
 

Fluid Mechanics for Chemical Engineers, Third Edition 
Noel de Nevers 

Solutions Manual 
 

This manual contains solutions to all the problems in the text. 
 
Many of those are discussion problems; I have tried to present enough guidance so that 
the instructor can lead a useful discussion of those problems. 
 
In addition I have added discussion material to many of the computation problems.  I 
regularly assign these as computation, and then after we have agreed that the computation 
is correct, asked the students what this computation tells them.  That leads to discussion.  
Wherever I can, I begin a discussion of some topic with a computation problem which 
introduces the students to the magnitudes of various quantities, and thus requires them to 
read the part of the text covering that topic.  Once we all know the magnitudes, and have 
all read that section of the text, we can have an interesting discussion of their meaning. 
 
In this additional discussion I have presented reference when I could.  Often I relied on 
industry "common knowledge", folklore and gossip.  I hope I got it all right.  If not, I 
apologize for leading you astray.  Where I am not sure about the folklore, I have tried to 
make that clear in the discussion. 
 
Those problems whose numbers are followed by an asterisk, * are ones whose answer is 
presented in the Answers to Selected Problems in Appendix D of the book. 
 
Many of these problems have been class tested.  Some, alas, have not.  This manual, as 
well as the book, is certain to contain errors.  I will be grateful to those who point these 
errors out to me, so that they can be corrected.  I keep a running correction sheet, and 
send copies to anyone who asks for it.  If you find such an error, please notify me at  
 

Noel de Nevers 
Department of Chemical and Fuels Engineering 
50 South Central Campus Drive 
University of Utah, Salt Lake City, Utah 84112 
Noel.deNevers@m.cc.utah.edu 
801-581-6024 
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FAX 801-585-9291 
 
Many of the problems go beyond what is in the text, or show derivations which I have 
left out of the text to make it read easier.  I suggest that the instructor tell the students to 
at least read all the problems, so that they will know what is contained there. 
 
Some of the problems use spreadsheets.  In the individual chapters I have copied the 
spreadsheet solutions into the text in table format.  That is easy to see, but does not let the 
reader modify the spreadsheets.  In the Folder labeled "Spreadsheets" I have included 
copies of all the spreadsheets shown in the individual chapters, and also the high velocity 
gas tables from the appendices.  These are in Excel 4.0, which is compatible with all later 
versions. 
 
Noel de Nevers 
Salt Lake City, Utah, 2003 
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Fluid Mechanics For Chemical Engineers, Third Edition 
 

Noel de Nevers 
 

Solutions Manual 
 

Chapter 1  An * on a problem number means that the answer is given in Appendix D of 
the book. 
_______________________________________________________________________ 
1.1 Laws Used, Newton's laws of motion, conservation of mass, first and second laws of 
thermodynamics.  Laws Not Used, third law of thermodynamics, all electrostatic and 
magnetic laws, all laws discussing the behavior of matter at the atomic or subatomic 
level, all relativistic laws. 
_______________________________________________________________________ 
 
1.2  By ideal gas law, for uranium hexafluoride 
 

 ρ =
PM
RT

=
1 atm( )⋅ 352

g
mol

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.082
L atm
mol K

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ (56.2 + 273.15 K)

⋅
L

106 cm3 = 0.0130
g

cm3 = 0.81
lbm
ft3  

 
Here the high density results from the high molecular weight.   
 
At its normal boiling point, 4 K, by ideal gas law helium has 
 
 ρ =

PM
RT

=
1 ⋅4

0.082 ⋅ 4
= 0.012

g
cm3 = 0.76

lbm
ft3  

 
Here the high density  results from the very low absolute temperature.  The densities of 
other liquids with low values are: liquid methane at its nbp, 0.42 gm/cm3, acetylene at its 
nbp, 0.62, ethylene at its nbp, 0.57. 
 
Discussion; the point of this problem is for the students to recognize that one of the 
principal differences between liquids and gases is the large difference in density.  As a 
rule of thumb, the density of liquids is 1000 times that of gases. 
_______________________________________________________________________ 
 
1.3*   

ρ = mass∑ volume∑ : For100lbm

ρ =100 lbm
50lbm

4.49 ⋅62.3lbm ft3 +
50lbm

62.3lbm ft3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =102

lbm
ft3
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Discussion; this assumes no volume change on mixing.  That is a good assumption here, 
and in many other cases.  In a few, like ethanol and water have changes of up to a few %. 
_______________________________________________________________________ 
 
1.4  The maximum density of water occurs at 4°C, not at zero.  The relation between the 
meter and the kg was defined to have the density of water at 4°C be 1.00 gm/cm3.  
However for various historical reasons it has ended up that the density of water at 4°C is 
about 0.99995 gm/cm3. 
_______________________________________________________________________ 
 

1.5* ρ =
mgross − mtare

V
=

45 g − 17.24 g
25cm3 = 1.110

g
cm 3  

 ρ =
mgross − (mtare + mair )

V
=

45 g − (17.24 + 0.03) g
25cm3 = 1.109

g
cm 3  

 
Omitting the weight of the air makes a difference of 0.001 = 0.1%.  This is normally 
ignored, but in the most careful work it must be considered. 
_______________________________________________________________________ 
 
1.6  This scale has the advantage that it  
places a higher number on lower density  
oils.  That matches the price structure for 
oil, where lower density crude oils have 
a higher selling price, because they are 
more easily converted to high-priced  
products (e.g. gasoline).  Oil prices will  
often be quoted as (A + B·deg API) $/bbl. 
where B ≈ $0.01/deg API. 
 
The plot covers the whole range of 
petroleum liquids, from propane (s.g. ≈ 
0.5) to asphalts (s.g.  ≈ 1.1).  Water (s.g. = 
1) has 10° API. 
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_______________________________________________________________________ 
 

1.7  For ideal gases,  
specific
gravity

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ideal gas

=
Mgas

Mair

.  For methane and propane the values are 

 and 44 .  Propane is by far the most dangerous fuel in common 
use.  If we have a methane leak, buoyancy will take it up and disperse it.  If we have a 
leak of any liquid fuel, it will flow downhill on the ground, and be stopped by any ditch 
or other low spot.  Propane, as a gas heavier than air, flows downhill, over small 
obstructions and depressions.  It often finds an ignition source, which methane or 
gasoline would not find in the same situation. 

16 / 29 = 0.55 / 29 = 1.51

_______________________________________________________________________ 
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1.8 dV
dy

has dimension
of

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ft s

ft
=

1
s

;  

 τ
has dimension
of

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ lbf

ft2 ⋅
lbf ft

lbmsec2 =[ ] lbmft sec
ft2 sec

=[ ]momentum
area ⋅ time

= momentum flux  

 μ
has dimension
of

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ τ

dV / dy
=[ ]lbf / ft2

1 / s
=[ ]lbm

ft ⋅s
 

_______________________________________________________________________ 
 
1.9 Paints; not settle in the can.  Inks; spread when you are writing, don't leak when you 

are not.  Lipstick; spread when applied, then not move.  Crayons; same as lipstick.   
Blood; corpuscles don't settle, viscous resistance is small in large arteries and veins.  
Chocolate; easy to spray on warm or apply by dipping, then does not run off until it 
cools. Oil well drilling fluids; low viscosity when pumped up and down the well, 
high viscosity when leaking out of the well into porous formations.  Radiator 
sealants; low viscosity in pumped coolant, high viscosity in potential leaks.   Aircraft 
de-icing fluids; stick to the plane at low speeds, flow off at high speeds.  Plaster, 
spread easily, not run once applied while it is setting.  Margarine, spread easily, but 
remain solid when not being spread. 

_______________________________________________________________________ 
 

1.10  (a)  For r  = R,   Vθ = ω
k 2

1 − k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

R2

R
− R

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 

For r = rinner cylinder = kR  
 

 Vθ = ω
k 2

1 − k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

R2

kR
− kR

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ω

k2

1 − k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ R

1 − k2

k
= ωkR  

(b) 

 d
dr

Vθ

r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ω

k2

1 − k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

d
dr

R2

r2 −1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ω

k2

1 − k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

−2R2

r3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  and 

 σ = r
d

dr
Vθ

r
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = ω

k 2

1 − k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

−2R2

r2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   

Here we can ignore the minus sign, because as discussed in the text its presence or 
absence is arbitrary.  Then, at the surface of the inner cylinder  r = rinner cylinder = kR and 

 σ inner cylinder = ω
k2

1− k2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

2R2

(kR)2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ω

2
1 − k2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

(c) Here k =
rinner

R
=

Dinner

Douter

=
25.15 mm
27.62 mm

= 0.9106  so that 

 σ inner cylinder =
10 ⋅ 2π

min
⋅

min
60 s

2
1 − 0.91062

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

12.26
s

 

_______________________________________________________________________ 
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1.11  Sphere, 
S
V

=
πD2

π
6

D3
=

6
D

,  Cube with edge E,    
S
V

=
6E2

E3 =
6
E

  Right cylinder 

 S
V

=
2

π
4

D2 +πD2

π
4

D3
=

6
D

 

 
 
This appears strange, but is correct.  If we ask what is the surface area for each of these 
figures for a volume of 1 cm3, we find that for the sphere D = (6 cm3/π)1/3 = 1.24 cm, for 
the cube E = 1 cm and for the right cylinder D = (4 cm3/π)1/3 = 1.08 cm.  Thus for equal 
volumes the sphere has the least surface, the right cylinder the next least, and the cube 
the most. 
_______________________________________________________________________ 
 
1.12  Crystallization of supersaturated solutions, boiling in the absence of a boiling chip, 
a pencil balanced on its eraser, all explosives, a mixture of hydrogen and oxygen (in the 
absence of a spark), a balloon full of air (in the absence of a pin), a charged capacitor. 
_______________________________________________________________________ 
 

1.13  V =
π
6

D3 =
π
6

8000 mi ⋅
5280ft

mi
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3

= 3.95⋅1023 ft3 = 1.12 ⋅1021m3  

 m = ρV = 5.5 ⋅62.4
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 3.95 ⋅1022 ft3( )=1.35 ⋅1025lbm = 6.14 ⋅1024kg   

 
There is no meaning to the term "the weight of the earth" because weight only has 
meaning in terms of a well-defined acceleration of gravity.  For the earth there is no such 
well-defined acceleration of gravity. 
_______________________________________________________________________ 

1.14 (a) 62.3 lbm/ft3 ,  (b)  62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

6 ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

lbf s2

32.2 lbmft
= 11.6lbf  , (c) same as (a). 

_______________________________________________________________________ 
 

1.15* mile⋅
5280ft

mi
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3

⋅
1728
231

gal
ft3 =1.1⋅1012gal ,    30 ⋅109 gal ⋅

mi 3

1.1⋅1012gal
= 1.14mi3  

 
The value in cubic miles is surprisingly small.  We use about 5 E 9 bbl/yr, of which we 
import about half.  This suggests that at the current usage rate we have (30/(0.5·5) ≈ 12 
years of oil reserves.  For the past half century this number has remained about constant, 
we have found it at about the rate we used it.  In the past few years this has mostly been 
by improved recovery methods for existing fields, rather than finding new fields.  In the 
1950's the US could produce about twice as much oil as it consumed; now we can 
produce about half.  This is mostly not due to a decline in production, but an increase in 
consumption. 
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_______________________________________________________________________ 
 

1.16 coulomb =
gmequivalent

96,500
⋅
6.02⋅1023electrons

gmequivalent
= 6.2 ⋅108 electrons  

_______________________________________________________________________ 
 
1.17 J = 1 =

778 ft ⋅ lbf
Btu

=
4.184 J

cal
=

4.184 kJ
kcal

   This J is easily confused with the J for 

a joule.  See any thermodynamics text written before about 1960 for the use of this J to 
remind us to convert from ft·lbf to Btu. 
_______________________________________________________________________ 
 
1.18*gc = 1 =

32.2 lbmft
lbf s2 =1

lbmtoof
lbf s2 ;toof = 32.2 ft   or 

 gc = 1 =
32.2 lbmft

lbf s2 =1
lbmft

lbf dnoces2 ; dnoces =
s

32.2
 

 
The toof and the dnoces are the foot and the second spelled backwards.  No one has 
seriously proposed this, but it makes as much sense as the slug and the poundal. 
_______________________________________________________________________ 
 

1.19 macre ft = ρV = 62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ft( ) 52802 ft2

acre

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 2.71 ⋅106 lbm  

 mhectare meter = ρV = 998.2
kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ m( ) 100m( )2 = 9.98 ⋅106 kg  

 
The acre-ft is the preferred volume measure for irrigation because one knows, roughly, 
how many ft/yr of water one must put on a field, in a given climate to produce a given 
crop.  Multiplying that by the acres to be irrigated gives the water demand.  The 
Colorado River, over which arid Southwestern states have been fighting for a century 
flows about 20 E6 acre ft/yr.  The Columbia flows about 200 E 6 acre-ft/yr.  The south 
western states look to the Columbia with envy; the Northwestern states are in no hurry to 
give it up. 
_______________________________________________________________________ 
 

1.20 c2 = 186,000
mi
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

5280
ft
mi

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅
lbf s2

32.2 lbmft
⋅

BTU
778ft lbf

= 3.85 ⋅1013 BTU
lbm

 

 c2 = 2.998 ⋅108 m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅
Ns2

kg ⋅m
⋅

J
N ⋅m

= 8.99 ⋅1016 J
kg

 

_______________________________________________________________________ 
 
1.21* 300 seconds is not the same as 300 lbf·s/lbm.  So this terminology is wrong.  But it 
is in very common usage. 
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 Isp = 300
lbf ⋅s
lbm

⋅
32.2 lbm ⋅ft

lbf ⋅s2 = 9660
ft
s

 

 
As discussed in Ch. 7, this is the exhaust velocity if the exhaust pressure matches the 
atmospheric pressure.  If they are different (the common case) then this value must be 
modified.  However European rocket engineers use the "effective exhaust velocity" 
which takes the pressure into account the same way US engineers use the specific 
impulse. 
 
_______________________________________________________________________ 
 

1.22 
q
A

=
1cal
cm2s

⋅
Btu

252cal
⋅

30.5cm
ft

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅
3600s

hr
= 1.33 ⋅104 Btu

hr ft2  

 
q
A

=
1J
m2s

⋅
Btu

1.055J
⋅

m
3.281ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

⋅
3600s

hr
= 0.317

Btu
hrft 2  

_______________________________________________________________________ 
 

1.23*
  
R =

DVρ
μ

=
0.5ft( ) 10

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 62.3

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.002 cp
⋅

cp ⋅ ft2

2.09 ⋅10−5lbf ⋅s
⋅

lbf s2

32.2lbm ft
= 4.6 ⋅105  

 

or 
  
R =

0.5 m
3.28

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

10

3.28
m
s

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

998.2 kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.002 ⋅10−3 Pa ⋅s
⋅

Pa ⋅ m2

N
Nm

kg ⋅s2 = 4.6 ⋅105  

_______________________________________________________________________ 
 

1.24Darcy =
1

cm
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1 cp( )

1atm
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
0.01gm
cm ⋅s ⋅cp

⋅
atm ⋅cm ⋅s2

1.01 ⋅106 gm
= 0.99 ⋅10−8 cm2 = 1.06 ⋅10−11ft 2  

_______________________________________________________________________ 
 
1.25* F = 2σl = 2 ⋅ 72.74 ⋅10−3 N

m
⋅ 0.1 m = 0.0145 N = 0.0033 lbf = 1.48 g(force)  

_______________________________________________________________________ 
 

1.26 X =
Btu

lbm ⋅o F
⋅

o C
gm ⋅ cal

⋅
1.8 o F

o C
⋅

lbm
454 g

⋅
252cal

Btu
=1.0   

 
The calorie and the Btu were defined in ways that make this 1.0.  Some are confused 
because o , but if we differentiate,  dF = 1.8⋅o C + 32 o F = 1.8⋅ doC  which is the relation 
used above.   
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_______________________________________________________________________ 
 
1.27  One standard atmosphere = 1.013 bar.  Clearly the bar is a convenient approximate 
atmosphere.  It is very commonly used in high pressure work, as an approximate 
atmosphere.  Meteorologists express all pressures in millibar.  Currently thermodynamic 
tables like steam tables and chemical thermodynamic tables show pressure in bars. 
_______________________________________________________________________ 
 
1.28 The US air pollution regulations are almost all written for concentrations in 
(g/m3) and the models expect emission rates in (g/s).  The available auto usage data is 
almost all in vehicle miles per hour (or day or second) so to get emission rates in (g/s) 
one multiplies the (vehicle miles/s) times the emission factor in (g/mi).  The US-EPA 
would be happy to do it all in metric, but the mile doesn't seem to be going away very 
fast in the US. 
_______________________________________________________________________ 
 

1.29  
1kg f
cm2 ⋅

9.81N
kg f

⋅
104 cm2

m2 = 98.1 kPa = 0.968atm  

 
This is very close to one atmosphere.  The most common type of pressure gage testers, 
the dead-weight tester, balances a weight against the pressure in the gages.  The direct 
observation is the values of the weights on the tester and the cross-sectional area of the 
piston on which they rest, which has the dimensions of kgf/cm2.  I think this is slowly 
losing out to the kPa, but it is not gone yet. 
_______________________________________________________________________ 
 

1.30 
a =

1.59kgf
4.54 kgm

⋅
32.2 lbmft

lbf s2 ⋅
kg

2.2 lbm
⋅

2.2 lbf
kgf

⋅ 60
s

min
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

= 40,597
ft

min 2  

 
This leads to the conclusion that (kg/kgf) = (lbm/lbf). 
__________________________________________________________________ 
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Solutions, Chapter 2 
 
2.1*  As the sketch at the right shows, 
depth = r (1 - cos θ), and 
θ = arcsin(0.5 w / r) = arcsin

50ft
4000 ⋅ 5280 ft

 

   = arcsin 2.3674 ⋅10−6 = 2.3674 ⋅10−6  
 
depth = 4000 ⋅5280 ⋅ (1− cos 2.3674 ⋅10−6 )
          =  5.92 ⋅10−5 ft = 0.018 mm
 
Discussion  The point of this problem is 
that, for engineering purposes, for modest-
sized equipment, the world is flat! 
 

r

w

θ
θr cos  

r (1- cos   )θ

 

 
Older computers and some hand calculators do not carry enough digits to solve this 
problem as shown above.  If we use the approximations 

 θ ≈ sinθ ≈ tan θ = 0.5w / r   and  cosθ =1 +
θ 2

2!
+

θ 4

4!
+

θ6

6!
.....  

we can drop the higher terms and write 

 depth ≈ w2 / 8r =
100ft( )2

8 ⋅ (4000 ⋅5280 ft)
= 5.92 ⋅10−5 ft  

On my spreadsheet this approximation agrees with the above solution to 1 part in 50,000. 
_____________________________________________________________________ 
 

2.2 (a)  γ = ρg = 62.3
lbm
ft3 ⋅32.2

ft
s2 ⋅

lbf s3

32.2 lbmft
= 62.3

lbf
ft3  

  γ = ρg= 998.2
kg
m3 ⋅ 9.81

m
s2 = 9.792

kN
m3  

(b)  γ ≈ 62.3 ⋅6 ⋅
1

32.2
≈11.6

lbf
ft3 = 998.2 ⋅ 2 = 1.996

kN
m3  

 
_____________________________________________________________________ 
 
2.3*  γ = ρg = 998.2

kg
m3 ⋅9.81

m
s2 = 9.792

kN
m3 = 998.2

kgf
m3  

 
I don't know if civil engineers in metric countries use the specific weight at all, and if 
they do whether they use the proper SI value, 9,792 kN/m3 or the intuitive 998.2 kgf/m3  
US civil engineering fluids textbooks show the SI value, 9,792 kN/m3. 
_____________________________________________________________________ 
2.4 

 

dP
dz

= −ρg = −62.3
lbm
ft3 ⋅ 32.2

ft
s2 ⋅

lbf ⋅s2

32.2 lbm ⋅ft
⋅

ft 2

144 in2 = −0.423
psi
ft
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This is close to -0.5 psi/ft, so most of us remember that dP/dh ≈ 0.5 psi/ft. 
__________________________________________________________________ 
 
2.5 

P = P0 + ρgh =14.7 psia +
62.3

lbm
ft3 ⋅ 32.17

ft
s2

32.17 lbmft
lbf s2

⋅
ft2

144in2 = 14.7 + 4.33 =18.03 psia = 4.33psig

 
 
Discussion; 0.433 psi/ft ≈ 0.5 psi/ft in water is a useful number to remember. 
One can also discuss why it hurts.  The pressure inside our eardrums is ≈ the same as that 
in our lungs, which is practically atmospheric.  So a pressure difference of about 5 psi 
across the eardrums is painful.  Scuba divers have the same air pressure inside their lungs 
as that of the outside water.  The air valve that does that automatically, invented by 
Jaques Costeau, made scuba diving possible. 
People who dive deeply wearing a face mask must equalize the pressure in their lungs 
with that in the face mask, or the blood vessels in their eyes will burst.  This is a problem 
for deep free divers. 
_____________________________________________________________________ 
 

2.6   h =
ΔP
ρg

=
1000

lbf
in2

1.03( ) 62.3 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 32.17 ft

s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅32.17
lbm ft
lbf s2 ⋅

144 in2

ft2 = 2244 ft = 684 m  

 
_____________________________________________________________________ 
 
2.7 

P2 = P1 + ρgh = 15psig +
62.3

lbm
ft3 ⋅ 32.17

ft
s2 ⋅1450ft

32.17 lbm ft
lbt s2 ⋅ 144in2

ft2

=15 + 627 = 642 psig = 4.43 MPa  

 
This is a higher pressure than exists in any municipal water system, so in any such tall 
building the water, taken from the municipal water system must be pumped to the top.  
Furthermore, one cannot tolerate such a high pressure in the drinking fountains on the 
ground floor; they would put out people's eyes.  Tall buildings have several zones in their 
internal water system, with suitable pressures in each, and storage tanks at the top of each 
zone. 
_____________________________________________________________________ 
 

2.8* P = Patm + ρgh = 101.3kPa + 1.03( ) 998.2
kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 9.81

m
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 11,000 m( ) N ⋅s2

kg ⋅m
⋅
Pa ⋅ m2

N
 

 

Solutions, Fluid Mechanics for Chemical Engineers, Third Edition, Chapter 2, page 2 



 Pabs = 1.013⋅105 +1.109 ⋅108 Pa = 1.1105⋅105 kPa = 1096 atm = 16,115psia  
 Pgauge =1.109 ⋅105 kPa = 1095 atm = 16,100 psig  
_____________________________________________________________________ 
 

2.9   ρ =
ΔP
gh

=
10,000

lbf
in2

32.17 ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 15000ft( )

⋅
144 in2

ft2 ⋅
32.17lbmft

lbf s2 = 96.0
lbm
ft3 =1538

kg
m3  

 
Discussion: When I assign this problem I sketch the flow in an oil-drilling rig for the 
students.  High-pressure drilling fluid is pumped down the drill pipe, and flows back up 
the annulus between the drill pipe and the wellbore.  This drilling fluid cools the drill bit 
and carries the rock chips up out of the well. 
 
Ask the students how one would get such dense drilling fluids?  The answer is to use 
slurries of barite, (barium sulfate) s.g. = 4.499.  In extreme cases powdered lead, s.g. = 
11.34 has been used.    
 
The great hazard is that high pressure gas will enter the drilling fluid, expand, lower its 
density, and cause it all to be blown out.  Most deep drilling rigs have mechanical 
"blowout presenters", which can clamp down on the drill stem and stop the flow in such 
an emergency.  Even so one of the most common and deadly drilling accidents is the 
blowout, caused by drilling into an unexpected zone of high-pressure gas.  If the gas is 
rich in H2S, the rig workers are often unable to escape the toxic cloud.   
_____________________________________________________________________ 
 
2.10  The pressure at the gasoline-water interface is  

 
P = ρgh = 0.72 ⋅ 62.3 lbm

ft3 ⋅ 32.17 ft
s2 ⋅ 20ft ⋅ lbf s2

32.17lbm ft
⋅ ft2

144 in2 = 6.23 psig

= 20.93 psia = 43.5 kPa gauge =144.9 kPa abs
 

 
The increase in pressure from that interface to the bottom of the tank is  
 

ΔP = ρgh = 62.3 lbm
ft3 ⋅32.17 ft

s2 ⋅20 ft ⋅ lbf s2

32.17lbm ft
⋅ ft2

144 in2 = 8.65 psig
 

 
So the pressure at the bottom is the sum,  
 
 Pbottom = 14.88 psig = 29.58 psia =102.65 kPa gauge = 203.95 kPa abs 
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The figure is sketch, roughly to scale at the 
right. 
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_____________________________________________________________________ 
 
2.11  (a)  See example 2.7.  The result is exactly one-half of that result, or 2.35·105 lbf. 
for internal pressure and exactly one-fourth of that result of 1.175·105 lbf for internal 
vacuum. 
 
(b) Almost all pressure vessels can withstand much higher internal pressures than 
vacuums.  An internal pressure blows the vessel up like a balloon, straightening out any 
non-uniformities.  An internal vacuum collapses the tank, starting at a non-uniformity 
and magnifying it.  Most  students have see the demonstration in which a rectangular 5 
gallon can is filled with steam and then collapsed by cooling to condense the steam.  The 
maximum vacuum there is 14.7 psig.  An internal pressure of the same amount will cause 
the sides and top of the can to bulge out somewhat, but the result is far less damaging 
than the vacuum collapse. 
 
You might suggest the analogy of pulling and pushing a rope.  If you pull a rope, it 
straightens out.  If you push one the kinks are increased and it folds up. 
 
_____________________________________________________________________ 
 
2.12* Here let the depth to the bottom of the can be h1, the height of the can be h2, and 
the height to which water rises in the can be h3.  Then, after the water has risen, at the 
interface the pressure of the water and the pressure of the air are equal, Pw = Pa  
 

Pw = Patm + ρg(h1 − h3) ,     Pair = Patm ⋅
h2

h2 − h3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,   

 
The easiest way to solve the problem is to guess h3, and solve for both pressures on a 
spreadsheet.  Then one constructs the ratio of the two pressures, and uses the 
spreadsheet's root finding engine to find the value of h3, which makes that ratio 1.00.  
The result of that procedure (using Goal seek on an excel spreadsheet) is h3 = 0.2236 ft, 
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and Pinterface = 18.93 psia.  Before we had spreadsheets we could have done the same by 
manual trial and error, or done it analytically.  If we equate the two pressures 
 

Patm ⋅
h2

h2 − h3

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ρg(h1 − h3) ;     Patm ⋅

h3

h2 − h3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ρg(h1 − h3)  

 
Patmh3

ρg
= (h1 − h3 ) ⋅(h2 − h3 ) = h2h1 − h2h3 − h1h3 + h3

2 ,  which can be factored to 

 

h3
2 + h3 −h2 − h1 −

Patm

ρg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + h2h1 = 0 ;  which is a simple quadratic equation.  To simplify, 

let 
 

−h2 − h1 −
Patm

ρg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = A , so that  h3 =

−A ± A2 − 4h1h2

2
  Now we can insert values 

 

−h2 − h1 −
Patm

ρg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = A = −1ft −10ft −

14.7
lbf
in2

62.3 lbm
ft3 ⋅ 32.2 ft

s2

⋅
144in2

ft2 ⋅
32.2lbm ⋅ ft

lbf ⋅ s2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= −33.98ft

 

and h3 =
−(−33.98ft) ± (−33.98ft)2 − 4 ⋅10ft ⋅1ft

2
= 0.223ft = 2.68in  

 
The liquid pressure is  
 

Pliquid =14.7 psia + (10 − 0.223)ft ⋅ 62.3
lbm
ft3 ⋅32.2

ft
s2 ⋅

ft2

144in2 ⋅
lbf ⋅ s2

32.2lbm ⋅ ft
= 18.94psia  

 
while the gas pressure is  
 

Pgas =14.7psia ⋅
1ft

1ft − 0.223ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 18.94psia  

 
This has an elegance which the spreadsheet does not. 
 
_____________________________________________________________________ 
 
2.13 (a) See the solution to problem 2.8., P = 16,099 psig   
 
(b)  dP = ρgdh = ρ0g 1+ β P − P0( )[ ]dh

 dP
1+ βP − βP0

P0

P

∫ = ρ0g dh
0

h

∫ = ρgh 0
h =

1
β

ln 1 + βP − βP0( )
P0

P
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 ; ln β P − P0( )+1( )= βρ0 gh P − P0 =
exp βρ0 gh( )[ ]− 1

β
 

From App. A.9, β = 0.3 ⋅10 −5 / psi ,  so that 
 

 

exp βρ0 gh( )= 0.3 ⋅10−5

psi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 1.03 ⋅62.3 lbm

ft3

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 32.17 ft

s2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 11000 ⋅ 3.281ft( )⋅

⋅
ft2

144in2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

lbf s2

32.17 lbm ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 1.0494

 

and 
 P − P0 =

1.0494 −1
0.3 ⋅10−5 / psi

= 16477psig    

 
The ratio of the answer taking compressibility into account to that which does not take it 
into account is Ratio =

16 477
16 099

=1.023. 

  
Discussion: Here we see that even at the deepest point in the oceans, taking the 
compressibility of the water into account changes the pressure by only 2.3%. 
One may do a simple plausibility check on this mathematics by computing the ratio of 
the density at half of the depth to the surface density.  Using the data here, the density at 
a pressure of 8000 psi is about 1.024 times the surface density.  For the depths of 
ordinary industrial equipment this ratio is almost exactly 1.00. 
_____________________________________________________________________ 
 

2.14 P2 = P1exp
−gMz

RT
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

  

  

= 1atm exp
−32.17 ft

s2 ⋅ 29 lbm
lb mol

⋅10000ft ⋅ lbf s2

32.17lbmft
⋅ ft2

144in2

10.73

lbf
in2 ⋅ft3

lbmol oR
⋅ 400oR

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

 

  = 1atm exp −0.4692( ) = 0.625 atm  
_____________________________________________________________________ 
 
2.15 P = P0 − ρgz ; dP

dt
= −ρg

dz
dt

 

dP
dt

= 0.075
lbm
ft3 ⋅ 32.17

ft
s2 ⋅2000

ft
min

⋅
lbf s2

32.17lbm ft
⋅

ft2

144in2 = −1.04
psi
min

= −7.18
kPa
min

 

 
_____________________________________________________________________ 
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) ;  
T2

T1

=
P2

P1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

k −1
k

 2.16 P
ρk = const =

P
MP
RT

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

k ;  
RT
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

k

⋅ const = P 1− k(

 dP = −ρgdz =
−PMg

RT
dz ;   

dP
P

= −
gM
RT

dz =
−gM
RT1

P1

P
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

k −1
k

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

dz  

 P
k −1

k
−1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
dP = −

gM
RT1

P1

k −1
k dz ; 

P2

P1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

k−1
k

− 1 = −
k −1

k
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

gM
RT1

Δz  

 P2 = P1 1−
k −1

k
gMΔz
RT1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

k
k −1

    (Eq. 2.17) 

 T2 = T1
P2

P1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

k −1
k

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 1 −
k − 1

k
gMΔz

RT1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

      (Eq. 2.18) 

_____________________________________________________________________ 
 

2-17 (a) T = 519o R −
59 − −69.7( )°F

36 150 ft
z = 519o R −

0.00356o R
ft

⋅ z = a + bz  

 dP
P

= −
gM
RT

dz = −
gM
R

dz
a + bz

;  ln
P
P0

= −
gM
bR 0

z
ln a+bz( ) = −

gM
bR

ln
T
T0

; 

 
P
P0

=
T
T0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

− gM
bR

 Here 

 
gM
bR

=
32.17 ft

s2 ⋅ 29 lbm
lb mole

0.000356
o R
ft

⋅
10.73 lbf

in2

lb moloR
⋅32.17

lbmft
lbf s2 ⋅

144in2

ft2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

= 5.272  

 
(b)  At the interface 

 P = P0
390o R

518.7o R

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

0.572

= P0 0.752( )5.272 = 0.222P0  

 
(c)  In the stratosphere, T = constant, so we use the isothermal formula 

 P = Pinterface exp
−gM z − zinterface( )

R Tstratosphere

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   

 
_____________________________________________________________________ 
 
2.18*  Using Eq. 2.18 we have  T2 = 0 when

k − 1
k

gMΔz
RT1

= 1, 
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Δz =
RT1

gM
k

k −1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

10.73 lbf
in2 ft3

lbmoloR
⋅ 519o R

32.17 ft
s2 ⋅ 29 lbm

lbmol
1.4
0.4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
144in2

ft2 ⋅
32.17lbmft

lbf s2 = 96,783 ft  

  This is the height which corresponds to turning all internal energy and injection work 
(Pv) into gravitational potential energy, adiabatically.  The fact that the atmosphere 
extends above this height shows that there is heat transfer in the atmosphere, which 
contradicts the adiabatic assumption. 
 
At this elevation the predicted pressure from equation 2.17 is P = 0. 
_____________________________________________________________________ 
 
2.19 Taking values directly from the table in example 2.4,  
 

(a)  P4300 ft = P1 exp −
gMΔz
RT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 1atm −0.03616⋅

4300 ft
1000 ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0.856 atm  

 
(b) is given in Table 2.1 = 0.697 atm 
 

(c) P29 028ft = P1 exp −
gMΔz
RT1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =1atm −0.03616 ⋅

29 028 ft
1000 ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0.350 atm  

 
These are based on T0 = 519·°R (the standard atmosphere).  If one uses 528°R, the 
answers are 0.858, 0.701 and 0.356 atm. 
 
Discussion: you might ask the students about the barometric pressures, which are 
regularly reported on the radio for places not at sea level.  These are normally "corrected 
to sea level" so that, for example in Salt Lake City the reported barometric pressures are 
normally about 29.9 inches of mercury, which is about 5 inches higher than the actual 
barometric pressure ever gets.  Those values are used to set altimeters in airplanes, which 
have a dial-in for the sea level barometric pressure, which they compare to the observed 
pressure to compute the altitude. 
_____________________________________________________________________ 
 

2.20*  (a)     
dT
dz

=
ΔT
Δz

=
−69.7 − 59( )o F

36,150 ft
= −0.00356

o F
ft

 

 
(b) 
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dT
dz

= −
k −1

k
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

gM
R

= −
0.4
1.4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

32.17
ft
s2 ⋅29

lbm
lbmol

10.73

lbf
in2 ⋅ ft3

lb molo R

⋅
lbf s2

32.17 lbmft
⋅

ft2

144in2 = −0.00536
o R
ft

 

Discussion:  These are called lapse rates  and the minus sign is normally dropped, so that 
the standard lapse rate is 3.56°F/ 1000 ft, and the adiabatic lapse rate is 5.36 °F/ 1000 ft,  
These terms are widely used in meteorology, and in air pollution modeling. 
_____________________________________________________________________ 
 
2.21 (a) From Table 2.1, 0.697 atm. 
 

