
Finite Element Modelling of 
Magma Convection 

and Attendant Groundwater Flow 

A Thesis Submitted to 

Rhodes University 

in fulfilment of the requirements 

for the degree of 

Master of Science 

by 

Keith Harrison 

January 1998 

Physics Department 

Rhodes University 

Grahamstown 

6140 



Abstract 

This thesis describes preliminary two- and three-dimensional modelling of mass and heat 

transport of hot, molten magma in crustal intrusions and of the associated thermally induced flow 

of groundwater contained in the surrounding country rock. The aim of such modelling is to 

create a tool with which to predict the location of mineral deposits formed by the transport and 

subsequent precipitation of minerals dissolved in the convecting groundwater. 

The momentum equations (Navier-Stokes equations), continuity equation and energy 

equation are used in conjunction with specially constructed density and viscosity relationships 

to govern the mass and heat transport processes of magma and groundwater. Finite element 

methods are used to solve the equations numerically for some simple model geometries. These 

methods are implemented by a commercial computer software code which is manipulated with 

a control program constructed by the author for the purpose. 

The models are of simple two- or three-dimensional geometries which all have an enclosed 

magma chamber surrounded completely by a shell of country rock through which groundwater 

is free to move. Modelling begins immediately after the intrusive event when the magma (in 

most cases rhyolitic) is at its greatest temperature. Heat is allowed to flow from the magma into 

the country rock causing thermal convection of the groundwater contained therein. The effect 

of the country rock as a porous medium on the flow of groundwater is modelled by including a 

distributed resistance term in the momentum equation. 

The computer code that controls the modelling is such that adaptions made to the models to 

represent real physical intrusive systems are trivial. 

Results of the research at this stage allow approximate prediction of the location of mineral 

deposits. Enhanced predictions can be made by effecting improvements to the models such as 

a more detailed representation of chemical processes, adaption of the computer code to allow 

multiple injections of magma and the modelling of frozen magma as a porous medium which 

admits the flow of groundwater. 
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Chapter 1 

Introduction 

1.1 Thesis Description and Aims 

The main objective the project reported in this thesis was to produce a general model of fluid 

flow in intrusive systems. An intrusive system in this context can be regarded as a chamber of 

molten magma which is injected in a single event over an infInitesimal time period into the crust 

from the mantle and proceeds to cool and solidify. Heat from the magma is conducted into the 

country rock which completely surrounds the chamber and causes convective transport of the 

groundwater contained within. The total effort of the project was initiated by treating problems 

akin to granitic stocks because they require fewer computational resources. 

A particular focus of the project was the Bushveld Complex in South Africa, shown in 

Figure 1.1 (Eales et al., 1993). Although a full model of the Complex itself has not yet been 

made, much work has been done on the modelling of simpler, associated structures. The 

information gleaned from these models should be of great use in understanding the processes at 

work during the cooling of the Bushveld Complex magma. 

Such a study of the Bushveld Complex is extremely important, because, despite the extensive 

research and experimentation (including regional gravity surveys, ground and aeromagnetic 

surveys, time domain electromagnetic surveys, DC resistivity soundings and regional reflective 

seismic studies), there is still much that is unclear. 

In particular, there is confusion about the origin of certain layered sequences in the complex, 

many of which are rich in economically valuable minerals. Knowledge of associated geological 

1 



SIMPLIFIED MAP OF THE 

RUSTENBURG LAYERED SUITE 

Amandelbult 

FAR WESTERN LIMB Sectio.~i::::~ 

Zeerust 

a 20 40 60 80 100 km 

NORTHERN LIMB 

Johannesburg 

•

•.. - UPPER ZOIlE 

:.::::::: MARGINAL.LOWER.CRITICAL and 
.:.:.:.:- MAIN ZONES 

BETHAL LIMB 

• Bethal 

Figure 1.1 Simplified map showing surface exposures of the Bushveld Complex. 

transport and precipitation processes is therefore desirable, as it may lead to more successful 

prediction of mineral distribution. 

1.2 Methodology 

Only fairly recently has work been done on magmatic fluid and groundwater. All such work 

has involved very simple one- or two-dimensional models, often producing steady-state solutions 

only. Antonopoulos and Papazafrrou (1990) modelled one-dimensional vertical flow of fluid and 

solutes in variably saturated porous media. Adler et al (1990) used fInite difference techniques 

to model flow through statistically generated models of porous media to determine 

permeability. Norton and Knight (1977) and Hayba and Ingebritsen (1997) used two-
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dimensional models of permeable magma and country rock. These latter examples model only 

the thermal characteristics ofthe magma and the flow characteristics of the water contained in 

the magma. Thus only a single fluid (water) in the entire magma chamber-country rock system 

is modelled. However, it is now accepted that at typical intrusive temperatures, some magmas 

are able to convect. In these cases it is more sensible to model the flow of the magma itself. 

The methodology for this thesis was to model the transport of mass and heat in the thermally 

coupled system of magmatic fluid and groundwater for a range of simple geometries (two- and 

three-dimensional) and for fluid properties in order to gain a general perspective on the behaviour 

of such systems. Such a methodology allows the simultaneous study of many of the features of 

magma chamber-country rock systems considered in previous work, in addition to some aspects 

not studied previously. 

1.3 Content of the Thesis 

The models in this work calculate numerical representations of the transient thermal and 

mechanical behaviour of both the magmatic fluid and the surrounding groundwater. The fluid 

properties of magma and groundwater have vastly different values. In fact, the software used for 

modelling (FLOTRAN, the computational fluid dynamics part of the Ansys package) cannot 

model such fluids simultaneously and extra code had to be written to couple two separate models. 

Chapter 2 describes magmatic fluid and groundwater in terms of transient behaviour and 

physical properties such as density, viscosity, specific heat and thermal conductivity. 

Specification of the temperature dependence of density and viscosity is a means of giving the 

magmatic fluid geological identity. Data from Bottinga and Weill (1972) and Bottinga et al. 

(1982) were used to fit the density and viscosity curves for modelling. Also described in 

Chapter 2 is the physical nature of porous media and the behaviour of groundwater flow within. 

Magma and groundwater may both be modelled with the Navier-Stokes equations, the 

continuity equation and the energy equation for fluids. Certain assumptions (such as 

incompressibility) can be made to simplify the equations. These equations, and the necessary 

adjustments required (to model porous media flow for example), are explained in detail in 

Chapter 3. 

The common structure to which each equation conforms allows FLOTRAN to use only one 
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solution algorithm. To be made eligible for this algorithm, some of the equations need further 

adjustment. The common equation and the adjustments required are given in Chapter 3. A 

detailed description of the solution algorithm is given in Chapter 4. 

Chapter 5, in preparation for the results given in Chapter 6 (which have been presented at 

conferences mentioned in all reference listings for Botha et al. (1996 and 1997) and Rice et al. 

(1997 and 1998) in the References chapter of this thesis), describes the computer models used 

and the software on which they were run. Finally, discussion of the results and ideas for further 

development are given in Chapter 7. 
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Chapter 2 

The Intrusion-Country Rock System 

The physical system that has been modelled is a crustal magmatic intrusion or pluton 

(molten) with surrounding groundwater in porous country rock. Flow of groundwater in the 

magma chamber is not modelled and the chamber is considered a closed system containing only 

magmatic flUid. The model does not deal with eruptions and surface flow, i.e. volcanic systems. 

A detailed description of the model starts with an examination of the important properties of the 

fluid in typical magma chambers and their surroundings. 

2.1 Behaviour of Magma Melts in Crustal Intrusions 

The main processes occurring throughout the active lifetime of a typical magma chamber are 

the transport of heat (within the melt and across its boundaries) and the precipitation and 

transport of crystals. These processes determine the position and concentration of economically 

valuable mineral-rich sequences in geological structures exploited in the present day. 

Heat in fluids is transported through space by conduction through the fluid or by the 

movement of the fluid itself (convection). Much work has been published supporting the 

hypothesis that magma can convect (Bartlett, 1969; Eichelburger et al., 1976; Elder, 1976; 

Huppert and Sparks, 1980; Shaw, 1965). The results of this work in fact show that magmatic 

fluid in an enclosed chamber convects easily and at times can be extremely turbulent. 

A group of well known fluid mechanical equations can be used to fmd a numerical 
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description of the mass and heat transport of the magma; these are described in the next chapter, 

but first we look at the physical properties of magmatic fluid. 

2.1.1 Behaviour a/Magmatic Fluids 

Magma in its fluid state is usually (as in the present case) modelled for simplicity as a 

Newtonian fluid. This means that its stress tensor is a linear function of the velocity gradients 

(see Chapter 3), or 

du 
't = Il

dy 
(2.1) 

for plane flow in the x-direction where u is the fluid velocity, du/dy is the velocity gradient 

normal to the direction of shear and Jl is the viscosity of the fluid. In fact Robson (1967) found 

that some lavas have a finite yield strength 'to which is a minimum stress that must be applied to 

the magma before permanent deformation takes place (Bingham fluid). Any stress below 'to will 

cause elastic deformation only. It has been shown by others that the stress applied to certain 

lavas is proportional to some power of the velocity gradients less than 1 (McBirney and Murase, 

1984). Thus we have 

(2.2) 

where n < 1. FLOTRAN allows viscosity formulations that simulate fluids with these properties. 

A viscosity function was used that could mimic most accurately the data available - data that 

represent the behaviour of laboratory magmas. (Results from experimental work done on lavas 

and laboratory magmas make up the only available data on such fluids. Experiments of these 

kinds cannot easily be done on real intrusive systems). 

2.1.2 Viscosity 

The equation used to model viscosity is a temperature dependent exponential function given 

by (FLOTRAN Manual, 1997) 

(2.3) 

where 

A = a (! -_1 ) + a (! __ 1 \2 
IT T 2T TI 

° ° 
(2.4) 
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and where /in is the nominal viscosity, a) and a2 are constants and To is the temperature at which 

/i = /in' 

Bottinga and Weill (1972) devised a formula for calculating the constants in the equation 

based on the composition of the parent melt. The choice of initial viscosity (made to adjust the 

initial Rayleigh number to the desired value) reflects a rhyolitic composition. The exact 

composition at these early stages of development is unimportant and modelling of a specific 

intrusion with its own unique composition can be done easily by recomputing the coefficient 

values in the Bottinga and WeiIl formula based on the relative abundances of the individual 

constituents of that system. 

Figure 2.1 shows a plot of the log of the viscosity function used in the modelling. The high 

viscosities at low temperatures serve to model the "cohesive freezing" of the magma as its crystal 

load increases causing more energy to be dissipated through inter-crystal friction. Such energy 

loss decreases flow speeds. 

4.0 

3.5 

....... 
~ 2.0 
.2 

1.5 

1.0 

0.5 

600 700 800 900 1000 

Temperature rOC] 

Figure 2.1 Plot of the variation of viscosity with temperature ofa rhyolitic melt. 

2.1.3 Density 

The equations of motion for fluids are greatly simplified by the assumption that density is 

constant and uniform. However, when a flow is driven by natural convection, variations in 

temperature (or perhaps solute concentration) cause significant variations in density. Pressure 
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differences arising from these variations drive the fluid into motion and a non-uniformity in 

density is therefore fundamental to the processes of mass and heat transfer. 

Since temperature and pressure contribute to density variations in thermal problems, density 

can be expressed as a function of T and p: 

P = P(T,p) (2.5) 

which is simply the thermal equation of state. However, as mentioned in the next chapter, the 

fluids modelled (magma and groundwater) have, in most instances, been considered 

incompressible. It is assumed here that variations in pressure will not cause significant changes 

in density compared to thermal expansion or contraction; hence density can be considered a 

function of temperature alone. 

Another simplification arises from the fact that, because of incompressibility, the 

gravitational force single-handedly causes instability through density variations. Consequently 

it is possible to use the Boussinesq approximation which states that density can be considered 

constant wherever it appears in the equations of motion, except in terms involving the 

gravitational force. 

FLOTRAN allows a fairly general specification of fluid properties. This makes it possible 

to tailor the properties to match the particular fluid being modelled. The general form of the 

temperature dependent density is, to second order accuracy 

(2.6) 

where Pn is the nominal density, b l and b2 are constants and To is the temperature at which 

P = Pn' Including the second order term causes the density to increase more rapidly than usual 

at low temperatures and thus serves to model the increasing crystal load of the magma as it cools 

(the crystals are usually denser than the remaining fluid). Data from Bottinga et al. (1982) were 

used to fix the coefficients in the density equation. 

2.1.4 Thermal Conductivity and Specific Heat 

Thermal conductivity is a function of lattice (phonon) conduction, characterized by 

propagation vibrations in the lattice, and radiative (photon) conduction. At very high 

temperatures, radiative conduction becomes predominant and conductivity increases rapidly 
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(Williams and McBirney, 1979). At lower temperatures, conductivity is in a state of gradual 

decline as the temperature increases. The present research seeks to model this temperature range 

where the gradual decline can be considered small enough to treat thermal conductivity as 

constant. Below (Figure 2.2) is a plot of thermal conductivity versus temperature of a basaltic 

magma, from Williams and McBirney (1979). Although the viscosity function used in this work 

simulates a rhyolitic rather than a basaltic magma, thermal conductivity does not vary 

appreciably with viscosity and basaltic values can be used. The region to the left of the broken 

line indicates the temperature range relevant to the present research. The upper temperature 

limit of 1000 °C is a relatively high temperature for rhyolitic melts (the choice of a high limit 

gives breadth to the initial research). A lower value specific to an actual intrusion may be used 

later. The lower temperature limit is that dictated by the geothermal gradient present in the 

surrounding country rock before intrusion. 

Figure 2.2 Thermal conductivity of a typical basaltic magma. 

As the melt cools, the energy required to cool a unit mass by one unit of temperature remains the 

same, thus the specific heat is constant. 

2.1.5 Flow Regime 

It is important for modelling purposes to know how vigorous one can expect the flow to be. 

Convection in a magma chamber may be either laminar or turbulent. Different approaches to 

solving the equations of motion are required for these different flow regimes. A suitable solution 
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process for turbulent flow involves the calculation of results which represent a slight averaging 

of the exact, highly complex flow patterns. It is thus preferable to deal with laminar flow if a 

numerical solution to the exact flow field is required. Obviously one cannot choose what flow 

regime will be predominant in a given system, but one should be aware of the requirements for 

accurate solution and, if possible, optimize the model to comply with the requirements. 

The value of the Rayleigh number for a particular system is often the most useful way of 

predicting the strength of the flow. For confined flow between two flat, parallel plates of 

different temperatures, the Rayleigh number is given by 

g~d3 p2 cp 8 
Ra = -----

Ilk 
(2.7) 

where g is the acceleration of a body in free-fall, ~ is the thermal expansivity, d is the 

characteristic length of the system (usually the spatial extent of the largest temperature drop), p 

is the density, Cp is the specific heat, 8 is the largest temperature difference in the system 

(initially the temperature difference between the plates), p is the viscosity and k is the thermal 

conductivity. 

It is difficult to determine a formulation of the Rayleigh number that suits the exact geometry 

and various fluid property constraints of the model being studied. The formulation given in (2.7) 

is however useful in many systems for predicting in approximate terms the expected flow regime. 

Krishnamurti (1970) categorizes flow regimes (between flat, parallel plates heated from below) 

as follows: if Ra s; 1700, no convection occurs; if 1700 s; Ra s; 3 x 106
, flow is laminar and if Ra 

~ 3 x 106
, flow is turbulent. Values of Ra for the models that have been constructed can be found 

in Chapter 5. They imply, for instance, that turbulence can be expected in many cases. 

2.2 Porous Media and Groundwater Flow 

The system modelled in this work has a magma chamber completely enclosed by the crustal 

rock into which the invasion of magmatic fluid took place. A full description of the 

simplifications made to the real physical system for modelling purposes is made in Chapter 5. 

The function of this section is to describe the physical nature of the country rock surrounding the 

chamber and some properties of the groundwater flow within. 
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2.2.1 Structure of Porous Media 

A porous medium is a solid matrix, such as a rigid conglomeration of soil particles, that does 

not occupy the total volume Vrdefined by its bounding surfaces but has numerous voids or pores 

that may contain some sort of fluid (liquid or gas). For such a system one can defme a porosity 

which is simply the ratio of the total volume occupied by the voids Vs to the total volume of the 

medium: 

n = 
Vs 

Vr 

Porosity can be determined experimentally using the relationship 

n = 1 - P~ 
Py 

(2.8) 

(2.9) 

where P p is the bulk density of a dry rock sample and p y is the density of the soil grains 

comprising the sample (Norton and Knapp, 1977). The ratio of the densities is the fraction of 

the total volume of the sample that is solid, hence its simple relationship to porosity. 

