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Prima di cominciare...

Requisiti

— Fisica |, Elettromagnetismo, termodinamica

— Calcolo differenziale con funzioni di piu variabili
— Nozioni di: fluido dinamica, relativita (speciale)

Approssimazioni

Applicazioni:
— Astrofisica (stelle, dischi di accrescimento, getti, ISM, ...)

— Fusione nucleare

Modalita d’esame
— Orale



Letture Consigliate

Libro di Testo:
— Chiuderi & Velli
“Fisica del Plasma — Fondamenti e Applicazioni Astrofisiche”, Springer.

Complementi:

— Diapositive (Power Point & PDF)
Fisica dei Fluidi:

— L.D. Landau, E.M.Lifshitz, “Fluid Mechanics” , Pergamon Press
Fisica dei Plasmi

— T. Boyd, J.Sanderson "Plasma Dynamics" Nelson & Sons

— R Goldston, P Rutherford “Plasma Physics”, Taylor & Francis NY

— Goedbloed, Keppens, Poedts, “Advanced Magnetohydrodynamics” Cambridge

— Sturrock, “Plasma Physics: An Introduction” Cambridge
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Alcune Identita Vettoriali
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1)) A - BXC=AxB-C=B-CxA=BxXxC-A=C-AxB=CxA-B

2)Ax (BxC)=(CxB)xA=(A -C)B- (A B)C

3 X(BxC)+Bx(CxA)+Cx(AxB)=0
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(4) (AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)

) (AxB)x(CxD)=(AxB-D)C-(AxB-C)D

(6) V(fg) =V(gf) = fVg+gVFf

() V-(fA)=fV-A+A.Vf

(8 X (fA)=fVXA+VfxA

( - (AxB)=B-VXxA-A-VxB
10)Vx(AxB)=A(V-B)-B(V-A)+(B-V)A-(A-V)B
11)Ax(VxB)=(VB)-A-(A-V)B

12) VIA-B)=Ax(VxB)+Bx (VxA)+(A-V)B+(B:-V)A

13) V2f=V.Vf
14) VPZA=V(V-A) -
VxVf=0
V.-VXA=0
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Examples of Plasmas




A note on the system of units

The system adopted here is CGS-Gauss. CGS systems avoid
introducing new base units and instead derives all electric and
magnetic units directly from the centimeter, gram, and second
based on the physical laws that relate electromagnetic phenomena
to mechanics.

The unit is therefore:

Statcoulomb (Fr) = grA(1/2) * cm”(3/2) * s/ (-1)

In the CGS system, the electron charge is
e = 4.80320425e-10 statcoulombs (Fr)



Fisica della Materia allo
Stato Fluido e di Plasma

1. Introduzione



Libero Cammino Medio

Oc
Modello “cilindro”
O¢ : sezione d’urto \’ v ®
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v : velocita media ¢
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Libero cammino medio: lunghezza del cilindro/numero di collisioni:
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Grado di ionizzazione

e E’ sufficiente un piccolo grado di ionizzazione per avere alta
conducibilita elettrica:
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Saha Equation

1 Ionization Degree

The Saha equation describes the degree of ionization of a plasma as a function of the temperature,
density, and ionization energies of the atoms:

Mkife 2 gktr | Bk — B (1)
ng A3 g, P kT

where n; is the density of atoms in the k-th state of ionization, g, is the degeneracy of states
for the k—th ions, E} is the energy required to remove k electrons from a neutral atom, n. is
the electron density while

h2

A= 2mmekT

is the thermal de Broglie wavelenght of an electron. The difference Ej,; — E} is the energy
required to remove the (k + 1)* electron.

In the case of hydrogen, considering k = 0 as the ground state and k& = 1 as the ionization
level, Eq. (1) yields
— f(T) ~ 2.4 x 10%° T3/2 ,—1.58x10°/T

(291/90 = 1) where ng is the density of neutrals. But n; = n. for a hydrogen gas and therefore
using n; = xn; where n; = n; + ng we obtain the following quadratic equation:

_ 2/(T)
F(T) + /FTD)2 + 4 (T)n,

where the solution corresponds to the positive branch.

X°ne + xf(T) — f(T) =0 — X



Saha Equation
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Figure 1: Ionization degree as a function of temperature for different values of the total number density n.



Debye ShiEIdlng [Bellan, Chap 1, page 8]

Let us now imagine slowly inserting a single additional particle (so-called “test” par-
ticle) with charge ¢ into an initially unperturbed. spatially uniform neutral plasma. To
keep the algebra simple, we define the origin of our coordinate system to be at the location
of the test particle. Before insertion of the test particle, the plasma potential was ¢ = 0
everywhere because the ion and electron densities were spatially uniform and equal. but
now the ions and electrons will be perturbed because of their interaction with the test par-
ticle. Particles having the same polarity as g7 will be slightly repelled whereas particles of
opposite polarity will be slightly attracted. The slight displacements resulting from these
repulsions and attractions will result in a small. but finite potential in the plasma. This po-
tential will be the superposition of the test particle’s own potential and the potential of the
plasma particles that have moved slightly in response to the test particle.

