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Abstract. We consider the application of least-squares variational principles to the numerical
solution of partial differential equations. Our main focus is on the development of least-squares
finite element methods for elliptic boundary value problems arising in fields such as fluid flows,
linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer
numerous theoretical and computational advantages in the algorithmic design and implementation
of corresponding finite element methods that are not present in standard Galerkin discretizations.
Most notably, the use of least-squares principles leads to symmetric and positive definite algebraic
problems and allows us to circumvent stability conditions such as the inf-sup condition arising in
mixed methods for the Stokes and Navier–Stokes equations. As a result, application of least-squares
principles has led to the development of robust and efficient finite element methods for a large class
of problems of practical importance.
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1. Introduction. The success of finite element methods for the numerical solu-
tion of boundary value problems for elliptic partial differential equations is, to a large
extent, due to the variational principles upon which these methods are built. These
principles allow us to draw upon rich mathematical foundations that influence both
the analysis and the algorithmic development of finite element methods. A key in-
gredient in the application of variational principles is the casting of elliptic problems
into a set of variational (or “weak”) equations. For linear elliptic problems, weak
forms usually involve bilinear forms that are continuous in some Hilbert space. In
some instances, e.g., the Dirichlet problem for the Poisson equation, weak problems
can be associated with the minimization of quadratic functionals. In such a case,
variational principles lead to symmetric and coercive bilinear forms, i.e., forms which
are equivalent to an inner product for the underlying function space. One immediate
and important consequence is that the existence and uniqueness of weak solutions for
such problems can be established through the application of the Riesz representation
theorem in the form of the Lax–Milgram lemma. Of similar importance is that any
conforming discretization of such weak problems, i.e., a discretization for which the
finite-dimensional approximating space is a subspace of the underlying space, auto-
matically leads to symmetric and positive definite algebraic problems. Furthermore,
the equivalence of bilinear forms to inner products also implies that the discrete so-
lutions are projections of exact solutions onto the approximating space with respect
to the norms generated by these bilinear forms, i.e., approximations are optimally
accurate.

When elliptic boundary value problems involve systems of partial differential
equations in several variables, variational problems derived in a standard manner
often correspond to saddle-point optimization problems. A typical example is given
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by the primitive variable formulation of the Stokes problem for which a pair of approx-
imating spaces is used for the velocity and the pressure fields. The fact that we have
to deal with a saddle-point optimization problem leads to several difficulties of both a
theoretical and practical nature. First, it is now well known that the spaces used for
the approximation of the different unknowns, e.g., velocity and pressure, displacement
and stress, cannot be chosen independently, and must satisfy strict stability condi-
tions such as the inf-sup or Ladyzhenskaya–Babuska–Brezzi (LBB) condition; see,
e.g., [27], [79], or [82]. For example, a mixed method for the Stokes problem cannot
use equal-interpolation-order finite element spaces defined with respect to the same
triangulation, since such spaces form unstable pairs. The saddle-point nature of the
mixed method is also manifested through the indefiniteness of the associated discrete
algebraic problems. Although significant progress has been made in the development
of methods for such algebraic systems, their numerical solution is still challenging and
computationally demanding.

As a result, in the past decade, the formulation of finite element methods that
circumvent stability conditions such as the LBB condition has been the subject of
intensive research efforts. Existing approaches can be broadly classified into two
main categories: stabilization techniques for mixed methods and the application of
least-squares principles. We stress that in this paper the term “least-squares” will
be used in strict reference to bona fide least-squares methods, i.e., to methods based
upon minimization of quadratic least-squares functionals, as opposed to Galerkin
least-squares or stabilized mixed methods where least-squares terms are added locally
or globally to mixed variational problems; see, e.g., [8], [28], [29], [84], [77], and [78].

Loosely speaking, least-squares methods can be viewed as a combination of a
least-squares step at which we define a quadratic functional, and a discretization step
at which we choose the form of the approximate solution. Methods for which the
discretization step is invoked before the least-squares step are traditionally called
point-matching, collocation, or discrete least-squares methods; see [56], [69], [100],
[105], [119], [120], and [101]. As a rule, the study of collocation least-squares methods
emphasizes algebraic principles, since they often lead to overdetermined algebraic
systems that are solved through the corresponding normal equations.

In this paper, we focus attention on least-squares methods for which the dis-
cretization step is invoked after the least-squares functional has been defined; some
earlier works refer to such methods as “continuous least-squares methods;” see [69].
The chief reason to adopt this setting is that it allows us to accentuate the varia-
tional interpretation of least-squares principles as projections in a Hilbert space with
respect to problem-dependent inner products. From this point of view, the principal
task in the formulation of the method becomes setting up a least-squares functional
that is norm-equivalent in some Hilbert space. This in turn allows us to work in the
variational setting of, e.g., the Lax–Milgram lemma.

From a theoretical viewpoint, such bona fide (continuous) least-squares finite
element methods possess a number of significant and valuable properties, such as

• the weak problems are in general coercive;
• conforming discretizations lead to stable and, ultimately, optimally accurate

methods;
• the resulting algebraic problems are symmetric and positive definite; and
• essential boundary conditions may be imposed in a weak sense.

These properties can yield the following notable computational advantages and sim-
plifications when properly accounted for in the algorithmic design of least-squares
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finite element methods:
• finite element spaces of equal interpolation order, defined with respect to the

same triangulation, can be used for all unknowns;
• algebraic problems can be solved using standard and robust iterative methods,

such as conjugate gradient methods; and
• methods can be implemented without any matrix assemblies, even at the

element level.
In some specific nonlinear applications, e.g., the numerical solution of the incompress-
ible Navier–Stokes equations, least-squares principles can offer the following significant
added advantages:

• used in conjunction with a Newton linearization, least-squares finite element
methods involve only symmetric, positive definite linear systems, at least in
the neighborhood of a solution; and
• used in conjunction with properly implemented continuation techniques, e.g.,

with respect to the Reynolds number, a solution algorithm can be devised
that will only encounter symmetric and positive definite linear systems.

In recent years this impressive list of theoretical and computational advantages
has sparked a steadily growing interest in the use of least-squares ideas for the nu-
merical solution of partial differential equations, and in particular, for the numerical
solution of elliptic boundary value problems. This high level of activity in least-
squares finite element methods makes it impossible to present, within a limited space,
an exhaustive account of all current and past research directions. Thus, we have in
mind the less ambitious goal of giving the reader a selective account of past and on-
going work that is sufficiently representative and illustrative of the developments in
least-squares finite element methods.

The paper will have a strong focus on the advances made in least-squares finite
element methods for the Stokes and Navier–Stokes equations. The analysis and imple-
mentation of such methods have drawn most of the attention of researchers interested
in modern least-squares finite element methods, and there exists an abundant mathe-
matical and engineering literature devoted to this subject; see, e.g., [3], [9], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [25], [34], [36], [47], [54], [57], [50], [51], [53], [59],
[68], [87], [90], [91], [92], [93], [94], [96], [99], [105], [112], and [117] among others. As
a result, least-squares finite element methods in these settings are among the best
understood, studied, and tested from both the theoretical and computational view-
points. Our discussion will also include least-squares methods for convection-diffusion
and other second-order elliptic problems (see [6], [24], [26], [33], [35], [38], [42], [43],
[44], [45], [48], [52], [62], [71], [72], [75], [86], [95], [106], [107], and [104]), linear elas-
ticity (see [34], [36], and [37]), inviscid, compressible flows (see [61], [64], [67], [99],
and [118]), and electromagnetics (see [46], [58], [60], [97], and [116]).

The paper is organized as follows. The rest of this section introduces nota-
tion, gives a background on finite element spaces, outlines the model problems that
will be used in the discussion of least-squares finite element methods, and, for the
sake of completeness and contrast, gives a short description of mixed and stabilized
Galerkin methods for the Stokes equations. In section 2, we discuss a general least-
squares framework that includes the formulation, analysis, and implementation of
least-squares finite element methods, using an abstract boundary value problem. In
section 3, we focus attention on the transformation of elliptic boundary value prob-
lems into first-order systems, which is one of the fundamental ideas in modern least-
squares methods. The transformation process is illustrated using five different first-
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order forms of the Stokes equations along with first-order forms for the biharmonic,
convection-diffusion, and other equations. The central core of the paper is section
4, where various least-squares finite element methods for linear, elliptic partial dif-
ferential equations are presented and compared. In section 5, we briefly consider
the extension of least-squares finite element methodology and analysis to nonlinear
problems, using as prototypes the Navier–Stokes equations and the equations of com-
pressible, potential flow. In section 6, we include a brief review of methods such as
collocation, restricted least-squares, and least-squares/optimization methods that fall
outside the framework given in section 2.

1.1. Notation. Let Ω denote an open bounded domain in Rn, n = 2 or 3, having
a sufficiently smooth boundary Γ. Throughout, vectors will be denoted by boldface
letters, e.g., u, tensors by underlined boldface capitals, e.g., T, and C will denote a
generic positive constant whose meaning and value changes with context. For s ≥ 0,
we use the standard notation and definition for the Sobolev spaces Hs(Ω) and Hs(Γ)
with corresponding inner products denoted by (·, ·)s,Ω and (·, ·)s,Γ and norms by ‖·‖s,Ω
and ‖·‖s,Γ, respectively. Whenever there is no chance for ambiguity, the measures Ω
and Γ will be omitted from inner product and norm designations. We will simply
denote the L2(Ω) and L2(Γ) inner products by (·, ·) and (·, ·)Γ, respectively. We recall
the space H1

0 (Ω) consisting of all H1(Ω) functions that vanish on the boundary and
the space L2

0(Ω) consisting of all square integrable functions with zero mean with
respect to Ω. Also, for negative values of s, we recall the dual spaces Hs(Ω); see, e.g.,
[1], for details. We also recall the notion of a Banach scale Xq (see, e.g., [98] or [102]).

By (·, ·)X and ‖ · ‖X we denote inner products and norms, respectively, on the
product spaces X = Hs1(Ω)× · · · ×Hsn(Ω); whenever all the indices si are equal we
shall denote the resulting space by [Hs1(Ω)]n or Hs(Ω), and simply write (·, ·)s,Ω and
‖·‖s,Ω for the inner product and norm, respectively. Some important spaces that arise
in the decomposition of vector fields are

(1.1) H(Ω,div) = {u ∈ [L2(Ω)]n | div u ∈ L2(Ω)}

and

(1.2) H(Ω, curl) = {u ∈ [L2(Ω)]n | curl u ∈ [L2(Ω)]k} ,

where k = 1 in two dimensions and k = 3 in three dimensions, along with the
subspaces

(1.3) H0(Ω,div) = {u ∈ H(Ω,div) | u · n = 0 on Γ}

and

(1.4) H0(Ω, curl) = {u ∈ H(Ω, curl) | u× n = 0 on Γ} .

Norms corresponding to (1.1) and (1.3) and to (1.2) and (1.4) are given by

‖v‖2H(Ω,div) = ‖v‖20 + ‖div v‖20 and ‖v‖2H(Ω,curl) = ‖v‖20 + ‖curl v‖20 ,

respectively. See [79] for details.

1.1.1. Finite element spaces. We let Th denote a regular triangulation (see,
e.g., [65]) of the domain Ω into finite elements. For example, in two dimensions, Th
could consist of triangles or rectangles. The parameter h is normally associated with
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the size of the elements in the triangulation. Let Pk denote the set of all polynomials
of degree less than or equal to k. For k ≥ 1, a corresponding finite element space
defined with respect to a subdivision Th of Ω into triangles, or more generally, into
simplices, is given by

Pk = {uh ∈ C0(Ω) | uh|4 ∈ Pk ∀4 ∈ Th} ;

e.g., in R2, Pk is the space of all continuous, over Ω, piecewise polynomial functions
uh such that, in each triangle, uh ∈ Pk. Alternately, let Qk denote the space of
polynomial functions such that the degree of q ∈ Qk in each coordinate direction
does not exceed k. A corresponding finite element space defined with respect to a
subdivision Th of Ω into rectangles is given by

Qk = {uh ∈ C0(Ω) | uh| ∈ Qk ∀ ∈ Th} .

Some commonly used finite element spaces are P1 and P2 (continuous, piecewise-
linear, and quadratic elements on triangles) and Q1 and Q2 (continuous, piecewise-
bilinear, and biquadratic elements on rectangles). Also, there are the piecewise-
constant finite element spaces

P0 = {uh|4 ∈ P0 ∀4 ∈ Th} and Q0 = {uh| ∈ Q0 ∀ ∈ Th} .

An important characteristic of every finite element space is its approximation
order, i.e., the asymptotic rate of convergence of the best approximation out of the
space. For the spaces Pk (or Qk) defined above, we have the following property: for
k ≥ 1, given a function u ∈ Hk+1(Ω), there exists an element wh in Pk (or Qk) such
that

‖u− wh‖r ≤ Chk+1−r‖u‖k+1, r = 0, 1 ,

where the constant C is independent of h. For example, if u ∈ H3(Ω), we can show
that there exists an element wh ∈ P2 (or Q2) such that

‖u− wh‖r ≤ Ch3−r‖u‖3, r = 0, 1 .

See [65] for details.

1.2. Model problems. We now list the model problems that we will use as the
context for our discussion of least-squares finite element algorithms.

1.2.1. The Poisson, Helmholtz, and biharmonic equations. Two funda-
mental prototype problems for second-order elliptic partial differential equations are
given by the Poisson equation

(1.5) −4φ = f in Ω

along with the boundary condition

(1.6) φ = 0 on Γ

and the Helmholtz equation

(1.7) 4φ+ k2φ = f in Ω
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along with the boundary condition (1.6). Instead of (1.6), we can impose the inho-
mogeneous boundary condition

(1.8) φ = g on Γ

or the Neumann boundary condition

(1.9)
∂φ

∂n
= θ on Γ

or combinations of (1.8) and (1.9) on disjoint parts of the boundary.
The leading prototype for higher-order problems is the fourth-order biharmonic

equation

(1.10) 42φ = f in Ω

along with the homogeneous Dirichlet boundary conditions

(1.11) φ = 0 and
∂φ

∂n
= 0 on Γ .