(b) T2 = T1 1 −
k −1

k
gMΔz

RT
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = T1 1−

0.4
1.4

0.3616( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = 519 ⋅0.8967   

   
= 465.4o R = 5.7o R

 

 P2 = P1
T2

T1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

k
k −1

= 14.7psia 0.8964( )
1.4
0.4 = 10.04 psia = 0.683atm  

(c)  See the solution to Problem 2.17 

 T = 59 + -0.00356
o R
ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 104 ft( )= 23.4 o F = 483.1o R  

 P = P0
T
T0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−gM
bR

=1 atm
483.1o R
519o R

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

5.272

=1 atm 0.685( ) = 10.07 psia  

_____________________________________________________________________ 
 
2.22* Here the pressure at sea level is due to the weight of the atmosphere above it, from 
which we can easily conclude that there are 14.7 lbm of atmosphere above each square 
inch of the earth's surface.   Then 
 

m =
m
A

⋅ A =
m
A

⋅ 4πD2 = 14.7
lbm
in2 ⋅4 ⋅ π 4000mi ⋅

5280 ft
mi

⋅
12in

ft
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2

=1.186 ⋅1019 lbm 

_____________________________________________________________________ 
 

2-23 F = PA =
π
4

120ft( )2 ⋅
1lbf
in2 ⋅

144in2

ft2 = 1.63 ⋅106 lbf = 7.24MN  

 
This is normally enough to crush such a tank, which explains why such vents are of 
crucial importance, and why prudent oil companies pay high prices to get one that always 
works! 
_____________________________________________________________________ 
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2.24*  P =
F
A

=
1800 kg⋅ 9.81 m / s2

0.2 m2 ⋅
N s2

kg m
⋅
Pa m2

N
= 88.92 kPa = 12.81 psig 

 
Discussion:  This small value shows how all hydraulic systems work.  A small pressure, 
acting over a modest area can produce an impressive force.  The small air compressor in 
the service station easily lifts the heavy car, fairly rapidly. 
 
You can ask the students whether this is psig or psia.  You can also ask them about 
buoyancy.  Is the piston a floating body?  Answer; not in the common sense of that term.  
If you look into Archimedes principle for floating bodies, there is an unstated assumption 
that the top of the floating body is exposed to the same atmospheric pressure as the fluid 
is.  Here for a confined fluid that is clearly not the case.  If an immersed body is in a 
confined fluid that assumption plays no role, and the buoyant force, computed by 
Archimedes' principle is independent of the external pressure applied to the fluid. 
_____________________________________________________________________ 
 

2.25  (a) P = ρgh = 998.2
kg
m3 ⋅9.81

m
s2 ⋅ 230 m

N s2

kg m
Pa

N / m2 = 2.25 MPa = 326 psi  

(b) See Ex. 2.8[ 

F =
ρgwh2

2
=

998.2
kg
m3 ⋅ 9.81

m
s2 ⋅ 76 m ⋅ 230 m( )
2

2

N s2

kg m
= 1.97 ⋅1010 N = 4.42 ⋅109 lbf  

_____________________________________________________________________ 
 
2-26 (a) The width, W ,  is linearly related to the depth, 20 m at the top, zero at h = 10 
m, 

 so that W = 20 m 1 −
h

10 m

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

(b)   Here, as in Ex. 2.8 the atmospheric-pressure terms cancel, so we may save effort by 
working the problem in gauge pressure,   Direct substitution of this value for W leads to 

 F = ρg 20 m h 1−
h

10 m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ dh = ρg 20 m

h2

2
−

h3

3 ⋅10 m

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0

10 m

∫  

(c) F = 998.2
kg
m3 ⋅9.81

m
s2 ⋅ 20 m

10 m( )2

2
−

10 m( )3

3 ⋅10 m

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0

10 m
N s2

kg m
= 3.26 MN = 2.2 ⋅106 lbf  

This is exactly 1/3 of the answer to Ex. 2.8. 
 
(d) We begin by writing Eq. 2.M for the gauge pressure of a constant-density fluid: 
 

    Multiplying by A/A  and rearranging, we find F = ρg hdA∫ F = ρgA
hdA∫
A

 

Solutions, Fluid Mechanics for Chemical Engineers, Third Edition, Chapter 2, page 10 



But  ∫h dA/A is the definition of hc, the centroid of the depth measured from the free 
surface, so this equation may be simplified to F = ρgAhc   

(e) F = ρgAhc = ρg
Wh
2

h
3

 ;  A little algebra shows that this is identical to the formula 

in part (b). 
_____________________________________________________________________ 
 

2.27* (a) F = 2ρg depth∫ r2 − depth2 d depth( )= 2ρg −
1
3

r2 − depth2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

0

r

=
2ρgr 3

3
 

       =
2( ) 998.2

kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 9.81

m
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 50m( )3

3
⋅

N s2

kg m
⋅

Pa m2

N
= 8.16 ⋅108 N = 1.83 ⋅108 lbf  

 

 (b) 
F = ρgAhc = ρg

1
2

π
4

D2 ⋅
2D
3π

= ρg
D3

12
=

2
3

ρgr3

,  the same as in part (a) 

If this doesn't convince the students of the convenience of the centroid method, one 
wonders what would. 
_____________________________________________________________________ 
 2.28 See Example 2.9.  There, at 60 ft, the required thickness was 0.0825 in.  The 
required thickness (for the assumptions in the problem) is proportional to the gauge 
pressure at the bottom of each band of plates, which is proportional to the depth,  
 
(a) The values are 
  

Depth, ft Pressure, psig Design, t, in 
60 22.9 0.825
50 19.0833333 0.6875
40 15.2666667 0.55
30 11.45 0.4125
20 7.63333333 0.275
10 3.81666667 0.1375

 
(b) The calculated thickness for the top band is less than 0.25 inches, so a plate with 
0.25 inches thickness would be used.  Some designs call for 5/16 inch.  It is not asked for 
in the problem, but the same industry source who gave me these values also told me that 
the maximum used is 1.75 inch, because if you make it thicker than that, you must heat-
treat the welds, which is prohibitively expensive for a large tank. 
 
(c)  The first two columns of the following table repeat the first and third columns of 
the preceding table.  However in the middle column the lowest value, 0.1375 has been 
replaced by 0.25, because the top plate has a minimum thickness of 0.25 inches.  The 
rightmost column shows the average thickness of the tapered plate (except for the lowest 
entry, which is not tapered).  So, for example, the lowest plate is 0.825 inches at the 
bottom and 0.6875 inches at the top, for an average thickness of 0.75625 inches. 
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Depth, ft Wall thickness, inches, 

uniform thickness plates 
Average thickness, inches, 
tapered plates. 

60 0.825 0.75625
50 0.6875 0.61875
40 0.55 0.48125
30 0.4125 0.34375
20 0.275 0.2625
10 0.25 0.25

 
We can then compute the average thickness of the walls of the whole tank by summing 
the six values in the second and third columns, and dividing by 6, finding 0.500 inch and 
0.452 inches.  Thus the tapered plates reduce the weight of the plates, for equal safety 
factor, to 0.904 times the weight of the constant-thickness plates.   The same industry 
source who gave me the other values in the problem also told me that the tapered plate 
solution is quite rare.  It is apparently only done when there is an order for a substantial 
number of very large tanks all of one size. 
 
_____________________________________________________________________ 
 
2.29   As a general proposition, the larger the tank the smaller the cost per unit volume.  
Surprisingly the volume of metal in the wall of the tank is ≈ proportional to the cube of 
the tank diameter, for all three types of tank, because the surface area is proportional to 
the diameter squared and the required thickness ≈ proportional to the diameter.  So it is 
not simply the cost of the metal, but the cost per unit stored of erection, foundations, 
piping, etc. that decrease as the size increases.  I thank Mr. Terry Gallagher of CBI who 
spent a few minutes on the phone and shared his insights on this problem. 
 
He said that the biggest flat bottomed tank  he knew of was in the Persian Gulf, 412 ft (≈ 
125 m) in diameter and 68 ft (≈ 20 m) high.  Compare this to Example 2.9.  Here the 
depth increases by (68/60) and the diameter by (412/120) so the calculated wall thickness 
would be  
 
 t = 0.825 in ⋅

68
60

⋅
412
120

= 3.21 in = 8.15 cm  

 
which  is thick enough to be a problem to handle, and would require heat treating of all 
the welds.  He said that they stress-relieved this tank, in the field, after it was complete, 
by building an insulating tent around it, and heating to a stress relieving temperature.  
That costs, but the economics of having this big a tank apparently made it worthwhile. 
 
 For spherical tanks he and I think that the difficulties of erection become too 
much as the size goes over about 80 ft.  I have seen an advertisement for Hyundai, 
showing one of their liquid natural gas tankers, which had some huge spherical tanks in 
it.  LNG is transported at a low enough temperature that one must use expensive alloy 
steels, so the cost of those spherical tanks must have been justified. 
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 For sausage-shaped tanks, the limits are presumably the difficulty of shipping, 
where roads and railroads have maximum height, width and length specifications.  The 
diameter may be set by the largest diameter hemispherical heads which steel mills will 
regularly produce.  The heads are one-piece, hot pressed, I think.  Mr. Gallagher (who 
refers to this tank shape as "blimps") indicates that there are some field-erected tanks of 
this type, which are larger than the values I show.  Most of the tanks of this type are 
factory assembled, with a significant cost saving over field erection, and then shipped to 
the user. 
 
 Two interesting web sites to visit on this topic are www.chicago-bridge.com and 
www.trinitylpg.com. 
 
_____________________________________________________________________ 
2.30*  See Example 2.9. 
 

 t =
1000

lbf
in2 ⋅1 ft

2 ⋅10,000 lbf
in2

= 0.05 ft = 0.60 in = 1.52 cm 

 
From the larger table in Perry's equivalent to Appendix A.3 we see that a  12 inch 
diameter, schedule 80 pipe has a wall thickness of 0.687 inches.  It would probably be 
selected. 
______________________________________________________________________ 
 
2.31 The plot below shows all the values from App. A.2.  Clearly one should not fit a 
single equation to that set of data.  If one considers only the values for 2.5 inch nominal 
diameter and larger, then t = 0.1366 in + 0.0240 Dinside , R2 = 0.994.  Thus, for these pipes, 
A ≈ 0.1366 inch and B = 0.240. 
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However if one fits the sizes from 1/8 to 2 inches nominal, one finds 

,  t = 0.0719 in + 0.0454 Dinside R2 = 0.897.   One can get R2 = 0.976 by fitting a 
quadratic to this data set, showing that the values for the smaller pipes do not correspond 
very well to this equation. 
 
If, as shown above, A ≈ 0.1366 is the corrosion allowance, then the Eq. 2.25 can be 
rewritten t − 0.1336 in = 0.024 D =

PD
2σ

, from which Pallowable

σallowable

= 0.048.  Comparing this 

will the definition of schedule number in App. A.2, we see that this corresponds to Sch 
48, not Sch. 40.   The difference is conservatism on the part of those defining the 
schedules. 
____________________________________________________________________ 
 
2.32  Hooke's law says that the stress is proportional to the strain, which is the change in 
length divided by the original length.  If as stated the increase in diameter is the same for 
all diameters, while the original diameter is greater, the further one moves from the 
center, then  
 

 stress =
Young' s
modulus

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

increase in
diamter

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

original
diameter

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= k
ΔD
D
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and the stress decreases as (1/D) from the inner to the outer diameter.  For 
Douter / Dinner =1.5   the stress at the outer wall would be (1/1.5 = 2/3) of the stress at the 
inner wall. 
_______________________________________________________________________ 
 
2.33  (a) Example 2.10 shows a wall thickness of 0.7500 inch.  The thin-walled formula 
shows  
 
t =

P ⋅ ri

SEJ − 0.6P
+ Cc =

250 psi ⋅ 5 ft
20,000 psi ⋅1− 0.6 ⋅ 250 psi

+ 0 = 0.6297 ft = 0.7556 in  

 
(b) The thick-walled shows 
 

t = ri
SEJ + P
SEJ − P

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

− ri + Cc = 5ft
20, 000⋅1 + 250
20, 000⋅1 − 250

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

− 5 ft + 0 = 0.06290 ft = 0.7547 in  

 
(c)  The plot is shown below.  We see that below about 2000 psi the three equations give 
practically the same result.  Above that Eq. 2.25 gives values which increase linearly 
with pressure, while the thin-walled and thick-walled equations give practically the same 
value as each other, but larger values than Eq. 2.25. 
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_____________________________________________________________________ 
 
2.34 (a) t =

P ⋅ ri

SEJ − 0.6P
+ Cc =

50 000 psi ⋅ 0.11in i

80 000 psi − 0.6 ⋅ 50 000 psi
= 0.11in  
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 t = ri
SEJ + P
SEJ − P

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

− ri + Cc = 0.11 in
80 000J + 50 000
80 000J − 50 000

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/2

− 0.11 in = 0.1189 in  

(b) t = 4 ⋅
50 000 psi ⋅ 0.11 ini

20 000 psi − 0.6 ⋅50 000 psi
= −2.20 in ???  

 t = 4 ⋅0.11 in
20 000J + 50 000
20 000J − 50 000

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

− 0.11 in =
sq. rt of a
negative #

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ??? 

Clearly this does not work.  For Eq. 2.27 

 t =
safety
factor

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

PD
4σ tensile

= 4
80 000 psi ⋅0.22 in

4 20 000 psi
= 0.88 in  

Which is much larger than the values shown in part (c) 

(c) 
safety
factor

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

t thick end of barrel

t thin walled formula

=
0.5 ⋅(0.74 − 0.22) in

0.11 in
= 2.36  and 

 
safety
factor

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

tthick end of barrel

t thick walled formula

=
0.5 ⋅(0.74 − 0.22) in

0.1189 in
= 2.19  

The simple formulae used for pressure vessels give some indication about the design of 
guns, but this example shows it is only and indication. 
_____________________________________________________________________ 
2.35  The pressure at the bottom of the tank is 27.7 psig.  From Eq. 2.25 
 t =

27.7 psi ⋅200 ft
2 ⋅30 000 psi

= 0.0922 ft = 1.1076 in  

This differs by 1.4% from the value calculated by the API method. 
____________________________________________________________________ 
 
2.36  (a) For the cylindrical container, remembering that the length of the cylindrical 
section is 6 times its diameter 
 

 

V = π
6

D3 + π
4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ D2 ⋅ 6D = πD3 ⋅10

6

D =
6

10π
V

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 3

=
6

10π
20,000 gal ⋅

ft3

7.48 gal

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3

= 7.99 ft
 

 
 tcylindrical =

PD
2σ tensile

=
250 psi ⋅ 7.99 ft
2 ⋅ 20,000 psi

= 0.0499 ft = 0.599 in  

 
The hemispherical ends have exactly one-half this thickness 
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volume of
metal shell

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈

shell
thickness

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

shell
surface

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = tsphericalπD2 + tcylindricalπD ⋅ 6D

                     = πD2 ⋅ tspherical + 6tcylindrical( )= 6.5πD2tcylindrical

= 6.5π 7.99 ft( )2 ⋅ 0.0499 ft = 65.13 ft3

 

 
 mshell = ρV = 7.9 ⋅ 62.3

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 65.13 ft3 = 32,050 lbm  

 
(b)  For a spherical container,  
 

 V =
π
6

D3; D =
6
π

V
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 3

=
6
π

20,000 gal ⋅
ft3

7.48 gal

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/3

=17.22 ft  

 
 t =

PD
4σ tensile

=
250 psi ⋅17.22 ft

4 ⋅ 20,000 psi
= 0.0538 ft = 0.6456 in  

 

 

volume of
metal shell

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈

shell
thickness

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

shell
surface

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = tπD2

= 0.00538 ft ⋅π ⋅(17.22ft)2 = 50.1 ft3

 

 

 mshell = ρV = 7.9 ⋅ 62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 50.1 ft3 = 24,650 lbm  

 
The spherical container requires only 77% as much metal (exclusive of corrosion 
allowances, foundations, etc.)  However the sausage-shaped container is small enough to 
be shop assembled and shipped by rail or truck, while the spherical container could be 
shipped by barge, but at 17 ft diameter it could probably not be shipped by truck or rail. 
_____________________________________________________________________ 
 
2.37 For this size pipe the wall thickness is 0.258 in.  From Eq. 2.25 
 P =

2tσ
D

=
2 ⋅ 0.258 in ⋅10 000 psi

5.047 in
=1022 psi  

 
But, as shown in Prob. 2.31, the sizes of Sch. 40 pipe seem to include a corrosion 
allowance of 01366 inches.  Reworking the problem taking that into account, we find  
 P =

2tσ
D

=
2 ⋅(0.258 - 0.1366) in ⋅10 000 psi

5.047 in
= 481psi  

This suggests that a new 5 inch Sch. 40 pipe would have a safe working pressure of 1022 
psi, but that at the end of its corrosion life it would have one of 481 psi.  The rule of 
thumb cited in App. A.2 suggests a safe working pressure of 400 psi. 
_____________________________________________________________________ 
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2.38   Comparing Eq 2.33 and 2.35 we see that the axial stress in a cylindrical pressure 
vessel is exactly half the hoop stress (for the simple assumptions in those equations.).  
Grooved joint connectors (Perry's 7e Fig 10-139) use this fact.  They cut a 
circumferential groove half-way through the pipe to be joined.  The external clamp which 
fits into the groove supports the pipe against external expansion, so the doubling of the 
hoop stress is not a hazard.  The clamp only operates on half the thickness of the wall, 
but that is enough to resist the axial stress, which is only half the hoop stress. 
 
_____________________________________________________________________ 
 
2.39* The buoyant force equals the weight of the water displaced 
  B.F = 5.0 − 4.725 = 0.275N
 
Thus the mass of water displaced was m =

F
a

=
0.275 N

9.81 m
s2

⋅
kg m
N s2 = 2.8032 ⋅10−2 kg  

 

and the volume of water displaced was V =
m
ρ

=
2.8032 ⋅10−2 kg

998.2 kg
m3

= 2.80832 ⋅10−5 m3  

 
So the density of the crown was 
 

 ρ =
m
v

=

F
g
v

=
5 N / 9.81

m
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2.80832 ⋅10−5 m3 ⋅
kg m
N s2 = 18149

kg
m2 = 18.149

g
cm 3  

 
and its gold content was 
  

 
vol % gold

100
=

ρalloy − ρsilver

ρgold − ρsilver

=
18.149 -10.5
19.3 -10.5

= 0.869 = 86.9%  

 
 The corresponding wt % (mass %) gold is 92.4 %.  If  one computes the buoyant force 
of the air on the crown in the weighting in air, one finds 0.00033 N.  If one then 
substitutes 5.00033 N for the 5 N in the problem one finds 86.7 vol % gold.  
 
Discussion;  This assumes no volume change on mixing of gold and silver.  That is a 
very good, but not perfect assumption. 
_____________________________________________________________________ 
 
2.40* If you assign this problem make clear that one should not assume that air is a 
constant-density fluid, but must insert the perfect gas expression for its density.  Then 
 

 Payload = BF − weight = Vg ρair − ρgas( )= Vg
P

RT
Mair − Mgas( )⎡ 

⎣ ⎢ 
⎤ 
⎦   ⎥
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But  V =
nRT

P
 so this becomes  Payload = ng Mair − Mgas( ) 

 
Thus the answers to parts (a,) (b) and (c ) are the same, viz. 
 

 Payload =
10 lbm

4 lbm
lbmole

⋅
32.2

ft
s2

32.2 lbm ft
lbf s2

29 lbm
lbmol

−
4 lbm
lbmol

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 62.5 lbf = 278 N  

_____________________________________________________________________ 
 
2.41 Starting with the solution to  Ex. 2.11 

 Payload = 34 lbf
29

gm
mole

− 2
gm

mole
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

29 gm
mole

− 4 gm
mole

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

= 36.7lbf  

 
This is an increase of 7.6%, which is significant, but probably not enough to justify the 
increased hazard of hydrogen combustion in most cases.  As far as I know no one uses 
hydrogen in balloons today. 
_____________________________________________________________________ 
 

2.42   Payload = Vg ρair − ρgas( ); ρgas = ρair −
Payload

Vg

 

 
Here the students are confronted with the fact that the weight, in kg, is not an SI unit.  
One must make the distinction between kgf and kgm to solve here, finding 
 ρgas =1.20

kgm
m3 −

200kgf
π
6

20m( )3 ⋅9.81 m
s2

⋅
9.81kgm m

kgf s2 =1.20 − 0.0477 =1.152
kg
m3  

 Tgas = Tair
ρair

ρgas

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 293.15K

1.20
1.152

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 305.3K = 32.14o C = 89.9o F  

_____________________________________________________________________ 
 
2.43* The volumes of the lead and the brass weight are 
 
 Vlead =

2.50 lbm

62.3 11.3( ) lbm
ft3

= 3.5512 ⋅10−3ft3; Vbrass =
2.5

62.3( ) 8.5( )
= 4.721 ⋅10−3 ft3  

 
and the difference in their volumes is  ΔV = 4.721⋅10−3 − 3.551⋅10−3 = 1.170 ⋅10−3ft3  
 
(a) The differential buoyant force is 
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 Δ BF = ρΔV = 62.3
lbm
ft3 ⋅

32.2
ft
s2

32.2 lbm
lbf

ft
s2

⋅1.170 ⋅103 ft3 = 7.29 ⋅10−2 lbf  

 
so the indicated weight is  Indicated weight = 2.500 + 7.29 ⋅10−2 = 2.573lbf  
 
(b) here the differential buoyant force is Δ BF = −0.075 ⋅

32
32

⋅1.170 ⋅103 = −8.77 ⋅10−5 lbf  

so the indicated weight is 
 
 Indicated weight = 2.500 + −8.77 ⋅10−5( )= 2.49991 lbf  
_____________________________________________________________________ 
 
2.44 FBuoyant ↑= FBottom ↑ −FTop ↓= A PB − PT( )= ρwood gA hwood  
 PB = PT + g hgasoline ρgas + hwater ρw[ ] 
 ρwood gAhwood = Ag hgas ρgas + hwater ρwater[ ]; hgasoline = hwood − hwater  
 ρwood hwood = hwood − hwater[ ]ρgasoline + hwater ρwater  

 
hwater

hwood

=
ρwood − ρgasoline

ρwater − ρgasoline

=
SGwood − SGgasoline

1 − SGgasoline

 

 
Discussion; this shows that Archimedes principle does indeed give the right answer for 
two-fluid problems, and why the density of the gasoline does appear in the answer. 
_____________________________________________________________________ 
 
2.45 Gravity Force ↓= Buoyant Force ↑ +Treading Force  

 Gravity Force = mman ⋅ g ;    Buoyant Force = Vdisplaced ρg =
0.85mman

0.99ρwater

⋅ ρwhiskey  

 FT = Fg − Fb = mman ⋅ g − mman ⋅ g
0.85( )
0.99

ρwhiskey

ρwater

 

      = 150 lbm 1 − 0.85
0.92
0.99

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

32
ft
s2

32 ft lbm
s7 lbf

= 31.5 lbf =  140.2 N  

_____________________________________________________________________ 
 
2.46*  Payload = Vg ρw − ρlogs( ) 

 V =
payload

g ρw − ρlogs( )=
500 kgf

9.81m
s2 1 − 0.8( )998.2 kg

m3

⋅
9.81kg m

kgf s2 = 2.5045m3  

 Massof logs = Vρ = 2.5045 m3 ⋅0.8 ⋅998.2
kg
m3 = 2000 kg  

_____________________________________________________________________ 
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2.47 (a)  Buoyant Force = weight, g Vtanks + Vship( )= mship ⋅g  

  Vtanks =
mship

ρwater

− Vship = mship
1

ρwater

−
1

ρsteel

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

          =
8 ⋅107 lbm

62.3 lbm
ft3

1
1.03

−
1

0.79
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =1.084 ⋅106 ft3  

 
(b) The cross-sectional area of the cable would be 
 
 A =

force
stress

=
40,000 ⋅2000 lbf
20,000 lbf / in2 = 4000 in2   and its diameter 

 D =
4
π

A =
4
π

4000 in2 = 71.4 in ≈ 6 ft    which is not a "cable" in the ordinary 

sense.  Whatever was pulling on it would have to have a buoyant force large enough to 
support its own weight, and also the weight of the battleship which it was raising. 
 
(c)  For a steel cable 1000 ft long, hung by its end in water, the stress at the top of the 
cable, due to the cable's weight is 
 

 
σ = F

A
≈ (SG -1)ρwater LAg

A

= (7.9 − 1) ⋅ 62.3 lbm
ft3 ⋅1000 ft ⋅32 ft

s2 ⋅ lbf s2

32 lbm ft
= 4.3 ⋅105 lbf

ft2 = 3000 psi
 

 
This is 15% of the allowable stress.  For deeper sunken vessels the fraction is higher.  To 
the best of my knowledge the fist time this was ever tried was when the CIA attempted to 
raise a sunken Russian submarine for intelligence purposes during the cold war.  They 
lowered a clamping device on multiple cables and tried to pull it up.  It broke up while 
they were doing it, so they only got part of it, but that was said to have revealed lots of 
useful technical information.  In 2001 the Russians successfully raised the submarine 
Kursk this way, with multiple cables. 
_____________________________________________________________________ 
 

2.48  FB = Vρg = (5 ⋅ 20 ⋅30) ft3 ⋅ 62.3
lbm
ft3 ⋅

32.2 ft / s2

32.2 lbm ft / lbf s2          

      = 1.87 ⋅105 lbf = 8.31 ⋅10 5 N  
This is a serious problem in areas with high water tables; empty swimming pools are 
regularly ruined by being popped out of the ground by buoyant forces. 
_____________________________________________________________________ 
 
2.49* B.F. = weight = 200 lbf = Vg(ρair − ρhelium )  
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V =
B.F.

g(ρair − ρhelium )
=

200 lbf

32 ft
s2 ⋅0.075 lbm

ft3 1 − 4
29

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
32 lbf ft

lbf s2 = 3.093⋅103ft3 = 87.6 m3  

 Vindividual =
Vtotal

42
=

3093 ft3

42
= 73.65 ft3 =

π
6

D3  

 D =
6
π

⋅ 73.65 ft3⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 3

= 5.2ft =1.58 m  

_____________________________________________________________________ 
 
2.50  In the boat, the part of the boat's displacement due to the block is 
 V =

m
ρwater

=
100lbm

62.3 lbm / ft3 = 1.605 ft 3 

In the water, the displacement due to the block is  
 V =

m
ρsteel

=
100 lbm

7.9 ⋅ 62.3 lbm / ft3 = 0.203 ft3  

So the volume of the pond decreases by ΔVpond = 0.203 −1.605 = −1.402 ft3  and its 
elevation falls by  

 dz =
ΔVpond

Apond

=
−1.40ft3

(p / 4) ⋅ p 10 ft( )2 = −0.0179 ft = 0.214 in  

This is a counter-intuitive result, which has made this type of problem a favorite puzzle 
for many years. 
_____________________________________________________________________ 
 
2.51 (a) P2 − P1 = ρg h1 + h2( ) 

= 1.93 ⋅ 62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

32
ft
s2

32 lbmft
lbf s2

⋅ 44 + 8( ) in ⋅
ft

12in
⋅

ft2

144 in2 = 3.62 psig = 24.96 kPa gauge  

(b) P2 = 3.61psig +14.7 psia = 18.3psia =126.3 kPa abs 
_____________________________________________________________________ 
2.52*  

 

P2 = P1 + ρwg(z1 − z2)
P3 = P2 + ρHgg(z2 − z3)

P4 = P3 + ρwg(z3 − z4 )
P2 = P4

 

adding these equations, canceling and grouping produces 
 
 0 = ρwg(z1 − z2 + z3 − z4) + ρHgg(z2 − z3)  
 
but (z1 − z4 ) = Δz    and (z2 − z3 ) = Δh  so that 0 = ρwgΔz + (ρHg − ρw )gΔh  and 

 Δh = Δz
ρw

ρHg = ρw
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_____________________________________________________________________ 
 
2.53 P1 = Pa + ρ1gh1  

 
P1 = Pa − ρ1gh1

P2 = P1 − ρ2 gΔh
 

 
Adding these and canceling like terms, Pb = Pa − ρ2gΔh + ρ1g(h1 − h2 )  
 Pb − Pa = gΔh(ρ1 − ρ2 )  
For maximum sensitivity one chooses  (ρ1 − ρ2 ) as small as possible.  However as this 
quantity becomes small, the two fluids tend to mix, and may emulsify.  So there is a 
practical limit on how small it can be made. 
_____________________________________________________________________ 
 
2.54*  Do part (b) first  ΔP = ρgΔz  

 Δz =
ΔP
ρg

=
0.1lbf

in2 32 lbm ft
lbf s2

62.3 lbm
ft3 32 ft

s2

⋅
144in2

ft2 = 0.231ft = 2.77in = 70 mm  

Then do part (a) 
 

Δz
ΔL

= sinθ, ΔL =
Δz

sinθ
=

2.77in
sin15o =10.72 in = 272 mm 

 
Discussion; this shows the magnification of the reading obtained with a "draft tube", and 
hence why these are widely used for low pressure differences. 
_____________________________________________________________________ 
 
2.55 A1ΔL1 = A2ΔL2  

 ΔL2 =
A1

A2

ΔL1 =
D1

D2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

L1 =

1
8

in

2in

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

2

⋅10in = 0.039 in  

Which is small enough that it is regularly ignored. 
______________________________________________________________________ 
 
2.56  

(a)h =
P
ρg

=
14.699

lbf
in2

13.6 ⋅ 62.4 lbm
ft3 ⋅32 ft

s2

⋅32
lbm ft
lbf s2 ⋅

144 in2

ft2 = 2.493 ft = 29.29 in = 760 mm 

 
This is the set of values for the standard atmosphere, which is defined exactly as 101.325 
kPa.  That corresponds to 14.69595 psia.  To get values in terms of heights of mercury 
one must use the density of mercury at some temperature.  The values above, which lead 
to the values shown inside the front cover of the book are for mercury at ≈ 0°C.  At 20°C 
the density of mercury is 13.52 g/cm3, compared to 13.6 at 0 °C.  Laboratory barometers 
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are supplied with conversion tables, allowing one to correct for the thermal expansion of 
the mercury. 
 

(b) h =
P
ρg

=
14.696

lbf
in2

62.4 lbm
ft3 ⋅ 32 ft

s2

⋅ 32
lbm ft
lbf s2 ⋅

144 in2

ft2 = 33.91 ft = 407 in = 10.34 m  

 
which is impractically tall. 
 
(c)  The vapor pressure of water at 20°C = 68°F is 0.3391 psia.  This is 0.023 atm = 2.3% 
of an atmosphere.  Thus the above calculation would replace the atmospheric pressure 
with 14.696 - 0.3391, reducing all the computed values by 2.3%. 
 
A water barometer would need a temperature correction not only for the thermal 
expansion of the liquid, but also for the vapor pressure of the liquid which is about 0.006 
atm at 0°C. 
_____________________________________________________________________ 
 
2.57  The pressure at ground level for a non-moving atmosphere must be 
 

 Pz =0 = ρgdz =
PM
RT

gdz
z =0

z= ∞

∫z = 0

z =∞

∫ =
PM
RT

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

avg
gztop   

 
Here the average is over the elevation from the ground to ztop which is the elevation 
below which all the mass of the atmosphere is.  We now differentiate 
 

 
dP

dTavg

=
PM
R

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

avg
gztop

−1
Tavg

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ;          

ΔP

gztop
PM
RT

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

avg

=
ΔP
Pz = 0

= −
ΔTavg

Tavg

 

 
 ΔTavg = −Tavg

ΔP
Pz =0

 

 
The troposphere contains ≈ 77% of the mass of the whole atmosphere, and has an 
average temperature (See Fig  2.4)  of -5.35 °F ≈ 455°R ≈ -20°C. 
 

Here  
Phigh − Plow

Pz =0

=
1.025 − 0.995 atm

1 atm
= 0.003  so that 

 
 ΔTavg = −Tavg

ΔP
Pz =0

= −455°R ⋅ 0.003 = 1.4°R  

 
An average decrease in average temperature through the troposphere of 1.4°F would 
account for the difference in pressure between a high and a low. 
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Changing moisture content changes the average molecular weight.  Following exactly the 
same logic, we could say that if the temperatures were the same between a high and a 
low, the difference in molecular weight would have to be  
 
 ΔMavg = Mavg

ΔP
Pz = 0

= 29
g

mol
⋅ 0.003 = 0.087

g
mol

 

 
At the average temperature of 455° R the vapor pressure of water is slightly less than 1 
torr ≈ 0.0013 atm.  If the atmosphere were saturated with water at -20°C, its change in 
average molecular weight would be  
 
 ΔMavg = 0.0013 ⋅(29 −18)

g
mol

= 0.02
g

mol
  

 
which is about 1/4 of the required amount.  (If one runs this calculation at 20°C, where 
the vapor pressure of water is 0.023 atm, one finds a change in Mavg of 0.26, but most of 
the atmosphere is much colder than it is at the surface).  Thus it appears that the principal 
cause of atmospheric highs and lows is the difference in average temperature between air 
masses. 
____________________________________________________________________ 
 
2.58*  The pressure at the bottom of the dip tube is 

 Pbottom = Ptop + ρgh = 2 psig + 0.08
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

32
ft
s2

32 lbmft
lbf s2

⋅6 ft ⋅
ft2

144in2 = 2.0033psig 

(a) h =
P

ρg
=

2.0033psig

60 lbm
ft3

⋅
32 lbmft

lbf s 2

32 ft
s2

⋅
144 in2

ft2 = 4.808ft = 1.465 m  

 
That is the depth at the end of the dip tube.  The total depth is 4.808 + 0.5 =5.308 ft. 
 
(b) The difference is 0.008 ft or 0.15% of the total.  If we use 2.000 psig, the calculated 
depth is 4.800 ft. 
 