The total porosity of a rock can be divided into three different types (Norton and Knapp, 

1977). These are flow porosity, diffusion porosity and residual porosity. Flow porosity 

comprises the well-connected pores and fractures that allow circulation of groundwater, hence 

advective transport of solutes. Diffusion porosity comprises the poorly connected, smaller pores 

and fractures in which diffusion is the predominant transport method. Finally, residual porosity 

comprises those pores not included in the two other types of porosity. Residual porosity is 

usually predominant so advection and diffusion of solutes in a porous medium is difficult. 

The ability of interstitial fluid to flow through the matrix depends on n and particularly on 

the permeability k which depends on the type and number of connections between pores and also 

pore size and shape. It is difficult to define permeability mathematically because of its 

dependence on all these factors but it can be measured experimentally with relative ease. 

2.2.2 Behaviour of Porous Media during an Intrusive Event 

Although structural changes occur in the country rock during a magmatic intrusion, one of 

the most important processes that causes variations in the flow pattern and chemical content of 

the groundwater is a major temperature perturbation. It is assumed here that stresses in the 

country rock which build up prior to emplacement of the magma are released when the country 
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rock fails and then accommodates the influx of magma. An increase in the temperature of the 

groundwater enables minerals to dissolve and be carried away by convection. Once the mineral

rich water cools sufficiently, at some distance from the magma, its load precipitates. Modelling 

of this hydrothermal system may therefore give clues as to the probable location of mineral 

deposits. 

The real physical behaviour of a porous rock under a high temperature gradient is complex. 

The configuration of the solid matrix is subject to change given increasing fluid pressure. In 

return, changes in matrix configuration produce changes in permeability which often 

substantially increase fluid velocities. 

Freeze and Cherry (1979) characterize the stresses in a porous medium in mechanical 

equilibrium by considering in it a virtual horizontal plane. The total stress applied to the plane 

is that exerted by the weight of the water and rock above it. This is balanced by fluid pressure 

and also by the strength of the solid matrix or effective stress. To keep the rock in equilibrium, 

a decrease in effective stress must be accompanied by an increase in fluid pressure and vice 

versa. However, in an intrusive system, the predominant event is an increase in fluid pressure 

caused by the large temperature perturbation. This means that the rock opposes the weight upon 

it with too large a stress so that equilibrium is no longer present and permanent deformation 

occurs. This may be in the form of fracturing or a rearrangement or reorganizing of matrix 

particles. A small pressure gradient in the fluid set up by the sudden opening of fractures may 

cause increases in flow velocity. This effect (in some cases due to seismic pumping) is usually 

negligible in comparison to the convection caused by thermal perturbations. 

In general, tectonic stresses, such as those which cause seismic pumping, are negligible and 

are not modelled in this thesis. Other effects of the heat of an intrusive event on the country rock 

is metamorphism which breaks down existing minerals and causes the formation of new mineral 

assemblages. The effect on permeability and porosity may be substantial but it is not possible 

at this stage to include the detailed chemistry of such changes in the modelling. 

It is interesting to look at the failure criteria of a porous medium in order to estimate the 

amount of fracturing that one may expect in a given situation. Norton (1990) discusses a simple 

criterion which involves the balance between confining pressure exerted by the walls of a pore 

on the fluid Pc, the tensile strength of the walls t and the fluid pressure PI - quantities similar to 
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those introduced in the previous paragraph. The criterion for failure is 

PI> Pc + t. (2.10) 

A typical situation in which this might occur is if the fluid is initially in equilibrium with the 

regional hydrostatic pressure. If it is then locally confined to a group of pores and its temperature 

raised, the pressure will increase until it reaches Pc' A further increase is required in order to 

overcome the tensile strength of the rock, whereafter fracturing will occur. Additional 

deformation may occur due to the pressure gradient set up between the confined fluid and the 

surrounding fluid, still at the regional hydrostatic pressure. 

Fracturing occurs almost instantaneously although elastic deformation may take place over 

some time preceding this. 

2.2.3 Groundwater Flow 

The flow of groundwater can be modelled with the same equations of motion that are used 

for magma, although the fluid properties will have drastically different values (FLOTRAN 

Theory Manula, 1997). Only a small change to one equation (the momentum equation) is needed 

in order to model the resistance offered by a porous medium to groundwater flow. Before 

embarking on the detailed description presented in the next chapter, it is of interest to take a brief 

look at the traditional ways of modelling groundwater flow. 

Darcy's Law is used to predict the specific discharge through an aquifer. It is an empirically 

derived law based on the evidence that discharge is proportional to the hydraulic gradient in the 

fluid and is given by 

dh u = -K-
dl 

(2.11) 

where u is the specific discharge, dh/dl is the hydraulic head and K is the hydraulic conductivity. 

K is dependent on both fluid and solid properties. To separate the two dependencies we write 

K = pglC 

jJ 
(2.12) 

where p is the fluid density, g is the acceleration due to gravity, lC is the permeability of the 

porous medium and J1 is the fluid viscosity. Properties of the solid matrix are now wholly 

represented by the permeability. Norton and Knapp (1977) give the following estimate of 
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fracture-related permeability: 

ad 3 

K =--
12 

(2.13) 

where a is fracture abundance or density (in units of inverse length) and d is fracture aperture (in 

units of length). 

Treatment of fluids with Darcy's Law requires care. Because the exact flow path of each 

fluid particle is not being calculated (this would be practically impossible), the fluid is treated 

as a homogeneous substance whose flow differs from that of an unconfined fluid by virtue of the 

resistance offered by the solid matrix in the real physical system. Darcy's Law can be used, 

provided the flow through the smallest volume considered can be treated with the law's 

averaging approach. This strategy ignores the exact paths followed by individual fluid particles 

and looks at the average flow pattern. The smallest volume to which the law is applicable, also 

called the critical representative elementary volume, is usually extremely small and its size is 

dictated by the properties of the solid matrix. Consideration of volumes is important when using 

a finite element model, as generation of elements smaller than the critical representative 

elementary volume, such as may happen in high gradient areas, may lead to inaccurate results. 

Determination of the flow regime that groundwater can be expected to adopt in a particular 

situation is again made with the Rayleigh Number. Turcotte and Schubert (1982) present a 

modified version of the Rayleigh Number given in (2.7) above. The number is derived by 

considering a saturated porous medium with a vertical temperature gradient just high enough to 

bring on convection. This means that the degrees of freedom of the fluid can be written in terms 

of small perturbations from the purely conductive solution. This allows the governing equations 

to be simplified to such an extent that an analytical solution can be found for the simple problem 

studied (thermal convection in a saturated porous medium between two impermeable isothermal 

boundaries). The Rayleigh Number is derived easily from the analytical solution and is given 

by (Turcotte and Schubert, 1982) 

Ra = (2.14) 

All symbols have the same meaning as in (2.7). Note that d is no longer to the third power. 

For the physical system described above, there is a minimum Ra for the onset of convection. 
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This is Ra = 4n2• Given this value, (2.14) can be rearranged to give the minimum required 

temperature gradient for convection in a porous medium: 

dT 

dz 
(2.15) 

where z is the vertical dimension. For the fluid properties used in the models of this work (see 

Chapter 5) a minimum intial temperature gradient of 0.884 °C.m-I is obtained. Over a vertical 

distance of 1 km, the thickness of the most of the country rock models used, the average 

temperature difference would have to be 884°C. Since the initial temperature of the magma is 

1000 °C, and the top country rock surface is about 20°C, the temperature difference is 980°C. 

This is sufficient gradient for convection to occur yet not for turbulent flow to develop. 
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Chapter 3 

Equations Governing Magma and 

Groundwater Flow 

F or this thesis, FLOTRAN is used to solve numerically the time dependent, thermal equations 

of motion for magma in an enclosed chamber and the groundwater in the country rock 

surrounding it. The velocity and pressure distributions are found by solving the Navier-Stokes 

equations and the temperature distributions are found by solving an equation derived by forcing 

energy conservation. Detailed derivations of these equations are given in Appendix 1. 

3.1 Magma Flow 

The Navier-Stokes equations are obtained by combining the constitutive equation defining 

the components ofthe stress tensor (equation (a1.24), Appendix 1) 

't .. = -po .. + p(u . . + u . .) 
Ij IJ IJ J,I 

i, j = 1, 2, 3 (3.1) 

(where p is the hydrostatic pressure, Jl is the fluid viscosity and Uj is the ith component of the 

fluid velocity) with the momentum equation (equation (al.12), Appendix 1) 

(3.2) 

(The summation convention, which operates on indices appearing more than once in a single 

term, is always used in this work unless otherwise stated. A comma followed by an index 
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denotes differentiation of the preceding expression with respect to the variable represented by 

that index.) Substitution of (3.1) into (3.2) gives 

PU' t + pu . . u. = pg. + [-po .. + Ii(U .. +u.)] .. 
I, I,J J I IJ I,J J,I ,J (3.3) 

Distributing the main differentiation on the right-hand side to each term in brackets and swapping 

the order of differentiation in the last term gives 

PU' t + pu . . u. = pg. - p. + Ii(U.). + Ii(U.) .. 
I, IJ J I ,I I,J ,J J,J ,I (3.4) 

Expanding the second term on the left-hand side with the product rule and using the 

incompressibility constraint to drop one of the resulting terms (and the last term on the right-hand 

side) gives 

pU' t + p(u.u) . = Ii(U.) . + pg. - p .. 
I, I J ,J IJ ,J I ,I (3.5) 

The incompressibility constraint (introduced in Appendix 1) is 

U .. = o. 
1,1 (3.6) 

and is a consequence of the assumption that the density of a fluid element does not change 

appreciably with time. This assumption is valid for most liquids. 

Equation (3.6) is in fact obtained from the continuity equation: 

P t + (pu.). = 0 
, 1 ,I (3.7) 

(equation (a1.4), Appendix 1). 

FLOTRAN uses the full version of the continuity equation rather than the incompressibility 

constraint to maximise the accuracy of non-isothermal models in which the density varies with 

temperature. 

The Navier-Stokes equations and the continuity equation yield numerical solutions to 

pressure and velocity. A further equation is needed to compute a temperature distribution. This 

equation is supplied by the principle of the conservation of energy, which is expressed by 

pe + puke k = 't' .. U .. - q .. 
,t , I] J,I J,J (3.8) 

(equation (a1.32), Appendix 1) where e is the internal energy per unit volume. To transform 
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(3.8) into an equation expicitly dependent on temperature we employ the caloric equation of state 

e = cvT where Cv is the specific heat at constant volume. The heat flux q is given by Fourier's 

Law 

(3.9) 

where k is the thermal conductivity. Accordingly (3.8) can be re-written as 

p(cvD t + puk(cvD k = 't' .. U .. + (kT .) .. 
, ,l} j,1 ,) ,j 

(3.10) 

Substituting the constitutive equation gives rise to a pressure term which is eliminated when the 

incompressibility constraint is applied. The viscosity term that also arises is negligible for low 

velocities (Knudsen and Katz, 1958). Because of its high viscosity, magma flows very slowly 

(for the models in this work, maximum velocities of a few millimetres per second are obtained); 

this factor and the retarding effect of a porous medium on the flow of groundwater, justifies the 

decision to ignore this term. One thus obtains the slightly simpler energy equation 

(3.11) 

where k is considered constant (see Chapter 2). 

3.2 Porous Media Flow 

Modelling the flow of water through a porous medium requires, like the magma, special 

treatment of the equations of motion. A porous medium can be defined as a material consisting 

of a solid matrix containing many small cavities or pores. If the pores are evenly dispersed and 

well connected it is possible for a fluid to flow large distances through the matrix. Actual paths 

followed by individual fluid particles are extremely tortuous but the pattern of the overall 

(average) flow is nonetheless relatively simple and can be modelled to a good degree of accuracy 

by incorporating into the usual equations a term reflecting the resistance offered by the matrix 

to the flow. FLOTRAN adopts this approach, which it implements as follows. 

A hydrostatic pressure gradient exists in any fluid under the influence of gravity which does 

not cause a fluid in thermal equilibrium to move. Any additional pressure gradient may drive 

the fluid into motion. This motion will be resisted by the gradient of the fluid's viscous stresses 
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(a quantity also in units of pressure). 

Consider for example a single pore in the matrix of a porous medium. If the pore has width 

o and the interstitial fluid has velocity components Uj (i = 1, 2, 3) and viscosity Ii, then the 

viscous stresses in the fluid are proportional to liu;lo since 

't .. DC p(u .. + u . . ). 
IJ I,J J,I 

(3.12) 

Thus the gradient of the stresses must be proportional to IiU j /02 and to the driving pressure 

gradient, i.e. 

(The negative sign shows that the gradients are in opposite directions.) It turns out 

experimentally that the exact relationship is of the form 

- p p. - --u .. 
,I K 1 

(3.13) 

(3.14) 

Here K is the permeability of the medium as defmed by Darcy's Law. The permeability depends 

on the arrangement and size of the pores (see Chapter 2) and is a measure of the ability of the 

medium to conduct fluid. It has units of length squared and can take any value from 10-13 cm2 

for sandstones to 10-5 cm2 for karstic limestones (Freeze and Cherry, 1979). When modelling 

porous media, FLOTRAN simply adds the pressure gradient expression in (3.14) to the existing 

term in the momentum equation. 

Bear (1972) performs a rigorous derivation of flow equations in porous media. He models 

porous media as systems of flow channels and junctions. Assuming there is no flow normal to 

the walls of the channels, the channels can be replaced by fixed bundles of stream lines that 

occupy the same volume as the channels. Equations of motion can be derived for a single small 

channel, and then averaged over the channel cross-section, thus representing the channels as thin 

lines. (This averaging procedure can account for the parabolic fluid velocity cross-section typical 

in laminar channel flow). The equations of flow of the group of channels in a representative 

volume element are then averaged to arrive at a general description of volumetric flow though 

a porous medium. The equation for specific discharge (volume of water passing through a given 
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surface per unit time) is then: 

u
j 

+ pB u. t = -~(p. + pg.) 
p" P ,I 1 

(3.15) 

where Uj is the ith component of the Darcy velocity or specific discharge and B is the 

conductance (a function of the average flow channel cross-section). Bear (1972) drops the 

second term on the left-hand side because the inertial forces causing the acceleration represented 

in that term are usually much smaller than the viscous forces. Thus 

K 
u. = --(p. + pg.). 

1 P ,I 1 
(3.16) 

Since the gravity term already appears in the momentum equation, it can be seen that a pressure 

term the same as in (3.14) remains and is the only type of term that can be added to the 

momentum equation in order to model porous media flow. The result is an equation that 

accounts for both viscous stresses in the fluid and the resistance imposed by the solid matrix: 

PU'
t 

+ p(u.u.) . = p(u . .) . + pg. - (p. + i!....u.). 
I, 1 } ,} I,) ,} 1 ,I K 1 

(3.17) 

FLOTRAN requires the value for the permeability to be supplied. 

Permeability in geological settings is seldom homogeneous. Heterogeneity can be included 

in FLOTRAN models by meshing each area of the model that has uniform permeability 

separately. Thus, as the solution algorithm moves through the problem domain, the value of k 

corresponding to the current node or element in the finite element mesh will be substituted into 

the momentum equation. Single-direction permeability (that allows flow in one dimension only) 

and general anisotropic permeability (that allows permeability of a specified magnitude in each 

dimension) can also be modelled although the momentum equation becomes slightly more 

complicated. 

3.3 Treatment of the Equations by FLOTRAN 

The manner in which FLOTRAN solves the governing equations for fluid flow involves 

Finite Element Methods which will be discussed in detail in the following chapter. The three 

equations are solved (sequentially) by the same set of computer instructions. This is possible 

because of their common structure. This common structure is most easily displayed by writing 
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each equation in the form 

(p<I» t + (p<I>U.) . = (r",<I> .) . + S'" , J J ~ J J ~ 
(3.18) 

where <I> is a mass specific scalar, r q, a diffusion coefficient and Sq, a source term. Table 3.1 

explains how to identify these symbols in each case with those of the governing equations of 

fluid motion. It is important to understand that the momentum equation is treated by 

constructing a separate general scalar equation (as given in (3.18)) for each component of the 

fluid velocity. 