This slight displacement of plasma particles is called shielding or screening of the test
particle because the displacement tends to reduce the effectiveness of the test particle field.
To see this. suppose the test particle is a positively charged ion. When immersed in the
plasma it will attract nearby electrons and repel nearby ions: the net result is an effectively
negative charge cloud surrounding the test particle. An observer located far from the test
particle and its surrounding cloud would see the combined potential of the test particle and
its associated cloud. Because the cloud has the opposite polarity of the test particle, the
cloud potential will partially cancel (i.e.. shield or screen) the test particle potential.

Screening is calculated using Poisson’s equation with the source terms being the test
particle and its associated cloud. The cloud contribution is determined using the Boltz-
mann relation for the particles that participate in the screening. This is a ‘self-consistent’
calculation for the potential because the shielding cloud is affected by its self-potential.



DEbye Sh i€/din g [Bellan, Chap 1, assignment 4, page 24]

Start from Poisson equation:

V- E — —V*® = dme(n; — ne) + 4mqd(r)

where  n; = nge Y n, = nget/M
Use Taylor expansion to get
1 8mnge’ d
0, (r%0,® ® —4mqd — 47mqd
—50,(°0,8) = =2 13(7) = 37 = 4mad (7
Where the Debye length is defined as
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DEbye Sh i€/din g [Bellan, Chap 1, assignment 4, page 24]

q

Solve for a point charge, _d (, 0,9,) = —4mqé(¥) = b, =~
r2 r
where we have used the fact that:  §(r — o) = 1 ! 5 0(r — o)
wr
We seek for a solution in the form ®(r) = ® o(r) f(r) in the original equation:
Q(f —
_d [ ((I)qf)] )\1 — _47“]6(7))
D
1, P,
Subtracting the two equations gives —_2("), [ 20, (®,f — @, )] — )\—’Zf — (
r 2

Substitute the solution for (I)q(r):

r rA\%, " A
The final solution is (I)(fr) — ge_""/)‘D
r




Debye ShIEIdIng [Bellan, Chap 1, page 9]
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Debye ShiEIdIng [Bellan, Chap 1, page 9]

For r << Ap the potential ¢(r) is identical to the potential of a test particle in vacuum
whereas for » >> Ap the test charge is completely screened by its surrounding shielding
cloud. The nominal radius of the shielding cloud is Ap. Because the test particle 1s com-
pletely screened for » >> Ap, the total shielding cloud charge is equal in magnitude to the
charge on the test particle and opposite in sign. This test-particle/shielding-cloud analy-
sis makes sense only if there 1s a macroscopically large number of plasma particles in the
shielding cloud: 1.e.. the analysis makes sense only if 47ng /\% /3 >> 1. This will be seen
later to be the condition for the plasma to be nearly collisionless and so validate assumption
#1 m Sec.1.6.

In order for shielding to be a relevant issue. the Debye length must be small compared
to the overall dimensions of the plasma, because otherwise no point in the plasma could be
outside the shielding cloud. Finally. it should be realized that any particle could have been
construed as being ‘the’ test particle and so we conclude that the time-averaged effective
potential of any selected particle in the plasma is given by Eq. (1.8) (from a statistical point
of view, selecting a particle means that it no longer is assumed to have a random thermal
velocity and its effective potential is due to its own charge and to the time average of the
random motions of the other particles).



DEbye ShIEIding [Chen end of Sec. 1.4]

We are now in a position to define “quasineutrality.” If the di-
mensions L of a system are much larger than A;, then whenever local
concentrations of charge arise or external potentials are introduced
into the system, these are shielded out in a distance short compared
with L, leaving the bulk of the plasma free of large electric potentials
or fields. Outside of the sheath on the wall or on an obstacle, V¢ is
very small, and n; is equal to n,, typically, to better than one part in
10%. It takes only a small charge imbalance to give rise to potentials of
the order of KT/e. The plasma is ““quasineutral”; that is, neutral enough
so that one can take n; = n, = n, where n is a common density called

the plasma density, but not so neutral that all the interesting electromag-
netic forces vanish.

A criterion for an ionized gas to be a plasma is that it be dense
enough that A, is much smaller than L.



Confronto di parametri per plasmi

n T AD nAp> | mA | ve. bnfp | L
units m° eV [ m s 1 m m
Solar corona 10™ 1100 | 10 ® | 107 19 | 102 10° | 103
(loops)
Solar wind 107 | 10 | 10 107 25 | 10 ° [ 10t | 10
(near earth)
Magnetosphere [ 10* | 10 | 102 10 |28 | 10 3| 10" | 10®
(tail lobe)
Ionosphere 10 o1 | 10 % | 10% 14 | 102 10° | 10°
Mag. fusion 102° 1 10* | 10 * | 107 20 | 10% 10" |10
(tokamak)
Inertial fusion | 10°' | 10* | 10 ' | 10° 8 10 10 “]10°
(imploded)
Lab plasma 10%Y | 5 10 © | 10° 9 10° 10 210!
(dense)
Lab plasma 10'° | 5 10* | 100 |14 |10 108 (10!

