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 Stainless Steel in Nuclear Power Plant 
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The level of residual stresses in welded components is known to have a significant 

influence on their failure behaviour. It is, therefore, necessary to understand the 

combined effect of mechanical loading and residual stresses on the ductile fracture 

behaviour of these structures in order to provide the accurate structural safety 

assessment. Recently, STYLE (Structural integrity for lifetime management-non-

RPV component) performed a large scale bending test on a welded steel pipe 

containing a circumferential through-thickness crack (the MU2 test). The purpose of 

this test is to study the impact of high magnitude weld residual stresses on the 

initiation and growth of cracks in austenitic stainless steels. 

This research presents the simulation part of the STYLE project which aims to 

develop the finite element model of MU2 test in ABAQUS to enhance the 

understanding and ability to predict the combined influence of mechanical loading 

and residual stresses on the ductile fracture behaviour of nuclear pressure vessel 

steels. This research employs both fracture mechanics principles (global approach) 

and Rousselier damage model (local approach) to study this behaviour including 

crack initiation and growth.  

In this research, the Rousselier model was implemented into ABAQUS via the user 

defined subroutines for ABAQUS/Standard and ABAQUS/Explicit modules, i.e. 

UMAT and VUMAT. The subroutines were developed based on the integration 

algorithm proposed by Aravas and Zhang. The validation of these subroutines was 

checked by comparing the FE results obtained from the implementation of these 

subroutines with the analytical and other benchmark solutions. This process showed 

that UMAT and VUMAT provide accurate results. However, the UMAT developed 

in this work shows convergence problems when the elements start to fail. Hence, 

only VUMAT was used in the construction of the finite element model of the MU2 

test.  

As mentioned above, the results obtained from both fracture mechanics approach and 

Rousselier model are compared with the experimental data to validate the accuracy 

of the model. The results shows that both fracture mechanics approach and the 

Rousselier model predict similar final crack shapes which correspond closely to the 

test results in south direction. The other conclusions about the influence of residual 

stress on ductile fracture obtained from this work are also summarized in this thesis. 



14 

 

DECLARATION 

I hereby declare that no portion of the work referred to in the thesis has been 

submitted in support of an application for another degree or qualification of this or 

any other university or other institute of learning. 

Sutham Arun 

 June 2015 



15 

 

COPYRIGHT STATEMENT 

(i) The author of this thesis (including any appendices and/or schedules to this 

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he 

has given The University of Manchester certain rights to use such Copyright, 

including for administrative purposes. 

(ii) Copies of this thesis, either in full or in extracts and whether in hard or 

electronic copy, may be made only in accordance with the Copyright, Designs 

and Patents Act 1988 (as amended) and regulations issued under it or, where 

appropriate, in accordance with licensing agreements which the University has 

from time to time. This page must form part of any such copies made. 

(iii) The ownership of certain Copyright, patents, designs, trade marks and other 

intellectual property (the “Intellectual Property”) and any reproductions of 

copyright works in the thesis, for example graphs and tables 

(“Reproductions”), which may be described in this thesis, may not be owned 

by the author and may be owned by third parties. Such Intellectual Property 

and Reproductions cannot and must not be made available for use without the 

prior written permission of the owner(s) of the relevant Intellectual Property 

and/or Reproductions. 

(iv) Further information on the conditions under which disclosure, publication and 

commercialisation of this thesis, the Copyright and any Intellectual Property 

and/or Reproductions described in it may take place is available in the 

University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx? 

DocID=487), in any relevant Thesis restriction declarations deposited in the 

University Library, The University Library’s regulations (see 

http://www.manchester.ac.uk/library/aboutus/regulations) and in The 

University’s policy on Presentation of Theses. 



16 

 

Acknowledgements 

First and foremost, I would like to express my sincerest gratitude to my supervisors, 

Dr.Mohammad Sheikh and Professor Andrew Sherry, who have supported me 

throughout my PhD programme with their patience and knowledge whilst allowing 

me the room to work in my own way. Without their kind supervision and 

encouragement, the completion of this thesis would not have been possible. 

Additionally, I would also like to thank Professor Mike C. Smith who has devoted 

his time in reviewing my modelling and sharing his knowledge on fracture that has 

formed much of the basis of the work conducted here. Besides, I would also like to 

thank Dr.Michael Keavey for his invaluable technical discussion on finite element 

analysis and the numerical integration algorithm used in this thesis. Moreover, I am 

also thankful to Dr.Graham Wardle for giving me the technical knowledge of 

fracture toughness test and also devoting his time to review some part of my thesis. 

My special thanks also go to Dr.Peter James and Mike Ford from AMEC for their 

assistance in the finite element modelling and fracture tests respectively. 

I would also give very special gratitude to my parents who have worked very hard 

through their life to bring me the aspiration to this level. I wish to thank my aunt for 

her love and support to both myself and my sister. I am also thankful to my sister 

who has taken good care of my parents on my behalf while I am studying here. I 

would like to give very special thanks to Miss.Tanyathip Jaimulwong for her 

unconditional love and support. I couldn’t have done this work without her. 

I would like to thank the EU-STYLE project (Structural integrity for lifetime 

management – non-RPV component) for supporting all data used in the thesis and 

the Royal Thai Government for giving me an opportunity to study at The University 

of Manchester. 

 



17 

 

NOMENCLATURES 

�    crack length 

�����     the forth order elastic tensor 

�    Rousselier model’s parameter 

���, ���  intermediate variables corresponding to volumetric and 

deviatoric strain increment. 

�    Young’s moduli 

�    void volume fraction, the volume fraction of cavities 

��    initial void volume fraction 

�    shear modulus. 

��    internal variable vector. 

J   J-integral 

�    bulk modulus. 

KI   mode I stress intensity factor 

Lc   The characteristic length or the mesh size 

���    unit vector in the deviatoric space normal to the yield surface. 

�    pressure. 

�, ���    von Mises equivalent stress. 

���    deviatoric stress tensor 

     damage parameter  

!��    Kronecker delta 



18 

 

"��    equivalent plastic strain 

���, ���� , ����    total, elastic and plastic strain tensor. 

#    positive scalar factor. 

$  Poisson’s ratio 

%  mass density, relative density 

���    Cauchy stress tensor. 

���&'    trial stress tensor, elastic predictor 

�(    mean Stress 

��    Rousselier model’s parameter 

), F    yield function or plastic potential 



19 

 

CHAPTER 1  

INTRODUCTION 

1.1 INTRODUCTION 

The level of residual stresses in welded components is known to have a significant 

influence on their failure behaviour. Over the last decade, there has been an 

increased interest in understanding the effect of residual stresses on fracture 

behaviour. For example, Anisworth et al. [1] has shown that residual stress can 

reduce the load carrying capacity of a defective structure under elastic conditions. 

However, this effect decreases when the material becomes plastic. Liu et al.[2] have 

studied the combined effect of the applied load and residual stresses on crack-tip 

constraint. Their results show that the residual stress can induce an additional crack-

tip constraint which is defined by a parameter R. The study carried out by Ren et al. 

[3] confirms that the residual stress can significantly elevate the crack-tip constraint 

which results in an increase of the probability of cleavage fracture. The residual 

stress also plays an important role on ductile crack growth resistance. The tensile 

residual stress can significantly reduce the ductile crack growth resistance when the 

crack growth is small, but this effect decreased with the increase of crack growth [4]. 

It is, therefore, necessary to study the effect of residual stress on various aspects of 

failure, and these effects need to be included in the practical assessment of defect 

behaviour in engineering components.  

The assessment of defect behaviour in engineering components can be performed by 

two main approaches. The first approach is referred to as the global approach, based 

on the continuum fracture mechanics theory. In this approach the behaviour of 

defects in components is assessed by comparing the driving force for crack 

propagation with the resistance to fracture of the material defined in terms of fracture 

mechanics parameters. The global approach is appropriate for failure analysis of 

bodies with pre-existing cracks. It cannot be used for crack initiation and 

propagation.  
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The second approach is called the local approach, which attempts to incorporate 

microstructure information and physical mechanisms of damage and failure. In this 

approach, the damage can be represented in the bulk using the continuum damage 

mechanics (CDM) models or on the surface using cohesive zone models. The effect 

of displacement discontinuities (microvoids or microcracks) is modelled within the 

framework of continuum mechanics.     

In practical, both global and local approaches are usually employed to assess the 

behaviour of defects in mechanical components via finite element analysis. The 

residual stress can be introduced into the analysis via two main methods. The first 

method is to introduce the residual stress via plastic deformation which requires the 

knowledge of the history of prior deformation in the structure. Another method is to 

specify the residual stress directly at the integration points in the model as initial 

stress. This method only requires the formation of stress fields in the current 

condition of the structure.   

The main aim of this research is to develop a new understanding of the combined 

influence of mechanical loading and residual stresses on the ductile fracture 

behaviour of a repair welded pipe containing a circumferential through-thickness 

crack. To achieve this, an ABAQUS user defined subroutine for micro-mechanical 

model of failure was developed and employed to predict the fracture behaviour, 

crack initiation and growth, of a pipe specimen under combined loading using a three 

dimensional finite element model. The material and the model parameters were 

derived from standard fracture mechanics tests performed within EU STYLE project. 

The predictions from the developed model were compared with the experimental 

data of a large-scale four point bending test performed by CAE as part of STYLE 

project [5].  

1.2 BACKGROUND AND MOTIVATION 

STYLE, or “Structural integrity for lifetime management-non-RPV component” is a 

EURATOM Framework 7 project which aims to improve and unify methods of 

structural integrity assessment in the aging and lifetime management of reactor 

coolant pressure boundary (RCPB) components [6]. This project ran from January 
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2010 to December 2013, and was undertaken by 20 organisations from 11 EU 

member states including universities, research and engineering institutes, 

manufacturers, plant operators and industrial companies. STYLE was built around a 

series of large-scale tests on mock-ups of RCPB components.    

One of the focus areas of STYLE project is to study the impact of high magnitude 

weld residual stresses on the initiation and growth of cracks in austenitic stainless 

steels. This is because the welds made from austenitic stainless steels are not 

normally post-weld heat treated before entering service. Therefore, they contain weld 

residual stresses of yield magnitude which lead to a number of ageing-related 

instances of in-service cracking in operating nuclear plants. In addition, the presence 

of weld repairs worsen these problems because the residual stresses in a weld repair 

are higher than in plain girth weld in both longitudinal and transverse directions. 

Hence, the studying of effects of the weld residual stresses on the fracture behaviour 

in STYLE project is focused on repair-welded area.  

The STYLE project can be divided into two main parts, i.e. the experimental part 

and the simulation part. The experimental part involves a series of the tests which 

comprise of large-scale bending test, standard tensile tests and fracture mechanics 

tests. The large-scale bending test was performed on a welded steel pipe containing a 

circumferential through-thickness crack. The test specimen is referred to as Mock-up 

2 (MU2) and was manufactured from two Esshete 1250 stainless steel pipes joined 

by a girth weld containing a deep repair. A through-thickness circumferential pre-

crack was introduced in the centre of the repair prior to testing in four-point bend. 

This large scale test was supported by a set of standard tensile and ductile fracture 

tests performed in order to provide the material data necessary to undertake a full 

structural integrity assessment. The simulation part involves finite element analysis 

of MU2 test. In this part, the fracture mechanics principles and micro-mechanical 

models were employed to study the defect behaviour, i.e. crack initiation and growth, 

of MU-2 test piece via the commercial finite element code, ABAQUS.  

This thesis presents in the simulation part of STYLE project which aims to analyse 

the fracture behaviour of MU2 test under combined loading. The thesis presents 

details of all the FE models employed in this study. The Rousselier damage model 
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was chosen as the micro-mechanical model to describe the ductile fracture of MU2 

test. The numerical algorithm of ABAQUS user defined subroutine for the this 

model are also given in the thesis. 

1.3 SPECIFIC OBJECTIVES 

The main aim of this research is to enhance the understanding and ability to predict 

the combined influence of mechanical loading and residual stresses on the ductile 

fracture behaviour of engineering components. The particular focus is on a large 

scale bending test undertaken as part of STYLE EU Framework 7 project. The 

specifics objective of this work can be summarised as follows : 

1. To develop and validate a modelling approach to simulate the combined influence 

of primary and residual stresses on ductile crack initiation and growth. 

2. To use the modelling approach to simulate and predict the ductile fracture 

behaviour of a structural components using fracture mechanics and damage 

mechanics approaches. 

3. To compare the results of the two approaches with experimental data to provide 

new insight into the influence of residual stresses on ductile fracture. 

4. To establish new guidance on the prediction of ductile fracture under combined 

loading. 

1.4 THESIS STRUCTURE  

CHAPTER 2 LITERATURE REVIEW 

Chapter 2 gives a brief review of knowledge base employed in the STYLE project. It 

starts with the principles of fracture mechanics and micro-mechanical models of 

failure and their implementation in structural integrity assessment procedures. This is 

followed by the material properties used in reactor systems, focussing in detail on 

austenitic stainless steels. The origin of residual stress in the welding process and 

residual stress measurement technique used in STYLE project are also described in 

this chapter. 
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CHAPTER 3 NUMERICAL INTEGRATION FOR PRESSURE DEPENDENT 

MODEL 

Chapter 3 reviews the basic concepts of elastoplastic constitutive relations. The 

mathematical formulation and the integration method for pressure dependent 

elastoplasticity model are discussed. This chapter also presents the formulation of 

consistent tangent moduli which is required to determine the solutions in standard 

displacement finite element analysis.    

CHAPTER 4 AN IMPLEMENTATION OF THE ROUSSELIER DAMAGE 

MODEL IN ABAQUS 

Chapter 4 presents the background of Rousselier damage model and the 

implementation of this model via ABAQUS user defined subroutines, such as 

UMAT and VUMAT. Finally, the validation of these subroutines is illustrated by 

comparing FE results with the analytical solutions and the solutions available in the 

literature.  

CHAPTER 5 GLOBAL APPROACH FOR LARGE SCALE BENDING TEST 

Chapter 5 presents the results of a structural integrity assessment of MU2 test.  The 

method used in the assessment is based on fracture mechanics approaches. The 

details of FE models, with and without the weld residual stresses, are given and the 

results from FE model and experiments are discussed. 

CHAPTER 6 DETERMINATION OF ROUSSELIER MODEL 

PARAMETERS FOR ESSHETE WELD MATERIAL 

Chapter 6 focuses on the numerical calibration of Rousselier model parameters for 

Esshete weld material. This calibration was performed via the FE models of standard 

tensile and fracture mechanics tests. Details of the FE models which include the 

implementation of the ABAQUS user defined subroutine for Rousselier damage 

model are presented. The main conclusions from this work are drawn in this chapter. 

CHAPTER 7 LOCAL APPROACH FOR LARGE SCALE BENDING TEST 

Chapter 7 focuses on the prediction of the fracture behaviour of MU2 test using 

Rousselier model. The analysis was performed by employing the Rousselier model 

parameters for Esshete weld material calibrated in chapter 6. The results obtained 
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from this analysis were compared with the results obtained by following fracture 

mechanics approach presented in chapter 5 in order to confirm the validation of the 

analysis. Details of finite element analysis and the conclusions from this work are 

described in this chapter. 

CHAPTER 8 CONCLUSIONS AND RECOMMENDATION FOR FUTURE 

WORK 

Chapter 8 draws the conclusions from the results obtained from this research. The 

contributions of the structural integrity assessment on MU2 test are summarised. 

Recommendations for possible future work to improve the accuracy of the 

subroutines and the finite element models employed in this research are also 

addressed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter first gives a brief review of the principles of fracture mechanics and 

micro-mechanical models employed in structural integrity assessment procedures. 

The latter part of this chapter is concerned with the STYLE project. It starts with the 

material properties used in the reactor systems, focussing in detail on austenitic 

stainless steels. The origin of residual stress in the welding process and the residual 

stress measurement techniques used in this project are then described.   

2.2 THE GLOBAL APPROACH TO FRACTURE 

The behaviour of defects in engineering component is conventionally assessed using 

the principles of fracture mechanics that can be classified into three types depending 

on the material behaviour near the crack tip. The first type is Linear Elastic Fracture 

Mechanics (LEFM). It is based on the theory of elasticity and is used as long as 

nonlinear deformation is limited to a small region surrounding the crack tip. LEFM 

is suitable for brittle materials, such as glass, ceramics and high strength steels. The 

second approach is Elastic-plastic Fracture Mechanics (EPFM) which can be applied 

to materials exhibiting non-linear behaviour, e.g. medium strength steels. EPFM is 

based on concepts which assume that the stress-strain curve of the material is non-

linear. One other fracture mechanics type is Time-Dependent Fracture Mechanics 

(TDFM). It is applied when the deformation behaviour is time dependent such as in 

creep.  

Each type of fracture mechanics provides certain parameters, e.g. K and J, which 

represent the driving force for crack propagation and the crack initiation is predicted 

to occur when the value of these parameters exceeds the resistance of the material to 

fracture. This section introduces the principles of LEFM and EPFM, focusing on 

these two parameters K and J, and shows how to employ these parameters for 

predicting failure in engineering structures and components.  
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2.2.1 Linear Elastic Fracture Mechanics (LEFM) 

Based on isotropic linear elasticity theories, when an elastic cracked body is 

subjected to external forces, the stress field in the vicinity of a crack tip can be 

expressed as an infinite power series [7-9]: 

���+,, -. = �√' ���+-. + 2�3��� +-. + ∑ 2(,( 5⁄ 3��(+-.6(7�  (2.1) 

where ��� is the stress tensor, , is the distance from the crack tip, 8 and 2 are 

constants which are proportional to the remotely applied load, and the functions ��� 
and 3�� are dimensionless functions of - at a point defined with respect to a polar 

axes set located at crack tip, as shown in Figure 2.1. 

The second term on the right hand side of Eq.(2.1) is known as T-stress. It is the 

constant tensile or compressive stress acting parallel to the crack plane. The T-stress 

value depends on the geometry, crack size and the traction parallel to crack plane 

and has an effect on plastic zone size and crack tip opening displacement [10]. The 

negative (compressive) T-stress causes a reduction in crack-tip constraint and 

increases the apparent fracture toughness [11-13]. 

However, as , → 0, the first term on the right hand side of Eq.(2.1) exhibits a 1 √,⁄  

singularity and approaches infinity. Hence, the rest of the terms of Eq.(2.1) can be 

neglected. Consequently, Eq.(2.1) can be reduced to 

���+,, -. = <√5=' ���+-. (2.2) 

The regions surrounding the crack tip where the difference of results in stress 

between Eqs.(2.1) and (2.2) is less than 10%, is called the singularity–dominated 

zone [14]. 

Parameter K in Eq.(2.2) is known as the stress intensity factor. It defines the 

amplitude of crack tip singularity and provides fundamental information on how the 

crack is going to propagate. Generally, there are three basic types (modes) of loading 

that a crack can experience (Figure 2.2). Any component can be subjected to any one 

of these modes or a combination of two or even three modes. However, for many 

practical cases, cracks generally grow in accordance with the largest opening loads, 
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so that mode I is usually considered as the predominant mode. The solution of mode 

I stress intensity factor, KI for a crack in a finite body is often written in the 

following form. 

�> = ?�√@� (2.3) 

where Y is a dimensionless parameter depending on the geometry of the specimen 

and the crack, � is the (remotely) applied stress, and � is the crack length. The values 

of KI for common cracks and specimen geometries are widely available in 

handbooks [15-17]. 

In an elastic cracked body, the stress intensity factor K is used to describe the 

fracture behaviour. Crack extension occurs when the value of stress intensity factor 

exceeds a critical value, K ≥ Kc, defined as fracture toughness. Kc can be determined 

experimentally for any material by inserting a crack of known length into a piece of 

the same material and loading it until fast fracture occurs [18]. For mode I loading, at 

a particular temperature, the value of Kc decreases with increasing specimen 

thickness but remains stable beyond a certain thickness when the specimen is 

predominantly in plane strain, as shown in the experimentally derived data of Figure 

2.3 [19]. The stable (lowest) value of Kc is called the plane strain fracture toughness, 

defined by KIc, and is considered as a material property. 

 

 

Figure 2.1 Stress distribution at the tip of crack in an elastic material. 
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Figure 2.2 The three modes of loading that can be applied to crack :                                            

(a) Mode I (opening mode), (b) Mode II (sliding mode) and                                     

(c) Mode III (tearing mode). 

 

 

Figure 2.3 Variation of critical stress intensity factor versus specimen thickness [19]. 

 

2.2.2 Elastic –Plastic Fracture Mechanics (EPFM) 

There are many cases where the crack tip plastic zone is too large to permit the 

description of failure behaviour by LEFM. For these cases, another method, namely 

Elastic–Plastic Fracture Mechanics (EPFM), is required. This topic focuses on one of 

the most important elastic–plastic parameters, called J-integral. This parameter can 

be considered as both an energy and stress intensity factor. It is employed to describe 

crack–tip conditions and can be used as fracture criterion for both elastic and elastic–

plastic materials.  
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• The J-integral (J) 

The J-contour integral is used as a fracture characterizing parameter for nonlinear 

materials. The concept of this parameter was first introduced by Rice [20]. He 

defined J as a path-independent line integral with a value equal to the energy release 

rate in non-linear elastic body that contains the crack. Consider an arbitrary counter 

clockwise path +Γ. around the tip, as in Figure 2.4, the J-integral is given by : 

J = F GH�B − J� KLMKE �NOP  (2.4) 

where H is strain energy density which is defined as H =	F ������RMS�  

 J� = �����  are components of the traction vector  

 T� = displacement vector components 

 �Γ = length increment along the contour Γ 

For linear elastic case, J is related to K by 

J = 
<UVW  (2.5) 

where �X = � for plane stress and �X = � +1 − $5.⁄  for plane strain. E and $ are 

Young’s modulus and Poisson’s ratio respectively.  

Hutchinson, Rice and Rosengren have examined Eq.(2.4) and shown that for 

materials which deform according to the Ramberg-Osgood equation [21], the 

magnitude of crack tip stresses and strains can expressed in term of J as [22, 23] :  

��� = �� G V	YZ[\U>]'O^ +�
^.⁄ �_��+�, -. (2.6a) 

"�� = Z[\V G VYZ[\U>]'O^ +�
^.⁄ "�̃�+�, -. (2.6b) 

where a is a dimensionless constant, �� is a reference stress value that is usually 

equal to yield stress and � is the strain hardening exponent. b̂  is an integration 

constant which depends on � and �_�� and "�̃� are dimensionless functions of � and -.     

Eq.(2.6) is known as the HRR singularity. It illustrates that the stress/strain field in 

the direct vicinity of a crack tip is completely characterized by J. The specimens 

with different geometry can be expected to have the same stress and strain fields near 
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the crack tip, if the values of J are identical. This confirms that J can be considered 

as a fracture mechanics parameter. For linear elastic materials (n = 1), Eq.(2.6) 

shows a 1 √,⁄  singularity which is consistent with LEFM. On the other hand, for 

ideal plasticity behaviour (n = ∞), the solution of Eq.(2.6) is equal to the so-called 

Prandtl slip-line field solution [24].  

In fracture assessment using J, crack extension is postulated to take place when J 

reaches a critical value. In mode I loading, the critical value of J for plane strain 

conditions denoted by JIc, is also considered as the material property, since it is 

independent of the size of plastic zone [25]. Under elastic condition, JIc may be 

related to the fracture toughness KIc by Eq.(2.5). 

Normally, JIc is often evaluated from testing specimens exhibiting significant 

plasticity. The tests include the multiple specimen method in which a number of 

specimen are loaded to give small but different amounts of crack extension, and the 

single specimen method which uses a technique for measuring the current crack 

extension during a test. The details of these two methods are explained in ASTM 

standard for fracture toughness measurement [26].  

 

 

Figure 2.4 An arbitrary J-integral contour around a crack. 
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• The material J-R curves 

When a structural component containing a crack is loaded, it is represented by a 

certain value of J-integral which can be considered as ‘crack resistance’. This idea 

leads to the assessment of crack extension in the component by using crack-growth 

resistance curve (R-curve). Figure 2.5 is an example of a ductile material R-curve 

that represents the relation between the crack resistance in terms of J-integral and 

crack extension, the so called J-R curve. In small-scale yielding condition, the J-R 

curve is a material property, since the value of J depends of crack extension only 

[27].  

The methodologies to establish material J-R curves are given in standard handbooks, 

such as ESIS P2-92 and ASTM E1820 [28, 29]. One of the frequently used 

techniques is the elastic unloading compliance method which provides the procedure 

to obtain a J-R curve with a single specimen. This technique starts by loading the 

specimen until a small amount of crack extension occurs. After that, the load is 

partially removed and subsequently reapplied, resulting in the load-displacement 

diagram shown in Figure 2.6. From this diagram, the instantaneous crack length 

which leads to the values of crack extension (∆�), and the J-values at each unloading 

point are calculated from the resulting elastic compliance and the area under the 

curve by using formulae given in the standards. A J-R curve is then obtained as J-

integral plotted against crack extension, which exhibits an increasing fracture 

toughness as the crack grows. 

The test specimens recommended to establish J-R curve are fracture mechanics 

specimens with high geometry constraint, i.e. single edge-notched bend (SENB), 

compact tension (CT), and disk-shaped compact tension (DCT) specimens. 

However, some experimental data shows that J-R curves vary with the level of 

constraint [30, 31]. Figure 2.7 shows that the values of J-integral on J-R curve for a 

high constraint specimen are lower than those for a low constraint specimen. In other 

words, the slope of J-R curves after crack initiation steadily decreases with 

increasing crack-tip constraint [32]. Therefore, the constraint effect due to geometry 

must be corrected so that the J-R curves determined in laboratory test can be applied 

to real cracked structures. From this, three methods have been developed in order to 
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quantify crack-tip constraint. These methods are the J-T approach [33], J-Q theory 

[34, 35] and J-A2 method [36]. The J-Q theory and J-A2 method are quite popular 

approaches for characterizing the constraint effects under large scale yielding [37], 

whereas the J-T approach has limited use in elastic-plastic fracture because it is 

based on the theory of elasticity.  

 

 

Figure 2.5 Schematic J resistance curve for a ductile material [27]. 

 

 

Figure 2.6 The unloading compliance method for monitoring crack growth [27].  
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Figure 2.7 Variation of J-R curves with the level of crack-tip constraint [32]. 

 

2.2.3 Failure Assessment Diagram (FAD) approach 

The failure assessment of cracked structural components cannot only use fracture 

mechanics concepts, but should also consider the effects of plastic deformation. In 

1975, Dowling and Townley [38] proposed the two-criteria approach to study defects 

in structures. This approach assumes that failure occurs when the applied load 

reaches the lower of either a load to cause brittle failure or a load to cause ultimate 

plastic collapse of the structure. The concept of this approach has led to the 

introduction of failure assessment diagram (FAD) to describe the mechanical 

integrity of flawed components.   

• Brief introduction of FAD [17, 39, 40] 

In FAD methodology, the safety of a cracked component is assessed via the failure 

assessment curve (FAC) which is established from the relationship between crack-tip 

loading describing the fracture conditions and a limit-load solution describing plastic 

collapse of the remaining crack ligament. The FAC is defined by the following 

function: 

Kr = ��(Lr) (2.7) 
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The subscript i = 1, 2, 3 is used to demonstrate different levels of failure assessment. 