I J rej> I sej> 

Continuity Equation 0 0 

Momentum Equations II pgrP/ 

II pg2 - P2 

II pg3 - P3 

Energy Equation lC 0 

Table 3.1 Correspondence between the general scalar transport equation and the five governing equations. 

For porous media, the terms E.. u1 , E..u2 and E..u should be added to the three respective 
KKK 3 

pressure terms in the momentum equations. 
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Chapter 4 

Numerical Solution of the Governing Equations 

by Finite Element Methods 

The N avier-Stokes equations have analytical solutions only for a very limited number of 

simple problems. Certainly no analytical solutions exist for conductive and convective heat 

transfer and fluid flow in a magma chamber of arbitrary shape, nor for flow in the surrounding 

country rock. The only option in such cases therefore is to look for numerical solutions which 

describe the state of the system at various predetermined stages in its evolution. 

Finite Element Methods are perhaps the most extensively used methods for solving 

differential equations numerically. FLOTRAN uses the Galerkin Finite Element Method and the 

Streamline Upwind Method to solve the Navier-Stokes equations, the continuity equation and 

the energy equation. This chapter describes in detail these methods and their application. 

4.1 Finite Element Analysis 

Finite Element Methods have traditionally been used as engineering tools to assist in such 

problems as stress analyses of rigid structures. More recently they have been applied to a wider 

range of problems, including those involving fluids. 

A typical problem in engineering or physics has a number of state variables whose values at 

a particular time, or times, are desired. These variables are usually related to a set of governing 

differential equations that have no known analytical solution and must be solved with numerical 
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techniques. Such techniques convert the governing equations (which are defined continuously) 

to a set of discretely defined algebraic equations. 

Deciding on a mathematical model, i.e. formulating the governing equations, requires 

abstraction from reality. One must model only those aspects of the problem that contribute 

significantly to solution accuracy. Including parts of the problem that further refine the solution 

can be done later if required. A short, self-explanatory synopsis of the process of finite element 

analysis is shown in Figure 4.1 (Bathe, 1996). 

The primary finite element technique used in this work is Galerkin's method (Wang and 

Anderson, 1982) which is similar to a variational principle. The aim of such a principle is to 

minimize a physical quantity over the problem domain. Galerkin's method minimizes instead 

the error arising from assuming an arbitrary form of solution to the governing partial differential 

equation. In the governing equations of fluid flow, most terms can be treated satisfactorily with 

Galerkin's method. There are some terms, however, for which the Galerkin method may produce 

spurious results in parts of the problem domain. For these terms an Upwind method is used 

(Rice and Schnipke, 1984). 

4.2 Representing the Problem Domain 

Consider any differential equation that describes the time evolution of some scalar variable 

u in a well-defined, finite area in two-dimensional Euclidean space referred to by a set of 

Cartesian coordinate axes. The derivatives in the equation may be taken with respect to one or 

a combination of the two Cartesian coordinates, and time. 

A complete steady state solution to such an equation consists of a value of u at each point 

(x, y) in the problem domain. In a numerical solution, however, a lower degree of accuracy is 

tolerated. A finite number of sample points from the problem domain is selected and the 

equations are solved at those points only. Thereafter, interpolation techniques are used to 

estimate the values at intermediate points. This provides an approximate solution over the entire 

problem domain. 

Herein lies the first major problem encountered in practical numerical solution techniques. 
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Figure 4.1 A detailed graphical description ofthe process offmite element analysis introduced in section 4.1. 

Which points in the problem domain does one choose? There are several factors that 

determine this decision. These will be considered later in the discussion. For the moment, the 

typical form of a finite element mesh, which is the discrete representation of a continuous 

physical problem domain, is considered. The points (nodes) in the problem domain one wishes 

to model are connected in such a way as to form the vertices of a system of small, tightly fitting 

areas (or volumes in a three-dimensional domain) called elements. These are usually triangular 
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Figure 4.2 A fmite element mesh with quadrilateral elements. 

or quadrilateral in shape. Figure 4.2 shows an example of a two-dimensional finite element 

mesh with quadrilateral elements. 

4.3 Representing a Solution 

The process of solving for a variable using finite element methods requires manipulation of 

an initial (often arbitrary) trial solution represented by a set of nodal values. An interpolation 

function is constructed for each node enabling the discrete trial solution to be transformed into 

a piecewise continuous solution. For the example described in the previous section, the trial 

solution could be expressed generally in terms of the nodal solutions UL and their corresponding 

interpolation functions NrCx,y): 

M 

u(x,y) .E uLNL(x,y). (4.1) 
L=1 

M is the total number of nodes in the problem domain. Simple linear interpolation produces 

functions of the form shown in Figure 4.3. The complex or patch of elements surrounding node 

L is shaded NL is zero along the boundary of the patch and at all points exterior to it. Within 

the patch, it increases in a linear, piecewise fashion to a maximum of 1 at node L. An algebraic 
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Figure 4.3 The shape of the linear interpolation function NL(x,y). 

expression for NL(x,y) over one element (e) in the patch about node Lis 

(4.2) 

where L, i and} are the three nodes (in anticlockwise order) belonging to element e and Ae is the 

area of the element. 

The solution of the problem is found by determining the uL's in equation (4.1). 

4.4 Perfecting the Trial Solution 

The Galerkin Finite Element Method and Monotone Streamline Upwind Method are used by 

FLOTRAN to fmd an approximate solution to the governing differential equations. The Galerkin 

Method is equivalent to a variational principle whereby a physical property of the system such 

as energy dissipation is minimized. Instead of using a physical property, however, the Galerkin 

Method uses the partial differential equations themselves, manipulated to form an expression 

(called the residual) which is forced to vanish in order to secure a close approximation to the 

exact solution. 

Each point in the problem domain has its own value of the residual. To achieve an exact 
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solution, the residual would have to be brought to zero everywhere in the problem domain. 

However, only a finite set of residual values can be handled. 

A convenient way of discretizing the residual is to integrate it over the patch of elements 

around each node. In this way each node produces a single value representing the total 

contribution of the parts of the problem domain in its neighbourhood. The disadvantage of such 

a method is that, even if a particular nodal residual is brought to zero, this does not mean that the 

actual residual is zero over the entire element patch. Hence it is important that elements are 

small since the residuals then represent a more accurate generalization of the actual residual. 

The initial trial solution will usually produce very poor residual values. In order to minimise 

these to below a prespecified value, a number of passes through all the nodes in order to adjust 

the trial solution is necessary. This iterative process is the most common method used to achieve 

a solution once the governing equations have been discretized. The following two sections 

describe in detail the steps followed. 

4.5 Discretizing the Governing Equations 

Consider the general scalar transport equation introduced in Chapter 3: 

(p<I» t + (P<I>u.) . = (r.!.<I> .) . + S.!. 
• J .J 't' .J.J 't' 

(4.3) 

where t is time andj = 1, 2, 3, corresponding to X-, y- and z-components respectively. <I> 

represents the variable being solved (e.g. temperature or a component of the velocity). The first 

term on the left hand side (transient term) is solved using a finite difference technique while the 

second term on the left hand side (advection term) is solved with the Monotone Streamline 

Upwind Method and the terms on the right hand side (diffusion and source terms respectively) 

are solved with the Galerkin Method. 
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4.5.1 Diffusion and Source Terms 

For steady state flow dominated by diffusive transport, the terms on the left hand side of the 

general scalar equation fall away, giving 

o = (r", <I> .) . + S",. 
'I' ,J ,J 'I' 

(4.4) 

This expression can be used as a residual to test the accuracy of the trial solution of <1>. As 

described above, the total contribution to the residual from the patch of elements around each 

node must be found. This, for node L in a two-dimensional problem is 

(4.5) 

where L = 1, 2, ... , M and j = 1, 2. The interpolation function Nlx,y) has been used here to ensure 

that the integration, which is done over the entire problem domain, will be zero for points 

exterior to the patch of elements about node L. However, instead of unnecessarily integrating 

over the entire problem domain for each node, the integration can be done over each element 

separately. In this way, the integrals that do not contribute to the equation for a particular node 

can be ignored, hence equation (4.5) becomes 

E 

L[f{(r<l><I»,j + S<I>}NL(x,y)dA e
] = 0 

e=l 

(4.6) 

for L = 1,2, ... , M Ae denotes the area of element e and E is the total number of elements in the 

problem domain. For any particular node, the integrations in the above expression over elements 

not in the patch about that node are zero. In fact a single element will only contribute to three 

or four of the above M equations depending on whether it is triangular or quadrilateral. We now 

consider a single elemental integration as it appears in brackets in (4.6). 

The use of a piecewise continuous trial solution implies that first order derivatives of <I> may 

be discontinuous in some places, resulting in poorly defined second order derivatives. Hence 

the second order derivatives in (4.6) must be transformed to first order. This is done by 

integrating by parts to give 

(4.7) 

where se is the perimeter of element e and L is any node of e. 
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Discretizations like those of(4.1) are now needed. They are 

M 

<I> = L <l>L NL(x,y), (4.8) 
L=! 

Substituting these into (4.7) gives, after some manipulation, the matrix equation 

(4.9) 

Since only three of the total M nodes contribute to it (if the elements are triangular), [Ke] is 3 x 3 

and {P} and {<I>e L} are 3 x 1. All element matrix equations such as these are gathered to form 

a global matrix equation. This is equivalent to doing the summation in (4.6). During the process 

of assembly it is found that all terms in the element perimeter integral in (4.7) cancel except those 

including element edges that define the boundary of the problem domain. These terms make up 

the matrix {P}. The components of this matrix contain fIrst order spatial derivatives of the trial 

solution and so provide a way of enforcing gradient boundary conditions. (Such boundary 

conditions that are enforced automatically by the solution method being used are called natural 

boundary conditions.) 

The conductance matrix [Ke] and source vector {P} need only be constructed once before 

the solution process begins. 

4.5.2 Transient Term 

In solving parts of a differential equation one may choose to use fInite difference or fInite 

element techniques or both. Finite difference methods for transients are simpler in that the 

problem domain is represented by discrete points without elements; therefore no attempt is made 

to produce a time solution to the continuous mathematical model, but rather to the discretized 

model only. 

The simplicity of the transient term in the scalar equation allows it to be treated with a simple 

backward difference. This is constructed by a discretization process which uses a Taylor Series 

expansion that is a function of the internodal spacing. In the time domain, internodal spacing is 

just the time interval (in the physical system) between consecutive applications of the main 

solution routine. 

Consider, for instance, an arbitrary time step n and its immediate predecessor n-l. The 
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Taylor Series expansion for the value of the general scalar <p at time n is 

<p = <p + a<p lilt + ! ~<p Illt 2 + ... 
n n-l at n 2 at 2 n (4.10) 

where Ilt is the time interval between times n-l and n. This gives 

a<p I = <Pn - <Pn-1 + O(llt 2 ) 

at n Ilt 
(4.11) 

to first order approximation. The error, denoted by 0, is of order Ilt 2
• 

FLOTRAN uses an expression for the time derivative that is a combination of three backward 

differences involving time steps n, n-l, and n-2 and the three intervals associated with them, 

giving 

a<p I = <Pn-2 - 4<Pn-1 + 3<Pn + O(llt 2 ). 

at n 21lt 
(4.12) 

Since <Pn is a quantity that must be solved at the current time level, it is unknown and its 

coefficient augments the conductance matrix of the global matrix equation. The remaining terms 

on the right hand side, having been calculated during previous time levels, are known and 

contribute to the source vector. 

4.5.3 Advection Term 

The use of Galerkin's Method to solve the advection term is known to produce spatial 

oscillations in the solution (Brookes and Hughes, 1982). Patankar (1980) describes the source 

of the problem in detail. 

Upwind differencing methods tend to produce better results. These methods make use of 

forward and backward differences that are dependent on the direction of heat or mass flow 

through the nodes. Their disadvantage is the production of artificial diffusion, since backward 

and forward differences are only accurate to first order compared to the second order accuracy 

of central differences used in the Galerkin Method. 

The method described in this section is the Monotone Streamline Upwind Method, used by 

FLOTRAN to solve the Navier-Stokes advection term and is described in detail by Rice and 

Schnipke (1985). The purpose of the method is to approximate first order derivatives on an 

element by taking a finite difference along a streamline running through the element rather than 

between two nodes. The streamline chosen is that which passes through the element's 
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Figure 4.4 A quadrilateral element showing the quantities required to test 
the top right node (node j) for downwindedness. 

downwind node. The downwind node is the node whose velocity vector is directed out of the 

element, which means that fluid passing through the downwind node must emanate from inside 

the element. Figure 4.4 (Rice and Schnipke, 1985) shows a quadrilateral element whose top 

right node (labelled j) is to be tested for downwindedness. With reference to this diagram, the 

criteria for a node being downwind are 

tan e - stan e stan e+ . (4.13) 

Re-writing in terms of ratios gives 

(4.14) 

where Ui and Vi are the x- andy-components of the fluid velocity respectively. 

These two inequalities are easy to test and the downwind node(s) in the element can be found 

quickly. FLOTRAN s use of these criteria is somewhat different. It determines first whether the 

flow through each edge is inward or outward. It then selects the node attached to edges with 

outward flow only. 

The streamline passing through the downwind node must be considered next. It will enter 

the element upstream of the downwind node through an element edge. An expression for the 
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Figure 4.5 Flow rates through the edges of a quadrilateral element with 
downstream node j = 1. 

length of this streamline segment is required in order to construct the finite difference that will 

approximate the advection term. To find the length, the coordinates of the point of entry of the 

streamline into the element must be calculated, then a simple linear distance formula used as a 

length estimate. Calculation of the point of entry is done by considering the flow rates through 

all four element edges. Consider Figure 4.5 in which an element is shown with the streamline 

through the downwind node (1) and the flow rates through the edges (Fl' F}> F3 and F4). The 

streamline enters the element through side 3 splitting it into two segments a and b respectively. 

All fluid passing through segment b must pass through side 4 since by definition no fluid can 

cross streamlines; therefore F4 = Fb. The quantity Fb can be expressed in terms of the ratio of 

b to the total length 13 of side 3: 

(4.15) 

Since the x-components of the lengths appearing above have the same ratio as the lengths 

themselves, we have 

(4.16) 

Re-writing the lengths in terms of their endpoints gives the following expression for the 
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Figure 4.6 (a) Triangular and (b) tetrahedral elements showing the streamline that passes through the downwind 
node (node 1 in both cases) and its upstream point of entry into the element. Mass flow rates through element edges 
or faces are also shown. 

x-coordinate of the streamline entry point in terms of known quantities: 

F4 
X = x

4 
- -(x

4 
- x

3
). (4.17) 

F3 

The expression for the y-coordinate can be derived in the same way and is identical to the above 

except for the x's which should all be changed to y's. 

If the point of entry of the streamline was on side 2, a manipulation of quantities as done 

above would give a point of entry x-coordinate of 

_ Fl 
X = x

2 
- -(x

2 
- x

3
) • 

F2 
(4.18) 

As before, replacing x' s with y's gives the y-coordinate. The value of <p at the streamline's point 

of entry can be derived easily since it will be in the same ratio to the nodal values as the x- and 

y-coordinates. The resulting functions (one for a side 2 and one for a side 3 point of entry) are 

of the same form as above. The relative sizes of the fractions F]IF2 and F41F3 will indicate 

which element edge holds the point of entry so that the correct set of equations can be used. 

The FLOTRAN Theory Manual (1997) describes the above method as applied to a three

dimensional tetrahedral element. In this case, the streamline through the downwind node must 

enter the element through the face opposite the downwind node. For a two-dimensional 
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triangular element this is equivalent to the point of entry being on the element edge opposite the 

downwind node. The coordinates of the point can again be calculated by using ratios of flow 

rates. For the element pictured in Figure 4.6(a) the x-coordinate of the entry point is just (4.18). 

