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Predicting inelastic responses of reinforced concrete walls and
wall systems requires accurate, effective, and robust modeling and
analysis tools that incorporate important material characteristics
and behavioral response features (that is, neutral axis migration,
tension-stiffening, progressive gap closure, and nonlinear shear
behavior). A research project was undertaken to investigate and to
improve an effective modeling approach for the reliable prediction
of the inelastic response of slender reinforced concrete (RC) walls
that incorporates refined constitutive models and various response
features. It was verified that the multiple-vertical-line-element
model captures important response characteristics associated with
cyclic behavior RC structural walls governed by flexure. The wall
model adopted herein provides a flexible platform to assess the
influence of material and other behavioral features in nonlinear
responses. Variation of model and material parameters was inves-
tigated to identify the sensitivity of global and local model results
to changes in these parameters.
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INTRODUCTION
Reinforced concrete (RC) structural walls are effective for
resisting lateral loads imposed by wind or earthquakes. They
provide substantial strength and stiffness as well as the
deformation capacity needed to meet the demands of strong
earthquake ground motions. Extensive research has been
carried out to study the behavior of RC walls and frame-wall
systems. A reliable prediction of the inelastic response both
at the global and local levels of such structural systems under
seismic loads requires the use of an analytical model that
captures the hysteretic behavior as well as the interaction of

the wall with other structural members.

Analytical modeling of the inelastic response of structural
wall systems can be accomplished by using microscopic or
macroscopic phenomenological models. Although micro-
scopic (finite element) models can provide a refined and
detailed definition of the local response, their efficiency,
practicality, reliability, and robustness are questionable due
to complexities involved in developing the model and
interpreting the results. An effective analytical model for
analysis and design of most systems should be relatively simple
to implement and reasonably accurate in predicting the
hysteretic response of RC wall systems.

A reliable model for practical nonlinear analysis of RC
structural walls is not available in commonly used structural
analysis platforms, such as DRAIN-2DX and SAP2000. Use
of a single beam-column element (Fig. 1) at the wall centroidal
axis is a common modeling approach. In this case, an equivalent
column is used to model the properties of the wall, and
girders with rigid end zones are connected to the column at
each floor level. The rotations of a beam-column element
occur about the centroidal axis of the wall; therefore, migration
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of the neutral axis along the wall cross section during loading
and unloading is not accounted for. Consequently, effects
including rocking of the wall and interaction with the
connecting girders, both in the plane of the wall and
perpendicular to the wall, may not be properly considered.
Various phenomenological macroscopic models have been
proposed to capture such behavioral features in predicting
the inelastic response of RC structural walls. As a result of
extensive studies,'”’ the multi-component-in-parallel model
(MCPM, later referred to as multiple-vertical-line-element
model [MVLEM]) proposed by Vulcano, Bertero, and
Colotti’ has been shown to successfully balance the
simplicity of a macroscopic model and the refinements of a
microscopic model.! The MVLEM captures important
features (for example, shifting of the neutral axis, and the
effect of a fluctuating axial force on strength and stiffness),
which are commonly ignored in simple models, and offers the
flexibility to incorporate various material hysteretic models
and important response features (for example, confinement
and nonlinear shear behavior) in the analysis.

Prior work identified that wall flexural response can be
accurately predicted by the MVLEM when refined hysteretic
constitutive laws are adopted.1 Subsequent modifications of
the MVLEM?>? have included implementing simplified
force-deformation rules for the uniaxial elements to capture
the behavior observed in experimental results; however, the
resulting analytical response prediction is thus governed by
somewhat arbitrary force-deformation rule parameters, the
selection of which is based on engineering judgment.2 An
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alternative approach is adopted herein, where state-of-the-art
uniaxial cyclic material constitutive laws for concrete and
reinforcing steel were adopted to better predict nonlinear
response at both the global and local levels.

Although extensive research has been carried out on the
development of the MVLEM, 17 the model has not been
implemented into widely available computer programs and
limited information is available on the influence of material
behavior on predicted responses. The model also has not been
sufficiently calibrated with and validated against extensive
experimental data at both local and global response levels.
The reliability of the model in predicting the shear behavior
of walls is questionable and an improved methodology that
relates hysteretic flexural and shear responses is needed.

RESEARCH SIGNIFICANCE

Given the aforementioned shortcomings, a research
project was undertaken to investigate and improve the
MVLEM for slender RC wall systems, as well as to calibrate
and validate it against experimental data. A description of
the improved model, implementation of detailed cyclic
constitutive relationships, and the sensitivity of the model
predictions to both model and material parameters are
presented in this paper. Detailed comparisons of model
results with extensive experimental data at global and local
response levels are presented in a follow-up paper. The
comparisons indicate that, with proper calibration of material
parameters, the model is effective in predicting the nonlinear
flexural response of slender reinforced concrete walls.