Discussion: One can discuss here the other ways to continually measure the level in a 
tank.  One can use float gages, pressure difference gages, etc.  If the gas flow can be 
tolerated, this is simpler. 
_____________________________________________________________________ 
 
2.59  If we ignore the gas density, then ΔP = ρgh( )fluid = ρgh( )manometer  

 ρfluid =
hmanometer

hfluid

⋅ ρmanometer =
1.5m
1.0 m

⋅ 998.2
kg
m3 = 1497.3

kg
m3 = 93.45

lbm
ft3  
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If we account for the gas density, then 
 ΔP = gh( )fluid ρfluid − ρgas( )= gh( )manometer ρmanometer − ρgas( ) 

 ρfluid = ρm
hm

hf

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

hm

hf

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ρgas =1497.3 − (1.5 −1) ⋅1.20 = 1496.7

kg
m3  

which is a difference of 0.04%. 
 
Discussion: one can determine densities with hydrometers, or with some sonic gages.  
This system is simple and continuous. 
_____________________________________________________________________ 
 

2.60* See Ex. 2.16 PA − PB = gz1
P
R

M
T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

air
−

M
T

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

flue gas

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

   =
32

ft
s2

32 lbm ft
lbf s2

100 ft( ) 14.7psia( )
10.73 psia ft3

lbmoloR

29
lb

lbmol
530o R

−
28

lb
lbmol

760o R

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

⋅
ft2

144 in2  

   = 0.0170psi = 0.47 in H2O = 0.117 kPa 
 
Discussion; This introduces the whole idea of the use of stacks for draft.  Currently we 
use stacks to disperse pollutants, more than we use them for draft, but historically the 
height of the stack was determined by the required draft to overcome the frictional 
resistance to gas flow in the furnace. 
_____________________________________________________________________ 
 
2.61 Ptop = Pbot − ρoilgh ; Pbot = ρwater gh  

 Ptop = gh ρwater − ρoil( )=
32

ft
s2

32 lbm ft
lbf s2

⋅104 ft 1.03 ⋅62.3 − 55( ) lbm
ft 3 ⋅

ft2

144in2  

  = 637 psig = 4.39 MPa 
_____________________________________________________________________ 
 

2.62* P2 = P1 exp
−g M Δz

RT
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 
−g M Δz

RT
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

− 32 ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 16 lb

lb molo R

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −104 ft( )

32
lbm
lbf

ft
s2 10.73

lbf
in2 ft3

lbmolo R

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

= 0.1954  

 P2 =1014.7 psia exp +0.1954( ) =1234 psia =1219 psig = 8400 kPa gauge  
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(b) For constant density 
 

      P2 = P1 1−
g MΔz

RT
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 1014.7psia 1.1954( ) = 1213psia = 1198psig =  8257 kPa gauge 

 Error =
1234 -1213

1234
= 1.7% 

_____________________________________________________________________ 
 
2.63  This is part of oil industry 
folklore; the pipeline was from the 
Central Valley of California to the 
Coast, and crossed the Coast Range 
of mountains.  When the oil was 
slowly introduced, it flowed over the 
water, and bypassed water, leaving 
some in place.  This led to situations 
like that sketched, in which the uphill 
leg of a rise was filled with water, 
while the downhill leg on the other 
side was filled with oil. 

water in 
pipe

oil in 
pipeΔz

ΔP

 

 
 For any one such leg, the pressure difference is 

 ΔP = ghΔρ =
32.2ft / s2

32.2lbm ft / lbf s2 ⋅200 ft ⋅(1 − 0.8)962.3
lbm
ft3 =17.3 psig 

and for 10 such legs it is 173 psig. 
 
_____________________________________________________________________ 
 
2.64 PA = PB − ρgΔz  
 

 = 14.7psia − 62.3
lbm
ft3 ⋅

32
ft
s2

32 lbmft
lbf s2

⋅ 40ft ⋅
ft2

144 in2 = 14.7 −17.3 = −2.6 psia ??  

 
This is an impossible pressure, the water would boil, and the pressure would be the vapor 
pressure of water, which at 70°F is 0.37 psia.  This low a pressure will cause a normal 
pressure vessel to collapse.  In oil industry folklore it is reported that this has happened 
several times.  Normally a newly installed pressure vessel is hydrostatically tested, and 
then the workmen told to "drain the tank".  They open valve B, and soon the tank 
crumples. 
 
See: Noel de Nevers, "Vacuum Collapse of Vented Tanks", Process Safety Progress, 15, 
No 2, 74 - 79 (1996) 
_____________________________________________________________________ 
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2.65* P =
F
A

=
25 lbf

π
4

0.5 in( )2
= 127.3 psig 

 
The point of this problem is to show the students how one calibrates spring-type pressure 
gauges.  Common, cheap ones are not locally calibrated, but simply used with the factory 
design values.  In the factory they are not individually calibrated because each one 
coming down the production line is practically the same at the next.  For precise work, 
pressure gauges are calibrated this way. 
 
_____________________________________________________________________ 
 
2.66   No.  This is a manometer, and if bubbles are present, they make the average 
density on one side of the manometer different from that on the other, leading to false 
readings.  If all the bubbles are excluded, then this is an excellent way to get two 
elevations equal to each other. 
_____________________________________________________________________ 
 

2.67 Pgage = ρh g +
d2z
dz2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = ρh 32.2

ft
s2 − 32.2

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0 

_____________________________________________________________________ 

2.68* P = ρh g +
d 2z
dz2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

d2 z
dz 2 =

P
ρh

− g =
5

lbf
in2

62.3lbm
ft3 ⋅8 ft

⋅ 32.2
lbmft
lbf s2 ⋅

144 in2

ft2 − 32.2
ft
ρ2 = 46.5 - 32.2 =14.3

ft
s2 = 4.36

m
s2

 
The elevator is moving upwards.  The horizontal part of the device plays no role. 
_____________________________________________________________________ 
 
2.69 At spill, the elevation difference, h, from one end of the tank to the other is twice 
the original freeboard, or 2 ft. 

ρgh = ρl
d2x
dt2  

d2 x
dt2 =

hg
l

=
2ft

20 ft
⋅32.2

ft
s2 = 3.32

ft
s2  

l
h

 
_____________________________________________________________________ 
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2.70* As shown in the sketch at the 
right, the interface is a plane, passing 
through B and D.  We compute the 
pressure at C two ways AB

C D

l1

l2

 
 

 Pc = ρ1gl1 + l2 ρ2
d 2x
dt2 + PA = PA + l2ρ1

d2 x
dt 2 + ρ2 gl1   The pressure is the same either 

way we calculate it, so  ρ1gl1 + l2ρ2
d2 x
dt2 = +l2ρ1

d2 x
dt2 + ρ2 gl1    or 

 gl1 ρ1 − ρ2( )= l2
d2 x
dt2 ρ1 − ρ2( )  and  

l1
l2

=

d2x
dt2

g
= tanθ     The division by ρ1 − ρ2( ) 

is only safe if this term is not zero.  Physically, if the two fluids have exactly the same 
density, then they will not form a clean and simple interface.  Most likely they will 
emulsify.   
 
The numerical answer is  
 

 θ = arctan

d2 x
dt 2

g
= arctan

1
ft
s2

32.2 ft
s2

= arctan 0.03106 rad = 0.03105rad =1.779°  

_____________________________________________________________________ 
 

2.71 Pgage = ρω 2 rdr
14 m

15 m

∫ =
ρω2

2
15in( )2 − 14in( )2[ ] 

 =
62.3

lbm
ft3

2
2π

1000
min

⋅
min
60s

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

225 −196[ ]in2 ⋅
lbf s2

32.17lbmft
⋅

ft2

144in2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 

 = 14.85psig = 102.4 kPa gage 
_____________________________________________________________________ 
 
2.72* A rigorous solution would involve an integral of P dA over the whole surface.  
Here P is not linearly proportional to radius, so this is complicated.  If we assume that 
over the size of this particle we can take an average radius, and calculate the "equivalent 
gravity" for that location, then we can use Archimedes' principle as follows. 
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(a)  BF = ρVω 2r = 62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.01in3( ) 2π ⋅1000

min
⋅
min
60s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

15in( ) lbf s2

32.17lbmft
⋅

ft2

144 in2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 

        = 0.153 lbf = 0.683 N  
 
(b) This points toward the axis of rotation. 
_____________________________________________________________________ 
 
 
2.73 See the sketch at the right.  Work in gage 
pressure. 
 
P1 = 0  
P2 = P1ρg(h2 − h1)  

P3 = P2 +
ρω 2

2
(r3

2 − r2
2 ) 

P4 = P3 + ρg(h4 − h3 )  
 
Adding these and canceling like terms 
 

P4 = ρ g h4 − h1( )+
ω 2

2
r3

2 − r2
2( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
  ⎥

ω =
2π ⋅10

60 s
=1.0472

1
s

 

1

23

4

 

P4 = 62.3
lbm
ft3 32.2

ft
s2 ⋅ 4 ft +

1
2

⋅
1.0472

s
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅ 22 ft( )2 − 24ft( )2( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

 = 62.3 ⋅ 128.8 − 50.44[ ]
32.2 ⋅144

= 1.053 psig = 7.26kPa gauge  

_____________________________________________________________________ 
 
2.74 The gasoline-air interface is a parabola, as shown 
in example 2.19  Using the sketch at the right, we 
compute the pressure at C, two ways, finding 
 
By path DBC 

PC = PD + ρgasolinegΔz + ρwater
ω 2

2
Δr( )2  

 
By path DAC 

PC = PD + ρgasoline
ω2

2
Δr( )2 + ρwatergΔz  

Air

Gasoline

Water  

A

BC

D

 
Subtracting the second from the first 

 0 = ρwater − ρgasoline( )ω2

2
Δr( )2 − ρwater − ρgasoline( )gΔz  
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or Δz =
ω2 Δr( )2

2g
 

Which is the same as Eq. 2.38, for air and water. Two parabolas are the same. 
 _____________________________________________________________________ 
2-75 Yes, it will work!  If one solves it as a manometer, from the top of the funnel to the 
nozzle of the jet, one will see that there is a pressure difference equal to the difference in 
height of the liquid in the two bottles times g times (density of water - density of air).  
This is clearly not a steady-state device; as it flows the levels become equal and then the 
flow stops. 
_____________________________________________________________________ 
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Solutions,  Chapter 3 
 
3.1 Migrant agricultural workers, airline pilots who have homes or apartments at both 
ends of their regular route, military personnel on station, truck drivers passing through 
the state, rock artists in the state for a concert, traveling salespersons, construction 
workers, visiting drug dealers. 
_____________________________________________________________________ 
 
3.2 Boundaries: USA including money in bank vaults, in people's mattresses, etc. 
 
Accumulation = + number printed  - number destroyed (either intentionally by treasury 
department which destroys old bills, or unintentionally, for example in a fire in a 
supermarket) + flow in across borders (mostly with tourists, some by inter-bank 
shipments) - flow out across borders  
 
Currently not too many $1 bills circulate outside the USA, but the US $100 bill is a 
common medium of exchange outside the USA, including both real and counterfeit bills. 
_____________________________________________________________________ 
 
3.3 Accumulation = amount refined (in sugar plants) - amount consumed (both by people 
who put it in the coffee or cereal and by food manufacturers who add it to processed 
foods) + flow in across state borders (normally in trucks or railroad cars) - flow out 
across state borders, either in bulk carriers or packaged for sale in stores. 
_____________________________________________________________________ 
3.4 Boundaries: the skin of the balloon, including the plane of the opening. 
 
Accumulation = - flow out. 
 
The boundaries are not fixed in space, nor are they fixed in size, but they are readily 
identifiable. 
_____________________________________________________________________ 
 
3.5 Boundaries: The auto including all parts, with boundaries crossing the openings in 
the grille and the exhaust pipe. 
 
Accumulation = 0 - 0 + flow in (carbon dioxide and other carbon-bearing gases in 
inflowing air, carbon in bugs smashing into the windshield or in road oil thrown up on 
body, bird droppings falling on car) - flow out (carbon dioxide and carbon monoxide in 
exhaust gas, fuel leakage, oil leakage, anti-freeze leakage, tire wear, paint flaking off, 
carbon dioxide and other carbon compounds in driver and passenger's breaths, leaking 
out through windows, carbon in paper and trash thrown out the windows by litterers). 
 
The point is that there is one main flow out, the carbon dioxide in the exhaust, which 
equals the negative accumulation of carbon in the fuel, and then a lot of other minor 
terms. 
_____________________________________________________________________ 
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3.6 Here defining the boundaries is the big problem.  If we choose as boundaries those 
atoms originally in the firecracker, then 
 
accumulation = 0 
 
If we choose the topologically smallest envelope that includes all the solid parts, then 
 
accumulation = - flow out of gaseous products, which may move faster than solid 
products + flow in of air engulfed in the expanding envelope. 
_____________________________________________________________________ 
 

3-7* Q = VA = 1
ft
s

⋅10ft ⋅50 ft ⋅
60s
min

⋅
7.48gal

ft3 = 2.244 ⋅105 gal
min

= 500
ft3

s
= 14.16

m
s

 

 V2 = V1
A1

A2

= 1
ft
s

⋅
500 ft2

7 ⋅150 ft2 = 0.476
ft
s

= 0.145
m
s

 

_______________________________________________________________________ 
 

3.8  Q =107 acre ft
yr

⋅ 4.35⋅104 ft3

acre ft
= 4.35 ⋅1011 ft3

yr
 

 V =
Q
A

=
4.35 ⋅1011 ft3

yr
2000 ft2 = 2.17 ⋅108 ft

yr
= 6.9

ft
s

= 4.7
mi
hr

 

_______________________________________________________________________ 
 

3.9  (a) V =
Q
A

=
45 000

ft3

s
8 ⋅ (π / 4) ⋅(8 ft)2 = 111.9

ft
s

   

(b)  V =
Q
A

=
45 000

ft3

s
200 ft ⋅ 8 ft

= 22.5
ft
s

= 15.34
mi
hr

= 2.10
m
s

 

 
The purpose of the artificial flood was to mimic the spring floods which regularly passed 
down the canyon before the construction of the Glen Canyon Dam (1963).  That was 
supposed to reshape the beaches and in other ways make the canyon more like its pristine 
state.  Those who organized the flood pronounced it a great success. 
_______________________________________________________________________ 
 

3.10 Vaverage =
Q
A

=
V ⋅2πrdr

r =0

r =rwall

∫
πrwall

2  

 
a) Substituting Eq. 3.21 and simplifying,  
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 Vaverage =
Q
A

=
Vmax

rw
2 − r2

rw
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅2πrdr

r =0

r =rwall

∫
πrwall

2 =
2Vmax

rwall
4

rw
2r2

2
−

r 4

4

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0

rw

=
Vmax

2
 

 
 Vmax = 2Vaverage  
 
(b) Substituting Eq. 3.22 and simplifying, 
 

Vaverage = Q
A

=
Vmax

rw − r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 7

⋅ 2πrdr
r =0

r =rwall

∫
πrwall

2 = 2Vmax

rwall
2 1 − r

rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 7

⋅ rdr
r =0

r= rwall∫

=
2Vmax

rwall
2 ⋅ rwall

2

1 − r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
1
7

2
1
7

−
1− r

rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
1
7

1
1
7

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

r = 0

r = rw

=
2

2
1
7

⋅1
1
7

Vmax =
49
60

Vmax = 0.8166Vmax

 

 

 Vmax =
Vaverage

0.8166
= 1.224Vaverage  

(c) Vaverage =
Q
A

=
Vmax

rw − r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/10

⋅ 2πrdr
r =0

r =rwall

∫
πrwall

2 =
2Vmax

rwall
2 1 −

r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/10

⋅ rdr
r =0

r =rwall

∫  

= 2Vmax

rwall
2 ⋅ rwall

2

1−
r

rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 1
10

2
1

10

−
1 −

r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1 1
10

1
1

10

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

r =0

r =rw

= 2

2
1

10
⋅1

1
10

Vmax = 200
231

Vmax = 0.8656 Vmax

 

 Vmax =
Vaverage

0.8568
= 1.155 Vaverage  

_____________________________________________________________________ 
 
3.11  (a) Substituting Eq. 3.21 in Eq. 3.23 and simplifying, 

average kinetic
energy, per
unit mass

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

Vmax
rw

2 − r 2

rw
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3

⋅rdr
r= 0

r = rwall

∫
rwall

2 Vaverage

=
Vmax

3

Vavgrwall
8 rw

6 − 3rw
4r2 + 3rw

2r4 − r6( )[ ] ⋅ rdr
r =0

r= rwall

∫

                            =
Vmax

3

Vavgrwall
8 ⋅ rwall

8 1
2

−
3
4

+
3
6

−
1
8

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

Vmax
3

Vavg

⋅
1
8
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But  for laminar flow Vmax = 2Vavg , so that 
 

 
average kinetic
energy, per
unit mass

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

laminar flow

=
2Vavg( )3

Vavg

⋅
1
8

= Vavg
2 = 2 ⋅

Vavg
2

2
 

 
 Substituting Eq. 3.22 and simplifying, 
 

average kinetic
energy, per
unit mass

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

Vmax 1 − r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 7⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

3

⋅ rdr
r= 0

r = rwall∫
rwall

2 Vaverage

=
Vmax

3

Vavgrwall
2 1−

r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3/ 7

⋅ rdr
r = 0

r =rwall

∫  

=
Vmax

3

Vavgrwall
2 ⋅ rwall

2

1−
r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
3
7

2 3
7

−
1 −

r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
3
7

13
7

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

r =0

r =rw

=
1

2 3
7

⋅13
7

Vmax
3

Vavg

=
49

170
Vmax

3

Vavg

= 0.2882
Vmax

3

Vavg

 
But, from the preceding problem 
 
 Vmax = 1.224Vaverage  
 
So that 

average kinetic
energy, per
unit mass

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

turbulent flow
1/ 7 th power 
approximation

= 0.2882
Vmax

3

Vavg

= 0.2882
1.224Vavg( )3

Vavg

= 0.5285Vavg
2 = 1.057

Vavg
2

2
 

 
(b) The total momentum flow in a pipe is given by 
 

 
total momentum
flow

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = Vdm = V ⋅

r =0

r= rwa;;

∫whole flow area∫ ρV ⋅ 2πrdr    (3.??) 

 
Substituting Eq 3.21 we find 

 
total momentum
flow

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = Vmax

rw
2 − r2

rw
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ r =0

r =rwall

∫
2

ρ2πrdr =
Vmax

2 2πρ
rw

4 rw
2 − r2[ ]2

rdr
r = 0

r =rwa;;

∫  

=
Vmax

2 2πρ
rw

4
rw

4r 2

2
− 2

rw
2r4

4
+

r6

6

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

r = 0

r = rw

= Vmax
2 2πrw

2ρ
1
6
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But for laminar flow Vmax = 2Vavg , so that 
 

 
total momentum
flow

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

laminar flow

= Vmax
2 2πrw

2ρ
1
9

= 2Vavg( )2
2πrw

2 ρ
1
6

=1.333πrw
2ρVavg

2  

 
Substituting Eq 3.22, we find 

total momentum
flow

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = Vmax 1−

r
r0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 7⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ r =0

r =rwa;;

∫
2

ρ2πrdr = Vmax
2 2πρrwall

2

1 −
r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
21
7

2 2
7

−
1−

r
rw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
21
7

12
7

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

r = 0

r = rw

= Vmax
2 2πρrwall

2 1

2 2
7

⋅1 2
7

= Vmax
2 2πρrwall

2 49
144

= 0.3403Vmax
2 2πρrwall

2  

But, from the preceding problem 
 
 Vmax = 1.224Vaverage  
 

 
total momentum
flow

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

turbulent flow
1/ 7 power
approximatin

= 0.3403 1.224Vavg( )2
2πρrwall

2 = 1.0137ρπrwall
2 Vaverage

2  

 
These are the values in Tab. 3.1 
_______________________________________________________________________ 
 
3.12 Ý m = Qρ =

π
4

D 2V ⋅
PM
RT

; V =
Ý m RT

(π / 4)D2
1

PM
 

 
The velocity increases as the pressure falls.  This has the paradoxical consequence that 
friction, which causes the pressure to fall, causes the velocity to increase.  This type of 
flow is discussed in Ch. 8. 
_____________________________________________________________________ 
 
3.13* Assuming that the soldiers do not change their column spacing 
 
 Q = ρ1V1A1 = ρ2V2 A2 ;     V2 = V1

A1

A2

=
4 mi
hr

⋅
12
10

= 4.8
mi
hr

 

_____________________________________________________________________ 
 
3.14* dm

dt
= 0 = Ý m ∑ = ρ Q; Q3 = Q1 − Q2∑  

 Q3 =
π
4

1ft( )2 5
ft
s

−
π
4

1
2

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

7
ft
s

=
π
4

5 −
7
4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 2.55

ft3

s
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 Ý m 3 = ρQ3 = 62.3
lbm
ft3 ⋅ 2.55

ft3

s
= 159

lbm
s

 

 

 V3 =
Q3

A3

=
2.55

ft3

s
π
4

1
2

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 = 13
ft
s

 

_____________________________________________________________________ 
 
3.15 P =

ρRT
M

=
m
υ

RT
M

;
dP
dt

=
RT
υm

dm
dr

=
RT
MV

Ým  

 
dP
dt

=
10.73 psift3

lb mol oK
⋅ 530o R ⋅10 lbm

hr

10ft ⋅ 29 lbm
lb mole

= 196
psi
hr

 

 
Students regularly try to find a way to include the current value of the pressure, 100 psig, 
in their answer.  It plays no role.  The answer would be the same if the initial pressure 
were any value, as long as the pressure was low enough for the ideal gas law to be 
appropriate. 
_____________________________________________________________________ 
 

3.16*  From Eq. 3.AC,  Psteady state = 1 atm ⋅
0.001

lbm
ft3

0.075 lbm
ft3

= 0.0133 atm  

_____________________________________________________________________ 
 
3.17 (a) Start with Eq 3.17, take the exponential of both sides 

 
ρsys, final −

Ý m in
Qout

ρsys,  inital −
Ý m in

Qout

= exp −
Qout

Vsys

Δt
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = α    where α   is used to save writing.  

Then ρsys,  final −
Ý m in

Qout

= α ρsys,  inital −
Ý m in

Qout

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ :  

Ý m in
Qout

α −1( ) = αρsys,  initiall − ρsys,  final  

 
Ý m in

Qout

=
αρsys,  initial − ρsys, final

α − 1
   Here ρsys,  inital = 0.075 lbm / ft3   and

 ρsys,  final = 0.001⋅ 0.075 lbm / ft3  

 α = exp −
1

ft3

min
10 ft3 72 min

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= 0.00074659  
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Ý m in

Qout

=
7.4659 ⋅10-5 ⋅ 0.075

lbm
ft3 − 0.001⋅ 0.075

lbm
ft3

7.4659 ⋅10-5 − 1
= 1.902 ⋅10-5 lbm

ft3  

 Ý m in =1.902 ⋅10-5 lbm
ft3 ⋅10

ft3

min
= 1.902 ⋅10-4 lbm

min
 

(b) To find the steady state pressure we set t = infinity, which leads to 
 
 ρsteady state =

Ý m in
Qout

= 1.902 ⋅10-5 lbm
ft3  

 
P

ss

P0

=
ρss

ρ0

=
1.902 ⋅10−5 lbm

ft3

0.075 lbm
ft3

= 2.536 ⋅10−4; Pss = 2.536 ⋅10−4  atm  

_____________________________________________________________________ 
 
3.18  V

dρ
dt

= −Qρ + Ý m in = −Qρ + a P0 − P( )   where a is a place holder. 

 VM
RT

dP
dt

= −
QM
RT

P + a P0 − P( ) 

 
dP
dt

= −
Q
V

P +
aRT
VM

P0 − P( )= P −
Q
V

−
aRT
VM

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ +

P0 aRT
VM

= αP + β  

 
dP

P + β
α

∫ = α dt∫ ; t − 0 =
1
α

ln
P +

β
α

P0 + β
α

 

 α = −
Q
V

−
aRT
VM

= −

1ft3

min
10 ft3 −

5 ⋅10−4 lbm
minatm

⋅
0.7302 atmft3

lb mol o R
530o R

10ft3 ⋅29 lbm
lbmol

 

 α = −0.10 − 6.672 ⋅10−4 = −
0.100667

min
β = 6.6672 ⋅10−4 atm

min
 

 
β
α

= −6.6628 ⋅10−3 atm  

 t =
1

− 0.10067
min

ln
0.01atm − 0.006628atm

1atm − 0.006628atm
= 56.5min  

At steady state  P = −β / α = −(−0.006628atm) = 0.006628atm  
 
If one assumes that the leak rate is 0.0005 lbm/min, independent of pressure, then 
repeating Ex. 3.8 we find a final pressure of 0.00666 atm instead of 0.00663 calculated 
here, and a time to 0.01 atm of 56.97 min, instead of the 56.50 min calculated here.  All 
real vacuum systems have leaks whose flow rate is more or less proportional to the 
pressure difference from outside to in (assuming laminar flow in small flow passages) 
but this comparison shows that replacing Eq. 3.AN, which is a more reasonable 
representation of the leak rate with a constant leak rate makes very little difference in the 
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computed final pressure and time to reach any given pressure.  The reason is that the 
pressure in the system falls rapidly to a small fraction of an atmosphere, and thus the 
leakage rate quickly becomes ≈ independent of pressure. 
_____________________________________________________________________ 
 

3.19* 
1
ρ

dm
dt

=
dV
dt

=
1
ρ

Ý m in − Ý m out( )= 10000 − 8000 = 2000
m3

s
 

 
dh
dt

=
1
A

dV
dt

=
2000

m3

s
100 ⋅106 m2 = 2 ⋅10−5 m

s
= 72

mm
hr

= 2.8
in
h

,  rising 

 
_____________________________________________________________________ 
 
 

3.20 All the flows are incompressible, so 
dV
dt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

sys
= 0 = Qin and out∑    and 

Qvent = −Qin + Qout  = −0.5ft2 12
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + 0.3ft2 16

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  = −1.2

ft3

s
 

The minus sign indicates a flow out from the tank through the vent, and 

 Ý m vent = Qρ = −1.2
ft3

s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 0.075

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = −0.090

lbm
s

= -0.0408
kg
s

 

_____________________________________________________________________ 
 
3.21* dP

dt
= const = 0.1

psi
min

:  dP
dt

=
RT
V

dn
dt

 

 
dn
dt

= Ý n in =
V
RT

dP
dt

=
10 ft3 ⋅ 0.1

psi
min

10.73psi ft3

lb mol oR
⋅ 530o R

= 1.758 ⋅10−4 lb mol
min

 

 Ý m in = Ý n in ⋅ M =1.758 ⋅10−4 ⋅ 29 = 0.0051
lbm
min

= 0.0023
kg

min
 

 
_____________________________________________________________________ 
 

3.22  
d Vc( )system

dt
= cQ( )in − cQ( )out     where c  is the concentration.  Here  

 Vsys  is constant and cout = csys, and cin = 0   so that V
dc
dt

= −Qc  

 dc
c

= −
Q
V

dt; ln
c
c0

= −
Q
V

t − 0( )  and 
 

 
c = c0 exp −

Q
V

Δt
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 10

kg
m3 exp −

10 m3 / min
1000 m

t
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 

Solutions, Fluid Mechanics for Chemical Engineers, Third Edition, Chapter 3, page 8- 



which is the same as Eq 3.16 (after taking the exponential of both sides) with 
concentration replacing density, and the   one tenth as large as in Ex. 3.7.  One can 
look up the answers on Fig 3.5, if one takes the vertical scale as 

Q / V
c / c0  and multiplies the 

time values on the horizontal scale by 10. 
_____________________________________________________________________ 
 
3.23 V

dc
dt

= −Qc + K ; K = dissolution rate  

 

 
dc

c − K / Q
= −

Q
V

dt; ln
c − K / Q
c0 − K / Q

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= −
Q
V

t − 0( ) ;    

 
 c = c0 − K / Q( )exp(−Qt / K) + K / Q  
 
Comparing this solution line-by-line with Ex. 3.8, we see that it is the same, with the 
variables renamed.  Its analogs also appear in heat and mass transfer. 
_____________________________________________________________________ 
 

3.24 Vsys = a + bt; b =
1 m3

min

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
d cV( )sys

dt
=

d c a + bt( )( )
dt

= Qc( )in − Qc( )out   but Qc( )in   = 0 so that 

 a
dc
dt

+ bc + bt
dc
dt

= Qourc ;     a + bt( )dc
dt

= − Qour + b( )c  ; dc
c

= − Q + b( ) dt
a + bt

 

 ln
c
c0

= − Qout + b( )1
b

ln
a + bt

a
; c
c0

=
1

1 + b / a( )t
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1+
Qour

b

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

_____________________________________________________________________ 
 

3.25 Vsys = a + bt; a =10 ft3, b = −0.1
ft3

min
;

 
d ρV( )sys

dt
=

d ρ a + bt( )( )sys

dt
= −mout = −Qρ  

 
Comparing this to the solution to the preceding problem, we see that they are the same, 
with the variables renamed, so that we can simply copy,  

 ρ
ρ0

=
1

1 + b / a( )t
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1+ Q
b

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

; 1 + b / a( )t =
1

ρ / ρ0( )
1

1+Q / b

 

 t =
a
b

1

ρ / ρ0( )
1

1+ Q/ b

−1
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
  =⎥

⎥ 

10 ft3

−0.1 ft3

min

1

10−4( )
1

1+ 1 ft3 / min( )/ (−0.1 ft3 / min

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
  ⎥

⎥ 
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    = −100min
1

2.78256
−1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = 64.06min  

 
_____________________________________________________________________ 
 
 
3.26* Assume that the earth is a sphere with radius 4000 miles, that it is 3/4 covered by 
oceans, and that the average depth is 1 mile.  That makes the volume of the oceans be 

 Vocean =
3
4

⋅ 4π ⋅ 5280 ⋅ 4000 ft( )2 ⋅ 5280ft( )⋅
m

3.281ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3

⋅
1000 l

m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 6.3 ⋅1020 liters  

 
molecules

liter
≈

1000 gm
18gm
mol

⋅ 6.023 ⋅1023 molecules
mole

= 3.34 ⋅1025  

This ignores  the differences between pure water and ocean water, which is negligible 
compared to the other assumptions.  Then, a randomly-selected liter contains 
3.34 ⋅1025

6.3 ⋅1020 = 5.3 ⋅104  molecules which were in the liter that Moses examined. 

 
The assumption of perfect mixing of the oceans since Moses' time is not very good.  The 
deep oceans mix very slowly.  The Red Sea does not mix much with the rest of the world 
ocean, except by evaporation and rainfall. 
_____________________________________________________________________ 
 
3.27 The mass of the atmosphere is  
 mass = 14.7

lbm
in2 ⋅ 4π 4000 ⋅ 5280 ⋅12 in( )21.186 ⋅1019  lbm  

 mols = mass ⋅
454 gm

lbm
⋅

mol
29 gm

= 1.857 ⋅1020mols  

 
Caesar lived 56 years, so he breathed in his lifetime 
 
 56 years ⋅

365 day
yr

⋅
24 hr
day

⋅
60min

hr
⋅10

breath
min

⋅
1L

breath
⋅

mol
22.4 L

=1.31 ⋅107 mols 

 
Thus the fraction of the atmosphere that he breathed was 
 

 Fraction he breathed =
1.31⋅107

1.85 ⋅1020 = 7.07 ⋅10−14  

 
At 1 atm and 20°C one liter contains 2.50·E22 molecules so that the number of molecules 
in one liter of the atmosphere that he breathed must be 
 
 molecules breathed by Caesar

breath
= 2.50 ⋅1022 molecules

liter
⋅7.07 ⋅10−14 = 1.77 ⋅109  
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I have carried  more significant figures than the assumptions justify, because it is so easy 
to do on a spreadsheet.  The logical answer is ≈ 2 billion.  The perfect mixing assumption 
is much better for the atmosphere than for the ocean in the preceding problem.. 
_____________________________________________________________________ 
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Solutions, Chapter 4 
 
In working these problems I have used the and Keyes 1969 Steam Table for English Unit 
problems, and the NBS/NRC Steam Tables for SI problems. For Freon 12 I have used 
DuPont publication A-973. 
_______________________________________________________________________ 
 
4.1 The plots will be straight lines on log-log plots. The gz  term will have slope 1, and 
the V2/2 curve will have slope 2.  For z = 100 ft, we have  

 PE = gz = 32.2
ft
s2 ⋅100 ft ⋅

Btu
778 ft lbf

⋅
lbf s2

32.2 lbmft
= 0.129

Btu
lbm

= 0.299
kJ
kg

 

and for V = 100 ft/s, we have 

 KE =
V2

2
=

100 ft / s( )2

2
⋅

Btu
778 ft lbf

⋅
lbf s2

32.2 lbmft
= 0.200

Btu
lbm

= 0.464
kJ
kg

 

 

0.1

1
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10 100 1000 104
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m

 
_______________________________________________________________________ 
 
4.2  

(a) K.E. =
mV 2

2
= 0.02 lbm ⋅

2000
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

lbf s2

32.2lbmft
= 1.242 ⋅103ft lbf =1.684 kJ  

(b) V = V0 − gt; V = 0 when t =
V0

g
=

2000
ft
s

32.2 ft
s2

= 62.11s  
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 z = Vdt∫ = V0t −
1
2

gt2 = 2000
ft
s

⋅ 62.1s −
1
2

32.2
ft
s2 ⋅ 62.1s( )2 = 6.21 ⋅104 ft  

(c) PE = mgz = 0.02lbm ⋅32.2
ft
s2 ⋅6.21⋅104 ft ⋅

lbf s2

32.2lbmft
= 6.21⋅103ft lbf =1.684 kJ  

The fact that the initial kinetic energy and the potential energy at the top of the trajectory 
are the same is not an accident.  Air resistance complicates all of this, see Prob. 6.94. 
_______________________________________________________________________ 
 

4.3* W = Fdx = mgΔz = 2.0lbm ⋅ 6
ft
s2 ⋅10ft ⋅

lbf s2

32.2 lbmft
= 3.73 ft lbf = 5.05 J  

_______________________________________________________________________ 
 

4.4 Our system is the ball.  d m u + gz +
V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

sys

= 0 − 0 + 0 − dWn.f .  

Here the left hand term is zero, so there is no work done on the ball!  This appears 
paradoxical, but the ball is simply converting one kind of energy into another.  Work was 
done on the ball as the airplane lifted it from the ground.  If one applied the above 
equation with the same system from takeoff until the ball hit the ground, then we would 
have 

Δ m u + gz +
V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

sys

= 0 − 0 +
mV final

2

2
− ΔWn.f.  

with the final KE being equal to the work done by the airplane in lifting the ball. 
_______________________________________________________________________ 

4.5 (a)  System, the water d m u + gz +
V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

sys

= 0 − 0 + 0 + dWn.f .  

but for this system the changes in internal, potential and kinetic energies are all ≈ 0, so 
that dW .  This seems odd, but the water is merely transferring work from the pump 
to the piston, rack and car.  Here the dW  is the algebraic sum of the work done on the 
water by the pump and the work done by the water on the piston, rack and car. 

n.f . ≈ 0
n.f .