This can be simplified by substituting the constraint that FJ = F2 + Fj to give 

_ F2 F3 
X = -x + -x

3
• 

F\ 2 F\ 

For a tetrahedral element as shown in Figure 4.6(b) we then have 

4 F. 
X = L -' Xj ' 

j=2 F\ 

4 F. 
Y = L -' Yj , 

j=2 F\ 

(4.19) 

(4.20) 

If the element is sufficiently small, the length Il.s of the streamline from point of entry to 

the downwind node can be taken as the straight line distance between the two points. Thus 

(4.21) 

where node j is the downwind node. 

It is now possible to approximate the advection term in the scalar differential equation. 

Steady state flow dominated by advection can be described as follows: 

(p<I>u.) . = 0 , ., (4.22) 

for j = 1, 2, 3. This can be written in terms of the distance s along a streamline as 

d 
-Cpu <1» = 0 
ds S 

(4.23) 

where Us is the fluid velocity tangent to the streamline. Treating the above equation as a residual 

and performing a weighted integration over a single element e gives 

(4.24) 

where it has been assumed that the derivative is constant over the element. This unchanging 

gradient can be expressed as a simple average in terms of the quantities derived above: 

(4.25) 
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where j again denotes the downwind node. Substituting into (4.25) the expression for <I> in 

(4.20) results in an equation in terms of the nodal values <l>j. This is then substituted into (4.24) 

and the resulting coefficients of the <I>/s contribute to the element conductance matrix. 

4.6 Determining Pressure 

The Navier-Stokes equations are discretized in order to solve for the three velocity 

components and the energy equation is discretized to solve for temperature. The remaining 

governing equation, the continuity equation, must be used to solve for pressure. However, 

pressure makes no explicit appearance in the continuity equation so a combination of the 

momentum and continuity equations must be used. 

To avoid this, pressure could be eliminated as an unknown. This can be done with methods 

such as the penalty function method (Hughes et aI, 1979) which sets the continuity equation 

equal to a penalty parameter times the pressure. The result can then be re-written in terms of 

pressure alone and substituted into the momentum equation to eliminate pressure. Unfortunately, 

such a method requires all the governing equations to be solved simultaneously, leading to a 

poorly conditioned conductance matrix in which the diagonal entries do not dominate. Such a 

matrix causes a significant increase in solution time. 

FLOTRAN does not eliminate pressure but instead derives a Poisson pressure equation. This 

is done by deriving first an expression for the fluid velocity in terms of the pressure gradient 

using the momentum equation and then substituting the result for the velocity into a discretized 

continuity equation. Having an explicit equation for pressure allows the governing equations and 

the pressure equation to be solved sequentially, resulting in well conditioned matrices that are 

easier to invert (see FLOTRAN Theory Manual). The next few sections describe in detail the 

FLOTRAN pressure solving algorithm. 
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4.6.1 The Velocity-Pressure Coupling Equations 

The discretized momentum equation for velocity component i (over element e) can be written 

(4.27) 

for i = 1, 2, 3. The row of this set of algebraic equations corresponding to node L of element e 

is given by 

(4.28) 

where M is the total number of nodes in the problem domain and L is any node of element e. 

(Note that indices representing node numbers have been moved to the superscript position so as 

not to be mistaken for indices representing X-, y- or z-components). 

Here the source vector has been expanded into a pressure gradient term and a remaining 

source termj"/ which comprises the buoyancy term and the natural boundary conditions, if any. 

Solving for u/ gives 

- -I-Ip ,NL(x,y)dA e 

KLL " (4.29) 
, 

where 

I ( M ) -- Ln n + L - LL L K; u; J;. 
K; n=l,n>#L 

(4.30) 

Treating the pressure gradient over the element as constant (a valid simplification when using 

linear interpolation functions) simplifies (4.29) to 

u L = aL ALp , , -,',' , (4.31 ) 

where 

A L = _I_JN L(x,y)dA e • 
I LL 

K; 
(4.32) 

Equation (4.31) is the velocity-pressure coupling equation for the ith component of the fluid 

velocity at node L in terms of the pressure gradient p,;' 
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4.6.2 The Incompressible Flow Pressure Equation 

The next step in the process of solving for pressure is to discretize the continuity equation. 

The following weighted residual is constructed as per the Galerkin Method: 

(4.33) 

where i = 1, 2, 3 and L is any node of element e. The time-dependent term is discretized using 

the same backward difference formulation as the transient term of the general scalar equation. 

Considering the steady state continuity equation allows us to concentrate on the other term in 

(4.33) which, when integrated by parts to remove the velocities from the differential operator 

gives 

3 

f(L.PU/)NLds e 
- fpU/(NL),;dA e = O. 

;=1 

(4.34) 

The summation in the first term represents the total flow rate across the boundary of element e. 

As with the diffusion terms of the general scalar equation, all those parts of the integration that 

involve internal element boundaries cancel. The remaining parts serve as a convenient method 

of specifying flow rate boundary conditions. 

The velocity-pressure coupling equations (4.31) are-now substituted for u/ in the second term 

of(4.34) to give the pressure equation: 

(4.35) 

The Ui
L 's are left in the last term so that flow rate boundary conditions may be specified. 

Development of the above system produces an element matrix equation for pressure: 

(4.36) 

where [Be] is a conductance matrix and {gel a source vector. The element matrices are 

assembled into a global system which is solved for pressure. 
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4.7 Solving the Discrete System 

4. 7.1 General Solution Sequence 

The sequence of steps followed by FLOTRAN in order to solve for velocity, pressure and 

temperature in a transient thermal problem is shown in Figure 4.7. The figure is mostly self

explanatory although some features require emphasis. 

The first of these is the two-way coupling of velocity and pressure solutions. Initial guesses 

for velocity and pressure are first assembled. The velocity distribution is used to construct the 

conductance matrix and source vector of the momentum matrix equation ("conductance" and 

"source" here should be taken in the context of section 4.5.1). Because pressure appears 

explicitly in the momentum equation, its initial guess must be substituted so that it can be treated 

as a known. In this way, the momentum equation can be solved for its single remaining 

unknown, velocity. Once the velocity distribution is known, the 11/'s are calculated and used in 

the construction of the pressure matrix equation which is then solved for pressure. Herein lies 

the first of the two links between velocity and pressure. The second link appears after the 

pressure solution is acquired when the velocities are updated using the velocity-pressure coupling 

equations (4.31). 

The algorithm is a "relaxation" procedure. The loop starting from the construction of the 

velocity matrices and ending in the query about solution convergence may repeat itself many 

times before the solution stabilizes and the next time step can be tackled. The number of times 

this global iteration must be performed depends on the complexity of the system and also on the 

efficiency of the matrix equation solvers. 
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Figure 4.7 Flow chart showing the major steps in FLOTRANs solution procedure as outlined in 
section 4.7.1. 
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4.7.2 The TDMA Matrix Solver 

FLOTRAN uses a tri-diagonal matrix method to solve the matrix equations arising from 

discretization of the governing equations. Wang and Anderson (1982) describe the method 

which they call the "Thomas Algorithm". It operates on matrices with only subdiagonal, 

superdiagonal and centre diagonal entries. Entries not falling into these categories are taken to 

the right hand side of the equation. Their values from the previous iteration are substituted and 

grouped together with the source terms. What remains on the left hand side is a system of 

equations with a maximum ofthree unknowns each. For example, a system of four equations 

whose coefficients are in tridiagonal form can be written as 

b1x I 
+ c

I
X

2 = II 

a
2
x I 

+ b
2
x

2 
+ C

2
X

3 =1; 
(4.37) 

a3 x
2 + b3

X 3 + C
3

X
4 =~ 

a
4
x3 

+b
4
x

4
=f

4 

where the x's are unknowns, the a's are subdiagonal coefficients, the b's are centre diagonal 

coefficients, the e's are superdiagonal coefficients and thef's are source terms. The first step in 

the algorithm is to eliminate subdiagonal entries and normalize the coefficients of the centre 

diagonal entries to 1. The desired end result is 

X 2 + P2 X 3 = Y2 

X3 + P3 X 4 = Y3 

x4 = Y4 

Some manipulation of(4.37) and (4.38) would show that for row i, 

where 

and 

J; - ajYj_l 
Yi = 

cx. 
I 

Once (4.38) is constructed, simple backward substitution of the form 

is possible, starting from i = 4 or in general i = n where n is the number of equations. 
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Chapter 5 

Model Structure and Control 

All the basic equipment necessary to model a transient fluid flow problem has been 

discussed. The governing equations have been derived and tailored to model magmas and 

groundwater. A flnite element method has been chosen and an algorithm for solution devised. 

It is fltting now to take a closer look at the actual models used in this work and the software on 

which they were constructed and run. 

5.1 Ansys and FLOTRAN 

The modelling done in this work makes use of the commercial computational fluid dynamics 

package known as FLOTRAN which is part of the Ansys flnite element analysis software. The 

fust of the most recent suite of Ansys products, Ansys 5.0, was released in 1992. Since then it 

has been updated and enhanced several times. Most of the models in this work used versions 5.2 

and 5.3, and some used version 5.4. 

Ansys offers a wide range of analysis tools. It can perform structural analyses of the 

following types: static, modal, harmonic response, transient dynamic, spectrum, buckling and 

nonlinear. Also available are steady state and transient thermal analyses and solution of radiation 

problems. The electromagnetic analysis section offers two- or three-dimensional static 

magnetic, twO- or three-dimensional static harmonic, two- or three-dimensional transient 

magnetic, high frequency electromagnetic, far-field electrostatic field and electric circuit 
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analyses. 

FLOTRAN is capable of analysing flow which may be laminar or turbulent, incompressible 

or compressible, steady-state or transient, and thermal. Version 5.4 also handles multiple species 

transport. 

5.2 The FLOTRAN Fluid Element 

FLOTRAN supports two fluid elements: one for two-dimensional and one for three

dimensional use. The elements can be used to model only one fluid in a single phase. Modelling 

of the effect on flow of physical features in the problem domain whose geometry does not appear 

explicitly in the model (e.g. detailed pore structure) requires the specification of certain element 

specific properties. The FLOTRAN fluid element allows modelling of distributed resistances 

caused by friction, localized head loss or a porous medium. As discussed previously, a 

permeability (possibly anisotropic) to be associated with each element must be provided for 

porous media flow. 

The fluid element also supports non-Newtonian viscosity models such as Power Law, 

Bingham and Carreau models. The Newtonian model however gives one maximum control over 

the temperature dependent behaviour of viscosity and is the one used for all modelling for the 

present research (justification for the use of a Newtonian model for magma and groundwater is 

gIven III 

Chapter 2). 

In some of these models, the fluid content of the country rock was ignored and modelled 

instead as a thermally conducting solid. The FLOTRAN fluid element has a special facility which 

disables solution of the momentum and continuity equations, thus simulating solid material. The 

physical properties for the "solid" element can be adjusted to mimic the thermal behaviour of 

rock-type solids. 

Models with fluid elements have the velocity, pressure, temperature, kinetic energy and 

dissipation rate as degrees of freedom. The values of all these properties as well as heat flux may 

be set initially as required and allowed to change with time or fixed at one value for all time 

(boundary conditions). 

As is clear from discussion in previous chapters, the full chemical development of the 
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cooling magma including crystallization and differentiation cannot be modelled with the 

FLOTRAN code. What is currently possible is the modelling of the transport of a number of 

chemical species suspended in the melt. This is obviously an important aspect of the problem 

that cannot long be ignored. However, some account of it is made by the special set up of the 

viscosity and density functions which simulate the thickening of the melt where crystallization 

occurs. Further consideration of chemical effects is being undertaken this year (1998) and this 

thesis arguably has laid the groundwork to do so. 

5.3 The Process Modelled 

The process modelled consists of two distinct, although strongly connected parts. The first 

is the cooling of hot magmatic fluid and the second is the hydrothermal circulation in the 

surrounding country rock. 

Simulation of the convective cooling of an enclosed magma body can be done with a 

relatively simple model. The geometry of the chamber may be modelled as accurately as time 

and hardware resources allow. Very complex geometry requires a large number of elements, 

leading to long solution times depending on the hardware at hand. The aim of this work was to 

model simple geometries in order to gain insight into the general behaviour of magmatic fluid 

and groundwater. 

After meshing the magma chamber, zero velocity boundary conditions are applied to the 

exterior nodes in order to prevent fluid from leaving or entering the chamber. The initial 

intrusive temperature of the melt is applied to all nodes at the beginning of the first time step and 

allowed to change thereafter. In order to cool models with no surrounding country rock (but 

nonetheless in a non-extrusive situation), a low temperature boundary condition is applied to all 

exterior nodes. 

The fluid properties of the magma have already been discussed. The actual values used 

appear in Table 5.1 below and are calculated from data taken from Bottinga and Weill (1972) 

and Bottinga et al. (1982). The symbols in parentheses are those used in Chapter 2. 

In some models it was desirable to have laminar convection only and so the nominal 

viscosity was adjusted to keep the Rayleigh number small. Since the magma viscosity varies by 

orders of magnitude with small changes in temperature, adjustments to the nominal viscosity do 
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not significantly affect the behaviour of the magma. 

Fluid Property I Coefficient I Value 

Viscosity (P) Nominal Value (Po) '" I X 1015 N.s.m-2 

Temperature of Nominal Value (To) 800°C 

Linear Coefficient (a1) 93098 

Quadratic Coefficient (a2) 70089000 

Density (p) Nominal Value (Po) 3000 kg.m-3 

Temperature of Nominal Value (To) 800°C 

Linear Coefficient (b 1) -1.08 

Quadratic Coefficient (b2) 0.00075 

Thermal Conductivity (k) (constant) 2 J.m-1.s-1.K-1 

Specific Heat (cv) (constant) 1200 J.kg-1 Kl 

Table 5.1 The physical properties used for modelling magmatic fluid. 

FLOTRAN by itself can only model a single fluid at once. Since it was important to our 

studies to model a system involving the thermally coupled flow of magmatic fluid and 

groundwater, it was necessary to write additional code to do so. Separate models were 

constructed for each fluid and the solution obtained after a single time step from one model used 

as the initial or boundary conditions for the next time step in the other model and vice versa. 

This method of communication between models was implemented through the construction of 

code written in the Ansys Parametric Design Language (APDL). This language is a mixture of 

common FORTRAN commands and structures together with a substantial group of Ansys 

functions. 

The code developed can be executed as a "macro" from the Ansys command line. The 

essence of the program I have written is as follows. From the solution given at the end of a 

magma chamber time step, record the heat fluxes through the external element faces of the 

chamber. Apply these as boundary conditions to the corresponding contact surfaces of the 

country rock model. Run a single time step for the country rock and from its solution record the 

temperature of all the contact surface nodes. Apply these temperatures as boundary conditions 
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to the external nodes (which are on the magma chamber boundaries) in the magma chamber 

model. Run a time step for the magma and record the next set of heat fluxes, and so on. 

The final version of the code I wrote to handle a general three-dimensional model with any 

geometry can be found in Appendix 2. The restrictions and initial requirements for running the 

program are also given. 

Convecting groundwater in the porous rock adjacent to a hot pluton is a more complex 

process geometrically than magma chamber convection and has unique difficulties. The first 

is the amount of country rock to model. One must correctly predict the spatial extent of the 

region of rock affected by the intrusion. Computer hardware restrictions place an upper limit on 

model size and I decided as a rule of thumb to model a shell of country rock as thick as the depth 

of the magma chamber. 

The groundwater fluid properties used in all country rock models appear in Table 5.2. The 

permeability in all models was uniform and homogeneous. 

Zero velocity boundary conditions were applied to the inner (magma contact) surfaces, 

however the choice of boundary conditions to apply to the outer surfaces was somewhat 

problematic. Most of the models I ran had zero velocity and fixed temperature boundary 

conditions. The temperatures were chosen to simulate a geothermal gradient which has 

temperatures rising with depth at a rate of25 °C.km- I
. See the next section for details on initial 

and boundary conditions. 

An alternative scenario is that used by Hayba and Ingebritsen (1997). They modelled country 

rock extending from the surface of the earth to the bottom of the magma chamber. Along the 

surface of the earth they applied typical ambient temperatures (20°C) and pressures (1 atm). 