ANALYTICAL MODEL

The model in Fig. 2(a) is an implementation of the generic
two-dimensional MVLEM wall element. A structural wall is
modeled as a stack of m» MVLEM elements, which are placed
on one another (Fig. 2(b)). The flexural response is simulated by
a series of uniaxial elements (or macrofibers) connected to
rigid beams at the top and bottom (for example, floor) levels.
The stiffness properties and force-displacement relationships of
the uniaxial elements are defined according to state-of-the-art,
uniaxial, cyclic constitutive models for concrete and steel
and the tributary area assigned to each uniaxial element
(Fig. 3). The number of the uniaxial elements n can be
increased to obtain a more refined description of the wall
Cross section.

The relative rotation between top and bottom faces of the
wall element occurs around the point placed on the central
axis of the element at height ch (Fig. 4). Rotations and
resulting transverse displacements are calculated based on
the wall curvature, derived from section and material properties,
corresponding to the bending moment at that specific point
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of each element (Fig. 4). A suitable value of the parameter ¢
is based on the expected curvature distribution along the
element height /4. A value of c = 0.4 was recommended by
Vulcano, Bertero, and Colotti! based on comparison of the
model response with experimental results. Selection of ¢
becomes important in the inelastic range, where small
changes in moment can yield highly nonlinear distributions
of curvature. Stacking more elements along the wall height,
especially in the regions where inelastic deformations are
expected, will result in smaller variations in the moment and
curvature along the height of each element, thus improving
analytical accuracy.3

A horizontal spring placed at the height ch, with a
nonlinear hysteretic force-deformation behav10r following
an origin-oriented hysteresis model (OOHM) was originally
suggested by Vulcano, Bertero, and Colotti! to simulate the
shear response of the wall element. The OOHM was proven
to be unsuitable by Vulcano and Bertero® for an accurate
idealization of the shear hysteretic behavior especially when
high shear stresses are expected. The study presented herein,
however, focuses on modeling and simulation of the flexural
response, thus a linear elastic force-deformation behavior
was adopted for the horizontal “shear” spring. Flexural and
shear modes of deformation of the wall member are uncoupled
(that is, inelastic flexural deformations do not affect shear
strength and inelastic shear deformation), and the horizontal
shear displacement at the top of the element does not
depend on c.
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A single, two-dimensional MVLEM has six global
degrees of freedom, three of each located at the center of the
rigid top and bottom beams (Fig. 2(a)). According to this
model, the strain level in each uniaxial element is obtained
from the element six nodal degrees of freedom (translations
and rotations) using the plane-sections-remain-plane kinematic
assumption. Thus, if ky is the stiffness of the horizontal spring,
k; is the stiffness of the i-th uniaxial element, and x; is the
distance of the i-th uniaxial element to the central axis of an
element, the stiffness matrix of an element relative to the six
degrees of freedom is obtained as

[K,]=[a]” - [K] - [a] (1)

where [a] denotes the transformation matrix converting the
element degrees of freedom to the element deformations of
extension, relative rotation at the bottom, and relative rotation at
the top of each wall element (Fig. 5).

0 -10 0 10
lal = |_1/h 0 11/h00 2)
“1/h 0 01/h0 1

and

z k; _Z kix; Z kx;
i=1 i=1 i=1
[K]= kyc'h® + z kix! kyc(1—c)h’ - Z kx: (3)
i=1 i=1
k(1= c)'h* + 3 k]

i=1

symm.

is the element stiffness matrix relative to the three pure
deformation degrees of freedom shown in Fig. 5. Similarly,
if fi is the force in the horizontal spring, and f; is the force in
the i-th uniaxial element, the resisting force vector of the
wall element relative to the six degrees of freedom is
obtained from equilibrium as
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MATERIAL CONSTITUTIVE MODELS

The stiffness and force-deformation properties of the
uniaxial elements are derived from uniaxial stress-strain
material behavior; therefore, various state-of-the-art uniaxial
material constitutive models can be implemented. Axial
models for reinforcing bar buckling and bond slip can also be
incorporated into the wall model because the stiffness properties
of the wall model are based on axial force-deformation
relationships. Responses obtained using the present wall
model were found to be sensitive to the material constitutive
models used; therefore, details of the constitutive laws used
in this study for steel and concrete are described in the
following sections.