Kr and Lr are the fracture and load ratios respectively that are calculated using the 

applied loads, material properties, and specimen geometry including defect size and 

shape. 

Kr = 
<f+g,h.<ijk  (2.8a) 

Lr = 
hhlmg,[n	o (2.8b) 

Here, KI is the mode I stress intensity factor at load P, PL is the value of P 

corresponding to plastic collapse of the cracked component. a is the crack size, Kmat 

is material’s fracture toughness and �D is the yield strength of material. The 

parameter Lr can be defined in terms of a reference stress (�'�p) defining the plastic 

collapse load solution of the remaining crack ligament as [41] : 

Lr = 
[qrs[n  (2.9) 

When FAD is used to assess the safety of a structure containing defects, the integrity 

of structures are judged through the relative position of the assessment point (Lr, Kr) 

on FAD. The structure is simply considered to be safe if the assessment point lies 

within the safe area bounded by the failure line and the (Lr, Kr) axes (Figure 2.8).  

 

 

Figure 2.8 Schematic illustration of the FAD methodology [41]. 
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• Failure assessment curve [17, 39, 40] 

In R6 procedure, three options are given to evaluate the FAC’s functions given by 

Eq.(2.7). The choice of option depends on the material involved, the available input 

data, and the level of conservatism required. Higher options are expected to lead to 

reduce conservatism or increase accuracy in an assessment, but they require more 

data and analysis.   

The simplest choice is option 1. It can be employed for general applications when 

information on material properties is limited. The FAC function for option 1 is : 

��+t'. = +1 − 0.14t'5.w0.3 + 0.7	zC�+−0.65	t'}.~ (2.10) 

The above function needs no material data apart from �D and the ultimate stress, �L, 

which are used to define the plastic collapse cut-off :  

Lr = t'(gE = [n
[�5[n  (2.11) 

For materials which exhibit a discontinuous yield point in the stress-strain curve, 

either a cut-off value for Lr ≤ 1 or option 2 FAC should be used.  

Option 2 is a more sophisticated approach. It requires more information in the form 

of stress-strain data for material assessment. The FAC for this option is described by 

the following equation : 

�5+t'. = �V	�qrs[qrs + �q�	[n5	V	�qrs	��� 5⁄
 (2.12) 

where �'�p is the reference stress defined in Eq.(2.9), "'�p is the true strain obtained 

from the uniaxial tensile stress-strain curve at a true stress level �'�p. Option 2 is 

suitable for all types of materials regardless of their geometry and generally gives 

more accurate results than option 1.  

Option 3 is an advanced procedure which is appropriate for ductile materials that 

exhibit stable tearing, e.g. austenitic steels and ferritic steels. In this option, a FAC 

specific to a material and geometry is obtained by determining the J-integral using 

elastic and elastic-plastic analysis of the flawed structure with the loads of interest. 

The FAC for this option is : 
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��+t'. = �YrY  (2.13) 

where Je and J are J-integral values obtained from elastic and elastic-plastic analyses 

with the same load respectively. The fracture ratio for this option is defined by : 

Kr = � YrYijk (2.14) 

where Jmat is the material toughness measured by J-methods.  

By combining Eqs.(2.13) and (2.14), it can be seen that the assessment is based on 

criterion J ≤ Jmat [24]. The advantage for using option 3’s FAC lies in the fact that 

once this curve is established for the geometry and material under consideration, the 

actual assessment is based on Je, for which only an elastic calculation needs to be 

performed. Although option 3 FAC requires a J analysis of the cracked structure, it 

has the potential for greater accuracy than FAC from options 1 and 2.  

• Treatment of combined primary and secondary stresses 

The stresses acting on structures are classified into primary stresses and secondary 

stresses. Primary stresses arise from loads which actually contribute to plastic 

collapse, such as pressure, while secondary stresses are self-equilibrating stresses 

originated from a range of sources, such as thermal and residual stress due to 

welding.  

In FAD methodology, Lr and FAC depend only on primary stresses, but Kr must 

include both primary and secondary stress contributions. In the elastic range, the 

stress intensity caused by secondary stress, �>�, can be simply added to the stress 

intensity factor caused by primary stresses, �>�. However, due to crack tip plasticity, 

this superposition will be an underestimate when stress levels become higher. In 

order to account for this interaction of primary and secondary stresses, an additive 

interaction parameter, % is applied to the definition of Kr :  

Kr  = 
<�
<�<ijk + % (2.15) 
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The value of % depends on the magnitude of both primary and secondary stresses. 

Different routes for evaluating % based on elastic or inelastic analysis have been 

provided in Appendix 4 of R6.  

2.3 THE LOCAL APPROACH TO FRACTURE  

The local approach is an alternative method which can be used to simulate the failure 

behaviour of steel structures without the use of fracture mechanics parameters. This 

approach has been developed in recent years and used to predict the fracture 

behaviour of both ferritic and austenitic steel structures for a range of geometries 

under combinations of primary and secondary loads [42-47].  

“The local approach is based on the application of micro-mechanical models of 

failure in which the stress, strain and ‘damage’ local to a crack tip or stress 

concentrator are related to the critical conditions required for fracture. Normally, 

these models involve parameters which need to be calibrated using a combination of 

reference test data, quantitative metallography and finite element (FE) analysis. Once 

these parameters have been derived for a particular material, they can be assumed to 

be independent of geometry and loading mode, and are transferred to the assessment 

of any structure fabricated from the same material [40]”. The local approach has 

been developed for both ductile and brittle (cleavage) fracture processes. Since the 

failure type occurred in the experimental part of STYLE project is the ductile 

fracture, only on the local approach for ductile fracture is discussed in this section.  

The micromechanical models of local approach for ductile fracture are usually based 

on the common process of ductile fracture which can be divided into the following 3 

stages.    

(i) Microscopic void nucleation  

(ii) The growth of void  

(iii) Coalescence of the growing void with adjacent voids.  

There are a number of mathematical models which try to explain the ductile fracture 

process. The three widely referenced models are presented as follows : 
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2.3.1 Rice and Tracy model (RT model) 

Rice and Tracy [48] studied the growth of a spherical cavity in an infinite solid under 

a remote normal stress. They found that the void growth in all cases could be 

approximated by the following expression : 

��+� ��⁄ . = 0.283 F zC�m1.5 	�( ���⁄ o	�"�� (2.16) 

where �� is the radius of the initial spherical void, � is the average radial 

displacement of ellipsoidal void, �"�� is the increment of equivalent plastic strain 

and 	�( ���⁄  is the stress triaxiality. This integration is taken over the history of 

plastic strain and the crack initiation is predicted when the parameter ��+� ��⁄ . 
reaches a critical value. Hence, this model is characterized by a unique parameter : 

critical void growth ratio +� ��⁄ .�. 
The determination of +� ��⁄ .�, corresponding to crack initiation requires both 

experimental measurements from tensile tests on notched or cracked specimen and 

FE analysis of the same specimen [49, 50]. In FE analysis, the values of � ��⁄  in the 

element in front of the crack tip are calculated at each load increment by Eq.(2.18) 

which is rewritten in numerical form as follows [51, 52] : 

+� ��⁄ .^
� = +� ��⁄ .^�1 + 0.283	∆"��	zC�m1.5 	�( ���⁄ o� (2.17) 

where +� ��⁄ .^ and +� ��⁄ .^
� are the cavity growth rates at steps � and � + 1 

respectively. These calculations provide the relationship between the evolution of 

void growth ratio and the values of J-integral. The value of +� ��⁄ . which 

corresponds to JIc is defined as +� ��⁄ .�, as shown in Figure 2.9. Once the value of +� ��⁄ .� is defined, it can be used to predict the initiation of ductile tearing in 

cracked structure by FE analysis. 
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Figure 2.9 The relationship between � ��⁄  and J-Integral [50]. 

 

2.3.2 Damage models  

2.3.2.1 Gurson model 

Based on the work by the Rice and Tracy, Gurson further studied the plastic flow of 

a void containing material. He provided a yield function that includes the softening 

effect due to the initial void [53]: 

) = G[r�[� O5 + 2���	���ℎ G�	�U[i5[�	 O − 1 − +���.5 = 0 (2.18) 

where  ��� is the macroscopic von Mises stress, �( is the macroscopic mean stress, �� is the flow stress for the matrix material of the cell and � is the current void 

volume fraction. Parameters �� and �5 are constants which were later introduced by 

Tvergaard [54, 55]. During progressive straining, the void growth rate has the 

following form [56] :  

�� = +1 − �.����� + ������  (2.19) 

The first term in Eq.(2.19) defines the growth rate of the pre-existing voids and the 

second term quantifies the contribution of the new voids that are nucleated with 

plastic strain. The scaling coefficient Λ is given by: 
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� = p���√5= zC� �− �5 �Rr�� �R��� �5� (2.20) 

The above expression indicates that the plastic strain range at nucleation of a new 

void follows a normal distribution with a mean value ��, a standard deviation ��, 

and a volume fraction of void nucleating particle ��.  

However, Eq.(2.18) alone cannot predict the necking instability between voids, since 

this equation does not consider discrete voids. To overcome this problem, Tvergaard 

and Needleman [57] modelled the void coalescence by replacing � with an effective 

void volume fraction �∗ 

�∗ =   � ��, �	 ≤ 	��				�� − �+� − ��. ��, �	 > 	�� 		 (2.21) 

where 

� =	 p�∗�p¢p£�p¢ (2.22) 

where �� is the critical void volume fraction at which voids coalesce. �¤ is the final 

void volume fraction where the material fails and �L∗ =	1 ��⁄  . This equation simply 

implies that before void coalescence, the relationship between void volume fraction 

and the decrease of load will follow the Gurson model. After the void coalescence 

has started, the void volume fraction will be amplified to present the sudden loss of 

load carrying capacity.  

As mentioned above, the Gurson model requires a number of parameters that need to 

be determined for the material under investigation, i.e. ��, �5, ��, �� , �p , �̂ , �� and "^. 

Zhang [58, 59] improved this model by using the plastic limit load criterion 

proposed by Thomason to determine the critical state when voids coalesce [60-62]. 

From this modification, void coalescence can be automatically determined and 

material failure is directly linked to the void nucleation parameters (i.e. no need to 

determine ��). In addition, Zhang also suggested that the value of the final void 

volume fraction can be estimated by the following relation. 

�p = 0.15 + 2	�� (2.23) 
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Since there is no need to determine �� and the value of �p can be estimated by 

Eq.(2.23), only 4 parameters (��, �̂ , �� and "�) need to be determined.  

2.3.2.2 The Rousselier continuum damage model  

Rousslier model [63, 64] is based on the thermodynamical concept of generalized 

standard media. The yield function of this model is close to Gurson model and has 

the form : 

) = [r�¥ − �+�. + ¦+ .�zC� G[i[§O (2.24) 

where   � and �� are constants, % is relative density and   is the damage variable. 

The second term �+�. is the material hardening parameter which is determined from 

the stress-strain hardening curve in a standard tensile test. ¦+ . is a function that 

present the softening of the material due to damage. This function is calculated from 

the knowledge of initial void volume fraction and   by : 

¦+ . = [§	p\	�E�+¨.��p\
p\�E�+¨. =	��	� (2.25) 

where �� is a constant representing the initial volume fraction of cavities, and � is the 

actual volume fraction of cavities. 

According to Eq.(2.24), the Rousselier damage model defines the softening of the 

material by a damage parameter + . and fracture proceeds from the competition 

between hardening and damage. Therefore, it is not necessary to introduce a critical 

value of the damage variable. In addition, the number of parameters in the model 

which need to be defined is less than the Gurson model.  

2.3.2.3 Application of Gurson and Rousselier models to cracked structures 

The applications of Gurson and Rousselier models to predict structural behaviour are 

described in literature [42, 65, 66]. The process starts by determining the model 

parameters of the material of interest by calibrating FE calculation with experimental 

data. This step requires both experimental testing and FE analysis. After all the 

parameters are obtained, they are used to model the large scale structure. The steps in 

using Gurson and Rousselier models are summarized in Figure 2.10 [40]. 
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Figure 2.10 Schematic illustrating the steps involved in using                                         

Gurson and Rousselier damage models [50]. 
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2.4 FINITE ELEMENT APPROACH FOR FRACTURE ANALYSIS 

The finite element method (FEM) has become an indispensable tool to undertake 

fracture analysis. It is employed to evaluate fracture mechanics parameters, i.e. J-

integral, in cracked structures having complicated geometries or subjected to 

complex loads or boundary conditions. Nowadays, additional numerical techniques, 

such as the extended finite element method (XFEM) or cohesive zone model (CZM), 

were added into the conventional FEM. These techniques have the ability to analyse 

the moving discontinuous problems, such as crack propagation, without remeshing 

or the rearranging of nodal points. A description regarding the method commonly 

used for the determination of J-integral using finite element analysis is provided in 

the first part of this section. Background and theory of the XFEM and CZM are also 

given afterwards.  

2.4.1 Evaluation of J-integral by finite element approach 

Shih et al. [67] provided a convenient method for evaluating J within a finite element 

framework. From this, the domain integral expression of Eq.(2.4) is obtained by 

introducing a smooth function, �, which take the value of unity at the crack tip nodes 

and zero on the contour Γ and then applying the divergence theorem to give 

J= F ©G��� KLSKE§ − H!��O K�KEMª �2«∗  (2.26) 

where 2∗ is the area that is enclosed by Γ∗ = Γ� + Γ
 + Γ� − Γ� as illustrated in 

Figure 2.11.  

In finite element analysis, the � function must be specified at all nodes within the 

area of integration. The variation of q within an element can be written as follows  

� = ∑ ¬>>>̂7�   (2.27) 

where � is the number of node per element, ¬> is the element shape function and >  

are the nodal values for the b&® node. The special derivative of � is given by 

K�KEM = ∑ ∑ K�fK¯°5	±'	��7�>̂7� 	K¯°KES >    (2.28) 
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where ²�  represents the local coordinates (²�, ²5) and 
K¯°KES is the inverse Jacobian 

matrix of the transformation. With 2 × 2 Gaussian integration, the domain integral 

expression of J-integral in Eq.(2.26) for the plane problem is then 

J = ∑ ∑ ©´G��� KLSKE§ − H!��O K�KEMµ �z¶ GKESK¯°Oªh Hh(h7�g��	���(�^&��^	«∗   (2.29) 

where · is the number of gauss points per element, and Hh is weighting factors. The 

quantities within w ~h are evaluated at all gauss points in an element. Note that the 

integration over the crack faces is necessary only when there are non–zero tractions. 

 

 

Figure 2.11 Inner and outer contours, which form a closed contour around the crack 

tip when connected by Γ
 and Γ�. 
 

 

2.4.2 Extended Finite Element Method (XFEM) 

The method of XFEM was originally proposed by Belytschko and Black [68]. They 

introduced a method to develop the finite element approximation by adding 

discontinuous enrichment functions into the displacement fields near the crack tip. 

This method allowed the crack to be arbitrarily aligned within the mesh and the 

crack growth problems could be solved with minimal re-meshing. Based on this 

concept, Dolbow et al. [69] provided a more sophisticated technique by adapting an 

enrichment that included the asymptotic near-tip field and a Heaviside function H(x). 

This technique was successfully applied to fracture mechanics problems, in which 
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crack discontinuities were represented using both a jump function and the asymptotic 

near-tip fields. Therefore, the modelling of crack or crack growth problem could be 

performed without remeshing. The concept of this technique is summarized as 

follows : 

Considering the domain Ω bounded by Γ with an internal boundary Γ� as shown in 

Figure 2.12a. Without the model of the discontinuity, the general discrete 

approximation T® to the function T> for the uniform mesh of ¬ nodes (Figure 2.12b) 

takes the form 

T®+C. = ∑ ¬>+C.T>>  (2.30) 

where ¬> is the standard finite element shape function for node b and T> is the vector 

of nodal degree of freedom. In order to incorporate the discontinuity in the field 

along Γ� without a change of mesh such that it conforms to the line of discontinuity 

(Figure 2.12c), the standard approximation in Eq.(2.30) is modified using the 

partition of unity concept as [70]   

T®+C. = ∑ ¬>+C.©T> + ∑ �>���+C.^�+>.�7� ª>̂7�   (2.31) 

where ��+C. are the enrichment functions, and �>� are additional nodal degree of 

freedom for node b. In the above, �z+b. is the total number of enriched degrees of 

freedom for a node. If the enrichment functions �� are discontinuous along the 

boundary Γ�, then the finite element mesh does not need to model the discontinuity. 

For example, the uniform mesh in Figure 2.12d is capable of modelling a jump in T 

when the circled nodes are enriched with the function which are discontinuous across Γ�. The change in form of the approximation from Eq.(2.30) to Eq.(2.31) is only 

made locally in the vicinity of a feature of interest, such as a discontinuity.  

The precise form of the enrichment functions used to model discontinuous fields in 

crack or crack growth problems can be determined by dividing the crack geometry to 

be three distinct regions [69]. These are the crack interior and the two near-tip 

regions as shown in Figure 2.13. From this, three different nodal sets which 

correspond to each of these regions are distinguished. The set J is taken to be the set 

of nodes enriched for the crack interior, and the set �� and �5 are those nodes 
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enriched for the first and second crack tips, respectively. From this the enriched 

approximation takes the form  

T®+C. = ∑ ¬>T>> +∑ ¬Y¹Y�+C.Y   

−∑ ¬<w∑ �<�� º��+C.»�7� ~<	R	<� + ∑ ¬<w∑ �<�5 º�5+C.»�7� ~<	R	<5     (2.32) 

where ¹Y and �<�� , �<�5  are nodal degree of freedom corresponding to the enrichment 

functions �+C., º��+C. and º�5+C. respectively.  

The function �+C. is a discontinuous function across the crack line and is constant 

on each side of crack : +1 on one side and -1 on the other. The set º��+C. and º�5+C. 
consist of those functions which span the near-tip asymptotic fields. For two-

dimensional elasticity, these are given by 

wº�+,, -.~�7�»   

= ©√,	�¼� G½5O , √,	��� G½5O , √,	�¼� G½5O �¼�+-., √,	��� G½5O �¼�+-.	ª (2.33) 

where +,, -. are the local polar coordinate for the crack tip. 

 

 

             (a)                              (b)                              (c)                               (d)        

Figure 2.12 Various discretizations for (a) a domain with an internal boundary Γ�.  

(b) A mesh which does not model the internal boundary. (c) A mesh which conforms 

to the geometry of Γ�. (d) A uniform mesh in which the circled nodes have additional 

degrees of freedom and enrichment functions [69]. 
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Figure 2.13 Regions of a crack for enrichment. The circled nodes are enriched with a 

discontinuous function, while the squared nodes are enriched with near-tip functions 

[69]. 

 

2.4.3 Cohesive zone model (CZM) 

The cohesive zone model (CZM) is an alternative approach to model crack 

propagation problems. This model considers fracture as “ a gradual phenomenon in 

which separation takes place across an extended crack ‘tip’, or cohesive zone, and is 

resisted by cohesive tractions [71]”. With this concept, the CZM is able to predict the 

behaviour of uncrack structures, including those with blunt notches, not only the 

responds the bodies with cracks which is the usual drawback of most fracture models 

[72].  

The application of CZM to FEM can be shown schematically by Figure 2.14. From 

this Figure, the fracture process zone (FPZ) is represented by the cohesive zone 

elements. These elements are inserted between continuum (bulk) elements either by 

sharing common nodes or through a tie constraint. As the cohesive surfaces separate, 

the traction across the cohesive zone elements first increases until a maximum is 

reached, and subsequently decreases to zero, which results in complete (local) 

separation. Therefore, the limitation of this approach is that the FPZ must be known 

in advance, either from experimental evidence or from the structure of the material 
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(such as in laminated composites). The crack cannot develop in any location, but 

only along the pre-established lines where the cohesive elements have been inserted. 

The cohesive zone elements do not represent any physical properties of material, but 

describe the cohesive forces occurring when material elements are being pulled 

apart. This traction-separation relation is used to define the constitutive behaviour of 

CZMs. Various CZMs have been proposed in literature [73], but all models exhibit 

the similar global behaviour which starts by increasing traction across cohesive zone 

elements as the crack surfaces increase up to the maximum value, J� and then 

reducing the traction to zero at critical separation !� (Figure 2.15).  

Although all CZMs have the same global behaviour, but they have a number of 

different factors which play an important role in the resulting failure behaviour. For 

example, the area under the traction separation curve corresponds to the energy 

needed for separation. The initial stiffness of the cohesive zone model has a large 

influence on the overall elastic deformation and should be very high in order to 

obtain realistic results. It has been shown by Chandra et al. [73] that the form of the 

traction-separation relations plays an important role in the macroscopic mechanical 

response of the system.  

 

Figure 2.14 Application of cohesive zone element along the bulk element boundaries 

[74]. 
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     (a)                           (b)                             (c)                          (d) 

Figure 2.15 Traction-separation relations used in cohesive zone modelling : (a) 

bilinear, (b) trapezoidal, (c) polynomial and (d) exponential. 

 

2.5 STYLE PROJECT 

STYLE, or “Structural integrity for lifetime management-non-RPV component” is a 

EURATOM Framework 7 project which aimed to improve and unify methods of 

structural integrity assessment in the aging and lifetime management of reactor 

coolant pressure boundary (RCPB) components. One of the focus areas of STYLE 

project is to study the impact of high magnitude weld residual stresses on the 

initiation and growth of cracks in austenitic stainless steel. This is because the welds 

made from austenitic stainless steels are not normally post-weld heat treated before 

entering service, so they will contain weld residual stresses of yield magnitude. The 

presence of high residual stresses lead to a number of ageing-related instances of in-

service cracking in operating nuclear plants. In addition, the presence of weld repairs 

worsen these problems, because the residual stresses in a weld repair are higher than 

in plain girth weld in both longitudinal and transverse directions.  

The following sections review the details about the material and the residual stress 

measurement technique employed in the STYLE project.  

 

 

    

 separation separation separation separation !� !� !� !� 

J� J� J� J� 
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2.6 AUSTENITIC STAINLESS STEELS 

AGR reactors are the main nuclear plants currently operated in UK. At full power 

the reactor coolant gas temperature is higher than 500
o
C as it enters the boilers. 

Consequently, the service life times of boiler components are affected by creep 

deformation [75]. Therefore, the materials used for the boiler components must have 

alloying elements, such as Niobium, Titanium and Vanadium [76], to provide high 

creep resistance at high temperature. Apart from high-temperature creep resistance, 

the boiler materials used in reactor systems must meet the requirements below [77]:  

• Dimensional stability under irradiation. 

• An acceptable level of mechanical properties with aging.  

• Good performance and integrity withstanding neutron irradiation and 

corrosion. 

• Acceptable cost to construction and fabrication.   

• Good weldability. 

These requirements have to be met under normal operating conditions, and in 

incidental or accidental conditions. One of candidate boiler materials recommended 

to use in reactor environment is austenitic stainless steel. 

2.6.1 General properties [78-81] 

Austenitic stainless steels are used in a large number of plants in the UK, USA and 

France. In addition to excellent formability and good corrosion resistance in most 

environments, these steels also have very good ductility and remain ductile within a 

large range of temperature, because they have no transition temperature. Austenitic 

stainless steels have strength equivalent to that of mild steels with minimum yield 

strength of approximately 210 MPa at room temperature and are not transformation 

hardenable. They cannot harden by heat treatment but can be strengthened and 

hardened significantly by cold working. In addition, these steels are non-magnetic 

and are considered to be weldable. Austenitic steels are often used in applications 

requiring good atmospheric or elevated temperature corrosion resistance.  
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2.6.2 The chemical composition  

Austenitic steels have Chromium and Nickel as their major alloying elements. 

Additional elements are added to these steels to improve their properties and make 

them suitable for many critical applications involving high temperature as well as 

corrosion resistance. Table 2.1 gives the composition range of standard austenitic 

stainless steels.  

The roles of the alloying elements given in Table 2.1 are listed below [78, 79]:  

• Chromium (Cr) is a ferrite stabilising element added primarily to improve the 

resistance to corrosion and typical rusting (oxidation) which occurs with 

unprotected carbon steel. 

• Nickel (Ni) is an alternative austenite stabilising element added also to 

improve the hardenability. It also makes the material non-magnetic. 

• Manganese (Mn) is introduced to replace Ni to reduce cost. The solubility of 

nitrogen in austenite is also increased with manganese. 

• Molybdenum (Mo), a ferrite stabiliser, plays a role in the solid solution 

hardening to improve creep resistance. It also helps to resist the detrimental 

effects of chlorides. 

• Niobium (Nb) and Titanium (Ti) act as stabilising elements to improve creep 

strength with fine transgranular precipitated carbides. Precipitate 

strengthening is maximised by the optimal ratio of the elements to carbon. 

• Carbon (C) works together with Nb, Ti and V in precipitate strengthening. 

• Nitrogen (N) is added to enhance strength, mainly at room and cryogenic 

temperatures. It is also added to promote chromium diffusion and reduce the 

rate of chromium carbides precipitation (M23C6).   

• Silicon (Si) is usually added to austenitic stainless steels containing Mo to 

improve corrosion resistance due to sulphuric acid. Silicon also improves 

oxidation resistance and is a ferrite stabilizer. 
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Table 2.1 The composition range of standard austenitic stainless steel in wt% [79]. 

 C Si Mn Cr Mo Ni N Ti&Nb 

Max. 0.08 3 2 25 2 20 0.15 0.2 

Min. 0.02 0.5 1 16 - 8 - - 

 

2.6.3 Applications 

Although, austenitic stainless steels are expensive due to high alloy content, they 

offer distinct engineering advantages, especially good formability and weldability 

that can reduce the overall cost compared to other groups of stainless steels. Among 

a wide variety of austenitic steels, the 300 series alloys are most commonly used 

[82]. Most of these alloys are based on 18Cr-8Ni system, with additional alloying 

elements or modification to provide unique or enhanced properties.  

For nuclear applications, Types 316 and 304 are very important [80]. They are used 

for the manufacturing of piping systems and boilers. Type 304 is the most common 

of austenitic grades, containing approximately 18% chromium and 8% nickel, 

whereas type 316 contains 16-18% chromium and 11% to 14% nickel. Type 316 also 

has molybdenum which is used to improve pitting corrosion resistance.  

2.6.4 Esshete 1250 

Another advanced austenitic stainless steel used in nuclear section is Esshete 1250. It 

was first developed by the former United Steel Company Ltd in 1960s [83]. Esshete 

1250 contains Vanadium and Niobium to provide additional creep resistance and are 

typically used for applications in temperature range between 550
o
C and 675

o
C, for 

example as high-temperature superheater materials [84]. Figure 2.16 shows that the 

proof strength of this steel at 600
o
C is 40% higher than Type 316. This enables the 

use of thinner tubing in Esshete 1250 compared to other austenitic steels which 

results in a considerable cost saving. Esshete 1250 also has good weldability and can 

be readily welded with either inert gas or metal arc welding, as it incorporates 

approximately 6% manganese in alloy composition [82]. This material is used as a 

superheater boiler tube material in UK power stations, especially in plants operated 

by EDF Energy [6]. The specification for Esshete 1250 is summarized in Table 2.2.  
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Figure 2.16 Design stress values for austenitic stainless steels according to             

BS 113:1992 (Design and manufacture of water tube steam generating plant) [83]. 