1.2.2. Convection-diffusion and potential flow. A more general problem
involving second-order linear elliptic partial differential equations is given by the (gen-
eralized) convection-diffusion equation

(1.12) −div (A(x) gradφ) + Λφ = f in Ω ,

where A(x) is a symmetric, positive definite matrix and Λ is a linear differential
operator of order less than or equal to one, along with the boundary condition (1.6).
For (1.12), we could replace (1.6) by the inhomogeneous boundary condition (1.8) or
by the flux condition

(1.13) n ·A(x) gradφ = θ on Γ

or by a combination of (1.8) and (1.13) on disjoint parts of the boundary.
A related nonlinear, second-order problem is the velocity potential equation for

steady, inviscid, irrotational, compressible flow

(1.14) div (ρgradφ) = 0 in Ω ,

where φ is the velocity potential and ρ is the fluid density; ρ is given in terms of
|gradφ| by

(1.15) ρ = ρ0

(
1− |gradφ|2

H0

)
,

where ρ0 and H0 denote the stagnation density and enthalpy, respectively; see, e.g.,
[64] or [83]. A boundary condition for (1.14) is given by

(1.16) ρ gradφ · n = 0 on Γ ,

where in this case Γ is usually an obstacle in the flow. Additional boundary conditions
on a far-field boundary are also imposed for problems posed in exterior domains; see
[83]. If the flow is everywhere subsonic, then (1.14) is a nonlinear elliptic equation; in
regions where the flow is supersonic, (1.14) is of hyperbolic type.
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1.2.3. Linear elasticity. The equations of linear elasticity provide a model for
linear, second-order, elliptic systems of partial differential equations. These equations
are given by

(1.17) −µ4u− (λ+ µ)grad div u = f in Ω ,

where u denotes the displacement vector, f a given body force, and λ and µ are the
Lamé constants. Displacement and traction boundary conditions are given by

(1.18) u = g on Γ

and

(1.19) σij(u)nj = θθθ on Γ ,

respectively, where σ(u) = 2µε(u) + λtr(ε(u)) denotes the stress tensor and ε(u) =
(1/2)(grad u + grad uT ) the deformation tensor. Combinations of (1.18) and (1.19)
on disjoint parts of the boundary are also of interest.

If A = λbbT + 2µB, where b = (1, 0, 0, 1)T and B11 = B44 = 1, B22 = B33 =
B23 = B32 = 1/2, with all other Bij = 0, the system (1.17)–(1.19) takes a form very
similar to (1.12) and (1.13), i.e.,

(1.20) −div (A grad u) = f in Ω

and (1.18) or

(1.21) n · (A grad u) = θθθ on Γ .

We also easily see that (1.17) can be rewritten in the form

(1.22) − µ

λ+ µ
4u + grad p =

1
λ+ µ

f in Ω

and

(1.23) div u + p = 0 in Ω .

This form of the equations of linear elasticity is merely a perturbed form of the Stokes
equations introduced below in subsection 1.2.4.

1.2.4. The Stokes and Navier–Stokes equations. Most of our discussion
will be in the context of the stationary Stokes problem with velocity boundary con-
ditions as given by

(1.24) −ν4u + grad p = f in Ω ,

(1.25) div u = 0 in Ω ,

and

(1.26) u = 0 on Γ ,

where u denotes the velocity field, p the pressure, ν a given constant, and f a given
function. We shall also consider the incompressible Navier–Stokes equations for which
(1.24) is replaced by

(1.27) −ν4u + u · grad u + grad p = f in Ω .
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Often, we append to (1.24)–(1.26) or (1.25)–(1.27) a zero mean constraint on the
pressure field of the form

(1.28)
∫

Ω
p dΩ = 0

in order to assure the uniqueness of pressure. Also, in many cases, (1.26) is replaced
by the inhomogeneous velocity boundary condition u = U on Γ.

Clearly, the constant ν can be scaled out of the problem (1.24)–(1.26); however,
keeping the reference to ν in (1.24) will ease the transition from the discussion of
least-squares finite element methods for the linear Stokes problem to like methods for
the nonlinear Navier–Stokes problem for which ν denotes the inverse of the Reynolds
number.

1.2.5. Div-curl systems. We conclude the list of model problems with div-curl
systems of the form

(1.29) curl u = f in Ω

and

(1.30) div u = g in Ω,

augmented by one of the boundary conditions

(1.31) u · n = 0 or n× u = 0 on Γ .

The functions f and g are subject to compatibility conditions. For example, (1.29)
requires that div f = 0, and the first boundary condition in (1.31) requires that g have
zero mean with respect to Ω. A related system in three dimensions is given by (1.30)
and

(1.32) curl u +∇φ = f in Ω,

with perhaps an additional boundary condition on φ, e.g., φ = 0 on Γ.
The systems (1.29)–(1.31) and (1.30)–(1.32) are representative of systems of par-

tial differential equations that arise in electromagnetics, fluid dynamics, and other
applications. Note that (1.29)–(1.30) is a first-order system of partial differential
equations. Also note that, in two dimensions, the operator on the left-hand side of
(1.29)–(1.30) is merely the Cauchy–Riemann operator, so that (1.29)–(1.30) can be
viewed as a generalization of the Cauchy–Riemann equations.

1.3. Mixed and stabilized methods for the Stokes problem. For the sake
of completeness and for contrast with bona fide least-squares finite element meth-
ods, we describe, in a very brief manner, well-known mixed-Galerkin finite element
methods for the Stokes problem and some of the approaches that have been used to
stabilize these methods.

1.3.1. Mixed finite element methods for the Stokes problem. A mixed
variational formulation for (1.24)-(1.26) is given by (see [79], [82], or [27])

seek u ∈ H1
0(Ω) and p ∈ L2

0(Ω) such that

(1.33) a(u,v) + b(p,v) = (f ,v)0 ∀v ∈ H1
0(Ω)
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and

(1.34) b(q,u) = 0 ∀ q ∈ L2
0(Ω) .

In (1.33)–(1.34),

a(u,v) =
∫

Ω
grad u : grad v dΩ and b(q,u) = −

∫
Ω
q div u dΩ ,

where the colon denotes the scalar product operator between two tensors.
If (V h, Sh), V h ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω), denotes a pair of discrete spaces for the

approximation of the velocity and pressure fields, respectively, then it is not difficult
to show that a discretization of (1.33)–(1.34) results in an algebraic problem of the
form

(1.35)
(
A B
BT 0

)(
Uh

Ph

)
=
(
F
0

)
,

where Uh and Ph are vectors from which the discrete velocity and pressure fields may
be determined. The coefficient matrix in (1.35) is symmetric but indefinite.

A consequence of the fact that the variational equations (1.33)–(1.34) correspond
to a saddle-point optimization problem is that the existence and uniqueness of so-
lutions to the discrete system (1.35) are subject to the well-known inf-sup or LBB
condition (see, e.g., [79], [82], or [27]) that there exists β > 0, independent of h, such
that

(1.36) inf
q∈Sh

sup
v∈V h

b(q,v)
‖q‖0‖v‖1

≥ β .

In fact, a conforming discretization of (1.33)–(1.34) is well posed if and only if the
conforming finite-dimensional spaces V h and Sh satisfy the inf-sup condition (1.36)
and the form a(., .) is coercive on Zh × Zh, where Zh ⊂ V h denotes the subspace of
discretely divergence-free functions

Zh = {vh ∈ V h | b(qh, vh) = 0 ∀ qh ∈ Sh} .

Consequently, the inclusions V h ⊂ H1
0(Ω) and Sh ⊂ L2

0(Ω) are not by themselves
sufficient to guarantee the stability of the discrete problem.

The verification of the inf-sup condition (1.36) can be rather intricate (see, e.g.,
[20], [22], [79], or [82]) and some of the most obvious choices of pairs of finite element
spaces do not satisfy it. Examples of such unstable spaces are the linear-constant
pair (P1-P0) and the bilinear-constant pair (Q1-Q0), neither of which satisfies the
LBB condition, although the inclusions P1 ⊂ H1(Ω), Q1 ⊂ H1(Ω), P0 ⊂ L2(Ω), and
Q0 ⊂ L2(Ω) hold; see [21], [22], [79], or [82].

1.3.2. Stabilized Galerkin and penalty methods for the Stokes problem.
Complications caused by the inf-sup condition have prompted the introduction of
various stabilization techniques intended to circumvent this condition. Typically,
stabilization relies on some form of modification of the discrete continuity equation.
For example, in [84] that equation is modified to∫

Ω
qhdiv uhdΩ + α

∑
4∈Th

h2
4

∫
4

(−4uh + grad ph − f) · grad qh dΩ = 0 .
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The purpose of the new term (with an appropriate choice for α) is to make the bilinear
form

a(uh,vh) + b(ph,vh)− b(qh,uh) + α
∑
4∈Th

h2
4

∫
4

(−4uh + grad ph) · grad qh dΩ

coercive with respect to the mesh-dependent norm (‖uh‖21 +
∑
4∈Th h

2
4‖∇p‖20,4)1/2.

This approach can be interpreted as adding a type of least-squares term; however, it
can’t be viewed as being, according to our definition, a bona fide least-squares method,
i.e., one based on the minimization of a quadratic functional. For more examples of
such Galerkin least-squares methods we refer to [8], [77], and [78].

A somewhat different approach, which targets the indefiniteness of the system
(1.35), is represented by penalty methods; see, e.g. [10], [28], [29], [70], [85], and
[114]. The main idea is to make (1.35) positive definite by “penalizing” the continuity
equation, i.e., by replacing (1.35) with a system of the form(

A B
BT εM

)(
Uh

Ph

)
=
(
F
0

)
.

The matrix M denotes the Gram matrix of the finite element basis for the pressure-
approximating space. Penalty methods are essentially a form of Tikhonov regulariza-
tion since they can be derived starting from the regularized Stokes problem

−ν4uε + grad pε = f in Ω ,

(1.37) div uε = −εpε in Ω ,

and

uε = 0 on Γ .

A related penalty stabilization method is that of [28], [29]. Here, instead of εpε
in (1.37) the continuity equation is penalized by the mesh-dependent term h24ph.
Accordingly, the modified weak continuity equation takes the form∫

Ω
qhdiv uhdΩ +

∑
4∈Th

h2
∫
4

grad ph · grad qh dΩ = 0 .

Unlike Galerkin least-squares methods, penalty formulations introduce a penalty error
of order proportional to the added penalty term.

Each of these classes of methods, e.g., mixed, stabilized Galerkin, and penalty,
have their adherents and are used in practice; none, however, has gained universal
popularity.

2. An abstract framework for least-squares problems. A specific least-
squares finite element method for the numerical solution of a given elliptic boundary
value problem is determined by several factors, such as the form of the system of
partial differential equations and boundary conditions, the functional setting for the
relevant differential and boundary operators, the choice of discretization spaces, and
the choice of solution method for the discrete equations. Thus, the application of
least-squares principles can result in several substantially different algorithms, even
for the same problem. Despite these differences, many least-squares methods share as
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a common principle the minimization of a norm-equivalent functional. This allows us
to consolidate the formulation and analysis of a large class of methods into a single
abstract variational framework. The main goal of this section is to outline such a
framework for an abstract boundary value problem of the form

(2.1) L(U) = F in Ω

and

(2.2) R(U) = G on Γ,

and then to discuss how this framework can be adapted in order to address issues
such as the optimality and practicality of least-squares finite element methods.

2.1. The abstract framework. We assume that L is a differential operator
which corresponds to a scalar equation or to a system of equations and that L is
elliptic in the sense of Agmon, Douglis, and Nirenberg (ADN); see [2]. We recall
that an important subclass of ADN elliptic operators arises in planar systems of
Petrovsky type; see [115]. These are first-order differential operators of the form
L(U) = AUx + BUy + CU , where A, B, and C denote 2n by 2n matrices such
that det (Aξξξ + Bηηη) = 0 if and only if ξξξ = ηηη = 0. We further assume that there
are two Hilbert scales Xq(Ω) and Yq(Ω) × Yq(Γ) such that (L,R) has a complete
set of homeomorphisms, i.e., the mapping U 7→ (L(U),R(U)) is a homeomorphism
Xq(Ω) 7→ Yq(Ω) × Yq(Γ) for all q; see [109]. As a result, (2.1)–(2.2) is well posed in
the indicated Hilbert scales, and the a priori estimate

(2.3) ‖U‖Xq ≤ C
(
‖L(U)‖Yq(Ω) + ‖R(U)‖Yq(Γ)

)
is valid for all q. In order to set up a norm-equivalent functional, residuals of (2.1)–
(2.2) must be measured in the norms indicated by the a priori estimate (2.3), i.e.,
with the problem (2.1)–(2.2), we associate a quadratic least-squares functional of the
form

(2.4) J (U) =
1
2
(
‖L(U)− F‖2Yq(Ω) + ‖R(U)−G‖2Yq(Γ)

)
.

It is not difficult to see that a minimizer of (2.4) solves (2.1)–(2.2) and conversely,
i.e., an abstract least-squares principle for (2.1)–(2.2) is given by

(2.5) seek U ∈ Xq such that J (U) ≤ J (V ) ∀ V ∈ Xq.

Then, a variational problem for (2.1)–(2.2) is readily available by means of the Euler–
Lagrange equation for the principle (2.5), as follows:

δJ (U) = lim
ε→0

d

dε
J (U + εV ) = 0 ∀ V ∈ Xq .

Equivalently, we can write the necessary condition as

(2.6) seek U ∈ Xq such that B(U, V ) = F(V ) ∀ V ∈ Xq,

where B(U, V ) = (L(U),L(V ))Yq(Ω) + (R(U),R(V ))Yq(Γ) is a symmetric, continuous
bilinear form and F(V ) = (F,L(V ))Yq(Ω) + (G,R(V ))Yq(Γ) is a continuous linear
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functional. A consequence of the a priori estimate (2.3) is that the form B(·, ·) is
coercive on Xq ×Xq, i.e., a bound of the form

(2.7) C‖U‖2Xq ≤ B(U,U)

is valid for all U ∈ Xq. As a result, the existence and uniqueness of minimizers for
the problem (2.6) follow by virtue of the Lax–Milgram lemma.

