
DTrIC Fl cpy]
iL

REPORT DOCUMENTATION PAGEReport eL t; us

1Tarfetr ! 900726WI.110210
e m go " _ _

WrihtPate&o AFBf Dayon ANOH CME

AD""A233 277 RP DAEFinal 22 Jan 1991 to 01 Mar 1993

4.lAdldTonE Ada Compiler Validation Summary Report: LRMDUMBE

Verdix Corporation, VADs VAx/VMS = 68k, VMS 5.2, VAda-110-03125,
Version 6.0, MicroVAX 3100 (Host) to MVME147 (Motorola 68030)
(Target). 900726W1 .11021
&AUINOS)

Wright-Patterson AFB, Dayton, OH
USA

Dayton, OH 45433

M & O O6T A0OU I(ES) S. PONAION
Ada Joint'Program Office REPORT UAER

United States Department of Defense

Washington, D.C. 20301-3081

11 , EIbfqlt NOTES

12L DThUTIOM AAULMIY STAEENT 1. lDIRS N ON

Approved for public release; distribution unlimited.

i.UMUTPrACT(Ab,*mamI0m

Verdix Corporation, VADS VAX/VMS f 68K, VMS 5.2, VAda-110-03125, Version 6.0, Wright-
Patterson AFB, OH; MicroVAX 3100, VAX/BMS V5.2 (Host) to MVME147 (Motorola 68030),
bare machine (Target), ACVC 1.11.

EECTE N

-J

14.JECTEMC Ada programming language, Ada Compiler Validation ii.tA6EnAOFP MU

Summary Report, Ada Compiler Validation Capability, Validation

Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- mgOO
ST -_18SA1. 6da Joint Program Office

17.,AMAPASSXA5E M is. rycuCTRWNA

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NUN 7w444hwm Ma"
MCIS

91 3 19 120

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 26 July 1990.

Compiler Name and Version: VADS VAX/VMS=>68k, VMS 5.2,

VAda-110-03125, Version 6.0

Host Computer System: MicroVAX 3100, VAX/VMS V5.2

Target Computer System: MVME147 (Motorola 68030), bare machine

Customer Agreement Number: 90-05-29-VRX

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900726W1.11021 is awarded to Verdix Corporation. This certificate expires
on I March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

• / ' /// //

Ada Vtlijatio '1Organization Accession For
, Direetorp Computer & Software Engineering Division .,sin-
Institute f#r Defense Analyses NTIS GRA&I
Alexandria VA 22311 DTIC TAB

Unannounced 0
Justification

a By
elv" Distribulion/

Ada Joint Program Office
Dr. John Solomond, Director A, Availability Codes
Department of Defense 1-1 DAvail and/or

Washington DC 20301 3.."1 Dist Speoial

AVF Control Number: AVF-VSR-378.0191
22 January 1991

90-05-29-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900726W1. 11021
Verdix Corporation

VADS VAX/VMS->68k, VMS 5.2, VAda-11O-03125, Version 6.0
MicroVAX 3100 .> MVME147 (Motorola 68030)

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer: Verdix Corporation

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: VADS VAX/VMS=>68k, VMS 5.2, VAda-110-03125,
Version 6.0

Host Computer System: MicroVAX 3100, VAX/VMS V5.2

Target Computer System: MVME147 (Motorola 68030), bare machine

Customer's Declaration

I, the undersigned, representing Verdix Corporation, declare that Verdix
Corporation has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration. I declare that the Verdix Corporation is the owner of the
above implementation and the certificates shall be awarded in the name of
the owner's corporate name.

Date: _ ___ ___
StepfiinlZeig]Jer
Verdix Corporation
1600 N W Compton Drive
Suite 357
Beaverton, Oregon 97006

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the kAa Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent vith the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programmin Language,
ANSI/MIL-STD-M A-T buary 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
OIice, Augusrt107

lUG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standaid are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into' executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validption summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives foun *o be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 18 May 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B B83022H B83025B B83025D B83026B C83026A
C83041A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CC1223A BC1226A CC1226B BC3009B ADIBO8A
BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E
CD2A87A CD2B15C BD3006A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA2O1E
CE2107I CE2119B CE2205B CE2405A CE3111C CE3118A
CE3411B CE3412B CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