Along the bottom surface of the magma chamber and country rock they applied zero velocity and 

constant heat flux boundary conditions simulating an impermeable sequence conducting heat into 

the model from the warmer, deeper parts of the crust. Because they were modelling only half of 

the pluton-country rock system, one side edge represented a plane of symmetry and had 

appropriate boundary conditions. The side representing the outer limits of the country rock had 

no boundary conditions imposed. Also, the bottom surface only had velocity boundary 

conditions. Fluid was allowed to cross all other boundaries. 

I used these sorts of boundary conditions for some of my later models. However, instead of 

setting the country rock so that its upper surface coincided with the surface of the earth, I 
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positioned it at a depth of one kilometre. This was to ensure sufficient groundwater pressure to 

avoid dealing with phase change. 

Fluid Property I Coefficient 1 Value 

Viscosity (P) Nominal Value (Po) 0.00112 N.s.m'2 

Temperature of Nominal Value (To) 60°C 

Linear Coefficient (al) 23.68 

Quadratic Coefficient (a2) -7883 

Density (p) Nominal Value (Po) 1045 kg.m,3 

Temperature of Nominal Value (To) 60°C 

Linear Coefficient (bl) -0.45 

Quadratic Coefficient (b2) 0 

Thermal Conductivity (k) (constant) 2 J.m'l.s'I.K'1 

Specific Heat (cv) (constant) 4342 J.kg'I.K'1 

Permeability (K) (constant) 1 X 10,15 m2 

Table 5.2 The physical properties used for modelling groundwater. 

For all country rock models, the initial interior temperature of the groundwater was set 

according to the geothermal gradient. 

5.4 The Models 

Presentation of the finite element meshes used in this work follows. First is a description of 

an experiment carried out to determine the impact of mesh refinement on solution accuracy. 

Figure 5.1 shows a two-dimensional square of magma and likewise of country rock, each 1 km2 

in area. The two models were coupled in such a way that they made contact along a single edge. 

A transient thermal analysis was performed on this system for a number of element sizes. 

Uniform temperature and zero velocity boundary conditions were imposed on both the magma 

and the country rock. The results of the experiment are given in the next chapter. 

The meshes shown have the minimum element size used in the experiment. There are 35 

elements along the contact surface. The model was also run for 10, 15,20,25 and 30 contact 
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Figure 5.1 Two-dimensional model used to investigate the effects of mesh refmement on solution accuracy. 

elements. 

The last few pages of the chapter contain pictures of the main models studied in this work. 

A detailed description of each follows. 

5.4.1 Two-dimensional Square Chamber 

The first model studied was that shown in Figure 5.2. The magma chamber was identical 

to the one used for the mesh experiment described above, except that it had 40 elements along 

each edge, making for a more accurate solution than any of those achieved in the mesh 

experiment. The country rock was 1 km thick and completely surrounded the magma chamber. 

One of the requirements of the code controlling the coupled solution procedure was that contact 

surface nodes on the magma chamber and the country rock coincide. Consequently the inner 

edges of the country rock also had 40 elements each. 

In general, meshing was controlled fairly rigorously. The number of elements along every 

line in the model was specified and only quadrilateral elements were allowed. FLOTRAN 

notifies one of overly distorted elements created during meshing. This enables one to engineer 

a stable mesh of reliable elements. 

The boundary and initial conditions applied to the model are listed in Table 5.3. Boundary 
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conditions followed by "(Transient)" imply that the quoted values are applied for the first time 

step only. The heat flow between the magma chamber and country rock will cause these 

boundary conditions to change slightly on each successive time step. 

I 
Boundary Conditions 

Initial Conditions 

Magma Chamber 

Velocity: o. 
Temperature: Geothermal gradient of 

30 °C.km· l
• (Transient). 

Temperature: 1000°C. 

I Country Rock 

Outer SUlfaces 

Velocity: o. 
Temperature: Geothermal gradient of 

30 °C.km- I . Top surface temperature = 

20°C. 

Inner Surfaces 

Velocity: O. 

Heat Flux: o. (Transient). 

Temperature: Geothermal gradient of 

30°C.km- l . 

Table 5.3 Boundary and initial conditions applied to the square magma chamber model. 

5.4.2 Two-dimensional Wedge-shaped Chamber 

The model shown in Figure 5.3 was constructed in order to study the flow of magma in a 

confined area of the chamber. A triangle was added onto the right-hand side of the original 

square chamber. The country rock had to be modified but it retained its 1 km thickness. The 

higher number of elements in the resulting mesh forced an increase the element size in both 

models. The final magma chamber mesh had 24 elements per kilometre along its edges. The 

boundary and initial conditions were the same as those listed in Table 5.3 for the square chamber 

model. 

5.4.3 Three-dimensional Cylindrical Chamber 

Figure 5.4 displays the three-dimensional coupled model used in this work. The magma 

chamber is a 1 km deep cylinder with a radius of 500 m. The country rock is 500 m thick and 
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forms a hollow cylinder around the chamber. The number of elements used in a three

dimensional model is vastly greater than in an analogous two-dimensional model. However, the 

installation of a newer version of Ansys allowed me to retain a mesh of 20 elements along the 

length of the magma chamber and 56 around the circumference. 

The boundary and initial conditions for this model were based on Hayba and Ingebritsen 

(1997) and are listed in Table 5.4. The values are such that the top surface of the country rock 

is at a depth of 1 km below the earth's surface. 

Boundary Conditions 

Initial (Internal) 

Conditions 

I Magma Chamber 

Velocity: O. 

Temperature: Geothermal gradient of 

25 °C.km·1
• Offset to match country 

rock initial temperature distribution. 

(Transient). 

Temperature: 1000°C. 

I Country Rock 

Outer Surfaces 

Velocity: 0 at bottom surface 

(impermeable layer). 

Temperature: 45°C at top surface. 

Pressure: 333 atm at top surface. 

Heat Flux: 5 W.m·2 through bottom 

surface, into country rock. 

Inner Surfaces 

Velocity: O. 

Heat Flux: O. (Transient). 

Temperature: Geothermal gradient of 

25°C.km·1
• 

Pressure: Gradient of 0.3 atm.m·1
• Top 

surface at 333 atm. 

Table 5.4 Boundary and initial conditions applied to the cylindrical magma chamber model. 
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1 km 

(a) 

(b) 

1 km 

Figure 5.2 (a) Two-dimensional square magma chamber mesh and (b) surrounding country rock mesh. Note that 
(a) is not to the same scale as (b) and has been enlarged for clarity. With the scales equal, (a) fits exactly into the 
central cavity in (b) and all nodes along the contact boundaries coincide. 

1 km 

(a) 

1 km 

(b) 

Figure 5.3 Two-dimensional wedge-shaped chamber (a) and surrounding country rock (b). 
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2km 

1 km 

(a) 

Figure 5.4 Vertical sections through the centres of the three-dimensional cylindrical magma chamber (a) and the 
surrounding country rock (b). 
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Chapter 6 

Results 

Solutions to the governing equations for fluid flow comprise numerical specifications of all 

degrees of freedom. In particular, velocity and temperature are of primary interest. The 

FLOTRAN graphical user interface makes it possible to visualise numerical solutions in a 

concise, comprehensive manner. 

6.1 Results Displays 

6.1.1 Contour Plots 

The value of a scalar over a two-dimensional problem domain is best represented by a set of 

contour lines, each line joining points of equal value. Instead of plotting the contours 

themselves, FLOTRAN plots the intervals between the contours, each with a different colour. 

The values of the scalar corresponding to a particular colour are given in a legend alongside. 

Since degrees of freedom are calculated at the nodes only, FLOTRAN uses its interpolation 

functions (as described in Chapter 4), to generate a continuous set of results and therefore 

contour lines. 

Temperature and the individual velocity components may be represented in such a way. The 

results for any planar cross-section may be viewed. 
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6.1.2 Vector Plots 

Vector quantities may be plotted as arrows with the correct direction and length. Each node 

in the model will have an arrow of its own. For further clarity, FLOTRAN assigns to each arrow 

a colour related to its magnitude as given in an accompanying scale. As with contour plots, the 

vectors belonging to nodes in any planar cross-section of the model may be viewed. 

6.1.3 Particle Traces 

Being able to trace the path of fluid particles may highlight features of the flow pattern that 

are of interest and may indicate the relative flow speeds of different regions. FLOTRAN is able 

to plot such paths given a steady-state velocity solution. If the model is transient, each time step 

may be regarded temporarily as a steady-state solution and a particle trace constructed. While 

this method does not depict the true transient behaviour of the flow, it allows analysis of 

individual sets of results. 

Particles trace lines may be coloured according to a scale measuring speed, temperature or 

any other scalar. 

Results of transient runs of the models described in Chapter 5 follow. 

6.2 Mesh Refinement Experiment 

Results of the simple model described in Chapter 5 that was used to test the effects of mesh 

refinement on the accuracy of solution are given in Figure 6.1. In Figure 6.1(a), the heat flux 

through the centre element along the contact edge between magma and country rock is shown 

for various mesh resolutions. The initial heat flux is zero and as the hot magma is 

(instantaneously) emplaced, it increases rapidly to a maximum value. The legend gives the total 

number of elements along the contact edge for each (colour coded) set of data points. The jump 

in heat flux becomes progressively more sluggish as the mesh becomes more coarse. 

In Figure 6.1(b) the temperature of the central node along the contact edge is shown. As the 

magma is emplaced, the temperature of the edge increases rapidly to about half the initial 

temperature of the magma (1000 °C). Again, the jump in temperature becomes progressively 

more sluggish as the mesh becomes more coarse. 

For the heat flux and temperature plots it can be seen that the solutions do not converge 
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precisely after the initial jump. Small differences during the first few time steps can lead to 

major discrepancies later on. (This was particularly evident for temperatures at times greater 

than those shown on the chart). This emphasises the importance of mesh refinement in transient 

problems. 

6.3 Square Magma Chamber 

Figures 6.2(a), 6.2(b) and 6.3 show temperature distributions in the 1 kIn by 1 kIn square 

magma chamber after 90.2, 190 and 385 years respectively. The code written by the author to 

control the model produced results at specific times. These times are not separated by constant 

intervals. The intervals are made smaller during the highly transient parts of the analysis in order 

to obtain a large number of results sets. Conversely, the intervals are made larger during the 

stable parts of the process so as not to record nearly identical results sets. (This feature of the 

code saves time and computer resources.) The times chosen in this chapter for the display of 

results thus correspond to specific sets of results and are not chosen arbitrarily. The displays 

chosen in this chapter were part offull collections of results. The square magma chamber model 

(and most others), produced between 100 and 300 sets of results. 

Only a short temperature range is plotted in order to display fme detail, hence the 

uncalibrated grey area on the margins of each plot which in fact correspond roughly to "frozen" 

magma. Note that the colours in each plot do not correspond to the same temperatures. It is clear 

that the flow pattern in the chamber is complex and causes asymmetric patterns in the 

temperature distribution despite the symmetric nature of the model. The accompanying scales 

give temperatures in degrees Celsius. 

Figure 6.4 displays two particle traces, the first calculated at 0.2 years and the second at 

90.2 years. (When viewing particle traces, it is important to keep in mind their definition given 

in section 6.1.3.) The paths of nine particles, each starting from the horizontal line dividing the 

chamber in half and placed at 100m intervals along this line, are traced in both plots. 

Figure 6.4(a) exhibits double cell convection which predominates the cooling history ofthe 

chamber, especially during the last few thousand years (see Figure 6.17). In Figure 6.4(b) the 

pattern has changed into one with four cells, a pattern which features during the early cooling 

stages only. The velocity distribution rapidly cycles through a variety of forms, as shown in 
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Figures 6.5, 6.6, 6.7 and 6.8. These figures contain examples of velocity distributions, including 

those corresponding to the same times as the particle traces in Figure 6.4. The other 

distributions are those calculated after 8.0,8.5, 10.7, 1083 and 2600 years respectively. Note that 

the cooling magma freezes resulting in zero velocity regions at the walls of the chamber that 

thicken with time. In the last picture (Figure 6.8(b» only a small cell of convecting magma 

remams. 

Figure 6.7(b) shows an overlay of the temperature and velocity distributions in the chamber 

after 90.2 years (the temperature distribution is a reproduction of Figure 6.2(a». 

6.4 Country Rock Surrounding Square Magma Chamber 

Figures 6.9 and 6.10 together show three temperature distributions (with scales in Kelvin) 

and one particle trace of groundwater flow. The temperature distributions are calculated after 

190, 1083 and 2600 years respectively. 

Figures 6.11, 6.12 and 6.13 together show velocity distributions in the country rock after 

10.7,90.3, 1083,2600 and 15200 years. Figure 6.13(a) is an enlarged view of the right hand 

side of the country rock model and shows an overlay of the temperature distribution after 2600 

years and nine particle traces. The traces are of uniform colour so as not to be lost against the 

coloured background. The groundwater maintains the same flow pattern throughout its history, 

the only changes being a broadening of the rising columns on either side of the chamber. The 

maximum velocity is only reached after approximately 1000 years. 

6.5 Wedge-shaped Chamber 

Figure 6.14(a) shows the temperature distribution in the wedge-shaped chamber after 38.2 

years (the length of the chamber is 2 km and the depth is 1 km). Time did not allow the model 

to be run beyond this stage, but the results from this short period are still interesting and useful. 

Figure 6.14(b) shows a particle trace calculated after 20.7 years. This makes clear the presence 

of a number of convection cells. 

Figure 6.15 shows the velocity distribution after 20.7 years. Note that the maximum 

velocities are in the triangular section of the chamber. This section of the chamber experiences 
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the quickest heat loss because of its geometry. 

The groundwater surrounding the wedge-shaped chamber exhibited much the same flow 

pattern during the short run as the groundwater surrounding the square magma chamber. This 

pattern consists of upwelling along the left, vertical margin of the chamber and along both 

oblique edges making up the wedge-shaped right margin of the chamber. 

6.6 Transient Results Sequences 

Figures 6.16(a)-(t) form a sequence of temperature contour plots of both the square magma 

chamber and the surrounding country rock. The first plot shows the initial conditions and the 

remaining plots show subsequent distributions after every 5400 years, with the last plot at 27000 

years. It is significant how much cooling takes place in the magma before the second plot. The 

scale in the upper left comer of the figure applies to all six plots and gives temperatures in 

Celsius. 

Figure 6.17 shows a similar sequence to the first, this time with velocity distributions. The 

first plot is at the beginning of the model as before, but the interval between successive plots is 

1060 years with the last plot at 5300 years. The sequence serves to illustrate the freezing process 

of the magma chamber and to compare groundwater and magma velocities. For an enlarged view 

of these plots, which will make the arrows clearer, the reader is referred to the corresponding 

animation (anim2.mov on the compact disc at the back of the thesis). 

Figure 6.18 shows a sequence of wedge-shaped chamber velocity distributions. The first 

plot is at a time of 12.8 years and the others are at 1.8 year intervals thereafter. The convection 

cells change in strength and position throughout this sequence. Again, the reader should refer 

to the corresponding animation (anim3.mov) for a clearer view of these plots. 

6.7 Three-dimensional Cylindrical Magma Chamber and Surrounding Country Rock 

Shown in Figure 6.19 are some preliminary results from this model. Viewing of results in 

a three-dimensional model is difficult and best done by animation. However, it is possible to 

display results by plotting a number of sections through the model. Figure 6.19(a) shows the 

temperature distribution in the groundwater for half of the country rock model after 200 years 
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by means of a number of vertical sections through the model. The same sections are used in 

Figure 6.19(b) to show the velocity vector distribution in the groundwater after 200 years. 

Figure 6.19(c) shows a sectioned view of the temperature distribution in the cylindrical 

magma chamber. The current research may be extended by the production and analysis of more 

results from this model. 

6.8 Animations 

On the CD at the back of the thesis may be found nine ".mov" files containing animations 

of the results described above and of results obtained by my fellow MSc student Andre Botha 

who was also part of the project described in this thesis. I have shown these animations as part 

of oral presentations given at a number of conferences (see all reference listings for Botha et al. 

and Rice et al.). The last animation is a demonstration of visualisation techniques devised by 

Soteri Panagou from the Computer Science Department at Rhodes University. Identification of 

each animation follows. Detailed comment may be found in Chapter 7. 

1. animl.mov: Temperature contour animation in the square magma chamber and the 

surrounding country rock. 

2. anim2.mov: Velocity vector animation in the square magma chamber and the surrounding 

country rock. 