The inclusion of the boundary residual in (2.4) allows the use of minimization
spaces Xq(Ω) that are not constrained to satisfy the boundary condition (2.2), i.e.,
such conditions are enforced weakly through the variational principle. This is ad-
vantageous whenever the condition (2.2) is difficult to satisfy computationally and
represents an additional beneficial feature of least-squares–based methods. If, on the
other hand, (2.2) can be easily imposed, we can consider (2.4) with the boundary term
omitted. Then the functions belonging to the space Xq(Ω) should be required to sat-
isfy the boundary condition, i.e., (2.2) is enforced strongly or directly on candidate
minimizers.

We now have a framework for developing a least-squares finite element method
for (2.1)–(2.2); indeed, we can proceed as follows. Given the boundary value problem
(2.1)–(2.2),

• choose a functional setting, i.e., two Hilbert scales Xq(Ω) and Yq(Ω)× Yq(Γ)
such that (2.3) is valid;
• choose between variational or strong enforcement of the boundary conditions

and set up the relevant least-squares functional, i.e., (2.4) with or without
the boundary residual term, respectively;
• fix the scale parameter q, e.g., choose q = 0;
• choose a finite-dimensional subspace Xh

q ⊂ Xq parametrized by h→ 0; and
• restrict (2.6) to Xh

q .
This process leads to a discrete variational problem given by

(2.8) seek Uh ∈ Xh
q such that B(Uh, V h) = F(V h) ∀ V h ∈ Xh

q .

Since Xh
q ⊂ Xq, the method defined by (2.8) is a conforming discretization. Such

discretizations have numerous theoretical advantages. In particular, the analysis of
such methods falls within the standard framework of elliptic finite element theory.
However, there are instances when we prefer to use nonconforming discretizations for
which the spaces Xh

q are not contained in Xq. Such a case is discussed in more detail
in subsection 4.2.1.

2.2. Optimality and practicality. Most research activity in least-squares fi-
nite element methods has used the framework of subsection 2.1 to formulate methods
that are “easy” to implement and that, at the same time, are optimally accurate,
where the latter is defined to mean that there exists a constant C, independent of the
parameter h, such that

(2.9) ‖U − Uh‖Xq ≤ C inf
V h∈Xhq

‖U − V h‖Xq .

For conforming methods, i.e., if Xh
q ⊂ Xq(Ω), it is not difficult to see that a condition

that guarantees the existence and uniqueness of minimizers and optimal discretization
errors is given by the optimality principle, where L, R, Xq(Ω), and Yq(Ω)×Yq(Γ) are
such that an a priori estimate of the form (2.3) is valid. Indeed, if {φi} denotes a basis
for Xh

q , it is not difficult to see that problem (2.8) corresponds to a linear algebraic
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system with a symmetric coefficient matrix A having entries given by aij = B(φi, φj)
and right-hand side vector B with components given by bi = F(φi). The inclusion
Xh
q ⊂ Xq implies that the bound (2.7), which is a consequence of (2.3), is also valid

for all discrete functions Uh, i.e., the form B(·, ·) is coercive on Xh
q ×Xh

q . As a result,
the discrete variational problem will have a unique solution out of Xh

q . Similarly, the
validity of (2.7) for all functions in Xh

q implies that the matrix B(φi, φj) is positive
definite. Finally, standard arguments from elliptic finite element theory yield the
optimal estimate (2.9).

Thus, given a particular elliptic boundary value problem, the framework of sub-
section 2.1 allows us to define, in relatively easy terms, a least-squares method that
theoretically is optimally accurate. However, a straightforward application of this
framework will not necessarily result in a practical method. To deem a least-squares
finite element method as being practical, we should at least be able to obtain the
discrete system without difficulty, certainly with no more difficulty than that en-
countered for a Galerkin method for the same problem. To meet this requirement,
first aij = B(φi, φj) and bi = F(φi) should be computable, i.e., inner products for
fractional-order Sobolev spaces should not occur in their definition. Second, dis-
cretization should be accomplished using standard, easy-to-use finite element spaces.
We must, of course, also solve the discrete problem (2.8), and thus a third requirement
for practicality, especially when iterative solution methods are used, is that the dis-
crete problem should have a “manageable” condition number. In summary, we then
have the practicality principle, where the inner products in B(·, ·) are computable,
discretization is accomplished employing standard C0(Ω) finite element spaces, and
the discrete problem has a manageable condition number.

For an example of a problem and a least-squares finite element method for which
the optimality principle holds but is not practical, consider the problem (1.5)–(1.6).
We require that the boundary condition is imposed strongly and we thus choose
Xq(Ω) = H2(Ω)∩H1

0 (Ω). A least-squares functional can then be defined in a straight-
forward manner by taking the L2-norm of the equation residual

(2.10) J (φ) =
1
2
(
‖4φ+ f‖20

)
.

The bilinear form corresponding to the functional (2.10) is given by

B(φ, ψ) =
∫

Ω
4φ4ψ dΩ .

As a result, any conforming method based on the minimization of (2.10) necessarily
uses finite-dimensional subspaces of H2(Ω), i.e., we are forced to work with impractical
continuously differentiable finite element spaces. The resulting least-squares finite
element method also fails to be a practical one because the condition numbers of
the corresponding discrete problems are O(h−4) compared with the O(h−2) condition
numbers that result from standard Galerkin methods for the same problem. See [6],
[24], and [26] for details.

2.3. A recipe for practicality. A critical idea responsible for overcoming these
flaws and rendering least-squares finite element methods into viable alternatives to
Galerkin methods is the introduction of a decomposition step prior to defining a least-
squares functional. The decomposition step consists of transforming the problem into
a first-order system. For many problems, decomposition can be accomplished through
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the introduction of physically meaningful variables such as vorticity, stresses, or fluxes,
and has often been exploited in both least-squares and Galerkin methods; see, e.g.,
[11], [12], [13], [14], [15], [16], [17], [18], [19], [33], [34], [35], [36], [37], [38], [42], [43],
[44], [45], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [59], [61], [62], [64],
[66], [67], [72], [73], [86], [87], [90], [91], [92], [93], [94], [95], [96], [99], [103], [104],
[107], [108], [111], [112], [113], and [117].

Among the first methods for which a decomposition (or transformation) step has
been combined with least-squares principles are the methods of [72], [86], and [103].
For example, in [86], the problem (1.5)–(1.6) is transformed into a first-order div-grad
system (see also [49] and [95])

(2.11) −div v = f and v = gradφ in Ω and φ = 0 on Γ .

We can use L2-norms of the equation residuals to define the least-squares functional

(2.12) J (φ,v) =
1
2
(
‖div v + f‖20 + ‖v − gradφ‖20

)
,

where we require that the boundary condition is imposed strongly on candidate min-
imizers. Then, in contrast to (2.10), the resulting least-squares method can be imple-
mented using practical, merely continuous finite element spaces such as P1, P2, Q1,
or Q2. If, however, the space Xq(Ω) is not constrained by the boundary condition in
(2.11), then instead of (2.12) we have to consider the least-squares functional

J (φ,v) =
1
2
(
‖div v + f‖20 + ‖v − gradφ‖20 + ‖φ‖21/2,Γ

)
.

As a result, the form B(·, ·) now involves the inner product of the trace space Y (Γ) =
H1/2(Γ), i.e., the method is still impractical despite the reduction to a first-order
system. We postpone discussion of this topic until subsection 4.2.2 and turn our
attention to the issue of the optimality of methods based on functionals that only
involve L2-norms of residuals of equations in first-order systems.

Evidently, the practicality principle can always be met by transforming the given
partial differential equations into a first-order system and forming least-squares func-
tionals that use only L2-norms. We refer to least-squares methods based on this
approach as basic L2 methods. Then, a seemingly natural choice for Yq(Ω) and Xq(Ω)
is given by products of L2- and H1-spaces, respectively. The crucial question is then:
does this choice of Yq(Ω) and Xq(Ω) satisfy the optimality principle as well, i.e., is the
basic L2 least-squares functional norm equivalent to a product of H1-norms? In what
follows, we shall refer to all first-order systems having this property, i.e., systems that
are well posed in products of L2- and H1-spaces for the data and solution, respectively,
as fully H1-coercive formulations. In such a case, basic L2 least-squares functionals
are quite attractive. First, conforming methods are practical and yield optimal error
estimates with respect to the H1(Ω)-norm for all variables. Second, the resulting
algebraic systems have condition numbers of O(h−2). A third valuable trait of H1-
coercivity is that interactions between the dependent variables are subdominant, i.e.,
the variables become essentially decoupled. This allows us to precondition the re-
sulting algebraic systems by products of the inverses of discrete Laplacian operators
and ensures the fast convergence of multiplicative and additive multigrid methods;
see [34], [35], and [36].

One example of a fully H1-coercive problem is furnished by planar first-order
systems with differential operators L of Petrovsky type (see subsection 2.1 and [115]).
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Unfortunately, and somewhat surprisingly, many (important) first-order systems are
not fully H1-coercive. For example, the system (2.11) is well posed in the space
H1

0 (Ω)×H(Ω, div). As a result, a finite element method based on the minimization
of (2.12) yields optimal error estimates in the norm of this space and not necessarily
with respect to the H1(Ω)-norm of the vector field v, i.e., we cannot control all first
derivatives of the error. As we shall see below, for (2.12), optimal convergence in
the H1(Ω)-norm requires an additional “grid decomposition property” on the finite
element spaces (see [61] and [72]) or an additional “curl” constraint added to the first-
order system (2.11) (see [43], [44], [48], [49], [95], and [106]). Other examples of first-
order systems that are not H1-coercive are given by particular decompositions of the
biharmonic equation and the Stokes problem. These will be discussed in subsections
3.1 and 3.2, respectively.

There are many other theoretical problems that accompany the decomposition
process. For example, transformation to a first-order system may lead to ambigu-
ously defined principal parts and may affect the set of admissible boundary operators
as well as the ellipticity, which can also depend on the space dimension. As a re-
sult, if an optimally accurate and practical method is desired, all of these issues must
be addressed. The possibilities which exist can be distinguished as techniques af-
fecting the functional setting of least-squares principles or techniques invoked at the
discretization level, as shown below.

Functional level
Spaces
• establish the relevant a priori estimates in intermediate spaces such

as H(Ω,div); see [33], [35], [38], [76], [86], and [107];
• use weaker spaces from the Hilbert scale, e.g., choose negative-order

Sobolev spaces; see [14], [23], [25], and [34];
Operators
• find, if possible, fully H1-coercive first-order systems; see [36], [37],

[47], and [53];
Discretization level
• replace stronger (and impractical) norms by weighted L2-norms; see

[3], [4], [11], [12], [17], [19], [64], [75], [86], and [115];
• use nonconforming discretizations; see [3].

Most modern least-squares methods rely on one or another form of these techniques
in order to achieve robustness and efficiency. Most methods also rely on the transfor-
mation of elliptic boundary value problems into equivalent first-order systems, if the
former are not given in the latter form in the first place. Due to the central place of
this subject in modern least-squares methods, the next section is devoted to a detailed
account of various transformations to first-order systems.

3. Decomposition into first-order systems. In some settings, e.g., the Max-
well equations, mathematical models of natural phenomena are most naturally set as
first-order systems of partial differential equations. In many other settings, however,
such models involve differential equations of higher order. Fortunately, virtually every
scalar partial differential equation or system of partial differential equations of second
or higher order can be reduced to a first-order system by introducing new dependent
variables defined as derivatives (or linear combinations of derivatives) of the original
variables. For example, in the scalar, second-order setting, if φ denotes the scalar
dependent variable, then a standard way to introduce new dependent variables is
to set v = gradφ, which leads to a “div-grad” decomposition, i.e., to a div-grad
first-order system. Such decompositions will be considered in subsection 3.1.
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If the dependent variable u is a vector-valued function, there are at least three
categories of transformations to first-order systems. In addition to v = grad u, two
other natural choices are v = (grad u + grad uT )/2 or v = (grad u− grad uT )/2, i.e.,
the new variables are identified with the symmetric and the skew-symmetric parts
of the velocity gradient tensor, respectively. While the first choice can be viewed
as a generalization of the scalar div-grad decomposition, the other two choices do
not have direct equivalents in the scalar case. Their interpretation also depends on
the given problem. For example, in the context of the Stokes problem, the choice of
(grad u − grad uT )/2 gives rise to a vorticity-based first-order system, whereas the
choice (grad u + grad uT )/2 corresponds to a stress-based first-order system.

As we shall see, the well-posedness of resulting first-order boundary value prob-
lems, i.e., their ellipticity and the existence of a priori estimates, depends on factors
such as the choice for the new variables, the space dimension, and the particular form
of the boundary conditions. As a result, two first-order systems describing the same
problem (in terms of different variables) may have substantially different properties.
To illustrate these issues, the main focus (see subsections 3.2–3.3) will be on five dif-
ferent possibilities for expressing the Stokes problem as a first-order system. The first
two systems correspond to decompositions that use the skew-symmetric (vorticity)
and symmetric (stress) parts of the velocity gradient, respectively. The last three
systems can be viewed as variants of the div-grad decomposition. For each system,
we indicate the properties relevant to least-squares methods such as the validity of a
priori estimates. In addition, we also indicate how resulting first-order systems may
be extended to the incompressible Navier–Stokes equations.

Most details in the discussion below are given in the context of homogeneous
boundary conditions. However, in subsection 3.4, we discuss the form of the a priori
estimates in case the boundary data is inhomogeneous. Such a priori estimates are
relevant to least-squares functionals for which the essential boundary conditions are
enforced in a weak sense.

3.1. Scalar div-grad systems. We present several examples of the reduction
of scalar, higher-order problems to first-order systems involving the divergence and
gradient operators. The new variables introduced to effect the reduction are the
components of the gradient of the scalar dependent variable of the original higher-
order equation.