 

Table 2.2 The composition of Esshete 1250 in wt% [85]. 

 C Si Mn P S Cr Mo Ni B N V 

Max. 0.06 0.2 5.5 - - 14 0.8 9 0.003 0.75 0.15 

Min. 0.15 1 7 0.035 0.015 16 1.2 11 0.009 1.25 0.4 

 

2.7 WELD RESIDUAL STRESS 

Welds made from austenitic stainless steel are not normally post-weld heat treated 

before engineering service, as this leads to unnecessary material degradation, such as 

low fracture toughness [6, 86]. This leads to the presence of high tensile residual 

stress in the structure which has an undesirable effect on life, because the residual 

stress alone can initiate cracking even before a component is subjected to service 

loads [87, 88]. In addition, tensile residual stresses can combine with  stresses due to 

service loads to increases the potential for crack initiation and the higher rate of 

growth of defects [89]. Therefore, the characterisation of the magnitude and profile 

of residual stress and understanding its effects on the fracture behaviour is necessary 

in order to perform accurate and reliable structural integrity assessments. 
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2.7.1 Causes of residual stresses in weldments 

“Welding residual stresses are a consequence of the fluctuating inhomogeneous 

temperature distribution arising in the course of different welding processes in and 

around the weld seam. Heating and the cooling periods are of the importance [90]”. 

Some aspects that contribute to the amount and distribution of welding residual 

stresses are as follows: 

• Residual stresses due to shrinking processes [90, 91]  

A major cause of welding residual stress comes from the impeded shrinkage process, 

which occurs when heated and cooled regions are in the neighbourhood. In the 

beginning of welding process, the stress in the region below the arc and the weld 

pool is almost zero, as the molten metal cannot support any load. During the cooling 

process, molten metal is cooled down and becomes solid. In this state, the weld 

metal tries to shrink but it is restrained by the cold metal surrounding it. This results 

in the development of tensile residual stress in the weld seam at the end of the 

cooling process. If the amount of shrinkage is high enough, the tensile residual stress 

in this zone may reach the yield strength of weld seam material.   

• Residual stresses due to quenching process [90] 

The residual stresses from quenching process occur particularly in case of thick 

plates. The considerable temperature difference between the outer surface and the 

core layer of the plate during the cooling process generates these thermal residual 

stresses. If the residual stresses exceed the yield strength of the material, it results in 

plastic deformations which leads to residual stress after cooling.   

• Residual stresses due to phase transformations 

In the case of steels, transformation from austenite to martensite or ferrite during 

cooling has a significant influence on the residual stress and distortion. Martensite is 

formed by inheriting carbon atom from parent austenite which increase material 

volume [92]. This results in the development of compressive residual stresses in 

transformed volumes and balance tensile residual stress in adjacent volumes [93]. 
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2.7.2 Measurement of residual stresses in weldments 

Measuring residual stress is very important not only for performing an accurate 

safety assessment but also for validating the analytical and numerical models. In fact, 

there are many techniques available for measuring residual stress in metals. These 

techniques are generally classified into non-destructive, semi-destructive and totally 

destructive methods, as shown in Figure 2.17.  

The non-destructive methods usually measure some physical or crystallographic 

parameter and relate it to the stress inside the material [94]. These methods are cheap 

and have short measuring time comparing with the other two methods, as the 

preparation of the part prior to the test is not time-consuming. These techniques are 

suitable for any structure that needs to be inspected periodically to prevent failure, 

e.g. bridges, aircraft structures or offshore platforms.  

The destructive and semi-destructive methods are based on the measurement of 

deformations due to the release of residual stresses which occur due to material 

removal. The difference between these two methods is that semi-destructive methods 

still remain some part of the weld section, whereas with destructive methods, there 

are no further measurements that can be taken on the welded section after the 

residual stresses measurement [95].  

 

 

Figure 2.17 Residual stress measuring techniques [94]. 
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2.7.3 Deep hole drilling technique 

The Deep Hole Drilling (DHD) technique was first developed in the UK for nuclear 

industry in 1974 by Beany, Zhdanov and Gonchar [96, 97]. This technique was later 

reviewed and further developed by David Smith and his team at University of Bristol 

[95, 98-100]. DHD is one of the most popular semi-destructive methods, since this 

method is relatively simple and quick in terms of data collection and can be applied 

to many groups of materials. This technique has the ability to measure residual 

stresses at depths of up to 450 mm away from the free surface [101]. In addition, the 

apparatus required to perform DHD is portable and relatively inexpensive. 

The procedure of the DHD technique can be explained by using a schematic diagram 

in Figure 2.18 [98, 102]. The process starts by attaching the reference bushes on the 

outer surfaces of a component used to measure the residual stress. The bushes have 

to be positioned at the start and end points of a reference hole which is later drilled 

through the specimen with a gun drill, as shown in Figure 2.18a.  

After that, the initial diameter of the reference hole is measured through the entire 

thickness of component using an air probe (Figure 2.18b). Since this step is quite 

sensitive, it is necessary to recalibrate the air pressure gauge every few hours in 

order to maintain its accuracy. 

The next step is to trepan a core of material around the reference hole using electro-

discharge machining (EDM), as shown in Figure 2.18c. This step make the stress 

contained in material between the hole and the core to relax which causes the change 

of reference hole diameter. The final diameter of reference hole is re-measured and 

the change in diameter is then used to calculate the original residual stresses 

presented as a function of depth.   

Although the DHD method has now become a standard technique for the 

measurement of residual stress in the material, it still has some accuracy problems. 

One of the reasons is that the traditional formulae employed in stress calculations are 

derived from plane stress condition. The second reason is that the effect of plastic 

deformation produced in the drilling process is ignored. Kitano et al. [102] have 

modified the stress evaluation formula for plane strain conditions. This formula has 



57 

 

been proven to measure the residual stress fields in thick objects better than the 

traditional formula. In addition, Kitano also proposed a new procedure which can 

evaluate the effect of plastic deformation occurring in the drilling process. Another 

development in DHD technique was made by Bateman et al. [103]. They improved 

this method to allow the measurement of residual stresses in orthotropic materials 

such as laminated composite components.  

 

 

Figure 2.18 The stages of the DHD technique : a) gundrilling of the reference hole, 

b) measurement of reference hole diameter, c) trepanning and d) re-measurement of 

the reference hole [98]. 
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CHAPTER 3 

FINITE ELEMENT ANALYSIS FOR A PRESSURE-

DEPENDENT PLASTICITY MODEL 

3.1 INTRODUCTION 

The heart of the implementation of plasticity models in FE analysis is the integration 

of the constitutive equations which are usually given in rate form. Several methods 

for the integration of elastoplastic constitutive equations have been proposed in 

literature. Earlier integrating schemes were based on the methods which were 

equivalent to Forward Euler but used different schemes for solving non-linear 

equilibrium equations to move the calculations forward, such as initial stress method 

and tangent modulus method [104-107]. However, these approaches still had 

conditional stability and required a small load step in the calculation.   

In order to achieve unconditional stability, the concepts of predictor-corrector 

methods were developed. In 1964 Wilkins [108] proposed the well-known radial 

return algorithm which is a particular case of elastic predictor-plastic corrector 

algorithms. This algorithm has become the most widely used integration procedure 

for elastoplasticity and involves two main parts; elastic predictor part, and plastic 

corrector part. In the predictor part, an elastic predictor or ‘trial stress’ tensor is 

simply calculated from the given strain increment tensor by the application of 

Hooke’s law. This trial stress tensor is then substituted into the yield function to 

check the behaviour of the material. If the value of yield function is still less than 

zero, then the material behaviour is elastic. For this case, the trial stress will become 

the required stress at the end of the time increment and no corrector step is 

necessary. However, if the stress point is outside the yield surface which means that 

the material behaviour is plastic, the corrector iteration performs the function to 

bring the stress point back on to the yield surface. This process must be performed 

under the satisfaction of the consistency condition. This procedure is shown 

schematically in Figure 3.1.  
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Based on the concept above, various return mapping algorithms for the plastic 

corrector part have been established. The purpose of these correctors is to create the 

precise route for taking stress point back on to the yield surface in the stress space. 

For example, Ortiz and Popov [109] presented two important return mapping 

algorithms which were derived by adopting  the generalised versions of the classical 

trapezoidal and midpoint rules. They also assessed the accuracy and stability of both 

algorithms and found that the choice of the algorithmic parameter a = 0.5 provides 

the best accuracy for small strain increments but in the presence of large strain 

increments larger values of a may result in improved accuracy. In addition, the 

stability properties of the generalized trapezoidal rule are very sensitive to the degree 

of distortion of the loading surface, whereas the generalized midpoint rule is 

unconditionally stable for a ≥ 0.5, regardless of the choice of loading surface.  

Aravas [110] extended the idea within the framework of the radial return algorithm 

by including the first invariant for the hydrostatic stress into the corrector part. This 

algorithm is very popular and widely used for a class of the pressure-dependent 

elastoplasticity models, such as Gurson and Rousselier models. He also provided the 

formulation for calculating the consistent tangent moduli which is consistent with 

this algorithm. However, the consistent tangent moduli formulation provided by 

Aravas is very complicated and sometimes impossible to implement, as it requires 

matrix inversion during the computation. 

In order to solve Aravas’s problem, Zhange [111] developed an explicit expression 

for the linearization moduli which is consistent with a closest point return mapping 

algorithm. The significant advantage of this methodology is that no matrix inversion 

is required in the consistent tangent moduli expression. In addition, Zhange [112, 

113] also studied the accuracies of the return mapping algorithm using iso-error map 

by formulating a class of generalized mid-point algorithm for the Gurson-Tvergaard 

model. This algorithm was later modified in order to derive the seven-constant 

formula for explicitly calculating the tangent muduli consistent with the generalized 

mid-point algorithm [114].  

Another return mapping algorithm which needs to be mentioned here is a canonical 

form algorithm presented by Keavey [115, 116]. Unlike other approaches, the 
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process of this algorithm is essentially numerical and does not involve the difficult 

algebraic manipulations. In this approach, consistent tangent moduli can be 

automatically obtained by a two-stage process of partial elimination.  

In this chapter, a mathematical model of elastoplastic constitutive relation and the 

concept of the radial return method are reviewed. The numerical scheme proposed 

by Aravas and Zhang are studied in more detail. Their algorithms are derived again 

in the tensorial form for the integration of Rousselier damage model described in 

chapter 4. 

 

 

 

 

 

 

 

 

Figure 3.1 The geometric illustration of the concept of radial return method [117]. 

 

3.2 ELASTOPLASTIC CONSTITUTIVE RELATIONS [110, 118, 119] 

According to the small deformation theory of plasticity, the strain rate decomposition 

is  

���� = ����� + �����  (3.1) 

where ����, ����� , and �����  denote the differential change in the total, elastic and 

plastic strain tensors respectively.  
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Assuming small elastic strains, we can write 

��� = K¿KRMSr  (3.2) 

where ��� is the Cauchy stress tensor, and À = Àm���� o is the elastic strain energy 

potential. For the case of isotropic elasticity, Eq. (3.2) becomes 

��� = ����� ����  (3.3) 

where ����� = 2�!��!�� + G� − 5��O !��!�� is the fourth order elasticity tensor. � 

and � are the elastic shear and bulk moduli. 

The stress tensor in Eq.(3.3) can be decomposed into deviatoric component, ���, and 

spherical (mean) component, �(, as : 

��� = �(!�� + ��� (3.4) 

where �( = ����� and !�� is the Kronecker-Delta or second order identity tensor. 

Normally, the elastic limit of material under combined state of stress can be defined 

by yield function which involves the first and second invariants of the stress tensor. 

The yield function can be expressed as : 

)m�, �, ��o = 0 (3.5) 

where � and � are hydrostatic pressure and von Mises equivalent stress respectively 

which are defined as :  

� = −�( (3.6) 

� = ��5 ������ (3.7) 

��, ¼ = 1, 2, … is the internal state variable such as hardening. From Eq.(3.5), the 

yield criterion is given by 

  )	 < 0 : Elastic deformation 

  ) = 0 : Plastic deformation 
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In case of associated flow rule, the increment in the plastic strain tensor is in a 

direction which is normal to the tangent to the yield surface at the load point as 

shown in Figure 3.2, and may be written in term of the yield function, ) as, 

����� = �# KÃK[MS (3.8) 

where �# is a positive scalar factor of proportionality, which is non-zero only when 

plastic deformation occurs.  

Using Eqs. (3.6) and (3.7), Eq. (3.4) becomes 

��� = −�!�� + 5� ���� (3.9) 

where ��� is the unit vector in the deviatoric space normal to the yield surface. It is 

defined by using Eq. (3.7) 

��� = K�K�MS = �5 �MS�  (3.10) 

Like the stress tensor, the plastic strain increment in Eq.(3.8) can be decoupled into 

volumetric m�����oÄ and deviatoric m�����oÅ parts by, 

����� = m�����oÄ +	m�����oÅ  

        = �# �KÃK� K�K[MS + KÃK� K�K[MS�  

        = − ���# KÃK� !�� + �# KÃK� ���  
����� = �����!�� + ������ (3.11) 

where ��� and ��� are the variables corresponding to volumetric and deviatoric 

strain increments. They are defined by: 

��� = −�# KÃK� (3.12a) 

��� = �# KÃK�  (3.12b) 
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For classical plasticity model (pressure independent model), ��� becomes zero as 

there is no volumetric component of plastic strain tensor. By eliminating �# from the 

above two equations, one obtains 

��� GKÃK�O + ��� GKÃK�O = 0 (3.13) 

The final ingredient in the plasticity model is a set of evolution equations for state 

variable, �Z, such as equivalent plastic strain or damage parameters. The evolution 

of these variables are given by  

��Z = ℎZm����� , ���, �¨o (3.14) 

 

 

Figure 3.2 Graphical representation of associated flow rule [119].  

 

3.3 A RETURN MAPPING ALGORITHM FOR PRESSURE-DEPENDENT 

ELASTOPLASTICITY MODEL 

In FE analysis, the integration of constitutive equations is carried out at the Gaussian 

integration points. The analysis is carried out incrementally and the solution is 

assumed to be known at the start of each increment. Given a strain increment ∆���, 
one needs to calculate the stress and state variables at the end of each increment.   

�D �B 

�D 

�D 
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Yield surface +∅ = 0. 
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The integration procedure which is discussed here is known as a “radial return 

method”.  In this method, a step forward in time takes the updated stress, ���&' outside 

the yield surface. This stress is called trial stress or elastic predictor. The trial stress 

is then updated with plastic correction to bring it back onto the yield surface at ¶ + ∆¶ (Figure 3.1). Although the mathematical basis of the return mapping method 

for the pressure-dependent plasticity model has been well established [110-112], the 

details of this method are reviewed again in this section in order to maintain 

consistency of this thesis. 

3.3.1 The radial return method 

In what follows, the time at which a variable is evaluated will be indicated by a 

superscript. For the current time step ¶ + ∆¶, the superscript will be omitted. We first 

start with the algorithm for the total strain tensor :  

��� = ���& + ∆��� (3.15) 

where ∆��� is the total strain increment tensor.  

The idealized stress-strain behaviour can be explained by using Figure 3.3. From this 

Figure, the stress tensor achieved at a strain of ��� can be obtained by using Eqs. 

(3.1) and (3.3) : 

��� = ����� ���� = ����� m��� − ���� o  

      = ����� ´���& + ∆��� − m���� o& − ∆���� µ 
��� = ���&' − ����� m∆���� o  (3.16) 

where ���&' = ����� Ç+���� .& + ∆���È is the trial stress or elastic predictor and +���� .& is 

the elastic strain tensor at time step ¶. 
Considering the second term of right hand side of Eq. (3.16) 

����� m∆���� o = ´2�!��!�� + G� − 5��O !��!��µ ∆����   

                   = 2�∆���� + �∆���� !�� − 5��∆���� !�� (3.17) 
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Substituting Eq. (3.11) into (3.17),  

����� m∆���� o = 2�∆����� + �∆��!�� (3.18) 

Hence, Eq. (3.16) can now be rewritten as : 

��� = ���&' − 2�∆����� − �∆��!��  
Using Eq.(3.9), this becomes 

−�!�� + 5� ���� = −�&'!�� + 5��&'���&' − 2�∆����� − �∆��!�� (3.19) 

The above equation shows that in the deviatoric stress plane, return to the yield 

surface is along ���. This means that ���&' and ��� are co-axial, and ��� can be simply 

determined by [110, 120] : 

��� = ���&' = �5 �MSkq�kq    (3.20) 

Applying this relation to Eq. (3.19),  

� = �&' +�∆�� (3.21a) 

� = �&' − 3�∆�� (3.21b) 

Eq.(3.21) is the correction equation for the hydrostatic pressure and von Mises 

equivalent stress at ¶ + ∆¶. 

 

Figure 3.3 Classical decomposition of strain into elastic and plastic parts. 
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3.3.2 The solution method  

From the previous sections, the increment of stress tensor and the evolution of the 

internal variables for pressure-dependent plasticity model can be obtained by solving 

the following set of non-linear equations: 

∆�� GKÉK�O + ∆�� GKÉK�O = 0 (3.22) 

Φ+�, �, �Z. = 0 (3.23) 

� = �&' +�∆�� (3.24) 

� = �&' − 3�∆�� (3.25) 

∆�Z = ℎZm∆��, ∆�� , �, �, �¨o (3.26) 

Aravas [110] suggested to solve this set of non-linear equations by Newton-Raphson 

method based on Taylor series expansion. According to this, ∆�� and ∆�� are chosen 

as the primary unknowns, and Eqs.(3.22) and (3.23) are treated as the basic 

equations in which �, � and ∆�Z are defined by Eqs.(3.24)-(3.26). Details of the 

solution method are given as follows: 

By ignoring the higher order terms, and assuming that only 2 internal variables, ∆�� 

and ∆��, are involved with the model, the application of the Taylor series method to 

Eqs.(3.22) and (3.23) gives, 

∆��Ë + ∆�� 

+�∆��  Ë + ∆�� KhK∆R� + ∆�� KÌK∆R�Í + �∆��   + ∆�� KhK∆R� + ∆�� KÌK∆R�Í  
+��� ©∆�� KhKÎ§ + ∆�� KÌKÎ§ª + ��5 ©∆�� KhKÎU + ∆�� KÌKÎUª = 0  (3.27a) 

 

Φ+ �KÉK� K�K∆R� + KÉK� K�K∆R�� �∆�� + �KÉK� K�K∆R� + KÉK� K�K∆R�� �∆��  

+ KÉKÎ§ ��� + KÉKÎU ��5 = 0  (3.27b) 
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where Ë = KÉK� ,  = KÉK� . �∆�� and d∆�� are defined as the correction values for ∆�� 

and ∆�� respectively.  

The values of ��� and ��5 in Eq.(3.27) can be determined as functions of �∆�� and �∆�� from implicit differential equation as follows: 

��� = ��Ï  �KÐUKÎU KÐ§K∆R� − KÐ§KÎU KÐUK∆R�� �∆�� + �KÐUKÎU KÐ§K∆R� − KÐ§KÎU KÐUK∆R�� �∆��Í  
− �Ï  GKÐUKÎU KÐ§K� − KÐ§KÎU KÐUK� O K�K∆R� �∆�� + GKÐUKÎU KÐ§K� − KÐ§KÎU KÐUK� O K�K∆R� �∆��Í  (3.28a) 

 

��5 = ��Ï  �− KÐUKÎ§ KÐ§K∆R� + KÐ§KÎ§ KÐUK∆R���∆�� + �− KÐUKÎ§ KÐ§K∆R� + KÐ§KÎ§ KÐUK∆R�� �∆��Í 
− �Ï  G− KÐUKÎ§ KÐ§K� + KÐ§KÎ§ KÐUK� O K�K∆R� �∆�� + G− KÐUKÎ§ KÐ§K� + KÐ§KÎ§ KÐUK� O K�K∆R� �∆��Í  (3.28b) 

where 

Ω = GKÐ§KÎ§O GKÐUKÎUO − GKÐUKÎ§O GKÐ§KÎUO (3.29) 

�� and �5 are the functions made by regrouping the implicit function in Eq.(3.26). 

�� = ∆�� − ℎ�m∆��, ∆��, �, �, ��, �5o (3.30a) 

�5 = ∆�5 − ℎ5m∆��, ∆�� , �, �, ��, �5o (3.30b) 

Introducing Eq.(3.28) into Eq.(3.27) and replacing �∆�� and �∆�� by �� and ��, 

leads to the reduced form of the Newton-Raphson equations as follows, 

2���� + 2�5�� = ¹� (3.31a) 

25��� + 255�� = ¹5 (3.31b) 

where 2�� and  ¹� are given in Appendix I. Eq.(3.31) is solved for �� and ��, and the 

values of ∆�� and ∆�� are then updated by 

∆�� = ∆�� + �� (3.32a) 

∆�� = ∆�� + �� (3.32b) 



68 

 

The values of � and � are then updated using Eqs.(3.24) and (3.25) and the 

increment of the state variables, ∆�� and ∆�5, are updated by solving Eq.(3.26). 

This iterative loop has to be continued until the values of ∆�� and ∆�� converge.  

Finally, the stress and strain tensors are updated by Eqs.(3.9), (3.11) and (3.15), to 

give equations below : 

��� = −�!�� + � ��MSkq�kq� (3.33) 

∆���� = ��∆��!�� + �5 	��MSkq�kq�	∆�� (3.34) 

���� = m���� o& + Δ��� − ∆���h (3.35) 

The difficulty with Aravas’s method is that in each iteration of Newton’s method for 

calculating the values of ∆�� and ∆��, the values of �Z are required to be updated. 

The method employed to update �Z is again the Newton’s method. This means that 

many iterations are required to obtain the solution. For example, if 10 iterations are 

required to solve Eqs.(3.22) and (3.23), then in each iteration another 10 iterations 

are required to solve Eq.(3.26). Thus, the total number of iterations required to solve 

this problem is 100. Small increments may be taken to ensure that the solution by 

this method converges. Beardsmore et al. [121] presented a new approach based on a 

hybrid solution method and a trust region method. This method utilises iterative 

corrections and a trust region surrounding the current estimation solution. In the 

early stages of the iteration, the steepest descent method is used to improve the 

solution when the estimated solution is far from the true solution. Once the estimated 

solutions are in the acceptable region, Newton’s method is then used to obtain the 

solutions for the final stages. 

3.4 THE SOLUTION METHODS FOR FINITE ELEMENT ANALYSIS 

At present, the FE method is one of the most popular tools used to obtain solutions 

required in both research and industrial design. Several algorithms with different 

associated computational costs are implemented in FE codes for solving problem in 

various fields. In the field of solid mechanics, especially for non-linear quasi-static 
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problems, the FE solution algorithms can be classified into implicit or explicit 

methods.  

The implicit method refers to the procedure that the solution at time ¶ + ∆¶ is 

determined based on the information at time ¶ + ∆¶, whereas the explicit method 

solves for solution at time ¶ + ∆¶ using the information at time ¶. In the implicit 

method, a set of FE equations are formulated from static equilibrium, and solutions 

are determined by the iteration method which is performed until a convergence 

criterion is satisfied for each increment. On the other hand, the finite element 

equations in the explicit approach are established based on the dynamic equilibrium 

equation which can be solved directly to obtain the solution at the end of increment 

without iteration.       

The comparison between implicit and explicit methods for different nonlinear 

problems has been reported in literature [122-125]. The main advantage of implicit 

method is that the equilibrium conditions are checked at the end of each time or load 

step in order to minimize the residual force vector which is specified as tolerance 

[125]. This makes implicit method to be unconditionally stable which can use larger 

time steps to solve problems. However, the unconditionally stable implicit method 

may encounter some difficulties which are summarized as follows [123, 125]: 

• Requiring a material Jacobian Matrix which is difficult to evaluate for 

complex constitutive laws. 

• High computation times and high memory requirement. 

• Local instabilities cause force equilibrium difficult to achieve which often 

leads to convergence problems. 

• Difficulties in dealing with complex non-linear contact and tribological 

boundary conditions.  

As mentioned above, the explicit method does not involve the iterative technique, so 

it requires much less disk space and memory than the implicit method for the same 

simulation. This method is more robust and efficient when it is used to solve the 

more complicated contact problems. However, the explicit method is conditionally 

stable for which the maximum time increment must be less than a critical value of 
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the smallest transition time for dilational wave to cross any element in the mesh 

[123]. Another limitation is that the nature of the explicit method is more suitable for 

transient problems. Hence, when this method is used for quasi-static problem, the 

inertia effects must be small enough to be neglected. In order to achieve this 

condition, the ratio of the kinetic energy to the internal energy must be less than 5% 

[124, 126]. 

The implicit and explicit methods have been usually implemented into several FE 

codes, such as ABAQUS. Learning and understanding the procedures of these two 

methods enable the user to feel more confident when using these methods. This 

section presents details of implicit and explicit solution procedures.   

3.4.1 Static implicit method [112, 114] 

In static implicit FE method, the virtual work principle is usually employed to 

explain the equilibrium at the end of an increment. This results in a set of non-linear 

equations for the nodal unknowns which must be solved by an iterative method.  

Considering a material continuum body having volume Ò and bounding surface � 

which is subjected to surface traction ¶� and distributed body force per unit volume ��, the equilibrium equation for this body can be written as :  

F ¶�� �� + F ��Ä �Ò = 0 (3.36) 

The true or Cauchy stress matrix ��� at a point on S is defined by ¶� = �����  where ��  
is the unit vector outward normal to S at the point. Using this definition together with 

divergence theorem of Gauss, the above equation reduce to : 

K[SMKES + �� = 0 (3.37) 

Multiplying Eq.(3.37) by a ‘virtual displacement !T�’ to obtain a single scalar 

equation applicable to all points of the continuum body, 

�K[SMKES + ��� !T� = 0 (3.38) 
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Integrating Eq.(3.38) over the whole volume and then applying the chain rule and the 

divergence theorem gives, 

F ��� KÓLMKESÄ �Ò − F ¶�!T�� �� − F ��!T�Ä �Ò = 0 (3.39) 

The term 
KÓLMKES  is the unit relative virtual displacement which can be decomposed into 

the virtual strain tensor and virtual rotation tensor. In case of small strain, Eq.(3.39) 

can be written as follows : 

�+T�. = F ���Ä !����Ò − F ¶�!T�� �� − F ��!T�Ä �Ò (3.40) 

where ��� and ��� are any conjugate pairing of material stress and strain measures.  