Uniaxial steel constitutive model

The reinforcing steel stress-strain behavior implemented
in the wall model is the well- known nonlinear hysteretic
model of Menegotto and Pinto,} as extended by Filippou,
Popov, and Bertero® to include isotropic strain hardening
effects. The relationship is in the form of curved transitions
(Fig. 6(a)), each from a straight-line asymptote with slope E,,
(modulus of elasticity) to another asymptote with slope E| =
bE; where parameter b is the strain hardening ratio. The
curvature of the transition curve between the two asymptotes
is governed by the parameter R (Fig. 6(b)), which permits the
Bauschinger effect to be represented. The curvature parameter R
depends on the absolute strain difference & between the
current asymptotes’ intersection point and the previous
maximum or minimum strain reversal point (Fig. 6(b)). The
parameter is assigned a value of R, for initial (or monotonic)
loading, and the degradation of the curvature with each
subsequent cycle is represented by experimentally determined
parameters a; and a, as noted in Fig. 6(b).

Uniaxial concrete constitutive model

The hysteretic stress-strain relation of concrete for use in
a MVLEM should address important issues such as the
hysteretic behavior in both cyclic compression and tension,
the progressive degradation of stiffness of both the
unloading and reloading curves for increasing values of
strain, and gradual crack closure. The uniaxial hysteretic
constltutlve model for concrete developed by Chang and
Mander'? is used as the basis for the material model
implemented in this study. Details of the model are
presented in the followmg paragraphs.

Chang and Mander'” developed a generalized model to
simulate the hysteretic behavior of confined and unconfined,
ordinary, and high-strength concrete in both cyclic compression
and tension, in which the monotonic curve forms the envelope
for the cyclic stress-strain behavior. Particular emphasis was
paid to the transition between crack opening and closure, and
concrete in tension is modeled with a cyclic behavior similar
to that in compression based on results of cyclic tension tests
performed on concrete specimens by previous researchers.
The model’s envelopes for compression and tension allow
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Fig. 6—Steel, uniaxial, cyclic, constitutive model.

control on the shape of both the ascending and descending
(that is, prepeak and postpeak) branches of the stress-strain
behavior (Fig. 7(a)). The envelopes can be calibrated for
selected values of peak stress, strain at peak stress and
modulus of elasticity (and also via the parameter r defining the
shape of the envelope curve), allowing for model refinement.
To define the cyclic properties of concrete in compression,
statistical regression analyses were performed by Chang and
Mander on an extensive experimental database and empirical
relations were developed for key hysteretic parameters such
as secant stiffness E;,. and plastic stiffness E,; upon
unloading from, and stress and strain offsets (Af and Ag)
upon return to, the compression envelope (Fig. 7(a)). For
cyclic behavior in tension, Chang and Mander modified the
empirical relations for the same parameters used for
compression, based on test results by Yankelevsky and
Reinhardt.!! Parameters such as the plastic (residual) strain
upon unloading €,/, new stress f,,,,, and slope E,,,, upon
returning to unloading strain €,,,,, and the strain €,,, stress f,.,
and slope E,, upon returning to the compression or tension
envelope are dependent on these empirical relations (Fig. 7(a)).
In terms of hysteretic behavior, the model uses smooth
connecting curves for unloading and reloading between the
compression and tension envelopes, and smooth transition
curves for partial unloading and reloading between the
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connecting curves (Fig. 7(b)). Both connecting and transition
curves have slope continuity with a constant sign of curvature
(second derivative of the curve equation). Accordingly, the
model generates a continuous stress-strain relation with
slope continuity (except at unloading points) for confined
and unconfined concrete in both compression and tension
(Fig. 7(b)). Further details of the model can be found in the
referenced report.10 The model was verified by Chang and
Mander for cyclic compression using an extensive test database
and was shown to accurately simulate test results for both
confined and unconfined concrete.

Modeling of tension stiffening

The contribution of tensile concrete resistance between
cracks is known as tension stiffening and plays a significant
role in reducing the postcracking deformations of reinforced
concrete structures.”“ According to Belarbi and Hsu,!?
modeling of the tension stiffening phenomenon must
consider two effects simultaneously. First, an average tensile
stress-strain curve must be considered for cracked concrete;
and second, the stress-strain curve of bare mild steel bars
must be replaced by an average stress-strain curve for steel
bars stiffened by concrete between cracks.

In this study, concrete and steel within each uniaxial
element are subjected to the same average (smeared) strain.
This allows direct implementation of average stress-strain
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relationships to assess the effect of tension stiffening on both
steel and concrete. Belarbi and Hsu'? developed a constitutive
law for the average tensile stress-strain relationship of
concrete in the monotonic postcrack region and proposed
empirical modification factors, based on longitudinal steel
area ratios, for the yield stress oy and strain-hardening ratio
b of steel bars embedded in concrete.