3. anim3.mov: Velocity vector animation in the wedge-shaped magma chamber. 

4. anim4.mov: Particle trace animation in the wedge-shaped magma chamber. 

5. anim5.mov: Velocity vector animation in a magnified view of the left arm of a sill-shaped 

magma chamber (with no surrounding country rock). 

6. anim6.mov: Velocity vector animation in a sill-shaped magma chamber that has been 

enclosed in purely conductive country rock (i.e. no groundwater flow). 

7. anim7.mov: Velocity vector animation of a vertical section through a high aspect ratio 

cylindrical magma chamber with no surrounding country rock. 

8. anim8. mov: Velocity vector animation of a horizontal section through the high aspect ratio 

cylindrical magma chamber. 

9. anim9. mov: Demonstration of sectioning and other visualisation techniques. 
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Figure 6.1 Plot of the heat flux (a) and temperature (b) at the central contact element in the mesh expenment model. 
The legend gives the total number of elements along the contact edge for each curve. 
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Figure 6.1 Temperature distributions in the twtHIimensional square magma chamber (I km by 1 km) after (a) 90.2 
and (b) 190years. 
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Ytpre 6.3 Temperature distnbutioo in the two-dimensiooaI square magma chamber (I km by 1 km) after 385 years. 
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Figure 6.4 Particle traces in the two-dimensional square magma chamber (I Ian by I Ian) calculated after (a) 0.2 and 
(b) 90 2 years. The arrows indicate the direction of flow. 
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Fipre 6.5 Velocity distributions in the two-dimensional square magma chamber (I Ian by 1 Ian) after (a) 0.2 and 
(b) 8.0 years. 
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Figure 6.7 (a) Velocity distribution in the two-dimensional square magma chamber (lIon by I Ion) after 90.2 years 
and (b) the same distribution overlayed with the corresponding temperature distribution. 
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Figure 6.8 Velocity distributions in the two-dimensional square magma chamber (I km by 1 k:m) after (a) 1083 and 
(b) 2600 years. 
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Figure 6.9 Temperature distributions in the two-dimensional count!)' rock surrounding the square magma chamber 
after (a) 190 and (b) 1083 years. 
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Figure 6.10 (a) The temperature distribution in the two-dimensional country rock surrounding the square magma 
chamber after 2600 years and (b) particle trace calculated after 15200 years. The arrows in the particle trace indicate 
the direction of flow. 
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Figure 6.11 Velocity distributions in the two-dimensional country rock surrounding the square magma chamber after 
(a) 10.7 and (b) 90.3 years. 
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Figure 6.12 Velocity distributions in the two-dimensional countIy rock surrounding the square magma chamber after 
(a) 1083 and (b) 2600 years. 
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Fi&Ure 6.13 (a) Magnified view of the temperature distribution in the two-dimensional country rock surrounding 
the square magma chamber after 2600 years overlayed with 9 particle traces (not calibrated in order to be visible 
against the background colours) (b) Velocity distribution after 15200 years. 
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Figure 6.14 (a) Temperature distribution in thetwo-dimensional wedge-shaped magma chamber after 38.2 years. 
(b) Particle trace calculated after 20.7 years. The arrows indicate the direction of flow 
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Fipft 6.15 Velocity distnbution in the two-dimensional wedge-shaped magma chamber after 20.7 years 
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Figure 6.16 Development of the temperature distribution in the two-dimensional square chamber and the 
surrounding COWltry rock over the first 27000 years with frames approximately 5400 years apart. The gray areas in 
each plot are Wlcalibrated. 
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Figure 6.18 Development of the velocity distribution in the two-dimensional wedge-shaped chamber over 9 years, 
starting from 12.8 years with frames approximately 1.8 years apart. 
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Figure 6.19 (a) Sectioned view of half of the three-dimensional country rock model showing the temperature 
distribution after 200 years. (b) The same sectioned view showing the velocity distribution after 200 years. (c) 
Sectioned view of the corresponding three-dimensional magma chamber showing the temperature distribution after 
200 years. 
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Chapter 7 

Discussion and Conclusions 

7.1 Square Magma Chamber .and Surrounding Country Rock 

The behaviour of the magma in the square chamber during the first 1000 years is bordering 

on turbulent which appears consistent with the fact that the initial Rayleigh number is 2.5 x 106
• 

The flow patterns seen in the results are complex and various. Patterns with four or five 

convection cells are common. The central pair of cells in Figures 6.6(a) and 6.7(a) has a 

common central downflow rather than an upflow as is the case with double cell convection that 

dominates the flow for the first few months and again from about 1000 years on (compare 

Figures 6.4(a) and (b». The temperature contour plot in Figure 6.2(a) which is at the same time 

as Figure 6.7(b) shows the cooler magma sinking through this central downflow region. Other 

unique flow patterns are evident in Figures 6.2, 6.3, 6.5, 6.6 and 6.7. 

After about 90 years, a noticeable region of near-zero velocities along the walls of the 

chamber appears. This is due to the increased viscosity of the magma because of cooling at the 

walls. The freezing continues throughout the remaining convection history until the frozen 

region is so thick that only a very small section of circulating fluid remains. After 5300 years, 

the magma is solid throughout. The fluid magma that exists during this freezing process also 

cools gradually. The associated drop in the Rayleigh number indicates a successively more 

stable, laminar flow, hence the dominant double cell convection pattern during the latter 4300 

years of the existence of liquid magma. 

Total freezing of the magma occurs a long time before the groundwater ceases convecting. 
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This is because the freezing temperature of the magma is still higher than the initial temperature 

of the groundwater. Indeed, the freezing of the magma means that heat passes through it by 

conduction only. Since conduction is a less efficient means of heat transport than convection, 

the average rate of heat dissipation into the groundwater will be at a minimum after freezing and 

convection of the groundwater can be sustained for a very long period. 

The extent to which the flow of the groundwater in the country rock outlives the flow of the 

magma is evident in the particle trace in Figure 6.1 O(b), calculated after 15,200 years. Velocities 

here are of the order of 10-9 m.s-I. The magma has slowed to similar velocities after only 2100 

years (see Figure 6.17). Furthermore, magma velocities are at their greatest after only 9 years 

whereas groundwater velocities are at their maximum after 1000 years. 

It is worth noting here that an increase in the size of the model could cause significant 

changes in the results. From the expression given for the Rayleigh number in Chapter 2, 

equation (2.7), it is seen that there is a third order dependence on the characteristic dimension, 

d. 

The characteristic dimension is defined in Chapter 2 as being the distance covered by the 

largest temperature difference in the system. For the country rock model, the largest temperature 

difference is initially between the newly intruded magma and the surface of the earth. This 

difference is vertically orientated. An increase in the Rayleigh number is thus caused by an 

increase in the depth of the country rock. A similar rule holds for the magma chamber: an 

increase in the chamber depth increases the Rayleigh number. In both systems, an increase in 

the Rayleigh number implies a movement of the system from the laminar to the turbulent end of 

the flow regime spectrum. This causes the flow pattern to become more chaotic and as a result, 

less predictable. 

By the above argument, increasing the horizontal dimensions of the models will not cause 

a change in the Rayleigh number. It may, however, cause other changes in the flow pattern. For 

instance, the two-dimensional country rock models used in this thesis have impermeable limits 

to the left and right. Moving these limits further from the centre of the system better simulates 

a permeable country rock model that stretches to infinity on either side. (Of course, different 

boundary conditions may be used to reach this goal rather than changing the model size. This 

was done for the three-dimensional cylindrical model.) 
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7.2 Wedge-shaped Magma Chamber and Surrounding Country Rock 

Although it was not possible to run the wedge-shaped chamber model for as long a period 

as the square chamber model, there were some useful results. An example is the particle trace 

in Figure 6.14(b) which shows four very different convection cells. The two cells in the 

triangular part of the chamber are the fastest rotating cells of the four. The maximum velocities 

occur mostly at the central upwelling common to this pair of cells as seen in Figure 6.15. A 

sequence of results from this run are shown in the velocity distribution plots of Figure 6.18. 

Although this model is two-dimensional, the assumption that it be infInite in extent in a 

direction nonnal to the page allows comparison of surface to volume ratios of the square portion 

and the triangular portion to be obtained by perimeter to area ratios. 

The perimeter to area ratio of the triangular section of the chamber is 2.236 : 0.5 = 4.472 

(counting only the two external edges of the triangle) and that of the square section is 

3 : 1 = 3 (again counting only the external edges). One would therefore expect more heat to be 

dissipated from the triangular section. A stronger temperature gradient would thus develop there 

because hot material moving into the triangular section would mix with the cool magma at the 

walls, resulting in more vigorous convection. 

The computer resources available did not allow for the refInement of the mesh along the 

chamber boundary as this would require the same refInement along the contact edges (and hence 

throughout large regions) of the country rock model. (The code I wrote to couple the magma and 

the country rock assumed matching nodes along the contact edges. See section 7.4.) Such 

extensive refInement would increase the number of nodes beyond the available limit. 

Despite this drawback, it is still possible to see in Figure 6.15 that the boundary layer near 

the tip of the triangular part of the chamber is thinner than along the top and bottom margins of 

the square part of the chamber and is hence a region of higher shear. The work of Rice and von 

Gruenewaldt (1995) suggests that mineralisation may be enhanced in regions of high shear. 

More conclusive evidence for the high shear zone observed in Figure 6.15 would thus explain 

the fonnation of certain deposits (such as platinum) in the Bushveld Complex that occur in 

narrow, confmed parts of the intrusion. 

The groundwater flow around the chamber was relatively uninteresting and stable throughout 

the short run period but may, if run further, exhibit features of greater interest. A similar pattern 

to the square chamber model, i.e. one with upwelling of groundwater against the side walls of 
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the chamber was obtained. Velocities were also similar in magnitude to the square chamber

country rock model. 

Finally, note the difference in the speed of the flow between the square chamber and the 

wedge-shaped chamber which has a viscosity two orders of magnitude smaller than the square 

chamber (to more closely approximate a more mafic environment). This can be seen by 

comparing Figures 6.6(b) and 6.18(a) that are at approximately the same time (10.7 and 12.8 

years respectively). The maximum velocity in the square chamber after 10.7 years is 4.13 x 10-4 

m.s-1 and in the wedge-shaped chamber after 12.8 years is 0.259 m.s-1
, about 600 times greater. 

7.3 Cylindrical Magma Chamber and Surrounding Country Rock 

The flow of magma in the three-dimensional cylindrical chamber is (according to the small 

set of results - namely 200 years - obtained thus far) highly asymmetric showing that 

assumptions about symmetry, made in order to save time and computational demand are, in this 

case, not valid. More results will have to be accumulated before further comment can be made. 

The groundwater results obtained thus far do not appear to depart significantly from the two

dimensional models. In the country rock, upwelling of groundwater occurs uniformly along the 

entire cylindrical magma chamber wall. Again, more results will have to be generated before 

further comment can be made. 

7.4 Animations 

The first four animations (anim1.mov to anim4.mov) on the compact disc at the back of the 

thesis are of results already described and were identified in Chapter 6. Commentary on the 

remaining animations, constructed from results obtained by Andre Botha, a fellow physics MSc 

student working on the same project as set out in this thesis, follows. More information about 

these animations may be found in the MSc thesis by A. Botha (1998). 

7.4.1 Sill-shaped Magma Chamber 

The file anim5. mov shows a velocity vector animation in the left arm of aT-shaped magmatic 

intrusion modelled without country rock. The magma is supposed to have intruded upwards 
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from the mantle and then horizontally to the left and right between two layers of crustal rock. 

The most interesting feature of the flow pattern in this more basaltic magma chamber (aside from 

the upwelling through the centre of the chamber and very strong downward return flow along its 

curved sides) is the wave-like progression of convection cells towards the end of each horizontal 

limb. 

7. 4. 2 Sill-shaped Magma Chamber with Conductive Country Rock 

For this model, the two-dimensional sill-shaped magma chamber of the previous animation 

was enclosed in purely conductive country rock, i.e. there was no modelling of groundwater 

flow. The animation of the velocity vector results (anim6.mov) serves to indicate the way in 

which this chamber cools and freezes over long periods of time (thousands of years - see Andre 

Botha's MSc thesis for details). 

The long, thin foot and limbs of this chamber conduct large amounts of heat into the country 

rock because of their high surface area to volume ratios (or the two-dimensional equivalent 

thereof) and are thus the first parts of the chamber to cool, leaving a only a small region of 

convecting material in the centre of the chamber as was seen in the square magma chamber 

model. 

7.4.3 High Aspect Ratio Cylindrical Chamber 

Results of this three-dimensional cylindrical model with a diameter to height ratio of 5 and 

without an adjacent covering of country rock are in files anim 7. mov and anim8.mov. The files 

are animations of the velocity vectors in vertical and horizontal sections through the centre of 

the chamber respectively. The horizontal section animation displays almost perfect four-fold 

symmetry. The axes of symmetry and the centres of the major convection cells coincide with 

features in the finite element mesh used to calculate the results. 

In particular, the centres of the major convection cells coincide with the most distorted 

elements in the mesh. Although these elements are not distorted beyond reasonable limits, they 

could be preferred regions of numerical feeding (S. van Wyk, personal communication, 1998) 

and hence sites for the development of high velocities and later, convection cells. The extent to 

which the mesh geometry influenced the observed symmetry could be made clearer by running 

the model with one or more different meshes. 
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Despite this problem, the results obtained from the model are not without use. They provide 

insight into such quantities as the duration of the cooling process, the magnitude of the velocities 

and the type of flow regime adopted by the magma. 

7.4.4 Visualization Techniques 

The file anim9. mov contains a demonstration of techniques devised by Soteri Panagou, then 

an honours student in the Rhodes University Computer Science Department, that will make 

possible an easier visualization of three-dimensional results of the types described in this thesis. 

The first part of the animation shows a transient "cat -scan" of a the temperature distribution 

in a three-dimensional doughnut-shaped magma chamber. Each scan through the chamber, 

which consists of sectioned views, each section being slightly lower than the last, occurs at the 

next stage of the cooling history of the chamber. In this way the full three-dimensional data set 

at every time step may be viewed. 

The second part of the animation shows a rotational visualisation technique whereby a 

transparent three-dimensional view of a magma chamber may be rotated in any direction in real 

time in order to view it from the desired angle. 

7.5 Predicting the Location of Mineral Deposits 

The first discovery that came out of the attempted modelling of magma chambers and 

surrounding groundwater flow in order to predict the location of mineral deposits was the 

complexity of the system and the extensive demands on computer hardware and time. The 

project as it stands at the time of writing requires further development and the next section 

contains some ideas that may be pursued in this regard. 

The results so far do suggest areas (of the chamber or of the country rock) in which minerals 

are likely to appear. For a particUlar mineral, one could assume a concentration distribution 

throughout the melt or the groundwater at the start of modelling that varies according to known 

data or to some hypothetical scenario. Then throughout the modelling process one can identify 

regions that become hot enough to cause the mineral to dissolve. Consideration of the fluid 

velocity field in these regions indicates the speed with which the dissolved mineral is transported 

and the direction in which it flows. Eventually the mineral can be followed into regions in which 
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the temperature has dropped to a value sufficiently low to cause the precipitation and deposition 

of the mineral. If one of these regions is the common depositional area of a number of sources 

in the magma chamber or country rock (as inferred from the numerical results), it will be likely 

that the mineral will be highly concentrated in that region. Further evolution of the system may 

lead to repeated cycles of mineral transport and deposition. 

Consider the country rock surrounding the square magma chamber. The main feature of the 

flow pattern is strong upwelling against the walls of the magma chamber. The entire sub

chamber region of country rock contributes fluid to this upwelling. Once fluid reaches the upper 

regions of the rock, the flow dissipates into a broad, cooler band that slowly returns to the bottom 

of the model via the outer edges. Such a flow pattern may cause the large scale transfer of 

dissolved minerals from the hot regions on either side of the chamber into the cooler regions 

above it on either side. 

A more accurate method of prediction uses particle traces. These traces provide one with the 

exact destination of a small group of fluid particles after a specified amount of time along with 

information on temperature or any other degree of freedom. In this way they answer questions 

like "which flow channels are faster?", "which have a greater source area?", "which last the 

longest?" and "which are hotter or cooler?". 