If Newton-Raphson method is used to determine a set of solutions of Eq.(3.40), the 

estimation of the root of Eq.(3.40) can be written as : 

∆T�̂ 
� = T�̂ 
� − T�̂ = −©KÐmLM]oKLM ª�� �+T�̂ . (3.41) 

The superscript � in Eq.(3.41) represents the number of iteration. This equation can 

be solved iteratively until the values of  ∆T�̂ 
� are close to zero. 
KÐmLM]oKLM  in Eq.(3.41) 

is known as the jacobian matrix of the governing equations and can be referred to as 

the global stiffness matrix. The derivation and the closed from of the complete 

jacobian matrix is presented in ABAQUS theory manual [127] : 

KÐmLM]oKLM = �Ô� = F ¦��,Ô�����¦��,�Ä\ �Ò� + ÕÔ� (3.42) 

¦��,Ô and ¦��,� matrices depend on the current position of the material point being to 

considered. This matrix defines the strain variation in terms of the variation of the 

kinematic variables. ÕÔ� represents part of the global jacobian matrix which is 

explained in [127]. ����� is the so-called consistent tangent moduli (CTM) of 

material. It is defined as : 

����� = K[MSKR°Ö = K∆[MSK∆R°Ö (3.43) 
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The convergence of Eq.(3.41) is controlled by the choice of CTM. In order to 

achieve the quadratic rate of asymptotic convergence, Simo and Taylor [120] 

proposed to derive the CTM  by consistent linearization of the response functions 

used for updating the state variables. 

3.4.2 Dynamic explicit method 

The explicit method was originally developed and primarily used to solve dynamic 

problems involving deformable bodies. This procedure is based on the 

implementation of an explicit integration rule together with the use of diagonal or 

“lumped” element mass matrices, ×�� [127]. Considering the equations of motion for 

the body, the acceleration vector, TØ�  can be computed at the start of increment � by: 

TØ �+^. = ×����mº�̂ − b�̂ o (3.44) 

º�̂  and b�̂  are the applied load vector and the internal force vector respectively. 

Using the central difference integration scheme, TØ � can be written in terms of 

displacement vector, T�, as follows: 

TØ �+^. = LM+]Ù§.�5LM+].
LM+]Ú§.∆&U  (3.45) 

Substituting Eq.(3.45) into (3.44), the explicit formulation for the displacement 

vector is : 

T�+^
�. 	= 2T�+^. − T�+^��. + ∆¶5×����mº�̂ − b�̂ o (3.46) 

Based on above, the value of T� at time � + 1 is easy to obtain as only information at 

time � is needed. In addition, ×�� is diagonalised and it is a trivial process to invert 

it. However, the dynamic explicit procedure is conditionally stable. Its stability 

depends on the size of the time increment which must satisfy  

∆¶ ≤ 5ÛijÜ (3.47) 

where Ý(gE is the maximum element eigenvalue. A conservative estimate of the 

stable time increment is given by the minimum value for all elements in the model. 

The above stability limit can be written as :  
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∆¶ = ·¼� G�r�ÞO (3.48) 

where t� is the characteristic element dimension and �ß is the dilatational wave 

speed of the material. 

Eq.(3.48) implies that the stable time increment in explicit analysis depends on the 

size of elements. “Although the incremental solution is easy to obtain using the 

explicit method, it is not unusual for the analysis to take 100,000 increments to 

produce a solution. In order to maintain the efficiency of the analysis, it is important 

to ensure that the sizes of the elements are as regular as possible [124]”.    

3.5 THE DERIVATION OF CTM WITH THE RADIAL RETURN METHOD 

[111, 112, 114] 

According to section 3.5.1, the CTM defined in Eq.(3.43) needs to be consistent with 

the stress update procedure in order to achieve convergence for the analyses. For 

pressure-dependent elastoplasticity model, Zhang developed an explicit CTM 

formula which is consistent with a return mapping algorithm. This formula was 

derived in terms of hydrostatic and deviatoric components separately. Details of the 

derivation of this CTM are given below : 

The deviatoric component of stress tensor presented in Eq.(3.16) is, 

��� = 2� ©m���� oÅ& + m∆���oÅ − m∆����oÅª  
      = 2�m���oÅ&' − 2�m∆����oÅ  

��� = ���&' − 2�m∆����oÅ (3.54) 

where m���oÅ&' = m���� oÅ& + m∆���oÅ , m���� oÅ&  is the deviatoric component of the total 

elastic strain tensor at time step ¶, m∆���oÅ and m∆����oÅ are the deviatoric 

components of total and plastic strain increment, and ���&' = 2�m���oÅ&' is the 

deviatoric component of the trial stress tensor, 
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Using relation m∆����oÅ = ∆����� and Eq.(3.10), Eq.(3.49) becomes 

���&' = ´1 +	G�Ð� O ∆��µ ��� = 2�m���oÅ&' (3.50) 

Taking variation of Eq.(3.50) with respect to all quantities,  

´1 +	G�Ð� O∆��µ à��� + ���à ´1 +	G�Ð� O ∆��µ = 2�	àm���oÅ&'  

G1 +	�Ð� ∆��O à��� + ��� �Ð� Gà∆�� − ∆R�� à�O = 2�	àm���oÅ&' (3.51) 

With the relation given in Eq.(3.21b), Eq.(3.51) can be written as : 

�kq� à��� + ��� �Ð� Gà∆�� − ∆R�� à�O = 2�	àm���oÅ&'  

à��� = 2� ��kq àm���oÅ&' − ��� �Ð�kq à∆�� + ��� �Ð�	�kq ∆��à� (3.52) 

à� in Eq.(3.52) can be determined from Eq.(3.50). By taking the inner product of 

Eq.(3.50) with itself gives, 

´1 +	G�Ð� O∆��µ��5 ������ = 2���5 m���oÅ&'m���oÅ&'  

� + 	3�∆�� = 2��Å̅&' = �&' (3.53) 

where �Å̅&' = ��5 m���oÅ&'m���oÅ&'   

Differentiation of Eq.(3.53) yields 

à� = à�&' − 	3�à∆�� = 2�à�Å̅&' − 	3�à∆��  

à� = 3� â	�MSkq�kq àm���oÅ&' − 	à∆��ã (3.54) 

Substituting Eq.(3.54) into Eq.(3.52) and rearranging,  

à��� = 2� ��kq àm���oÅ&' − ��� �Ð�kq à∆�� + ��� �Ð��kq ∆��3� â	�MSkq�kq àm���oÅ&' − 	à∆��ã  
à��� = 2� ��kq àm���oÅ&' + äÐU�+�kq.U ∆��������&'	àm���oÅ&' − �Ð� 	���à∆�� (3.55)  
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Alternatively, Eq.(3.55) can be written as : 

à��� = 2� ��kq m!��!��oàm���oÅ&' + »ÐU�kq ∆�� G��MS5� O G��°Ökq5�kqO àm���oÅ&' − 2�	 G��MS5� O 	à∆��  

à��� = ©2� ��kq Õ���� + »ÐU�kq ∆��������&'ª àm���oÅ&' − 2�	���à∆�� (3.56) 

where  Õ���� = !��!�� is the fourth order unit tensor.  

For all cases in which three direct strains are defined by a kinematic solution,  

àm���oÅ&' = àm∆���oÅ =	GÕ���� − �� !��!��O à��� (3.57) 

and 

à� = −�!��à��� + �à∆�� (3.58a) 

à�( = �!��!��à��� − �!��à∆�� (3.58b) 

Differentiation Eq.(3.4) and using Eqs.(3.58b) and (3.56) gives, 

à��� = �!��!��à��� − �!��à∆��	  
+©2� ��kq Õ���� + »ÐU�kq ∆��������&'ª à+���&'.Å − 2�	���à∆�� (3.59) 

Substituting Eq.(3.57) into Eq.(3.59),  

à��� = å��(^à�(^ 	− �!��à∆�� 	− 	2�	���à∆��  (3.60) 

where 

å��(^ = G� − 5�� ��kqO !��!(^ + 2� ��kq 	Õ��(^ + »ÐU�kq ∆������(^ (3.61) 

The expressions for à∆�� and à∆�� in Eq.(3.60) can be determined by taking the 

variations of Eqs.(3.22) and (3.23) in terms of à���. By assuming that the model 

involves 2 internal variables, �� and  �5, the variations of Eqs.(3.22) and (3.23) in 

terms of à��� can be written as : 
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à∆�� GKÉK�O + à∆�� GKÉK�O  

+∆�� � KUÉK�K� K�K[MS + KUÉK�U K�K[MS� à��� + ∆�� �KUÉK�U K�K[MS + KUÉK�K� K�K[MS� à���  
+G∆�� KUÉK�KÎ§ + ∆�� KUÉK�KÎ§O à�� + G∆�� KUÉK�KÎU + ∆�� KUÉK�KÎUO à�5 = 0 (3.62) 

 

�KÉK� K�K[MS + KÉK� K�K[MS� à��� + KÉKÎ§ à�� + KÉKÎU à�5 = 0 (3.63) 

��� and ��5 from above equations can be written as functions of ���� by applying 

implicit differentiation to Eq.(3.30) as follows : 

���  

= ��Ï æ �KÐUKÎU KÐ§K∆R� − KÐ§KÎU KÐUK∆R���∆�� + �KÐUKÎU KÐ§K∆R� − KÐ§KÎU KÐUK∆R�� �∆��+ âGKÐUKÎU KÐ§K� − KÐ§KÎU KÐUK� O K�K[MS + GKÐUKÎU KÐ§K� − KÐ§KÎU KÐUK� O K�K[MSã ����ç  (3.64a) 

 

��5 

= ��Ï æ �− KÐUKÎ§ KÐ§K∆R� + KÐ§KÎ§ KÐUK∆R�� �∆�� + �− KÐUKÎ§ KÐ§K∆R� + KÐ§KÎ§ KÐUK∆R�� �∆��+ âG− KÐUKÎ§ KÐ§K� + KÐ§KÎ§ KÐUK� O K�K[MS + G− KÐUKÎ§ KÐ§K� + KÐ§KÎ§ KÐUK� O K�K[MSã ����ç (3.64b) 

Substituting Eq.(3.64) into Eqs.(3.62) and (3.63) and rearranging,  

2̅��à∆�� + 2̅�5à∆�� = m¦��!�� + ¦�5���oà���  (3.65a) 

2̅5�à∆�� + 2̅55à∆�� = m¦5�!�� + ¦55���oà���  (3.65b) 

where the constants 2̅�� and ¦�� are given in Appendix II. 

Substitution of Eq.(3.60) into Eq.(3.65) gives, 
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à∆�� =	 m��	!�� + �5���oå����	à���  (3.66a) 

à∆�� = m5�!�� + 55���o	å����	à���  (3.66b) 

where the constants �� are presented in Appendix III. 

Substitution of Eq.(3.66) into Eq.(3.60), yields an expression for the tangent moduli 

consistent with the radial return method for the general pressure-dependent 

elastoplastic model, 

à��� = ×��(^	å(^�� 	à��� 						→ 						 ����� = K[MSKR°Ö = ×��(^	å(^�� 	 (3.67) 

where 

×��(^ = Õ��(^ −×��(^> −×��(^^   (3.68a) 

×��(^> = �m��!��!(^ + �5!���(^o  (3.68b) 

×��(^^ = 	2�m5����!(^ + 55����(^o (3.68c) 

Finally, by multiplying ×��(^ and å(^�� and using the relationship between !�� and ���, the following explicit expression for the consistent tangent moduli is obtained, 

����� =	��	Õ���� + ��	!��!�� + �5	������ + ��	!����� + �»	���!��  (3.69) 

where the five constants are given as : 

�� = 2� ��kq  (3.70a) 

�� = � − 5Ð� ��kq − 3�5��  (3.70b) 

�5 = »ÐU�kq ∆�� 	− 4�555  (3.70c) 

�� = −2���5  (3.70d) 

�» = −6��5�  (3.70e) 

From Eq.(3.69), it should be noted that ����� is symmetric if �5 = 35� [111, 112]. 
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3.6 SUMMARY  

The basic concept of pressure-dependent elastoplasticity model is that the scalar 

product of stress and strain rate can be split into deviatoric and spherical parts. This 

property enables the model to be suitable for porous materials which exhibit a 

dependence on hydrostatic pressure. The pressure-dependent elastoplasticity model 

can be implemented into the FE analysis via two solutions methods. The first 

solution method is static implicit in which the system of non-linear equations has to 

be solved by an iterative method and a consistent tangent modulus has to be 

calculated to ensure the quadratic convergence of a global equilibrium step. Another 

finite element solution method is dynamic explicit, which is designed to solve 

problems using an explicit time integration algorithm. Since this method does not 

involve global iterations, the user does not need to define the consistent tangent 

modulus.  

This chapter discusses all the mathematical techniques which involve the 

construction of the stress updated algorithm for pressure-dependent elastoplasticity 

model in a finite element code. This includes the details of the numerical integration 

used to obtain the solutions for pressure-dependent elastoplasticity model which 

contains 2 internal variables. 
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CHAPTER 4 

IMPLEMENTATION OF THE ROUSSELIER 

DAMAGE MODEL IN ABAQUS  

4.1 INTRODUCTION 

The Rousselier damage model is just one model from a particular class of pressure-

dependent plasticity models in which the response is dependent on the development 

of the hydrostatic stress as well as the deviatoric stress tensor. This model defines the 

softening of material by the accumulation of damage parameter ( ) and fracture 

proceeds from the competition between hardening and damage. Therefore, it is not 

necessary to introduce a critical value of the damage variable.  

In this chapter, a brief introduction of the Rousselier model is given followed by the 

implementation of this model via ABAQUS user defined subroutines, e.g. UMAT 

and VUMAT. These subroutines are used to perform FE calculations for a single 

element model and a notched tensile bar in order to check the correctness of the 

subroutines. 

4.2 REVIEW OF THE ROUSSELIER MODEL  

4.2.1 The classical Rousselier damage model [63, 64, 128] 

The Rousselier model is based on the thermodynamical concept of generalized 

standard media. Within the framework of continuum thermodynamics, when the 

bodies are in thermodynamical equilibrium, any thermodynamical state of a material 

point can be fully defined by a finite number of state variables which are divided into 

observable variables and internal variables. Once the state variables have been 

defined, we can postulate the existence of a thermodynamic potential from which the 

state laws can be derived. For the case of elastoplasticity, if small strains are 

considered, the specific free energy,	è which depends on observable and internal 

variables can be defined as :  

èm���� , �,  	o = è�m���� o + è�m"��o + è¨+ . 
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where è� = �5 ���� ����� ����  is the elastic strain energy. è� and è¨ are the dissipated 

energy which relate to the mechanism of hardening and softening (damage) 

respectively. From thermodynamics of irreversible process, the intrinsic dissipated 

power for isothermal case is written as : 

[MS¥ ����� − �"��� + ¦ � ≥ 0 (4.1) 

The variables 
[MS¥ , −�, ¦ are the associated forces which correspond to the internal 

variables ���� , "��,   respectively in the dissipative mechanism. A more systematic 

presentation of the internal variables and the associated forces is given in Table 4.1 

Table 4.1 Internal variables and the appropriate associated forces. 

Dissipative mechanism Variable, é� Associated force, ?� 
Plasticity ����  ��� %⁄  

Hardening "�� −�m"��o 
Damage   ¦+ . 

 

Let é = m����� , "���,  �o and ? = m��� %⁄ ,−�, ¦o, then the function in Eq.(4.1) can be 

written in the form of a bilinear function:  

φ� = ∑é�?�  (4.2) 

The condition that φ�  is always positive or zero is automatically satisfied, if a convex 

function ºm��� %⁄ ,−�, ¦o can be defined so that 

é�� = #� K¤KëM  (4.3) 

where º is the so called plastic potential.  

Following Eq.(4.3), Rousellier [64] postulated the breaking function of plastic 

potential which depended on the first two invariants of the stress tensor.  

º = º� G�¥ , �O + º5 G[i¥ , ¦O (4.4) 
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where  

º� = �¥ − �m���o (4.5a) 

º5 = ¦+ .3 G[i¥ O (4.5b) 

In this function, º� denotes the hardening part, whereas the softening part of material 

due to damage is represented by º5. By considering the mass preservation law and 

neglecting the variations in volume due to elastic deformations, functions ¦+ . and 3 G[i¥ O in Eq.(4.5) are finally defined as follows: 

3 G[i¥ O = 	�	zC� G��¥[§O  (4.6a) 

¦+ . = − [§	¥ K¥K¨  (4.6b) 

where −� has been substituted for �( and �� is a constant.  Parameter % in Eq.(4.6b) 

is the dimensionless density. It is obtained by dividing the density of the damaged 

material by the material density in the initial state. This parameter relates to the value 

of damage variable   by following equation, 

%+ . = ���p\
p\	�E�+¨. (4.7) 

where �� is the initial value of the void volume fraction. Substituting Eq.(4.7) into 

(4.6b) gives, 

¦+ . = [§	p\	�E�+¨.��p\
p\	�E�+¨.  (4.8) 

Substituting Eqs.(4.6), (4.7) and (4.8) into Eq.(4.4), the plastic potential proposed by 

Rousselier is,   

F = �¥ − �m"��o + ¦+ .	�	zC� G��¥[§O   (4.9) 

where � and �� are material parameters.   denotes an internal variable to describe 

damage and "�� is the equivalent plastic strain which is used as the internal variable 

to describe hardening. The function �m"��o is the hardening curve of the material 

which can be determined from the standard tensile test.  
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Applying the normality rule described in Eq.(4.3) to Eq.(4.9), the evolution equation 

for the internal variables are : 

• Equivalent plastic strain 

"��� = #� K¤K��ìm�r�o� = #� (4.10) 

• Damage variable 

 � = #� K¤Kí = "����zC� G ��¥	[§O   (4.11) 

• Plastic strain tensor 

����� = #� K¤Km[MS ¥⁄ o = #�  �� KîK+[i ¥⁄ . !�� + KîKm�MS ¥⁄ oÍ  

      = "��� ©í+¨.�[§	 �	zC� G ��¥	[§O !�� + ��MS5� ª  

Comparing the equation above with Eq. (3.11), we get 

�� ��� = �� ����� = "��� í+¨.�[§	 �	zC� G ��¥	[§O (4.12a) 

��� = "���  (4.12b) 

Eq.(4.12b) implies that in the Rousselier damage model, the increment of deviatoric 

plastic strain is equal to the increment of the equivalent plastic strain m∆�� = ∆"��o. 
4.2.2 The alternative form of Rousselier damage model 

The plastic potential function proposed by Rousselier can be written in another form 

which relates directly to void volume fraction, �. The details about how to relate this 

function to � are presented in this section.  

By considering a material which contains a void, the relationship between the 

relative density and f can be written as : 

% = G��p��p\O (4.13) 

Substituting Eq.(4.7) into Eq.(4.13) and rearranging, the volume fraction of cavities 

can be related to the damage variable by following relation: 
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� = p\	�E�+¨.��p\
p\	�E�+¨.  (4.14) 

Using the above relation, function ¦+ . in Eq.(4.8) can be written in terms of the 

void volume fraction as : 

¦+ . = ��	�  (4.15) 

Substituting Eq.(4.15) into Eq.(4.9), the plastic potential takes the form, 

F = �¥ − �m"��o + ����zC� G��¥[§O  (4.16) 

The relative density % is related to f by Eq.(4.13). Since the value of �� is very small 

compared to unity, some authors simply take [129] 

% = 1 − � (4.17) 

Substituting Eq.(4.17) into Eq.(4.16), the Rousselier yield function can be written as, 

F = ���p − �m"��o + ����zC� G ��+��p.[§O (4.18) 

An evolution equation for � can be determined from mass preservation law. If the 

volume change due to elastic deformation is neglected, the evolution of � can be 

defined as : 

�� = +1 − �.����� = +1 − �.��� (4.19) 

The equation above shows that in original Rousselier damage model, the evolution 

of void volume fraction depends only on the plastic volume change or the growth 

rate of pre-existing voids. However, many studies have shown that void growth is no 

longer tied to the volumetric plastic strain increment, but it also depends on the 

deviatoric part of plastic strain tensor. According to this, some authors extend 

Eq.(4.19) by adding the other rate equation as follows [56, 130] :     

�� = +1 − �.��� + 2��� (4.20) 
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4.2.3 Accuracy of the model 

The accuracy of the Rousselier model depends on the precision of parameters 

required in the model. According to the previous section, the following parameters 

need to be determined [44] : 

• The initial void volume fraction +��. related to the volume fraction of the 

inclusions.  

• The Rousselier parameters (� and ��) which express the fracture resistance 

of the matrix material. 

• The characteristic length +t�. which expresses the interaction between a 

crack tip and void, related to interinclusion spacing. This parameter is not 

included in the equation of the model. However, in FE analysis, this value 

represents the size of element at the crack tip. 

Good estimates of parameters �� and t� are obtained from the metallographic 

examinations of inclusions [131]. 

�� = �ï mßÜ	ßno§ Uðßñ  (4.21)  

t� = ò+�ó.§ �ð 	 (4.22) 

where �E, �D and �ô are the average dimensions of the inclusions, õ is the direction 

of load, and ¬ï is the mean number of inclusions per unit volume. �ï is the volume 

fraction of inclusions. It can be calculated either from metallographic examinations 

or from the chemical analysis (Franklin’s formula [132]). For example, for MnS 

inclusions in ferritic steel, �ï is obtained from chemical analysis as : 

�ï = 0.054	 G%� − �.���%Ô^O (4.23)  

From the metallographic method, which needs microscopic examination in the three 

spatial directions of the volume, the value of �ï is : 

�ï = =} 	¬ï	�C	�B	�õ (4.24)  
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The remaining parameters � and �� in the constitutive equation can be determined 

from a fitting procedure on the experimental data. Procedure on the determination of � and �� for a given material is shown in Figure 2.10. According to this, a first try 

for �� is suggested to be 2�p 3⁄  where �p is the equivalent stress when fracture 

occurs in a smooth round bar tension test [129]. In addition, the parameter � can also 

be considered as material-independent which can be taken to be equal to 2, at least 

for a general material containing the value of �� equal to or smaller than 0.001 [63, 

64, 129]. After all the parameters are obtained, the values of these parameters are 

used to model the large scale structure. 

4.3 IMPLEMENTATION OF ABAQUS USER DEFINED SUBROUTINE 

Several FE software packages provide the facility for users to create their own 

material models. In ABAQUS, UMAT and VUMAT are the two interfaces which 

allow the users to define any complex, constitutive material models that are not 

provided in the standard material library of the program.  

UMAT is the user defined material for ABAQUS/Standard module which is a 

general-purpose finite element analyser. This module employs the implicit 

integration scheme to update the state of the model, so the user must also provide the 

consistent tangent modulus (CTM) for the mechanical constitutive model.  

Another user subroutine VUMAT is used in ABAQUS/Explicit module which was 

originally developed and primarily used to solve dynamic problems involving 

deformable bodies. The integration procedure used in this module is based on the 

implementation of an explicit integration rule together with the use of diagonal or 

“lumped” element mass matrices [127]. Since no global iterations are involved in the 

calculation, the user does not need to define a CTM. In addition, ABAQUS/Explicit 

also provides the element removal feature which is not available in 

ABAQUS/Standard. 

In this research, both user defined subroutines, UMAT and VUMAT, are developed 

for Rousselier damage model. The numerical algorithms employed in these 

subroutines use the closest point return mapping method presented in chapter 3. 
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According to section 4.2, the necessary equations for the application of the closest 

point return mapping method are summarized as : 

F = �¥ − �m"��o + ����zC� G��¥[§O  (4.25) 

��� = −�!�� + 5� ����  (4.26) 

����� = �����!�� + ������  (4.27) 

��� = �"�� = ���  (4.28) 

��5 = �� = +1 − �.��� = +1 − �.����  (4.29) 

Details of ABAQUS user defined subroutine for Rousselier damage model are given 

in Appendices IV, V and VI.  

4.4 VALIDATION OF UMAT AND VUMAT  

UMAT and VUMAT for Rousselier model are used to run tests on FE models of a 

single element and the necking of notched tensile bars under tension. The results 

obtained from FE-models are compared with the exact solutions or the benchmark 

solutions presented in literature in order to verify the correctness of the subroutine 

codes. The material data used for all FE models is for 22 NiMoCr 3 7 which is given 

the Tables 4.2, 4.3 and 4.4 [45].  

Table 4.2 The stress-strain data for 22 NiMoCr 3 7 material at 220 
o
C [45]. 

True strain True stress True strain True stress +"÷ , %. +�÷ , ×Ë�. +"÷ , %. +�÷ , ×Ë�. 
0 0 20 819 

1 566 30 860 

2 619 40 890 

3 647 50 915 

4 673 60 935 

6 710 70 952 

8 734 80 968 

10 754 90 982 

15 792   
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Table 4.3 Chemical composition of 22 NiMoCr 3 7 material (wt %) [45]. 

C Si Mn P S Cr Mo Ni Al V Cu 

0.25 0.23 0.68 0.009 0.011 0.47 0.75 0.71 0.007 < 0.01 0.18 

 

Table 4.4 Temperature dependent mechanical properties of                                        

22 NiMoCr 3 7 material [133]. 

Tempearture (
o
C) 20 160 260 320 

Yield stress, ��.5 (MPa) 
563 549 536 523 

Young’s modulus, � (GPa) 
210 200 190 184 

Poisson’s ratio, $ 0.3 0.3 0.3 0.3 

 

4.4.1 A single plane strain element under tension  

The first test is a uni-axial test on a plane strain element with element size 0.4×0.4 

mm
2
. The loading and boundary conditions are shown in Figure 4.1. Using the 

equations given in the previous section and enforcing the consistency condition to 

determine �#, the differential equations for describing this problem are : 

ßRn�	ßRn = Ý  − �� K¤K+� ¥⁄ .+ K¤Km�n ¥⁄ oÍ  (4.30) 

ßRñ�	ßRn = Ý ©− �� K¤K+� ¥⁄ . + K¤K+�ñ ¥⁄ .ª  (4.31) 

ß[nßRn = V+��øU.  1 − ßRn�ßRn − $ ßRñ�ßRnÍ  (4.32) 

ß[ñßRn = $ ß[nßRn − � ßRñ�ßRn  (4.33) 

ß�r�ßRn = Ý  (4.34) 

ßpßRn = Ý�+1 − �.�zC� G��¥[§O (4.35) 
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  (4.36) 

where � and $ are Young’s modulus and Poisson ratio respectively. �D and �D� are 

the total strain and plastic strain in y-direction. �ô� is the plastic strain in z-direction.  

A four-noded linear element with reduced integration (CPE4R) in ABAQUS was 

used for the FE analysis. The Rousselier’s parameters, � and ��, were assumed to be 

2.62 and 5.78 × 10
8
, whereas the value of �� was set to be 0.5 percent. The solution 

of the problem was numerically obtained by integrating the set of Eqs.(4.30-4.35), 

using a Forward Euler scheme. This method was suggested by Aravas [110] and 

Zhang [112] and can provide near exact solutions if enough increments are used. 

Forward Euler integration was performed in order to get the solutions for this 

problem. This integration was performed from the initial yield strain to a strain of 1.0 

using 200,000 increments to ensure high accuracy.  

The comparisons between FE results obtained by user defined subroutines and the 

exact results are shown in Figures 4.2, 4.3 and 4.4. In these figures, the values of 

stresses, the equivalent plastic strain and void volume fraction are plotted as a 

function of the logarithmic strain ��D = ��+1 + T ��⁄ ., where T is the displacement 

in y-direction and �� is the initial element length. The results of the FE analysis agree 

very well with the exact solutions. 