The material laws implemented in this study can be
controlled and calibrated to follow the relations developed
by Belarbi and Hsu'? or similar empirical relations to model
tension stiffening for monotonic loading. The calibrated
material laws can be used for cyclic loading, as a tension
envelope for concrete or a tensile yield asymptote for steel,
assuming that tension stiffening does not significantly
influence the cyclic stress-strain properties of the materials.
For example, Fig. 8 shows a comparison of a sample tension
envelope generated by the model of Chang and Mander!?
with the descending branch of the stress-strain relationship
proposed by Belarbi and Hsu.'? The shape of the tension
envelope in Chang and Mander’s model is controlled
through the parameter r for tension (in addition to the
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modulus of elasticity E,., the peak tensile stress f;, and the
strain at peak tensile stress ;). The primary difference in the
two tension envelopes is that the envelope generated using
the Chang and Mander model accounts for the nonlinearity
of the stress-strain relation prior to cracking.

NONLINEAR ANALYSIS SOLUTION STRATEGY

The aforementioned macro wall model was implemented
in Matlab!3 together with a direct stiffness assembly
procedure to assemble the MVLEM elements into a
complete wall model and an incremental-iterative numerical
scheme to perform nonlinear quasistatic (monotonic or
cyclic) analysis of the wall model. A displacement-
controlled iterative solution strategy based on a specified
incrementation of a selected displacement component (DOF)
was adopted in this study. Iterations are performed on both
displacement and load components (Fig. 9) to obtain static
equilibrium within a specified tolerance, while keeping the
value of the selected displacement component constant. Details
of this iterative strategy are presented in the paper by Clarke
and Hancock.'* This solution strategy was selected to better
correlate the model response with drift-controlled cyclic test
results on RC wall specimenslS’16 subjected to prescribed
lateral displacement histories at the top of the wall. Various
incremental-iterative solution strategies can be implemented
for the nonlinear analysis of the wall model depending on the
type of loading. For example, the force-controlled Newton-
Raphson solution scheme was implemented as part of the solu-
tion strategy for nonlinear dynamic analysis of the wall model.

ANALYSIS RESULTS AND PARAMETRIC
SENSITIVITY STUDIES

The wall specimens tested by Thomsen and Wallace'~ and
Taylor, Cote, and Wallace!© are being used to assess and
calibrate the aforementioned model. Design and reinforcement
details for the walls, as well as the loading protocol, are
presented in detail in the referenced reportlS/paper. 16 Details
of the model calibration and comparison of the analytical and
experimental results will be presented in a future publication.
This paper focuses on characteristic features of the model as
well as the sensitivity of the model response to changes in
model parameters and material constitutive laws. Figure 10
shows a sample lateral load-top displacement response
prediction for a rectangular wall specimen (Specimen RW2
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tested by Thomsen and Wallace!%) with height of 3.66 m,
thickness of 102 mm, length of 1.22 m, and an applied axial
load of approximately 7% of the axial load capacity of the
specimen. The analytical results were obtained using eight
MVLEM elements along the height of the wall, eight
uniaxial elements (macrofibers) along the length, and ¢ = 0.4
for an applied lateral displacement history at the top of the
wall similar to the one used in the test program (cyclic drift
levels of 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, and 2.5%). The
applied lateral displacement history was corrected for the
pedestal rotation of the wall specimen. The analysis results
clearly reflect actual characteristics of cyclic wall behavior,
including stiffness degradation, shape of the load-displacement
hysteresis loops, plastic (residual) displacements at zero
load, and pinching. The model successfully allows variation
of the neutral axis depth for a cyclic displacement history
applied at the top of the wall, as shown in Fig. 11, which
displays the predicted position of the neutral axis in the
MVLEM at the base of the wall, normalized by the wall
length. The distance from the centroid of the wall cross
section to the neutral axis approaches infinity when the lateral
displacement (and thus rotation) of the wall approaches zero
and reaches its local extrema or limit points (peaks and
valleys) at peak displacement (displacement reversal) points.
Figure 12 compares the average longitudinal strain histories
predicted at the extreme concrete fiber and at the centroid of
the wall for the element at the base of the wall, demonstrating the
effect of applied displacement history and neutral axis migration
on the predicted strains. The longitudinal strains are not
symmetric with respect to the zero strain axis, and the strains
predicted at the centroid are tensile for almost the entire loading
history, except for a range of small displacements (due to the
presence of axial load). Furthermore, the MVLEM directly
considers the effect of varying axial load on the wall response,
which although constant in this case, might vary in some cases
(for example, under dynamic loads such as earthquakes).
Figure 13 shows a comparison of the analytically predicted
lateral load versus top displacement responses for an applied
axial load of zero and 10% of the axial load capacity of the
wall, clearly displaying the significant impact of axial
load on the wall response.