 

(b)  System; water, piston, rack and car, d m u + gz +
V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

sys

= 0 − 0 + 0 + dWn.f .  

with this choice of system the change in potential energy is significant,  
 
 dWn.f = mgΔz = 4000 ft lbf = 5423 N m = 5.423 kJ  
 
(c) System; the volume of the hydraulic cylinder downstream of the pump 
 

 d m u + gz +
V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

sys

= hindmin − 0 + 0 + dWn.f.  
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   if we assume no change in temperature (a good 
assumption) then u  and dW

dWn.f. = d(mu)sys − hin dmin

sys = uin = constant n.f. = −Pvin dmin   here dW  is the work done 
by this system on the car, rack and piston =- 4000 ft lbf.  Solving for v  

n.f.

in dmin

 

 vin dmin =
dWn.f.

−P
=

−4000ft lbf
(1000 −14.7)lbf / in2 ⋅

ft2

144 in2 = 0.0282ft3 = 7.93 E - 4 m3  

 
Here we work the problem in gauge pressure.  If we had worked it in absolute, then we 
would have needed to include a term for driving back the atmosphere as the car, rack and 
piston were driven up. 
_______________________________________________________________________ 
4.6*  System; the water path through the dam, from inlet to outlet., steady flow 
 = −0.62

Wh
kg

= −0.00062
kWh
kg

= −2.8 ⋅10−4 kWh
lbm

 

 
 
 = −0.622

Wh
kg

= −0.00062
kWh
kg

= −2.8 ⋅10−4 kWh
lbm

 

 
This is negative because it is work flowing out of the system. 
_______________________________________________________________________ 
4.7* System the pump, steady flow 
 

 dWn.f.

dm
= − hin − hout +

dQ
dm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = − 397.99 − 807.94 + −2( )( )= 412

kJ
kg

 

 
The work is positive because it is work done on the system.  The enthalpy values are 
from the NBS/NRC steam tables.  If one does not have access to those tables, one can use 

 Δh ≈
ΔP
ρ

+ CPΔT =
(20 −1)bar

962 kg
m3

⋅
100 kJ
m3 bar

+ 4.184
kJ

kg °C
≈ 2.0 + 401 ≈ 403

kJ
kg

 

which is only approximate because the equation used is approximate and the values of 
the density and heat capacity are only approximate.  But it shows how one would proceed 
if one did not have access to a suitable steam table. 
 
_______________________________________________________________________ 
 
4.8 System, the power plant, steady flow 
 

 
dWa⋅0

dm
= gΔz + Δ

V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 32.2

ft
s2 −80 ft( )+

5
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
−

100
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ ⎟ 
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  = −235
ft lbf
lbm

= −0.302
Btu
lbm

= −0.702
kJ
kg

 

The minus sign goes with the new sign convention, work flows out of the power plant. 
______________________________________________________________________ 
 
4.9* System;  power plant, steady flow  Po = Ý m 

dWn.f.

dm
 

dWn.f.

dm
= gΔz +

ΔV 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 9.81

m
s2 ⋅ −40 m( ) +

15
m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− 9
m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ ⎟ 

= −392.4 + 72.0( ) = −320
m2

s2

 

 Po = 5000
kg
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ -320

m2

s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

Ns2

kg m
⋅

J
N m

⋅
W s

J
= −1.602MW  

This is power leaving the system, hence negative according to the sign convention. 
______________________________________________________________________ 
 

4.10 System; nozzle, steady flow,  0 = h +
V2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

in

− h +
V2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

out

 

 Δh = CPΔT = −
ΔV2

2
=

2000
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− 300
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
  

  = −1.955⋅106 ft 2

s2 = −6.07 E4
ft lbf
lbm

= −78.0
Btu
lbm

 

 
 

 ΔT =
−1.955⋅106 ft 2

s2

0.3 Btu
lbm oF

⋅
lbf s2

32.2lbmft
⋅

Btu
778ft lbf

= −260o F 

  Tout = 600 − 260 = 340o F = 800°R = 444 K
______________________________________________________________________ 
 
4.11* System; the tank up to the valve, unsteady state.  Here the students must use the 
fact, stated at the beginning of this set of problems, that for a perfect gas u and h  are 
functions of T alone, and not on the pressure. 
 
 d mu( )∫ sys

= 0 − hout dmout∫ + dQ∫ − 0  :   ΔQ = Δmu + houtΔmout  

 
but  Δ  so that msys = −Δmout

 ΔQ = Δmout hout −u( )= Δmout CP − CV( )T = ΔmoutRT  
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 Δnout =
V

RT
P1 − P2( )  here we switch from mass to moles, and use molar heat 

capacities 
 ΔQ =

V
RT

P1 − P2( )RT = V P1 − P2( )= 1ft3 ⋅80
lbf
in2 ⋅

144
778

= 14.8 Btu = 15.62 kJ  

______________________________________________________________________ 
 
4.12 System, contents of the container, adiabatic. d(mu)sys = hindmin , and for ideal gases 
 
 Tfinal = Tin

CP

CV

= kTin    This is the classic solution, which appears in almost all 

thermodynamics books, and in the first two editions of this book (see page 118 of the 
second edition).  Unfortunately the adiabatic assumption cannot be realized, even 
approximately if one tries this in the laboratory.  Even in the few seconds it takes to fill 
such a container the amount of heat transferred from the gas makes the observed 
temperature much less than one calculates this way.  The amount of heat transferred is 
small, but the mass of gas from which it is transferred is also small so their ratio is 
substantial.  This is explored in Noel de Nevers, "Non-adiabatic Container Filling and 
Emptying", CEE 33(1), 26-31 (1999). 
______________________________________________________________________ 
 
4.13 See the discussion in the solution to the preceding problem.  In spite of that this is a 
classic textbook exercise, which is repeated here.   
 
System, contents of the container, adiabatic 
 ; d mu( )sys = hin dmin∫∫ mu( ) f − mu( )i = hin m f − mi( ) 

 CV m fTf − miTi( )= CPTin m f − mi( ) 

 Tf = Tin
CP

CV

m f − mi

mf

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

V
Pi

RTi

V
Pf

RTf

=
PiTf

Pf Ti

 ;   Substitute and rearrange to 

 Tf =
Tin

CP

CV

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1− Pi

Pf

⋅ 1
Ti

Ti − CP

CV

Tin

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

   If Pi = 0, this simplifies to the solution to the 

preceding problem. 
______________________________________________________________________ 
 
4.14 See the discussion with problem 4.12.  Using the solution to problem 4.13  we have 

 Tf =

CP

CV

T

1− Pi

Pf

⋅ 1
Ti

Ti − CP

CV

Tin

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

=
1.40 ⋅ 293.15K

1 − 0.5
1.0

⋅ 1
293.15

293.15 −1.4 ⋅293.15( )
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  = 293.15K
1.4( )

1 − 0.5 −0.4( )
= 342K =  68.9°C =156°F  

______________________________________________________________________ 
 
4.15*  c2dm = dQ

 dm =
dQ
c2 =

−14 ⋅1012  cal

3.85⋅1013 Btu
lbm

⋅
Btu

252cal
= −1.44 ⋅10−3 lbm = -0.65 g  

If this won't convince the students that c2 is a large number, I don't know what will! 
______________________________________________________________________ 
 

4.16 Δ
V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 1800

Btu
lbm

 

 V = 2 1800
Btu
lbm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

778ft lbf
Btu

⋅
32.2 lbm ft

lbf s2 = 9497
ft
s

= 1.8
mi
s

= 2.89
km
s

 

 
Such velocities are observed in meteorites, earth satellites, ICBMs, and in the kinetic 
energy weapons proposed in the Star Wars defensive systems. 
 
To stimulate class discussion you can tell the students that hydrocarbon fuels like 
gasoline have heating values of ≈ 18,000 Btu/lbm, and this problem shows that high 
explosives only release about one tenth of that.  Ask them why.  Some will figure out that 
the heating value is for the fuel plus the oxygen needed to burn it, taken from the air, and 
not included in the weight of the fuel.  High explosives include their oxidizer in their 
weight.  They do not release large amounts of energy per pound, compared to 
hydrocarbons.  What they do is release it very quickly, much faster than ordinary 
combustion reactions.  The propagation velocities of high explosives are of the order of 
10,000 ft/s, compared to 1 to 10 ft/s for hydrocarbon flames.  That is so fast that the 
reaction is complete before there is significant expansion, and the solid (or liquid) 
explosive turns into a high temperature gas, with ≈ the same density as the initial liquid 
or solid.  You can estimate the pressure for this from the ideal gas law, finding amazing 
values. 
______________________________________________________________________ 
 
4.17  This is a discussion problem.  Fats are roughly (CH2)n.  Carbohydrates are roughly 
(CH2O)n.   For one C atom the ratio of weights is (14/30) = 0.47.  So if fats have 9 
kcal/gm, we would expect carbohydrates to have 9·0.47 = 4.2 ≈ 4 kcal/gm.  This 
simplifies the chemistry a little, but not much. 
 
You might ask your students what parts of plants have fats.  Some will know that the 
seeds have fats, the leaves and stems practically zero.  Then some will figure out why.  
The assignment of a seed is to find a suitable place, put down roots and put up leaves 
before it can begin to make its own food.  It is easier to store the energy for that as a fat 
than as a carbohydrate.  Our bodies make fats out of carbohydrates so that we can store 
them for future use (in case of famine).  As fats an equal amount of food takes about 47% 
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as much space and weight as the same food as carbohydrates.  Thermodynamics explains 
a lot of basic biology! 
______________________________________________________________________ 
 
4.18 System;  contents of calorimeter, unsteady state.  Note that the metal walls of the 
calorimeter are outside the system. 
  d mu( ) = 0 − 0 + dQ + 0

 = −500g ⋅ 5oC ⋅
0.12cal

g oC
− 5000g ⋅ 5o C ⋅

1.0 cal
g oC

 

  = −300 − 25 000 = −25 300 cal

 Δu =
ΔQ
m

=
−25 300 cal

4g
= −6325

cal
g

= −11395
Btu
lbm

 

 
Sources of error: heating of gases in calorimeter, condensation of water vapor produced 
on combustion, accurate measurement of small temperature difference. 
 
The value here is between that for fats and for carbohydrates.  It corresponds to a good 
grade of coal,  
______________________________________________________________________ 
 
4.19 System: earth, unsteady state.  The heat flow is 

 
dQ
dt

= kA
dT
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

1 Btu
hr oF ft

⋅π 8000mi ⋅
5280ft

mi
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅
−0.02 oF

ft
= −1.12 ⋅1014 Btu

hr
 

 
The amount of mass converted to energy is 

 
dm
dt

=

dQ
dt
c2 =

−1.12 ⋅1014 Btu
hr

3.85 ⋅1013 Btu
lb

= −2.9
lb
hr

 

______________________________________________________________________ 
 
4.20 System; the boundaries of the sun, assuming negligible outflow of mass.  This latter 
is not quite correct, because particles are blown off the sun by solar storms, but their 
contribution to the energy balance of the sun is small compared to the outward energy 
flux due to radiation. 
  c2dmsys = dQ
______________________________________________________________________ 
 
4.21* System; the power plant from inlet to outlet, steady flow 

 dWn.f.

dm
= Δh + gΔz + Δ

V 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  
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 = 1
Btu
lbm

+ 32
ft
s2 −75ft( )⋅

Btu
778 ft lbf

⋅
lbf s2

32.2 lbm ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

50
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− 400
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ ⎟ 

⋅
1

778
⋅

1
32.2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 = 1 − 0.096 − 3.144( ) = −2.24
Btu
lbm

= −1.07
kJ
kg

 

_____________________________________________________________________ 
 
4.22 (a) System, valve and a small section of adjacent piping, steady flow. h  f = hi

 
(b)  System; one kg of material flowing down the line. 
 Δu = 0 + ΔW ; uf − uc = Pivi − Pf vf( ); hf = hi  
 
The results are the same, as they must be.  What nature does is independent of how we 
think about it. 
______________________________________________________________________ 
 
4.23  None of these violate the first law, all violate the second law.  We may show that 
they do not violate the first law by making an energy balance for each. 
 

(a) Δ u + gΔz( ) = 0 = −0.01284
Btu
lb

+ 32.2
ft
s 2 ⋅10 ft ⋅

Btu
778 ft lbf

⋅
lbf s2

32.2 ft lbm

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

\ 
 

         = −0.01284 + 0.01284 = 0  
 

(b) ufinal = 0.105 lbm ⋅ −143.34
Btu
lbm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + 0.895 lbm ⋅ 1232.2

Btu
lbm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =1088

Btu
lbm

   which 

is equal to the initial internal energy. 
 
(c) The upstream and downstream enthalpies are the same, as they must be for an 
adiabatic throttle. 
 
These all violate the second law.  They all violate common sense.  If you doubt that, put a 
baseball on a table and watch it, waiting to see it spontaneously jump to a higher 
elevation and cool.  Be patient! 
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Solutions, Chapter 5 
 
5.1*  d u + gz( ) = 0

 Δu = −g Δz( )= −32.2
ft
s2 − 1000 ft( ) lbf s2

32.2 lbm ft
⋅

Btu
778ft lbf

=1.29
Btu
lbm

 

 

 (a) ΔT =
Δu

CV ,steel

=
1.29

Btu
lbm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.12
Btu

lbm oF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 11o F  

 (b) ΔT =
Δu

CV ,water

=
1.29

Btu
lbm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.0
Btu

lbm oF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 1.3o F  

Discussion; we do not observe friction heating unless it is concentrated, e.g. smoking 
brakes, spinning tires on drag racers, hot drill bits or saw blades, boy scouts making fire 
by friction. 
_______________________________________________________________________ 
 

5.2 The head form is 
  

ΔP
ρg

+ Δz +
ΔV2

2g
=

dW
n.f.

gdm
−

F
g

;  z
has dimension
of

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ft  

 
ΔP
ρg

has dimension
of

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

lbf
ft2

lbm
ft3 ⋅ ft

s2

32.2lbm ft
lbf s2 =[ ] ft3

ft2 = ft  

 
V 2

2g
has dimension
of

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

ft
s2

=[ ] ft  

 
dW

n.f.

gdm
hasdimension
of

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ft ⋅ lbf

ft
s2 ⋅ lbm

⋅
32.2lbm ft

lbf s2 =[ ]ft  

 

  

F
g

hasdimension
of

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ft2

s2

ft
s2

=[ ]ft  

_______________________________________________________________________ 
 

5.3* (a) ΔP =
ρV 2

2
=

998.2
kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 8

m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

N ⋅s2

kg ⋅ m
⋅
Pa ⋅m

N
= 31.94 kPa = 4.64 psi  

  Δ  u = 0
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 (b) ΔP = 0.9 ⋅ answer from part a( ) = 28.7 kPa = 4.28 psi  

  Δu =
0.1ΔPrevrsible

ρ
=

0.1( ) 31.94 kPa( )
998.2 kg

m3

⋅
N

Pa ⋅ m2 ⋅
J

N ⋅ m
= 3.20

J
kg

 

 
 (c) ΔP = 0; Δu = 32.0

J
kg

 

_______________________________________________________________________ 
 

5.4  ΔP =
ρ V1

2 − V2
2( )

2
=

ρ
2

10
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

−
10
3

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= ρ
100

ft2

s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

9 / 4
 

(a)  For water 

 ΔP = 62.3
lbm
ft3

4
9

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 100

ft2

s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

lbf s2

32.2lbm ft
⋅

ft2

144 in2 = 0.60 psi = 4.1 kPa  

 
(b)  For air 
 ΔP = above answer ⋅

0.075
62.3

= 7.2 ⋅10−4 psi =  0.0050 kPa  

_______________________________________________________________________ 
 

5.5 The answers are the answers in Example 5.2 multiplied by  
P1

P1 + Patm(
2

)⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 with all 

pressures absolute.  For 1 psig, this factor is 
P1

P1 + Patm( )
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

=
15.7 psia

15.7 psia + 14.7 psia( )
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

=1.016  and the calculated velocity is 

 V = 340
ft
s

⋅1.016 = 345.5
ft
s

     

Below is a  table comparing the three solutions, carrying more significant figures than are 
shown in Table 5.1. 
 

delta  P, psi V, simple BE 
ft/s 

V , Ch.  8, 
ft/s 

V, this 
Problem 
ft/s 

0.01 35.094 35.090 35.100 
0.1 110.640 110.747 110.827 
0.3 190.352 190.992 191.311 
0.6 266.546 268.384 269.198 

1 339.697 343.602 345.239 
2 465.799 476.269 480.405 
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3 554.136 572.306 579.222 
5 678.100 713.154 725.709 

 
From the table we see that while the simple approach in Example 5.2 underestimates the 
velocity, the approach in this problem overestimates it, but by a smaller percentage than 
the simple approach in Example 5.2.  If one is not going to use the approach in Ch. 8, 
then this approach is more accurate than the simpler one in Example 5.2. 
_______________________________________________________________________ 
 
5.6 The plot will be a straight line with slope 1/2 on log-log paper.  For a height of 100 ft  

 V = 2gh = 2 ⋅ 32.2
ft
s2 ⋅100 ft = 80.2

ft
s

 

The figure is shown below 
 

 

10

100

1000

10 100 1000
h, ft  

V,
 ft

/s

 
 
_______________________________________________________________________ 
 

5.7* V2 = 2 ⋅ 32 ⋅ 2
ft
s

⋅12 ft = 27.8
ft
s

= 8.47
m
s

 

 Q = VA = 27.8
ft
s

⋅2 ft2 = 55.6
ft 3

s
= 1.57

m3

s
 

_______________________________________________________________________ 
5.8 The density of the fluid does not enter Torricelli's equation, so  

 V = 2gh = 2 ⋅ 32.2
ft
s2 ⋅ 30 ft = 44.0

ft
s

= 13.4
m
s
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Discussion; ask the students if you dropped a can of water from 30 ft, with zero air 
resistance, what the velocity at h = 0 would be.  The ask about a can of gasoline. 
_______________________________________________________________________ 
 

5.9* V = 2gh / 1−
A2

A1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1
2

=
answer to Prob. 5.7

1-
2ft2

5ft2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
2

=
27.8

ft
s

1− 0.16[ ]
1
2

= 30.3
ft
s

= 9.24
m
s

 

 Q = 30.3
ft
s

⋅ 2 ft2 = 60.6
ft3

s
=1.71

m3

s
 

_______________________________________________________________________ 
 

5.10 V = 2gh = 2 ⋅ 32.2
ft
s2 ⋅ 726 ft = 216

ft
s

= 65.9
m
s

=147
mi
hr

 

 
Discussion; the dam is fairly thick at its base, so the pipe would be long, and friction 
would be significant.  Torricelli's Eq. is not reliable here.  See Chapter 6. 
_______________________________________________________________________ 
 

5.11 V = 2 ⋅ 9.81
m
s2 ⋅10 m = 14.01

m
s

= 46
ft
s

 

 Q = VA = 14.01
m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 5m2( )= 70.0

m3

s
= 2474

ft3

s
 

 
I'm sure all of you liked the movie "Titanic", particularly the scene in which the boat's 
designer, resigning himself to death. says that the design allowed for the boat to survive 
flooding of two compartments, but not four or five.  Apparently the safety doors divide 
the boat's hull into some number (7 on the Titanic?) of compartments, all of which are 
open at the top.  So if the hull is punctured, as in this problem, and the doors close 
properly, one compartment will fill with water up to the level of the water outside, but 
the other compartments will remain dry.  Apparently the impact with the iceberg opened 
the hull to more compartments than the ship could survive, even with the safety doors 
closed.  Presumably if the compartments were sealed at the top, then even that accident 
would have been survivable, but it is much easier to provide closed doors on 
passageways parallel to the axis of the boat, in which there is little traffic, than on 
vertical passageways (stairs, elevators, etc.) on which there is considerable traffic. 
_______________________________________________________________________ 
 
5.12 From Eq. 5.12 V2 = 2gh = 43.9

ft
s

  which is absurd.   

From Eq 5.22    V2 = 2gh 1 −
ρair

ρair

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0     which is quite plausible. 

_______________________________________________________________________ 
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5.13* 
ΔP
ρ

+ gΔz +
ΔV2

2
= 0; V2 = 2 −

ΔP
ρ

− gΔz
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 ΔP = P2 − P1 = −ρairgΔz ;     V2 = 2g −Δz( ) ρair

ρHe

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
The densities are proportional to molecular weights, so 
 

 V2 = 2( )⋅ 32.2
ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 40ft( )⋅

29
4

−1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 127

ft
s

= 39
m
s

 

 
This looks strange, because the velocity is higher than the velocity from Torricelli's 
equation.  However it is correct.  The reason is the very low density of the helium, which 
makes the difference in atmospheric pressure seem like a large driving force. 
_______________________________________________________________________ 
 

5.14   V = 2gh ;   Q = VAoutlet = Vtank
surface

Atank = Atank −
dh
dt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

tank
 

 −
dh
dt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

tank
=

Aoutlet

Atank

2gh = 0.01 2 ⋅ 9.81
m
s

⋅10 m = 0.14
m
s

= 0.46
ft
s

 

Some students will say you should use V =
2gh

1 − A2 / A1( 2)
.  That multiplies the above 

answers by 1.00005, which is clearly negligible compared to the uncertainties introduced 
by the standard Torricelli's assumptions. 
_______________________________________________________________________ 
 

5.15 V2 = 2 −
ΔP
ρ

− gΔz
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,   but   ΔP = ρgasolinegΔz   so that 

 V2 = 2g −Δz( ) 1−
ρgas

ρw

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 2 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 30ft( ) 1− 0.72( ) = 23.3

ft
s

= 7.09
m
s

 

 
This is the same as Ex. 5.5, with different fluids. 
_______________________________________________________________________ 
 

5.16* V2 = −
ΔP
ρw

=
P1 − P2

ρw

 

 P1 = 30ft ⋅ gρwater; P2 = 10 ft ⋅gρwater + 20 ft ⋅gρoil  
 P1 − P2 = 20 ft⋅ g ρwater − ρoil( ) 

 V = 2 20 ft( )⋅ 32.2
ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 1− 0.9( ) = 11.3

ft
s

= 3.46
m
s

 

_______________________________________________________________________ 
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5.17  
  
F = −

ΔP
ρ

+ gΔz +
ΔV 2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟     Assuming the flow is from left to right 

 

  

F = −
8

lbf
in2

62.3 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144 in2

ft2 + 32.2
ft
s2 ⋅20 ft + 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

 

     = −595
ft
s2 + 644

ft2

s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = − 48.6

ft2

s2 = −4.51
m2

s2  

 
The negative value of the friction heating makes clear that the assumed direction of the 
flow is incorrect, and that the flow is from right to left. 
_______________________________________________________________________ 
 

5.18* V2 = 2 −
ΔP
ρ

− gΔz
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 V2 = 2
20

lbf
in2

62.3lbm
ft3

⋅
32.2lbmft

lbf s2 ⋅
144in2

ft2 + 5ft ⋅32.2
ft
s2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= 57.4
ft
s

= 17.5
m
s

 

_______________________________________________________________________ 

5.19 
ΔP
ρ

+ gΔz +
ΔV2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 ; 

0 − P1

ρ
+ g −h( )+

V2
2 − 0
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0 

 P1 = ρ g −h( ) +
V2

2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 62.3

lbm
ft3 32.2

ft
s2 ⋅ −5ft( )+

100
ft2

s2

2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

      = −2.16 + 0.67( ) = −1.49 psig = -10.3 kPa gage
 
This indicates that at that velocity, there is a vacuum in the top of the vessel. 
_______________________________________________________________________ 

5.20 V2 = 2 −
ΔP
ρ

− gΔz
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 2 −

- 50
lbf
in2

62.3 lbm
ft3

⋅
32.2 lbmft

lbf s2 ⋅
144in2

ft2 − 32.2
ft
s2 ⋅ 30 ft

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

 

      = 74.2
ft
s

= 22.6
m
s

 

_______________________________________________________________________ 
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5.21* Let the water-air interface be (1), the mercury-water interface be (2) and the outlet 

be (3).  Then V3 = 2
P2 − P3

ρHg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + g z2 − z3( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

but P3 =P1 and P2 = h2ρwg ,  so that 

 V3 = 2 h2g
ρw

ρHg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + gh1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

      = 2 8 m( )⋅ 9.81
m
s2 ⋅

1
13.6

+ 9.81
m
s2 ⋅1m

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = 5.58

m
s

=18.3
ft
s

 

_______________________________________________________________________ 
 
5.22 Let the water-air interface be (1) and the outlet be (2).  Then 
 

 V2 = 2
P1 − P2

ρ
+ g z1 − z( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 = 2
10

lbf
in2

62.3 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144in2

ft2 + 32.2
ft
s2 ⋅10 ft

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= 46.2
ft
s

=14.1
m
s

 

 
_______________________________________________________________________ 
 

5.23* V2 = −
2ΔP

ρ
; ΔP = ρ rω 2( )dr∫ =

ρω 2

2
r2

2 − r1
2( ) 

 V2  =
2
ρ

ρω 2

2
r2

2 − r1
2( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ = ω2 r2

2 − r1
2( )  

      =
2π 2000

min
⋅

min
60s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

21in( )2 − 20in( )2( )=1341
in
s

= 112
ft
s

= 34
m
s

 

 
_______________________________________________________________________ 
 
5.24 In Bernoulli's equation devices (orifice meters, venturi meters, pitot tubes) the flow 
rate is proportional to the square of the pressure difference.  These devices most often 
send a signal which is proportional to the pressure difference. If this is shown directly on 
an indicator or on a chart, the desired information, the flow rate, is proportional to the 
square of the signal.  One solution to this problem is to have chart paper with the 
markings corresponding to the square of the signal.  For example if one inch of chart 
covers the range from zero to 20% of full scale, then four inches of chart will correspond 
to the range from zero to 40% of full scale.  The chart manufacturers refer to these as 
"square root" charts, meaning that in reading them one is automatically extracting the 
square root of the signal. 
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 With recent advances in microelectronics, many new flow recorders extract the 
square root of the signal electronically, and use a chart with a linear scale. 
_______________________________________________________________________ 
 

5.25* Vmax = 2gh = 2 ⋅ 32.2
ft
s

⋅10ft = 25.4
ft
s

= 17.3
mi
hr

= 7.7
m
s

 

 
These have actually been sold; boat fans will buy anything.  For speedboats the pitot tube 
is normally connected directly to a bourdon-tube pressure gage, which is marked to read 
the speed directly in mi/hr or equivalent. 
_______________________________________________________________________ 
 

5.26 V2 =
2gh
ρair

ρfluid − ρair( ) 

 Vmin = 2( ) 32.2
ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.5ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

62.3 − 0.075
0.075

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 47.2

ft
s

= 32.2
mi
hr

= 14.4
m
s

 

 
Low-speed flows of gases are hard to measure with Bernoulli's equation devices, because 
the pressure differences are so small.  Moving blade or moving cup anemometers are 
most often used for low-speed gas flows, e.g. meteorological measurements.  The 
students have certainly seen these in weather stations.  
_______________________________________________________________________ 
 
5.27* see preceding problem 

V2 = 2gh
ρmanometer fluid

ρgasoline

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 2( )⋅ 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

0.1
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

1
0.72

−1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.46

ft
s

= 0.14
m
s

 

  
_______________________________________________________________________ 
 

5.28 V = 2
ΔP
ρ

 

(a) V =
2 0.3

lbf
in2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.075 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144 in2

ft2 =192.6
ft
s

= 131
mi
hr

= 58.7
m
s

 

(b) V = Above answer ⋅
0.075
0.057

= 220.9
ft
s

= 151
mi
hr

= 67.3
m
s

 

 
This is one of my favorite discussion problems.  On the dashboard of an airplane (private 
or commercial) is an "indicated air speed" dial.  The indicated airspeed is =  
V(ρ/ρsea level)1/2 which is found by putting this pressure difference across a diaphragm, 
and using a linkage to drive the pointer around a dial.  This indicated air speed is the 
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velocity of interest for pilots.  The lift is directly proportional to the indicated air speed, 
so this is also effectively a lift indicator, see Secs. 6.14 and 7.6. 
 
You can ask the students why commercial airliners fly as high as they can.  For a given 
weight, there is only one indicated air speed at which they can fly steadily in level flight.  
As the air density goes down, the corresponding absolute velocity goes up.  So by going 
high, they go faster.  This means fewer hours between takeoff and landing.  That means 
less fuel used, fewer hours to pay the pilots and crews for, and happier customers who do 
not like to sit too long in an aircraft. 
_______________________________________________________________________ 
 
5.29 

      ΔP = 1002
kg
m3

60 km
hr

⋅ hr
3600 s

⋅ 1000 m
km

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

2
⋅

N s2

kg m
⋅

Pa m2

N
= 139.2 kPa = 20.2 psig  

_______________________________________________________________________ 
 
5.30  Equation 5.BN predicts that for a VP (which we would call ΔP  ) of 1 inch of water 
= 0.03615 psig the velocity is 4005 ft/min.  Using the methods in this book, we find for 
that pressure difference 
 

 V = 2
0.03615

lbf
in2

0.075 lbm
ft 2

⋅
144 in2

ft2 ⋅
32.2 lbm ft

lbf s2 = 66.85
ft
s

= 4011
ft

min
 

This is 1.0016 times the 4005 in Eq. 5.BN. The form of the equations is the same, V 
proportional to the square root of ΔP , so for any value of ΔP  the prediction of this 
"practical" equation is within 0.16% of the value from Eq. 5.16. 
_______________________________________________________________________ 
 
5.31  Example 5.8 shows that for a pressure difference of 1 psig the volumetric flow rate 
is 2.49 ft3/s.  We can get other values by ratio, e.g. for 1 ft3/s 

 ΔP = ΔP0
Q
Q0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

=1psig
1ft3 / s

2.49ft3 / s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

= 0.161 psig   

and similarly for other values.  
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 The plot is shown at the right in 
two forms.  The upper one, on 
log-log coordinates is probably 
the more useful, because the 
fractional uncertainty in the 
reading is practically the same 
over the whole range. 
 
The lower one, on arithmetic 
coordinates is probably easier for 
non-technical people to use, and 
would probably be selected if 
technicians were to use it. 
 
Here I have chosen the pressure 
drop as the independent variable, 
because that is the observational 
instrument reading. 

              

1
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0.1 1 10 100
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Q
, c
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Q
, c
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6
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_______________________________________________________________________ 

5.32 V2 =
Q
A

=
2gh(ρmanometer − ρ ) / ρ

1 − (D2 / D1)
4 ≈

2 ⋅ 32.2
ft
s2 ⋅1 ft ⋅ 62.3

lbm
ft3 / 0.075

lbm
ft3

1− 0.5( )4( )  

 = 239
ft
s

= 72.8
m
s

 

One may compute that the Reynolds number at 1 is ≈ 3.7 E 5.  From Fig 5.11 one would 
estimate Cv ≈ 0.984 so that if we take this correction into account we would report  

V2 = 235
ft
s

= 71.6
m
s

   In most common work we would probably ignore this difference. 

_______________________________________________________________________ 
 
5.33 We use Eq. 5.19 
 

 V2 =
2 ⋅ 32.2

ft
s2 ⋅1ft ⋅ 62.3

lbm
ft3 1− 0.72( )

62.3 lbm
ft3 0.72( ) 1 − 0.5( )4( )

= 5.17
ft
s

= 1.58
m
s
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 Q = V2 A2 = 5.17
ft
s

π
4

0.5ft( )2⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 1.01

ft3

s
= 0.029

m3

s
 

_______________________________________________________________________ 
 

5.34* V2 =

2 P1 − P2( )
ρ

+ 2g z1 − z2( )

1 − A1 / A2( )2  

      =

2 7 - 5( ) lbf
in2

0.72 62.3( ) lbm
ft3

⋅ 32.2 lbm ft
lbf s2 ⋅ 144 in2

ft2 + 2 ⋅32.2 ft
s2 ⋅2 ft

1 − 0.5( )4 = 24.0
ft
s

= 7.33
m
s

 

 Q = VA = 24.0
ft
s

⋅
π
4

0.5ft( )2 = 4.72
ft3

s
= 0.13

m
s

 

_______________________________________________________________________ 
 
5.35 Let (1) be in the pipe opposite the top leg of the manometer, (2) be in the vertical 
section opposite the lower leg of the manometer.   See Eq  5.19.  Here 
D2 / D1 = 0.5 / 2 = 0.5  
 

 V2 =
2 ⋅ 32.2

ft
sec

⋅
2
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 13.6 −1( )⋅ 62.3

lbm
ft3

62.3 lbm
ft3 1 − 0.5( )4( )

=12.0
ft
s

= 3.66
m
s

 

 Q = V2 A2 = 12.0
ft
s

⋅ 0.5 ft2 = 6.0
ft3

s
= 0.17

m3

s
 

 
From the figure there is no way to tell which way the water if flowing. 
_______________________________________________________________________ 
 

5.36* V = Cv

2 P1 − P2( )
ρ 1− A2 / A1( )2( ) ;    Pwater-mercury

interface
= P2 + ρwaaterg ⋅2 in  

 Pmercury− air
interface

= P1 = Pmercury-water
interface

+ ρHgg ⋅ 0.1 in  

 P1 − P2 = 2 in ρwg + 0.1in ρHgg = ρwg ⋅ 2 +1.36( ) in  

 V = 1.0
2 ⋅ 32.2

ft
s2 ⋅ 62.3

lbm
ft3 ⋅

3.36
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.075 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1− 0.12( )

= 123
ft
s

= 37.5
m
s

 

 Q = VA = 123
ft
s

⋅1ft2 =123
ft3

s
= 3.48

m3

s
 

_______________________________________________________________________ 
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5.37 (a) AF =
Ý m A
Ý m F

=
AAVAρA

AFVFρF

;  
VA

VF

=
2

ΔP
ρA

2
ΔP
ρ F

=
ρF

ρF

   

We cancel the pressure difference because both the incoming air and the liquid gasoline 

in the reservoir are at the same pressure.  Then 
AA

AF

=
DA

DF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 and

 AF =
DA

DF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
ρF

ρA

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
2 ρA

ρF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

DA

DF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
ρA

ρF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
2
 

 
(b) As the above equation shows, the air-fuel ratio should be constant, independent of the 
air flow rate.  This explains why this type of carburetor was the practically-exclusive 
choice of automobile engine designers for about 80 years.  With a very simple device, 
one gets a practically constant air-fuel ratio, independent of the throttle setting.    The rest 
of the carburetor was devoted to those situations in which one wanted some other air-fuel 
ratio, mostly cold starting and acceleration, for which one wants a lower air fuel ratio (" 
rich ratio"). 
 

