components, the forecasting weights should

gradually decline for observations further from the forecast origin as they become less relevant.

When time-variations are more volatile, weights should decline more rapidly compared to cases

where time-variations are smooth. A special algorithm for computing forecasting weights in a

state space analysis is discussed in Koopman and Harvey (2003). Here we concentrate on the

observation weights for y1, . . . , yn when forecasting observation yn+h. For the Gaussian linear

state space model (18), the MMSLE of yn+h is a linear function of the observations y1, . . . , yn,

that is

E(yn+h|y1, . . . , yn) = ŷn+h|n =
n∑
j=1

wj(ŷn+h|n)yj, (24)

where wj(x̂) represents the weight associated with observation yj for the computation of x̂.

The predicted state estimate for αt is based on the observations y1, . . . , yt−1 and can be

written as

at|t−1 =
t−1∑
j=1

wj(at|t−1) yj. (25)

The Kalman filter (19) provides the means to compute these weights by storing the Kalman

gain matrices. Then the following backward recursion is implemented,

wj(at|t−1) = Bt,jKj, Bt,j−1 = Bt,jTj − wj(at|t−1)Zj, j = t− 1, t− 2, . . . , 1, (26)

with initialization Bt,t−1 = I. It computes the observations weights for the state prediction

at|t−1. The observation weights for ŷt|t−1 = Ztat|t−1 are given by Ztwj(at|t−1) but they can also

be directly computed from the backward recursion

wj(ŷt|t−1) = bt,jKj, bt,j−1 = bt,jTj − wj(ŷt|t−1)Zj, j = t− 1, t− 2, . . . , 1, (27)

where bt,j = ZtBt,j and with initialization bt,t−1 = Zt.

When missing values are present in the data set, the Kalman filter can still be applied.

Assume that yτ is missing, recursion (26) at time j = τ reduces to

wτ (at|t−1) = 0, Bt,τ−1 = Bt,τTτ . (28)

Hence missing value can be accommodated in algorithms for computing observation weights in

a state space analysis. Forecasting is treating future observations as missing. The forecasting
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observation weights can therefore be obtained from (28). Using the initialisation of (26) to time

t = n + h, that is Bn+h,n+h−1 = I, and applying (28) for j = n + h − 1, . . . , n + 1 we obtain

wn(an+h|n) = Tn+h−1 . . . Tn+1Kn. The weights for wj(aτ |n) can be obtained by (26) when yj
is observed and by (28) when yj is missing, for j = n − 1, . . . , 1. The forecasting observation

weights are then computed by Ztwj(at|t−1) or directly via (27).

4.3 Autoregressive representation of model

The weights also lead to the autoregressive representation of any decomposition model in Section

2. It follows from the Kalman filter prediction error equation that yt = Ztat|t−1 + vt where

vt ∼ NID(0, Ft). Furthermore, it follows from (25) and (26) that we can express yt as

yt =
∞∑
i=0

φiyt−i + vt, φi = bt,t−iKt−i,

with n→∞. This specification is effectively an autoregressive model representation of yt that

is originally formulated as a decomposition model. The infinite lag order is in practice not

necessary as bt,t−i → 0 as i → ∞. We therefore conclude that φ(L)yt = vt with an effectively

finite lag polynomial φ(L) is a valid representation of yt.

5 Multivariate components

In Section 2 we set out a comprehensive class of unobserved components time series models.

In economic theory one focuses on the dynamic relationships between variables.

The decomposition models can easily be extended for the modelling of multivariate time

series. For example, letting yt denote a p × 1 vector of observations, a multivariate local level

model can be applied to the p time series simultaneously:

yt = µt + εt, εt ∼ NID(0,Σε),

µt+1 = µt + ξt, ξt ∼ NID(0,Σξ),
(29)

for t = 1, . . . , n, where µt, εt, and ξt are p×1 vectors and Σε and Σξ are p×p variance matrices.

In what is known as the seemingly unrelated time series equations model (29), the series are

modelled as in the univariate situation, but the disturbances driving the level components are

allowed to be instantaneously correlated across the p series. When slope, seasonal, or cycle

components are involved, each of these three components also has an associated p× p variance

matrix allowing for correlated disturbances across series. If it is found that the rank r of Σξ in

(29) is smaller than p, then this indicates that the p series have r common levels. Such common

factors may not only have a nice interpretation, but may also result in more efficient inferences

and forecasts.
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6 Conclusion

In this paper we have discussed the state space analysis of decomposition models for univariate

time series. This class of linear time series models are composed from a set of unobserved

components which represent time-varying trend, seasonal, cycle and regression effects. De-

composition models require the explicit formulation of stochastically time-varying unobserved

components; each component captures a specific dynamic feature of the time series. Although

these models can be used for different purposes, their main application is forecasting. The state

space analysis provides practical tools to build a model for forecasting. The measure of success

for a model depends on the task for which the model is used. When its purpose is forecasting,

it is important that the model provides an effective description of all dynamic features in the

data. For this purpose, diagnostic statistics based on one-step ahead prediction errors should

be satisfactory. When the final model (with unknown parameters estimated by maximum like-

lihood) is found to be satisfactory, it can be used for forecasting. The empirical model ideally

implies a forecast function that can be justified by common sense. For this purpose, particular

attention is given to the construction of observation weights used in the forecast function.
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