7.6 Problems With the Models and Suggestions for Improvement 

The mesh refinement test carried out before the models were run was of great value. 

Unfortunately, limited resources did not always allow as much refinement of the models as the 

test suggested was appropriate. A future improvement of primary importance would be to refine 

meshes in some models, especially at model boundaries. 

The mesh refinement test could also be modified to test the suitability of mesh patterns. 

Some patterns may have regions containing distorted elements that cause instability in the 

solution and therefore artificial results. This problem was not apparent in the results of this 

research but it may nonetheless have affected them. 

The second problem with the model is that the "freezing" imposed by the increase in the 

viscosity at low temperatures is cohesive freezing only. No latent heat is drawn from the melt 

to simulate phase changes. 
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The models used in this thesis ignore the complex chemical changes that occur in the magma 

as it cools and in the groundwater as it is heated. The facility offered by FLOTRAN that allows 

multiple species transport could in future be used to incorporate a more accurate chemical 

behaviour into the model. 

The models used in this thesis have simple geometries. This was in order to minimise the 

complexity of the problem so that the initial results could be interpreted easily and 

unambiguously. Problems with the model could be easily seen and solved. The models are now 

ready to be refined with respect to geometry (i.e. realistic, three-dimensional structure), fluid 

properties and other aspects. Accurate modelling of real physical intrusions should be feasible 

in the near future. 

An improvement to the country rock models that may immediately be made is the 

introduction of heterogeneous permeability. A common, almost ubiquitous, geological feature 

of country rock as modelled in this thesis is horizontal layering. Each layer may have a unique 

permeability. This will affect significantly the flow of groundwater. 

The code I have written to couple thermally the groundwater and the magmatic fluid may be 

improved by discarding the restriction that nodes along the contact surfaces must match. 

Other additions to the code may improve the model in the following ways. Cooling of the 

country rock after heating may cause fracturing. The associated increase in permeability could 

be incorporated into the model at the appropriate time. 

After each time step, the newly frozen regions along the boundary surface of the magma 

chamber may be made permeable, allowing the flow of groundwater. 

Multiple injections of magma may be simulated by periodically increasing the size of the 

chamber (if necessary) and the temperature of the melt. 
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Appendix 1 

Derivation of Equations Governing Fluid Flow 

Three governing equations evolve from the consideration of a fluid's motion subject to the 

conservation of mass, momentum and energy respectively. General derivations of the equations 

follow. Simplifications and adjustments that must be made in order to model magma and 

groundwater are discussed in Chapter 3. 

AI.I The Continuity Equation 

The continuity equation is derived from the principle of the conservation of mass. Consider 

the small, fixed volume of space, cubic in shape, in Figure aI.I. For convenience, the origin of 

the Cartesian coordinate axes used to refer to points on the cube is placed at the centre of the 

cube. 

The entire volume and the region immediately around it are filled with fluid which moves with 

some given but arbitrary velocity field. The velocity of the fluid at the origin is given by the 

vector (u, v, w). Consider the mass transported by the flow through shaded faces X- and X+ in the 

x-direction. The mass flow rate through X- into the cube is [pu - ~(pu) tu ]8.yLlz where p is ax 2 

the fluid density. Similarly, the mass flow rate through X + out of the cube is 

[pu + ~(pu) tu ]8.yLlz. Hence the net mass leaving the cube along the x-direction per unit time 
ax 2 

is ~(pu)8.x8.yLlz. 
ax 
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Figure al.l Flow through a small cubic volume. 

Consideration of the two remaining pairs of opposite sides gives similar expressions for the 

net mass loss per unit time along the y- and z- directions. Hence the contribution to the total 

efflux of mass from the volume per unit time due to the mass flow across all surfaces is 

am = _[ ~(pu) + ~(pv) + ~(pw)]Ax~yLlz 
at ax ay az (al.2) 

Now m = pAx~y&, thus 

ap + ~(pu) + ~(pv) + ~(pw) = o. 
at ax ay az (al.3) 

The continuity equation, (al.3), can be written in index notation as 

p(+(pu.).=O 
I I ,I 

(al.4) 

where i = 1, 2, 3 (corresponding to X-, y- and z-components respectively) and the commas denote 

differentiation. From this point forward if the same index appears more than once in one term 

of an equation (such as i above), the index is summed (Einstein summation convention). 
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Al.2 The Momentum Equation 

To use the conservation of momentum principle a group of fluid particles is chosen and their 

flow through the problem domain is considered. To this body of particles (called a fluid element) 

is applied Newton's Second Law, which states that the total rate of change of momentum of a 

body is the sum of the external forces acting on it. 

The ith component ofthe resultant force per unit volume acting on a small fluid element is 

i = 1, 2, 3. (al.5) 

The acceleration a i is the first temporal derivative of the particle velocity. Since the velocity 

Q. = , 
au; au; au; au; 

= +-u +-u +-u 
at ax I I ax 2 2 ax 3 3 

depends on both time and position, this can be written more simply as 

a. = u,.,t + u .. u .. 
, ',J J 

Note that (a1.6) can also be written 

DU
i a. =-. 

, Dt 

(a1.6) 

(a1.7) 

(a1.8) 

The operator DIDt is called the particle derivative or substantial derivative and is useful when 

an Eulerian reference frame is being used. It is given by 

(a1.9) 

The forces acting on the fluid element can be categorised as either body forces (forces whose 

point of application is distributed throughout the volume of the fluid) or surface forces (applied 

to the bounding surface of the body, e.g. shear stress). It is assumed here that the only body force 

acting on the fluid is gravitational, i.e. 

(a 1. 10) 

and that the surface forces can be expressed in terms of the stress tensor 'tij' White (1991) in fact 
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shows that 

i;8rlrfaCe 

Equation (al.5) can now be re-written as 

= 't .... 
'},} 

PU' t + PU .. u. = pg,. + 't' ... 
4 'J } UJ 

which is the momentum equation. 

(a1.ll) 

i 1, 2, 3 (a1.12) 

The nature of the fluids modelled allows the use of the incompressible form of the Navier

Stokes equations. In fact compressibility is usually only important in the treatment of gases. 

Incompressibility of a fluid implies that a parcel of fluid as it flows with time will not change its 

density. By using the particle derivative, one can express this as follows 

Dp = o. 
Dt 

This simplifies the continuity equation to 

U .. = o. 
',' 

(al.l3) 

(a1.14) 

This incompressibility condition allows the other governing equations to be simplified also (see 

Chapter 3). 

To develop the momentum equation completely, the components of the stress tensor must be 

found. First it is shown that the tensor is symmetric as this reduces the number of unique 

components from 9 to 6. 

Consider torques about the centre of a small, two-dimensional fluid element as shown in 

Figure aI.2. The total torque is the sum of the four torques shown and is 

Ax ~y 
't' = 2('t'21~Y)2 - 2('t12Ax)2· (a1.IS) 

However, the total torque must be equal to p!u~yla where I is the moment of inertia and a is 

the resultant angular acceleration of the element. Thus 

(a 1. 16) 
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Figure a1.2 Torques about the centre of a small fluid element. 

If the area of the element shrinks to zero but a finite angular acceleration is maintained then I 

(which depends on the spatial distribution of mass around the axis of rotation) tends to zero 

giving 

(al.17) 

Similar calculations can be done for a three-dimensional element giving the general symmetry 

relation 

i, j 1, 2, 3. (a 1. I 8) 

An initial guess at the form of the stress tensor arises from the consideration of the viscosity 

of the fluid. For example, an inviscid fluid offers no resistance to shearing thus only normal 

stresses have effect and result in an isotropic pressure in the fluid (Lamb, 1972). Thus the stress 

tensor components should be -poij where p is the hydrostatic pressure. For a viscous fluid, 

something must be added to this expression to account for the fluid's capacity to resist shear 

stresses. Therefore a deviatoric stress term dij is added giving 

(al.19) 

From experimental observations (Ockendon and Ockendon, 1995) it is argued that the 
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deviatoric term usually varies linearly with velocity and inversely with the length scale of the 

apparatus. Therefore dij must be a linear function of the velocity gradients. This defmes a 

Newtonian fluid. A discussion on the suitability of the Newtonian model for magma and 

groundwater can be found in Chapter 3. The most general form of the deviatoric term is a linear 

combination of the velocity gradients, expressed mathematically as 

(al.20) 

where Aijap is a rank-4 tensor and the greek indices are summed. There is no physically preferred 

direction in either dij or ua,p so AijaP must be the same in all sets of rotated Cartesian axes, i.e. 

must be isotropic. This permits the reduction of the 81 independent components of Aijap to only 

3. A further condition, namely 

(al.21) 

which arises from the symmetry of i:ij' reduces the number of independent components to 2. 

Using a Euclidean basis, it is now possible to write 

(al.22) 

where}. and 11 are scalars. Substituting back into (al.20) and then (al.18) gives 

(al.23) 

which is the constitutive equation of a Newtonian fluid. }. is the bulk viscosity and measures the 

response of the fluid to changes in volume (the term containing ). will become zero for 

incompressible flow); 11 is the dynamic viscosity and measures the response of the fluid to 

shearing and extension. 

Al.3 The Energy Equation 

The first law of thermodynamics states that the change in the intrinsic (internal) energy of a 

system as a result of its evolution from one equilibrium state to another is equal to the sum of the 

total work done on the system during the change and any heat which was added. 

A parcel offluid is a well-defined thermodynamic system yet it is seldom in true equilibrium 
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since it is never at rest. Thermodynamically however it can be considered close to equilibrium 

provided that its instantaneous energy in an equilibrium state is regarded as the sum of its 

intrinsic and kinetic energies (per unit mass). In view of this modification, Currie (1993) thus 

rephrases the first law as follows: 

"The rate of change of the total energy (intrinsic and kinetic) of the fluid as it flows is equal 

to the sum of the rate at which work is being done on the fluid by external forces and the rate at 

which heat is being added by conduction." 

External forces can be categorized as before into surface stresses and body forces. The rate 

at which surface stresses do work on a surface S is 

Is u.PdS (a 1.24) 

where P is the force vector whose jth component is given by Pj = t'ijn; where n; is the ith 

component of the normal vector to the surface. By applying Gauss's theorem, (a1.24) can be 

written in index notation in terms of the volume V enclosed by S as 

I (u.t' .. ). dV. 
v I Ij .' 

(a1.2S) 

The rate at which the body forces do work is 

I u·pfdV = I u.pp dV v V I 
(a1.26) 

where/is the force (vector) per unit mass. 

Finally we consider heat added to the system. The expression for the rate at which heat is 

conducted out of the system is 

Is q.n dS = f q.n.dS = I q .. dV s I I V 1.1 
(a1.27) 

using Gauss's theorem in the last step. The above formulations allow the first law of 

thermodynamics to be expressed mathematically as 

D 1 
-(pe + -pu.u.) = (u.t' .. ). + u.PJ; + q .. 
Dt 2 I I I Ij .' I I 1.1 

(a1.28) 

where the operator DIDt is again the particle derivative and e is the intrinsic energy. The particle 

derivative can be written out in terms of the usual (Eulerian) derivatives and the result expanded 

further using the product rule. Some of the terms cancel giving the following 
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expression for the left hand side of (a 1.28): 

pe t + PUk e k + pu. u. t + pu. uk U. k , , J J. J J. 
(al.29) 

and it can be seen that the first term on the right -hand side of (a 1.28) is equivalent to 

(al.30) 

When the above expressions are substituted back into (al.28), some of the terms form the product 

uj multiplied with the momentum equation. These terms must balance independently of the 

others and so drop out of the equation. What remains is a general form of the energy equation 

for a viscous fluid: 

pe t + pUke k = 't' .. U.. - q. .. 
• • IJ J.' J.J 

(al.31) 

The terms on the left-hand side represent the rate of change in internal energy. The first term 

provides for temporal changes and the second term for changes due to local convection of fluid. 

The terms on the right-hand side represent the internal energy change. The first term allows for 

the dissipation of mechanical energy (provided by surface forces) into thermal energy and the 

second term for the heat conducted into the fluid. 
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Appendix 2 

APDL Macros for the Coupled Solution 

of Magma Chamber and Country Rock Models 

Ansys uses a simple programming language called the Ansys Parametric Design Language 

(APDL). It follows a FORTRAN-like style and includes some basic structures such as ifand do 

loops and also a wide range of special commands. Ansys will execute programs that make use 

of APDL constructs and standard Ansys commands (such as those that are executed when using 

the graphical user interface). 

The macros used to aid modelling in the ways described in the body of the thesis contain a 

number of commands whose functions are not immediately obvious. A list of definitions thus 

appears below, followed by the macros themselves. 

*cfclos 

Closes the file opened with the *cfopen command. 

*cfopen,jilename, ext 

Opens a text filejilename.ext. Data may be written to this file with the *vwrite command 

and read with the *vread command. 

d, nodenum, property, num 

Applies a value of num to the property (e.g. temp, vel) of node nodenum. Used to apply 
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boundary conditions as the applied value remains constant during a transient analysis. 

*dim, array-name, array, number-ol-columns, number-ol-rows 

Initialises the array array-name. 

/filname, %filename% 

Changes current database file name to the string of characters that is the value of parameter 

filename. The file name extension is assumed to be "db". 

*get, parameter, entity, entity-number, property, sub-property 

The value of the property (e.g. temp, vel) of the entity (e.g. node, line) of number entity

number is assigned to parameter. Occasionally a sub-property is required (e.g. if property 

= loc, a sub-property of either x, y or z must be given to specify which component of the 

location of entity is required). 

ie, nodenum, property, num 

Similar to the d command except the value assigned serves only as an initial value for the 

node and may change during analysis. 

lsel, type, , min, max 

Selects all lines with numbers between min and max. If type = s, then the selected lines 

replace the previously selected line set (if one exists). If type = a, then the selected lines are 

added to the previously selected set. If only a single line is to be selected, the max argument 

can be omitted and the command takes the following form: 

lsel, type, , line-num 

where line-num is the number of the line to be selected. 

*msg, type, parameter-list 

message 

Writes message in a dialogue box. The parameters in parameter-list are included in the 

message according to format codes in message. 
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nint(real-number) 

Returns the nearest integer to real-number. 

nsel, type, , min, max 

Node selection command. Arguments have similar meanings to those of the Isel command. 

nsll, type, range 

Used to select all nodes associated with the selected lines. type has the same meaning as the 

nsel argument of the same name. If range = 1, nodes at the line's endpoints are included in 

the selection; if range = 0 they are not. 

set, last 

Opens the most recent set of results for processing. 

sf, node-list, property, num 

Applies a value of num to the property (e.g. heat flux) of the surface formed by connecting 

the nodes in node-list. At least two nodes must appear in node-list; however if node-list is 

replaced by the argument "all", then all currently selected nodes are included in the list. 

*use, macro-name, argument1, argument2, ... 

Runs the user-defmed macro macro-name that takes arguments argument1, argument2, ... 

*vread, arg,jilename, ext, ,maximum-dimension 

(format) 

Reads data fromjilename.ext according to theformat specification that follows and assigns 

data to argo If arg is an array, a starting array element index must be given. Reading will 

proceed one line at a time, each line's value being assigned to the next array element until the 

array is full or the end of the file is reached. If the array has a dimension greater than one, 

*vread can be made to fill the array by cycling through one dimension index at a time until 

the specified maximum-dimension is reached. 
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*vwrite, arg 

(format) 

Writes arg to the file opened with the *cfopen command according to the given format 

statement. If arg is an array, a starting array element index must be given. Each array 

element will be written on a new line until the array is exhausted. If the array's dimension 

is greater than one, *vwrite will always cycle through the first dimension index. 
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The macros I wrote for control of magma and country rock models follow. The main code is 
found in master ini.mac and master loop. mac. The subroutines called by the main code follow - -
these master macros. 

master ini. mac 

! Part 1: Executes the coupled solution of a magma chamber and a country rock model. Once 
! this has run successfully, execute the main solution loop (master_Ioop.mac). 
! 
! Requirements and Restrictions: 
! 
! Two arguments must be given: magma chamber database file name then country rock database 
! file name, in single quotes, without extensions. 
! 
! Initial requirements prior to execution are as follows: 
! 1. Magma chamber and country rock database files exist and are meshed. The contact surface 
! nodes for both models must coincide. 
! 
! 2. All model settings must be correctly configured for solution except all thermal boundary and 

initial conditions. Conditions for other degrees of freedom, such as velocity and pressure, 
must be applied prior to execution. The execution controls should be set such that the 
solution to only one time step is calculated during a single run. 