(c) 15 =
DA

DF

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 0.075
lbm
ft3

0.72 ⋅ 62.3 lbm
ft3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

1
2

; DA

DF

=19.15; DJ

D2

=
1

19.15
= 0.052  

 
(d) At 5280 ft the atmospheric pressure is about 0.83  atm.  The air density falls while the 
fuel density does not, so the air fuel ratio would become 

 AF = 15
0.83 atm

1 atm
=13.7

lbmair

lbmfuel

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

and the engine would run "rich".  High altitude conversion kits (smaller diameter jets) are 
available to deal with this problem.  Rich combustion leads to increased emissions of CO 
and hydrocarbons; there are special air pollution rules for autos at high elevations. 
 
 Demands for higher fuel economy and lower emissions are causing the carburetor 
to be replaced by the fuel injector.  In a way it is sad; the basic carburetor is a really 
clever, simple, self-regulating device. 
_______________________________________________________________________ 
5.38 By Bernoulli's equation the velocity of a jet is proportional to the square root of the 
pressure drop/density.  The density is proportional to the molecular weight.  For the 
values shown, the predicted jet velocity in the burners will be the same for propane and 
natural gas.  Because of the higher density of propane, the diameter of the jets will 
normally be reduced, to maintain a constant heat input.  But the velocities of the 
individual gas jets are held the same, to get comparable burner aerodynamics. 
_______________________________________________________________________ 
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5.39 V2 = Cv
2 −ΔP( )

ρ 1 −
D
D0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

4⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

; − ΔP =
ρV2

2

2Cv
2 1 −

D
D0

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

4⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 V2 =
1 ft
s

π
4

1 in( )2

π
4

0.2in( )2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= 25
ft
s

 

 
−ΔP =

55 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 25 ft

s
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

1− 0.2( )4( )
2( ) 0.6( )2 ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144in2 =10.3
lbf
in2 = 70.9 kPa

 

_______________________________________________________________________ 
 

5.40  Here for  D2 / D1 = 0.8   1−
A2

2

A1
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 1 − 0.84( )= 0.768 

  

and for   D2 / D1 = 0.2  ,  1−
A2

2

A1
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 1 − 0.24( )= 0.9992  

So the curves for C would simply be the corresponding curves for Cv   divided by these 
values (or multiplied by their reciprocals).  For 0.2 the multiplier is 1.0008, or practically 
1, while for 0.8 it is 1.30.  This is a simple scale change for each curve on Fig. 5.14.  
_______________________________________________________________________ 
5.41 This is simplest by trial and error.  First we guess that D2 / D1 = 0.5.  Then 

 V2 = V1 ⋅
D1

D2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

= 1
ft
s

⋅
1

0.5
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

= 4
ft
s

 and 

 −ΔP = 1−
D2

D1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

4⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

ρ
2

⋅
V
Cv

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 

         = 1 − 0.54( )
13.6 ⋅ 62.3

lbm
ft3

2
⋅

4
ft
s

0.62

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

2

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2 = 3.57
lbf
in2  

 
This is done on a spreadsheet.  We then ask the spreadsheet's search engine to find the 
value of D2/D1  which makes the press drop = 3 psi.  Doing this by "goal seek" on excel 
one finds D2/D1 = 0.5205. 
_______________________________________________________________________ 
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5.42*  (a)   

V2 =
2 P1 − P2( )

ρ 1 − A2 / A1( )2( )=
2 ⋅ 20 − 0( ) lbf

in2

62.3 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144in2

ft2 = 63.0
ft
s

= 19.2
m
s

 

 (b)    V2 =
V2  from
part (a)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

20 -11.5( )
20

= 63.0
8.5
20

= 41.1
ft
s

= 12.5
m
s

 

_______________________________________________________________________ 
 

5.43  
ΔP
ρ

+ gΔz +
ΔV2

2
= 0; Δz = −

ΔP
ρg

−
ΔV2

2g
 

 Δz =
− 1− 14.7( ) lbf

in2

62.3 lbm
ft3 ⋅32.2 ft

s2

⋅
32.2 lbm ft

lbf s2 ⋅
144in2

ft2 −
10

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2 ⋅ 32.2 ft
s2

 

       = +31.67 −1.55 = 30.11 ft = 9.18 m  
_______________________________________________________________________ 
 
5.44   The velocities will be the same as in Ex. 5.12.  Solving Eq. 5.AX for (z2 - z1), we 
find 

 (z2 − z1) =
P1 − P2

ρg
−

V2
2

2g
  

              =
(14.7 − 0.34)

lbf
in2

62.3 lbm
ft3 ⋅32.2 ft

s2

⋅32.2
lbm ft
lbf s2 ⋅

144 in2

ft 2 −
25.3

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2 ⋅32.2 ft
s2

 

              = 33.19 − 9.94 = 23.25ft = 7.09 m  
_______________________________________________________________________ 
 
5.45   This follows Ex. 5.12 

 V3 = 2g h1 − h3( )[ ]1/ 2
= 2 ⋅ 32.2

ft
s

⋅10 ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2

= 25.3
ft
s

= 7.71
m
s

 

One may make the next step applying BE from 1 to 2 or from 2 to 3.  Either gives the 
same result.  Working from 2 to 3, we have 

 
P3 − P2

ρ
+ (z3 − z2 )g +

V3
2

2
⋅ 1 −

A3

A2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ = 0  

 P2 − P3 = ρ(z3 − z2 )g + ρ
V3

2

2
⋅ 1 −

A3

A2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 = 62.3
lbm
ft3 ⋅ - 5 ft( )⋅32.2

ft
s2 ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144 in2  
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  + 62.3
lbm
ft3

25.3
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅ 1−

1.5ft 2

1.0 ft2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

 = −2.16 − 5.38 = −7.54
lbf
in2 = −7.54 psig = +7.16 psia = 49.4 kPa abs  

_______________________________________________________________________ 
 
5.46* Take the ocean surface as (1) the tip of the propeller at its highest point as (2) 

 V2max
=

2 P1 − P2( )
ρ

+ 2g z1 − z2( ) 

 =
2 14.7 − 0.26

lbf
in2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

62.3 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144 in2

ft2 + 2 ⋅ 32.2
ft
ρ

⋅ 4 ft = 49.1
ft
s

= 15.0
m
s

 

 ωmax =
Vmax

πD
=

49.1
ft
s

π ⋅15ft
=

1.04
s

= 62RPM  

_______________________________________________________________________ 
 
5.47  See solution to Prob. 5.46*.  Clearly, the greater the depth, the higher the speed at 
which the propeller can turn without cavitation, so this is not as severe a problem for 
submarines (submerged) as it is for surface ships.  However the noise from propeller 
cavitation is a serious problem for submarines, because it reveals the position of the 
submarine to acoustic detectors.   Submarines which do not wish to be detected operate 
with their propellers turning slower than their minimum cavitation speed. 
_______________________________________________________________________ 
 
5.48  See Ex. 5.14.  As in that example take (1) at the upper fluid (gasoline) surface and 
(2) at the outlet jet.  Take (2a) at the interface between the gasoline-water interface.   

Then, applying BE from 1 to 2a, we have  ΔP
ρgasoline

+ gΔz +
ΔV 2

2
= 0  ,  Here the velocities 

are both negligible, so that P2a = ρgasolineg(z1 − z2a )  Then applying BE from 2a to 3 we 
find 
 

 
V3

2

2
=

ρgasolineg(z1 − z2a )
ρwater

+ g(z2a − z3 )  

 
At this point we can observe that as long as the gasoline-water interface is above the 
nozzle, the pressure at 2a will always be that due to 20 m of gasoline, which is the same 
as that of 14.4 m of water.  If we replaced the 20 m of gasoline with 14.4 m of water, 
then the flow at any instant would be unchanged.  So this is really the same as Ex. 5.14 
with the initial height being 24.4 m and the final height being (14.4 +1 ) 15.4 m.  Thus 
this is a plug-in,  
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 Δt =
−2 15.4m( )1/ 2 − 24.4 m( )1/ 2[ ]
π / 4( ) ⋅(1 m)2

π / 4( )⋅(10 m)2 ⋅ 2 ⋅ 9.81 m
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2 = 45.8 s = 0.76 min  

 
An alternative, which may please some students better, is to write  

 
V3

2

2
=

ρgasolineg(z1 − z2a )
ρwater

+ g(z2a − z3 ) = α + g(z2a − z3 )   where α  is a constant (as 

long as the interface is above the outlet).  Then one repeats the whole derivation in Ex 
5.14, finding the same result. 
 
One can also compute the time from when the interface has passed the exit to when the 
surface is 1 m above the exit, finding the same time as for water, because in this period 
the density of the flowing fluid is the same as that of gasoline.  
 
The period when the interface (either gasoline-water or gasoline-air) is close to the 
nozzle is not easy to predict by simple BE because the Δz   becomes comparable to the 
diameter of the opening, and the non-uniform flow phenomena discussed in Sec. 5.11 
come into play. 
 
See Prob. 5.53.  I have the device described in that problem.  I regularly assign the 
problem, then run the demonstration.  One can estimate well, down to an interface one or 
two diameters above the nozzle, but not lower. 
_______________________________________________________________________ 
 
5.49*   See the solution to the preceding problem.  The easiest way to work the problem 
is to conceptually convert the 10 ft of gasoline to 7.2 ft of water.  Then this is the same as 
Ex. 5.13 , asking the time for the level to fall from 17.2 ft to 7.2 ft. 
 Δt =

−2
A2

A1

2g
h2 − h1( )=

2
1

100
2 ⋅

32.2ft
s2

17.2 ft − 7.2 ft( )= 36.5 s   

_______________________________________________________________________ 
 
5.50  (a)  See the preceding two problems.  20 psig is the equivalent of 46.19 ft of water, 
so that 

 Δt =
−2 1 + 46.19ft( )1/ 2 − 5 + 46.19 ft( )1/ 2[ ]

π / 4( )⋅(1 ft)2

π / 4( ) ⋅(10 ft)2 ⋅ 2 ⋅ 32.2 ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2 = 7.11 s = 0.12 min  

 
(b)  In this case we have P = P0

V0

V
= 100 +14.7( )psia

A ⋅1 ft
A ⋅ (6 − h)ft

=114.7 psia
1

(6 − h / ft)
 

where h is the height of the interface above the nozzle, initially 5 ft, finally 1 ft.   The 
final pressure is 22.94 psia = 8.24 psig.   This gives the answer to part (c); the 5-fold 
expansion of the gas lowers its absolute pressure by a factor of 5, which would produce a 
vacuum and stop the flow if the initial pressure were 20 psig. 
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At any instant, the velocity is given by  Voutlet = 2 ⋅
−ΔP

ρ
+ gh

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   where −ΔP  = the 

above absolute pressure minus 14.7 psia.  If we substitute that equation  in the velocity 

expression we get an equation of the form Voutlet =
a

b − h
+ ch  where a, b, and c are 

constants, and an integral of the form 
dh

a
b − h

+ ch
 .  This might be reducible to one of 

the forms in my integral table, but not easily.  Instead we proceed by a spreadsheet 
numerical integration.  For time zero we have  

 Voutlet = 2 ⋅
100

lbf
in2

62.3 lbm
ft3

⋅32.2
lbmft
lbf s2 ⋅144

in2

ft2 + 32.2
ft
s2 ⋅ 5 ft

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= 122.66
ft
s

 

and dh
dt

= −
Aout

Atank

Voutlet = −0.01 ⋅122.66
ft
s

= −1.23
ft
s

 . The time for the surface to fall 

from 5 to 4.75 ft above the outlet would be Δt =
Δh
dh
dt

=
−0.25 ft

1.23 ft
s

= 0.203 s  if the velocity 

remained constant over this height.  But as the following table shows, the velocity 
declines, so we cover this height step using the average of the velocity above, and the 
velocity at h = 4.75 ft, which is -1.07 ft/s.  Then we make up the following spreadsheet; 
 
h, ft P, psia P psig  V inst, ft/s dh/dt, ft/s delta t Cumulativ

e t 
5 114.700 100.000 122.664 -1.227  0.000

4.75 91.760 77.060 107.813 -1.078 0.217 0.217
4.5 76.467 61.767 96.639 -0.966 0.245 0.461

4.25 65.543 50.843 87.778 -0.878 0.271 0.733
4 57.350 42.650 80.482 -0.805 0.297 1.030

3.75 50.978 36.278 74.302 -0.743 0.323 1.353
3.5 45.880 31.180 68.949 -0.689 0.349 1.702

3.25 41.709 27.009 64.227 -0.642 0.375 2.077
3 38.233 23.533 59.997 -0.600 0.403 2.480

2.75 35.292 20.592 56.159 -0.562 0.430 2.910
2.5 32.771 18.071 52.636 -0.526 0.460 3.370

2.25 30.587 15.887 49.368 -0.494 0.490 3.860
2 28.675 13.975 46.310 -0.463 0.523 4.383

1.75 26.988 12.288 43.422 -0.434 0.557 4.940
1.5 25.489 10.789 40.673 -0.407 0.595 5.534

1.25 24.147 9.447 38.033 -0.380 0.635 6.170
1 22.940 8.240 35.479 -0.355 0.680 6.850
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Finding a time of 6.85 s.  The original spreadsheet carries more digits than will fit on this 
table.  One may test the stability of this solution, by rerunning it with smaller height 
increments.  For increments of 0.25 ft, shown in the table, the time is 6.8498 s.  For 
increments of 0.1 ft it is 6.8563 s.  Both round to 6.85 s. 
 
(c) See the discussion at the top of part (b). 
_______________________________________________________________________ 
 
5.51 Vout = 2gh ;  Qout = AexitVout = −Atank

dh
dt

 

 Atank = 50 ft2 + 50 ft2 h
20 ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 50 ft2 + 2.5 ft ⋅h = a + bh  

where a  and b  are constants. 

 dh
dt

=
−Aout 2gh

a + bh
;  −Aout 2g dt

0

Δt

∫ =
adh

hh0

h

∫ + b hdh
h0

h

∫  

 

  

Δt =
1

Aout 2g
a
1
2

h +
b
3
2

h
3
2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

h= 0

h= h top

 

       =
1

1 ft2 2 ⋅32.2
ft
s2

50 ft2

1
2

20 ft +
2.5 ft

3
2

20 ft( )
3
2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

= 74.3 s  

  
_______________________________________________________________________ 
 
5.52* The instantaneous depth in the tank is h.  Let h' = h1 - h.  Then this becomes the 
same as Ex. 5.13 

 Δt =
−2 h2 − h1( )

A2

A1

2g
; h2 = 0, h1 = h1  

 Δt =
2 h1

A2

A1

2g
=

2 h1

0.5
20

⋅ 2 ⋅32.2
ft
s2

= 9.97
s
ft

⋅ h1   

_______________________________________________________________________ 
 
5.53  This is the same as Ex. 5.14, with much smaller dimensions, which match a 
Plexiglas demonstrator which I have used regularly in class.  Following Ex. 5.14 
 

 Δt =
−2 1 in( )1/ 2 − 11in( )1/ 2[ ]

π / 4( ) ⋅(0.3 in)2

6 in ⋅5.5 in
⋅ 2 ⋅32.2 ft

s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1/ 2 ⋅
ft

12 in
= 78 s = 1.30 min  
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When I have run this in a classroom (with a sink) the times are typically 84 to 88 s.  
Much of the time is spent in the last inch, where the assumption that the diameter of the 
nozzle is negligible compared to the height of the fluid above it becomes poor (see Sec 
5.11).  When I do this I assign the problem and ask each student to write her/his name 
and predicted time on the blackboard before I run it.  Some students like that, others 
don't. 
_______________________________________________________________________ 
 
5.54 (a)  See Ex. 5.5

 V2 = C 2gh
ρair

ρgas

− 1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0.6 2 ⋅ 32.2

ft
s2 ⋅

7.5 ft
12

⋅
29
16

−1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 3.43

ft
s

 

Here we introduce the orifice coefficient because the hole drilled in the lid of the can is 
much more like a flat-plate orifice than like the rounded nozzles in the Torricelli 
examples. 
 
(b)   For totally unmixed flow the densities above and below the interface between gas 
and the air which has flowed in from below are constant, so that  

 
V2

V2, initial

=
h
h0

.  We then square both sides and differentiate w.r.t., finding 

 
2V2

V2, initial( )2
dV2

dt
=

1
h0

dh
dt

.  Then using the same ideas as in Ex 5.14 we write that 

 dh
dt

= −V2
Aoutlet

Atank cross section

.  We substitute this in the preceding equation and simplify 

to  
dV2

dt
=

− V2, initial( )2

2h0

Aoutlet

Atank cross section

  

which we can then separate and integrate from start to any time, finding 

 
V2

V2 ,original

= 1−
V2 ,original Aoutlett

2h0 Atank cross section

 

This is a straight line on a plot of 
V2

V2 ,original

 vs. t .  Its value is zero when 

 

 t =
2h0 Atank cross section

V2, original Aoutlet

=
2 ⋅

7.5ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

π
4

⋅
6.5 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

3.43 ft
s

⋅ π
4

⋅ 0.25 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 246 / s  

 
For the totally mixed model we have 
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V2

V2, initial

=

ρair

ρgas mixture in can

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

instantaneous

−1

ρair

ρgas mixture in can

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

initial

−1
  

By material balance, taking the can as our system.  In this problem two Vs appear, the 
volume of the can and the instantaneous velocity.  Following the nomenclature, both are 
italic.  When a V is the volume of the can, it has a "can" subscript. 
 Vcan

dρmixture

dt
= Ý m in − Ý m out = V2 Aoutlet ρair − ρmixture( ) 

Which we rearrange to 

 
dρmixture

ρair − ρmixture( )
=

V2 Aoutlet

Vcan

dt  

and integrate to 

 ln
ρair − ρmixture( )

ρair − ρmixture( )initial

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ =

−Aoutlet

Vcan

V2dt
0

t

∫ = −
Q

Vcan

 

where Q
Vcan

 is the number of can volumes which have flowed into and out of the tank 

since time zero.  We take the exp of both sides and rearrange, finding  

 ρmixture = ρair − ρair − ρmixture( )initial exp −
Q

Vcan

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

We then substitute this into the velocity ratio equation and simplify to  

  

 

V2

V2, initial

=

ρgas initial

ρair

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ exp −

Q
Vcan

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1 − 1−
ρgas initial

ρair

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ exp − Q

Vcan

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

In principle, one should be able to eliminate Q from this relationship by 

 − Aoutlet

Vcan

V2dt
0

t

∫ = −
Q

Vcan

 to get 
V2

V2, initial

 as an explicit function of t, but I haven't 

been able to do so, nor has anyone shown me how.  Try it, you'll be impressed!  However 
it is easy to solve this on a spreadsheet.  The solution is shown below.  The first line is 
obvious, at time zero there has been no flow in and V = V0 = 3.431 s.  Most of the 
spreadsheet carries more significant figures than are shown here.   
 
For Q/V = 0.1, we can easily compute that exp(-Q/V) = 0.905.  Then 

 
V2

V2, initial

=
16 / 29( ) ⋅0.905

1 − 1 −16 / 29( )⋅ 0.905
= 0.916  and 

 V2 = 0.916⋅ 3.341ft / s =  3.145 ft / s    We get delta t  by differentiating the 
material balance, above, finding 

Solutions, Fluid Mechanics for Chemical Engineers, Third Edition, Chapter 5, page 20 



 Δt =
Vcan

Aoutlet

Δ(Q / Vcan )
V2, average

=

π
4

⋅
7.5 ft

12
⋅

6.5 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

π
4

⋅ 0.25 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
(0.1 − 0)

0.5 ⋅(3.341 + 3.145) ft
s

= 12.85 s  

Each number in the rightmost column is the sum of the one above it and the one to its 
immediate left. 
 

Q/V exp(-Q/V) V/V0 V, ft/s delta t, s t cum. 
0 1 1 3.431  0

0.1 0.905 0.916 3.145 12.850 12.850
0.2 0.819 0.845 2.899 13.983 26.833
0.3 0.741 0.782 2.684 15.136 41.969
0.4 0.670 0.727 2.495 16.316 58.285
0.5 0.607 0.678 2.326 17.527 75.812
0.6 0.549 0.634 2.174 18.776 94.588
0.7 0.497 0.594 2.037 20.065 114.653
0.8 0.449 0.557 1.912 21.399 136.052
0.9 0.407 0.524 1.797 22.784 158.836

1 0.368 0.493 1.692 24.221 183.057
1.1 0.333 0.465 1.594 25.717 208.774
1.2 0.301 0.438 1.504 27.275 236.049
1.3 0.273 0.414 1.420 28.899 264.948
1.4 0.247 0.391 1.342 30.593 295.541
1.5 0.223 0.370 1.269 32.363 327.904
1.6 0.202 0.350 1.201 34.213 362.117
1.7 0.183 0.331 1.137 36.147 398.264
1.8 0.165 0.314 1.077 38.171 436.435
1.9 0.150 0.297 1.020 40.289 476.725

 
I tested the stability of this solution by reducing the increment size from 0.1 to 0.05 and 
found that the time to Q/V = 1.9 changed from  476.725 s to 476.994 s which is certainly 
a minimal change. 
 
(c) From the above table we may interpolate that 1.1 ft/s corresponds to ≈ 420 s, which is 
a tolerable match with the observed ≈ 325 s.  For the plug flow model the agreement is 
not good as good.  We can see that the required value of V

V0

=
1.1

3.43
= 0.321.  We solve 

for it by 

 
V2

V2 ,original

= 0.321 = 1−
V2 ,original Aoutlett

2h0 Atank cross section

; t =
(1− 0.321) ⋅ 2h0Atank cross section

V2 ,original Aoutlet

 

 t =
(1 − 0.321) ⋅2

7.5 ft
12

3.43 ft
s

6.5 in
0.25 in

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

=167 s  
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We always tell the students that the totally mixed and plug flow models will normally 
bracket the observed behavior of nature.  That happens here.   
 
In making up this solution I found two errors in [7].  I hope the version here is error free.  
As of spring 2003 you could watch a film clip of a version of this demonstration at  
 
 http://chemmovies.unl.edu/Chemistry/DoChem/DoChem049.html 
 
The combustion specialists in Chemical Engineering at the U of Utah like this 
demonstration very much.  For me it is a fine demonstration of unsteady-state flow.  
They see all sorts of interesting combustion-related issues in it. 
_______________________________________________________________________  
 
5.55 Replacing the flowing liquid with a gas heavier than air requires us to combine 
Ex. 5.14 with Ex. 5.5.  We see that the instantaneous velocity is given by  

 V2 = 2gh 1 −
ρair

ρpropane

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2

= 2gh ⋅ 1 −
29
44

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.584⋅ 2gh  

This is true at all values of h so we can simply substitute this value and find that the 
required time is the answer to that example divided by 0.584 = 5.77 minutes. 
 
I give this problem as an introduction to a safety lecture.  Propane is by far the most 
dangerous of the commonly-used fuels.  If there is a large leak of natural gas, buoyancy 
will take it up away from people and away from ignition sources.  If there is leak of any 
liquid fuel (gasoline, diesel, heating oil) it will fall on the ground and flow downhill.  But 
the ground will absorb some, and ditches, dikes or low spots will trap some or all of it.  
But released propane forms a gas heavier than air, which flows downhill, and flows over 
ditches, dikes and low spots, looking for an ignition source, and then burning at the 
elevation  where people are.  See "Chemical Engineers as Expert Witnesses in Accident 
Cases" Chem. Eng. Prog. 84(6), 22-27 (1988). and "Propane Overfilling Fires," Fire 
Journal 81, No 5, 80-82 and 124-126 (1987). 
_______________________________________________________________________ 
 
5.56  At the periphery, where the air flows out, its pressure must be the same as that of 
the atmosphere (subsonic jet!).  By material balance (assuming that the width of the flow 
channel between the cardboard and the spool is constant) the velocity is proportional to 
(1/radius) so the velocity decreases with radial distance.  Thus by BE, the pressure must 
be rising steadily in the radial direction.  In the center hole the pressure must be higher 
than atmospheric, in order to give the gas its initial velocity and to overcome the 
frictional effect of the entrance into the channel between the cardboard and the spool.  
Thus the figure is as sketched below.  This is a very simple, portable, cheap, dramatic 
demonstration to use in class. 
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Centerline
radius of disc

radius of hole

Atmospheric pressurePr
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su
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 a
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_______________________________________________________________________ 
 
5.57 Q =

1 L
2 s

= 0.5
L
s

   The area of the periphery is 

 A = πDh = π ⋅ 35 mm ⋅ 0.2 mm = 22.0 mm2 , so the velocity at the perimeter is  

 V =
Q
A

=
0.5

L
s

22 mm2 ⋅
106 mm3

L
= 22 736

mm
s

= 22.7
m
s

 

The velocity at the edge of the center hole is  

 Vhole = Vperimeter

Dperimeter

Dhole

= 22.7
m
s

35 mm
7.1 mm

= 112
m
s

 

Then we apply BE from the edge of the hole to the perimeter, finding 

 ΔP =
ρ
2

⋅ Vperiphery
2 − Vhole

2( )=
1.20

kg
m3

2
⋅ 22.7

m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− 112
m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

N s2

kg m
⋅

Pa m2

N
 

 = 7.2 kPa =1.05 psi  
At the periphery the pressure is 0.00 psig.  Since the pressure increases by 1.05 psi from 
center to periphery, the pressure at the edge of the center hole must be minus 1.05 psig, 
i.e. a vacuum of 1.05 psi. 
 
_______________________________________________________________________ 
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5.58 The numerical values are shown below: 
 

P2/P1 incompressible isothermal adiabatic 
1 0 0.000 0.000

1.05 0.05 0.049 0.049
1.1 0.1 0.095 0.097

1.15 0.15 0.140 0.143
1.2 0.2 0.182 0.187

1.25 0.25 0.223 0.230
1.3 0.3 0.262 0.272

 
These values are plotted below, with smooth curves drawn through them.  It must be 
clear that at low values of the pressure ratio the three curves are practically identical. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

P    /  P 2 1

[M
/R

T]
·[d

W
/d

m
] 

 
_______________________________________________________________________ 
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5.59 The pressure difference needed to support the load is −ΔP =
W
A

=
W

π
4

D2  

The velocity under the skirt is V =
2 −ΔP( )

ρ ;  thus 

 

 Q = VA = VπDh = πh
2W
π
4

ρ
=

0.01
12

ftπ
8 ⋅ 5000 lbf

π ⋅ 0.075 lbm
ft3

⋅
32.2lbm ft

lbf s2 = 6.1
ft3

s
 

 Po = Ý m 
dWn.f.

dm
= ρQ

RT1

M
ln

P2

P1

= P1Q ln
P2

P1

 

 P2 =
W
A

=
5000 lbf
π
4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 10ft( )2

⋅
ft2

144 in2 = 0.44 psi = 3.05 kN  

 Po = 14.7
lbf
in2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

6.1ft3

s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ln

14.7 + 0.44
14.7

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

144 in2

ft2 ⋅
hp s

550 ft lbf
= 0.69 hp = 0.52 kW  

 
As far as I know these devices were quite popular for a while, but have recently declined 
in popularity.  As far as I know there are still ferry boats that use this system to stay 
above the water, regularly crossing English Channel. 
_______________________________________________________________________ 
 
5.60* (a)  The gauge pressure inside the structure must equal the weight of the roof per 
unit area, P = 1.0 lbf/in2 = 0.007 psig = 0.036 in H2O = 0.0479 kPa 
 

(b) V =
2ΔP

ρ
=

2 ⋅1.0
lbf
ft2

0.075 lbm
ft3

32.2 lbm ft
lbf s2 = 29.3

ft
s

= 8.93
m
s

 

 Q = VA = 29.3
ft
s

⋅ 5ft2 = 146.5
ft3

s
= 8760 cfm = 4.15

m3

s
 

(c)  Po =
QΔP

η
=

146.2
ft3

s
⋅1.0

lbf
ft2

0.75
⋅

HP s
550 ft lbf

= 0.355 HP = 0.264 kW  

These structures are widely used as winter covers for outdoor tennis courts, and some 
other applications.  There are two put up each winter within five miles of my house. 
_______________________________________________________________________ 
 
5.61 (a), using Eq. 5.22 with the coefficient described below it;  

 Q =
0.67W 2g

3 / 2
h

3
2  
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 h =

3
2

⋅ Q

0.67W 2g

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

2
3

=

3
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

100 m3

s

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

0.67 ⋅ 50m 2 ⋅ 9.81
m
s2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

2
3

= 1.007m = 3.3 ft  

(b) V1 =
Q
A

=
100

m3

s
5 ⋅ 50( ) m2 = 0.4

m
s

 

  
(c) Here, looking at the equation 5.BI, we see that the average value of 2gh is 

 2gh( )avg = 2 ⋅9.81
m
s 2 ⋅

0 +1.007
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ m = 9.88

m2

s2  

while the value of V12/2 is constant at 0.08 m2/s2, so the ratio of the neglected term to the 
one retained is 

 Ratio =
0.08

m2

s2

9.88 m2

s2

= 0.008 = 0.8%  

_______________________________________________________________________ 
 

5.62 Vtop = 2 ⋅ 32.2
ft
s2 30 − 0.25( ) ft = 43.77

ft
s

 

 Vbottom = 2 ⋅ 32.2 30 + 0.25( ) = 44.14
ft
s

 

 
Vtop

Vbottom

= 0.9917  

Clearly we make a negligible error by ignoring this in the standard Torricelli's problems. 
_______________________________________________________________________ 
 

5.63 Ý m 1 = Ý m 2 = ρAV  ; 
V1

V2

=
A2

A1

=
D2

D1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

; 
V2

2

2
=

V1
2

2
− gΔz  

 
V2

V1

= 1−
2gΔz
V1

2 = 1−
2 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −1ft( )

1 ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 = 8.087  

 D2

D1

=
1

8.087
= 0.3516 ; D2 = 0.25 in 0.3516( )= 0.088 in = 2.23 mm  

_______________________________________________________________________ 
 
5.64 See the preceding problem.  I have the solution on a spreadsheet, so I can simply 
duplicate that, and ask the spreadsheet's numerical engine to find the value of Δz   for 
which 
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D2 / D1 = 0.1 / 0.25 = 0.4 , finding −Δz = 0.594 ft .  By hand, we rearrange the above 
equations to 

 −Δz =
V0

2

2g
⋅

D1

D2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

4

−1
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ =

1
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2 ⋅32.2 ft
s2

⋅
0.25 in
0.1 in

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

4

−1
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ = 0.594 ft  

At first I was puzzled that ≈ 0.6 ft produces D2 / D1 = 0.4   while 1 ft produces 
D2 / D1 = 0.35.  However we see that D2 / D1 ∝ −Δz( )1/ 4  so that the diameter decrease is 
rapid at the nozzle, and becomes much slower as the stream accelerates due to gravity. 
_______________________________________________________________________ 
 
5.65 I got this quote out of a book somewhere.  I wish I remembered where.  As the 
following calculation shows, by simple B.E. one would estimate a much higher velocity.  
However choosing 1.013 bar as atmospheric pressure may be too high for a major 
hurricane; the pressure at which the velocity is negligible may be substantially below 
that.  In any event,  

 V =
2ΔP

ρ
=

2 ⋅ 1.013 − 0.850( )⋅105Pa

1.20 kg
m3

⋅
N m2

Pa
⋅
kg m
N s2  

     = 164
m
s

= 538
ft
s

= 367
mi
hr

 

_______________________________________________________________________ 
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Solutions Chapter 6 
 
 For all problems in this chapter, unless it is stated to the contrary, friction factors 
are computed from Eq. 6.21. 
 
6.1 For non-horizontal flow one simply replaces the (P1 - P2) term with  
 P1 − P2( )+ gρ z1 − z2( ) 
which makes the equivalent of Eq. 6.4 become. 

 τ =
−r P1 − P2( )+ gρ z1 − z2( )[ ]

2Δx
 

and the equivalent of Eq. 6.9 becomes 

 Q =
π
μ

D0
4

128
P1 − P2( )+ ρgΔz

Δx

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

For vertical flow Δz/Δx is plus or minus 1; for some other angle it is cos θ so that Eq. 6.9 

becomes Q =
π
μ

D0
4

128
−

dP
dx

+ ρg cosθ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

_______________________________________________________________________ 
 
6-2 Assuming a transition Reynolds number of 2000,  

 

  

V =
R ⋅ μ
D ⋅ ρ

=
2000 ⋅ 0.018 cP
1

12
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ft ⋅ 0.075 lbm

ft3

⋅
6.72 ⋅10−4 lbm

ft s cP
= 3.87

ft
s

= 1.18
m
s

 

 
ΔP
Δx

=
4 f
D

ρ
V 2

2
; 

  
f =

16
R

= 0.008  

 
ΔP
Δx

=
4( ) 0.008( ) 0.075

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 3.87

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

1
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ft ⋅ 2

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144in2  

        = 4.7 ⋅10−5 psi
ft

= 0.0011
kPa
m

 

 
These values are low enough that air is very rarely in laminar flow in industrial pipes. 
_______________________________________________________________________ 
 
6.3* Again assuming a transition Reynolds number of 2000,  

 V =
2000 ⋅1.002 cP
1

12
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ft ⋅ 62.3 lbm

ft3

⋅
6.72 ⋅10−4 lbm

ft s cP
= 0.259

ft
s

= 0.079
m
s

 

 
ΔP
Δx

=
128
π

μ
D4 =

128
π

⋅
2.09 ⋅1e − 5 lbf s / ft2

ft / 12( )4   

      = 0.0250
lbf
ft3 = 0.0001735

psi
ft

= 0.0039
kPa
m
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or, taking f = 16/ R =  0.008, and using the friction factor formulation 



 

 ΔP
Δx

=
4 ⋅ 0.008 ⋅ 62.3 ⋅ 0.259( )2

2 ⋅ 1 / 12( )
⋅

1
32.2

⋅
1

144
= 1.735 ⋅10−4 psi

ft
= 0.92

psi
mile

 

 
These values show that water is occasionally, but not often, in laminar flow in industrial-
sized equipment.  It is often in laminar flow in laboratory or analytical sized equipment. 
_______________________________________________________________________ 
 

6.4 Vavg =
Q
A

=
−

ΔP
Δx

⋅
π
4

⋅
r0

4

8
πr0

2 = −
ΔP
Δx

1
μ

r0
2

8
     From Eq. 6.8 

 Vmax = −
ΔP
Δx

1
μ

r0
2

4
     so that 

Vavg

Vmax

= 2   which is Eq. 6.10. 

 keavg =
V 3rdr∫

2 Vrdr∫
=

− ΔP
Δx

⋅ 1
4μ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

r0
2 − r2( )3

rdr
0

r0

∫
r0

2 − r 2( )rdr
0

r0

∫
 

      = etc[ ]
r0

6 − 3r0
4r2 + 3r0

2r4 − r6( )rdr
0

r0

∫
r0

2 − r2( )rdr
0

r0

∫
= etc[ ]

r0
8 1

2
−

3
4

+
3
6

−
1
8

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

r0
4 1

2
− 1

4
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

= etc[ ]r0
4

2
 

       =
1
4

Vmax( )2
= Vavg( )2

 which is Eq. 6.11. 