2-1

IMPLEMENTATION DEPENDENCIES

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG-INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55BO7A B55B09C B86001W C86006C
CD7101F

C35702B, C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG-FLOAT, or SHORTFLOAT.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this implementation
that range exceeds the safe numbers and must be rejected. (See section
2.3)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A84O use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OU FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT IO
CE2102I CREATE IN FILE DIRECT 10

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE21020 RESET OUT FILE SEQUENTIAL 10
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT IU
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT-IO
CE3102I CREATE OUT FILE TEXT_10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT-FILE TEXT-IO

CE2107A..E (5 tests), CE2107L, CE2110B, and CE2111D attempt to associate
multiple internal files with the same external file for sequential
files. The proper exception is raised when multiple access is
attempted.

CE2107F..H (3 tests), CE2110D, and CE2111H attempt to associate multiple
internal files with the same external file for direct files. The proper
exception is raised when multiple access is attempted.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

CE3111A..B (2 tests), CE3111D..E (2 tests), CE3114B, and CE3115A attempt
to associate multiple internal files with the same external file for
text files. The proper exception is raised when multiple access is
attempted.

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for tie external
file. THis implementation does not have inappropriate values for either

2-3

IMPLEMENTATION DEPENDENCIES

line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 21 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2BO3A BD2DO3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD1009A, CD1009I, CD1CO3A, CD2A24A, and CD2A31A..C (3 tests) use
instantiations of the support procedure Length Check, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instantiations of Length Check -- i.e., the allowed Report.Failed messages
have the general form:

"* CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The host and target computer systems for this Ada implementation were
connected by an RS232 serial port. The rest of this Ada implementation is
described adequately by the information given in the initial pages of this
report.

For a point of contact for technical information about this Ada
implementation system, see:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly VA 22021

For a point of contact for sales information about this Ada implementation
system, see:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly VA 22021

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMA"Y OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3807
b) Total Number of Withdrawn Tests 71
c) Processed Inapplicable Tests 91
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 292 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 292 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by an RS232 serial port, and run. The results were captured on the
host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for 'Customizing the ACVC.
The meaning and purpose of these parameters are explained in [UGB9]. The
following macro parameters are defined in terms of the value V of
$MAX_-IN_-LEN which is the maximum input line length permitted for the tested
implementation. For these parameters, Ada string expressions are given
rather than the macro values themselves.

Macro Parameter Macro Value

$BIGID1 (l..V-l = 'A', V -> 1')

$BIG_1D2 (1..V-1 ->'A', V -> 2')

$BIG_1D3 (l..V/2 $> A') & '3' &
(1. .V-.1-V/2 => 'A')

$BIG-ID4 (1..V/2 -> 'A) & '4' &
(i..V-1-V/2 => 'A)

$BIGINTLIT (1..V-3 -> '0') & "298"

$BIG REALLIT (l..V-5 -> '0') & "690.0"

$BIG-STRING1 '"' & (l..V/2 -> 'A) & 'fir

$BIGSTRING2 ... & (l..V-l-V/2 -> 'A) & 1', &I"

$BLANKS (l..V-20 =>'

$MAXLENINTBASEDLITERAL
"12:"1 & (l..V-5 => '0') & "111:"

SMAXLENREALBASED LITERAL
"16:"1 & (1. .V-7 -> '0') & "1F.E:"

$MAXSTRING LITERAL I'll & (l..V-2 -> 'A) &'"

A-1

MACRO PARAMETERS

The folloving table contains the values for the remaining macro parameters.

Macro Parameter Macro Value

$MAXIN LEN 499

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2_147_483_647

$DEFAULTHEMSIZE 16_777_216

$DEFAULTSTORUNIT 8

$DEFAULTSYSNAME VAXCROSS_680X0

$DELTA-DOC 0.0000000004656612873077392578125

$ENTRYADDRESS SYSTEM."+"(16#40#)

$ENTAYADDRESS1 SYSTEM."+"(16#80#)

$ENTRY ADDRESS2 SYSTEM. "+"(16#100#)

$FIELDLAST 2 147_483_647

$FILETERMINATOR F

$FIXEDNAME NOSUCHTYPE

$ FLOAT-NAME NOSUCHTYPE

$FORM-STRING

$FORMSTRING2 "CANNOT RESTRICT FILECAPACITY'"