 

 

 

 

 

 

Figure 4.1 Plane strain tension problem. 
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Figure 4.2 The values of stresses in y and z-direction as a function of                    

strain in y-direction. 
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Figure 4.3 The values of equivalent plastic strain as a function of strain in y-

direction.  

 

 

Figure 4.4 The void volume fraction as a function of strain in y-direction. 
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4.4.2 A single 3D-element under tension  

The second test is a tension test on a 0.4×0.4×0.4 mm
3
 brick element shown in 

Figure 4.5. Like the plane strain case, this model was loaded by applying the 

displacement in y-direction on the top surface of element so that the logarithmic 

strain reached 100 percent. The equations for describing this problem can be 

integrated numerically in a way similar to that explained in the previous section and 

are written as : 

ß[nßRn = �  1 − â− �� KîK+� ¥⁄ . + KîKm�n ¥⁄ oãÝ�Í  (4.37) 

ß�r��	ßRn = Ý�  (4.38) 

ßpßRn = Ý��+1 − �.�zC� G��¥[§O  (4.39) 

where 

Ý� = V û£ûünV û£ûün �	§� û£û+� þ⁄ .	
	 û£ûm�n þ⁄ oÍ	�	 û£û�r�� 	�	û£ûs ûsû�r��
  (4.40) 

An eight-noded brick element with reduced integration (C3D8R) in ABAQUS was 

used to model this test. The material properties, the initial void fraction, and the 

Rousselier parameters were taken to be the same as those used in the previous 

problem. The FE analysis results and the exact solutions for stress in y-direction, the 

equivalent plastic strain and void volume fraction are plotted as a function of �D in 

Figure 4.6, 4.7 and 4.8 respectively. These results show that the FE results are in 

good agreement with the exact solution. 
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Figure 4.5 Brick element under tension test. 

 

 

Figure 4.6 The values of stresses in y-direction as a function of strain in y-direction. 
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Figure 4.7 The equivalent plastic strain as a function of strain in y-direction. 

 

 

Figure 4.8 The values of void volume fraction as a function of strain in y-direction. 
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4.4.3 Tensile test of notched tensile specimen 

The final test is to demonstrate the implementation of UMAT and VUMAT for real 

engineering problems with multi-element meshes. It concerns the calibration 

procedure for estimating the Rousseiler parameters,	� and ��, for 22 NiMoCr 3 7 

material which has been presented in ‘Simulation of Nuclear Safety Test [45]’. FE 

models of notched tensile bars with different radii under tension are established. The 

values of � and �� used in running the model are varied until the FE results (load 

versus diametrical contraction) provide a best fit with the experimental data. Details 

of modelling and the results are discussed below : 

• Experimental testing 

The experimental data for tensile testing of 22 NiMoCr 3 7 material has been 

provided in [45]. This was obtained from 10 mm, 4 mm and 2 mm radius notched 

tensile specimens (Figure 4.9) tested at 100
o
C. During testing, the load and the actual 

diameter at the minimum section were continuously recorded.     

 

 

Figure 4.9 Cylindrical notched tensile specimen [45]. 
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• Finite element simulation  

The FE models of 3 different radius notched bars (10 mm, 4mm and 2 mm) under 

tension are employed to calibrate the values of � and �� (Figure 4.10). The element 

used to mesh each model is CAX4R (four-node biquadratic axisymmetric 

quadrilateral with reduced integration). The size of the element along the minimum 

section of each model is set to be equal to the value of Lc which relate to the inter-

inclusion spacing. From the fractographic examination of 22 NiMoCr 3 7 material, 

the value of number of inclusions per unit volume is Nv ≈ 2000 [45], so we can 

calculate the value of Lc from Eq.(4.21) which is 0.4 mm. 

 

 

Figure 4.10 The finite element meshes for the notched bars. 

 

• The calibration procedure  

The values of � and �� are tuned through the FE-model of 10 mm radius notched 

tensile bar until the FE results (load versus diametrical contraction) provide the best 

fit with the experimental data. Figures 4.11 and 4.12 show that the value of � and �� 

determine the breakpoint of rapid decrease of load corresponding to the initiation of 
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a macrocrack in the centre of the specimen. The bigger value of � or the smaller 

value of �� increase the growth rate of the softening part in Rousselier damage 

model.        

After varying the values of 	�� and � in the FE model, it was found that the curve 

which provided the best match with experimental curve is obtained with �� = 500 

MPa and � = 2.62. These values of 	�� and � are used again in the FE models of 4 

mm and 2 mm notched tensile bars which also provide a good agreement between 

FE results and the experimental data, as shown in Figures 4.13 and 4.14.  

The value of � = 2.62 is the same as calibrated in ‘Simulation of Nuclear Safety 

Test’ report [45], whereas the value of �� = 500 MPa obtained from UMAT and 

VUMAT is only 3.4% different from the one calibrated in the report [45]. Here, it 

can be concluded that the subroutine provides accurate results for the models 

analysed here. 

 

 

Figure 4.11 Comparison between the experimental data and FE results for 10 mm 

radius notched tensile bar (fix value of �� = 500 MPa vary value of �). 
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Figure 4.12 Comparison between the experimental data and FE results for 10 mm 

radius notched tensile bar (fix value of � = 2.62 and vary value of ��). 

 

 

Figure 4.13 Comparison between the experimental data and FE results for                                    

4 mm radius notched tensile bar (�� = 500 MPa and � = 2.62). 
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Figure 4.14 Comparison between the experimental data and FE results for                                    

2 mm radius notched tensile bar (�� = 500 MPa and � = 2.62). 

 

• Discussion 

As discussed in the preceding sections, the Rousselier damage model can define the 

softening behaviour of the material without introducing any failure criteria. The 

weakness of material comes from the development of void volume fraction (�) 

which depends on the cumulated volumetric plastic strain (Eq.4.19). Figure 4.15 

shows the variation of � and the corresponding collapse of stress in y-direction of the 

5 elements along the minimum cross section of FE model of 2 mm radius notched 

tensile bar. It can be seen that the longitudinal stress drops rapidly at the same 

position where the value of f starts rising sharply.   
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(a) 

(b) 

Figure 4.15 (a) The value of stress in y-direction and (b) void volume fraction of      

5 elements in the vicinity of the minimum cross section of FE-model                         

for 2 mm radius notched tensile bar. 
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4.4.4 Pure shear condition 

Another case study which can be used to assess the validity of Rousseleir damage 

model is the pure shear condition [134]. This is because under pure shear (��� = 0., 
the relationship between equivalent plastic strain and damage variable takes a simple 

form which can be proved as follows. 

By substituting Eq.(4.12a) into Eq.(4.19), one has 

�� = �"��+1 − �.��	zC� G ��¥	[§O (4.41) 

Since under pure shear condition, ��� = -p = 0, Eq.(4.41) can be transformed into an 

ordinary differential equation :  

ßpß�r� = +1 − �.��	 (4.42) 

Setting � = 	�� at "�� = 0, the analytical solution of Eq.(4.42) can be derived as : 

� = p\���r�m���r���o	p\
�   (4.43) 

By substituting �� = 0.0005 and � = 2.62, into equation above, the evolution of 

damage variable or void volume fraction with equivalent plastic strain can be 

obtained as shown in Figure 4.16. However, it is very difficult to define loading and 

boundary conditions to obtain pure shear condition (or zero hydrostatic pressure) in 

FE analysis, especially for elastoplastic problem. Therefore, this case study is not 

used for the validation of UMAT and VUMAT developed in this thesis. 
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Figure 4.16 The evolution of void volume fraction with the equivalent plastic strain 

under pure shear condition (�� = 0.0005 and D = 2.62). 

 

4.5 THE LIMITATION OF UMAT 

Although the user defined subroutine for implicit algorithm, UMAT, provides 

accurate results, as presented in the previous section, it has convergence problems 

when dealing with failed elements. This is because when an element loses its load 

carrying capacity resulting from a progressive degradation of the material stiffness, it 

provides a singular coefficient in the global stiffness matrix which leads to 

convergence problems.   

In order to avoid these numerical difficulties, two methods were suggested to 

simulate the material failure. The first method was based on the element removal 

which allowed the user to remove the failed element out of the model directly. This 

method was available in ABAQUS/Explicit. The second method was not to allow the 

material to fail completely by fixing a small amount of load-carrying capacity 

associated with the material failed. The remaining load-carrying capacity was 

controlled by a fixed yield function (non-hardening matrix material and constant �)  

at certain small values, as shown in Figure 4.17 [111]. This method can be used in 

the implicit FE algorithm. 
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Figure 4.17 Active and fixed yield surface [111]. 

 

4.6 SUMMARY  

In this chapter, Rousselier damage model is presented. This model is incorporated 

into the commercial FE code (ABAQUS) via user material subroutines, UMAT and 

VUMAT, for implicit and explicit finite element algorithms respectively. The 

correctness of these subroutines has been verified by performing analysis on FE 

models for single elements and notched tensile bars. Results from these models are 

in good agreement with the analytical solutions and the benchmark solutions 

provided in literature. However, UMAT suffers from convergence problems when it 

is used to simulate models containing failed elements. 
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CHAPTER 5 

GLOBAL APPROACH FOR A LARGE SCALE 

BENDING TEST 

5.1 INTRODUCTION 

The purpose of this chapter is to present the results of a structural integrity 

assessment of a large-scale test undertaken as part of the EU STYLE programme. 

This test is conducted on a welded pipe containing a circumferential through-

thickness crack subjected to a 4-point bending load. The assessment here used a FE 

model created in ABAQUS, with the weld residual stresses introduced by an 

iterative technique. Linear elastic fracture mechanics (LEFM) analysis was used to 

evaluate the mode I stress intensity factor, KI, for the defect. Elastic-plastic analyses 

were also performed to characterise the crack driving force, J, along the crack front. 

The predicted crack mouth opening displacement, CMOD, as a function of load was 

compared with the test results and the derived variation of J was used to predict 

crack initiation and growth. 

5.2 THE LARGE-SCALE MU2 TEST [5] 

A large-scale four point bending test was performed by CEA [5] as part of the 

STYLE project which was completed in June 2013. The test specimen, referred to as 

MU-2, was a welded pipe consisting of two lengths of Esshete 1250 austenitic 

stainless steel joined by a girth weld. The weld contained a short, deep weld repair, 

and a through thickness pre-crack was inserted at the centre of the repair. The main 

section of MU2 and the pre-crack position are shown schematically in Figure 5.1 and 

5.2 respectively. 

The MU2 pipe had overall dimensions of 600 mm length, 180 mm outer diameter 

and 35 mm wall thickness. Both ends of the specimen were welded to extension 

arms, which were manufactured from 304L stainless steel, to provide a 5 m four 

point bending span for the four-point bending experiment. The distance between the 

inner loading points was 1 m and between the outer loading points was 5 m. The 
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experimental set-up is illustrated in Figure 5.3. From this figure, the maximum value 

of bending moment applied to MU2 section during the test is equal to the total force 

applied by the hydraulic system. 

The experiment was divided into two main phases; pre-cracking test and ductile 

tearing test. The pre-cracking test was designed to generate a pre-crack of the 

dimensions and shape shown in Figure 5.2. To achieve this, a V-shaped slot was 

introduced into the middle plane of the repair weld by electro-discharge machining 

(EDM) prior to loading. Due to the high tensile residual stresses present, the 

specimen was subjected to a sinusoidal fatigue load between a compressive load of  -

16.7 kN and -58.7 kN, this loading reduced in the final stages of pre-cracking to -

37.6 kN, until a sharp, straight-fronted pre-crack was generated from the slot. The 

ductile tearing test was performed under sequences of loading and unloading to 

promote the ductile crack growth from the initial fatigue pre-crack and to indicate the 

stages of ductile tearing through ‘beach marks’ on the fracture surface. 

Unfortunately, the high tensile residual stresses precluded crack closure, and no 

beach marks were observed on the fracture surface following the test. Two clip 

gauges were attached at the outer surface of the EDM-slotting in order to measure 

the values of CMOD, as shown in Figure 5.4.  

Figure 5.5 presents the optical examination of the fracture surface after the test, 

revealing that the sharp pre-crack generated during Phase I was not completely 

symmetrical. The crack had a length of about 5 mm on one side of the slot and 8 mm 

on the other at the outer surface of the pipe. The crack extension generated from 

ductile tearing test was also not symmetrical as presented in Figure 5.6. The 

maximum extent of crack growth was about 2.0-2.5 mm in south location and about 

3 mm in north location respectively. This happened after the test specimen was 

subjected to the maximum load of 213.1 kN at the end of the test. In this state, the 

value of CMOD measured from the test was about 2.5 mm.  
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Figure 5.1 Schematic of MU2 pipe. 

 

 

 

Figure 5.2 Dimensions of the through thickness pre-crack. 
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(b) 

Figure. 5.3 (a) Set up for the large-scale four point bend experiment (view of south 

side of the pipe), and (b) loading arrangement for the experiment. 

 

 

 

Figure 5.4 Clip gauge position. 
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Figure 5.5 Post-test crack surface. 

 

 

(a)      (b) 

Figure 5.6 Stable ductile tearing; (a) south crack and (b) north crack. 
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5.3 FINITE ELEMENT ANALYSES  

A FE-model for the large scale four point bend test was established in ABAQUS 

[127]. Continuum elements with eight nodes and reduced integration (C3D8R) were 

used throughout the model. The total number of elements generated for the model 

was 463,582. The FE mesh for the specimen is presented in Figure 5.7. Other details 

of the model are as follows.  

• Model construction 

A three dimensional FE model was created according to the experimental set-up 

shown in Figure 5.3. In this model, the full test specimen including the MU2 test 

section, the two 304L extension pieces and the welding zones was taken as a single 

part. Due to the symmetry, one half of the full test specimen was modelled, with the 

symmetry conditions applied to nodes on the symmetry surface. The mounting rings 

were created as 3D discrete rigid shells of revolution with inner diameter exactly the 

same as the outer diameter of the cylinder. The positions of the mounting rings on 

the test specimen were set to be the same as the loading points and the support points 

in the experiment, Figure 5.8.  

• Introduction of cracks 

A through thickness symmetric circumferentially oriented pre-crack presented in 

Figure 5.2 was introduced into the FE model. This was achieved by using the 

interactive seam crack command. In this approach, a partition was created in the 

MU-2 test section in the crack plane. After this step had been completed, crack front 

and the direction of crack extension were defined in order to perform a contour 

integral analysis. 

• Contact conditions 

The contact between the test specimen and the mounting rings was defined by using 

the finite sliding surface-to-surface contact with frictionless tangential behaviour and 

hard contact normal behaviour. The master surface was defined both on the inner 

surface of the mounting ring and on its end faces as some overlap might have 

occurred during the simulation.  
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• Boundary and loading conditions 

The mounting rings were positioned at a distance between the supporting points of 

5.0 m and between loading points of 1.0 m. For the supporting point rings, all 

translations and rotations were prevented, with the exception of rotation about the z-

axis. The same constraints were applied to the loading point rings but with an 

applied downward vertical displacement. The latter constraint was applied at a single 

point on the outside surface of MU-2 section, opposite to the crack location to 

prevent movement in axial direction of the test specimen. All boundary conditions 

applied to the model are presented in Figure 5.9. 

• Material properties 

Two sets of tensile test data for unaged parent metal and unaged weld metal were 

used for the Esshete stainless steel. The data for parent metal was documented in 

Serco Assurance report, ‘A Constitutive Model for Parent Esshete 1250 and 

Associated Single Bead Weld Metal’[84]. The true stress/strain data for unaged weld 

metal were obtained from the tensile tests performed by EDF-energy [135]. The 

information about the tests is given in chapter 6. Young’s modulus values for parent 

and weld metals were 204.5 GPa and 157.85 GPa respectively.   

As the data for the 304L extension piece and the extension weld material for the test 

were not available, the material properties for 316L were used instead. A report 

published by Idaho National Laboratory [136] suggests that the tensile properties for 

316L and 304L are very close at room temperature. Young’s modulus for 316L 

parent and weld were taken as 195.6 GPa and 171.0 GPa respectively, with 

Poisson’s ratio of 0.294. The tensile data for both Esshete 1250 and 304L is shown 

in Figure 5.10. 

• Validation of the model 

In order to verify the loading and boundary conditions for the FE model, it was run 

using elastic material property of unaged weld metal only. The result of interest here 

was the value of stress intensity factor, KI, along the crack front with respect to the 

distance from the pipe inner surface. This relationship was compared with a standard 

solution of KI for circumferential through-thickness crack in cylinder which can be 

calculated as follows [40] : 
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�> = ��g�� + ��+�� − 2�5. + ������√@� (5.1) 

where ��� is the maximum bending stress in the uncracked cylinder. �g and �� are 

uniform stress and through wall bending stress respectively, which were assumed to 

be zero for this case. G1, G2 and G3 are the influence coefficients depending on crack 

size and pipe geometry. These parameters are listed in Table IV.3.4.10.1 of R6 

standard [40]. 

Figure 5.11 shows the values of KI along the crack front which obtained from three 

elastic FE models. These models have different mesh size along the crack front. 

These are 0.5 mm, 1.0 mm and 2.0 mm respectively (Figure 5.12). The results show 

that the values of KI obtained each model agrees well to within 6% of Eq.(5.1) except 

near the outer surface of the cylinder where the FE models predict a decrease in KI. 

This implies that for elastic FE analysis, the values of KI are independent of the mesh 

size between 0.5-2.0 mm. 

 

 

 

Figure 5.7 FE mesh for the specimen. 
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Figure 5.8 Assembly of the full test specimen and mounting rings. 

 

 

 

Figure 5.9 Boundary conditions applied to the full model. 
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Figure 5.10 Stress-Strain data for Esshete 1250 and SS316L materials. 

 

 

Figure 5.11 Comparison between R6-Calculation and elastic FE-results for KI along 

the crack front at a bending moment of 230 kN-m. 
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                      (a)                                            (b)                                             (c) 

Figure 5.12 The variation in mesh size along the crack front of FE models of MU2 

test : (a) 2.0 mm,   (b) 1.0 mm and (c) 0.5 mm.  

 

5.4 RESIDUAL STRESS MAPPING 

• Measured residual stress 

The measured residual stress data for weld Esshete pipe were given in large scale 

bending test simulation report [137, 138]. These values were obtained from the 

application of the deep-hole technique described by Son Do et al. [139]. Figure 5.13 

illustrates two lines of residual stress measurement, one along the centre line of the 

repair weld and through the pipe wall thickness, and a second directly opposite to the 

centre repair weld. In both cases, only the in-plane (i.e. hoop and axial) residual 

stresses were measured using incremental deep hole drilling, described by Son Do et 

al. [139]. 

• Mapping technique 

The residual stresses were introduced into the FE-model of the full test specimen, but 

without the presence of a crack. Two mapping zones for the repair weld and the 

remainder of original weld were defined according to the recommendation of Son Do 

and Smith [137, 138]. These are shown in Figure 5.13. The residual stress 

distribution was input into 2 mapping zones of the FE model directly as an initial 

condition by ABAQUS user-defined subroutine named SIGINI. Mapping zone 1 was 

used to map the residual stresses obtained from the repair path, whereas the stresses 

measured from opposite repair path were transferred to mapping zone 2. This 

process was done by assuming that the stresses along the measuring line were the 

same everywhere within the mapping zones.  

Crack front 
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Since the residual stress field introduced directly into the FE-model is always in non-

equilibrium state, an equilibrium step (static step with no additional load applied) 

was performed in order to obtain a self-equilibrated distribution of residual stress 

before applying loads or displacement to the model. This step resulted in a difference 

between the initial stress input and the equilibrium residual stress obtained. To 

minimise this error, an iterative method [140] was used to modify the input values of 

initial stress to reproduce a desired residual stress distribution in the FE model. The 

adjustment equation used was as follows: 

	�
>^�L&�
� = 	�
>^�L&� + a�	�
Ô�g�L'�ß − 	�
�L&�L&� �  (5.2) 

where 	�
>^�L& is the initial stress input into the FE-model, 	�
Ô�g�L'�ß is the 

measured residual stress and 	�
�L&�L& is the resultant residual stress obtained after 

an equilibrium step. The superscript, i, in Eq.(5.2) represents the ith adjustment and a is an adjustment factor, taken to be 1 here. The procedure starts with i = 0 and 	�
>^�L& = 	�
Ô�g�L'�ß. After 	�
�L&�L& is obtained from the FE analysis, 	�
>^�L& 
for the next iteration is calculated by using Eq. (5.2). This procedure was repeated 

until an agreement between 	�
�L&�L& and 	�
Ô�g�L'�ß was obtained. 

• Mapped stress 

Figure 5.14 shows the converged residual stress profiles after applying the iterative 

technique. This was achieved after 16 iterations. The output stresses in both hoop 

and axial direction along the repair path agree to within 9% of the measured values. 

The output hoop stresses also agree with the measured values opposite the weld 

repair except in the region between the inner pipe surface and 17 mm (r = 70 mm) 

from the inner pipe surface. The maximum difference between mapped and 

measured hoop stress in this region was ~ 25 MPa. 

The overall agreement between mapped and measured axial stress along the opposite 

repair path was not as good. The difference between mapped and measured values 

was about 54 MPa at the inner surface, increased to 68 MPa near the mid pipe 

thickness, and then decreased to about 34 MPa at the outer pipe surface. 

The converged residual stresses were then mapped onto the cracked models for 

subsequent simulations with loading. With the introduction of the crack, the residual 
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stresses redistributed again and showed high stress values ahead the crack tip, as 

shown in Figure 5.15. Since the values of redistributed stress in the vicinity of the 

crack are higher than the yield strength of weld material, it generates the plastic 

strain around the crack front before the external load is applied. 

 

 

Figure 5.13 The location of two lines of residual stress measurement and mapping 

zones for the FE model. 

 

 

 

Figure 5.14 The measured stress and their corresponding iterated values from        

the FE model after an equilibrium step. 
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Figure 5.15 The elevated stress with the introduction of the crack                         

along the crack front. 

 

5.5 RESULTS AND DISSCUSSION  

The FE model was first loaded by assuming that the materials behaved elastically. 

The model was run with and without residual stresses. In all cases, the model was 

run with the crack present. Load versus CMOD behaviour was plotted together with 

the data from the experiment, as shown in Figure 5.16. The effect of residual stresses 

on the elastic response was not significant and the compliance computed from load 

vs. CMOD curve was approximately 1.42 × 10
-3

 mm/kN. 

The FE model was then run with elastic-plastic material properties. The relationship 

between load and CMOD is plotted in Figures 5.16 and 5.17 respectively. When the 

residual stresses were not present, the non-linear behaviour initiated at about 85 kN, 

whereas with the residual stresses, the non-linear behaviour occurred as soon as the 

pipe was subjected to external loading. The reason for this behaviour is that the 

residual stress had already produced plastic tensile strain around the crack front prior 

to any primary load being applied.  

The relationship between load and CMOD with the residual stress present is in close 

agreement with the experiment up to the value of CMOD 0.4 mm. Within this 

region, CMOD ≤ 0.4 mm, the difference of reaction force obtained from FE-results 

and experiment is lower than 9% as shown in Figure 5.17.  
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At CMOD > 0.4 mm, the reaction force obtained from FE analysis are higher than 

the experimentally measured load by approximately 14 kN. This is likely to result 

from a number of limitations in the analysis. Firstly, the influence of crack extension 

on the global load versus CMOD has not been reflected in the analysis, which was 

only influenced by the initial crack length. Crack growth will reduce the applied load 

at a given value of CMOD, bringing the FEA and experimental data closer together. 

Secondly, the material properties in the heat affected zone were not taken into 

account in this simulation. Thirdly, the model did not consider any influence of 

residual stresses at the welds joining the MU-test section to the extension arms. 

 

 

Figure 5.16 A comparison of CMOD versus reaction force                                             

between experiment and FE models at full scale CMOD. 
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Figure 5.17 A comparison of CMOD versus reaction force                                             

between experiment and FE models at the values of CMOD < 0.5 mm. 

 

• J-integral and crack extension 

Figure 5.18 presents the variation of the J-integral along the crack front (or pipe 

radius) at a bending moment of 213 kN-m taken from the FE models. For the elastic 

loading case, the value of J increases linearly from the inner surface to 34 mm from 

the inner surface or at r = 89 mm. This linear variation agrees with the R6-

Calculation [40] which is presented in Figure 5.11. However, the values of J drop 

rapidly at the outer surface of the pipe because of the effect of plane stress condition. 

As expected, the J-integral values along the crack front are higher after running the 

model with elastic-plastic material properties due to the development of plasticity at 

the crack-tip. In this case, the location of the maximum value of J changes from 

being close to the outer surface in the elastic loading case to be at 27 mm from the 

inner wall (r = 82 mm). After introducing the residual stress, J-integral values along 

the crack front are higher by over 35%. This is because of the combined primary and 

secondary loading at the crack front. The maximum value of J-integral, however, is 

still at the same location along the crack front as in case without the introduction of 

residual stress.   
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The variation of J with applied moment at 82 mm from the inner pipe surface is 

shown in Figure 5.19. This clearly illustrates the influence of the residual stress on 

the value of J. With the introduction of residual stresses, the value of J is higher at 

the start of loading in comparison with the case where residual stresses were not 

present. Then, the difference in the value of J between these 2 cases, with and 

without residual stress, increases slightly with the increase of load. This supports the 

hypothesis that residual stresses increase the potential of crack initiation and the rate 

of crack propagation in the starting period of loading. However, as the load rises to 

approximately 160 kN-m, J starts to rise sharply and the difference in the values of J 

for the two cases reduces rapidly and then remains constant. This is because as 

plasticity develops in ahead the crack tip, the residual stress is relaxed and its 

contribution to the crack driving force progressively reduces. 

The value of applied moment at any state of crack growth can be determined by 

using the information from the J-R curve for unaged material [141], which is 

represented by a power law equation as follows:  

J = 0.429 ∆��.}ä} (5.3) 

For example, if crack initiation was defined at 0.2 mm of tearing, the value of J 

corresponding to the initiation of crack can be calculated from Eq.(5.3) which is 

equal to 140 kJ/m
2
. By using the relation in Figure 5.19, an initiation moment in 

MU-2 test is predicted to be 81 kN.m. Given the loading arrangements for the test, 

this corresponds to an applied load of 81 kN.    

The J-integral distribution across the crack front has subsequently been used to 

estimate the amount of stable crack extension in the final state of the test. This was 

done by using Eq.(5.3). The results are shown in Figure 5.20. The predicted level of 

stable crack growth was estimated from the analysis (including residual stresses), 

both at an applied load of 213 kN and at CMOD of 2.5 mm, i.e. the final conditions 

in the MU-2 test. For the applied load of 213 kN, the maximum value of stable crack 

growth is predicted to be 1.6 mm. This value is about 2.6 mm at a final CMOD of 

2.5 mm. The maximum value of ductile crack growth estimated is close to the test 

result (in south direction) which is 2.0-2.5 mm as shown in Figure 5.6a.    
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Figure 5.18 Comparison of J-integral along the crack front (pipe radius)                                 

at a bending moment of 213 kN. 

 

 

 
Figure 5.19 The variation of J-integral as a function of applied moment                                  

at 82 mm from the inner pipe surface. 
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Figure 5.20 Estimation of stable crack growth along the crack front (pipe radius)                    

in the final state of the test. 