In addition to the model parameters (number of macro wall
elements m, number of uniaxial elements or macrofibers within
each element n, and center of rotation parameter c), properties
of the uniaxial hysteretic models defined for the materials
influence the analytical response predictions. The sensitivity of
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the results obtained with the model to both model and material
parameters is addressed in the following sections.

Material parameters

The MVLEM implemented in this study relates the
predicted flexural response directly to material behavior
without incorporating any additional empirical relations, as
has been done in other studies.!”’ It has been observed that
the predicted load-displacement response is, as expected,
influenced by the properties of the stress-strain laws
assumed for the longitudinal reinforcement and the concrete;
therefore, it is necessary to understand how variations in the
material constitutive laws influence the results obtained
using the model, particularly in the context of performance-
based seismic design.

The material constitutive parameters associated with the
implemented steel stress-strain law are the modulus of elasticity
Ey, the yield stress Oy the strain-hardening ratio b, and the
parameters Ry, a1, and a, influencing the cyclic curvature of
the transition curve between the elastic and yield asymptotes.
Values for E, Gy, and b are obtained from monotonic stress-
strain tests conducted on bare reinforcing bar specimens,
allowing for a reliable calibration. The values for the yield
stress o, and strain-hardening ratio b, however, should be
modified to consider the tension stiffening effect on the
reinforcing bars and can be calibrated for average values
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using relations such as those proposed by Belarbi and Hsu.!?
The calibration of parameters R, a;, and a, (accounting for
the cyclic degradation of the curvature coefficient R) requires
cyclic test results, the availability of which is relatively
limited. Figure 14(a) shows arbitrary stress-strain histories
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generated by the steel constitutive model for two different
sets of values for parameters Ry, a;, and a, calibrated by
prior researchers™!” based on cyclic test results on steel bars.
The analytically predicted lateral load-top displacement
responses of the wall specimen obtained from the MVLEM
using the specified values for the material parameters (R, a;
and a,) are shown in Fig. 14(b). The lateral load capacity of the
wall is significantly influenced by these hysteretic parameters,
primarily in the region where the steel is not subjected to high
postyield strains (for example, 0.5 to 0.75% drift). Cyclic
degradation of the lateral stiffness during unloading and
plastic (residual) displacements at zero lateral load also
depend on the selection of these parameters (Fig. 14(b)).

The material parameters associated with the implemented
concrete stress-strain law are the monotonic (envelope)
parameters (E,., f or f;, €. or g, r) and the hysteretic
parameters (Af, Ag, E,;, E,) defined for compression and
tension (Fig. 7(a)). The empirical relations used to define
these parameters for monotonic and cyclic compression (for
both confined and unconfined concrete) were validated by
Chang and Mander'” using extensive experimental data. The
relations defining the parameters for cyclic tension,
however, were obtained using limited experimental data.
Furthermore, the observed tensile strength and stress-strain
properties of concrete depend strongly on the testing
conditions'® and considerable data scattering is observed in
test results, making it difficult to assign values for the
parameters that define the concrete tensile stress-strain
relation. Therefore, the sensitivity of the predicted wall
response to concrete stress-strain parameters investigated
herein focuses on concrete tensile strength and the hysteretic
parameters related to cyclic tension, as well as because
model results are less sensitive to variations in the parameters
describing the behavior of concrete in compression.
Figure 15 illustrates how the predicted monotonic and cyclic
lateral load-top displacement responses of the wall specimen
(with applied axial load 7% of axial load capacity) are
influenced by selection of the tensile strength (peak tensile
stress) for concrete f;. The strain at peak tensile stress €, was
varied proportionally with the peak tensile stress while the
shape parameter r was kept constant. Neglecting the
contribution of concrete in tension results in a lower
prediction of the wall lateral stiffness and a slightly lower
prediction of the wall lateral strength compared with results
that include the contribution of concrete in tension.
Furthermore, variation in the assumed tensile strength for
concrete influences the cyclic properties of the predicted
response (Fig. 15).