3.1.1. Poisson, biharmonic, and higher-order equations. The first exam-
ple of a div-grad decomposition has already been given by (2.11). This decomposition
is also probably the first one used in the context of least-squares methods; see [72],
[86], and [103]. A functional setting for the system (2.11) is provided by the space

(3.1) X = {(φ,v) ∈ H1
0 (Ω)×H(Ω,div)} ,

i.e., the system (2.11) is not fully H1-coercive, and the a priori estimate relevant to
the least-squares method is given by

(3.2) ‖φ‖1 + ‖v‖H(Ω,div) ≤ C (‖v − gradφ‖0 + ‖div v‖0) .

In view of the equation v = gradφ, we can augment (2.11) by a compatibility condition
known as the curl constraint (see, e.g., [55], [49], [48], and [95]) as shown:

(3.3) curl v = 0 .
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The addition of (3.3) allows us to control both ‖curl v‖0 and ‖div v‖0. As a result,
we can establish full H1-coercivity of the system (2.11) and (3.3) as follows. Since
φ = 0 on Γ is specified, the new variable v satisfies v × n = 0 on Γ, i.e., v ∈
H(Ω,div) ∩H0(Ω, curl). Then, full H1-coercivity follows from the well-known result
(see [79]) that the space H(Ω,div) ∩ H0(Ω, curl) is topologically and algebraically
equivalent to [H1(Ω)]n. A div-grad decomposition with very similar properties can
be defined in an obvious manner for the Helmholtz equation (1.7). If, instead of (1.6),
∂φ/∂n = v · n = 0 is specified on Γ, then v ∈ H0(Ω,div) ∩H(Ω, curl) and again full
H1-coercivity can be established if the system div v = f and v = gradφ is augmented
by (3.3).

The fourth-order biharmonic problem (1.10)–(1.11) can be recast as a first-order
system in a very similar manner. We introduce the new dependent variables as follows
[76]:

φ0 = φ , v0 = gradφ0 , φ1 = div gradφ0 = 4φ0 , v1 = grad4φ0 .

Then, a first-order problem corresponding to (1.10)–(1.11) is given by

(3.4) v0 − gradφ0 = 0 in Ω ,

(3.5) v1 − gradφ1 = 0 in Ω ,

(3.6) div v0 − φ1 = 0 in Ω ,

(3.7) div v1 = f in Ω ,

and

(3.8) φ0 = 0 and v0 · n = 0 on Γ .

A function setting appropriate for this first-order system is provided by

(3.9) X = {(φ0, φ1,v0,v1) ∈ H1
0 (Ω)×H1(Ω)×H0(Ω,div)×H(Ω,div)} .

An a priori estimate relevant to the least-squares method for (3.4)–(3.8) is given by

(3.10)
‖φ0‖1 + ‖φ1‖1 + ‖v0‖H(Ω,hdiv) + ‖v1‖H(Ω,hdiv)

≤ C(‖v0 − gradφ0‖0 + ‖v1 − gradφ1‖0 + ‖div v0 − φ1‖0 + ‖div v1‖0) .

The transformation scheme applied to the biharmonic problem (1.10)–(1.11) can
be generalized to scalar elliptic problems of order 2m; see [76]. Starting with φ0 = φ
and v0 = gradφ0, we introduce the new variables

v = (v0, . . . ,vm−1) and φ = (φ0, . . . , φm−1)

recursively according to the formulas

φi = div vi−1 , i = 1, . . . ,m− 1 ,

and

vi = gradφi , i = 1, . . . ,m− 1 .
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The resulting first-order system has the structure

(3.11)
(
I G
D C

)(
V
Φ

)
= F,

where G is matrix of gradients, D is matrix of divergences, and C is a bounded (with
respect to L2) multiplication operator.

The two first-order systems (3.4)–(3.8) and (3.11) are very similar to the system
(2.11) arising from the decomposition of the Poisson equation, both in structure and
ellipticity properties (compare (3.2) and (3.10)). Likewise, (3.4)–(3.8) and (3.11) can
be augmented by curl constraints to obtain fully H1-coercive first-order systems. For
example, the curl constraints for (3.4)–(3.8) are given by

curl v0 = 0 and curl v1 = 0 .

3.1.2. Compressible flows and convection-diffusion problems. The trans-
formation of both (1.12)–(1.13) and (1.14)–(1.16) can also be handled by introducing
gradφ as a new dependent variable, i.e., by using a scalar div-grad decomposition.
For example, a first-order form for (1.14)–(1.16) is given by (see [61], [64], [67], and
[99])

(3.12) u− gradφ = 0 in Ω ,

(3.13) div ρu = 0 in Ω ,

and

(3.14) ρu · n = 0 on Γ ,

where

(3.15) ρ = ρ0

(
1− 1

H0
|u|2

)
.

Equation (3.12) is a consequence of the irrotationality assumption, and (3.13) is a
result of mass balance. Similarly, (1.12) can be cast into the following first-order
system (see, e.g., [33], [38], [43], [44], [106], and [107]):

(3.16) v −A(x)gradφ = 0 in Ω

and

(3.17) div v + Λφ = f in Ω .

In both cases, if the flow is subsonic and since A is positive definite, respectively, the
appropriate function spaces for the original variable φ and the new dependent variable
v are given by H1(Ω) and H(Ω,div), respectively, i.e., the relevant a priori estimates
are similar to (3.2). Likewise, in view of (3.12) and (3.16), the systems (3.12)–(3.13)
and (3.16)–(3.17) can be augmented by curl constraints of the form

(3.18) curl v = 0 in Ω

and

(3.19) curl
(
A−1(x)v

)
= 0 in Ω ,

respectively; see [43], [44], [106], and [107].
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3.2. Vorticity and stress decompositions of the Stokes problem. We
now turn to the Stokes equations, the setting for which least-squares finite element
methods are most developed and have been most studied. In this section, we consider
two first-order formulations of the Stokes equations that are not fully H1-coercive. In
subsection 3.3 we will consider three additional first-order formulations for the Stokes
system, two of which are fully H1-coercive.

3.2.1. The velocity-vorticity-pressure formulation of the Stokes prob-
lem. Despite the fact that it is not a fully H1-coercive system, the velocity-vorticity-
pressure formulation of the Stokes equations is, by a large margin, the most widely
used (and studied) formulation in the context of least-squares finite element methods
for fluid flows; see, e.g., [11], [12], [15], [16], [17], [18], [34], [50], [51], [54], [57], [59],
[87], [90], [91], [92], [93], [94], [96], [99], [112], and [113], among others.

We recall the curl operator in three dimensions

curl u = ∇× u ,

and its two-dimensional counterparts

curlφ =
(

φy
−φx

)
and curl u = u2x − u1y .

The context should make clear which operator is relevant.
Using the vorticity field ωωω = curl u as a new dependent variable and the vector

identity

curl curl u = −4u + grad div u ,

and in view of the incompressibility constraint (1.25), the Stokes equations (1.24)–
(1.25) can be cast into the first-order system

(3.20) νcurlωωω + grad p = f in Ω ,

(3.21) div u = 0 in Ω ,

and

(3.22) curl u− ωωω = 0 in Ω .

Remark. For the linear elasticity problem (1.22)–(1.23), the corresponding first-
order system is given by (see [34])

µ

λ+ µ
curlωωω +

(
1 +

µ

λ+ µ

)
grad p =

1
λ+ µ

f in Ω ,

div u + p = 0 in Ω ,

and (3.22).
In two dimensions, the system (3.20)–(3.22) contains four equations and four

unknowns and is uniformly elliptic of total order four. In three dimensions, the
number of equations and unknowns increases to seven, and the resulting system is
not elliptic in the sense of ADN. By adding a seemingly redundant equation

(3.23) divωωω = 0 in Ω
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and the gradient of a “slack” variable φ to (3.22) we get

(3.24) curl u− ωωω + gradφ = 0 in Ω

and uniform ellipticity can be restored; see [55] and [49]. The augmented system
(3.20), (3.21), (3.23), and (3.24) has total order eight, in contrast to the total order of
the Stokes problem in primitive variables, which is six in three dimensions. It should
be noted that we also impose homogeneous boundary conditions for the slack variable
φ and that we can then show that φ ≡ 0 so that, a posteriori, (3.24) is identical to
(3.22). In fact, the addition of φ is needed only for the purpose of analysis; it is not
needed in the development or implementation of least-squares–based algorithms for
which we can safely use the system (3.20)–(3.23). However, the addition of (3.23) is
crucial to the stability and accuracy of least-squares finite element methods for the
Stokes problem in three dimensions.

To extend the velocity-vorticity-pressure formulation to the Navier–Stokes equa-
tions, we have to choose a particular form for the nonlinear term in (1.27). One
possibility is to keep the nonlinear term in a form involving only the velocity field,
i.e., to replace (3.20) by

(3.25) νcurlωωω + u · grad u + grad p = f in Ω .

Another possibility is to use the vector identity

u · grad u =
1
2

grad |u|2 − u× curl u =
1
2

grad |u|2 − u× ωωω

to replace (3.20) by

(3.26) νcurlωωω + ωωω × u + gradP = f in Ω ,

where P = p+ 1/2|u|2 denotes the total pressure.
For simplicity, in what follows, we shall discuss properties of the velocity-vorticity-

pressure Stokes equations in two dimensions; most of the relevant results can be easily
extended to the augmented system, i.e., including (3.23), in three dimensions.

Recall that the existence of a priori estimates for (3.20)–(3.22) along with the
boundary condition (1.26) and the zero mean condition (1.28) is of paramount impor-
tance for the development of least-squares methods. The existence of such estimates
is essentially equivalent to the well-posedness of elliptic boundary value problems in
appropriate Sobolev spaces. As we shall see, the choice of boundary conditions is very
important to the validity of a priori estimates. To determine functional settings in
which elliptic boundary value problems are well posed, we may rely on the elliptic
regularity theory of Agmon, Douglis, and Nirenberg [2]. In particular, well-posed
problems are characterized as having uniformly elliptic principal parts and boundary
conditions which satisfy the celebrated complementing condition.

Analyses based on ADN elliptic theory (see [17]), show that the velocity-vorticity-
pressure system admits two different principal parts given by

(3.27) Lp1 =

 νcurlωωω + grad p
curl u
div u


and

(3.28) Lp2 =

 νcurlωωω + grad p
−ωωω + curl u

div u

 .
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In view of the boundary condition (1.26) and the zero mean condition (1.28), the
function spaces corresponding to these principal parts are given by

(3.29) Xq = Hq+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω)×Hq+1(Ω) ∩H1

0(Ω)

and

(3.30) Yq = Hq(Ω)×Hq(Ω)×Hq(Ω)

for (3.27) and

(3.31) Xq = Hq+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω)×Hq+2(Ω) ∩H1

0(Ω)

and

(3.32) Yq = Hq(Ω)×Hq(Ω)×Hq+1(Ω)

for (3.28), where Xq denotes the function space for the unknowns (ωωω, p,u) and Yq
denotes the function space for the data or equation residuals. To each pair of function
spaces there corresponds a specific a priori estimate given by

(3.33)
‖ωωω‖q+1+‖p‖q+1 + ‖u‖q+1

≤ C (‖νcurlωωω + grad p‖q + ‖curl u− ωωω‖q + ‖div u‖q)

and

(3.34)
‖ωωω‖q+1+‖p‖q+1 + ‖u‖q+2

≤ C (‖νcurlωωω + grad p‖q + ‖curl u− ωωω‖q+1 + ‖div u‖q+1) ,

respectively. Although both the principal parts (3.27) and (3.28) are uniformly elliptic
operators of total order four, not all boundary conditions for the system (3.20)–(3.22)
will satisfy the complementing condition for both principal parts. For example, the
boundary condition (1.26) on the velocity vector satisfies the complementing condition
only with the principal part (3.28). As a result, the a priori estimate for the system
(3.20)–(3.22), (1.26), and (1.28) relevant to the least-squares methods is given by
(3.34). In fact, we can show that the estimate (3.33) cannot hold with the velocity
boundary condition. For an example (see [17]), consider Ω given by the unit square
and let ν = 1, q = 0, ωωωn = − cos(nx) exp(ny), pn = sin(nx) exp(ny), and un ≡ 0.
Then, (3.33) would imply that

O(exp(n)) ∼ ‖curlωωωn + grad pn‖0+‖curl un − ωωωn‖0 + ‖div un‖0
≥ C(‖un‖1 + ‖ωωωn‖1 + ‖pn‖1) ∼ O(n exp(n)),

which is a contradiction. This counterexample can also be extended to three di-
mensions; see [12]. An example of a boundary condition for which (3.33) is valid is
provided by the pressure–normal-velocity boundary condition

(3.35) p = 0 and u · n = 0 on Γ .

The fact that (3.34) is not valid for velocity boundary conditions indicates that the
corresponding boundary value problem is not well posed in the spaces (3.29)–(3.30).
This can also be seen by considering the principal part (3.27) along with the velocity
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boundary condition. The corresponding boundary value problem then uncouples into
two ill-posed problems given by

{
νcurlωωω + grad p = f

}
and


curl u = 0
div u = 0

u|Γ = 0

 ;

the first is underdetermined and the second is overdetermined. In contrast, the same
principal part with (3.35) uncouples into the following two well-posed problems:

{
νcurlωωω + grad p = f

p|Γ = 0

}
and


curl u = 0
div u = 0

u · n|Γ = 0

 .

To summarize, the full H1-coercivity of the velocity-vorticity-pressure Stokes sys-
tem depends on the particular set of boundary conditions. Even more interestingly, we
can find examples of boundary conditions for which full H1-coercivity also depends on
the space dimension; see [12]. One such example is given by the tangential-velocity–
pressure boundary condition

n× u× n = 0 and p = 0 on Γ .

In two dimensions, this boundary operator satisfies the complementing condition with
either of the principal parts (3.27) or (3.28), whereas in three dimensions it satisfies
the same condition only with the principal part (3.28). As a result, the estimate (3.33)
is valid only in two dimensions.