_______________________________________________________________________ 
 

6.5 μ =
ρg −Δz( )πD0

4

Q Δx 128
; Take ln of both sides and differentiate, finding 

 d ln μ =
dμ
μ

=
dρ
ρ

+
d −Δz( )

−Δz
+

4dD0

D0

−
dQ
Q

−
d Δx( )

Δx
 

 
 (a) and (b) 

dμ
μ

α
dQ
Q

 or 
dρ
ρ

 so that a 10% error in Q or ρ   causes a 10% error 

in μ  

 (c) dμ
μ

α 4
dD0

D0

    so that a 10% error in  causes a 40% error in D0 μ . 

This marked sensitivity to errors in diameter shows why this type of viscometer is almost 
always treated as a calibrated device. 
_______________________________________________________________________ 
 

6.6 
  
F = −gΔz = Δu = −

9.81m
s2 ⋅ −0.12 m( )⋅

J
N m

⋅
N s2

kg m
= 1.77

J
kg
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 ΔT =
Δu
CV

=
1.77 J

kg
2.14 kJ
kg oC

= 0.55 ⋅10−3 oC = 0.99 ⋅10−3 o F  

For much higher viscosities this temperature rise can be significant.  The corresponding 
viscometer for very high viscosity fluids replaces gravity with a pump, and attempts with 
cooling to hold the whole apparatus and fluid isothermal.  All serious viscometry is done 
inside constant temperature baths, see Fig. 1.5. 
_______________________________________________________________________ 
 

6.7*     Q =
−ΔP
Δx

π
128

D4

μ
= 1

lbf / in2

ft
π

128
(2 ft / 12)4

1e5 ⋅6.72e − 4 lbm
ft s

⋅ 32.2
lbm ft
lbf s2 ⋅

ft
144 in

 

 = 0.00133
ft3

s
= 3.75 ⋅10−5 m3

s
  

 V =
Q
A

=
0.00133ft3 / s

(π / 4) ⋅ (2ft / 12)2 = 0.0608
ft
s

= 0.0185
m
s

 

One may check finding R ≈ 0.01, so this is clearly a laminar flow. 
_______________________________________________________________________ 
 

6.8 ;V =
10−8 m3

s
π
4

10−3 m( )2
= 0.0127

m
s
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R =

DVρ
μ

=
10−3 m( ) 0.0127

m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1050

kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.0303 Pa s
⋅
Pa m2

N
⋅

N s2

kg ⋅m
= 0.44  

If the fluid density does not change then the lowest viscosity is one would correspond to 
R = 2000, and 
 
 

  
μmin = μ ⋅

R
2000

= 3.03 cp ⋅
0.44
2000

= 0.0067cp  

 
App. A1 shows that this low a viscosity is rarely encountered in liquids, so that this kind 
of viscometer can be applied to most liquids.  Cryogenic liquids, however, have very low 
viscosities, so there might be a laminar-turbulent transition problem using this particular 
viscometer on them. 
_______________________________________________________________________ 
 
6.9  The volume of fluid between the two marks is  
 V = Δz ⋅

π
4

D2 =1 cm ⋅
π
4

1 cm( )2 =
π
4

cm3  

The volumetric flow rate in the example is for the level at the top.  The volumetric flow 
rate is proportional to the elevation, so at mid elevation of the test 



 Q = QEx.6.2
11.5 cm
12 cm

= 10−8 m3

s
11.5
12

= 0.958⋅10−8 m3

s
 

and 

 Δt =
V
Q

=

π
4

cm3

0.958 ⋅10−8 m3

s

⋅
m3

106 cm3 = 82.0 s  

Many common industrial viscometers are of this "read the time between the marks" type, 
and the viscosities are reported in "seconds", e.g. Saybolt Seconds Universal, SSU which 
is the standard unit of viscosity for high boiling petroleum fractions. 
_______________________________________________________________________ 
 
6.10* F = ma = m

dV
dt

= m
ΔV
Δt

  here Δv =  40 - -40( ) = 80
mi
hr

   so that  

 

 F =

5
16

lbm
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 80

mi
hr

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

10 s
⋅
5280

ft
mi

3600 s
hr

⋅
lbf s2

32.2 lbm ft
= 0.114 lbf  

_______________________________________________________________________ 
 
6.11 If the balls are thrown in the I direction, then the I component is independent of the 
y component.  The x component force depends on the speed of the train, and how often 
the balls are thrown back and forth, but not on their velocity. 
_______________________________________________________________________ 
 
6.12  Start with Eq. 6.4, which is a general force balance, applicable to any kind of 
flow. and equate the shear stress to the value shown in the problem 

 τ =
-r P1 − P2( )

2Δx
= fρ

V 2

2
=

D
4

−
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

Then, for horizontal flow use Eq. 6.B with both sides divided by Δx  
 

  

-F
Δx

=
1
ρ

⋅
ΔP
Δx

. Eliminate ΔP
Δx

 between these two equations finding 

 
  
fρ

V2

2
=

D
4

ρ
F
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  which is rearranged to 

 
f =

F
4(Δx / D) ⋅(V 2 / 2)

 

Which is Eq. 6.18.   This shows how the 4f  appears naturally in the Fanning friction 
factor.   
_______________________________________________________________________ 
 

6.13 f = −
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

D
2ρV 2 ; In Poisueille's equation   Vavg =

D0
2

32μ
−

ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

Eliminating ΔP
Δx

 between these two we find 
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f =

32μ Vavg

D0
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

D0

2ρVavg
2 =

16μ
DρVavg

=
16
R

 

_______________________________________________________________________ 
 
6.14* (a) The flow is laminar, so doubling the flow rate doubles the pressure drop to 20 
psi/ 1000 ft. 
(b) At this high a Reynolds number we are on the flat part of the lines of constant relative 
roughness for all but the largest pipe sizes, so that the pressure drop is proportional to the 
velocity squared.  Doubling the velocity quadruples the pressure drop to 40 psi/1000 ft 
 
One would think students would all see this.  They don't.  Assign this problem, after you 
have discussed laminar and turbulent flow, and you will be appalled at how few of the 
students can solve it.  After they have struggled with it, they will be embarrassed when 
you show them how trivial it is.  Maybe that way they will learn about the different 
relation between pressure drop and velocity in laminar and turbulent flow! 
_______________________________________________________________________ 
 
6.15* fDarcy-Weisbach = 4 fFanning , See Eq. 6.19.  Poisueille's equation can be written as 

 
  
fDarcy-Weisbach = 4 fFanning = 4 ⋅

16
R

=
64
R

 

If you look at the equivalent of Fig. 6.10 in any civil or mechanical engineering fluids 
book, you will see that the laminar flow line is labeled  f = 64 / R . 
_______________________________________________________________________ 
 

6.16 

  

R =

6.065
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 7

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 62.3

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.002 cp ⋅ 6.72 ⋅10−4 lbm
ft s cp

= 3.27 ⋅105     

 
ε
D

=
0.0018in
6.065in

= 0.0003; f = 0.0042 

 
ΔP
Δx

=
4( ) 0.0042( ) 62.3

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 7

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

6.065
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 2( )

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

       = 1.12 ⋅10−2 psi
ft

= 11.2
psi

1000 ft
= 0.253

Pa
m

 

 by linear interpolation in Table A.3     
−ΔP
Δx

≈ 11.1
psi

1000 ft
 

_______________________________________________________________________ 
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6.17    (a) The easiest way to work this 
problem is to use Fig. 6.12.  As sketched at the 
right one enters at the bottom at 30 psi/1000 ft, 
reads diagonally up to the 0.8 s.g. line, then 
vertically to the 5 cs line, and then reads 
horizontally, finding about 175 gpm.  

30 psi/1000 ft

5 cs

175 gpm

0.8

 
 
(b)  To do it using Fig 6.10 one sees that it is the same type of problem as Ex. 6.5, the 
Type 2 problem in Table 6.3, which leads to a trial-and error solution.  This is very 
similar to that shown in Table 6.5, and is shown below 
 

Variable First guess Solution 
D, ft 0.256 0.256 
L, ft 1000.000 1000.000 
delta P, psig -30.000 -30.000 
e, inches 0.002 0.002 
r, lbm/ft3 49.840 49.840 
n, cs 5.000 5.000 
m cp 4.000 4.000 
f, guessed 0.005 0.006 
V, ft/s 8.447 7.685 
R 40044.302 36428.733 
e/D 0.001 0.001 
f, computed 0.006 0.006 
f, computed/f guessed 1.189 1.000 
Q, gal/min 176.746 

 
The answer, 176.7 gpm is slightly more than the 175 we got in part (a), but no one should 
believe any calculation this type to better than ± 10%, as discussed in the text. 
 
_______________________________________________________________________ 
 
6.18  This is easily solved on Fig. 6.12.  One enters at 200 gpm, reads horizontally to the 
zero viscosity boundary (which corresponds to the flat part of the curves on Fig. 6.10), 
then down to s.g .= 0.75, and diagonally to ≈ 23 psi/1000 ft.  This is less than the 
available 28, so a 3 inch pipe would be satisfactory.   
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To solve using Fig. 6.10 (or Eq. 6.21) we compute 
 V =

200 gpm

23.0 gpm
ft / s

= 8.70
ft
s

;  we calculate that R = 1.5106 and e/D ≈0.006, so that 

f=0.00456, and 

 
−ΔP
Δx

=
4( ) 0.00456( ) 0.75⋅ 62.3

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 8.70

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

3.068
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ft ⋅ 2

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

          = 0.0271
psi
ft

= 27.1
psi

1000ft
 

 
This is adequate agreement with Fig. 6.13 and indicates that a 3 inch pipe is big enough. 
_______________________________________________________________________ 
 

6.19*  (a) V =
150gpm

23 gpm
ft / s( )

= 6.52
ft
s

 ;    

 

R =
0.256ft ⋅ 54.2

lbm
ft3 ⋅ 6.52

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

1.5 ⋅ 6.72e − 4 lbm
ft s

= 89,650  

f ≈ 0.53, so  

ΔP = 4 f
L
D

ρV 2

2
=

4( ) 0.0053( ) 1000ft( ) 0.87 ⋅62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 6.52

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

3.068
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 2

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144in2  

     = 20.5 psi   
 
(b) by chart look up on Fig. 6.13 the pressure drop is 19 psi.  Fig. 6.13 generally predicts 
pressure drop values for turbulent flow somewhat less than does Fig 6.10, most likely 
because it uses a lower value for the absolute roughness.  The most likely reason for the 
lower roughness in Fig 6.13 is that most petroleum products are slightly acid, and will 
smooth out a steel pipe in use, while most waters will rust or leave deposits on steel 
pipes, so that they become more rough over time.  The value for the roughness of steel 
pipe Table 6.2 is presumably more in accord with the experience with water in steel 
pipes than the experience with various petroleum products in steel pipes. 
_______________________________________________________________________ 
 

6.20 
.  
-F = Δu = −gΔz = − 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −20ft( )⋅

Btu
778 ft lbf

⋅
lbf s2

32.2lbm ft
 

 = 0.026
Btu
lbm

= 0.060
kJ
kg

 

 ΔT =
Δu
CV

=
0.026

Btu
lbm

0.6 Btu
lbm o F

= 0.043 oF = 0.024°C  
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Here again we see that the temperature rise is negligible. 
_______________________________________________________________________ 
 
6.21  The table is shown below.  The first three columns are the same as those in Table 
6.5, except for the number of digits shown.  The bottom 4 rows are in addition to what is 
shown in Table 6.5.  The right column is made by copying the column to its left, 
inserting -30 in place of - 10 for Δ z, and then using the spreadsheet's numerical solution 
engine ("Goal Seek" on Excel spreadsheets) to make the f computed/guessed =1.00 by 
manipulating the value of f guessed. 
 

Variable First guess Solution Prob. 6.21 
D, m 0.1 0.1 0.1 
L, m 100 100 100 
Δ z, m -10 -10 -30 
ε , inches 0.0018 0.0018 0.0018 
ρ, kg/m3 720 720 720 
μ, cp 0.6 0.6 0.6 
f, guessed 0.0050 0.0044 0.0044 
V, m/s 4.4294 4.7102 8.2232 
R 531533.63 565222.127 986784.836 
e/D 0.0005 0.0005 0.0005 
f, computed 0.0044 0.0044 0.0044 
f, computed/f 
guessed 

0.8870 1.0007 1.0001 

Q, m/s 0.0348 0.0370 0.0646 
   ft3/s 1.2277 1.3055 2.2792 
  gal/s 9.1838 9.7659 17.0497 
   gal/min 551.0298 585.9539 1022.9792 

 
With this number of significant figures (chosen to fit the page) it would appear that the 
value of f  did not change from Ex. 6.5  to Prob. 6.21.  Looking at the original 
spreadsheet we see it went from 0.004425 to 0.004352, which is practically a negligible 
change, indicating that we are on an almost-flat part of Fig. 6.10.  If there had been no 
change in f then the volumetric flow rate in this example would be √3 times the value in 
Ex. 6.5, or 1015 gpm, vs the 1025 gpm computed here.  Again, remember the ± 10% 
uncertainty in all such calculations. 
_______________________________________________________________________ 
 
6.22 The table is shown below.  The first three columns are the same as those in Table 
6.6, except for the number of digits shown.  The bottom 2 rows are in addition to what is 
shown in Table 6.6.  The right column is made by copying the column to its left, 
inserting 2000 in place of 500 for Q and then using the spreadsheet's numerical solution 
engine ("Goal Seek" on Excel spreadsheets) to make the ΔP, computed/guessed =1.00 by 
manipulating the value of D guessed. 
 



Variable First guess Solution Prob. 6.22 
Q, cfm 500 500 2000 
D, ft 1 0.66700631 1.11911808 
L, ft 800 800 800 
ε, inches 0.00006 0.00006 0.00006 
ρ, lbm/ft3 0.08 0.08 0.08 
μ, cp 0.017 0.017 0.017 
V, ft/s 10.6103 23.8489 33.8872 
R 74301.8538 111396.028 265572.884 
e/D 0.000005 7.4962E-06 4.4678E-06 
f, computed 0.00465346 0.0042 0.0035 
ΔP, calculated 0.01446184 0.1000 0.1000 
Allowed ΔP, 0.1 0.1000 0.1000 
ΔP, calc/ΔP, allow 0.14461836 1.0000 1.0002 
D calc, m 0.2033 0.3411 
   inches 8.0041 13.4294 

 
Here f declines substantially, mostly because e/D declines due to the larger diameter.  If 
there were no change in f  then quadrupling the volumetric flow rate would cause the 
required diameter to double.  As shown here it increases by a factor of 1.68. 
_______________________________________________________________________ 
 
6.23* This is the same as Ex. 6.4, with different numerical values.  By trial and error one 
finds V= 10.5 ft/s, R = 6.46 E5, f= 0.0039, Q = 1639 gpm. 
 

To use Table A.3. we compute  
  
−F = −gΔz = − 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ −200 ft( )= 6440

ft
s2  

Then, for horizontal flow 

-
ΔP
Δx

=
ρ
Δx

−F( ) =
62.3

lbm
ft3

5000ft
6440

ft2

s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144in2 = 0.0173
psi
ft

= 1.73
psi

100 ft
 

 
Then entering the table for 8 inch pipe we find for Q = 1600 gpm, − dP / dx  = 1.65 
psi/100 ft, and for Q = 1800 gpm, − dP / dx  = 2.08 psi/100 ft,   By linear interpolation, 
1.73 psi/100 ft corresponds to Q ≈ 1630 gpm. 
_______________________________________________________________________ 
 
6.24 See the solution to Prob. 6.23.  With the same pressure drop (1.73 psi/1000 ft) we 
enter Table A.4, and find that to get 10,000 gpm, we need an 18 inch pipe. 
_______________________________________________________________________ 
 
6.25* Assuming the flow is from the first to the second tanks,  
 

  

ΔP
ρ

+ gΔz = −F   
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F = −
10

lbf
in2

0.85 ⋅62.3 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144 in2

ft2 + 32.2
ft
s2 −20ft( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= − 876 − 644( )= −232
ft2

s2  

  
This negative value of the friction  heating indicates the above assumption is incorrect, 
the flow must be from the second tank to the first.  Then we compute the equivalent 
pressure gradient for a horizontal pipe, taking the flow from right to left 
 

  
−

ΔP
Δx

=
ρ
Δx

F =
0.85( ) 62.3

lbm
ft 3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

500 ft
232

ft2

s2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144in2 = 0.00529
psi
ft

= 5.29
psi

1000 ft
 
and read from Fig 6.13,  at ν =

100
0.85

= 117.6cs   Q ≈ 18 gal, min.  This is only an 

approximate read, because to the need to interpolate the 117.6 cs line.  The result is in the 
laminar flow region, so we could solve directly from Pouisueille's equation,  
 

Q =
5.29

lbf
in2

1000ft
⋅

π
128

⋅
3.068 ft / 12( )4

100 cp
⋅

ft2 cP
2.09e − 5 lbf s

⋅
144 in2

ft2 = 0.038
ft3

s
= 17.2

gal
min

 

  
_______________________________________________________________________ 
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6.26   

  

R =
DVρ

μ
=

3.068 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 40

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 62.3

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.002 cP ⋅ 6.72⋅10−4 lbm
ft s cp

= 9.5 ⋅105  

From Fig 6.10,  or by trial and error in Eq. 6.21, for this Reynolds number and friction 
factor 
 ε

D
≅ 0.000065;  ε = 0.000065( ) 3.068 in( ) = 0.00020 in  

See Table 6.2.  This new pipe is not as smooth as drawn tubing, ( ε = 0.00006 in ) but is 
smoother than any of the other types of pipe shown in that table. 
_______________________________________________________________________ 
 
6.27 There are easier and most satisfactory ways for finding them.  The density is easily 
measured in simple pyncnometers, to much greater accuracy than it could possibly be 
measured by any kind of flow experiment.  The viscosity is measured in laminar flow 
experiments, as shown in Ex. 6.2. 
 Furthermore, in a flow experiment we would presumably choose as independent 
variables the choice of fluid, the pipe diameter and roughness and the velocity.  We 
would measure the pressure drop, and compute the friction factor.  If we were at a high 
Reynolds number, i.e. at the right side of Fig. 6.10, we would see that the friction factor 
was independent of the Reynolds number, so the measurements would be independent of 



the viscosity.  The friction factor would also be independent of the density (which is part 
of the Reynolds number), although the calculation of the friction factor from the 
observed pressure drop would require us to know the density in advance. 
 We may restate this by saying that for really high Reynolds numbers, Figure 6-10 
really only relates three variables, f, D and ε. 
_______________________________________________________________________ 
 
6.28  For Ex 6.5, the equations to be combined are Eq. 6.Q and 6.21.  Eliminating f 
between these, we have  
 

 V =
2g(−Δz)

4 ⋅0.001375 ⋅ 1 + 20,000
ε
D

+
106 μ
DVρ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 3⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⋅
D
Δx

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

1/ 2

 

The only unknown in this equation is V which appears on both sides, (to the 1/6 power 
on the right).  I doubt that this has an analytical solution; it would be tolerably easy 
numerically, but the procedure shown in Ex. 6.5 is certainly easier. 
 
For Ex. 6.6 we combine Eq. 6.X and 6.21,  

 ΔP = ρair −4 ⋅ 0.001375⋅ 1 + 20,000
ε
D

+
106 μ
DVρ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 3⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

Δx
D

⋅
V 2

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  

 
and then replace both V 's with Q / (π / 4) ⋅(D2 )( ).  The resulting equation gives ΔP  as a 
function of D  and variables specified in the problem.  Again, I doubt that this has an 
analytical solution; it would be tolerably easy numerically, but the procedure shown in 
Ex. 6.6 is certainly easier. 
_______________________________________________________________________ 
 
6.29 If you assign this problem, you may want to give some hints, otherwise the students 
flounder with it.  First you should point out that Fig. 6.12 is a log-log plot, but that it is 
not plotted on normal log-log paper.   It has a scale ratio of about 1.5 vertically to 1 
horizontally.  If one re-plotted it on normal log-log paper, one would see that it has three 
families of parallel straight lines, the laminar flow lines with slope 1, the turbulent flow 
lines with slope about 0.55 and the transition and zero viscosity lines with slope 0.5. 
 
(a) for the zero viscosity boundary we estimate ε/D = 0.0018/2 = 0.0009.  The from Fig. 
6.10 we read f = 0.0048.  Then for a velocity of 1 ft/s and s.g. = 1.00 we compute 

 -
ΔP
Δx

=
4 f
D

ρ
V 2

2
=

4 ⋅ 0.0048 ⋅62.3
lbm
ft3 ⋅ 1

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2 ⋅ 2.067 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2  
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 = 0.00077
psi
ft

=
0.77 psi
1000 ft

   

 
From Table A.2 we see that 1 ft/s in a 2 in pipe corresponds to 10.45 gpm, so we plot this 
pressure gradient at that volumetric flow rate.  We draw a line of proper slope through it 
completes the zero viscosity boundary. 
 
(b) We can get both the laminar flow region and the transition region from one 
calculation, by choosing our point as a Reynolds number of 2000 and a viscosity of 40 
cs.  We compute 

 V =
2000ν

D
=

2000( ) 40 cS( )
2.067 ft

12
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅1.08 ⋅10−5 ft2

s cS
= 5.02

ft
s

  Then from Table A.2 

 Q =10.45 ⋅5.02 = 52.4 gpm;   Then, for s.g. = 1, μ = 40 cP, and 

 -
ΔP
Δx

=
8 ⋅Vavg ⋅ μ

r0
2 =

8 ⋅5.02
ft
s

⋅ 40 cP

2.067
24

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 ⋅6.72 ⋅10−4 lbm
ft s cP

⋅
lbf s2

32.2 lbmft
⋅

ft 2

144 in2  

 = 0.0313
psi
ft

= 31.3
psi

1000ft
   for s.g. = 1.00 

   
This point lies on both the 40 cS laminar curve, and on the transition curve.  We draw a 
line with slope 1 through it, for the laminar region, and a line with slope 0.5 through it 
for the laminar-turbulent transition.  Then we complete the laminar region, by drawing 
lines parallel to the first line, for various viscosities.  In the laminar region, at constant 
flow rate the pressure drop is proportional to the viscosity, so, for example, the 20 cs line 
is parallel to the 40 cs line, but shifted to the left by a factor of two, and the 80 cs line is 
parallel to the 40 cs line, but shifted to the right by a factor of two. 
 
(c) For the turbulent region we again need to calculate one point.  We must guess a value 
of the kinematic viscosity for which the line will fall between the transition and zero 
viscosity lines.  From Fig. 6.12 it seems clear that the 1 cS line is likely to meet that 
requirement.  For 1 ft/s,  Q = 10.45 gpm.  Then for s.g. = 1.00 
 

 

  

R =

2.067 ft
12

⋅1
ft
s

1cS ⋅1.08 ⋅10−5 ft2

s cS

= 1.59 ⋅104 ; f = 0.0073 

 -
ΔP
Δx

=
4 ⋅0.0073 ⋅ 1

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅ 62.3
lbm
ft3

2 ⋅ 2.067 ft
12

⋅
lbf s2

32.2 lbm ft
⋅

ft2

144in2  

          = 0.00114
psi
ft

=
1.14 psi
1000 ft
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We then draw a line with slope 0.55 through that point.  We could compute similar lines 
for other kinematic viscosities if we wished. 
 
(d) is taken care of in (b) above. 
 
The problem does not ask the students to compute the lower section which corrects for 
differences in density.  You might bring that up in class discussion.  The lines there 
would have slope 1 on an ordinary piece of log-log paper.  The values calculated above 
are all for s.g. = 1.00, which corresponds to the bottom of the figure, s.g. = 1.00.  If, for 
example, the true s.g. is 0.5, then that bottom section shows that the pressure gradient 
will be 0.5 times the value for s.g. = 1.00.  This is obvious for turbulent flow, where we 
set the density to 62.3 lbm/ft3.  For laminar flow it is a bit more subtle.  If we rewrote 
Poisueille's equation replacing μ  with ρν  we would see that the pressure gradient is 
proportional to the kinematic viscosity times the density.  In making up the laminar part 
of the plot we used the kinematic viscosity, with an assumed s.g. = 1.00.  Thus, in this 
formulation the laminar pressure gradient is also proportional to the specific gravity. 
 
Here I have used 2000 as the transition Reynolds number.  The authors of Fig. 16.2 (and 
the others in that series) used 1600, see Prob. 6.31. 
_______________________________________________________________________ 
 
6.30  Here  

 ν =
μ
ρ

=
0.018 cP

0.075 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
c St ⋅ 62.3

lbm
ft3

cP
= 15.0 cSt  

Entering the chart at 100 gpm, and reading left to this kinematic viscosity (interpolating 
between 10 and 20 in the turbulent region) , and then reading upward to the head loss 
scale on the top of the chart, we find 

 
head loss,
ft / 1000 ft

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

-
ΔP
Δx
ρg

≈ 40
ft

1000ft
= 0.040  

Then the pressure drop is 

 -
ΔP
Δx

= 0.040 ⋅0.075
lbm
ft3 32.2

ft
s2 ⋅

lbf s2

32.2 lbmft
⋅

ft 2

144 in2  

          = 2.08⋅10−5 psi
ft

=
0.0208 psi

1000ft
 

It is most unlikely that anyone would use Fig. 6.12 to solve this type of problem.  But 
this problem shows that one could.  If one solves this by standard friction factor methods, 
one finds R  = 6872, f = 0.0088, and -dP/dx = 0.021 psi/1000 ft. 
_______________________________________________________________________ 
 
6-31* The 20 cSt line enters the transition region at 31 gpm and exits at 87 gpm.  The 
corresponding Reynolds numbers are 
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Rtransition =

3.068 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

31gpm

23.0 gpm
ft / s( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

20 cSt( )⋅ 1.08 ⋅10−5 ft2

s cSt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

=1595 ≈1600  

and 
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Rturb = above ⋅

87gpm
31gpm

= 4477 ≈ 4500 

_______________________________________________________________________ 
 
6.32 The lowest velocity value for 1/2 inch pipe, (0.3 gpm) has a calculated Reynolds 
number of 1346 (taking into account that the viscosity at 60°F is 113% of that at 68°F).  
For this value we can compute the pressure gradients for laminar and turbulent equations, 
finding 0.062 and 0.073 psi/100 ft.  The value in the table is 0.061, showing that this is a 
laminar value.  One can also see from a plot of ΔP/Δx vs Q that there is break in the 
curve for 1/2 inch pipe between this value and all the others, indicating that it is laminar.  
A few of the other smallest velocity values are also laminar.  All the other values are for 
turbulent flow. 
_______________________________________________________________________ 
 
6.33 One may compute that the friction factor falls from 0.0036 to 0.0031 over the range 
of values, which corresponds to Reynolds numbers from 0.56 million to 2.78 million.  
These match Fig. 6.10 reasonably well for an ε/D of 0.00007.  Comparing them to the 
vales from Eq. 6.21, we see that for the lowest flow the ratio of the value n Tab. A.3 is 
104% of that from Eq. 6.21.  For increasing flow rates this ratio diminished.  For 
velocities greater than 9.58 ft/s it is 1.00 ± 1%. 
 
As a further comparison I ran the friction factors from Eq. 6.21, using  ε/D = 0, finding 
that the values in table A.3 are 117% to 131% of the smooth tube values.  Clearly even at 
this size pipe, we do not have smooth tube behavior. 
_______________________________________________________________________ 
 
6.34 Solving the problem either by Fig. 6.10 or by App. A.3, we have 

 
  
F = 4 f

Δx
D

V 2

2
= g −Δz( )= 9.81

m
s

10 m( ) = 98.1
m2

s2  

Either way the value of the friction heating per pound and of Δx/D are the same, so if we 
assume an equal friction factor we would conclude that the velocities were equal.  Then, 
for water 

 
  
−

ΔP
Δx

=
Fρ
Δx

=
98.1

m2

s2 ⋅ 998.2
kg
m3

100 m
⋅

N s2

kg m
⋅

Pa
N m2 = 0.979

kPa
m

= 4.32
psi

100 ft
 

  
In App. A.3 we must interpolate between 425 and 450 gpm, finding about 436 gpm, 
compared to the 386 gpm in Ex. 6.5.  Here the ratio of the velocities is proportional to the 



square root of the ratio of the friction factors.  This is tolerable agreement.  The main 
reason for this is that in turbulent flow, the volumetric flow rate is proportional to D5.  
Thus for the two different size pipes D4 in Sch. 40

Ex. 6.5

=
4.03 in
3.94 in

= 1.0228 and  

D4 in Sch. 40

DEx. 6.5

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

5

=1.1196
.  

Thus our best estimate of Q from Table A.3 is 

Q =
436 gpm
1.1196

= 389 gpm  which agrees well with the 386 gpm in Ex. 6.5. 

 
This problem shows that the friction factor is practically the same for gasoline and water 
in this geometry, so that we can solve the problem using data for water, if we take the 
difference in diameters into account. 
_______________________________________________________________________ 
6.35 Entering Fig. 6.14 at the left at 1000 cfm, reading horizontally to the 12 inch line, 
and then vertically to the pressure drop scale we find  0.2 inches of water per 100 ft, so 
for 1000 ft of pipe the pressure drop is 2 inches of water. 
_______________________________________________________________________ 
 
6.36 Drawing a horizontal line on Fig. 6.14 at 100 cubic meters per hour, and a vertical 
line at 1 Pa per meter, we see they intersect between the 0.1 and the 0.125 meter diameter 
lines. By visual interpolation the required pipe diameter is  about 0.115 m. 
_______________________________________________________________________ 
 
6-37 Drawing a vertical line on Fig. 6.14 from 5 Pa/m to the 0.125 m diameter line, and 
then a horizontal line from there to the right hand of the figure we find a flow rate of 300 
cubic meters per hour. 
_______________________________________________________________________ 
 

6.38(a)V =
1000

ft3

min
π
4

6.065
12

ft
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2 ⋅
min
60 s

= 83.1
ft
s

    From App. A.1 μ = 0.009cP  

A.1 is hard to read, but my HPCP, 71e shows a value of 0.009 at 300 K, so this reading is 
close to right. 

 ρ = 0.075
lbm
ft3

2
29

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.0052

lbm
ft3  

 

  

R =

6.065 ft
12

⋅83.1
ft
s

⋅ 0.0052
lbm
ft3

0.009 cP ⋅6.72 ⋅10−4 lbm
ft s cP

= 3.6 ⋅104 ;    ε = 0.003;  f =0.0058 

 −
ΔP
Δx

=
4 ⋅ 0.0065⋅ 0.0052

lbm
ft3 ⋅ 83.1

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

6.065 ft
12

⋅2
⋅

lbf s2

32.2 lbm ft
⋅

ft2

144 in2  
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 = 0.000177
psi
ft

= 0.0049
in H2O

ft
= 0.49

in H2O
100 ft

= 4.01
Pa
m

  

 
(b)  For air at the same pressure gradient and pipe size we draw a horizontal line from 
1000 cfm to the 6 inch line, and then down vertically to read about 6.5 inches of water 
per 100 ft.  If the friction factors are the same, we would expect the pressure gradients to 
be proportional to the densities.  Taking the ratio of the densities as the same as the ratio 
of the molecular weights, we estimate 
 
 −

ΔP
Δx

=
6.5in H2O

100 ft
⋅

2
29

=
0.45in H2O

100 ft
 

 
The answers to parts (a) and (b) differ by ≈10%, which is within the range of uncertainty 
of any friction factor calculation.  The principal reason for the difference is that the 
kinematic viscosity of hydrogen is ≈ 7 times that of air, so the Reynolds number is 1/7 
that of air.  If we repeat part (a) for air, we find R = 2.6·105 and f = 0.0043.   
 
Thus, this is only an approximate way of estimating the behavior of hydrogen.  For gases 
with properties more like those of air it works better. 
_______________________________________________________________________ 
 
6.39   (a)  From Fig 6.1 (before I tried Eq. 6.21), f ≈0.0048 
(b)   By Colebrook, the solution is a trial and error, shown in the following spreadsheet; 
  

 First Guess Solved values 
f guessed 0.5 0.00482514 
left side 1.41421356 14.3961041 
right side 15.0676463 14.3909702 
ratio 0.09385763 1.00035674 

  
I intentionally made a bad first guess, but the "Goal Seek" routine on excel, when asked 
to make the ratio of the left to right sides = 1.00 had no trouble finding f ≈ 0.0048 
 
(c) By straightforward plug into Eq. 6.60 we find f ≈ 0.0049 
 
(d) By straightforward plug into Eq. 6.21, we find f ≈ 0.0048 
 
(e) From Eq. 6.61, which I found in the source listed, and for which that book gives no 
reference, by straightforward plug in one finds f ≈ 0.0045. 
 
All of these give practically the same answer.  Observe that in the original publications 
give the equations for the darcy-weisbach friction factor = 4 · fanning friction factor. 
_______________________________________________________________________ 
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6.40 (a) −
ΔP
Δx

= 4
f
D

ρ
V 2

2
   If everything on the right except V is constant, then this 

should plot as a straight line with slope 2 on that plot. 
(b)  For 5 inches and less, the curves are parallel straight lines (as best the eye can see).  
To find the slopes I read the 4 inch line as beginning at 15 and ending at 430.  Then 

 log
ΔP2

ΔP1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = n log

Q2

Q1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ;  n = log(1000) / log(430 / 15) ≈ 2.05.  