The hysteretic parameters associated with the cyclic
concrete stress-strain law in tension are the plastic stiffness
E", and secant stiffness E”,. upon unloading from, and
stress and strain offsets (Af* and Ag") upon return to the
tension envelope (Fig. 7(a)). The predicted wall response is
not notably influenced by the stress and strain offsets
because the offsets influence the shape of the stress-strain
curve within a very small range of tensile stresses. On the
other hand, the predicted wall response is significantly
influenced by values selected for the plastic and secant
stiffnesses for unloading in tension because these parameters
control the starting strain and initial slope for the gap closure
region of the concrete stress-strain law. Figure 16(a)
compares sample stress-strain histories generated by the
constitutive relationship for concrete with the original
expression derived by Chang and Mander'? for the plastic

ACI Structural Journal/September-October 2004



stiffness in tension E* ; and an illustrative value of zero, and
Fig. 16(b) compares the corresponding predicted load-
displacement responses of the wall obtained using 17
MVLEM elements along the wall height (eight of the
MVLEM elements stacked along the bottom 1/4 of the wall
height and the rest distributed uniformly over the wall
height) with 22 uniaxial elements along the wall length, and
¢ = 0.4. The figures reveal that the shape of the unloading
and reloading curves of the predicted load-displacement
response is governed by the selection of the value for plastic
stiffness £, which together with the secant stiffness E™ .
governs the progressive gap closure properties (that is,
pinching) of the concrete stress-strain relationship. Using a
value of zero for E+pl results in an abrupt change in the
lateral stiffness of the wall from unloading to reloading in the
opposite direction, and thus a much more pronounced
pinching behavior (similar to the cyclic response in Fig. 15,
when concrete tensile stresses are neglected [f; = 0] and thus
the plastic stiffness for unloading in tension is zero), whereas
implementing the original relation imposes a more gradual
change in the lateral stiffness of the wall. The variation in the
pinching behavior, however, does not change the lateral
strength and stiffness of the wall at peak top displacement
(displacement reversal) points because the enforced peak
displacements of the wall are increasing for successive
loading cycles.

Similar behavior is observed in the analytically predicted
position of the neutral axis and the predicted longitudinal
strains. Figure 16(c) shows the position of the neutral axis
predicted in the MVLEM at the base of the wall obtained by
using the two different expressions for the tensile plastic
stiffness. The neutral axis positions reach the same local
limit values at peak displacement data points, and variation
between the two cases is enhanced as the displacement (or
rotation) of the wall approaches zero. Finally, Fig. 16(d)
illustrates the influence of the plastic stiffness on predicted
longitudinal strain histories for the element at the base of the
wall. For the two cases, the strains at both the extreme fiber
and centroid are identical at peak displacement data points;
however, noticeable variation is observed in the strains
(more distinctly at the centroid) as the wall displacement
approaches zero.

The variation in the unloading and reloading regions of the
predicted response (Fig. 16(b)) has only a marginal effect on
the energy dissipation capacity of the wall model. Calculating
the hysteretic energy dissipation capacity for the plots in
Fig. 16(b) normalized by that of a bilinear lateral load-top
displacement relationship yields values of 0.66 for the
response obtained by using the relation for the tensile plastic
stiffness defined by Chang and Mander, and 0.64 using a
zero value for the tensile plastic stiffness.

Variation in the secant stiffness defined for concrete in
tension E*,. influences wall response in roughly the same
way as changes in the plastic stiffness E+pl' The empirical
relations defined by Chang and Mander for the plastic
stiffness and secant stiffness in tension were obtained from
limited experimental data'? with imposed tensile strains
reaching a value of approximately 0.003. However, the
tensile strains in walls are likely to reach much larger values
(for example, 0.035 in this example); thus, using the Chang
and Mander empirical relations for such high levels of
tensile strain may be inappropriate. Calibration of these two
hysteretic parameters for a broader range of tensile strains,
and also accounting for the tension stiffening effect, would

ACI Structural Journal/September-October 2004

€;,f.
E;, (Chang and Mander, 1994) (e, 1o
...... EY- (Eonr Fon)
b o
- 'I'
& e )
o = M [~ Compression
n o R A 7))
o /](Splvo)
/ Tension
Eans Fin !
(£ £2) ,
/
a
(8°°+8"ft) Not to scale
Strain, €
(a) Concrete Stress-Strain Relation
Lateral Drift (%)
-2 1 0 1 2
200 T T
4 |—E .
100 — —

Lateral Load (kN)
o

Bilinear Force-Displacement 1
Relation
-200 T T T T T T T T T
-100 -60 -20 20 60 100

Top Displacement (mm)

(b) Load-Displacement Response

1 — T T T T I T I

0.5 i W A \,ej’

xN.A./ £,
[=]
[

<& Peak top displ. data points

05 \6“ " \ NX\ Mt

" , ! !
0 100 200 300 400
Data Point Number

(c) Position of the Neutral Axis

0.04 T I T I T ‘ ;
-1| Strain at Extreme Fiber | © Peak top displacement ]
! E* ] data points
0.03 — \ pl i _
w ‘ . ‘
£ - E,=0 i
[ — =
“3 0.02 — Strain at Centroid ol ]
= +
£ 7 4
5 |-
2 001 _
2 "
H -| Tension i
-
o —
"] Compression
-0.01 ! L | ! L !