Despite the fact that the velocity-vorticity-pressure formulation (3.20)–(3.22)
along with (1.26) is not fully H1-coercive, it is the most widely used formulation
for least-squares finite element methods for the Stokes equations. The corresponding
formulations (3.21), (3.22), and (3.25) or (3.26) along with (1.26) are likewise the
most used for the Navier–Stokes system. The reasons for the popularity of these
formulations in engineering circles are that they require relatively few unknowns and
that the lack of full H1-coercivity does not cause a catastrophic loss in accuracy, at
least for the approximations of the velocity field; see [54] and Table 1 in subsection
4.1.1.

3.2.2. The velocity-pressure-stress formulation of the Stokes problem.
A first-order system with substantially different properties is obtained when the stress
tensor scaled by

√
ν/2:

T =
√

2νε(u) , where ε(u) ≡ 1
2
(
grad u + (grad u)T

)
,

is used in the transformation of (1.24)–(1.25) into a first-order system. Here, the
relevant vector identity is given by

div T =
√

2ν (4u + grad div u) ,

where div T denotes the vector whose components are the divergences of the corre-
sponding rows of T. Then, in view of incompressibility constraint (1.25), the system
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(1.24)–(1.26) can be replaced by the velocity-pressure-stress system

(3.36)

√
2ν div T− grad p = f in Ω,

div u = 0 in Ω,

T−
√

2ν ε(u) = 0 in Ω,
u = 0 on Γ .

The inclusion of the nonlinear term u · grad u in the first equation of (3.36) provides
an extension of the velocity-pressure-stress system to the Navier–Stokes equations.
As before, uniqueness of solutions to (3.36) can be guaranteed by imposing the zero
mean constraint on the pressure (1.28).

In two dimensions, the velocity-pressure-stress system has six equations and un-
knowns. In three dimensions, the number of unknowns and equations increases to
ten. Analysis of this system based on the ADN theory (see [19]) indicates that the
principal part of the differential operator in (3.36) is given, in two dimensions, by

(3.37) Lp U =



√
2ν
(
∂T1

∂x1
+
∂T2

∂x2

)
− ∂p

∂x1

√
2ν
(
∂T2

∂x1
+
∂T3

∂x2

)
− ∂p

∂x2

∂u1

∂x1
+
∂u2

∂x2

T1 −
√

2ν
∂u1

∂x1

2T2 −
√

2ν
(
∂u1

∂x2
+
∂u2

∂x1

)
T3 −

√
2ν
∂u2

∂x2



, where T =
(
T1 T2
T2 T3

)
.

In contrast to the velocity-vorticity-pressure equations, the principal part (3.37) is
unambiguously defined, and the total order of (3.36) coincides with the total order
of the Stokes problem in primitive variables in both two and three dimensions; see
[19]. The corresponding functional setting in two dimensions for the problem (3.36)
is given by

Xq = [Hq+1(Ω)]3 ×Hq+1(Ω) ∩ L2
0(Ω)× [Hq+2(Ω) ∩H1

0 (Ω)]2

for the unknowns (T, p,u) and

Yq = [Hq(Ω)]2 ×Hq+1(Ω)× [Hq+1(Ω)]3

for the data or equation residuals. As a result, the a priori estimate relevant to
least-squares methods is given by

(3.38)
‖T‖q+1 + ‖p‖q+1 + ‖u‖q+2

≤ C
(
‖
√

2ν div T− grad p‖q + ‖div u‖q+1 + ‖T−
√

2ν ε(u)‖q+1
)
.

Note that the estimate (3.38) implies that regardless of the choice of boundary oper-
ators, the system (3.36) cannot be H1-coercive, i.e., in two dimensions (3.36) is not
of Petrovsky type.
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3.3. Div-grad decompositions of the Stokes problem. A fully H1-coercive
first-order system is quite appealing from a least-squares perspective: a basic L2

method is optimal, discrete problems have condition numbers of order O(h−2), and
these problems can be solved by efficient multilevel techniques; see [35] and [36]. How-
ever, as we have seen in subsection 3.2, when the skew-symmetric or symmetric parts
of the velocity gradient are used as new dependent variables, the resulting first-order
systems are not always fully H1-coercive. Two of the first-order Stokes systems pre-
sented in this section are guaranteed to be fully H1-coercive, regardless of the choice
of boundary conditions. Interestingly, both formulations introduce all derivatives of
the velocity field as new dependent variables and augment the resulting first-order
systems with additional constraints, i.e., they can be viewed as vector counterparts
of the scalar div-grad or div-grad-curl decompositions in subsection 3.1. Currently it
appears that, for the Stokes problem, full H1-coercivity that is independent of space
dimension and boundary conditions can be achieved solely by means of augmented
div-grad decompositions.

3.3.1. Two velocity–gradient-velocity-pressure formulations of the
Stokes problem. To define the first velocity–gradient-velocity-pressure formulation,
we introduce all first derivatives of the velocity components as new dependent vari-
ables, i.e., we set V = (grad u)t so that Vij = (∂ui/∂xj). In terms of V, the Stokes
problem (1.24)–(1.26) is given by

(3.39) −νdiv V + grad p = f in Ω ,

(3.40) div u = 0 in Ω ,

(3.41) V − (grad u)t = 0 in Ω ,

and

(3.42) u = 0 on Γ ,

where div V denotes the vector whose components are the divergences of the corre-
sponding rows of V. The system (3.39)–(3.42) is not fully H1-coercive. The relevant
a priori estimate associated with this system is given by

(3.43)
‖V‖q+1+‖u‖q+2 + ‖p‖q+1

≤ C
(
‖ − νdiv V + grad p‖q + ‖V − (grad u)t‖q+1 + ‖div u‖q+1

)
.

In [36], the new variables V are called “velocity fluxes”; since that terminology is
usually reserved for a different physical quantity, we have adopted the terminology
“velocity gradient.”

The main idea of [36] is that full H1-coercivity can be obtained by augmenting
(3.39)–(3.42) with additional constraints. In particular, in view of the identity trV =
div u, the definition of V, and the boundary condition (1.26), we can add to (3.39)–
(3.42) the equations

(3.44) grad (trV) = 0 in Ω

and

(3.45) curl V = 0 in Ω
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and the boundary condition

(3.46) V × n = 0 on Γ ,

where curl V denotes the vector whose components are the curls of the corresponding
rows of V and V×n denotes the vector whose components are the vector product of
the rows of V with the unit outer normal vector n. Note that (3.45) generalizes the
curl constraints (3.3) and (3.18) to the tensor case.

The resulting system (3.39)–(3.42) and (3.44)–(3.46) is overdetermined, but con-
sistent. In 2 dimensions, the number of unknowns equals 7, and the number of equa-
tions equals 11. In 3 dimensions, we have 13 unknowns and 25 equations. A functional
setting relevant to the least-squares method for the augmented system (3.39)–(3.42)
and (3.44)–(3.46) is given by

Xq = H̃q+1(Ω)×Hq+1(Ω) ∩H1
0(Ω)×Hq+1(Ω) ∩ L2

0(Ω)

for the unknowns (V,u, p), where H̃q+1(Ω) = [Hq+1(Ω)]n
2

constrained by (3.46), and

Yq = Hq(Ω)×Hq(Ω)× [Hq(Ω)]n
2 ×Hq(Ω)×Hq(Ω)

for the equation residuals; the corresponding a priori estimate is given by

(3.47)

‖V‖q+1 + ‖u‖q+1 + ‖p‖q+1

≤ C
(
‖ − νdiv V + grad p‖q + ‖div u‖q

+‖V − (grad u)t‖q + ‖grad (trV)‖q + ‖curl V‖q
)
.

The two velocity–gradient-velocity-pressure formulations can be easily extended
to the Navier–Stokes equations. In terms of the new variable V, the nonlinear term
in (1.27) can be expressed as V · u so that, for the Navier–Stokes problem, (3.39) is
replaced by

−νdiv V + V · u + grad p = f in Ω .

The (generalized) div-grad decomposition used above can also be used for the
linear elasticity equations (1.17)–(1.19); see [37]. The new variables are again V =
(grad u)t and are called “displacement fluxes” in [37], but perhaps should be more
properly referred to as “displacement gradients.” The first-order displacement-gradient
system corresponding to the form (1.20)–(1.21) of the equations of linear elasticity is
given by

(3.48) −divAV = f in Ω ,

(3.49) V − (grad u)t = 0 in Ω ,

and

(3.50) u = 0 and n ·AV = 0 on Γ .

Similarly to (3.39)–(3.41), to achieve full H1-coercivity, the system (3.48)–(3.50)
should be augmented by a curl constraint of the form

curl V = 0 in Ω .
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3.3.2. The constrained-velocity–gradient-pressure formulation of the
Stokes problem. This approach was suggested in [47] and here we present it in
the case of two space dimensions. The new variables introduced to effect the trans-
formation to a first-order system are the entries of the velocity gradient constrained
by the incompressibility constraint (1.25), i.e., they are given by

(3.51) G =
(
v1 v2
v3 −v1

)
,

where

v1 =
∂u1

∂x1
= −∂u2

∂x2
, v2 =

∂u1

∂x2
, and v3 =

∂u2

∂x1
,

and where u1 and u2 denote the components of the velocity u. Using the new variables
and the equality of second mixed derivatives, the Stokes problem (1.24)–(1.26) in two
dimensions can be written in the form [47]

(3.52)
−νdiv G + grad p = f in Ω ,

curl G = 0 in Ω ,

G× n = 0 on Γ.

In [47], the new variables (3.51) are called “accelerations” and the system (3.52) the
“acceleration-velocity” formulation of the Stokes equations. However, the new vari-
ables are not components of the acceleration vector so that, instead, we call the system
(3.52) the constrained-velocity–gradient-pressure formulation of the Stokes problem.

The planar system (3.52) has four equations and four unknowns, and we can
show that it is elliptic in the sense of Petrovsky so that, with H̃q+1(Ω) = [Hq+1(Ω)]3

constrained by the boundary condition in (3.52), the function setting is given by

Xq = H̃q+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω) and Yq = [Hq(Ω)]2 × [Hq(Ω)]2

for the unknowns (G, p) and the equation residuals, respectively. The a priori estimate
relevant to least-squares methods is given by

(3.53) ‖G‖q+1 + ‖p‖q+1 ≤ C (‖ − νdiv G + grad p‖q + ‖curl G‖q) .

The velocity has been eliminated from (3.52); it is recovered by solving the addi-
tional div-curl system

(3.54)
curl u = v3 − v2 in Ω,
div u = 0 in Ω,
u · n = 0 on Γ .

Although it is not obvious that the solution of (3.54) satisfies the boundary condition
(1.26), it can be shown that this is indeed the case.

Although the system (3.52) is fully H1-coercive, owing to the elimination of the
velocity field, this system cannot be extended to the Navier–Stokes equations. Elim-
ination of the velocity field in (3.52) can be considered as an artifact since we can
simply consider (3.52) together with (3.54). Such a first-order system is studied in
[53], where the new variables are called “stresses” and the corresponding first-order
system is called the “stress-velocity-pressure” Stokes system despite the fact that the
new variables are not the components of the stress tensor. This is not to be confused
with the formulation of subsection 3.2.2 for which the true stresses are used.
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3.3.3. First-order Stokes formulations: Concluding remarks. We have
presented five different first-order systems that can be derived from the Stokes equa-
tions by introducing new dependent variables. In all five cases the new variables
involve derivatives of the velocity field. When new variables represent linear combi-
nations of these derivatives, such as the vorticity or stresses, resulting systems are
not always fully H1-coercive. This is due to the fact that interdependencies between
the new variables and the velocity field remain coupled, i.e., formulations “remember”
that some of the variables are actually velocity derivatives. To uncouple the variables,
the velocity-gradient and the constrained velocity-gradient approaches use the com-
ponents of the velocity gradient as new dependent variables, and add new constraints
until the dependencies between the variables become subdominant. This may lead to
an overdetermined, but consistent, problem.

3.4. Inhomogeneous boundary conditions. The a priori estimates presented
above are valid for homogeneous boundary conditions imposed on the function spaces.
Below we give a necessarily brief account of the relevant a priori estimates for inho-
mogeneous essential boundary conditions.

To determine the appropriate norms for a given boundary operator we may rely
again on the elliptic regularity theory of [2], or on various trace theorems relating
boundary and interior norms of functions. For example, a result of [102] states that
for every g ∈ H1/2(Γ) there is a unique u ∈ H1(Ω) such that 4u = 0 in Ω, u = g on
Γ, and ‖u‖1 ≤ C‖g‖1/2,Γ. As a result, for the div-grad system with inhomogeneous
Dirichlet boundary conditions given by

−div v = f and v = gradφ in Ω and φ = g on Γ ,

the relevant a priori estimate is given by

(3.55) ‖φ‖1 + ‖v‖H(Ω,div) ≤ C
(
‖v − gradφ‖0 + ‖div v‖0 + ‖φ‖1/2,Γ

)
.

Similar estimates can be derived for the other div-grad–type first-order systems.
Recall that the velocity-vorticity-pressure Stokes problem has an ambiguously

defined principal part and that, as a result, there are two possible functional settings
for this problem, given by (3.29)–(3.30) and (3.31)–(3.32). When this problem is
augmented with inhomogeneous boundary conditions, the data spaces are given by
Yq × Zq, where Zq is a trace space defined on Γ. The specific form of Zq can be
determined with the help of the elliptic regularity theory of [2]. More precisely, given
a particular boundary operator, the form of Zq will depend on the principal part,
which assures the validity of the complementing condition for this boundary operator.
For example, for the velocity-vorticity-pressure formulation of the Stokes equations
with the pressure–normal-velocity boundary condition (3.35) this space is given by

Zq = Hq+1/2(Γ)×Hq+1/2(Γ)

for (u · n, p), whereas for the velocity boundary condition (1.26) we have that

Zq = [Hq+3/2(Γ)]n, n = 2 or 3 ,

for u. As a result, the relevant a priori estimates corresponding to the two principal
parts (3.27) and (3.28) are now given by
(3.56)
‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+1

≤ C
(
‖νcurlω + grad p‖q + ‖curl u− ω‖q + ‖div u‖q + ‖u · n‖q+1/2,Γ + ‖p‖q+1/2,Γ

)
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and
(3.57)

‖ω‖q+1 + ‖p‖q+1 + ‖u‖q+2

≤ C
(
‖νcurlω + grad p‖q + ‖curl u− ω‖q+1 + ‖div u‖q+1 + ‖u‖q+3/2,Γ

)
,

respectively. A priori estimates for other first-order Stokes problems with inhomoge-
neous boundary conditions can be derived in a similar manner. For example, when the
first-order Stokes problem is H1-coercive, e.g., the velocity–gradient-velocity-pressure
formulation, the space Zq for the inhomogeneous velocity boundary condition is given
by [Hq+1/2(Γ)]n, n = 2 or 3. If the system is not H1-coercive, e.g., the velocity-stress-
pressure formulation, then Zq is given by [Hq+3/2(Γ)]n, n = 2 or 3.