 

5.6 SUMMARY  

This chapter has presented a detailed three-dimensional finite element assessment of 

the MU2 welded pipe test undertaken within the STYLE project. In this assessment, 

fracture mechanics parameters have been used to predict the crack initiation load in 

the test and the extent of crack initiation along the crack front. The analyses have 

taken into account the weld residual stress present in the test as characterised by deep 

hole drilling. The details of FE analysis of MU2 test are summarised in Figure 5.21. 

The following conclusions can be drawn from the analysis. 

• Residual stresses are shown to influence the load versus crack mouth opening 

displacement behaviour during the test. An earlier onset of non-linear 

behaviour and a greater crack opening is predicted at a given load when 

residual stresses are included. 

• The model predicts the location of crack initiation at 27 mm from the pipe 

inner surface which is close to the position observed in the actual test in south 

direction (about 24 mm). By assuming that the initiation of crack occured at 

0.2 mm of ductile tearing, the initiation load was predicted to be 81 kN.  
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• The maximum extent of crack growth was predicted to be between 1.6 mm 

and 2.6 mm, whereas the actual crack growth observed in the test was around 

2.5 mm in south direction and 3 mm in north direction. 

 

 

 

Figure 5.21 The steps of FE analysis of MU2 test. 
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CHAPTER 6 

DETERMINATION OF ROUSSELIER MODEL 

PARAMETERS FOR ESSHETE WELD MATERIAL 

6.1 INTRODUCTION 

In order to develop a mechanistic model for MU-2, a series of tensile tests and 

ductile fracture toughness tests on Compact-Tension specimens were performed 

within the STYLE EU programme. These tests are referred to ‘MU-5 tests’ and the 

resulting experimental data was used as the basis for calibration of parameters for 

Rousselier ductile damage model.  

This chapter focuses on the determination of Rousselier model parameters for 

Esshete weld material based on the results from tensile and compact-tension tests. 

Details of the FE-model used for this determination are presented. This includes the 

ABAQUS user defined subroutine for Rousselier damage model (presented in the 

previous chapter) and its implementation in the FE models. The main conclusions 

from this work are drawn in the last chapter. 

6.2 EXPERIMENTAL TESTS 

6.2.1 Smooth tensile test specimens 

The tensile tests for the Esshete weld material was performed by EDF energy [40, 

135] at ambient temperature. The data were obtained from tests on two smooth round 

bars extracted from the weld material in a second pipe of Esshete material. This pipe, 

called MU-5, was welded under identical conditions as that used for MU2 but 

without the repair weld. The extracted specimens were oriented in the axial direction 

with respect to the pipe. The geometry and the cutting profile of the specimens as 

extracted from the pipe are shown in Figure 6.1.  

Figure 6.2 shows the relationship between load and the actual gauge length 

displacement recorded from the tensile tests of the two smooth round bars, 

designated here as specimen 8 and specimen 9. These specimens had an original 
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4 

R6 

9.37 

diameter of 3.83 mm and 3.88 mm and failed at approximately 5.1 mm and 5.8 mm 

displacement respectively, soon after they reached the maximum applied load of 

about 8 kN.      

 

    

 

 

 

 

 

                  (a)              (b) 

Figure 6.1 (a) Geometry and dimensions of tensile test specimen, and                                 

(b) cutting profile for obtaining a specimen blank from the MU-5 pipe                     

(dimensions are in millimetres). 

 

 

Figure 6.2 Load-displacement curves for smooth round tensile bars. 
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6.2.2 Side-grooved compact tension (CT) specimens 

Deep cracked CT specimens, with 20% side grooves (10% on either side), were 

made from the same weld pipe as the tensile specimens. The specimens were 

extracted with the crack plane located at the weld centre-line. Specimens were 

oriented with the loading direction parallel to the axial direction and crack growth 

direction in the circumferential direction of the pipe. The specimens had standard 

size, i.e. 25 mm thick, with the length of fatigue pre-crack chosen to provide high 

constraint conditions. It is recommended [28] that the length of fatigue pre-crack 

from the machined notch must not be less than 5% of the total crack size, a0 or 1.5 

mm. The schematic of CT specimen and the cutting diagrams from the MU-5 pipe 

are presented in Figure 6.3. 

The tests were carried out on two CT specimens by EDF Energy at room temperature 

[142], which provided the upper and lower bounds of crack growth resistance curve. 

However, the specimen which provided the lower bound value has been considered 

here for comparison and calibration to ensure that the calibrated model was 

appropriate to predict structural behaviour in a conservative manner. This specimen 

contained an initial crack length of 23.77 mm.   

During testing, using the unloading compliance method [28, 143], the applied load 

reached a maximum value of approximately 81 kN at a Crack Mouth Opening 

Displacement (CMOD) of 1.75 mm before reducing to 64 kN at a CMOD of 3.5 mm 

(with ductile crack growth and the associated change in compliance). This can be 

seen in Figure 6.4. The level of crack growth seen in this Figure is approximately 4.5 

mm.  

Figure 6.5 showed the crack resistance curve with measured data points and an 

associated power-law regression curve of the test data. The equation of the 

regression curve was presented in Eq.(5.3). From this Figure, the value of toughness 

defined by a 0.2 mm offset line and a 1.5 mm Exclusion line were 0.245 and 0.726 

MPa-m respectively.      
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(a)       (b)  

Figure 6.3 (a) Geometry and dimensions of side-grooved CT specimen and                         

(b) cutting profile for extracting the side-grooved CT specimen blank from            

MU-5 pipe (dimensions are in millimetres). 

 

 

Figure 6.4 Load-CMOD curve for the side grooved CT specimen. 

 

 

 

0

20

40

60

80

100

0.0 1.0 2.0 3.0 4.0

L
o
ad

 (
k
N

)

CMOD (mm)

Experimental data

FE model : Elastic

FE model : Elastic Plastic

Girth weld 



127 

 

 

Figure 6.5 Crack resistance curve for the Esshete 1250 weld metal. 

 

6.3 MATERIAL PROPERTIES  

A true stress true strain curve for the Esshete weld material was derived from the 

load-displacement curves presented in Figure 6.2. As the test specimens failed at true 

strain values of approximately 0.22 and 0.25, the relationship between true stress and 

true strain beyond this point was extrapolated by using the Ramberg-Osgood 

equation: 

" = [V + Z[\V G [[\O^ (6.1) 

The value 
Z[\V  was set to be 0.002 in order to have the yield offset equal to the 

accepted value of strain of 0.2%. The data was fitted with a normalising stress (��) 

of 267 MPa and a strain hardening coefficient (n) of 4. The true stress-strain data 

from this extrapolation is given in Table 6.1. 

The values of elastic modulus and yield stress were estimated from true stress strain 

curve plotted using data in Table 6.1. The elastic modulus was estimated from the 

linear section of the curve whereas the yield stress value was determined using 0.2 
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percent offset method. This process was performed in a spreadsheet and provided the 

values of elastic modulus and yield stress of 157.85 GPa and 468 MPa respectively.  

Table 6.2 illustrated the tensile properties for Esshete 1250 weld metals provided in 

literatures. This Table showed that the values of elastic modulus and yield stress 

determined in this study were similar to the tensile data for ESAB OK 69.86 

electrodes presented in the Serco Assurance report [84]. The value of elastic 

modulus obtained in this study was close to the elastic value for Single pass groove 

weld, whereas the yield stress value was in the middle between the values of yield 

stress for single pass grooved weld and Multi-pass Butt weld. 

As no estimate of Poisson’s ratio was provided, a value of 0.3 was assumed. In 

addition, the material density was assumed to be constant for all materials at 7,850 

kg/mm
3
 [142].   

 

Table 6.1 The stress-strain data for Esshete weld metal. 

True strain True stress True strain True stress +"÷ , %. +�÷ , ×Ë�. +"÷ , %. +�÷ , ×Ë�. 
0.0 0 15.6 780 

0.2 468 20.7 840 

1.9 544 30.6 930 

2.4 556 41.4 1,005 

3.4 578 51.0 1,060 

4.4 599 61.2 1,110 

6.3 638 71.5 1,155 

8.3 676 81.2 1,193 

10.2 710 91.0 1,228 
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Table 6.2 The Tensile data for Esshete 1250 weld metals at room temperature. 

Reference Weld metal 
Elastic modulus 

(GPa) 

0.2% Proof stress 

(MPa) 
Weld Type 

[84] 

ESAB OK 69.86 159.09 - 183.33 320-351 
Single pass 

Groove 

ESAB OK 69.86 201.59 - 208.78 553.9-565.9 Multi-pass Butt 

[144] ESAB OK 69.86 167.7 534.4 Multi-pass Butt 

[145] ESAB OK 69.86  522-531 Multi-pass Butt 

[146] Nicrex UE-1  530 Multi-pass Butt 

[147] Nicrex UE-1  629.5 Weld Pad 

Estimation 

from Table 

6.1 

Esshete weld 

metal 
157.8 468  

 

6.4 FINITE ELEMENT MODELS FOR THE CALIBRATION OF 

ROUSSELIER MODEL  

The FE models for smooth round tensile bar and side-grooved CT specimen were 

generated in ABAQUS. These models were used in the determination of Rousselier 

model parameters for Esshete weld material. Details of the models are given as 

follows : 

6.4.1 FE model of tensile specimen 

• Geometry, loading, and boundary conditions 

Two FE models to simulate the tensile tests for specimens 8 and 9 were created in 

ABAQUS/Explicit. These models had a diameter of 3.8 mm and 3.88 mm 

respectively. Only a quarter of the specimen was modelled due to axial and planar 

symmetry. The normal displacements in the minimum section and the axis of 

symmetry were constrained. To reproduce the test, a displacement of velocity (vy) 

was applied in y-direction on the top edge of the model. The details of this model are 

presented in Figure 6.6. 
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• Meshing 

The FE model to describe the tensile specimen was composed of 520 axisymmetric 

elements, ABAQUS type CAX4R. There were 10 elements through the radius and an 

element width/height at the center of the specimen was set to be equal to 0.1 mm 

(Figure 6.6).      

• Validation of the model 

The FE-model was analysed as an elastic-plastic problem in order to check the 

accuracy of the boundary conditions, loading, and the finite element mesh. A large 

deformation FE analysis was performed to account for geometric none-linearity. The 

relationship between load and the applied displacement in axial direction obtained 

from FE-analysis is in good agreement with the experimental data, Figure 6.2. 

 

 

      (a)                              (b)  

Figure 6.6 FE model of the tensile specimen:  

(a) loading and boundary conditions and (b) the finite element mesh (520 elements). 
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6.4.2 FE model of side-grooved CT specimens 

• Geometry, loading, and boundary conditions 

Figure 6.7 shows a 3-dimensional FE element model constructed to simulate the 

side-grooved CT specimen. Reflective symmetry about crack plane and the 

longitudinal mid-plane enable the use of one quarter model as shown. This model 

was created by assuming that the model has straight a crack front with 23.77 mm 

initial crack length.  

In this analysis, the loading pin was modelled as a rigid body and was assembled to 

the CT model by surface-to-surface contact with frictionless tangential behaviour 

and hard contact normal behaviour. The CT model was loaded by applying a 

displacement to the centre of the pin in the vertical (y) direction, whereas all other 

motions of the pin were restrained.  

• Meshing 

A continuum element with 8 nodes and reduced integration (C3D8R in ABAQUS) 

was employed for the CT specimen FE model. As the element size around the crack 

area needs to be varied between 50-200 µm [148, 149], partitions were created on 

the crack plane in order to form a dense mesh along the crack front, as shown in 

Figure 6.7b. The transition of element size between the dense mesh area and the rest 

of specimen was controlled by “the Advancing front technique” available in Mesh 

controls module in ABAQUS/CAE.      

• Validation of the model 

The validity of the FE model of the CT specimen was confirmed by comparing FE 

results with standard solutions and the experimental data. For this purpose, the 

model was run as both elastic and elastic-plastic problems. The validation of FE 

results is discussed below:    
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Elastic model  

A linear elastic FE model of the CT specimen was run in ABAQUS/Standard. The 

displacement applied to the pin was 0.385 mm. This value corresponded to the value 

of CMOD of 0.77 mm and the applied load 81.3 kN respectively. Values of the 

Mode I stress intensity factor, KI, along the crack front at a given load were 

examined. These values was compared with the standard solution of KI for a side-

grooved CT specimen, calculated as follows [29]. 

�> = h�íí�¿ � GgM¿O   (6.2) 

where P is the load applied to the specimen, ai is an initial (or current) crack length, 

W is the specimen width, B is the specimen thickness and BN is the specimen 

thickness measured at the side grooves. � GgM¿O is the compliance function given by : 

� GgM¿O = +5
g ¿⁄ .+��g ¿⁄ .� U⁄  0.866 + 4.64 Gg¿O − 13.32 Gg¿O5 + 14.72 Gg¿O� − 5.6 Gg¿O»Í  
Figure 6.8 presents the values of KI along the crack front obtained from FE analysis. 

These values agree very well with the standard solution with the difference less than 

5% except in the area adjacent to the side grooved surface. This is because the area 

near the outer surface of specimen is influenced by the stress concentrating effect of 

the side-groove.  

Elastic-plastic model  

An elastic-plastic FE model was also analysed in ABAQUS/Explicit. The result of 

interest in this case is the relationship between load and CMOD. This result was 

compared with the experimental data obtained from the test as presented in Figure 

6.4. It can be seen that the FE results agree well with the experimental data up to 

about 2.0 mm of CMOD. It should be noted here that there was crack propagation 

during the test, whereas the FE models were run with a single crack size.   
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(a) 

 

(b) 

Figure 6.7 FE model of the CT specimen: 

(a) loading and boundary conditions and (b) the finite element mesh. 
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Figure 6.8 The comparison of FE solutions for KI along the crack front                     

at load 81.3 kN. 

 

6.5 RESULTS AND DISCUSSION 

6.5.1 The initial void volume fraction, � 

Table 6.3 presents the chemical composition of the parent Esshete 1250 and its 

associated weld. These values were taken from the Serco Assurance Report [84] and 

were used to estimate the values of �� by Franklin’s formula, Eq.(4.23). The results 

of this calculation are given Table 6.4. It gives the average value of �� for Esshete 

weld material as 0.0004. This value was in the middle range of the values of �� for 

austenitic stainless steels and its filler metals, as given in Table 6.5. 

6.5.2 The critical void volume fraction at fracture, � 
In these FE simulations, fc is defined as the void volume fraction at fracture. This 

value is used as the criterion for deleting the failed elements. According to the 

discussion presented in [58], the value of  fc can be chosen as 0.15 for general metals. 
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Table 6.3 Chemical compositions of the Parent Esshete and associated welds [84]. 

Material C Si Mn P S Cr Ni Mo V Cu Al Sn Nb 

Esshette 1250 tube 0.097 0.45 6.23 0.025 0.004 14.71 9.38 0.95 0.28 0.13 0.004 0.005 0.92 

MMA electrode 0.100 0.40 5.5 ≤0.03 ≤0.01 16.50 9.00 1.00 0.30 - - - 0.80 

5mm MMA electrode 0.100 0.32 6.8 0.023 0.007 16.50 8.60 1.06 0.26 0.05 <0.01 <0.01 1.01 

4mm MMA electrode 0.099 0.31 6.9 0.024 0.008 16.30 8.70 1.06 0.25 0.08 <0.01 <0.01 0.98 

3.25mm MMA electrode 0.100 0.32 7.0 0.025 0.007 16.10 8.60 1.06 0.27 0.05 <0.01 <0.01 1.02 

2.5mm TIG electrode 0.100 0.48 4.67 0.015 0.008 17.50 8.31 1.02 0.25 0.12 0.001 0.001 1.08 

 

Table 6.4 The initial void volume fraction, ��, for Parent Esshete and associated Welds  

(Estimated by using Franklin’s formula). 

Material �� 

Esshette 1250 tube 0.0002 

MMA electrode 0.0005 

5mm MMA electrode 0.0004 

4mm MMA electrode 0.0004 

3.25mm MMA electrode 0.0004 

2.5mm TIG electrode 0.0004 
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Table 6.5 The values of �� and Lc from the literature and from                                  

the Rousselier calibration. 

Reference Material �� Lc (µm) Specimen 

[148] 316L(N) 0.00072 125 CT 

[149] Austenitic cladding layer 0 50 SENB 

[150] 

20MnMoNi 5 5 steel with 

an austenitic stainless 

steel cladding 

0.00021 120 
Tensile bar 

and CT 

[64] Austenitic weld 0.0001 400 
Notched 

tensile bar 

[151] E308L (filler metal) 0.001 100 SENB 

Rousselier 

parameter 

calibration 

Esshete weld metal 0.0004 50 
Side-grooved 

CT 

 

6.5.3 Rousselier parameters (� and ��) and crack tip mesh size (Lc) 

As described in [64, 129], the parameter � can be set as 2.0 for materials containing 

the value of �� equal or less than 0.001, so that only �� and Lc need to be determined. 

The value of �� was first calibrated via the FE model of the tensile specimen test. 

This specimen has high ductility with no major stress or strain gradients and the 

effect of Lc on the results of this model is very small. Once the value of �� was 

obtained for the material of interest, Lc was then determined from a calibration using 

the FE model of side-grooved CT specimen and the JR-curve data shown in Figure 

6.5. In this case, the strain gradient is very high at the crack tip and the predicted 

crack resistance strongly depends on the mesh size.  

First calibration 

The FE model for a smooth tensile test specimen, discussed in section 6.4.1, was 

simulated in ABAQUS/Explicit with the implementation of VUMAT. The value of �� was chosen by trial and error using different values until a close agreement was 
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reached between the analytical and experimental data. From this, a values of �� = 

170 MPa was obtained which provided the best match with the displacement at 

failure, as shown in Figure 6.9. This value was considerably lower than the first trial 

value (�� = 538 MPa) computed from the equivalent stress at fracture, as suggested 

in [129]. 

The value of �� = 170 MPa was then used in the FE model of the side-grooved CT 

specimen, outlined in section 6.4.2, in order to determine the value of Lc. The 

process of calibration was performed by fitting the relationship between the values of 

J-integral and crack growth (∆a) obtained from FE analysis with crack resistance 

curve shown in Figure 6.5. From this FE analysis, the J-integral value at any loading 

point was determined from the increment of area under load versus CMOD. If U 

represents the area under the curve up to a point at constant displacement 

corresponding to fracture, the J-integral at this point is then determined in the same 

manner as in the test [28]:   

J = 
�	�í]�\ ©1 − +�.�ò�	�	�.¾g�\ ª  (6.3) 

where Bn = net specimen thickness, ¹� = length of initial uncracked ligament, � = 2 

+ 0.522(b0/W),and W = specimen width.  

The corresponding value of ∆a was derived from the number of failed elements 

ahead of the crack front in the FE model. However, as the number of failed elements 

along the crack front was not uniform, a nine-point average measurement technique 

was used to average the value of ∆a [28, 29]: 

∆� = �� G∆g§	
	∆g�5 + ∑ ∆����75 O (6.4) 

where ∆��, i = 1-9, are the values of crack growth between the measurement 

positions 1 to 9, as shown in Figure 6.10. 

It was found that the value of �� = 170 MPa, which was very low compared with the 

suggested value (�� = 538 MPa), provided a very high growth rate of the softening 

part of Rousselier yield function. This value made the elements in the area ahead of 

the crack front fail rapidly at the early stage of loading. From this, the FE model of 
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side-grooved CT specimen could not provide a close agreement between the analysis 

and the experiments.  

The reason of this problem may be explained by the work published by Taylor and 

Sherry [152] who studied the mechanism of ductile fracture in the aluminum alloy 

AL2024-T315 using combination of synchrotron X-ray and focused ion beam 

tomography. They found that the distribution of � below the fracture surface of CT 

specimen was considerably different from that observed in notched specimens 

although these specimens were extracted from the same virgin material. They also 

showed that the void volume fraction in CT specimen was far more localized toward 

the fracture surface than that observed in the notched tensile specimens. In addition, 

the maximum value of � just under the fracture surface of the CT specimen was 

almost two times higher than that in the notched specimen. These indicate the 

difference in the rupture mechanism between notched tensile and CT specimens. 

According to this it may be not possible to define a single set of ductile damage 

parameters for all test specimen geometries in ductile failure simulation, because, for 

some materials, their failure mechanism may be not only dependent on the 

microstructure but also the test specimen geometry which influences the local stress 

and strain state in the fracture process zone.     

Based on above, the values of �� and t� were, therefore, recalibrated using only the 

FE model of the side-grooved CT specimen which has a level of constraint closer to 

that experienced by with the MU2 test specimen.    

Second calibration 

The FE model of side-grooved CT specimen was run in ABAQUS/Explicit, and 

VUMAT for the Rousselier damage model was incorporated into the model for the 

analysis. The calibration started by fixing the element dimension ahead the crack tip 

to be equal to 100×100×100 µm
3
 and varying the value of �� between 468 MPa and 

535 MPa. The results of this calibration are presented in Figure 6.11. It can be seen 

that the value of �� affects the slope of the J-R curve. This is because �� controls the 

softening part of the Rousselier yield function which affects the initiation load for 

the microcrack along the crack front of the model. For the same load conditions, a 

higher value of �� increases the crack initiation load which results in an increase in 
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the slope of the J-R curve. From Figure 6.11, value of �� = 506 MPa provided the 

slope of the J-R curve close to the one obtained from the fracture test.  

�� = 506 MPa was then used in the FE analysis of the smooth tensile bar. As 

expected, this model predicted a greater displacement at fracture of approximately 

6.4 mm which is 0.8 mm greater than the value in the test, as shown Figure 6.9.  

The FE model of the side-grooved CT specimen was rerun again in order to calibrate 

the value of Lc. For this, different crack front mesh sizes, ranging from Lc = 50-100 

µm
3
 were considered with the other parameters fixed (D = 2 and �� = 506 MPa). The 

minimum distance containing the array of these fine elements was set to be at least 

5Jmax/�D where Jmax is the maximum value of the J-integral at failure of a pre-

cracked specimen [40]. The results of this analysis are presented in Figure 6.12. It 

shows that an increase in the mesh size elevates the crack growth resistance. The 

best material behaviour is obtained by using a value of Lc = 50 µm. This mesh size, 

50 µm, is consistent with the metallography of Esshete 1250, presented in [153], 

which illustrates that the average grain size of Esshete 1250 is less than 100 µm, 

Figure 6.13. 

The global effect of crack front mesh size is presented in Figure 6.14 which shows 

that the size of crack front elements affects the change of slope of load versus 

CMOD curve. The curve obtained from the FE model with Lc = 50×50×50 µm
3
 

provides a good fit to the experimental data up the value of CMOD 0.9 mm. After 

this point, the load gradually decreases below the experimental curve.  
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Figure 6.9 Predicted (FE) and experimental load vs. displacement curves                                         

for the smooth round bar (specimen 9). 

 

 

 

                                       (a)                                                      (b) 

Figure 6.10 (a) Locations for crack length increment (∆a) measurement [28] and                       

(b) the final crack surface from FE analysis of side-grooved CT specimen. 
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Figure 6.11 Predicted (FE) and experimental crack resistance (J-∆a) curves for                                         

side-grooved CT specimen (Lc = 100×100×100 µm
3
). 

 

 

 

Figure 6.12 Predicted (FE) and experimental crack resistance (J-∆a) curves for                                         

side-grooved CT specimen (��= 506 MPa, D = 2.0). 
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Figure 6.13 Optical micrographs (magnification × 20) of Esshete 1250 with different 

preparations: (a) unaged before etching; (b) aged before etching;                             

(c) unaged after etching; (d) aged after etching [153]. 

 

 

Figure 6.14 Predicted (FE) and experimental load-CMOD curves                                           

for a side-grooved CT specimen.  
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6.6 SUMMARY 

The main aim for the work presented in this chapter was to determine Rousselier 

model parameters, ��, ��, �, �� and Lc, for Esshete weld material. In this work, � and �� were defined as material constants as discussed in [58, 129], and �� was estimated 

from the manganese sulphide (MnS) inclusions using Franklin formula. The 

remaining parameters, �� and Lc, were chosen by trial and error using different 

values until close agreement was reached between FE predictions and experimental 

results.  

It was not impossible to define a set of �� and Lc which provided reasonable 

agreement between FE predictions and experimental data for both smooth tensile 

bars and CT specimens due to the difference in the failure mechanism of these 

specimens. J-R curve for Esshete weld material, therefore, was the only available 

test result used to determine the values of �� and Lc.  

The Rousselier model parameters for Esshete weld material obtained from this work 

are summarized in Table 6.6. These parameters are subsequently used to predict 

crack initiation and growth in MU-2 test. This is presented in chapter 7.  

 

Table 6.6 Values of Rousselier parameters calibrated for the Esshete weld material. 

Rousselier parameter Calibrated Value 

The initial void volume fraction, �� 0.0004 

The critical void volume fraction, �� 0.15 

Material parameter D 2.0 

Material parameter �� 506 MPa 

Crack tip element size, Lc 50 µm 
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CHAPTER 7 

PREDICTION OF DAMAGE IN A LARGE SCALE 

BENDING TEST USING ROUSSELIER MODEL 

7.1 INTRODUCTION 

In this chapter, the Rousselier damage model, incorporated in the FE analysis of the 

MU2 test, is presented. The model is used to predict crack initiation and crack 

extension in the MU2 specimen. The analysis was performed by employing the 

Rousselier model parameters for Esshete weld material calibrated in the manner 

discussed in chapter 6. The results obtained from this analysis were compared with 

the results obtained by fracture mechanics approach presented in chapter 5 in order 

to assess the validation of the analysis and to gain new insights into the influence of 

residual stresses on ductile tearing and the capability of the Rousselier model to 

simulate the behaviour observed. Details of FE analysis and the conclusions drawn 

from this work are also presented in this chapter. 

7.2 TRUNCATED FINITE ELEMENT MODEL OF MU2 TEST 

The Rousselier damage model was developed to simulate the behaviour of cracked 

structures and components directly, without the need to use the usual fracture 

mechanics parameters to interpret the local crack tip behaviour. This model has been 

used in FE simulations to predict ductile failure in many cracked components. 

However, the difficulty arises when Rousselier model is employed to analyse ductile 

failure in large-scale components. This is because Rousselier model is a mesh-size-

dependent damage model in which the element size in a high stress and strain 

gradient region must be small enough to represent the average interparticle spacing. 

The FE model consequently contains a very large number of elements, e.g. in excess 

of more than a million elements, resulting in high computational costs.   

The number of elements in the model can be reduced by using submodelling 

technique. This technique enables the user to study the area of interest in detail by 

modelling only the important section of the model, i.e. a submodel or truncated 
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model. Using submodelling technique in ABAQUS involves two main steps. The 

first step is to create and analyse the FE model of the full structure which is called 

global model. This model can be created using a relatively coarse mesh and possibly 

a simplified geometry. Once the global model is analysed, the truncated FE model 

containing only the important or critical section of the structure is created and 

analysed by prescribing the boundary conditions obtained from the global model.          