(diffuse)




Plasm O Freq Uen Cy [Goedbloed & Poedts, section 2.3.2]

In plasma oscillations (also called Langmuir waves 1929) heavy ions may be considered as
a fixed (u, = 0) background in which only the light electrons move (u, = 0).

Perturb a small region by displacing the electrons n_,=ng,+n’, ( n’, << n).
An electric field E proportional to n’, is created.
This small electric field creates a small electron flow velocity v, which is also proportional

ton’,. =
m.ov = —el

n !
V. E = —4men,

The equation of motion and electric field will be

Particle conservation (continuity) demands

I(ng +n.,) +V - [(ng +n,)v] =0

Linearization is appropriate: terms involving products of perturbations are neglected
since they are small compared to linear terms:

omn, +noV-7=0



Plasm O Freq Uen Cy [Goedbloed & Poedts, section 2.3.2]

Taking the divergence of the equation of motion

m.o;V - U= —eV - F = 471'6272,-;

Using the continuity equation gives:
2
tt'%e — '
‘ M,

€

Harmonic oscillator with frequency

4menyg

Wpe — ...
M,

=» Plasma Frequency €



Summary

* Electric conducibility: 0 =

kT 5 [T
* Debye length Ap = s 7.43- 107 ~ cm

4dmrne?

>el: Wpe = 5.64 - 104\/716 rad/s

* Plasma frequency wy = -



CO//iSiOnS [Bellan, Sect. 1.9, pag 14]

1.9 Electron and ion collision frequencies

One of the fundamental physical constants influencing plasma behavior is the ion to elec-
tron mass ratio. The large value of this ratio often causes electrons and ions to experience
qualitatively distinct dynamics. In some situations, one species may determine the essen-
tial character of a particular plasma behavior while the other species has little or no effect.
Let us now examine how mass ratio affects:

1. Momentum change (scattering) of a given incident particle due to collision between
(a) like particles (i.e., electron-electron or ion-ion collisions, denoted ee or 22),

(b) unlike particles (i.e., electrons scattering from ions denoted ez or ions scattering
from electrons denoted i€),

2. Kinetic energy change (scattering) of a given incident particle due to collisions be-
tween like or unlike particles.

Momentum scattering is characterized by the time required for collisions to deflect the
incident particle by an angle 7 /2 from its initial direction, or more commonly, by the
inverse of this time, called the collision frequency. The momentum scattering collision
frequencies are denoted as v, Vi, Vei, Vie fOr the various possible interactions between
species and the corresponding times as T.., etc. Energy scattering is characterized by the
time required for an incident particle to transfer all its kinetic energy to the target particle.
Energy transfer collision frequencies are denoted respectively by VEece. VE ii, VEei, VE ie -

We now show that these frequencies separate into categories having three distinct orders
of magnitude having relative scalings 1 : (m;/m.)"? : m;/m.. firorder-to-estimate-tie



CO//iSionS [Bellan, pag 15]

Momentum Exchange

We normalize all collision frequencies to v, , and for further simplification assume that
the 1on and electron temperatures are of the same order of magnitude. First consider v.;: the
reduced mass for ez collisions is the same as for ee collisions (except for a factor of 2 which
we neglect), the relative velocity is the same — hence, we conclude that v.; ~ V... Now
consider v;;: because the temperatures were assumed equal, 0;; ~ o_ and so the collision
frequencies will differ only because of the different velocities in the expression v = nov.

The ion thermal velocity is lower by an amount (1. /m;)Y/? giving vi; == (me /mi)Y?vee.

Energy Exchange

Now consider energy changes in collisions. If a moving electron makes a head-on
collision with an electron at rest, then the incident electron stops (loses all its momentum
and energy) while the originally stationary electron flies off with the same momentum and
energy that the incident electron had. A similar picture holds for an ion hitting an ion.
Thus, like-particle collisions transfer energy at the same rate as momentum so Vgee ~ Vee
and vEg;; ~ Vy;.



CO//iSiOnS [Bellan, pag 15]

Inter-species collisions are more complicated. Consider an electron hitting a stationary
ion head-on. Because the ion is massive, it barely recoils and the electron reflects with a
velocity nearly equal in magnitude to its incident velocity. Thus, the change in electron
momentum 1s —2m. V.. From conservation of momentum, the momentum of the recoiling
1on must be m;v; = 2m.v.. The energy transferred to the ion in this collision is miv? /2 =
4(me/ mz-)mevg /2. Thus, an electron has to make ~ m; /m, such collisions in order to
transfer all its energy to ions. Hence, vg.; = (me/m;)Vee.

Similarly, if an incident ion hits an electron at rest the electron will fly off with twice
the incident ion velocity (in the center of mass frame, the electron is reflecting from the
ion). The electron gains energy m,v? /2 so that again ~m; /m, collisions are required for
the 1on to transfer all its energy to electrons.

We now summarize the orders of magnitudes of collision frequencies in the table below.

~1 |~ (me/mz-)l/2 ~ Mg /M
I/ee I/ii I/ie

Vei VEii U Eei

UV Eee VEie