The estimates (3.55), (3.56), and (3.57) can be used to define norm-equivalent
least-squares functionals when a variational enforcement of the essential boundary
conditions is desired. In particular, these estimates indicate the appropriate norms
that should be used to measure the residuals of the boundary data.

In conclusion, we note that the ADN theory also allows us to determine the form
of the boundary data space Zq when the boundary condition involves differential
operators. Such boundary conditions for the Stokes problem are, however, outside
the scope of this paper.

4. Least-squares methods. We now turn to specific least-squares finite ele-
ment methods for elliptic boundary value problems. We divide these methods into
three classes according to the analytical and computational approaches employed to
satisfy the optimality and practicality principles of section 2. Thus, we use the fol-
lowing nomenclature to classify least-squares finite element methods:

• Basic L2 methods: methods that use only L2-norms in the least-squares func-
tional;
• Weighted L2 methods: methods that use mesh-dependent or other weighted
L2-norms in the least-squares functional; and
• H−1 methods: methods that use negative Sobolev space norms in the func-

tional setting and in the least-squares functional.
Most of the methods discussed in this section are illustrated using the Stokes equations
as a model problem, although other model problems are also used.

4.1. Basic L2 least-squares methods. The principal appeal of basic L2 meth-
ods is their straightforward formulation and ease of implementation. Given a first-
order system, a quadratic least-squares functional for the system is readily available
by summing up the L2-norms of the residual equations. As a result of the use of first-
order differential equations in the functionals, the corresponding variational problems
can be discretized by means of standard finite element spaces such as Pk or Qk, i.e.,
spaces consisting of functions that are merely continuous across element edges. How-
ever, for such methods, optimal discretization error estimates in L2- and H1-norms
can only be established provided the first-order system is fully H1-coercive. More-
over, if the system lacks the latter property, we can find smooth solutions for which
convergence rates are suboptimal. Thus, the main theoretical and practical problems
experienced by basic L2 formulations can be attributed to the lack of such coerciv-
ity in the first-order system. These problems will be discussed in subsection 4.1.1 in
the context of the Stokes equations. In subsection 4.1.2, fully H1-coercive basic L2

methods for div-curl systems are considered.
The need for full H1-coercivity reflects the desire to establish Sobolev space er-

ror estimates that provide control over all first derivatives. In subsection 4.1.3 we
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consider basic L2 methods that adhere to a different philosophy with respect to error
estimates. These methods take advantage of the fact that a first-order system, al-
though not fully H1-coercive, may nonetheless be coercive in a setting which involves
“intermediate” function spaces such as H(Ω,div). Then, optimal error estimates for a
basic L2 method can still be established, but for some of the variables these estimates
will be in the weaker norm of the intermediate space and we do not establish full
control over all first derivatives. Such methods allow us to exploit, in the analysis,
the ellipticity properties that are inherent in the first-order system without adding
additional constraints. Finally, in subsection 4.1.3, we also discuss methods for div-
grad systems that result in optimal H1 error estimates by means of adding additional
constraints or by employing special grids.

4.1.1. Basic L2 least-squares methods for the Stokes equations. For the
Stokes problem in two dimensions, we can consider the following five least-squares
functionals associated with the first-order systems discussed in subsections 3.2–3.3.
Velocity-vorticity-pressure functional:

(4.1) J (ωωω,u, p) =
1
2
(
‖νcurlωωω + grad p− f‖20 + ‖curl u− ωωω‖20 + ‖div u‖20

)
;

Velocity-pressure-stress functional:

(4.2) J (T,u, p) =
1
2
(
‖T−

√
2ν ε(u)‖20 + ‖div u‖20 + ‖

√
2ν div T− grad p− f‖20

)
;

Constrained-velocity–gradient-pressure functional:

(4.3) J (G, p) =
1
2
(
‖ − νdiv G + grad p− f‖20 + ‖curl G‖20

)
;

Velocity–gradient-velocity-pressure functional I:

(4.4) J (V,u, p) =
1
2
(
‖ − νdiv V + grad p− f‖20 + ‖div u‖20 + ‖V − (grad u)t‖20

)
;

Velocity–gradient-velocity-pressure functional II:

(4.5)
J (V,u, p) =

1
2
(
‖ − (div V)t + grad p− f‖20 + ‖div u‖20

+ ‖V − grad ut‖20 + ‖grad (trV)‖20 + ‖curl V‖20
)
.

With each one of the above functionals we associate a least-squares finite element
method in the usual manner, as described in section 2. To obtain optimally accu-
rate discretization error estimates for the resulting methods we have to establish the
coercivity of respective bilinear forms, i.e., show that the least-squares functionals
(4.1)–(4.5) with zero data are norm-equivalent to the H1-norm. This, however, is not
true for all five functionals.

Consider, for example, the functional (4.1). When the first-order system (3.20)–
(3.22) is augmented by the normal-velocity–pressure boundary condition (3.35), the
corresponding boundary value problem is elliptic in the sense of Petrovsky. As a
result, the system (3.20)–(3.22) is fully H1-coercive, and the relevant a priori estimate
is given by (3.33). Analyses based on standard elliptic finite element theory can be
used to establish optimal discretization errors for this method (see [17]) of the form

(4.6)
‖u− uh‖r+‖ωωω − ωωωh‖r + ‖p− ph‖r

≤ Chk+1−r(‖u‖k+1 + ‖ωωω‖k+1 + ‖p‖k+1
)
, r = 0, 1 .
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TABLE 1
Rates of convergence of the L2- and H1-errors in the least-squares finite element solution

with velocity (V) and normal-velocity–pressure (NVP) boundary conditions compared to the best
approximation rates (BA).

L2-error rates H1-error rates
Variable BA V NVP BA V NVP

u 3.00 2.71 3.11 2.00 2.03 2.04
v 3.00 2.37 3.10 2.00 2.06 2.02
w 3.00 2.20 3.00 2.00 1.64 1.93
p 3.00 2.34 2.98 2.00 1.64 1.97

This estimate is valid, e.g., if the finite element spaces Pk or Qk (see section 1) are
used for all variables. Let us now suppose that (3.20)–(3.22) is instead augmented by
the velocity boundary condition (1.26). The corresponding boundary value problem is
elliptic in the more general sense of ADN, but fails to be elliptic in the sense of Petro-
vsky. As a result, the system (3.20)–(3.22) is not fully H1-coercive, and the relevant a
priori estimate is now given by (3.34). This fact by itself does not immediately imply
that the method is not optimal; it only indicates that standard finite element analysis
cannot be used to show that the optimally accurate error estimates given by (4.6) are
valid with the velocity boundary condition. A more careful analysis of this method
does however reveal that it is indeed suboptimal; suboptimal convergence rates can
be observed computationally as well. Using the exact solution from subsection 3.2.1
with n = 1, the functional (4.1), and discretization by quadratic elements on triangles,
we have computationally obtained the (approximate) convergence rates as given in
Table 1; we can conclude that the rates for the velocity boundary condition case are
suboptimal.

Consider next the functional (4.2). From subsection 3.2.2, we know that the as-
sociated boundary value problem is not fully H1-coercive, regardless of the choice of
boundary conditions. Similarly, the first-order system (3.39)–(3.42) is not fully H1-
coercive and estimate (3.43) implies that the functional (4.4) is not norm-equivalent.
Thus, in both cases, the optimality of the resulting methods cannot be established
using standard elliptic arguments. In fact, in both cases, we can devise counterexam-
ples, similar to the one in subsection 3.2.1, that will result in suboptimal convergence
rates.

Lastly, consider the constrained velocity gradient functional (4.3) and the aug-
mented velocity gradient functional (4.5). In both cases, the functionals are associated
with fully H1-coercive systems given by (3.52) and (3.39)–(3.42), (3.44)–(3.46), re-
spectively. The a priori estimates (3.53) and (3.47) that are valid for these systems
imply that both functionals are norm-equivalent to a product of H1 spaces. As a
result, optimally accurate discretization error estimates in the H1(Ω)-norm can be
established for all dependent variables using standard elliptic finite element theory;
see [36] and [47].

4.1.2. Basic L2 least-squares methods for div–curl type equations. In
two dimensions, the div-curl first-order system (1.29)–(1.30) has two equations and
two unknowns and is elliptic in the sense of ADN. Moreover, along with one of the
boundary conditions (1.31), this system is fully H1-coercive, provided Γ is of class
C1,1 or is piecewise smooth with no re-entrant corners. This follows from the algebraic
and topological equivalence of each the spaces H0(Ω,div)∩H(Ω, curl) and H(Ω,div)∩
H0(Ω, curl) with the space H1(Ω) for such domains; see [79]. Thus, in two dimensions,
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the quadratic functional

(4.7) J (u) =
1
2
(
‖curl u− f‖20 + ‖div u− g‖20

)
leads to an optimal least-squares method.

In three dimensions, the system (1.29)–(1.30) consists of four equations and
three unknowns, i.e., it is seemingly overdetermined. Thus, along with the velocity-
gradient–velocity-pressure system, this system is another example of the utility of
least-squares methods for solution of systems having different numbers of unknowns
and equations. The functional (4.7) can be used in three dimensions as well; however,
analyses of resulting methods can vary significantly depending on the mathemati-
cal framework chosen. For example, in [74], existence and uniqueness of minimizers
to (4.7) and optimal discretization error estimates are established using the integral
identity ∫

Ω

(
|curl u|2 + |div u|2

)
dΩ =

∫
Ω
|grad u|2 .

Unfortunately, this identity holds for special cases such as rectangular domains, but
is not true in general; see [55].

A more general mathematical framework for the analysis of least-squares methods
based on (4.7) has been suggested in [55]. This framework uses the ADN elliptic
theory. Since in three dimensions the system (1.29)–(1.30) is not elliptic in the sense
of ADN, it must be modified before the ADN theory can be applied. For this purpose,
equation (1.29) is modified according to (1.32), where φ is a “slack” variable subject
to the boundary condition φ = 0 on Γ (compare with subsection 3.2.1). The slack
variable φ is used only for the analysis; we can show that this variable is identically
zero and therefore it can be completely ignored in computations. Thus, using, e.g.,
P1 elements, we have the optimal error estimates (see [55])

‖u− uh‖r ≤ Ch2−r‖u‖2, r = 0, 1 .

Methods described in this section can be extended to problems arising in electromag-
netic applications. For further details on such methods, see, e.g., [46], [58], [60], [97],
and [116].

4.1.3. Basic L2 least-squares methods for div-grad–type equations. We
now turn to a class of basic L2 methods that is principally associated with the scalar
div-grad decomposition of subsection 3.1, e.g., methods that arise in biharmonic-,
convection-diffusion–, and reaction-diffusion–type problems. We first consider least-
squares methods that are customarily set in H(Ω,div) spaces.

The simplest setting for such methods is given by Poisson’s equation (1.5) with
the homogeneous Dirichlet boundary condition (1.6). Here, the scalar div-grad de-
composition yields the first-order system (2.11) and the corresponding least-squares
functional is given by (2.12). From the a priori estimate (3.2), it follows that (2.12) is
norm-equivalent on the space X, where X is given by (3.1). As a result, the bilinear
form associated with this functional is coercive on X × X. Then, standard elliptic
finite element theory can be used to establish error estimates of the form

(4.8) ‖φ− φh‖1 + ‖v − vh‖H(Ω,div) ≤ Ch
k
(
‖φ‖k+1 + ‖v‖k+1

)
if, e.g., the finite element spaces Pk or Qk are used for all variables.
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Next, consider the biharmonic problem (1.10)–(1.11) and the associated first-order
problem (3.4)–(3.8). We recall that a function setting for this first-order problem is
given by (3.9) and that the a priori estimate relevant to least-squares methods is given
by (3.10). As a result, a least-squares functional for (3.4)–(3.8) can be defined by (see
[76])

(4.9)

J (φ0, φ1,v0,v1)

=
1
2
(
‖v0 − φ0‖20 + ‖v1 − φ1‖20 + ‖div v0 − φ1‖20 + ‖div v1 − f‖20

)
.

According to (3.10), this functional is norm-equivalent on a space X where X is now
given by (3.9). Correspondingly, the bilinear form associated with the functional (4.9)
is not coercive on a product of H1(Ω) spaces; instead, this form is coercive on X×X.
As a result, the optimal error estimates for least-squares finite element approximations
of (3.4)–(3.8) are very similar to (4.8), i.e., we can find optimal upper bounds for

‖v0 − vh0‖H(Ω,div) + ‖v1 − vh1‖H(Ω,div) + ‖φ0 − φh0‖1 + ‖φ1 − φh1‖1

but not for

‖v0 − vh0‖1 + ‖v1 − vh1‖1 + ‖φ0 − φh0‖1 + ‖φ1 − φh1‖1 .

Lastly, consider the convection-diffusion problem (1.12)–(1.13). A least-squares
functional for this problem can be defined using the first-order system (3.16)–(3.17)
and is given by

(4.10) J (v, φ) =
1
2
(
‖v −A(x)gradφ‖20 + ‖div v + Λφ− f‖20

)
.