! 
! 4. A component consisting of the outer boundary areas of the country rock model must exist 
! and be named "extareas". 
! 
! 5. The correct value of "elfaces" must appear in the code below. The location of the relevant 

assignment statement is marked clearly with the line: 
"-------------------------! Adjust elfaces ! --------------------------" 

! 
! 6. This macro stores (in a file or as a component) the various initial structures and settings. ! 

Since the magma and country rock database files are saved after creation of these objects, ! 
this macro need not be executed again if another run of the model is required. The last line 
of this code calls the main solution loop macro (master _loop. mac). If you do not wish the 
solution algorithm to run then delete the last line or convert it into a remark. 

*cfopen,fnames,cmd ! Recall the two database file names. 
*vwrite,argl,arg2 ! magma file, country rock file 
(A) 
*cfclos 

! Retrieve magma chamber: 
finish 
*use,getnames.mac 
/filname, %outfile% 
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resume 

! Select exterior elements: 
nsel,s,ext ! First select all exterior nodes. 
esln,s,O ! Select elements with (some) nodes in the selected set. 
cm,elemset,elem ! Store them in a component called 'elemset'. 
save ! Save the file so that 'elemset' can be used later. 

asel,all 
nsel,all ! Select everything. 
esel,all 

! -----------------------------------------------! Adjust elf aces ! -----------------------------------------------
elf aces = 2296 

!-----------------------------------------------------------------------------------------------------------------

elnodes = 4*elfaces ! "elnodes" must be the number of external element faces mUltiplied by 
! four, thus representing groups of four nodes per face. 

elfaces= ! Delete "elf aces". 

! Write the value of "elnodes" to file. 
*cfopen,geometry,cmd 
*vwrite,elnodes 
(FS.O) 
*cfc1os 
save 

! Initialise "nodeinfo": Node numbers on the contact surface are stored in groups of four values 
! which are the nodes belonging to a particular element face. (This makes flux application 
! easier.) There are 2 rows: 1 for the magma contact nodes and another for the country rock 
! contact nodes. 

nodeinfo= 
* dim,nodeinfo,array ,elnodes,2 

! Initialize three 2-D arrays which will store coordinates of each magma nodeinfo node so that 
! the corresponding country rock nodeinfo nodes can be found easily. 
xinfo= 
yinfo= 
zinfo= 
* dim,xinfo,array ,elnodes 
*dim,yinfo,array,elnodes 
* dim,zinfo,array ,elnodes 

! Construct and store magma node information. 
*msg,ui ! Display a message. 

101 



Filling magma node array ... 

! Record a list of the external area numbers. 
asel,s,ext ! Select exterior areas. 
* get,numareas,area,O,count 
exareas= 
*dim,exareas,array,numareas ! Construct an array to store the area numbers. 

*do,k, 1 ,numareas 
*get,areanum,area,O,num,max ! Select the area with maximum area number. 
exareas(k) = areanum ! Store in "exareas" array. 
asel,u",areanum ! Discard used area from the current set. 

*enddo 

esel,all 
index = 0 
nodes= 
* dim,nodes,array,4 
*do,k,l,numareas ! Loop through the external areas. 

*msg,ui,exareas(k),k,numareas ! Display a progress report. 
Area number %0 (%0 out of %0 ). 
asel,s",exareas(k) ! Select an exterior area. 
cmsel,s,elemset ! Select all exterior elements. 
nsla,s,l ! Select nodes attached to the currently selected area. 
* get,numelems,elem,O,count 
*do,i,l,numelems ! Cycle through the exterior elements. 

*get,elemnum,elem,O,num,max 
count = 0 
*do,m,1,8 ! Loop through "elemnum's" eight nodes: 

nodenum = nelem(elemnum,m) ! Select node at positionj of'elemnum'. 
*if,nsel(nodenum),eq,l,then 

! Is it one of the selected (exterior) nodes? If so, it belongs to the exterior 
! face of the element and it must be stored in the temporary array "nodes". 

count = count + 1 
nodes( count) = nodenum 

*endif! nsel... 
*enddo! m 
*if,count,eq,4,then ! The element is part of the current area. 

*do,m,1,4 
index = index + 1 
nodeinfo(index, 1) = nodes(m) 
xinfo(index) = nx(nodes(m)) ! Store its coordinates. 
yinfo(index) = ny(nodes(m)) 
zinfo(index) = nz(nodes(m)) 

*enddo ! m 
*endif ! count... 
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esel,u",elemnum ! Discard used element. 
*enddo ! i 
save 

*enddo ! k 

nsel,all 
esel,all 
asel,all 
lsel,all 

! Write accumulated information to file. 
* cfopen,nodestore,cmd 
*do,i,1,2 

*vwrite,nodeinfo(1,i) 
(F7.0) 

*enddo 
*cfclos 

* cfopen,coordstor ,cmd 
*vwrite,xinfo(l) 
(FIO.5) 
*vwrite,yinfo(l) 
(FIO.5) 
*vwrite,zinfo(1 ) 
(FlO.5) 
*cfclos 
!xinfo= 
!yinfo= 
!zinfo= 
save 

! Create initial temperature boundary conditions for magma chamber and initial flux boundary 
! conditions for country rock. 
*msg,ui ! Display a message. 
Setting up boundary condition arrays ... 
fluxes= ! Delete if already defined. 
temps= 
* dim,fluxes,array ,elnodes 
* dim, temps, array ,elnodes 
! Assign initial values: 
* do,i, 1 ,elnodes 

temps(i) = 293 + (1000 - ny(nodeinfo(i,1)))*0.025 
! To = Ts + (Ys - ny)L\T 
! where T s = temperature of top country rock surface 

103 



y s = depth of top country rock surface 
ny = node's y-coordinate 

LlT = geothermal gradient in °C.km-1 

fluxes(i) = ° 
*enddo ! i 

! Write these to file. 
*use,savebcs.mac 
save 

! Set initial temperature of interior of magma chamber. 
*msg,ui 
Applying magma's initial conditions ... 
Isolu 
nsel,all 
* get,totnum,node,O,count 
*do,i,l,totnum,1 

ic,i,TEMP, 1273 ! Apply initial temperature of 1273 K. 
*enddo 
save 
finish 

! Finished with magma. Now open country rock database file. 
*use,getnames.mac 
lfilname, %infile% 
resume 

! Restore all the required information. 
* dim,a,array, 1 ! Temporary array for reading in "elnodes". 
*vread,a( 1 ),geometry ,cmd 
(F5.0) 
elnodes = a(l) 
a= 

*msg,ui 
Initializing country rock node array ... 
nodeinfo= 
* dim,nodeinfo,array ,elnodes,2 
*vread,nodeinfo(1, 1 ),nodestore,cmd,,2 
(F7.0) 
xinfo= 
yinfo= 
zinfo= 
* dim,xinfo,array ,elnodes 
*dim,yinfo,array,elnodes 
* dim,zinfo,array ,elnodes 
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* dim,coords,array,elnodes,3 
*vread,coords(1,1),coordstor,cmd,,3 ! Recall node coordinate information into temporary array 

! "coords". 
(FIO.S) 
*do,i,l,elnodes 

xinfo(i) = coords(i, 1) ! Copy into permanent arrays. 
yinfo(i) = coords(i,2) 
zinfo(i) = coords(i,3) 

*enddo 
coords= 
save 
nsel,all 

! Set up "nodeinfo" entries for country rock. 
*do,i,l,elnodes 

nodenum = node(xinfo(i),yinfo(i),zinfo(i» ! Find the node with matching coordinates. 
nodeinfo(i,2) = nodenum 

*enddo 
!xinfo= 
!yinfo= 
!zinfo= 
save 

! Set the country rock temperature initial conditions according to the geothermal gradient. 
*msg,ui 
Applying country rock temperature initial conditions (with geothermal grad.) ... 
Isolu 
nsel,all 
*get,totnum,NODE,O,count 
*do,i,l,totnum 

ic,i,TEMP,293 + (1000 - ny(i»*0.02S, ! Apply temperature initial conditions. 
ic,i,PRES,(l000-ny(i»*3040S, ! Apply pressure initial conditions according to a gradient 

! of 0.3 atm.m-I = 3040S N.m-3• 

*enddo 

! Set outer surface boundary conditions for country rock. 
*msg,ui 
Applying country rock outer temperature boundary conditions (with geothermal grad.) ... 

cmsel,s,extareas ! Select the component that contains the external areas. This component must 
! created in FLOTRAN before execution of this macro. 

nsla,s,l ! Select nodes attached to those areas. 
* get,totnum,node,O,count 
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*do,i,l,totnum 
*get,maxnode,NODE,O,NUM,MAX ! Select maximum node number in currently selected 

! set. 
d,maxnode,TEMP,293+(1000-NY(maxnode))*O.025, ! Apply appropriate boundary 

! condition. 
nsel,u",maxnode ! Remove node from currently selected set. 

*enddo 
lsel,all 
nsel,all 
save 
finish 

!--------------------------- Following line optional: calls main solution loop. --------------------------
* use, master _loop.mac 
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master loop. mac 

! Part 2: main control program for general 3-D magma chamber and country rock coupled 
! model. 
! 
! This macro takes no arguments. 
! 
! The section of code below that appears before the main solution loop must be executed if the 
! solution is being started from time = o. Ifresults already exist and the solution is to be 
! continued from the last of these, the section of code before the main solution loop must be 
! converted to remarks. 

! Create initial temp. boundary conditions for magma chamber and initial flux boundary 
! conditions for country rock. 
finish 
*use,getnames.mac 
/filname, %outfile% ! Open magma chamber database in order to retrieve the value of "elnodes". 
resume 
*msg,ui 
Setting up boundary condition arrays ... 
fluxes= ! Delete if already defined. 
temps= 
*dim,fluxes,array,elnodes 
* dim, temps,array ,elnodes 
! Assign initial values. 
*do,i,l,elnodes 

temps(i) = 293 + (1000 - ny(nodeinfo(i,1)))*0.025 
fluxes(i) = 0 

*enddo ! i 
! Write these to file. 
*use,savebcs.mac 
save 

============= Main Solution Loop ============= 

*msg,ui 
Starting main solution loop ... 
finish 
* do,i, 1,10000 

*use,getnames.mac 
/filname, %outfile% ! Open magma chamber database. 
resume 
*use,getbcs.mac ! Retrieve the saved parameters "temps" and "fluxes". 
*use,newtemp.mac ! Do a magma run with "temps" boundary conditions. 
/postl 
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set, last ! Select the last set of results. 

*doj,l,elnodes ! Record from these results the external fluxes. 
*get,fluxesG),NODE,nodeinfoG,l),HFLU ! Store the values in "fluxes". 

*enddo 
*use,savebcs.mac ! Save for later use. 

fInish 
save 
*use,getnames.mac 
IfIlname, %infIle% ! Open country rock database. 
resume 
*use,getbcs.mac 
*use,newfiux.mac ! Do a country rock run with "fluxes" boundary conditions. 

! Termination test... 
*get,testtemp,node,node(0,5l0,0),temp ! Test the temperature of a node just above the 

! chamber. 
*if,testtemp,LE,330,then ! If the country rock has cooled sufficiently, stop. 

fInish 
* exit 

*endif 
testtemp= 

oldtemps= 
* dim,oldtemps,array,elnodes 
/postl 
set, last 
! First plot the velocity vectors so that you can assess the progress of the run. Manual 
! termination, if required, can be done through the "stop.cmd" fIle as described below. 
plvect,v""vect,node,off ! Velocity vector plot. 
*doj,l,elnodes 

oldtempsG) = tempsG) ! Remember old temperature boundary conditions for future 
! comparison. 

*get,tempsG),NODE,nodeinfoG,2),TEMP ! Store latest results in "temps". 
*enddo 
*use,savebcs.mac ! Save the new boundary conditions. 
save 

!--------------------- Time Step Checking Routine. ------------------------

! Find the contact node with the biggest temperature change. 
maxdT=O 

*doj, I ,elnodes 
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---» Program abandoned manually. «--
* exit 

*endif 
a= 

*enddo 
finish 

newtemp. mac 

! Executes a single magma chamber solution time step with updated temperature boundary 
! conditions. 

Isolu 
nplot,O 
*msg,ui 
Applying new temperatures to magma ... 
* do,m, 1 ,elnodes 

d,nodeinfo(m,l),temp,temps(m), ! Apply new boundary condition. 
*enddo 
m= 
nsel,all 
save 
*msg,ui 
Solving magma ... 
solve ! Run the FLOTRAN solution procedure. 

newflux. mac 

! Executes a single country rock solution time step with updated heat flux boundary conditions. 

Isolu 
esel,all 
nsel,all 
nplot,O 
*msg,ui 
Applying new fluxes to country rock. .. 
*do,m,1,elnodes,4 ! Loop through the external nodes in groups offour. Each group was 

! initially !arranged in "master-ini.mac" to contain the nodes attached to a 
! single element face. 

value = -(fluxes(m)+fluxes(m+ 1 )+fluxes(m+ 2)+fluxes(m+ 3))/4 
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! Find the arithmetic mean of the four comer fluxes. 
nsel,s",nodeinfo(m,2) ! Select the four nodes. 
nsel,a",nodeinfo(m+ 1 ,2) 
nsel,a,,,nodeinfo( m+ 2,2) 
nsel,a,,,nodeinfo( m+ 3,2) 
sf,all,hflux,value ! Apply the new flux to all of them. 

*enddo 
nsel,all 
save 
*msg,ui 
Solving country rock ... 
solve ! Run the FLOTRAN solution procedure. 

newstep. mac 

! Changes the duration of a single time step for both models. 
! 
! Takes as an argument the factor with which the old time step must be multiplied in order to get 
! the new time step. 

*cfopen,step,cmd ! Write the macro's argument to a file else it will be lost when the database 
! files change. 

*vwrite,arg 1 
(F4.2) 
*cfclos 

finish 
*use,getnames.mac 
lfilname, %outfile% ! Open the magma database file. 
resume 

*dim,b,array,1 ! retrieve the macro's argument. 
*vread,b(1 ),step,cmd 
(F4.2) 
factor=b(1 ) 
b= 

Isolu 
Icom"Transient Analysis, 1 
*get,oldstep,fldata,time,step ! Get the old time step. 
stepnew=factor*oldstep ! Update it. 
fldata,time,step,stepnew ! Install it. 
save 
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fInish 
*use,getnames.mac 
IfIlname, %infIle% ! Open the country rock database fIle. 
resume 

* dim ,b ,array , I ! retrieve the macro's argument. 
*vread,b(l ),step,cmd 
(F4.2) 
factor=b(l) 
b= 

Isolu 
Icom" Transient Analysis, I 
*get,oldstep,fldata,time,step ! Get the old time step. 
stepnew=factor*oldstep ! Update it. 
fldata,time,step,stepnew ! Install it. 
save 

savebcs. mac 

! Writes the current contact surface temperature and heat flux boundary conditions to fIle 
! "bcstore.cmd". 

* cfopen, bcstore,cmd 
*vwrite,temps(1 ) 
(FIO.5) 
*vwrite,fluxes( I) 
(FlO.5) 
*cfclos 

getbcs.mac 

! Retrieves boundary condition lists "fluxes" and "temps" from fIle "bcstore.cmd". 

temps= 
fluxes= 
* dirn,temps,array ,elnodes 
* dim,fluxes,array ,elnodes 

*dim,a,array,2*elnodes ! Temporary array for reading in fluxes and temperatures. 

112 



*msg,ui 
Retrieving flux and temperature arrays ... 
*vread,a(1), bcstore,cmd 
(FIO.5) 
* do,m, I ,elnodes 

temps(m) = a(m) 
fluxes(m) = a(elnodes+m) 

*enddo 
a= 
m= 

getnames. mac 

! Retrieves the names of the magma chamber and country rock database files (in that order) from 
! the file "fnames.cmd". It is assUJIled that the file names have the extension" db" hence only the 
! first parts of the names are used. 

outfile= 
infile= 

* dim,a,char,2 
*vread,a( I ),fnames,cmd 
(A) 

outfile=a(I) 
infile=a(2) 
a= 
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