0 100 200 300 400
Data Point Number

(d) Longitudinal Strains

Fig. 16—Effect of concrete tensile plastic stiffness on
analytical response.

695



Lateral Drift (%)

200

Lateral Load (kN)
o

-200
-100 100
Top Displacement (mm)
Fig. 17—Strength degradation in analytical response.
Lateral Drift (%)

200 |
100 — —
F3
é .
°
@

S o
s
] - _
©
-
100 —| —
-200
-100 100
Top Displacement (mm)
(a) Lateral Load — Top Displacement Response
0.05 T T T ! T I T
7| strain at Extreme Fiber b

0.04 —| n= 8,m= 8 § —
w i ’ ------ n=17,m=22 i
% 0.03 — Strain at Centroid it —
g n= 8m= 8 “' i
= T —mm--- n=17,m=22 K
2 002 — ‘ —
o | i
E i
© — —

5 0.01 Tension
| T ‘ _
0 2.
N N
-| Compression . ~ —

0.01 I | 1 | 1 | ]

0 100 200 300 400

Data Point Number

(b) Longitudinal Strains in the MVLE at the Base of the Wall

Fig. 18—Sensitivity of responses to number of MVLEM and
uniaxial elements.

refine the modeling of the gap closure region of the concrete
stress-strain behavior, and the prediction of the wall
pinching behavior. The concrete model proposed by Chang
and Mander!? provides a flexible approach that allows calibra-
tion of such parameters to control gap closure properties of

696

concrete for an improved overall representation of wall
force-deformation relations.

It has been observed that the model results are less
sensitive to variation in the parameters defining the
monotonic and hysteretic stress-strain relation for concrete
in compression, provided that the values used for the
parameters are within reasonable range such as those
obtained by using the empirical relations recommended by
Chang and Mander. The empirical relations relate the
parameters for compression (that is, modulus of elasticity
E_, strain at peak compressive stress €, , parameter r defining
the shape of the compression envelope, and hysteretic
parameters for compression including stress and strain offsets
[Af~ and Ae™], and unloading plastic stiffness and secant
stiffness [E,; and Eg,. ]) to the value selected for the
unconfined compressive strength (peak unconfined
compressive stress f,| ) of ordinary or high-strength concrete.
The governing parameter f. can be feasibly calibrated with
monotonic stress-strain tests conducted on concrete specimens
(for example, 152.5 x 305 mm standard cylinders). The
macro wall model presented previously, together with the
nonlinear solution strategy implemented here, can simulate
the strength degradation associated with the descending
(postpeak) branch of the concrete stress-strain constitutive
law. This is shown in Fig. 17, where the analytical lateral
load-top displacement responses obtained using different values
of unconfined compressive strength are also compared.

Model parameters

Apart from material constitutive parameters, the only
parameters associated with the analytical wall model are the
number of uniaxial elements used along the length of the
wall cross section n, the number of MVLEM elements
stacked on top of each other along the height of the wall m,
and the parameter defining the location of the center of rotation
along the height of each MVLEM element ¢ (Fig. 2).
Sensitivity of the simulated wall response to variations of
these parameters was investigated.

It has been observed that the calculated global response
(that is, lateral load versus top-displacement) is not very
sensitive to the selection of either the number of MVLEM
elements along the height of the wall or the number of
vertical elements along the wall length, provided that reasonable
values are selected to adequately represent the overall wall
geometry. Figure 18(a) shows a comparison of the lateral
load-top displacement response predicted by using either
eight MVLEM elements along the wall height with eight
uniaxial elements along the length of the wall, or by using 17
MVLEM elements along the wall height (eight of the
MVLEM elements stacked along the bottom 1/4 of the
height where the inelastic deformations are expected, and the
rest distributed uniformly over the wall height) with 22
uniaxial elements along the wall length. The comparison
indicates that increasing the number of vertical line elements
or the number of MVLEM elements does not change
significantly the prediction of the global response (that is,
lateral load versus top displacement); however, the use of
more elements is valuable in terms of obtaining more
detailed information on local behavior, such as the state of
stress and strain or moment curvature response at a given
location. For example, results shown in Fig. 18(b) compare
the average longitudinal strain histories predicted at the
extreme concrete fiber and the centroid of the wall, in the
MVLEM at the base of the two wall model configurations
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used for the plots in Fig. 18(a) (n=8,m=8,andn=17,m=
22). Using more MVLEs over the height of the wall allows
for an improved local prediction of the strains. Also, using
more uniaxial elements along the wall length allows for a
more refined description of the wall cross section. Therefore,
the model incorporates the flexibility to choose how much
detail is desired in the analytical results.