It can be shown (see [33], [35], and [107]) that the functional (4.10) is equivalent
to a norm on the space X = H1

0 (Ω) × H(Ω,div) for the unknown (φ,v), i.e., the
associated bilinear form is coercive on X ×X. As a result, it can be shown (see [33])
that least-squares finite element approximations satisfy the error estimate (4.8).

The need to carry on the analyses of the above least-squares methods in a setting
involving the space H(Ω,div) stems from the lack of full H1-coercivity in div-grad–
type systems. However, in most cases such coercivity can be achieved by adding curl
constraints. For example, if the system (2.11) is augmented by (3.3), a least-squares
functional given by

(4.11) J (φ,v) =
1
2
(
‖div v + f‖20 + ‖v − gradφ‖20 + ‖curl v‖0

)
allows us to establish optimal error estimates in the norm of H1(Ω) for all dependent
variables; see [49]. The curl constraint (3.3) can also be used to augment the div-grad
system corresponding to the Helmholtz equation; see, e.g., [48] and [95].

The same approach can be applied to the convection-diffusion problem (1.12)–
(1.13). In this case, the appropriate form of the curl constraint is given by (3.19), i.e.,
instead of (4.10) we can consider the minimization of the following functional similar
to (4.11) (see [43] and [44]):

(4.12) J (φ,v) =
1
2
(
‖v −A(x)gradφ‖20 + ‖div v + Λφ− f‖20 + ‖curlA−1(x)v‖20

)
.
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Functional (4.12) can also be applied to the self-adjoint case, i.e., when the term Λφ
is omitted from (1.12)–(1.13); see [106].

In conclusion, it should be mentioned that optimal rates of convergence in H1(Ω)-
norms can still be obtained without adding a curl constraint to the first-order system.
This, however, requires a restrictive condition on the triangulation known as the “grid-
decomposition property”; see [72]. An example of a grid that satisfies this property
is furnished by the “criss-cross” grid; see [73]. Furthermore, it can be shown (see
[61]) that the grid-decomposition property is a necessary and sufficient condition for
stability and optimal discretization errors.

4.2. Weighted least-squares methods. The use of weights in least-squares
functionals has long been among the preferred ways to handle issues such as lack of
full H1-coercivity, inhomogeneous boundary conditions, singular solutions, and com-
putations in regions with corners. Loosely speaking, the idea of weighted least-squares
functionals can be described as follows. We are given a least-squares functional which
is equivalent to a norm on some Sobolev space, but this norm is not convenient from
a computational point of view or is not appropriate for a particular class of solutions.
When this functional is restricted to a finite element space, we can appeal to the
fact that all norms on a finite-dimensional space are equivalent. Thus, essentially all
norms can be replaced by L2-norms weighted by the respective equivalence constants.
Here, we consider three typical examples of weighted least-squares methods. In the
first, weights are used to replace H1-norms by L2-norms; in the second, weights are
used to replace inconvenient boundary norms by more convenient ones; and, in the
third, weights are used to handle singularities in the solution.

4.2.1. Weighted methods: Part 1. We consider the first-order system (3.20)–
(3.22) along with the boundary condition (1.26). In this case, the a priori estimate
relevant to the least-squares methods is given by (3.34). Setting q = 0 in (3.34)
implies that a norm-equivalent functional should be defined as

(4.13) J (ωωω,u, p) =
1
2
(
‖νcurlωωω + grad p− f‖20 + ‖curl u− ωωω‖21 + ‖div u‖21

)
.

Because (4.13) is norm-equivalent on the space (3.31) (with q = 0), conforming dis-
cretization of this functional yields a formally optimal method. However, the use of
H1-norms in (4.13) calls for discretization of second-order terms such as (grad div u)
and (grad curl u). Conforming discretizations of such terms can be handled using
subspaces of H2(Ω). In the finite element setting, this essentially requires the use
of finite element spaces that are continuously differentiable across the element faces.
Unfortunately, in two and three dimensions, such elements are impractical, which
offsets the potential advantages of a least-squares formulation based on (4.13).

The fact that a first-order system may lead to a least-squares method that still
requires discretization by subspaces of H2 was first pointed out in [17]. In that paper
some ideas of [3] were extended to the system (3.20)–(3.22). To avoid this problem,
the relevant observation is that for finite element functions the equivalence constant
between the L2- and H1-norms is given by h−1. This can be seen either by a scale
argument or by using inverse inequalities; see [65]. Then, instead of (4.13), we can
consider the weighted functional given by

(4.14) Jh(ωωω,u, p) =
1
2
(
‖νcurlωωω + grad p− f‖20 + h−2‖curl u− ωωω‖20 + h−2‖div u‖20

)
.

The functional (4.14) involves only first-order derivatives of the unknown functions.
As a result, the associated variational problem can be discretized using finite element



822 PAVEL B. BOCHEV AND MAX D. GUNZBURGER

spaces like Pk or Qk. The use of weighted L2-norms does, however, introduce some
interesting features into the resulting least-squares method. First, we note that the
functionals (4.13) and (4.14) are not equivalent unless the functions U = (ωωω,u, p) are
restricted to a finite-dimensional space. Furthermore, since discretization is performed
using finite element spaces such as Pk and Qk, it is not conforming with respect to
the spaces for which (4.13) is norm-equivalent (these spaces include H2(Ω) for the
velocity field). As a result, the bilinear form associated with (4.14) is not coercive
in the usual sense; instead, it can be shown (see [17]) that it satisfies a “stability”
estimate of the form

(4.15) ‖ωωω − ωωωh‖q+1 + ‖p− ph‖q+1 + ‖u− uh‖q+2 ≤ C h−q Bh(U − Uh, U − Uh)
1
2 ,

where q ≤ −1. Together with a standard “continuity” estimate, (4.15) yields an error
estimate (compare with (4.6))

(4.16) ‖ω − ωh‖0 + ‖p− ph‖0 + ‖u− uh‖1 ≤ C hk
(
‖ωωω‖k + ‖p‖k + ‖u‖k+1

)
that is valid for k ≥ 2 if we use, e.g., the finite element spaces Pk or Qk for the
velocity and Pk−1 and Qk−1 for the pressure and vorticity. Note that, in (4.16),
the error in the approximation is measured in norms corresponding to (3.34) with
q = −1. As a result, for the approximation of the pressure and the vorticity we can
use finite element spaces with interpolation order of one degree less than that used for
the velocity approximation. This also means that (4.16) is not optimal if equal-order
interpolation is used for all dependent variables.

An obvious candidate for a similar treatment is the velocity-pressure-stress system
(3.36). Recall that this system is not fully H1-coercive, i.e., the basic L2-functional
(4.2) is not norm-equivalent. As a result, we can find smooth solutions such that the
basic L2-functional (4.2) for (3.36) yields suboptimal convergence rates.

At the same time, using (3.38) with q = 0 to define a norm-equivalent least-
squares functional will lead to impractical methods. An argument similar to the one
used to define the functional (4.14) now leads to the following weighted functional for
(3.36):

(4.17)
Jh(T,u, p) =

1
2
(
h−2‖T−

√
2ν ε(u)‖20

+ h−2‖div u‖20 + ‖
√

2ν div T− grad p− f‖20
)

;

see [19]. The resulting finite element method shares many common properties with
the one for the velocity-vorticity-pressure system, including optimal error estimates
in which the error in the approximations of T, u, and p is measured in norms corre-
sponding to (3.38) with q = −1, i.e.,

(4.18) ‖T−Th‖0 + ‖p− ph‖0 + ‖u− uh‖1 ≤ C hk
(
‖T‖k + ‖p‖k + ‖u‖k+1

)
,

which is valid for k ≥ 2 if we use, e.g., the finite element spaces Pk or Qk for the
velocity and Pk−1 and Qk−1 for the pressure and stress. As with (4.16), the estimate
(4.18) is not optimal if equal-order interpolation is used for all dependent variables.

We can also show that the weights in (4.17) are necessary for the optimal conver-
gence rates in (4.18). For example, consider the following exact solution (see [19]):

u1 = u2 = sin(πx) sin(πy),
T1 = T2 = T3 = sin(πx) exp(πy),

p = cos(πx) exp(πy),
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TABLE 2
Rates of convergence of the H1- and L2-errors in the least-squares finite element solution with

the weights (WLS) and without the weights (LS) compared to best approximation rates (BA).

L2-error rates H1-error rates
Variable WLS LS BA WLS LS BA

u 3.59 1.11 3.00 2.85 1.00 2.00
v 3.13 1.28 3.00 2.77 1.17 2.00
T1 2.42 1.25 2.00 0.99 0.94 1.00
T2 2.48 1.14 2.00 1.01 0.99 1.00
T3 2.34 1.26 2.00 1.05 0.76 1.00
p 2.40 0.94 2.00 1.10 0.92 1.00

and a method based on (4.17) implemented using P1 elements for T and p, and P2
elements for the velocity. Numerical estimates of convergence rates for (4.19) with
and without the weights are summarized in Table 2.

4.2.2. Weighted methods: Part 2. In this section, we consider least-squares
methods where weights are used to replace trace norms on the boundary by com-
putable, weighted-boundary L2-norms. One example is provided by the least-squares
theory for planar elliptic systems of Petrovsky type developed in [115].

We consider first-order systems in the plane. It is assumed that these systems
can be cast into the standard form (see subsection 2.1)

(4.19) AUx +BUy + CU = F in Ω ,

where U = (u1, . . . , u2n), F = (F1, . . . , F2n), and A, B, and C are 2n× 2n matrices.
Along with the system (4.19), we consider a boundary condition of the form

(4.20) RU = G on Γ ,

where R is a full-rank n× 2n matrix. It is further assumed that the boundary value
problem (4.19)–(4.20) is elliptic in the sense of Petrovsky, that is, A and B satisfy the
algebraic condition of subsection 2.1, which is equivalent to the uniform ellipticity of
(4.19), and that (4.20) satisfies the Lopatinskii condition; see [115]. As a result, the
following a priori estimate is valid for the problem (4.19)–(4.20):

(4.21) ‖U‖q+1 ≤ C
(
‖AUx +BUy + CU‖q + ‖RU‖q+1/2,Γ

)
.

In the terminology of section 2, the system (4.19)–(4.20) is fully H1-coercive (set q = 0
in (4.21)). Let us assume for the moment that (4.20) can be satisfied exactly by the
approximating spaces. Then, an optimal least-squares method for (4.19)–(4.20) can
be defined using only L2-norms in the functional. In some cases, however, it might
be advantageous to impose (4.20) in a weak sense by using a least-squares functional
of the form

(4.22) J (U) =
1
2
(
‖AUx +BUy + CU − F‖20 + ‖RU −G‖21/2,Γ

)
.

In contrast with the functional (4.13), the difficulty now lies with the computability
of the boundary norm ‖ · ‖1/2,Γ. Using a scale argument, we can infer that for finite
element functions, an appropriate equivalence constant for such a norm and the L2(Γ)-
norm is h−1/2. The corresponding weighted least-squares functional is then given by

(4.23) Jh(U) =
1
2
(
‖AUx +BUy + CU − F‖20 + h−1‖RU −G‖20,Γ

)
.
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The minimization of the functional (4.23) without the h−1-coefficient results in sub-
optimal convergence rates; minimization of (4.23) yields optimal rates; see [115].

Evidently, the concepts presented above are not limited to elliptic systems of
Petrovsky type, and can be extended to other types of first-order systems. One
particular example is given by the method of [86] for Poisson’s equation (1.5) with
inhomogeneous Dirichlet boundary condition φ = g on Γ. The least-squares functional
considered in [86] is given by

(4.24) Jh(φ,v) =
1
2
(
‖div v + f‖20 + ‖v − gradφ‖20 + h−1‖φ− g‖20,Γ

)
.

To obtain the functional (4.24), we can first use (3.55) to define a norm-equivalent
quadratic functional similar to (4.22)

J (φ,v) =
1
2
(
‖div v + f‖20 + ‖v − gradφ‖20 + ‖φ− g‖21/2,Γ

)
and then replace the boundary norm as in (4.23). The corresponding least-squares
method is similar to the basic L2 methods of subsection 4.1.3 in the sense that the
error estimate for the new variable v is derived in the norm of H(Ω,div). Further
examples of least-squares methods using weighted L2(Γ)-norms can be found in [3]
and [4].

Another possibility involves the use of mesh-dependent weights for the residuals
of both the partial differential equations and the boundary conditions. The resulting
methods combine features of the weighted methods in subsection 4.2.1 and this section.
More details about such methods can be found in [3].

4.2.3. Weighted methods: Part 3. In this section we consider yet a third
application of mesh-dependent weights in least-squares functionals. In the first two
applications, the need to consider weights in functionals stemmed from computabil-
ity and/or practicality considerations. Here, the purpose of the weights will be to
handle singularities in the solutions of boundary value problems. These singularities
may be caused by, e.g., shock waves in transonic flows or cracks and corners in the
computational domain. Here, we consider the latter case; the case of shock waves is
considered in subsection 5.2. It is known that least-squares-principle–based methods
tend to be more sensitive to singularities in the solutions, and that mesh refinement
alone is not a sufficient remedy; see [66]. Thus, the need for weights in the present
context is motivated entirely by the salient features of the solution.

For an example, we consider a least-squares approximation to the Dirichlet prob-
lem (1.5)–(1.6) in a planar region Ω having a corner with an interior angle θ ∈ [π, 2π];
see [75]. In this case, solutions to (1.5)–(1.6) exhibit a corner singularity which be-
haves as rα, where r is the distance to the corner and the choice of α depends on
θ. To formulate a least-squares method, we consider again the div-grad decomposi-
tion (2.11). Because of the presence of singularities in the solution, the functional
(2.12) is not appropriate anymore. The main idea of [75] is to consider an alternative
least-squares approximation set up in weighted function spaces. In particular, we can
consider a weighted analogue Hα(Ω,div) of the space H(Ω,div) defined as the closure
of [C∞(Ω)]2 with respect to the norm

‖v‖2Hα(Ω,div) = ‖rα/2div v‖20 + ‖v‖20 .