This result is sensitive to chart reading, but the exponent is very close to 2.00. 
(c) For all the pipe sizes greater than 5 inches the curves are concave downward.  The 
curvature seems to increase with increasing pipe size. 
(d) Those making up the charts concluded that for small diameter pipes the normal flows 
were on the flat part of the constant e/D curves on Figure 6.10.  However as D increases, 
with constant e one goes to lower and lower values of e/D and hence lower curves on 
Fig. 6.10.  These do not flatten out until higher values of the velocity, so the curves 
correspond to a value of f which decreases slowly with increasing Q, giving the curves 
shown. 

(e) V =
1000

ft3

min
π
4

1.0 ft[ ]2
⋅
min
60 s

= 21.22
ft
s

; 

 

R =
1 ft ⋅ 21.22

ft
s

⋅0.075
lbm
ft 3

0.018cP ⋅ 6.72 ⋅10−4 lbm
ft s cP

= 1.32 ⋅105  

     f =
−

ΔP
Δx

4
D

ρ V 2

2

=

0.2 in H2O
100 ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅1ft ⋅ 2 ⋅32.2 lbmft

lbf s2 ⋅144 in2

ft 2 ⋅ 0.03615 psi
in H2O

4 ⋅ 0.075 lbm
ft2 ⋅ 21.22 ft

s
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 = 0.00496  

 
Substituting this value in Eq. 6.21 and solving we find e/D ≈ 0.00050, e = 0.0005 ft. 
(f) From Table 6.2 we see that this corresponds to the value for "galvanized iron" which 
is ≈ 3 times the value for commercial steel.  From the caption for Fig. 6.14 we see that it 
is for "galvanized metal ducts" etc.  So this matches Table 6.2 fairly well. 
_______________________________________________________________________ 
 
6.41 From Ex. 6.12 we know that for the "K-factor" method the pressure drop due to the 
fittings is 31 psi, independent of pipe diameter.  For the equivalent length method we 
must calculate the Reynolds number , e/D, f and the equivalent length for each pipe size.  
For all sizes L/D is constant at 1089.  The computations are easy on a spreadsheet.  
Considering the 12 inch pipe we find that R ≈24,100, e/D = 0.00015, f =0.0062, Lequiv  = 
1089 ft, and dP ≈ 31 psi.  The plot, covering the range from 3 to 12 ft is shown below. 
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We see that the equivalent length estimate is higher than the "K-factor" estimate for 
small pipes, but that the two values cross at about 1 ft.  I ran the value for 24 inches on 
the same spreadsheet program, finding dP ≈ 6.5 psi.  I don't know which is best, other 
than to follow Lapple's suggestion in the text. 
 
Another peculiarity of this comparison is that the estimate by the "K-factor" method is 
uninfluenced by a change in fluid viscosity, as long as the flow is turbulent.  But the 
equivalent length method is sensitive to changes in viscosity.  I reran the spreadsheet that 
generated the values for the above plot, taking the fluid viscosity as 1 cP instead of the 
50 cP in those examples.  That raised the Reynolds numbers by a factor of 50, reducing 
the computed f's by  almost a factor of 2.  That reduced the estimated delta P by roughly 
a factor of 2, going from 23.7 psi for 3 inch pipe to 17.4 psi for 12 inch pipe.  In this case 
the curve on the above plot ends up nearly horizontal; the computed value for 24 inches 
is 15.2 psi. 
_______________________________________________________________________ 
 
6.42* From Table A.4 we read that V = 6.10 ft/s and −

ΔP
Δx

=
0.466 psi

100 ft
 

For the equivalent length method 

 Δxequivalent = 50 ft +
10.02

12
ft

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ 2 ⋅30 +135( ) = 212 ft  

 -ΔP = −
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ Δxeq =

0.466 psi
100 ft

⋅ 212 ft = 0.992 psi  

For the K method, using the values from Table 6.7 K = 2 ⋅ 0.74 + 2∑ = 3.48 
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 -ΔPpipe only = −
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅Δxpipe =

0.466 psi
100 ft

⋅ 50 ft = 0.233 psi 

 -ΔPfittings = K
ρV 2

2
= 3.48⋅

62.3
lbm
ft2 ⋅ 6.1

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

1

32.2 lbm ft
lbf s2

⋅
ft2

144in2 = 0.870
lbf
in2∑  

 
and -ΔPtotal = 0.233 + 0.870 =1.103 psi = 7.61 kPa    We find very good, but not exact 
agreement between the predictions of the two methods. 
 
You might ask your students what a check valve is.  Normally there will be one visible in 
the vicinity of your building, as part of the lawn sprinklers, which you can point out. 
_______________________________________________________________________ 
 
6.43   Let (1) be the upstream end, (2) be the 2 inch pipe as it enters the sudden 
expansion, (3) be the 3 inch pipe as it leaves that expansion and (4) be the far end of the 
pipe.  Writing BE from (1) to (4) and multiplying through by ρ  we have 

 
  
P4 − P1 = ρ −F −

V4
2 − V1

2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 The ρ F   term has three parts, the first pipe, the second pipe and the expansion.  
We can simply look up the two pipe terms, in Table A.3 for 100 gpm in each of the two 
pipe sizes, multiplied by the lengths, finding 7.59 and 0.525 psi.  For the expansion term 
we first observe that D3

D2

=
2.067 in
3.068 in

= 0.674  .  Then we read Fig. 6.16 (or use the 

equation printed on it) to find that K = 0.298 ≈ 0.3.  From Table A.3 we find that the 
velocities before and after the expansion are 9.56 and 4.34 ft/s.  Then for the expansion 

 
  
ρF = −ΔP = 0.3 ⋅62.3

lbm
ft 3 ⋅

9.56
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

lbf s2

32.2 lbm ft
⋅

ft2

144 in2 = 0.18 psi  

Finally  

      ρ
V4

2 −V1
2

2
= 62.3

lbm
ft3 ⋅

4.34
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− 9.56
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

lbf s2

32.2 lbmft
⋅

ft2

144 in2 = −0.487 psi  

So that 
 P4 − P1 = −7.56 − 0.525 − 0.18 + 0.487 = −7.81psi  
_______________________________________________________________________ 
 

6.44*
  
-
ΔP
ρ

= F =
V 2

2
4 f

L
D

+ Kexp + Kcont

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟   V =

2ΔP

ρ 4 f L
D

+ Ke + K c
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
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The expansion and contraction coefficients are 1.0 and 0.5.  The solution is a trial and 
error, in which one guesses f and then does a suitable trial and error.  This goes well on a 
spreadsheet.  Here ε

D
= 0.006  and our first guess of f ≈ 0.004.  Then 

Vfirst guess =
2 30 lbf

in2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

144 in2

ft2 ⋅ 32.2 lbm ft
lbf s2

62.3 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 4 0.004( ) 10

3.068 / 12
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +1+ 0.5

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 45.8
ft
s

 

 
This corresponds to R ≈1.09e6 and f =0.00458.  Subsequent trial and error, (easy on a 
spreadsheet) leads to V =44.9 ft/s, R ≈1.07e6 and f =0.00458, and Q = 23.0· 44.9 = 1032 
gpm. 
_______________________________________________________________________ 
 
6.45 Writing BE from surface to outlet, we have 

 
  

ΔP
ρ

+ gΔz +
V2

2
= −F = −4 f

Δx
D

V2

2
−

K V2
2

2
; V =

2g −Δz( )
1 + 4 f Δx

D
+ K

 

Here ε
D

= 0.006 and R is large, so f ≈ 0.0045, and for a large diameter ratio 

Kcontraction ≈ 0.5, and 

 V =
2 ⋅32.3

ft
s

⋅20 ft

1 + 4 ⋅ 0.0045
10ft

3.086ft / 12

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + 0.5

= 24.2
ft
s

= 7.36
m
s

 

 Q = 23.0
gpm
ft / s

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ⋅ 24.2

ft
s

= 556 gpm = 0.262
m3

s
 

To be safe, we check the Reynolds number, finding R = 5.74·105 and f = 0.00467 which 
is close enough to the assumed 0.0045 to make another iteration unnecessary. 
 The three terms in the denominator under the radical have values 1, 0.70 and 0.5.  
Each contributes to the answer.  
_______________________________________________________________________ 
 
6.46* From table A.4 for 500 gpm in a 6 in pipe, -

ΔP
Δx

=
0.720psi

100 ft
   

 
  
F = −

ΔP
ρ

= −
ΔP
Δx

Δx
ρ

= gΔz  

 
Δz
Δx

= −
ΔP
Δx

1
ρg

=
0.720 psi

100ft
⋅

ft3

62.3lbm
⋅

s2

32 ft
⋅
32 lbm ft

lbf s2 ⋅
144 in2

ft2  

 = 0.0166 = 0.0166
ft
ft

=
1.66 ft
100 ft

 

_______________________________________________________________________ 

Solutions, Fluid Mechanics for Chemical Engineers, Third Edition, Chapter 6, page 20 
 

 



 
6.47 This is a demonstration, which our shop made for me, with a clear plastic window to 
let the students watch the falling level.  In a lecture room with a sink one can fill the tank 
with a piece of tygon tubing, and let the students watch the results.  I assign this as a 
homework problem, and ask each student to write her/his answer to part (a) on the board 
with her/his name.  Then we do the calculations, then run the test.    

(a)  See the solution to Prob. 6.43. Vexit =
2g z1 − z2( )

1+ Ke + 4 f Δx
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

let  z1 − z2 = h 
  

Then see Ex. 5.14, from which we have directly Δt =
2 h1 − h2( ) A1

A2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2g

1 + K e + 4 f
Δx
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 

 
A1

A2

=
6.5 ⋅ 4( ) in2

0.104in2 = 250.8; Ke = 0.5; ε
D

= 0.016; f ≈ 0.013 

 
Students argue with me about relative roughness.  The above value is for galvanized 
pipe, as shown in the problem.  They use the value for steel pipe, getting a much lower 
value. 
 

 Δt =
2 7

12
ft − 1

12
ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅ 250

2 ⋅ 32.2
ft
s2

1 + 0.5 + 4 ⋅ 0.013 ⋅ 24 in
0.364 in

= 66 s  

 
When I first did this in class it took about 75 sec for that change in elevation.  As it was 
used more and more (and the pipe rusted) the time climbed slowly to 85 sec.  Cleaning it 
with a wire brush got it back to its original value. 
 
(b) For a Reynolds number of 2000 we find   

V =
2000 ⋅1.077 ⋅10−5 ft2

s
0.364

12
ft

= 0.71
ft
s

= 0.22
m
s

 

 Δz =
V 2 1 + Ke + 4 f

Δx
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2g
=

0.71
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2 ⋅32.2 ft
s2

4.91[ ]= 0.039 ft = 0.46 in = 0.012 m  
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This would suggest that the transition would not be seen. But the transition region is 
entered at a Reynolds number of about 4000, for which one would calculate 
 

 Δz = above ⋅
4000
2000

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

= 1.85in  

 
Sometimes when I have used the demonstration, this has worked well, and been easily 
observed, others not.  The fundamental cussedness of inanimate objects....   To show this 
clearly I replaced the pipe in the problem with a three-foot length of 1/8 inch sch 40 steel 
pipe, for which the calculated elevation for R = 2000 is 1.2 inches.  This works well, one 
can see several oscillations in the flow rate.  One can sketch Fig. 6.2 on the board, and 
show that this oscillation represents a horizontal oscillation between the two curves in 
the transition region. 
 
_______________________________________________________________________ 
 
6.48 By steady-state force balance 

 P1 − P2( )⋅ 2 ⋅ l ⋅ y = 2 ⋅l ⋅ Δx ⋅τ y ; τy = −
dP
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅ y = −μ

dV
dy

 

 dV∫ = − −
dP
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
μ

ydy∫ ; V =
dP
dx

1
μ

y2

2
+ C  

 @ y =
h
2

, V = 0 ; C = −
dP
dx

1
2μ

h
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

; V = −
dP
dx

1
2μ

h
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− y2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
 
 

⎥

 Q = VdA∫ = −
dP
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
2μ

⋅2 ⋅ l ⋅
h
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

− y2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
dy

0

h
2∫ = −

dP
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

l
μ

h
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

y −
y3

3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0

h
2

 

      = −
dP
dy

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

l
μ

h3

12
  = Eq. 6.28. 

_______________________________________________________________________ 
 
6.49  This is derived in detail on pages 51-54 of Bird et. al. first edition, and page 53-56 
of the second edition. 
_______________________________________________________________________ 
 
6.50 The flow rate is proportional to the third power of the thickness of the leakage 

path, so that       
h2

h1

=
Q2

Q1

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
3

= 3.5( )
1
3 = 1.508;

  h2 = 0.0001 in.⋅1.508 = 0.00015 in.
 
True leakage paths are certainly more complex than the uniform annulus assumed here, 
but this description of the leakage path is generally correct. 
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In that example I treated the annular space between the stem and the packing as if it were 
a rectangular slit.  You might ask bright students how much error is introduced that way?  
I checked by comparing the slit solution to that for an annulus with inside diameter 0.25 
inches and outside diameter 0.2502 inches, using Eq. 6.29.  The computed flow for the 
slit is 1.0004 that for the annulus.   
_______________________________________________________________________ 
 
6.51  Here Do = 0.2502 in.  The other values are taken from Ex. 6.13 
 

 Q =
P1 − P2

Δx
⋅

1
μ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ⋅

π
128

Do
2 − Di

2( ) Do
2 + Di

2 −
Do

2 − Di
2

ln(Do / Di )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

=
100

lbf
in2

1 in ⋅ 0.6 cP
⋅

π
128

⋅ 0.25022 − 0.25002( )in2 0.25022 + 0.25002 −
0.25022 − 0.25002

ln 0.2502
0.2500

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

in  

 ⋅
cP ⋅ ft2

2.09 ⋅10−5 lbf ⋅s
⋅
144 in2

ft2 = 7.52 ⋅10−5 in3

s
 

 
To see the difference between the two solutions, one must copy more significant figures 

off the spreadsheets, finding 
QEx.6.13

Qthis problem

=
7.5158
7.5188

=1.0004  

This problem shows that this is one of a large class of problems which can be greatly 
simplified (and thus made much safer from error) by replacing some other geometry with 
a planar geometry. 
_______________________________________________________________________ 
 
6.52 (a)  Here the l = πD  and h = (Do − Di ) / 2 .  Making those substitutions in Eq. 6.28 
produces Eq. 6.30. 
 
(b) Dividing and canceling like terms produces 
 

 Q6.30

Q6.28

=
128
12

⋅
D ⋅

Do − Di

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3

Do
2 − Di

2( ) Do
2 + Di

2 − Do
2 − Di

2

ln( Do / Di )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

 

The D in the numerator can be taken as Di without much problem. 
 
(c)  The values of this ratio for Do / Di = 1.1,1.01, 1.001,1.0001  are 0.954, 0.9951, 
0.9995, 1.00004.  For smaller values of Do/Di the spreadsheet produces values with 
oscillate between -132 and 1.59·109, almost certainly because it does not carry enough 
significant digits to handle the 0/0 limit of the last term in the denominator. 
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I tried to reduce this ratio algebraically, with no success, and then tried by introducing 
 and simplifying with and without dropping higher-order terms in Δ, again Do = Di + Δ



without much success.  If one of you will work that out satisfactorily and send me a 
copy, I will be grateful. 
_______________________________________________________________________ 
 
6.53* This is flow in a slit, for which 
 

 Q = −
dP
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
12

1
μ

lh3  

         =
0.01

lbf
in2

2m
⋅

1
12

⋅
1

0.018 cP
⋅24 in ⋅ 10−3 in( )3

⋅
cP ft s

6.72⋅10−4 lbm
⋅
32.2 lbm ft

lbf s2 ⋅
ft

12 in
 

     = 2.22 ⋅10−6 ft
s

= 6.28 ⋅10−8 m
s

; Vavg =
Q
A

= 0.0133
ft
s

= 0.0040
m
s

 

 this is a very low-leakage window.  A gap of 0.00 inches makes a very good seal.  The 
flow is laminar. 
_______________________________________________________________________ 
 
6.54 This is really the same as the last problem, after one sees that the ratio of the vessel 
radius to the length of the flow path is large enough that one may treat it as a linear 
problem rather than a cylindrical one. 

 Q = −
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
μ

1
12

lh3 =
1000

lbf
in2

1 in

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

⋅
1

1.002cP
⋅

1
12

⋅
10π ft ⋅ 105 in( )3

2.09 ⋅10−5 lbf
ft s cP

 

      = 1.25 ⋅10−7 ft 3

s
= 4.5⋅10−4 ft3

hr
= 0.93 ⋅10−6 gal

min
= 3.5 ⋅10−9 m3

s
 

  
This low flow rate shows why we can use mating surfaces which are practically smooth 
as seals.  All real gaskets are the equivalent of this; the flow rate through them is not 
zero, it is simply too small to detect. 
_______________________________________________________________________ 
 
6.55  HR =

Area
Wetted perimeter

 

(a) HR =

1
2

π
4

D2

1
2

πD + D
=

D
4

1
2 +π

 

(b) HR =

1
2

π
4

D2

1
2

πD
=

D
4

  which is the same as for a circle. 

(c) HR =
D2

4D
=

D
4

 which is also the same as for a circle 
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(d) HR =

π
4

D2
2 − D1

2( )
π D2 + D1( )

=
D2

2 − D1
2

4 D2 + D1( )
=

D2 − D1

4
 

_______________________________________________________________________ 
 
6-56* As in Ex. 6.5, this is a trial and error.  We first assume that a square duct with 8 
inch sides will be used. 
 

 HR =
8in( )2

4 8in( ) = 2in; 4HR = 8 in  

 V =
Q
A

=
500

ft3

min
8 ft / 12( )2 = 1125

ft
min

=18.75
ft
s

;  
ε
D

=
0.00006in

8in
= 0.000075 ≈ 0  

 

  

R =

8
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 18.75

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.080

lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

0.017cP ⋅ 6.72 ⋅10−4 lbm
ft s cP

= 8.75 ⋅104 ; f ≈ 0.00447 

 

−ΔP =
4( ) 0.00447( ) 18.75

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

0.08
lbm
ft 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 800ft( )

2 8
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
lbf s2

32.2 lbmft
⋅

ft2

144in2 = 0.065 psi  

 
Then we trial-and-error n D  to find the value which makes −ΔP = 0.1 psi, finding D = 
7.31 in, V =  22.4 ft/s,  R  = 9.57·104 and f = 0.00438. 
 

For equal cross-sectional area A = Dsquare
2 =

3.1416
4

Dcircle
2 ,  

Dsquare

Dcircle

=
3.1416

4
= 0.886  

 
Perimetersquare

Perimetercircle

=
4Dsquare

πDcircle

=
4
π

π
4

=
4
π

= 1.128  

 
This is also the ratio of weights for equal wall thickness.  In this problem the computed 
square diameter is 7.31

8
= 0.914   of the corresponding circular duct, somewhat more than 

the equal area value of 0.886.  This shows that the friction effect of a square duct is more 
than that of a circular one, and we need a little more than equal area. 
_______________________________________________________________________ 
 
6.57*  The velocity is proportional to 1/(square root of the friction factor, so 

 
fused in actual

design

festimated in Ex.
6.15

=
VEx. 6.15

Vactual design

=
4.28 ft / s
3.89ft / s

=1.049  
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and 



 fused in actual
design

= 0.0024 ⋅1.049 = 0.00252  

From Eq 6.21 we find that this corresponds to a relative roughness of 2.07e-5, which 
corresponds to an absolute roughness of 0.0014 ft (compared to the 0.001 estimated in 
the example). 
_______________________________________________________________________ 
 

6.58  (a) Combining the equations, we have  V = C HR ⋅
−Δz
Δx

=
2 ⋅HR ⋅ g

f
⋅

−Δz
Δx

   

These are the same if C =
2g
f

 

(b) C =
2g
f

= α
HR1/ 6

n
; α =

n
HR1/ 6

2g
f

=
0.012

17.09 ft( )1/6
2 ⋅ 32.2 ft / s2

0.0024
=1.22

ft1/ 3

s
 

_______________________________________________________________________ 
 
6.59* Here the velocity will be much too high for us to use any of the convenient 
methods, so   

 V =
2 − ΔP

ρ
− gΔz

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1 + 4 f Δx
D

 

As a first trial, for ε / D = 0.0018in / 3.068 in = 0.0006and a large Reynolds number, try 
f = 0.0040.  Then 

 Vfirst guess =
2 1000 lbf

in2 ⋅ 144 in2

ft2 ⋅ 32.2lbmft
lbf s2 +32.2 ft

s2 ⋅10 ft
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1+ 4 0.004( ) 10
3.068

12
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= 303
ft
s

 

 
The corresponding R = 7.198e6 and from Eq. 6.21 f = 0.00453.  Then, using the search 
engine on my spreadsheet, we find the velocity at which the guessed and calculated 
values of f  are equal, finding V = 295.7  ft/s, R = 7.102e6 and from Eq. 6.21 f = 0.00453.   
_______________________________________________________________________ 
 

6.60 (a) 
  

ΔP
ρ

+ gΔz +
ΔV2

2
= −F +

dWn.f .

dm
   Here 

ΔV 2

2
  is zero, so 

 
  

dWn.f .

dm
=

ΔPpump

ρ
=F +

ΔP
ρ

+ gΔz ;  ΔPpump = ρF + ΔP12 + ρgΔz1−2  

 
From Appendix A.4, for 150 gpm in a 3 inch pipe 
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 ρF =

2.24 psi
100 ft

⋅2300 ft = 51.5 psi  

 ΔPpump = 51.5psi + 20 psi + 62.3
lbm
ft3 ⋅32.2

ft
22 ⋅230 ft ⋅

lbf s2

32 lbm ft
⋅

ft2

144in2  

             = 51.5 + 20 + 99.5 =171 psi = 1.18 MPa  
 

(b) Po =
dWn.f.

dm
⋅ Ý m =

ΔPpump

ρ
⋅Qρ = ΔPpump ⋅Q  

 = 171
lbf
in2 ⋅150

gal
min

⋅
ft3

7.48 gal
⋅
144 in2

ft2 ⋅
hp min

33 000 ft lbf
=15.0 hp = 11.1 kW  

According to the sign convention in this book, this is power entering the system, in this 
case by driving the pump. 
_______________________________________________________________________ 
 

6.61*V =
2 −gΔz( )

1 + 4 f Δx
D

    As a first trial, for ε / D = 0.0018 in / 5.047 in = 0.00036and a 

large Reynolds number, try f = 0.0040.  Then 
 

 Vfirst guess =
2 ⋅32.2

ft
s2 ⋅10 ft

1+ 4 0.004( ) 10
5.047 / 12( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 48.3
ft
s

 

 
The corresponding R = 1.89e6 and from Eq. 6.21 f = 0.004094.  Then, using the search 
engine on my spreadsheet, we find the velocity at which the guessed and calculated 
values of f  are equal, finding V = 48.14  ft/s, R = 1.88e6 and from Eq. 6.21 f = 0.004094.   
_______________________________________________________________________ 
 
6.62 Let (1) be the air inlet, and (2) the exit from the stack.  Then applying BE from 
(1) to (2), assuming that (1) is far enough from the furnace that the velocity is negligible, 
we find 

 
  

P2 − P1

ρ
+ g z2 − z1( )+

V2
2

2
= −F = −

V2
2

2
⋅ Kfurnace + 4 f

L
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

stack

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

The first term is P2 − P1

ρ
= −

ρair

ρstack

g z2 − z1( ) so that 

 g z2 − z1( )⋅ 1−
ρair

ρstack

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = −

V2
2

2
⋅ 1 + Kfurnace + 4 f

L
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

stack

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  
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 V2 =
2g z2 − z1( ) ρair

ρstack

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1+ Kfurnace + 4 f L
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

stack

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

1/ 2

Here 
ρair

ρstack

−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

29
28

⋅
810°R
528°R

−1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.589  

 Kfurnace = 3.0  and L
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

stack
=

100 ft
5 ft

= 20  

To solve the problem we need an estimate of f . We assume that the stack is made of 
concrete (a common choice), so from table 6.2 we estimate that ε ≈ 0.02 in, and 
ε / D ≈ 0.00033    This leads to a first guess of ffirst guess = 0.005.  Then 

 V2, first guess =
2 ⋅ 32.2

ft
s2 ⋅100 ft ⋅ 0.589

1 + 3 + 4 ⋅ 0.005 100 ft
5 ft

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

stack

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

1/ 2

= 29.4
ft
s

 

This corresponds to R = 1.3·107 and f = 0.0040.  (We estimated the viscosity of the stack 
gas as 0.025 cP ≈ the value for air at 350°F from Fig. A.1, and the gas density from the 
ideal gas law).  Then, with our spreadsheet's numerical engine we seek the guess of f  
which makes the guessed and calculated values equal, finding V = 29.7 ft/s, and R = 
1.3·107 and f = 0.0040. 
 
Students are generally uncomfortable with the idea that the pressure drop though the 
furnace is estimated by a constant times the kinetic energy based on the flue gas 
temperature.  For the highest-quality estimate we would follow the flow through the 
furnace, taking into account the changes in density, viscosity and velocity from point to 
point in the furnace.  That is now possible with CFD programs.  But the simple 
estimating method here is widely used, and reasonably reliable. 
_______________________________________________________________________ 
 
6.63* Assume the flow is from left to right,  

 

ΔP
ρ

+ gΔz = −F  

  

F = −
30

lbf
in2

60 lbm
ft3

⋅
32.2 lbm ft

lbf s2 ⋅
144in2

ft2 + 32.2
ft
s2 −30 ft( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= − 2318 − 966( ) = −1352
ft2

s2  

 
The minus sign indicates that the assumed flow direction is wrong, flow is from right to 
left!  The equivalent  dP/dx is  
 

dP
dx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

equivalent
=

dP
ρ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

equivalent

ρ
Δx

=
1352

ft2

s2 ⋅60
lbm
ft3

1000ft
⋅

lbf s2

32.2 lbm ft
⋅

ft2

144in2 = 0.0175
psi
ft
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If we enter Figure 6.13 at 17.5 psi/1000 ft, read diagonally up to SG =0.96, then 
vertically to 100 cSt and horizontally we find Q ≈ 57 gpm.  We also see that this is in the 



laminar flow region, which we could solve by Poisueille's equation, (first computing a 
viscosity of 96.3 cP)  finding  
 

Q =
17.5

lbf
in2

1000ft
⋅

π
128

⋅
3.068ft / 12( )4

96.3cp
⋅

ft2 cp
2.09e − 5 lbf s

⋅
144 in2

ft2 = 0.126
ft3

s
= 56.7

gal
min

 

  
_______________________________________________________________________ 
 
6.64  (a) We must specify the maximum flow rate, in this case 200 gpm. 
 
(b)  For all  conditions 

 
  

ΔP
ρg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

pump

=
dWn.f.

g dm
=

ΔP
ρg

+ Δz +
F
g

 

 
The highest required head will correspond to the highest elevation and highest pressure 
in vessel 2, and the lowest elevation and pressure in vessel 1.  The required head will be 
highest for the lowest specific gravity (0.80) and for the highest kinematic viscosity (5 
cSt).  The "equivalent lengths" are 6 ⋅30( )+ 4 ⋅13( ) + 1⋅ 340( ) = 572  so that  

  Leffective = 672 + 572
3.086

12
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 774 ft  

On Fig. 6.12, we enter at the right at 200 gpm, read horizontally to the 5 cSt line and then 

vertically to the top finding 
  

loss in head
ft per 1000 ft

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈105 =

1
L

⋅
F
g

 from which  

 
  

F
g

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

max

= 773 ft ⋅
105 ft
1000 ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 81 ft  

 ΔP
ρg

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

pump

=
81 − 8( ) lbf

in2

0.8 ⋅ 62.3 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
s2

32.2 ft
⋅
32.2 lbm ft

lbf s2 ⋅
144 in2

ft 2 + 127 − 21( ) ft + 81 ft  

         = 211+106 + 81 = 398 ft = 121 m 
 
The entrance and exit losses, which we ignored are ≈ 0.65 psi ≈ 0.  So we would specify 
a pump with a design point of 200 gpm, and 398 ft of head.  (This is a high head for a 
centrifugal pump at this volumetric flow rate; we would probably have to specify some 
other type of pump). 
  
_______________________________________________________________________ 
 
6.65* The maximum corresponds to the highest pressure and elevation in vessel 2, and 
the lowest in vessel 1, and to the lowest values of the specific gravity and viscosity.  The 
minimum corresponds to the opposite of those conditions.  Here the open globe valve 
adds 340 x (3.068 / 12) = 87 ft, so the effective length of the pipe is 860 ft.  In both parts 
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of the problem we have a trial-and-error for the velocity.  The values shown are those at 
the end of that trial and error.  For both parts  
 

 
  

ΔP
ρ

+ gΔz =
V2

2

2
= −F = −4 f

L
D

V 2

2
;         V =

−2 ΔP
ρ

+ gΔz
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1+ 4 f L
D

 

For the maximum,  

 Vmax =

2 81 −8( )psi

0.8 ⋅ 62.3
lbm
ft2

⋅ 32.2 lbm ft
lbf s2 ⋅ 144in2

ft2 + 32.2 ft
s2 106 ft( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

1 + 4 0.00488( ) 860 ft
3.068 ft / 12

= 17.5
ft
s

 

 Qmax =
23.0gpm

ft / s
⋅17.5

ft
s

= 402gpm  

 
For the minimum 
  

 Vmin =
2

47 − 20( )
0.85 ⋅ 62.3

⋅32.2 ⋅144 +32.2 100 − 43( )
⎡ 
⎣ 
⎢ 

⎤ 
⎦ 
⎥ 

1 + 4 0.0057( ) 860 ft
3.068 ft / 12

= 10.35
ft
s

 

 Qmax =
23.0gpm

ft / s
⋅10.3

ft
s

= 238gpm  

_______________________________________________________________________ 
 
6.66 We begin by assuming that the pressure at A will not be low enough to cause 
boiling.  Then we solve for the velocity applying BE. with friction from water level to 
outlet.  Here the adjusted length of the pipe is 
 Ladjusted = 60 ft + 2 ⋅20 ⋅

10.020 ft
12

= 93.3 ft   By BE, with no pressure difference, 

we have 
  
gΔz +

V2
2

2
= −F = − Ke + 4 f

L
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

V2
2

2
 or V2 =

2g −Δz( )
1+ Ke + 4 f L

D

 

 ε
D

= 0.00018 and R is large so f ≈ 0.0034 and Ke = 1 / 2 , so 

 V2 =
2 ⋅32

ft
s2 ⋅10 ft

1+ 0.5 + 4 0.0034( ) 93.3
10 / 12

= 14.6
ft
s

; Q =
246 gpm

ft / s( )
⋅14.6

ft
s

= 3592 gpm  

At this point we check finding R = 1.1·106 and by numerical solution find that f =0.0036, 
and V = 14.3 ft/s = 4.44 m/s, and Q = 3526 gpm.  Then, using those values 
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Pa − P1

ρ
+ g za − z1( )+

Va
2

2
= −F = −

Va
2

2
Ke + 4 f

La

D
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

 Pa = P1 − ρ g za − z1( )+
Va

2

2
1 + Ke + 4 f

La

D
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  

 = 14.7 −
62.3lbm

ft3 32.2
ft
s

⋅ 20ft +
14.6

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅ 1 + 0.5 + 4 0.00364( ) 41.66

10 / 12
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

  ⋅
lbf s2

32.2 lbm ft
⋅

ft2

144 in2 = 14.7 −11.7 = 3.0 psia  

This siphon would probably work satisfactorily, although the absolute pressure is low 
enough that dissolved air might come out of solution and cause problems. 
_______________________________________________________________________ 
 
6.67 This was actually done in the 1950s.  At that time high quality plastic pipe had not 
developed to the extent it has now, so the pipe was made of aluminum.  One can show 
that in terms of (strength/weight) high quality aluminum alloys are still the best (which is 
why we make airplanes of them).  If you walk down the trail from the North Rim to the 
river, you can see the occasional valve boxes, which allow the pipe, which is buried by 
the trail, to be shut down and drained for maintenance and repair when needed. 

 
  
gΔz = −F = −

ΔP
ρ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

friction

⋅
Δx
Δx

= −
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

friction
⋅
Δx
ρ

 

 −
ΔP
Δx

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

friction
= ρg

Δz
Δx

= 62.3
lbm
ft2 ⋅ 32.2

ft
s2 ⋅

3000 ft
14 ⋅ 5280 ft( ) ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

            = 0.0176
psi
ft

=
1.76 psi
100 ft

  From Table A.3 we see that this requires 

pipe larger than 6 inches and smaller than 8 inches.  I don't know if they had a special 
pipe made, or used an 8 inch pipe. 

 Pmax = ρgΔz = 62.3
lbm
ft3 ⋅ 32.2

ft
s2 7000 − 2500( ) ft ⋅

lbf s2

32.2 lbm ft
⋅

ft2

144 in2  

        = 1948 psi =13.4 MPa  

 thickness =
PD
2σ

,  for an 8 inch diameter pipe and a fairly conservative value of 

σ = 10 000 psi,    we compute thickness =
1947 psi ⋅ 8 in
2 ⋅10 000 psi

= 0.78 in = 20 cm 

_______________________________________________________________________ 
 
6.68 This is Ex. 6.15 of the first edition (pages 193-195), where a trial and error solution 
based on Table A.3 is show through four trials.  The final flow rates are A 285 gpm, B 60 
gpm, C 225 gpm. 
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The following spreadsheet solution is longer, because it requires nested numerical 
solutions, but is probably more illustrative.  The actual spreadsheet carries and displays 
more significant figures than are shown in this abbreviated table. 
 

We begin by defining  α =
P1 − P2

ρg
+ (z1 − z2 )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

Then we write BE for each of the three pipe segments, and solve for V  

 VA =
2αg

1+ 0.5 + 4 f (L / D)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0.5

; VB =
2(z3 − z1 −α )g

1 + 0.5 + 4 f (L / D)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0.5

 

and 

 VC =
2(z4 − z1 − α)g

1+ 0.5 + 4 f (L / D)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0.5

 where the values of f, L  and D  are those for the 

individual pipe sections.  Then we guess a value of α , solve for the three flows, and 
compute the algebraic sum of the flows into point 2.  The correct choice of α makes that 
algebraic sum zero.  One need not know the individual values of the two components of 
α.  If the pipes were flexible and we raised or lowered point 2, the flows would be 
unchanged because the two parts of α would change, but their sum would not. 
 
The second column of the following table is the solution for α = 10 ft.  For each of the 
three pipe sections we have a trial and error for the velocity, done using the spreadsheet's 
numerical engine.  In this case the guessed value is Q, and the check value is the ratio of 
the V based on that guess, to the one computed from BE, as shown above  We see that for 
α = 11.5 ft the algebraic sum of the flows into point 2 = -1.16 gpm ≈ 0, and the three 
flows are 304 gpm, 64 gpm and 241 gpm.  These are somewhat higher than those shown 
in the example in the first edition, but within the accuracy of interpolations in Table A.3. 
 