Based on above procedure, the submodelling technique was employed for the 

simulation of MU2 test using Rousselier damage model. Details of the model are as 

follows :     

• Model construction 

This analysis involves two FE models; a global model and a truncated model. As the 

full FE model of the MU2 test detailed in Figures 5.7-5.9 of chapter 5 was used as 

the global model, only the truncated FE model of the MU2 test was established in 

ABAQUS. This model focuses on the middle section of MU2 test specimen which 

contains both Esshete parent and weld materials. Due to symmetry, only one half of 

the test specimen was modelled with symmetry boundary conditions applied on the 

symmetry surface. The model was generated using the eight-node reduced 

integration elements (C3D8R). As the mesh size in the region ahead of the crack 

front must be controlled, partitions were created on the crack plane in order to 

generate a dense mesh around the crack front. The geometry of the truncated FE 

model and the partitions on the crack plane are shown in Figure 7.1 

• Mesh generation  

From the calibration of the Rousselier parameters described in chapter 6, a uniform 

square-section mesh size of 50 µm was required in the region ahead of the crack 

front to represent the average critical interparticle spacing. This element size was 

very small compared to the thickness of the MU2 pipe (35 mm) and hence affects the 

overall number of elements generated for the model. With this element size, 700 

elements were needed to be generated through the pipe thickness with more than 

3,000,000 elements for the entire truncated model.  
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In order to reduce the number of elements in the vicinity of the crack tip, the 

dimension of elements parallel to the crack front, and within the plane strain region 

of the specimen, was increased form 50 µm to 200 µm. The dimension of elements 

towards the plane stress region, the inner and outer edge of the pipe, and in the crack 

growth direction was maintained as 50 µm. Following this, 70 elements were 

generated through pipe thickness in the crack plane with 608,000 elements for the 

model in total. The specimen mesh is shown in Figures 7.2 and 7.3 respectively. 

• Boundary and loading conditions 

In this analysis, the displacement fields obtained from the FE analysis of the global 

model of MU2 test, described in chapter 5, were prescribed to both end surfaces of 

the truncated model. This process was followed by using the submodelling technique 

available in boundary condition module in ABAQUS. The other constraint applied 

was to prevent the movement in the axial direction by fixing a single point on the 

outside surface of model, opposite the crack location. All the boundary conditions 

applied to the model are shown in Figure 7.4.      

• Validation of the truncated FE model 

The truncated FE model was run with reference to elastic and elastic-plastic material 

properties in ABAQUS/Standard. The results of interest here are the relationship 

between load and Crack Mouth Opening Displacement (CMOD) and the variation in 

the J-integral along the crack front. These results are compared with those obtained 

from the global FE model of the MU2 test, presented in chapter 5, to validate the 

truncated FE model and to provide confidence that the truncated FE model can be 

used to represent the full FE model of the MU2 test.  

Figure 7.5 shows a comparison between the global load versus CMOD behaviour of 

the MU2 test obtained from both global and truncated FE models. It can be seen that 

the truncated model gives results of load versus CMOD which are very close to the 

global model results. At the same value of CMOD, the difference of reaction force 

obtained from the global and the truncated FE models is less than 1%. This confirms 

that the truncated FE model can be used to represent the global FE model in terms of 

the global load-displacement behaviour.  
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Figure 7.6 presents the variation of the J-integral along the crack front. It shows that 

the J values obtained from the global and truncated FE models are not significantly 

different for the elastic case. For elastic-plastic analysis the values of J-integral 

obtained from the truncated FE model agree well with the global FE model results 

only in the regions adjacent to the inner and outer surfaces; between the inner surface 

and 5 mm from the inner pipe surface (r = 55-60 mm), and between 8 mm from the 

outer pipe surface and the outer surface (r = 82-90 mm). Within this region, the 

values of the J-integral analysed from both models are different by less than 4%. 

Outside these regions, the values of J-integral obtained from the truncated model 

were lower than those obtained from the global model by approximately 5.5%. The 

maximum difference in the J-integral value between global and truncated models 

was 6.1% and occurred at 27 mm (r = 82 mm) from the inner pipe surface. This is 

likely to be due to the increased mesh refinement in the vicinity of the crack tip 

within the truncated model.  

 

                               

            (a)                                 (b)             

Figure 7.1 (a) Truncated FE model of the MU2 test and                                               

(b) partitions on the crack plane. 
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(a)      (b) 

Figure 7.2 (a) FE mesh overview and (b) FE mesh generated on the crack plane                    

for the truncated model of MU2 specimen. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Close-up of crack front region and the FE mesh                                                      

for the truncated model of MU2 specimen. 
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Figure 7.4 Boundary conditions applied to the truncated FE model of MU2 

specimen. 

 

 

 

Figure 7.5 A comparison of CMOD versus reaction force                                              

between global and truncated FE models. 
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Figure 7.6 Comparison of J-integral along the crack front (pipe radius)                                

between global and truncated FE models. 
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by less than 6%. For mapping zone 2, the maximum difference of converged residual 

stresses in axial and hoop directions between the two FE models are 30.2 MPa and 

20.2 MPa respectively. As described in section 5.4, these converged residual stresses 

were mapped onto the cracked truncated model for subsequent simulation of the 

MU2 test.  

 

 

Figure 7.7 The converged stress profiles generated for full and truncated FE models. 
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central region of the crack plane. This is because the stress state in this region is 

under plane strain. On the other hand, in the area near the free surfaces, the stress 

triaxiality is predicted to be lower because a state of plane stress exists in this region. 

As the crack growth is highly influenced by the level of stress triaxiality ahead of the 

crack front, the initiation of crack growth and the maximum extent of crack growth 

can be predicted to occur in the central area of the crack plane.     

Figure 7.8 also shows that in the central region of crack plane, the level of stress 

triaxiality is reasonably uniform in a direction parallel to crack front, except the areas 

adjacent to the inner and outer surfaces. This information supports the assumption 

that in the simulation of MU2 test using Rousselier damage model, the dimension of 

the elements ahead of the crack front can be extended from 50 to be 200 µm in the 

direction parallel to the crack front without any significant effect on the results. 

 

 

Figure 7.8 The contour plot of stress triaxiality on the crack plane after the 

redistribution of residual stresses due to the introduction of crack. 

 

7.4 RESULTS AND DISSCUSSION   

7.4.1 Fracture mechanics approach  
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applied load and CMOD, and the value of J-integral along the crack front with 
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respect to distance from the pipe’s inner surface. Figure 7.5 shows that the truncated 

FE model in the presence of residual stress provides the relationship between CMOD 

and applied load within 2% of results obtained from global FE model analysis.   

Similar to the case without the residual stress, the truncated FE model in the 

presence of residual stress produced the variation of J-integral along a crack front 

which agreed well with the global FE model results only in the regions adjacent to 

the free surfaces. Within the region between the inner surface and 5 mm from the 

inner pipe surface (r = 55-60 mm) and the region between 3 mm from the outer pipe 

surface and the outer surface (r = 87-90 mm), the values of the J-integral obtained 

from both global and truncated models are different by less than 4%. Outside these 

regions, the values of J-integral obtained from the truncated model were lower than 

those obtained from the global model by approximately 6.5%, as shown in Figure 

7.6. The maximum difference in the J-integral value between the two FE models was 

8.2% and occurred at 29 mm (r = 84 mm) from the inner pipe surface. However, 

both truncated and global FE models provide the same position of the maximum 

value of J-integral which was at 27 mm from the inner pipe surface (r = 82 mm). In 

addition, at CMOD of 2.5 mm, J-integral values along the crack front are higher by 

about 11% in average after introducing the residual stress to both FE models. 

These values of J-integral along the crack front were used to estimate the amount of 

stable crack extension along the crack front in the final state of the test (CMOD = 2.5 

mm) with reference to Eq.(5.3). This provided a lower prediction of crack extension 

than the case using the global FE analysis by about 8.1%, as illustrated in Figure 7.9. 

However, the positions of maximum crack growth predicted by truncated FE model 

was consistent with that predicted by the global FE model to be between 25-30 mm 

from the inner pipe surface (i.e. r ∼ 80-85 mm).  

7.4.2 Rousselier damage model 

The truncated FE model for MU2 test with the introduction of residual stress was 

rerun in ABAQUS/Explicit with VUMAT for the Rousselier damage model 

incorporated in the model for the analysis. This analysis was performed using the 

Roussleir parameters presented in Table 6.6. The results from this analysis are as 

described below :  
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• Crack initiation  

The crack initiation and propagation in the MU2 specimen were estimated from the 

failure of elements occurring on the crack plane of the truncated FE model. A part of 

the FE model ahead of the crack front, where the crack was expected to initiate, was 

examined in greater detail. Figure 7.10 shows the dimensions of this part of the 

model. It indicates that crack initiation position, defined by the failure of the first 

element ahead the crack front, is predicted to be located between 21 mm to 28 mm 

from the inner pipe surface (i.e. r = 76-83 mm). This crack initiation position 

corresponds to a value of CMOD of 0.073 mm and bending moment of 

approximately 37 kN-m.  

• Crack propagation 

The crack propagation profile is presented in Figure 7.11. It can be seen that the 

crack extended from the crack initiation position in a direction normal to the crack 

front. As the high stress triaxiality existed in the region between 21 – 28 mm (Figure 

7.8) from the inner pipe surface, the crack extended more rapidly in this region. In 

the regions adjacent to the inner and outer surfaces, the crack extended more slowly 

because these were within the low stress triaxiality zone.  

The estimation of stable crack growth along the crack front in the final state of the 

test, CMOD = 2.5 mm, is shown in Figure 7.9. It can be seen that Rousselier damage 

model provides a lowest estimation of the maximum crack growth when compared 

with the results obtained from the fracture mechanics approach. The maximum crack 

extension estimated by Rousselier model is about 2.1 mm and occurs at between 

20.3-25.3 mm from the inner pipe surface (r ∼ 75-80 mm), whereas the prediction 

from fracture mechanics approach provide the maximum values of crack extension 

of between 2.3 and 2.6 mm at 27 mm (r = 82 mm) from the inner pipe surface. 

However, both approaches give similar final crack shapes which correspond well to 

the test results in south direction, Figure 5.6a. 

• Bending moment and crack extension 

Figure 7.12 shows the relationship between maximum crack extension and the 

applied bending moment, predicted by fracture mechanics approach and Rousselier 

damage model. A significant difference between the two approaches is that fracture 
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mechanics approach predicts a stable crack growth of 0.08 mm at the beginning of 

loading due to the effect of residual stresses, whereas the Rousselier model predicts 

the same value of stable crack growth at a bending moment of 160 kN-m. However, 

both fracture mechanics approach and the Rousselier model predict a slow crack 

growth between the starting period of loading and the bending moment of 160 kN-m. 

After this point, the crack is predicted to extend rapidly with the increase of applied 

bending moment.  

 

 

Figure 7.9 Estimation of stable crack growth along the crack front (pipe radius)                     

in the final state of the test (CMOD = 2.5 mm). 
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    (a)                       (b) 

Figure 7.10 (a) A part of FE truncated model ahead the crack front and                                        

(b) the crack initiation zone. 

 

 

   (a)     (b)              (c) 

Figure 7.11 The crack propagation profiles : (a) at CMOD of 1.2 mm, (b) at CMOD 

of 2.0 mm and (c) at CMOD of 2.5 mm (final stage of the test). 
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Figure 7.12 Relationship between the maximum crack extension and the applied 

bending moment predicted by fracture mechanics approach and Rousselier damage 

model. 

 

7.5 SUMMARY 

This chapter presents the Rousselier damage model as applied to the FE simulation 

of ductile tearing of the MU2 test. The simulation used the Rosselier model 

parameters which were calibrated in chapter 6. In this analysis, a submodelling 

technique was employed in the model construction in order to reduce the number of 

elements required for the model. The results obtained from this analysis are 

compared with the results obtained from fracture mechanics approach. The following 

conclusion are drawn :     

• Crack initiation and propagation as predicted by Rousselier model is highly 

influenced by the level of stress triaxiality ahead the crack front. 

• For the MU2 test, the Rousselier model has predicted the location of crack 

initiation in the region between 21 mm and 28 mm from the inner pipe 

surface. By assuming that the initiation of crack occurred at 0.05 mm of 

ductile tearing, the initiation load was predicted to be 36.6 kN-m. 

• The maximum extension of crack as predicted by the Rousselier model was 

2.1 mm and occurred between ∼20 mm and 25 mm from the inner pipe 
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surface. The fracture mechanics approach predicted the maximum value of 

crack extension to be about 2.3 mm for the  truncated FE model and about 

2.6 mm for the global model at 27 mm from the inner pipe surface. 

• The Rousselier damage model provided a lower estimation of crack extension 

between 9-19% along the crack front compared with that derived from the 

fracture mechanics approach. 

• Both fracture mechanics and Rousselier damage model predicted a similar 

final crack shape which correspond closely to the test results in south 

direction (Figure 5.6a). These results represent a positive step towards to 

achieve the goal to use the micro-mechanical model, i.e. Rousselier model, to 

analyses the failure behaviour of welded structures and components.   
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

Structural integrity assessment of components and structures in safety driven 

environments, such as nuclear power plants, is extremely important. New techniques 

have been continually developed over the last four decades for such assessments. 

These include numerical techniques, such as the Finite Element Method (FEM), 

which have been developed for various thermo-mechanical analyses required for the 

assessment. FEM can now be used with many commercially available software 

codes such as ABAQUS, which is available on many high-end computational 

platforms. This software has the capability of modelling linear, non-linear, time-

dependent, temperature dependent material behaviour under complex loading 

conditions. It incorporates many 'global' parameters, such as J-integral, for the 

characterisation of cracked components and structures. It also allows the 

development of sophisticated micro-mechanical models based on 'local' approach of 

fracture assessment which usually employs a damage parameter for such 

characterisations. The main task for the users in these cases is to first implement 

these models via 'user routines'. This requires the development of a compatible 

computer code based on the mathematical formulation of the model and its rigorous 

testing and validation against the established benchmarks. This was the first major 

task of this research programme. Once successfully completed, the next challenge 

was to use the model for simulating a complex but real life case study.  This was 

provided by the European (STYLE) project. A part of this project required the 

assessment of a weld pipe repair in the presence of a residual stress field. This was 

achieved by using both global and local approaches and comparing these 

assessments with the experimental data. 
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8.1 CONCLUSIONS 

Welded structures in a power station endure operational loads together with residual 

stresses introduced during manufacture and repair. It is, therefore, necessary to 

understand the combined effect of mechanical loading and residual stresses on the 

ductile fracture behaviour of these structures in order to provide an accurate 

structural integrity assessment. Recently, STYLE (Structural integrity for lifetime 

management-non-RPV component) performed a large scale bending test on a welded 

steel pipe containing a circumferential through-thickness crack (the MU2 test). The 

data obtained from the tests was used to support the FE models developed in this 

research to study the impact of high magnitude repair-weld residual stresses on 

ductile crack initiation and growth. 

In this research, a three-dimensional FE model of MU2 test was developed using 

ABAQUS. The weld residual stress field was introduced into the FE model as initial 

stresses using an iterative method. The parameters of conventional fracture 

mechanics (global approach) and Rousselier damage model (local approach) were 

employed to study the combined influence of primary and residual stresses on ductile 

fracture behaviour including crack initiation and growth. The main contributions 

from this research can be summarized as follows :   

8.1.1 The implementation of Rousselier damage model in ABAQUS 

The Rousselier model was chosen as the micro-mechanical model for 

implementation in ABAQUS and subsequent FE simulation of MU2 test. This model 

defines the softening of the material by a single damage parameter and the fracture 

proceeds from the competition between hardening and damage. It is not necessary to 

introduce a critical value of the damage variable. In addition, the number of 

parameters in the model which need to be defined is less than other micro-

mechanical models, such as the well known Gurson model.  

In this research, the Rousselier model was implemented into ABAQUS via the user 

defined subroutines for ABAQUS/Standard and ABAQUS/Explicit modules, i.e. 

UMAT and VUMAT. The subroutines were developed based on the integration 

algorithm proposed by Aravas and Zhang as discussed in sections 3.3 and 3.6. The 
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validation of these subroutines was checked by comparing the FE results obtained 

from the implementation of these subroutines with the analytical and other 

benchmark solutions. This process was presented in section 4.4 and showed that 

UMAT and VUMAT provide accurate results. However, the UMAT developed in 

this work shows convergence problems when the elements start to fail. The 

suggestion for further development of UMAT to overcome this limitation is given in 

section 4.5.   

8.1.2 The simulation of a challenging case study (MU2 test)   

One of the main challenges in this research was to establish a three-dimensional FE 

model of the MU2 test which is a complex case study relevant to residual stresses in 

weld components in nuclear industry. To achieve this, novel modelling techniques of 

meshing and submodelling, were used in the construction of the model. This 

included an iterative method used for generating the input residual stress fields. This 

technique enables to obtain the redistribution of residual stresses in the component 

after the introduction of crack (crack initiation). Details of this technique are 

discussed in section 5.4.     

Details of various procedures used to establish the FE model for MU2 test are given 

in chapters 5, 6 and 7. Together with the process of the implementation of fracture 

mechanics and Rousselier models, this case study provides a sound basis for 

structural integrity assessment of welded engineering components used in nuclear 

power plant.  

8.1.3 The new understanding of the influence of residual stress on ductile 

fracture 

As mentioned before, the influence of residual stress on ductile fracture was studied 

via the FE simulation of MU2 test. The results of this simulation show that 

Rousselier damage model provides a lower estimate of crack extension along the 

crack front than the global fracture mechanics approach. However, both fracture 

mechanics approach and the Rousselier model predict similar crack shapes which 

correspond closely to the test results in south direction, c.f. Figure 5.6(a). The main 

conclusions of this research are as follows : 
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• When the crack initiates in the residual stress zone of welded components, 

the residual stresses in this zone redistribute in order to obtain self-

equilibrium. This process results in higher residual stress values ahead of the 

crack front which are in excess of the yield strength of the weld material. 

• After the initiation of crack, the effect of redistributed residual stresses on the 

global behaviour was not significant in the calculation based on elastic 

behaviour. However, for elastic-plastic behaviour, these stresses generate 

plastic strain around the crack front which affects the global behaviour of the 

component. For example, the non-linear behaviour of global load versus 

CMOD was clearly shown in the very early part of loading, Figure 5.15.    

• The numerical results indicated that the presence of the residual stress led to a 

reduction in the load carrying capacity of the STYLE test specimen geometry 

under four-point bending.   

• Residual stresses reduce the load carrying capacity of the cracked 

components which results in the reduction of crack initiation load and 

increases of the maximum crack extension. 

• Residual stresses increase the rate of crack propagation in the early period of 

loading. However, this effect decreases with the increase of crack growth and 

converge to the case without residual stresses. This is because of the 

relaxation of residual stresses in the materials.      

• The Rousselier model results indicate that crack initiation and propagation is 

highly influenced by the level of stress triaxiality ahead the crack front, i.e. 

the crack initiates and extends more rapidly in high stress triaxiality zone. 

8.2 RECOMMENDATION FOR IMPROVING THE ACCURACY OF THE 

FE MODEL 

In this research, there are differences found between the results obtained from FE 

simulations and the experiments. These pertain to the global load vs CMOD and the 

crack extension at the end of the test. This may be because of certain limitations of 

the analysis. Additional work is suggested in order to improve the accuracy of the FE 

simulations. 
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Recommendations for improving the relationship between global load and CMOD 

• The material properties of the heat affected zone and the influence of residual 

stresses in the weld joint between the MU2 specimen and the extension arm 

need to be taken into account in the FE analysis.     

• A different residual stress defining technique which includes the knowledge 

of the history of prior deformation in the structure, such as the Eigenstrain 

method [154], may be used to define the initial residual stresses in the model. 

Recommendations for improving the final crack extension 

• The evolution of void volume fraction in the Rousselier damage model needs 

to include the effect of deviatoric plastic strain or the contribution of new 

voids that are nucleated with plastic strain. 

• In the calibration of Rousselier model parameters, the effects of residual 

stress field need to be included in the analysis. 

8.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

The simulation work carried out and presented in this thesis can be extended in 

several ways as described below :  

User defined subroutine for Rousselier damage model 

• Including the effect of deviatoric plastic strain or the contribution of voids 

nucleation into the evolution equation for void volume fraction. 

• Improving the solution method used for solving the set of non-linear 

equations in the Rousseleir model [Eqs.(3.22)-(3.26)]. This can be achieved 

by using a trust region method [121] in the early stage of calculation to avoid 

convergence problems and reduce the number of iterations in the 

computation.   

• Modifying the user defined subroutine for ABAQUS/Standard, UMAT, to 

run the model under failure condition by fixing a small amount of load-

carrying capacity in the failed material.  
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Application of the developed methodology 

• Applying the methodology developed here to study the effects of residual 

stresses on other problems, such as the pipe with different crack shapes and 

orientations. 

• Using the methodology with other finite element software packages, such as 

the open source Code Aster, to benchmark the computational results. 

• Developing the user defined subroutine which itself performs automatic 

calculations to obtain self-equilibrium of the residual stress fields.  
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APPENDIX I 

COEFFICIENTS IN EQUATION 3.31 
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APPENDIX II 

COEFFICIENTS IN EQUATION 3.65 
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where   
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Here, w+, -i = j = 1,23 have been already defined in Appendix I. 
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APPENDIX III 

COEFFICIENTS IN EQUATION 3.66 

C�� = 5-A'�� + 3GB��3B�� − -A'�� + 3GB��3B��6 ∆⁄  

C�� = 5-A'�� + 3GB��3B�� − -A'�� 	+ 3GB��3B��6 ∆⁄ 	 
C�� = 5-A'�� + 3KB��3B�� − -A'�� + 3KB��3B��6 ∆⁄  

C�� = 5-A'�� + 3KB��3B�� − -A'�� + 3KB��3B��6 ∆⁄  

where  

 ∆= -A'�� + 3KB��3-A'�� + 	3GB��3 − -A'�� + 	3GB��3-A'�� + 3KB��3 
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APPENDIX IV 

THE SCHEMATIC FLOW DIAGRAM OF UMAT 

 

 

Start time increment 

i = 1 

 

Calculate 89:; = <89:; => + ∆89: 
 

Calculate trial stress tensor, ?9:>@ 

Set the value of  

• Volumetric plastic strain increment, ∆8A = 0 

• Deviatoric plastic strain increment, ∆8C = 0 

Update equivalent plastic strain, D;C = D;C> + ∆D;C   

Update subsequent yield stress, ?E 

     ∆8A, ∆8C 

Calculate  

• Deviatoric component of trial stress tensor, F9:>@ 

• Hydrostatic pressure of trial stress tensor, G>@  

• Equivalent stress of trial stress tensor, H>@  

 

(##) 
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Update 

• Hydrostatic pressure, G = G>@ + I∆8A 

• Equivalent stress, H = H>@ − 3J	∆8C 

   

Determine the increment of void volume fraction, ∆K  

Update K for current iteration, K = K + ∆K 

Calculate coefficients in Eq. (3.31) or in Appendix I 

• L��, L��, L��, L��, M�, M� 

•  

Update the value of  

• Volumetric plastic strain     →						 ∆8A = ∆8A + OA 

• Deviatoric plastic strain      →						 ∆8C = ∆8C + OC 

 

Determine the correction values for  

• Volumetric plastic strain, OA 

• Deviatoric plastic strain, OC 

 



180 

 

 

 

 

Update equivalent value of plastic strain tensor and 

void volume fraction at the end of time increment 

• D;C = D;C> + ∆D;C 

• K = K> + ∆K 

i = i + 1 

i  <  Max. allowed 

number 

Yes 

No  

STOP 
 (Not converge) 

|OQ|	RS	TOCT > 

Tolerance 

No  

Update stress and strain tensor at the end of increment 

• ?9: = −GU9: + H 	VWXYZCYZ� 

• ∆89:A = �
)∆8AU9: + )

� 		VWX
YZ
CYZ�	∆8C 

• 89:; = 89:; -[3 + Δ89: − ∆89:]  

 

Update 

• Hydrostatic pressure, G = G>@ + I∆8A 

• Equivalent stress, H = H>@ − 3J	∆8C 

 

     ∆8A, ∆8C 

Yes  

(##) 
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Determine the flow direction → 	^9: = )
� 		VWX

YZ
_`aYZ� 

Calculate coefficients in Eq.(3.65) or Appendix II   

• L̅��, L̅��, L̅��, L̅��, c��, c��, c��, c�� 

Calculate coefficients in Eq.(3.66) or Appendix III 

• d��, d��, d��, d�� 

Evaluate the four constants in Eq.(3.70) for computing CTM for 

pressure dependent plasticity model 

• ef, e�, e�, e), eg      

h9:ijA = ef 12 <U9iU:j + U9jU:i= + e�U9:Uij + e�^9:^ij + e)U9:^ij + eg^9:Uij 
Determine the CTM for current time increment using Eq.(3.69)  

Go to next time increment 
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APPENDIX V 

EXTRACTED VARIABLES DEFINED IN UMAT 

 

• For stress update 

No. 
Variable in 

UMAT 
Meaning Remark 

1 FF0 ∅  
�
l − R<ϵn�= + fσ�Dexp !u�lv�"  

2 FQ0OLD 
�∅
��  

�
ρ  

3 FP0OLD  
�∅
��  − f

ρDexp !−pρσ1"  

4 FEM 
�∅
�H1 = �∅

�|}�  − �~<�}�=
�|}� = −h = Slope on hardening curve 

5 FF 
�∅
�H2 = �∅

�f   q ��ρ
�f + Dexp !−pρσ1" �σ� − fp	 �

�
ρ
�f�  

6 HEF(1,1) 
�h1
�∆��  0 

7 HEF(1,2) 
�h1
�∆��  1 

8 HEF(1,3) 
�h1
��   0 

9 HEF(1,4) 
�h1
��   0 

10 HEF(2,1)   
�h2
�∆��   1 − f  

11 HEF(2,2)   
�h2
�∆��   0 
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No. 
Variable in 

UMAT 
Meaning Remark 

12 HEF(2,3)   
�h2
��    0 

13 HEF(2,4) 
�h2
��   0 

14 EMH1 
�h1
�H1 = �h1

�|}�  0  

15 EMH2 
�h1
�H2 = �h1

�f   0  

16 FH1 
�h2
�H1 = �h2

�|}�  0  

17 FH2 
�h2
�H2 = �h2

�f   −∆ϵ�  

18 FP0 Q = �∅
��  − �

ρDexp !−pρσ1"  

19 FP(1) 
��
��  

�
σ1ρ2Dexp !−pρσ1"  