$GREATER THAN DURATION
100_000.0

$GREATERTHANDURATION BASE LAST
1o_00_000.0

$GREATERTHANFLOATBASE LAST
1-19E+38

$GREATERTHANFLOATSAFE LARGE
1 .701411837E+38

$GREATER THAN SHORTFLOAT SAFELARGE

1.7"61415E+38

A-2

MACRO PARAMETERS

$HIGH-PRIORITY 99

SILLEGALEXTERNAL PILE NAME 1
71llegal/file-name/2)]JZ2l02c.dat

$ ILLEGAL EXTERNAL FILE NAME2
71llegal/file-naume/CE2102C*.dat

$INAPPROPRIATE LINE LENGTH
-1

$INAPPROPRIATE PAGE LENGTH
-1

$INCLUDEPRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("IB28006F1.TST-)

$INTEGERFIRST -2_147_483_648

$INTEGER-LAST 2147_483_647

$INTEGERLASTPLUS-1 2147_483_648

$INTERFACELANGUAGE C

SLESS THAN DURATION -100_000.0

$LESSTHANDURATIONBASE FIRST
-10_000_000.0

$LINETERMINATOR ASCII.LF & ASCII.FF

$LOWPRIORITY 0

$MACHINECODESTATEMENT
CODE_'(OP -> NOP);

$MACHINECODETYPE CODE_0

$MANTISSADOC 31

$MAXDIGITS 15

$MAXINT 2 147_483_647

$MAX-INTPLUS_1 2_147_483_648

SKININT -2147483_648

$NAME TINYINTEGER

SHAME-LIST VAXCROSS_680X0

A-3

MACRO PARAMETERS

$NAME-SPECIFICATION1 /usr/m68k-acvcl. 11/c/e/X2120A

$NAMESPECIFICATION2 /usr/ui68k-acvcl.l1/c/e/X2120B.

$NAMESPECIFICATION3 /usr/m68k-acvcl. 11/c/e/X3119A.;

SNEGBASEDINT 16#FOOOOOOE#

SNEWHEM SIZE 16_777_216

SNEW-STOR-UNIT 8

$NEVSYS NAME VAXCROSS_680X0

$PAGETERMINATOR ASCII.LF & ASCII.FF.

$RECORD-DEFINITION RECORD SUEP : OPERAND; END RECORD;

$RECORD-NAME CODE_0

$TASK-SIZE 32

$TASKSTORAGE-SIZE 1024

$TICK 0.01

$VARIABLE-ADDRESS VAR_1'ADDRESS

$VARIABLE-ADDRESS1 VAR 2' ADDRESS

$VARIABLE-ADDRESS2 VAR 3' ADDRESS

$YOURPRAGMA PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
othervise, references in this appendix are to compiler documentation and
not to this report.

B-1

COMPILATION SYSTEM OPTIONS

2 VADS ADA
VADS ADA Ada compiler

Syntax
VADS ADA source file [, ... j

3 Command-Qualifiers

/APPEND Append all output to a log file.

/DEBUG
/DEBUG=G Write out the gnrx.lib file in ASCII.

/DEFINE
/DEFINE.(identifier:type-value", ...)
Define identifier of a specified type and value. See VADS ADA
PREPROCESSOR REFERENCE.

/DEPENDENCIES Analyze for dependencies only; no link will be performed if
this option is given (/MAIN and /OUTPUT options must not be used with this
qualifier).

/ERRORS
/ERRORS[-(option [, ...])] Process compilation error messages using the ERR
tool and direct the output to SYS$OUTPUT; the parentheses can be omitted
if only one qualifier is given (by default, only lines containing
errors are listed).
Options:
LISTING List entire input file.

EDITOR[="editor"]
Insert error messages into the source file and call a text editor
(EDT by default). If a value is given as a quoted string,
that string is used to invoke the editor. This allows other editors
to be used instead of the default.

OUTPUT[-file name]
Direct error-processed output to the specified file name; if no file
name is given, the source file name is used with a file extension .ERR.

BRIEF List only the affected lines [default]

Only one of the BRIEF, LISTING, OUTPUT, or EDITOR options can be used in a
single command.

For more information about the /ERRORS option, see also COMPILING ADA
PROGRAMS, COMPILER ERROR MESSAGE PROCESSING.