This is a somewhat clumsy way to solve this class of problems.  Real solutions would use 
nested DO loops in FORTRAN or the equivalent. 
 

(P2/rho g+z2) , 
guessed ft 

10 20 12 11.5

Section A 
L, ft 2000 2000 2000 2000
D, ft 0.5054 0.5054 0.5054 0.5054
e/D 0.0003 0.0003 0.0003 0.0003
Q, guessed, gal/min 281.1204 413.4696 311.2119 303.9138
V guessed, ft/s 3.1236 4.5941 3.4579 3.3768
Re 146583. 215593. 162273. 158468.
f, equation 6.21 0.0040 0.0037 0.0039 0.0039
V, BE, ft/s 3.1235 4.5941 3.4579 3.3768
V BE/Vguessed 1.0000 1.0000 1.0000 1.0000

 
Section B 
L, ft 2000 2000 2000 2000
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D, ft 0.2557 0.2557 0.2557 0.2557
e/D 0.0006 0.0006 0.0006 0.0006
Q, guessed, gal/min 66.5264 44.9489 62.6858 63.6623
V guessed, ft/s 2.8925 1.9543 2.7255 2.7679
Re 68663. 46392. 64699. 65707.
f, equation 6.21 0.0047 0.0052 0.0048 0.0048
V, BE, ft/s 2.8924 1.9543 2.7255 2.7679
V BE/Vguessed 1.0000 1.0000 1.0000 1.0000

 
Section C 
L, ft 1000 1000 1000 1000
D, ft 0.3355 0.3355 0.3355 0.3355
e/D 0.0004 0.0004 0.0004 0.0004
Q, guessed, gal/min 248.3668 198.4037 239.0666 241.4192
V guessed, ft/s 6.2719 5.0102 6.0370 6.0964
Re 195377. 156074. 188061 189912.
f, equation 6.21 0.0037 0.0039 0.0038 0.0038
V, BE, ft/s 6.2719 5.0102 6.0370 6.0964
V BE/Vguessed 1.0000 1.0000 1.0000 1.0000

 
Sum of flows to point 
2, gpm 

-33.7729 170.1170 9.4594 -1.1677

 
_______________________________________________________________________ 
 
6.69 See the solution to Prob. 6.68.  Here the flow in section B is from the reservoir 

toward point 2.  In the above spreadsheet, we must write VB =
−2(z3 − z1 − α)g

1 + 0.5 + 4 f (L / D)

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

0.5

 so 

that the term in brackets will be positive.  Then in the sum of flows into point 2, we must 
take flow B as positive rather than negative.  With these changes the trial-and-error on α 
is the same type as in Prob. 6.68, with solution α = 7.5 ft.  The three Q's are 239.4, 20.4 
and 259.6 gpm.  The algebraic sum of the flows into point 2 = 0.17 gpm ≈ zero. 
_______________________________________________________________________ 
 
6-70*  Writing BE. from 1 to 2, we see that there is no change in elevation, so 
  

 
  

ΔP
ρ

+
ΔV 2

2
= −F ; 

  

ΔP
ρ

= −
ΔV2

2
−F  
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The velocity out the individual tubes is proportional to the square root of the pressure in 
the manifold below them.  Thus, if ΔP  is positive, the far tube with squirt the highest, 
while if it is negative the near tube will squirt higher.  For multiple tubes one rewrites 
these equations for successive pairs of tubes.  In all cases the velocity is declining in the 
flow direction, because each tube bleeds off some of the flow.  So for all cases Δ  is 
negative. 

V 2



 
(a)  If   F   then Δ  is positive, and the water will squirt highest out the farthest tube. = 0 P
 
(b)  If the absolute value of   F  is greater than that of ΔV 2 / 2 , then ΔP  is negative and 
the water will squirt highest out the nearest (upstream) tube. 
 
One can build the device to the dimensions show in the article, and see that these 
predictions are observed. 
 
(c) First, maintain your humility.  Second, if the experienced workers in some facility 
you are new at are goading you into betting on something, don't bet very much. 
_______________________________________________________________________ 
 
6.71 We guessed f = 0.0042.  For 200 gpm in a 3.24 in diameter pipe, R = 96, 500, e/D = 
0.0005, and from Eq. 6.21, f = 0.0051.  If we take the ratio of this value to 00042 to the 
1/6 power we find that the economic diameter would be 1.035 times the value in that 
example.  For an assumed f = 0.01 it would be 1.155 times the value in that example.  
The point of this problem is that because of the 1/6 power, the computed diameter is 
quite insensitive to modest changes in f 
_______________________________________________________________________ 
 

6.72  
Annual 
cost

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = A ⋅m ⋅ B +

CI2rΔx
π
4

D2
= ABΔx

π
4

D2 ρ +
CI2rΔx
π
4

D2
 

 d annual cost( )
dD

= 2ABΔx
π
4

ρD −
2CI2rΔx

π
4

D3
= 0 

 Decon
4 =

CI2r
π
4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

ABρ
 

This is for low voltage transmission, where the resistive losses are the only serious 
factor.  In modern, high voltage, transmission lines corona losses are apparently more 
significant, so this formula no longer applies.  It is, however an interesting historical 
example of the apparently first use of simple economics to find an optimum. 
 
Inside our houses and other buildings we set the wire diameter for safety reasons.  We 
want the maximum ΔT  due to resistive heating to be low enough to pose no fire hazard. 
_______________________________________________________________________ 
 

6.73 (a) 
total annual
cost

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = PC ⋅

Ý m 3 2 fΔx(4 / π )2

ρ2 D5 + CC ⋅ PP ⋅ D ⋅ Δx ; f =
16
R

=
4πDμ

Ý m 
 

Substituting this value for f in the first term, and simplifying we have 

 
total annual
cost

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = PC ⋅

Ý m 2 8πμΔx(4 / π )2

ρ 2D4 + CC ⋅PP ⋅ D ⋅ Δx   

Taking the derivative with respect to D, and setting it equal to zero we find 
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 PC ⋅
Ý m 2 8πμΔx(4 / π )2

ρ2 ⋅
4
D5 = CC⋅ PP ⋅ Δx  

 Decon
5 =

PC ⋅ Ý m 232πμ(4 / π )2

ρ2CC ⋅ PP
  but 

Ý m 2

ρ 2 = Q2   Substituting this and taking the fifth 

root produces  Eq. 6.63 
 
(b) For 200 gpm, 2000 cP,  s.g = 1 and the economic values on Figure 6.23 

 Decon =

$0.04
kWh

⋅ 32π ⋅2000 cP ⋅
200 gal

min
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

0.04
yr

⋅
$2

in ft

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

1/5

⋅  

  ⋅
8760 hr

yr
⋅

ft3

7.48 gal

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

⋅
kW s

737.6 ft lbf
⋅
2.09 ⋅10−5 lbf s

cP ft2 ⋅
ft

12 in

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 5

 

        =  0.582ft = 6.98 in
From Fig. 6.23 for 200 gpm and 2000 cS we interpolate between the 6 in and 8 in lines, 
finding ≈ 6.5 inches, which is ≈ the same as calculated here. 
 
(c) For constant viscosity, Eq. 6.63 becomes Decon ∝ Q2( )1/ 5

= Q0.4   and  

 Vecon ∝
Qecon

Decon( )2 =
Qecon

Q0.4( )2 = Qecon
0.2  which is the slope on Fig 6.23 

 
(d) The density does not appear in Eq. 6.63.   
_______________________________________________________________________ 
 
6.74 (a) Based on Table 6.8 we would conclude that the velocity should be about 40 ft/s.  
This is not quite right, because it is for pipes with L/D much larger than 100. Here we 
will see that L/D is of the order of 25, so that this is a short pipe, for which the entrance 
loss is significantly greater than the 4fL/D term.  However 40 ft/s is still a plausible 
estimate. 

(b) Q =
4083mi 2 ⋅ 2000ft

24hr
⋅

5280 ft
mi

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅
hr

60 min
= 1.58 ⋅1011 ft3

min
 

 D =
4
π

Q
V

=
4
π

1.58⋅1011 ft3

min
40 ⋅60 ft

min
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

= 9 158 ft  

(c) 
  

ΔP
ρ

+
V2

2

2
= −F = − 4 f

L
D

+ Ke

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ V2

2 ;  − ΔP =
ρV 2

2
1 + K e + 4 f

L
D

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

Here R  ≈ 2·109 and ε / D ≈ 1.6 ⋅10−8  (for steel pipe)  so that f ≈ 0.0015 and  

 4 f
L
D

= 4 ⋅ 0.0015 ⋅
50 ⋅ 5280 ft

9158 ft

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 0.17 
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 ΔP = 0.075
lbm
ft3 ⋅

40
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
1 + 0.5 + 0.17( ) ⋅

lbf s2

32.2 lbm ft
⋅

ft 2

144 in2 = 0.0022 psi 

(d) Ý m = 1.58 ⋅1011 ft3

min
⋅0.075

lbm
ft3 = 1.185 ⋅1010 lbm

min
 

For an isothermal compressor, (See Prob. 5.58) 

 
dWn.f.

dm
=

RT
M

ln
P2

P1

=
1.987 Btu

lb mol oR
⋅ 528o R

29 lbm
lb mole

ln
14.7 + 0.022

14.7
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.053

Btu
lbm

 

 Po = Ý m 
dWn.f.

dm
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 1.185 ⋅1010 lbm

min
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.053

Btu
lbm

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

hp hr
2545Btu

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

60 min
hr

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

      =  1.49 ⋅10 7 hp =11 100 MW
 
(e) These values are all wildly impractical.  How would you build a pipe with that 
diameter?   The power requirement is roughly that needed for a population of 5 million 
people, including residential, commercial and industrial uses.  The only practical solution 
is to prevent emissions at the source. 
_______________________________________________________________________ 
 
6.75 Based on economic velocity calculations (See Fig. 6.23 or Table 6.8)  a velocity of 
about 7 ft/s would be used.  This may be a bit low for this large a pipe, because the 
friction factor will be lower than that in typical industrial pipes, but as shown by the 
solution to Prob. 6.71, this makes little difference.  Then the pipe diameter would be 

 D =
4Q
πV

=
4 107 ⋅ 4.356 ⋅104( )ft3

yr

π 7 ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
yr

365 1
4

⋅ 24 ⋅3600 s
= 50.1 ft  

 
For this diameter and velocity R ≈  3.29108 and e/D ≈ 3·10-6. From Eq. 6.21 we compute 
that f = 0.002, although for this large a pipe that equation may not be very accurate.  The 
pressure drop would be 

 −ΔP = 4 fρ
L
D

V 2

2
 

 = 4 0.0020( ) 62.3
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1000 ⋅5280
50

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

7
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

lbf s2

32.2lbm ft
⋅
144in2

ft2 = 278psi  

 
and the pumping power 

    Po = QΔP = 107 ⋅ 4.356 ⋅104( )ft3

yr
⋅ 278

lbf
in2 ⋅

hp min
33 000ft lbf

⋅
144 in2

ft2 ⋅
yr

365 1
4

⋅24 ⋅ 60min
 

  = 1.00 ⋅10 6 hp ≈ 746 MW
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As an engineering problem this is fairly easy.  Los Angeles draws about half this amount 
from the Colorado River and pumps it about a tenth as far, in several parallel pipes, none 
this large in diameter.  If we did this project it would probably involve several parallel 
pipes, and several pumping stations. 
 
The politics of such large water movements is much more difficult (and much more 
interesting)!  At one point Senator Warren Magnuson of Washington managed to pass a 
law forbidding the federal government from even studying such a transfer. 
_______________________________________________________________________ 
 
6.76 Here we can use the result from Ex. 6.18, and the ratio of PP values 

 Decon = 3.24in 
1
10

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
6

= 2.21 in  

 
Probably we would choose at 2.5 inch pipe.  From App. A.3 we can compute 
 ΔP =

11.68 psi
100 ft

⋅ 5000 ft = 584 psi  

And the pump horsepower is 

 Po = QΔP = 200
gal
min

⋅584
lbf
in2 ⋅

ft3

7.48 gal
⋅

hp min
33 000 ft lbf

⋅
144 in2

ft2 = 68.1 hp  

 
These latter two values are not asked for in the problem statement, but are included here 
to show the full example. 
_______________________________________________________________________ 
 
6.77 The product of the velocity and the cube root of the density (ft/s)(lbm/ft3)1/3 goes 
from 23.4 to 16.9 as we go from top to bottom of the table.  The largest value is 1.40 
times the smallest.  This is not quite constant, but certainly close. 
 The reason for the decline seems to be that as the density falls, the product of the 
density and the economic velocity falls faster than the viscosity falls, so the economic 
Reynolds number falls, which causes the corresponding friction factor to increase, which 
raises the economic diameter and lowers the economic velocity.  The effect is small, but 
real. 
_______________________________________________________________________ 
 
6.78 The 3.24 inches calculated in Ex. 6.18 corresponds to a velocity of 7.78 ft/s for 200 
gpm.  From Table 6.8 one would interpolate a velocity of perhaps 6.5 ft/s.  From Fig. 
6.23 one reads a value of ≈ 7 ft/s.  These are close to the same. 
 
The disagreement between Fig 6.213 and Table 6.8 results from two factors; Fig 6.21 is 
for a fluid of specific gravity 0.8, (almost exactly 50 lbm/ft3) and Fig. 6.28 uses a lower 
value of the pipe roughness than does Table 6.8. 
_______________________________________________________________________ 
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6.79 We wish to minimize the sum of the mass of the fuel line, the mass of the pump and 
the mass of the fuel which must be expended to pump that fuel through the line.  The 
mass of the pump is probably practically independent of the pipe diameter, although its 
mass depends weakly on the pressure it must develop, which is a function of the pipe 
diameter.  Leaving it out of consideration, we can say that 
 mpipe = ρpipeDL ⋅ pipe wall thickness( )  
 mfuel to pump = Volume of fuel to pump ⋅ ΔPpipe ⋅ Heating value of pump fuel ⋅ηpump  

For a given allowable pressure, the pipe wall thickness is proportional to D and ΔPα
1

D5  

so that ;  and mpipe = C1D
2 mpump fuel =

C2

D5 ; mtotal = C1D
2 +

C2

D5  

 dmtotal

dD
= 2C1 D−

5C2

D6 = 0 ; D minimum combined mass =
5C2

2C1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
7
 

_______________________________________________________________________ 
 
6.80  (a) Following the instructions in the problem 

dV
dt

= −
18μV
D2 ρ

=
VdV
dx

 

 dV
V0

0

∫ = −
18μ
D2ρ

dx
0

xStokes stopping

∫   carrying out the integration and inserting the limits 

leads to Eq. 6.66.  The stokes stopping distance appears often in the fine particle 
literature. 

(b)  xStokes stopping =
V0 D2ρ
18 μ

=
10

m
s

⋅ 10−6 m( )2
⋅ 2000

kg
m3

18 ⋅ 0.018cp ⋅ 0.001 kg
m s cp

= 0.061 mm = 0.002 in  

This startlingly small value shows that for particles this small (about the size of air 
pollution interest) the air is very stiff, and particles come to rest quickly.  This is example 
8.5 page 225 of Noel de Nevers, "Air Pollution Control Engineering, 2e", McGraw-Hill 
2000.  There it is shown that for a particle of this size C ≈ 1.12, so taking the 
Cunningham correction factor into account raises the computed value by 12%.  The 
behavior of particles small enough to be of air pollution interest is discussed in more 
detail in that book. 
 
(c)  If we return to Eq 6.63, and separate variables and integrate, we find 
 

dV
V

= −
18μ
D2ρV0

V

∫ dt
0

t

∫ ; ln
V0

V
=

18μ
D2 ρ

⋅t    

from this we see that V = 0 corresponds to infinite time.  For 1% of V0 

 t =
D2ρ
18μ

⋅ ln
V0

V
=

10−6 m( )2
⋅2000

kg
m3

18 ⋅0.018cp ⋅ 0.001 kg
m s cp

⋅ ln 100 =
xStokesstopping

V0

⋅ ln 100 = 2.8 ⋅10−5 s  

While the particle theoretically moves forever, it loses 99% of its initial velocity in 28 
microseconds. 
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(d) From example 6.9 we know that the gravitational settling velocity is 6.05·10-5 m/s, so  
 Δz = Vterminal,  gravityΔt = 6.05 ⋅10−5 m

s
⋅ 2.8 ⋅10−5 s = 1.7 ⋅10-9 m  

This is 3·10-5 times the stokes stopping distance (for this example) and clearly negligible. 
_______________________________________________________________________ 
 

6.81*  V =
0.0001 in( )2 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 100 − 62.3( ) lbm

ft3

18 ⋅1.002cP ⋅ 6.72 ⋅10−4 lbm
ft s cP

⋅
ft2

144 in2 = 6.96 ⋅10−6 ft
s

= 0.6
ft

day
 

 
One may check that Rp ≈ 5 e-6, so the stokes law assumption is safe.  On the time scale 
of geology this particles settles rapidly, but on a human time scale it practically doesn't 
settle. 
_______________________________________________________________________ 
 
6.82 As a first trial we assume  Cd = 0.4.  Then, copying from that example; 

 V =
4 0.02 m( ) 9.81

m
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 7.85 −

78.5
62.3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 998.2

kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3 998.2 kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

78.5
62.3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.4( )

= 1.84
m
s

 

 
  
R p =

0.02m( ) 998.2 ⋅
78.5
62.3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1.84

m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

800 ⋅10−3 PaS
= 58.1 

From Fig. 6.24 se see that for this particle Reynolds number,  Cd ≈ 1.5.  Using the 
approximate equation in the caption of that figure we find 
 Cd = (24 / 58.1)⋅ (1 + 0.14 ⋅58.10.7 ) =1.406  
which is within our ability to read Fig. 6.24  of the 1.5 above.  Then we use our 
spreadsheet's numerical engine to find the value of  Cd  in the above equation which 
makes the assumed and calculated values equal.  We find V = 0.776 m/s = 2.55 ft/s, Rp = 
24.4 and Cd  = 2.27.   
 
Be cautioned that the approximation formula is only applicable to spheres (although the 
discs curve is very close to the spheres curve) and only in the Rp  range shown. 
_______________________________________________________________________ 
 

6.83*  F =
π
4

D2 ρCd
V 2

2
;       V =

2 F
π
4

D2 ρCd

 

 
As a first trial we assume Cd = 0.4 

Solutions, Fluid Mechanics for Chemical Engineers, Third Edition, Chapter 6, page 39 
 

 



 Vfirst 
trial

=
2 0.1 lbf( )

π
4

10 ft( )2 0.075 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.4( )

⋅
32.2 lbm ft

lbf s2 =1.65
ft
s

 

 

  

RP =
10 ft( ) 1.65

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.613 ⋅10−4 ft2

s

= 1.02 ⋅105    From Fig 6.24 we see that this corresponds to 

 Cd ≈ 0.5 so that  Vsecond
guess

=1.65
ft
s

0.4
0.5

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

V2

=1.48
ft
s

  and 
 
R = 1.02 ⋅105 1.48

1.65
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0.92 ⋅105  

 
For this particle Reynolds number, Cd ≈ 0.5   so we accept the second guess.  
_______________________________________________________________________ 
 

6.84 (a) 

  

R p =

2.9
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

100 ⋅ 5280
3600

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.613 ⋅10−4 ft2

s
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= 2.2 ⋅105 ;  From Fig. 6.24 we read 

that Cd ≈ 0.5  

 F =
π
4

D2 ρCd
V 2

2
 

   =

π
4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2.9
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

0.075
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.5( ) 100 ⋅5280

3600
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

lbf s2

32.2 lbm ft
= 0.57 lbf = 2.55 N  

(b)  m
dV
dt

= mV
dV
dx

= −F = −

π
4

D2ρCd

2
V 2  

 
dV
V

= −

π
4

D2 ρCd

2 m

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 
dx; 

 ln
V
V0

= −

π
4

D2ρCDΔx

2 m

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= −

π
4

2.9
12

ft
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

0.075
lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.5( ) 60 ft( )

2( ) 0.32 lbm( ) = − 0.161 

 V = V0 exp − 0.161( )= 85
mi
hr

= 125
ft
s

= 38
m
s

 

Stitching on the ball, spin, gravity and wind all influence the speed and curvature of the 
ball's flight path. 
_______________________________________________________________________ 
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6.85 As the ball began its flight 

  

R p =
36

m
s

⋅ 0.223 m

1.488 ⋅10−5 m2

s

= 5.4 ⋅105    From Fig. 6.24 we see 

that this is very close to the particle Reynolds number at which the Cd  curve has a 
sudden change.  At higher particle Reynolds numbers, Cd ≈ 0.1, at lower particle 
Reynolds numbers, Cd ≈ 0.5.  If we assume that this transition occurred half-way from 
the kicker to the goal, we can then compute that at that half-way point (see preceding 
problem solution) that  

 ln
V
V0

= −

π
4

D2ρCDΔx

2 m

⎛ 

⎝ 

⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ ⎟ 

= −

π
4

0.223 m( )2 1.20
kg
m3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.1( ) 13.5 m( )

2( ) 0.425 kh( ) = − 0.074 

and V = 36
m
s

⋅exp − 0.074( ) = 33.4
m
s

 

 For the second half of the ball's flight we substitute Cd ≈ 0.5, finding  

 ln
V
V0

= − 0.372  and V = 33.4
m
s

⋅exp − 0.372( ) = 23.0
m
s

 

In the first half of its flight, the ball lost about 7% of its initial velocity.  In the second 
half it lost about 31% of its remaining velocity.  The result was apparently very dramatic. 
_______________________________________________________________________ 
 
6.86 The world record speed for the 100 m dash is ≈ 10 m/s, while that for the 100 m 
freestyle swim is ≈ 2 m/s, so the ratio is ≈ 5.  If we assume that the characteristic 
dimension for both running and swimming is ≈ 1 m, then we can compute the particle 
Reynolds numbers for both, finding 0.6·106 and  2·106.  This suggests that for both 
running and swimming we are to the right of the sudden transition on Fig. 6.24 (but see 
the preceding problem) so that Cd ≈ 0.1, for both.  This says that we are in the flow 
regime in which the viscosity plays no role, but the drag force is ≈ proportional to the 
fluid density.  The density of water is ≈ 833 times that of air, so the difference is mostly 
due to the difference in densities. 
 
The projected areas are quite different, because the swimmer lies flat in the water, while 
the runner stands mostly upright.  If we assume the sprinter has four times the projected 
area of the swimmer, and assume that the muscular power output is the same for the 
sprinter and the swimmer and all goes to overcome fluid resistance, then we would 
expect  Po = AΔPV ∝ AρV 3  to be the same for both.  Surprisingly the values are quite 
similar 

 
Posprinter

Poswimmer

= 4 ⋅
1.2

kg
m3

1000 kg
m3

⋅
10

m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3

2 m
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3 = 0.60  
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This may be a coincidence..  I think that the competitive swimmer is mostly expending 
muscular energy to overcome water's fluid mechanic resistance, while the sprinter, while 



sensitive to aerodynamic resistance, is mostly expending energy to overcome the internal 
resistance of her/his own muscles and joints.  If readers have comments on this I would 
be interested to hear them. 
 
This was actually tested in Aug 2003 ("Swimmers take slimy dive for an experiment at 
U", Minneapolis Star Tribune, Aug 19, 2003).   Professor Ed. Cussler of the U of M had 
swimmers timed for 25 yards in water and in a swimming pools whose viscosity had 
been doubled by dissolving guar gum in it.  The swimmers had to modify their position, 
holding their heads out of the water because of the gum.  The swimming speeds were the 
same, within experimental error.   
_______________________________________________________________________ 
 
6.87* Here we cannot use Eq. 6.58 because it is specific for a sphere.  We derive its 

equivalent for a general falling body,  m
dV
dt

= 0 = mg − Cd Aρair
Vt

2

2
;      Vt =

2mg
Cd Aρair

 

 
dV
dt

= g −
Cd Aρ
2 m

V 2 ;    dV
Vt

2 − V 2 =
g

Vt
2 dt ;  

1
2Vt

ln
Vt + V( )
Vt − V( )

=
gt
Vt

2 ; t =
Vt

2g
ln

Vt +V
Vt −V

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 dV
dt

= V
dV
dx

; dx =
VdV

g − Cd AρV 2

2 m

; g
Vt

2 dx =
VdV

Vt
2 − V 2 ;  

gx
Vt

2 = −
1
2

ln
V 2 − Vt

2

0 − Vt
2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 x =
Vt

2

2 g
ln

Vt
2

Vt
2 − V2  

 

(a) Vt =
2( ) 120 lbf( )

0.7( ) 1 ft2( ) 0.075 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
32.2 lbm ft

lbf s2 = 384
ft
s

 

 t =
Vt

2g
ln

Vt +V
Vt −V

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

384
ft
s

2 ⋅32.2 ft
s2

ln
1.99Vt

0.01Vt

= 31.6 s  

 x =
Vt

2

2 g
ln

Vt
2

Vt
2 − V2 =

384
ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2 ⋅32.2 ft
s2

ln
12

12 - 0.012 = 8954 ft    

 
(b) Repeating the calculation with A = 6 ft2 and Cd = 1.5 leads to 107 ft/s, 8.8 s and 
696 ft. 
  
_______________________________________________________________________ 
 

6.88  Vallowable = 2gx = 2 ⋅ 32.2
ft
s2 ⋅10ft = 25.4

ft
s

= 7.73
m
s
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See the preceding problem. Vt =
2 mg

Cd Aρair

;

 A =
2mg

Cd Vt
2 ρair

=
2( ) 150lbm( ) 32.2

ft
s2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1.5( ) 25.4 ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

0.075 lbm
ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

= 133 ft2 =12.4 m2  

 D =
4
π

A =
4
π

133 ft2 = 13 ft = 4.0 m  

_______________________________________________________________________ 
 
6.89  (a) 

F = AρairCd
V 2

2
=

6 ⋅ 5( )ft2 ⋅ 0.075
lbm
ft3 ⋅0.3

70 ⋅5280
3600

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

2
⋅

lbf s2

32.2 lbm ft
= 110 lbf  

(b) Po = FV = 110 lbf( ) 70 ⋅5280
3600

ft
s

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ⋅

hp s
550 ft lbf

= 20.6 hp = 15.4 kW  

 
This is not asked for in the problem but can be used for discussion.  If this auto gets 30 
mi/gal at 70 mph, then the fuel consumption is 

 
fuel
consumption

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

gal
30 mi

⋅ 70
mi
hr

⋅6.0
lb

gal
=14

lbm
hr

 

The energy flow in the fuel is 
fuel energy
flow

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≈ 14

lbm
hr

⋅19 000
Btu
lbm

= 266 000
Btu
hr

 

If we assume a 30% thermal efficiency for the engine, then  
 Po engine ≈ 0.3* 266 000

Btu
hr

⋅
hp hr

2545 Btu
= 31.4 hp =  23.4 kW  

and roughly 2/3 of the power output of the engine is going to overcome air resistance. 
_______________________________________________________________________ 
 
6.90  If we guessed Stokes law, and did the calculation, we would find a velocity much 
higher than the correct value.  Then, on evaluating the Reynolds number we would have 
a higher value than the real value, so we would be certain to conclude we were outside 
the Stokes law range.  Thus the procedure shown in those examples is conservative; it 
can never lead to an incorrect answer if used as shown.  
_______________________________________________________________________ 
 
6.91 In those examples the calculated terminal velocities were 2·10-4 and 6.21 ft/s,  For 
Ex. 6.19 for a 1 micron particle with s.g. = 2 setting in air, we read Vt ≈ 2.4 ⋅10−4 ft / s .  
The difference between the two is partly due to the Cunningham correction factor, see 
p222 of Noel de Nevers, "Air Pollution Control Engineering, 2e", McGraw-Hill 2000. If 
we applied it to the result of Example 619 we would have found Vt ≈ 2.2 ⋅10−4 ft / s .  
The rest of the difference is inaccuracy in making up the chart.  For Ex. 6.20 we must 
interpolate between the s.g. = 5 and =10 lines, and must extrapolate off the right side of 
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the figure to 20,000 microns.  Doing so, we find Vt ≈ 6 ft / s   which matches the result in 
Ex. 6.20. 
 
Fig. 6.26 is really useful;  students should become familiar with it. 
_______________________________________________________________________ 
 
6.92 (0.001 in = 25.4 microns)  From Fig. 6.26  we read directly a velocity of 0.06 ft/s.  
By direct substitution in Stokes law one finds a velocity of 0.064 ft/s, and a Reynolds 
number of 0.03.  Droplets this small occur in fog and clouds, which settle very slowly.  
Most drops which we call rain have diameters at least ten times as large.  Droplets this 
size are spherical, while larger ones are deformed from the spherical shape. 
_______________________________________________________________________ 
 

6.93  
dV
dt

= V
dx
dt

= −
Cd AρV 2

2 m
; dx =

−2m
CDAρ

dV
V

 

      Δx =
−2m

Cd Aρ
ln

V2

V1

= −
2 ⋅ 0.027 lbm

0.1 ⋅ π
4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 0.5 in( )2 62.3 lbm

ft3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⋅
144 in2

ft2 ln
100

1000
= 14.5 ft = 4.42 m  

 
My firearms consultant (Ray Cayias) says that pistols and submachine gun bullets are 
800 to 1000 ft/s, so this velocity is plausible for the submachine guns normally involved 
in James Bond movies.  Rifles and hunting guns fire 2500-3000 ft/s.  He also tells me 
that if you can see a fish in the water, and you have a rifle, you can kill it with a bullet.  
You must aim below where you see the fish to correct for the refraction of the image at 
the air-water interface. 
_______________________________________________________________________ 
 

6.94  (a) For zero air resistance V = V0 − gt ; t =
V0 − V

a
=

2700
ft
s

− 0

32.2 ft
s

= 84 s  

 z = z0 + Vdt
0

t

∫ = z0 + 2700 − 32.2t( )dt = 0 + 2700
ft
s

t −
32.2

ft
s2

2
t2

0

t

∫   

 z = 2700
ft
s

⋅84 s −
32.2

ft
s2

2
84s( )2 = 113 000 ft  

With no air resistance, it would take just as long to return to earth, and it would return 
with its initial velocity. 
(b)  With air resistance (and an assumed constant drag coefficient)   

 dV = − g +
π
4

D2 Cd

m
ρ

V2

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ dt = − a + bV2( )dt  

where a and b are constants introduced to reduce our bookkeeping.  Then 
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 dV
a + bV 2 = − dt ; 

dV
a
b

+ V 2
= −bdt  this is a standard form I can look up in my 

integral tables, finding 
dV

a
b

+ V 2V0

V

∫ =
b
a

tan −1 V
b
a

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

V0

V

= −b t − t0( ) or  

 t =
1
ab

⋅ tan −1 V0
b
a

− tan−1 V
b
a

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   for V = 0 this becomes

 tfor top of
trajectory

=
1
ab

⋅ tan −1 V0
b
a

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

The unknown, Cd is buried in b.  I doubt that there is an analytical solution of the above 
equation for a known t.  But numerically it is quite easy.  First we guess that Cd = 0.6. 
Then,  a = 32.2 ft/s2, and  

 b =
π
4

D2 Cd

m
ρ =

π
4

⋅
0.3 ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 0.6
0.0214 lbm

⋅0.075
lbm
ft 3 =

0.00051
ft

 

and  tfor top of
trajectory

=
1
ab

⋅ tan −1 V0
b
a

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = 7.76 s ⋅ tan−1 10.80( ) =11.5s  

We then use the spreadsheet's numerical engine to find the value of Cd  which makes this 
value = 18 s, finding Cd  = 0.225. We may check this by calculating the height, using this 
constant value of Cd .  We must use 
 
  z = z0 + Vdt

0

t

∫ ≈ 0 + VavgΔt∑
and Euler's first method on a spreadsheet.  Thus for the first 0.1 second we compute that  
 V0.1 s = V0 − (a + bV2 )Δt = 2700 − 1442 ⋅0.1 = 2555.7

ft
s

 

and  Δz = 0.5 ⋅ V0 + V0.1s( )⋅ Δt = 262 ft
Continuing this on a spreadsheet (switching to 1 s intervals after 2 s, we find that V 
becomes zero between 16 and 17 s, at an elevation of 8880 ft, which is an excellent 
check on the reported values.  The initial particle Reynolds number is 4.2·105 which is 
close to the transition on Fig 6.24, so without any data we would assume the drag 
coefficient would start at ≈ 0.1 and change to ≈  0.5 during the flight.  Thus the 0.225 
value is in reasonable accord with what we would estimate from Fig. 6.24. 
 
For going down we cannot use this high a value of the drag coefficient, because there is 
no supersonic flow.  As a first approximation, we assume that the velocity at ground 
level represents a terminal velocity, and solve for  
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 mg =
π
4

D2Cd ρ
Vterminal

2

2
,; 

 Cd =
mg ⋅8

πD2 ρVterminal
2 =

0.021 lbm ⋅32.2
ft
s2 ⋅8

π 0.3ft
12

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

⋅ 0.075 lbm
ft3 300 ft

s
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2 = 0.408  



We can test this value by repeating the above numerical integration (changing the sign on 
the drag term!).  Using 1 s intervals, we find that after 31 s the velocity is 302 ft/s, and 
the bullet has fallen 7500 ft.  This is a reasonable, but not perfect check on the observed 
300 ft/s, and 9000 ft in 31 s. 
 
For the downward trip the particle Reynolds number begins at zero, and ends at 46,500, 
for which we would read a drag coefficient of ≈ 0.45 from Fig 6.24.  Thus we could have 
calculated this part fairly well from Fig. 6.24 alone. 
_______________________________________________________________________ 
 
6.95    (a) The sketch is shown at the right.  
In the left figure the flow is around a 
single particle, and extends to infinity in 
all directions.  In the right figure there is a 
regular array of particles, so that the local 
flow between them must go faster than 
that around a single particle, and the flow 
leaving one particle must turn to miss the 
particle behind it.  These two effects cause 
the net velocity of fluid relative to 
particles to be smaller.  
(b) For the particle by itself, we look up the result on Fig. 6.25 finding 0.0015 ft/s.  
The term on the right in Eq. 6.65 is 1 − c( )n = 1− 0.4( )4.65 = 0.093 , so that the expected 

setting velocity is Vhindered settling = 0.0015
ft
s

⋅ 0.093 = 0.00014
ft
s

. 

_______________________________________________________________________ 
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