The sensitivity of analysis results to the parameter
defining the location of the center of rotation along the
height of each MVLEM element c is illustrated in Fig. 19.
Figure 19(a) compares the predicted lateral load-top
displacement (global) response by using a wall model with
eight MVLEM elements (and eight uniaxial elements) for a
value of ¢ = 0.4 (recommended by Vulcano, Bertero, and
Colottil) and an illustrative extreme value of ¢ = 0.0 (center of
rotation at the bottom of each MVLEM element). Decreasing
the value of parameter ¢ leads to a higher prediction of
rotations and transverse displacements of the wall, resulting in
a slightly lower prediction of the wall strength and lateral
stiffness. This extreme variation in parameter ¢, however,
does not influence the characteristic shape of the load-
displacement response significantly. As proposed by
Fischinger et al.?, stacking more wall elements along wall
height, especially in the region where inelastic deformations
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are expected, reduces the change in curvature within each
element, thus diminishing the influence of the parameter ¢ on
the response. Figure 19(b) compares the predicted global wall
response for ¢ = 0.4 and ¢ = 0.0 using a wall model with
17 MVLEM elements with eight of the elements stacked
along the bottom 1/4 of the wall height. The two
responses are very similar.

CONCLUSIONS

Use of an MVLEM provides an effective means to model
the flexural response of slender reinforced concrete structural
walls at both the global and local levels. The intent of this
paper was to implement state-of-the-art, reliable, robust
material constitutive laws into an MVLEM and demonstrate
the effectiveness of the MVLEM for modeling and simulating
the inelastic response of reinforced concrete structural walls.
The variation of model and material parameters was
investigated to identify the sensitivity of analytically
predicted global and local wall responses to changes in these
parameters as well as to identify which parameters require
the greatest care with respect to calibration.

Based on analysis results, it was verified that the MVLEM
captures important response characteristics associated with
cyclic behavior of slender reinforced concrete structural
walls governed by flexure. The analytical model is able to
simulate important behavioral features including shifting of
the neutral axis along the wall cross section and the effect of
fluctuating axial force, which are commonly ignored in
simple models. Characteristics of the cyclic response,
including stiffness degradation and strength deterioration,
hysteretic shape, and pinching behavior are clearly captured
in the analysis results.

The modeling approach adopted here involves implementing
refined hysteretic uniaxial stress-strain laws instead of
simplified (ad-hoc) force-deformation rules to track
nonlinear responses. This allows the designer to relate
analytical responses directly to physical material behavior
and provides a more robust modeling approach, where model
improvements result from improvement in constitutive models
and refinement in the spatial resolution of the discrete model.
For concrete, the advanced constitutive models proposed by
Chang and Mander'? were implemented because they allow
control on the monotonic and hysteretic parameters for an
improved representation of the material stress-strain
behavior. This provides a direct and flexible approach to
incorporate important material behavioral features (for
example, hysteretic behavior in tension, progressive gap
closure, tension stiffening effect) into the analysis. It has
been observed that the model responses are not only sensitive
to material parameters associated with the monotonic stress-
strain behavior, but also influenced significantly by variation
in the hysteretic parameters defined for the steel (R, ay, ay)
and for concrete in tension (E™,;, E*,). Thus, careful
calibration of these parameters is important for an improved
prediction of the cyclic wall response.

Overall, the macroscopic wall model presented herein
provides a flexible platform to assess the influence of
various material and behavioral features in the nonlinear
responses of slender RC structural walls. Calibration of the
model using experimental results and implementation of the
model into a computational platform (for example, Pacific
Earthquake Engineering Research Center'®) will provide
design engineers improved analytical capabilities to model
the behavior of structural walls and their interaction with
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other structural elements. This capability is important given
the trend toward performance-based seismic design.

Details on calibration of the model and correlation of
predicted local and global responses with extensive test
results will be presented in a follow-up paper. Possible
further model improvements include implementing axial
force-deformation models in the uniaxial elements for
modeling reinforcing bar buckling and bond slip. Additional
work will focus on modeling of walls with flanged sections,
modeling of the shear response, as well as modeling the
coupling of shear and flexural behavior.
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