/EXECUTABLE
/EXECUTABLE-file name
Provide an explicit name for the executable when used with the /MAIN qualifier;
the filename value must be supplied (if the file type is omitted, .EXE is

B-2

COMPILATION SYSTEM OPTIONS

assumed).

/KEEP IL Keep the intermediate language (IL) file produced
by the compiler front end. The IL file vill be placed in the OBJECTS
directory, vith the name ADA SOURCE.I.

/LIBRARY
/LIBRARY-library name Operate in VADS
library libraryname (the current working directory is the default).

/LINK ARGUMENTS
/LINK-ARGUMENTS."value"
Pass command qualifiers and parameters to the linker.

/MAIN
/MAIN[=unit name) Produce an executable program"
using the named unit as the main program; if no value is given, the
name is derived from the first Ada file name parameter (the
.A suffix is removed); the executable file name is derived from
the main program name unless the /EXECUTABLE qualifier is used.

/NOOPTIMIZE Do not optimize.

/WARNINGS Print warning diagnostics.

/OPTIMIZE
/OPTIMIZE[.number] Invoke the code optimizer (OPTIM3). An optional digit
provides the level of optimization. /OPTIMIZE-4 is the default.

/OPTIMIZE no digit, full optimization
/OPTIMIZE-O prevents optimization
/OPTIMIZE- no hoisting
/OPTIMIZE-2 no hoisting, but more passes
/OPTIMIZE-3 no hoisting, but even more passes
/OPTIMIZE-4 hoisting from loops
/OPTIMIZE-5 hoisting from loops, but more passes
/OPTIMIZE-6 hoisting from loops with maximum passes
/OPTIMIZE=7 hoisting from loops and branches
/OPTIMIZE=8 hoisting from loops and branches, more passes
/OPTIMIZE-9 hoisting from loops and branches, maximum passes

Hoisting from branches (and cases alternatives) can be slow and does
not always provide significant performance gains, so it can be suppressed.

For more information about optimization, see COMPILING ADA PROGRAMS,
Optimization. See also pragma OPTIMIZECODE(OFF).

/OUTPUT
/OUTPUT-file name Direct the output to file-name
(the default-is SYS$OUTPUT).

/PRE PROCESS Invoke the Ada Preprocessor. See VADS ADA PREPROCESSOR
REFERENCE.

B-3

COMPILATION SYSTEM OPTIONS

/RECOMPILE LIBRARY
/RECOMPIL-LIBRARY-VADS library
Force analysis of all generic instantiations causing reinstantiation
of any that are out of date.

/SHOV Show the name of the tool executable but do not execute it.

/SHOU ALL Print the name of the front end, code generator,
optimTzer, and linker, and list the tools that will be invoked.

/SUPPRESS Apply pragma SUPPRESS for all checks
to the entire compilation. (See also pragma SUPPRESS(ALLCHECKS))

/TIMING Print timing information for the compilation.

/VERBOSE Print information for the compilation.

3 Description

The command VADS ADA executes the Ada compiler and compiles the named Ada source
file, ending with the .A suffix. The file must reside in a VADS library
directory. The ADA.LIB file in this directory is modified after each Ada unit
is compiled.

By default, VADS ADA produces only object and net files. If the /MAIN option is
used, the compiler automatically invokes VADS LD and builds a complete program
with the named library unit as the main program.

Non-Ada object files may be given as arguments to VADS ADA.
These files will be passed on to the linker and will be linked with
the specified Ada object files.

Command line options may be specified in any order, but the order
of compilation and the order of the files to be passed to the linker
can be significant.

Several VADS compilers may be simultaneously available on a single
system. The VADS ADA command within any version of VADS
on a system will execute the correct compiler components based upon
visible library directives.

Program listings with a disassembly of machine code instructions are
generated by VADS DB or VADS DAS.

3 Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a section
number and, optionally, a paragraph number enclosed in parentheses.

B-4

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-5

COMPILATION SYSTEM OPTIONS

2 VADS LD
VADS LD prelinker

Syntax
VADS LD unit-name

3 CommandQualifiers

/APPEND

/DEBUG Debug memory overflow (use in cases where linking a large number of
units causes the error message "local symbol overflow" to occur).

/EARLY
/EARLY."unit name" Force the given unit to be elaborated as early as
possible (unTt name must be enclosed in double quotes).