20 FP(2) 
��
��  0 

21 FP(3) 
��
�H1 = ��

�|}�  0 

22 FP(4) 
��
�H2 = ��

��   − �
v�l�Dexp ! u�lv�" �σ� !ρ + �

�u��" − ρ	f	p ���
���  

23 FQ0 P = �∅
��  

�
ρ  

24 FQ(1) 
��
��  0 

25 FQ(2) 
��
��  0  
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No. 
Variable in 

UMAT 
Meaning Remark 

26 FQ(3) 
��
�H1 = ��

�|}�  0 

27 FQ(4) 
��
�H2 = ��

��   
��ρ
��  

28 DIVID Ω  1 + ∆ϵ�   

29 CC(1,1) w��  1  

30 CC(1,2) w��  0  

31 CC(2,1) w��  0  

32 CC(2,2) w��  
�

��∆��  

33 H1EP 
�H1
�∆��  0  

34 H2EP 
�H2
�∆��  

�u�
��∆��  

35 H1EQ 
�H1
�∆��  1  

36 H2EQ 
�H2
�∆��  0  

37 RHO ρ  
�u�
�u��  

38 FZEB 
���
��  

�u��
-�u�3�  

39 EPR  exp � u�lv��  
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No. 
Variable in 

UMAT 
Meaning Remark 

40 DEPR  Dexp � u�lv��  

41  H�  εn�  

42  H�  f  

43  h�  ∆ϵ�  

44  h�  -1 − f3∆ϵ�  

• For the consistent tangent modulus (CTM) 

No. 
Variable in 

UMAT 
Meaning Remark 

45 H1EP 
�H1
�∆�� =

�|}�
�∆��  0  

46 H1EQ 
�H1
�∆�� =

�|}�
�∆��  1  

47 H1P 
�H1
�� = �|}�

��   0  

48 H1Q 
�H1
�� = �|}�

��   0  

49 H2EP 
�H2
�∆�� = �f

�∆��  
�u�

��∆��  

50 H2EQ 
�H2
�∆�� = �f

�∆��  	0  

51 H2P 
�H2
�� = �f

��  0  

52 H2Q 
�H2
�� = �f

��  0  



186 

 

APPENDIX VI 

UMAT FOR ROUSSELIER MODEL 

C============================================================= 

C  A USER MATERIAL SUBROUTINE FOR ROUSSELIER MODEL   

C     DEVELOPED BY 

C     SUTHAM ARUN  

C      THE UNIVERSITY OF MANCHESTER  

C    CONTACT:sutham.arun@manchester.ac.uk  

C This subroutine based on the algorithm proposed by 

C     N.Aravas and Z.L.Zhang     

C============================================================= 

C 

 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

  1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN, 

  2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS, 

  3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT, 

  4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC) 

C 

  INCLUDE 'ABA_PARAM.INC' 

C 

  CHARACTER*80 MATERL 

  DIMENSION STRESS(NTENS),STATEV(NSTATV), 

  1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

  2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

  3 PROPS(NPROPS),COORDS(3),DROT(3,3), 

  4 DFGRD0(3,3),DFGRD1(3,3) 

C 

  DIMENSION  EPLAS(6), SE(NTENS),  SDE(NTENS), 

 1    S(NTENS), DEP(NTENS), EET(NTENS),  

 2    DDE(NTENS,NTENS),     DDP(NTENS,NTENS),       

 3     SA(NTENS),HEF(2,4),   CC(2,2), 

 4    FQ(4),    FP(4),   DW(6),    DJ(6)  

C 
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 PARAMETER (ZERO = 0.D0,OP5 = 1.5D0,ONE = 1.0D0,TWO = 2.0D0, 

  1    THREE = 3.0D0,FOUR = 4.0D0,SIX = 6.0D0, 

  2    TOL = 1.D-14,MNI   = 100) 

C 

  DATA DW/1.0,1.0,1.0,0.5,0.5,0.5/ 

 DATA DJ/1.0,1.0,1.0,0.0,0.0,0.0/ 

C------------------------------------------------------------- 

C   

C The variables and parameters in UMAT : 

C  CLAME    =  Lame's constant  

C   C1K  = Bulk modulus, K 
C  C2G      =  Material constant, 2G  
C    C3G   =  MaterIAl constant, 3G  
C    C3K    =  Material constant, 3K  
C   D      =    Rousselier Parameter 

C  DDE  = CTM of elastic part, D+,��n  

C  DDP  = CTM of plastic part, D+,���
 

C  DH  = The slope on the hardening curve  

C  DEP  = The increment of plastic strain, ∆ϵ+,� 
C  DEMP  = Volumetric plastic strain increment, ∆ϵ� 
C  DEEQP  = Deviatoric plastic strain increment.∆ϵ� 
C  DF  = Void volume fraction increment, ∆f 
C    E          =    Young's modulus 

C  EEQPT  = Equivalent plastic strain, εn�  
C  EET     =  Elastic strain tensor, ϵ+,n 
C  EPLAS  = Plastic strain tensor, ϵ+,�  
C   F0      =    Initial void volume fraction, ff 
C  FT  = Void volume fraction, f 
C  G   =  Shear modulus, G 
C  H  = Subsequent yield criteria for each  

C     increment 

C  NVALUE  =  Number of ordered pair of hardening data 

C  POISSON    =    Poisson's ratio, ν 
C  P  = Hydrostatic pressure, p 
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C  PE  =   Hydrostatic pressure, p�� 
C   RHOT  = Relative density, ρ 
C   S1     =    Rousselier Parameter, σ� 
C  SA  = Flow direction,	n+,  
C  SDE  = Deviatoric component of trial stress  

C     tensor, S+,�� 
C  SE  = Trial stress tensor, σ+,�� 
C  SEQ  =  Equivalent values of stress tensor, q  
C  sigdif = Parameter for checking if material has  

C     already yield 

C  SM  =  Mean values of stress tensor, σ� 
C  YS  = First Yield Stress, σ� 
C-------------------------------------------------------------- 

C The state variable is stored as: 

C  STATEV(1,2,..,NTENS) = Elastic strain tensor 

C  STATEV(NTENS+1,NTENS+2,..,2*NTENS) = Plastic strain tensor 

C  STATEV(2*NTENS+1) =  Equivalent plastic strain  

C  STATEV(2*NTENS+2) =  Void volume fraction 

C  STATEV(2*NTENS+3) =  Relative density 

C-------------------------------------------------------------- 

C  User needs to input: 

C   props(1) = Young's modulus, E 

C   props(2)   =   Poisson's ratio, POISSON 

C    props(3)   =   First Yield Stress, YS 

C   props(4) = Rousselier Parameter, S1     

C  props(5) = Rousselier Parameter, D      

C  props(6) = Initial void volume fraction, F0 

C  props(7..) =  Set of hardening data 

C------------------------------------------------------------- 

C Subroutine used in UMAT: 

C  KFI → Determine the increment of void volume fraction  
C  KHARD → Determine the current yield stress  
C------------------------------------------------------------- 

C  
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C Import material properties and parameters  

   E  = props(1) 

    POISSON = props(2) 

   YS      =  props(3)            

   S1       =  props(4)   

   D      =  props(5) 

   F0     =  props(6)      

C     

C Compute the values of elastic properties for UMAT 

  C3K  = E/(ONE-TWO*POISSON) 

    C2G  = E/(ONE+POISSON) 

    G  = C2G/TWO 

    C3G  = THREE*G 

    CLAME = (C3K-C2G)/THREE 

    C1K  = C3K/THREE 

C 

C Calculate a number of ordered pair of hardening data 

  NVALUE = (NPROPS/2)-3 

C 

C Recover the value of elastic(EET)and plastic(EPLAS) strain  

C tensor at the begining of increment  

    CALL ROTSIG(STATEV(1),      DROT,EET,  2,NDI,NSHR) 

   CALL ROTSIG(STATEV(1+NTENS),DROT,EPLAS,2,NDI,NSHR) 

C 

C Recover the value of equivalent plastic strain (EEQPT),  

C void volume fraction (FT) and relative density (RHO)  

C at the begining of increment 

     EEQPT =  STATEV(1 + 2*NTENS) 

     FT      =  STATEV(2 + 2*NTENS)            

     RHOT    =  STATEV(3 + 2*NTENS)  

C 

  IF(EEQPT.EQ.0.0) THEN 

         FT  = F0  

           RHOT   = ONE 

  END IF           

C 
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C Define stiffness matrix,[K] or Jacobian matrix  

C for elastic case(DDE)  

    DO  200 K1 = 1, NTENS 

     DO  100 K2 = 1, NTENS 

            DDE(K2,K1)    =  0.0 

        DDP(K2,K1)    =  0.0 

            DDSDDE(K2,K1) =  0.0 

 100   CONTINUE 

 200 CONTINUE 

C 

      DO  400   K1 = 1, NDI 

         DO  300 K2 = 1, NDI 

            DDE(K2,K1) = CLAME 

 300      CONTINUE 

         DDE(K1,K1) = C2G + CLAME 

 400 CONTINUE 

      DO  500  K1 = NDI + 1, NTENS 

         DDE(K1,K1) = G 

 500 CONTINUE 

C 

C Compute trial stress tensor from elastic strains  

C increment(DSTRAN) 

C 

      DO  700  K1 = 1, NTENS 

       DO  600 K2 = 1, NTENS 

            STRESS(K2)= STRESS(K2)+ DDE(K2,K1)*DSTRAN(K1) 

 600      CONTINUE 

 700 CONTINUE 

C 

C Calculate equivalent values(SEQ) and mean value(SM) of trial  

C stress tensor(STRESS)   

  CALL SINV(STRESS,SM,SEQ,NDI,NSHR)  

C 

C Determine subsequent yield stress(SEQO)          

    CALL KHARD(H,DH,EEQPT,PROPS(7),NVALUE) 

C             
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C Check if the stress value is beyond the yield surface        

  sigdif = (SEQ/RHOT) - H + FT*S1*D*EXP(SM/(S1*RHOT))         

C 

  IF ( sigdif .le. zero ) THEN 

C         

C    In Case of elastic (Not Yielding) 

C Store elastic(EET), plastic(EPLAS) strain tensor  

C in state variable array 

   DO 800  K1  = 1, NTENS 

          STATEV(K1)       =  EET(K1)  

          STATEV(K1+NTENS) = EPLAS(K1)       

800    CONTINUE 

C 

C Store value of equivalent plastic strain (EEQPT),  

C void volume fraction (FT) and relative density (RHO)  

C in state variable array 

        STATEV(1 + 2*NTENS) = EEQPT 

        STATEV(2 + 2*NTENS) = FT 

        STATEV(3 + 2*NTENS) = RHOT      

C             

C Set Jacobain matrix(DDSDDE) of current increment  

C = Jacobian matrix of elastic part(DDE)            

       DDSDDE = DDE  

C                

  ELSE   

C 

C    In Case of plastic (Yielding) 

 IF(TIME(1).EQ.0.0.AND.(SEQ.NE.0.0.AND.sigdif.GT.10000.0))THEN 

  PNEWDT = 0.5 

  GO TO 5000 

 ENDIF 

C 

C Define new parameters to store the trial stress tensor(SE) 

   SE = STRESS 

C 
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C Determine mean value(SME)and equivalent value(SEQE) of  

C trial stress tensor(SE) 

         CALL SINV(SE,SME,SEQE,NDI,NSHR) 

C 

C Determine hydrostatic pressure(PE) 

      PE  = - SME 

C 

C Calculate deviatoric component(SDE) of SE 

C 

       SDE    =  SE 

       DO 1000  I = 1, NDI 

      SDE(I) = SDE(I) - SME 

1000  CONTINUE 

C 

C Set the initial value of equivalent(DEEQP) and  

C mean value(DEMP) of plastic strain increment tensor         

    DEMP  =  0.D0 

         DEEQP =  0.D0 

C Set the initial value of void volume fraction(DF)  

         DF =    0.D0     

C Set the initial value of iteration number(ITER)    

        ITER = 0 

C 

C--------------------------------------------------------------- 

C Starting iterative Process for computing the increment values 

C of Mean Value(CM) and Equivalent Value(CEQ) of Plastic strain 

C increment tensor                                

C--------------------------------------------------------------- 

C 

C Update iteration number 

1500  ITER  =  ITER + 1 

C 

C Update equivalent value of plastic strain(EEQP) for  

C current iteration 

      EEQP =  EEQPT + DEEQP 

C 
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C Calculate subsequent yield stress(H) and slop on the hardening  

C curve(DH) for current iteration  

         CALL KHARD(H,DH,EEQP,PROPS(7),NVALUE) 

C 

C Compute mean(SM) and equivalent values(SEQ) of stress tensor  

C for current iteration using Eq.(3.21) 

         P  =   PE  + C1K*DEMP  

         SEQ  =  SEQE - C3G*DEEQP 

   IF(SEQ.LE.0.0) SEQ = 0.D0          

C 

C Determine the increment of void volume fraction(DF)  

C for current iteration using Newton-Raphson method        

         CALL KFI(FT, DEMP, DF)           

C 

C Update the values of void volume fraction(F)  

C for current iteration  

   F = FT + DF 

C         

C Compute variable no.37-40 defined in Appendix V        

   RHO   =   (ONE - F)/(ONE-F0) 

     FZEB =   (ONE - F0)/((ONE - F)*(ONE - F)) 

   EPR = EXP(-P/(RHO*S1))  

         DEPR = D*EPR   

C 

C Compute variable no.1-5 defined in Appendix V   

  FF0     =  (SEQ/RHO) - H + F*S1*DEPR 

  FQ0OLD   =  one/RHO 

     FP0OLD     =  -(F/RHO)*DEPR 

     FEM      =  - DH 

     FF  =  SEQ*FZEB + DEPR*(S1 - F*P*FZEB)            

C 

C Compute variable no.6-9 defined in Appendix V   

  HEF(1,1)  = ZERO 

     HEF(1,2)  =  ONE 

     HEF(1,3)  = ZERO 

     HEF(1,4)  = ZERO 
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C Compute variable no.10-13 defined in Appendix V  

      HEF(2,1)  =   ONE - F 

  HEF(2,2)  =   ZERO 

     HEF(2,3)  =   ZERO 

    HEF(2,4)  =   ZERO           

C 

C Compute variable no.14-17 defined in Appendix V  

  EMH1  =   zero 

  EMH2   =   zero  

  FH1  =   zero             

  FH2      =  -DEMP 

C       

C Compute variable no.28-32 defined in Appendix V  

  DIVID  =  (ONE-EMH1)*(ONE-FH2)-(EMH2*FH1)    

  CC(1,1)  =  (one-FH2)/DIVID 

  CC(2,2)  =  (one-EMH1)/DIVID 

  CC(1,2)  =  EMH2/DIVID 

  CC(2,1)  =  FH1/DIVID        

C 

C Compute variable no.33-36 defined in Appendix V  

    H1EP  = 0.D0 

      H2EP  = 0.D0 

      H1EQ  = 0.D0 

      H2EQ  = 0.D0 

C 

   DO 1600 I = 1,2 

         H1EP = H1EP + CC(1,I)*(HEF(I,1) + C1K*HEF(I,3)) 

         H2EP = H2EP + CC(2,I)*(HEF(I,1) + C1K*HEF(I,3)) 

         H1EQ = H1EQ + CC(1,I)*(HEF(I,2) - C3G*HEF(I,4)) 

1600     H2EQ = H2EQ + CC(2,I)*(HEF(I,2) - C3G*HEF(I,4))         

C            

C Compute variable no.18-22 defined in Appendix V  

  FP0 = -(F/RHO)*DEPR 

  FP(1) = (F/(S1*RHO*RHO))*DEPR 

     FP(2) = zero 

     FP(3) = zero 
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    FP(4) = -(one/(S1*RHO*RHO))*DEPR 

     1       *(S1*(RHO +(F/(one-F0)))-RHO*F*P*FZEB) 

C              

C Compute variable no.23-27 defined in Appendix V      

  FQ0  = ONE/RHO 

  FQ(1) = zero 

     FQ(2) = zero 

     FQ(3) = zero 

     FQ(4) = FZEB      

C 

C Define the Aravas’s coefficients in Eq.(3.31)  

C using formula given in Appendix I 

  A11 =  FQ0+DEMP*(C1K*FQ(1)+FQ(3)*H1EP+FQ(4)*H2EP) 

 1           +  DEEQP*(C1K*FP(1)+FP(3)*H1EP+FP(4)*H2EP)     

      A12 = FP0+DEMP*(-C3G*FQ(2)+FQ(3)*H1EQ+FQ(4)*H2EQ) 

  1     +  DEEQP*(-C3G*FP(2) + FP(3)*H1EQ + FP(4)*H2EQ) 

  B1 =  - DEMP*FQ0 - DEEQP*FP0       

C 

  A21 =  C1K*FP0OLD + FEM*H1EP + FF*H2EP 

      A22  =   - C3G*FQ0OLD + FEM*H1EQ + FF*H2EQ 

      B2  =   - FF0 

C 

C Determine the correction values for volumetric(CM) and  

C deviatoric(CEQ) component of plastic strain increment tensor 

C for current iteration    

    DET  =  A11*A22 - A12*A21 

   CM   =  (A22*B1 - A12*B2)/DET 

  CEQ  =  (A11*B2 - A21*B1)/DET       

C 

C Update mean value(DEMP) and equivalent value(DEEQP) of  

C plastic strain increment tensor for current iteration  

     DEMP = DEMP  + CM 

  DEEQP =  DEEQP + CEQ 

C 
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C Checking whether the number of current iteration exceed the  

C maximum allowed number       

     IF (ITER.LT.MNI) GOTO 1700 

       WRITE(102,*)'THE ITERATION CANNOT CONVERGE' 

       STOP  

C 

C Start new iteration, if the increment values of volumetric or  

C deviatoric part of plastic strain tensor is not less than  

C the tolerance  

1700  IF((ABS(CM).GT.TOL).OR.(ABS(CEQ).GT.TOL)) GOTO 1500 

C 

C--------------------------------------------------------------- 

C     ENDING ITERATIVE PROCESS       

C--------------------------------------------------------------- 

C 

C Update final values of hydrostatic pressure(P)and equivalent  

C value(SEQ) of stress tensor(S) for current increment 

  P = PE + C1K*DEMP  

  SEQ =  SEQE - C3G*DEEQP 

C 

C Update the final values of stress tensor(S) and  

C plastic strain increment(DEP) for current increment  

C using Eqs.(3.33) and (3.34) 

   S  =  0.D0 

       DEP  =  0.D0   

      S =  SEQ*(SDE/SEQE) 

      DEP  =  1.5*(SDE/SEQE)*DEEQP 

      DO 1900 I= 1, NDI     

          S(I)   =  S(I)   - P      

       DEP(I) = DEP(I) + DEMP/THREE 

1900  CONTINUE 

C Store the stress tensor of current increment to variable  

C ‘STRESS’ 

   STRESS = S 

C 
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C Update plastic strain tensor(EPLAS) at the end of increment  

    DO 2000 K1 = 1, NTENS 

          if (K1.le.NDI) then 

       EPLAS(K1) = EPLAS(K1) + DEP(K1) 

           else 

                EPLAS(K1)  = EPLAS(K1) + two*DEP(K1) 

           end if 

2000    CONTINUE 

C 

C Update elastic strain tensor(EET) at the end of time step  

C using Eq.(3.35) 

         EET = EET  - DEP 

C 

C Update the final values of equivalent plastic strain(EEQPT)  

C and void volume fraction (FT) for current increment  

      EEQPT  =  EEQPT  + DEEQP   

         FT  =  FT + DF             

C 

C--------------------------------------------------------------- 

C   Consistent Tangent Modulus for Plastic Part            

C--------------------------------------------------------------- 

C 

C Determine the flow direction(SA) using Eq.(3.20) 

   DO 2200 I = 1, NTENS 

   SA(I)  =  OP5*(SDE(I)/SEQE) 

2200  CONTINUE         

C 

C Set the initail vaules of variable no.45-52 defined in  

C Appendix V  

   H1EP = ZERO 

         H1EQ = ZERO 

         H1P  = ZERO 

         H1Q  = ZERO 

C 

   H2EP = ZERO 

         H2EQ = ZERO 
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         H2P  = ZERO 

         H2Q  = ZERO 

C           

C Compute variable no.45-52 defined in Appendix V using formula  

C given in Appendix II 

   DO 2300 I = 1,2 

    H1EP =  H1EP + CC(1,I)*HEF(I,1) 

          H1EQ =  H1EQ + CC(1,I)*HEF(I,2)  

          H1P  =  H1P  + CC(1,I)*HEF(I,3) 

          H1Q  = H1Q  + CC(1,I)*HEF(I,4) 

C 

    H2EP =  H2EP + CC(2,I)*HEF(I,1) 

          H2EQ =  H2EQ + CC(2,I)*HEF(I,2)  

          H2P  =  H2P  + CC(2,I)*HEF(I,3) 

          H2Q  = H2Q  + CC(2,I)*HEF(I,4)  

2300  CONTINUE      

C 

C Determine coefficients in Eq.(3.65) using formula given  

C in Appendix II  

     AA11 = FQ0 + (DEMP*FQ(3) + DEEQP*FP(3))*H1EP  

 1         + (DEMP*FQ(4) + DEEQP*FP(4))*H2EP   

    AA12 = FP0 + (DEMP*FQ(3) + DEEQP*FP(3))*H1EQ  

 1           + (DEMP*FQ(4) + DEEQP*FP(4))*H2EQ  

     AA21 = FEM*H1EP + FF*H2EP 

     AA22 = FEM*H1EQ + FF*H2EQ 

C 

      BB11 =  (DEMP/three)*(FQ(1)+ FQ(3)*H1P + FQ(4)*H2P) + 

 1          (DEEQP/three)*(FP(1)+ FP(3)*H1P + FP(4)*H2P)  

    BB12 = -(DEMP)* (FQ(2) + FQ(3)*H1Q + FQ(4)*H2Q) - 

 1          (DEEQP)*(FP(2) + FP(3)*H1Q + FP(4)*H2Q)      

  BB21 =  (FP0 + FEM*H1P + FF*H2P)/three          

  BB22 = -(FQ0 + FEM*H1Q + FF*H2Q)    

C 
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C Determine coefficients in Eq.(3.66) using formula given 

C in Appendix III  

C 

  DIV = (AA11 + C3K*BB11)*(AA22 + C3G*BB22) - 

 1           (AA12 + C3G*BB12)*(AA21 + C3K*BB21) 

C 

 C11 =  ((AA22 + C3G*BB22)*BB11 - (AA12 + C3G*BB12)*BB21)/DIV  

  C21 =  ((AA11 + C3K*BB11)*BB21 - (AA21 + C3K*BB21)*BB11)/DIV 

  C12 =  ((AA22 + C3G*BB22)*BB12 - (AA12 + C3G*BB12)*BB22)/DIV  

  C22  = ((AA11 + C3K*BB11)*BB22 - (AA21 + C3K*BB21)*BB12)/DIV 

C 

C Evaluate the four coefficients given by Zhange using Eq.(3.70) 

  D0 =   C2G*(SEQ/SEQE) 

     D1 =   C1K-(C2G/THREE)*(SEQ/SEQE)-THREE*C1K*C1K*C11 

    D2 =   ((FOUR*G*G*DEEQP)/SEQE)-FOUR*G*G*C22 

    D3 =  -(C2G)*C1K*C12 

    D4 =  -(SIX*G)*C1K*C21 

C 

C Determine the consistent tangent modulus(CTM) for  

C presure-dependent plasticity model using Eq.(3.69) 

      DO 2600 I = 1, NTENS 

       DO 2500 J = 1, NTENS 

        DIJ = 0.0 

        IF(I.EQ.J) DIJ = 1.0 

        DDP(I,J) = DIJ*DW(I)*D0   + D1*DJ(I)*DJ(J) +  

 1             D2*SA(I)*SA(J) +  D3*DJ(I)*SA(J) +         

 2     D4*SA(I)*DJ(J)                  

2500  CONTINUE 

2600 CONTINUE 

C Set Jacobain matrix(DDSDDE) of current increment = 

C Jacobian matrix of plastic part(DDP)            

   DDSDDE = DDP  

C         
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C Store elastic(EET), plastic(EPLAS) and equivalent value of  

C plastic strain(EEQPT)in state variable array        

   DO 2800 K1  = 1, NTENS 

          STATEV(K1)         = EET(K1)  

          STATEV(K1 + NTENS) = EPLAS(K1)       

2800   CONTINUE 

         STATEV(1  + 2*NTENS) = EEQPT 

         STATEV(2 + 2*NTENS)   = FT 

         STATEV(3 + 2*NTENS)   = RHOT               

C 

    ENDIF     

5000 RETURN 

      END  

C 

C=============================================================== 

C 

 SUBROUTINE KHARD(SYIELD,HARD,EQPLAS,TABLE,NVALUE) 

  INCLUDE 'ABA_PARAM.INC' 

  DIMENSION TABLE(2,NVALUE) 

C 

C SET YIELD STRESS TO LAST VALUE OF TABLE, HARDENING TO ZERO 

    SYIELD=TABLE(1,NVALUE) 

      HARD=0.0 

C 

C IF MORE THAN ONE ENTRY, SEARCH TABLE 

     IF(NVALUE.GT.1) THEN 

       DO 10 K1=1,NVALUE-1 

       EQPL1=TABLE(2,K1+1) 

          IF(EQPLAS.LT.EQPL1) THEN 

          EQPL0=TABLE(2,K1) 

            IF(EQPL1.LE.EQPL0) THEN 

          WRITE(6,1) 

 1         FORMAT(//,30X,'***ERROR - PLASTIC STRAIN MUST BE ', 

 1                 'ENTERED IN ASCENDING ORDER') 

                  CALL XIT 

           ENDIF 
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C CURRENT YIELD STRESS AND HARDENING 

            DEQPL=EQPL1-EQPL0 

            SYIEL0=TABLE(1,K1) 

            SYIEL1=TABLE(1,K1+1) 

            DSYIEL=SYIEL1-SYIEL0 

            HARD=DSYIEL/DEQPL 

            SYIELD=SYIEL0+(EQPLAS-EQPL0)*HARD 

            GOTO 20 

            ENDIF 

 10  CONTINUE 

 20   CONTINUE 

     ENDIF 

      RETURN 

 END SUBROUTINE KHARD 

C 

C=============================================================== 

C 

 SUBROUTINE KFI(FT, DEMP, DF)  

 INCLUDE 'ABA_PARAM.INC' 

 PARAMETER (one = 1.d0, TOL = 1.D-14, MNI = 500) 

C 

C Set the initial value of iteration number (I) and  

C the increment of void volume fraction(DF)  

  I  = 0 

  DF = 0.D0 

C--------------------------------------------------------------- 

C    Starting iterative process for finding DF  

C      by Newton-Raphson Method 

C--------------------------------------------------------------- 

C Update void volume fraction(F) for current iteration 

1000   F  = FT + DF  

C 

C Determine the correction values(CF) of void volume fraction  

C increment using Newton-Raphson method based on Eq.(4.20)  

   F1 = DF  - (one - F)*DEMP  

   F2 = one +  DEMP 
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       CF = -F1/F2 

C 

C Update the value of void volume fraction increment(DF) for  

C current iteration 

      DF = DF + CF 

C 

C Update the iteration number 

       I = I + 1 

C 

C Checking whether the number of current iteration exceed  

C the maximum allowed number or not  

       IF (I .LT. MNI) GOTO 1100 

       WRITE(102,*)'KBI CANNOT CONVERGE' 

   STOP 

C 

C Checking whether the correction value(CF) is greater than  

C the tolerance 

   TCF = CF*1000. 

1100   IF (ABS(TCF) .GT. TOL) GOTO 1000 

C             

C--------------------------------------------------------------- 

C      ENDING ITERATIVE PROCESS  

C---------------------------------------------------------------  

C 

 END SUBROUTINE KFI 

C 
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