/EXECUTABLE
/EXECUTABLE[mfile name]
Put the output in-the named file. The default executable names are
<main unit>.EXE on self-hosts or <main unit>.VOX on cross targets.

/FILES Print a list of dependent files in elaboration order and suppress
linking.

/LIBRARY
/LIBRARY-library name Operate in VADS library library-name
(the current vorring directory is the default).

/LINK OPTIONS
/LINK-OPTIONS-object file or qualifier [,...]"
Add te options surroundei by quotes to the invocation of the linker.

/OUTPUT

/OUTPUT-file name Direct output to file-name. Default is SYS$OUTPUT.

/SHOW Show the name of the tool executable but do not execute it.

/UNITS Print a list of dependent units in order and suppress linking.

/VERBOSE Print the VMS linker command prior to execution.

/VERIFY Print the VMS linker command but suppress execution.

3 Description

VADS LD collects the object files needed to make unit name
a main program and calls the VMS linker to link together all Ada
and other language objects required to produce an executable. unitname
must be a non-generic subprogram that is either a procedure or
a function that returns an Ada STANDARD.INTEGER (the predefined type
INTEGER). The utility uses the net files produced by the Ada compiler

B-6

COMPILATION SYSTEM OPTIONS

to check dependency information. VADS LD produces an exception
mapping table, a unit elaboration table, and passes this information
to the linker.

VADS LD reads instructions for generating executables from
the ADA.LIB file in the VADS libraries on the search list.
Besides information generated by the compiler, these directives also
include WITHn directives that allow the automatic linking
of object modules compiled from other languages or Ada object modules
not named in context clauses in the Ada source. Any number of WITH
directives may be placed into a library, but they must be numbered
contiguously beginning at WITH1. The directives are recorded in the
library's ADA.LIB file and have the following form.

UITHILINKIobject filel
WITH21LINKlarchivifilel

WITH directives may be placed in the local Ada libraries or in any
VADS library on the search list.

A WITH directive in a local VADS library or earlier on the library search list
will hide the same numbered WITH directive in a library later in the librar)
search list.

Use VADS INFO to change or report library directives in the current library.

All arguments after unit name are passed on to the linker. These arguments may
be linker options, names-of object files or archive libraries, or library
abbreviations.

3 Diagnostics

Self-explanatory diagnostics are produced for missing files, etc.
Occasional additional messages are produced by the linker.

3 Files

Normally VADS LD generates an intermediate file with the
process ID as a substring, VADSOPTION<process_ID>.OPT.

With either the /VERIFY or /VERBOSE qualifiers,
however, VADS LD will produce the intermediate file <main unit>.OPT.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
..........

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 15 range -1.70141183E+38 .. +1.70141183E+38;
type SHORT FLOAT is digits 6

range -16#O.FFFFFF#E128 .. 16#0.FFFFFF#E128;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINE ONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an INLINE ONLY subpro-
gram recursive a warning message will be emitted and an
PROGRAMERROR will be raised at run time.

1.2. BUILTIN Pragma

The BUILT IN pragma is used in the implementation of some
predefinea Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual' Ada
body can be provided, for example the MACHINE CODE package.

1.3. SHARECODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit, the pragma applies
to all instantiations of that generic. When the first argu-
ment is the name of a generic instantiation, the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE, the compiler will try to
share code generated for a generic instantiation with code

C-2

APPENDIX F OF THE Ada STANDARD

generated for other instantiations of the same generic.
When the second argument is FALSE, each instantiation will
get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has The same effect as SHARE CODE. It is
included for compatibility with earlier versions of VADS.

1.4. NO IMAGE Pragma

The pragma suppresses the generation of the image array used
for the IMAGE attribute of enumeration types. This elim-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAM ERROR raised at run time.

1.5. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable dehined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.6. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a variable or
subprogram defined in another language and allows it to be
referenced directly in Ada. The pragna will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICIT CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-

C-3

APPENDIX F OF THE Ada STANDARD

ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

1.8. OPTIMIZECODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only alloyed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access, or the predefined type ADDRESS in SYSTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the
Ada RM.

2.6. MEMORYSIZE

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

C-4

APPENDIX F OF THE Ada STANDARD

2.7. NON REENTRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called
recursively, allowing the compiler to perform specific optim-
izations. The pragma can be applied to a subprogram or a
set of overloaded subprograms within a package spec or pack-
age body.

2.8. NOTELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration- pack-
age, or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will cause the compiler to choose a non-aligned
representation for composite types. It will not cause
objects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.12. PASSIVE

The pragma has three forms:

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a
task body will prevent the intended optimization; in these
cases, a warning will be generated at compile time and will

C-5

APPENDIX F OF THE Ada STANDARD

raise TASKING ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the
Ada RM.

2.14. SHARED

This pragma is recognized by the implementation but has no

effect.

2.15. STORAGEUNIT

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be
suppressed.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of the
machine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is
not supported.)

C-6

APPENDIX F OF THE Ada STANDARD

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated vith a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification of Package SYSTEM

-- Copyright 1990 Verdix Corporation

vith UNSIGNED TYPES;
package SYSTEM is

pragma suppress(ALL CHECKS);
pragma suppress(EXCEPTIONTABLES);
pragma not-elaborated;

type NAME is (VAX_CROSS_680X0);

SYSTEM-NAME : constant NAME :a VAXCROSS_680X0;

STORAGE UNIT : constant :- 8;
MEMORY JIZE : constant : 16777_216;

-- System-Dependent Named Numbers

MIN INT : constant := -2 147 483 648;
MAX-INT : constant : 2 147 .83..47;
MAX-DIGITS : constant :. 15;
MAX-MANTISSA • constant :. 31;
FIN DELTA : constant :w 2.0"*(-31);
TICK- : constant :. 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAX REC SIZE : integer :- 1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function " (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<W"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "" (I: UNSIGNEDTYPES.UNSIGNED INTEGER) return ADDRESS;

C-7

APPENDIX F OF THE Ada STANDARD

function MEMORY ADDRESS
(I: UNSIGNED TYPES.UNSIGNEDINTEGER) return ADDRESS renames "+";

NO-ADDR : constant ADDRESS;

type TASK ID is private;
NOTASKID : constant TASKID;

type PROGRAM ID is private;
NOPROGRAMID : constant PROGRAMID;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNED INTEGER;

NO-ADDR : constant ADDRESS :- 0;

pragma BUILT IN(">");
pragma BUILTIN("<");
pragma BUILTIN(">-");
pragma BUILT-IN("<-");
pragma BUILT -IN("-");
pragma BUILT-IN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO TASK ID : constant TASKID :a 0;

type PROGRAM ID Is new UNSIGNED TYPES.UNSIGNED INTEGER;
NO PROGRAM ID : constant PROGRAR ID :- 0;

end SYSTEM;

5. Restrictions on Representation Clauses

5.1. Pragma PACK

In the absence of pragna PACK, record components are padded
so as to provide for efficient access by the target
hardware; pragma PACK applied to a record eliminates the pad-
ding where possible. Pragma PACK has no other effect on the
storage allocated for record components for which a record
representation is required.

5.2. Size Clauses

For scalar types, a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation
clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause

C-8

APPENDIX F OF THE Ada STANDARD

packing of components only when the component type is a
discrete type. An error will be issued if there is insuffi-
cient space allocated. The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address, elaboration ordering requirements
prohibit initialization of variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Interrupts

Interrupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides
an assembly language interface for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opeode mnemonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-
lows:

CODE n'(opcode, operand (, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

C-9

APPENDIX F OF THE Ada STANDARD

CODEN'(opcode, (operand (, operand)));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODEO'(op a> opcode);

The opcode must be an enumeration literal (i.e., it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE CODE or
the 'REP attribute.

The arguments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the funitions defined in MACHINE CODE. The 'REF attribute
may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) ihenthe size
of ELEMENT TYPE exceeds that value. For-example, for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAR RECORD SIZE
is defined in SYSTIH and can be changed by a program biefore
instantiating DIRECT 10 to provide an upper limit on the
record size. In any case, the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USE ERROR
if MAX REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (exprissed in STORAGEUNITS)-wheii the

C-10

APPENDIX F OF THE Ada STANDARD

size of ELEMENT TYPE exceeds that value. For example, for
unconstrained irrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used - instead.
MAX RECORD SIZE is defineU in-SYSTEM and can be changed by a
program before instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIAL1;0 imposes no limit on
MAXREC SIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNIT'. The maximum size of a statically
sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
vill generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specifica-
tion, every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGE SIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute,
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGE SIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded, the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-l1