Note that the new space is defined using weights which reflect the strength of the
singularity. As a result, the appropriate least-squares functional for (1.5)–(1.6), when
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the region Ω has a corner, is given by

Jh(φ,v) =
1
2
(
‖rα/2(div v + f)‖20 + ‖v − gradφ‖20

)
.

It has been shown in [75] that if α is bounded from below by 4− 2π/θ, then we can
derive the error estimates for v and φ in unweighted L2-norms, i.e.,

‖v − vh‖0 ≤ Ch‖f‖1

and

‖φ− φh̃‖0 ≤ C(h̃s + h)2‖f‖1 ,

respectively. In the above estimates h and h̃ denote the grid sizes used in the approx-
imation of v and φ, respectively, and s = π/θ. Note that for optimal accuracy, we
must take h̃ = h1/s, i.e., the grid for the scalar field φ must be finer than that for v.

4.3. H−1 least-squares methods. As we have seen in subsection 4.1, a basic
L2 least-squares method is optimally accurate provided the first-order system is fully
H1-coercive (or equivalently, elliptic in the sense of Petrovsky in two dimensions).
The lack of full H1-coercivity essentially implies that we cannot use the same norm
to measure all residuals of the first-order system. Let us consider again the velocity-
vorticity-pressure system (3.20)–(3.22) with the boundary condition (1.26). Recall
that setting q = 0 in the a priori estimate (3.34) leads to the (impractical) functional
(4.13), which has been used to motivate the weighted functional (4.14). If, on the
other hand, we choose q = −1 in the a priori estimate (3.34), the corresponding
norm-equivalent least-squares functional is given by

(4.25) J (ωωω,u, p)−1 =
1
2
(
‖νcurlωωω + grad p− f‖2−1 + ‖curl u− ωωω‖20 + ‖div u‖20

)
.

Functionals such as (4.25) form the basis of the minus-one or negative norm or H−1-
norm least-squares methods. H−1 methods are a relatively recent development sug-
gested in [23] and [25].

Because H−1-norms are not easy to compute, the functional (4.25) is not any more
practical than (4.13). Thus, we still have to consider replacement of the negative norm
by a discrete, computable equivalent. One simple way to accomplish this is to use a
scale argument. In particular, we can consider a weighted functional of the form

(4.26) Jh(ωωω,u, p) =
1
2
(
h2‖νcurlωωω + grad p− f‖20 + ‖curl u− ωωω‖20 + ‖div u‖20

)
,

i.e., we replace ‖ · ‖−1 by the weighted L2-norm h‖ · ‖0. We note that (4.26) can be
obtained from (4.14) simply by scaling the latter functional with the common (and
unimportant for the minimization) factor h2. Thus, computationally, both functionals
should have similar properties.

A more sophisticated approach (see [23] and [25]) involves replacement of the
H−1-norm by a discrete negative norm, defined using a preconditioner for the Laplace
operator. The main idea of this approach is as follows. Consider the following equiv-
alent norm on H−1(Ω):

‖f‖2−1 = sup
φ∈H1

0 (Ω)

(f, φ)
|φ|1

.
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Now, let S : H−1(Ω) 7→ H1
0 (Ω) denote the solution operator of the Dirichlet problem

(1.5)–(1.6). Then, ‖f‖2−1 = (Sf, f) ∀ f ∈ H−1(Ω); see [23]. Furthermore, the inner
product associated with the norm ‖ · ‖−1 can be expressed as (f, g)−1 = (Sf, g) =
(f, Sg). Lastly, let Sh : H−1(Ω) 7→ Xh denote a discrete approximation to S defined
using, e.g., a standard Galerkin method. Then, a computable, discrete negative semi-
norm can be defined as ‖φ‖2−1,h = (Shφ, φ)0. However, the cost of computing Sh may
still be prohibitive. Thus, Sh is further replaced by a preconditioner Bh that is a
symmetric and positive semidefinite operator on L2 that is spectrally equivalent to
Sh in the sense that

C0(Shφ, φ)0 ≤ (Bhφ, φ)0 ≤ C1(Shφ, φ)0 .

The main consideration in the choice of Bh is computational cost. The cost of com-
puting Bhφ must be significantly lower than the cost of computing Shφ. Once Bh is
chosen, a discrete minus-one norm can be defined as follows (see [23]):

‖φ‖−1,h = (S̃hφ, φ)0 , where S̃h = h2I +Bh

and where I denotes the identity matrix. The corresponding least-squares functional
for the Stokes equations is given by

(4.27)
J−1,h(ωωω,u, p) =

1
2
((
S̃h(νcurlωωω + grad p− f), νcurlωωω + grad p− f

)
0

+ ‖curl u− ωωω‖20 + ‖div u‖20
)
,

where S̃h is the block-diagonal matrix with diagonal blocks given by S̃h. Note that
with the trivial choice Bh ≡ 0, (4.27) reduces to the weighted functional (4.26). It
should be noted that the use of discrete negative norms in (4.27) leads to algebraic
problems with dense matrices. As a result, a practical implementation of correspond-
ing finite element methods is necessarily restricted to the use of iterative solvers that
do not require matrix assembly.

5. Least-squares methods for nonlinear problems. In this section we briefly
study two examples of the application of least-squares principles to the approximate
solution of nonlinear problems. First, we consider the Navier–Stokes system of in-
compressible, viscous flow and then the potential equation of inviscid, irrotational,
compressible flow.

5.1. Least-squares methods for the Navier–Stokes equations. A least-
squares method for the Stokes equations can be easily extended, at least in principle,
to the nonlinear Navier–Stokes equations. Indeed, given a least-squares functional
for a first-order Stokes problem, the corresponding functional for the Navier–Stokes
equations is readily available by simply including an appropriate form of the nonlinear
term into the residual of the momentum equation. From a practical point of view,
the resulting methods differ from their Stokes counterparts in two aspects. First, the
associated discrete problem now constitutes a nonlinear system of algebraic equations
that must be solved in an iterative manner using, e.g., a Newton linearization. Second,
solving the discrete system may not be straightforward for high values of the Reynolds
number since it is well known that the attraction ball for, e.g., Newton’s method,
decreases as the Reynolds number increases.

Most existing least-squares methods for the Navier–Stokes equations are based
on the velocity-vorticity-pressure form of this problem; see, e.g., [11], [12], [15], [18],
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[87], [91], [92], [93], [94], [96], [99], [112], and [113]. Exceptions include [13] and [14],
which consider velocity gradient methods, and [92], where a stress-based method is
discussed. The differences among various least-squares methods involve the choice
of the discretization spaces, the treatment of the nonlinear term, and the method
used for solution of the nonlinear discrete equations. For example, the methods of
[87], [91], [92], and [94] use basic L2-functionals, discretization by piecewise-linear
finite elements, and the u · grad u form of the nonlinear term. Other authors use
instead the ω × u form of the nonlinear term. Solution of the nonlinear discrete
equations is by Newton linearization and solution of the linearized equations is by
the conjugate gradient method with Jacobi preconditioning. The method of [99] is
very similar; however, solution of the linearized problem now involves the conjugate
gradient method preconditioned by incomplete Cholesky factorization. The p-version
of the finite element method has been used in [96]. The methods of [11] and [18] use
weighted least-squares functionals similar to (4.14), where in addition to the mesh-
dependent weights h−2, the residual of the momentum equation is weighted by the
Reynolds number. To handle large values of the Reynolds number, these methods
use Newton linearization combined with continuation with respect to the Reynolds
number.

The nonlinearity also considerably complicates the mathematical analysis of corre-
sponding least-squares methods. At present, analyses available are limited to methods
based on the velocity-vorticity-pressure (see [11], [18], and [12]) and velocity gradient
(see [13] and [14]) forms of the Navier–Stokes equations. In both cases, analyses are
based on the abstract approximation theory of [30] or its modifications. Since discus-
sion of these results would require a substantial amount of theoretical and technical
background about the theory of [30], it is beyond the scope of this paper. Thus, in
what follows we only outline the main idea of the error analysis.

It can be shown that the Euler–Lagrange equation associated with a least-squares
functional for the Navier–Stokes equations can be cast into an abstract canonical form
given by

(5.1) F (λ,U) ≡ U + T ·G(λ,U) = 0 ,

where λ = Re, T corresponds to a least-squares solution operator for the associated
Stokes problem, and G is a nonlinear operator. Similarly, the corresponding discrete
nonlinear problem can be identified with an abstract equation of the form

(5.2) Fh(λ,Uh) ≡ Uh + Th ·G(λ,Uh) = 0 ,

where Th is a discrete counterpart of T . The importance of this abstract form is
signified by the fact that discretization in (5.2) is introduced solely by means of an
approximation to the linear operator T in (5.1). As a result, under some assumptions,
we can show that the error in the nonlinear approximation defined by (5.2) is of the
same order as the error in the least-squares solution of the linear Stokes problem.

5.2. Least-squares methods for compressible, potential flow. We now
consider another nonlinear example, namely potential flow over a body Ω̂ contained
in a box Ω; see [61] and [64]. The relevant state equations are given by (3.12)–(3.13)
in the domain Ω/Ω̂ along with (3.15). On the boundary ∂Ω̂ of the body we consider
the boundary condition (3.14), i.e., u ·n = 0, and on the boundary of the flow domain
∂Ω, a condition of the form u · n = g is assumed.

In view of (3.12), we also have that

(5.3) curl u = 0 in Ω/Ω̂ ,
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so that together with (3.13) and the boundary conditions, we arrive at a div-curl–
type system. The system (3.13) and (5.3) is known to be effective for subsonic flows
(smooth density ρ and velocity field u; see [65]), and nonlinear least-squares finite
element methods based on the functional

(5.4) J (u) =
1
2
(
‖div (ρu)‖20 + ‖curl u‖20

)
are well suited for the approximation of such flows.

However, the use of (5.4) for the approximation of transonic flows containing
shock waves is problematic. Indeed, although the mass flow (ρu · n) and the tangen-
tial velocity are continuous across the shock, the terms div (ρu) and curl u may not
necessarily belong to L2(Ω), i.e., a basic L2-functional would be meaningless for such
flows. To remedy this situation, the residual of the mass balance equation can be
measured in a weighted L2-norm given by

‖ηdiv (ρu)‖20 ,

where the weight function η is subject to the condition∫
Ω/Ω̂

η|div (ρu)|2 dΩ <∞ .

This condition essentially means that η vanishes on the shock, i.e., we are dealing
with a degenerate L2-norm. The second term in (5.4) can be dealt with in a similar
manner.

In [64] it has been suggested that a least-squares method for transonic flows should
be based instead on the mass-flow-potential variables, i.e., instead of (5.4), we consider
a weighted functional of the form

(5.5) J (v, φ) =
1
2

(
‖ηdiv v‖20 + ‖v

ρ
− gradφ‖20

)
.

In (5.5), the density ρ is a function of gradφ through (1.15). For an analysis of
resulting nonlinear least-squares finite element method, the reader can consult [61].

6. Other least-squares methods. So far the least-squares finite element meth-
ods we have studied fit into the framework of section 2. We now examine three types
of methods that do not fit into that framework. The first is represented by collocation
least-squares methods. Here we consider examples of point and subdomain colloca-
tion methods. The second includes a method that combines least-squares ideas with
the technique of Lagrange multipliers in order to enhance mass conservation. Lastly,
the third method casts the original boundary value problem into the framework of an
optimal control or optimization problem with a least-squares functional serving the
role of the cost or objective functional.

6.1. Least-squares collocation methods. In this section, we briefly review a
class of least-squares methods in which the discretization step is taken prior to the
least-squares step. Such methods are commonly known as least-squares collocation,
point least-squares, point-matching, or overdetermined collocation methods; see [69].
The main idea is as follows. Consider again the linear boundary value problem (2.1)–
(2.2). We assume that an approximate solution is sought in the form

U(x) ≈ UN (a, x) ,
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where a = (a1, a2, . . . , aN ) is a vector of unknown coefficients. Let RjL(a, x), j =
1, . . . ,K, and RjR(a, x), j = 1, . . . , L denote residuals of the equations in (2.1) and
(2.2), respectively. To define a least-squares collocation method, we choose a finite
set of points {xi}M1

i=1 in Ω, and another set of points {xi}Mi=M1+1 on Γ. Then, a
least-squares functional is defined by summing the weighted squares of the residuals
evaluated at the points xi, as follows:

(6.1) J (a) =
K∑
j=1

M1∑
i=1

αji
(
RjL(a, xi)

)2 +
L∑
j=1

M∑
i=M1+1

βji
(
RjR(a, xi)

)2
.

The weights αji and βji may depend on both the particular equation and collocation
point. Minimization of (6.1) with respect to the parameters in a leads to a (usually
overdetermined) algebraic system of the form Aa = b, where A is an M by N matrix.
Then, a discrete solution is determined by solving the normal equations ATAa = ATb.
Methods formulated along these lines have been used for the numerical solution of the
Navier–Stokes equations (see [105]) and hyperbolic problems, including the shallow
water equations (see [119], [120], [100], and [101]). For numerous other applications
of collocation least-squares, see [69].

Evidently, when the number of collocation points M equals the number of degrees
of freedom N in UN (a, x), the above methods reduce to a standard collocation proce-
dure. Similarly, if UN (a, x) is defined using a finite element space and the collocation
points and weights correspond to a quadrature rule, then collocation is equivalent to a
finite element least-squares method in which integration has been replaced by quadra-
ture. Collocation least-squares methods offer some specific advantages. For example,
since only a finite set of points xi in the domain Ω need be specified, collocation least-
squares are attractive for problems posed on irregularly shaped domains; see [100].
On the other hand, since the normal equations tend to become ill conditioned, such
methods require additional techniques, like scaling or orthonormalization, in order to
obtain a reliable solution; see [69].

Standard collocation, as well as collocation least-squares methods, use point-by-
point matching criteria to define the discrete problem. Instead of a set of points we
can also consider collocation over a set of subdomains of Ω. In such a case, the discrete
problems are obtained by averaging differential equations over each subdomain. Here,
for an illustration of this approach, we consider the subdomain Galerkin least-squares
method of [56]. Let (2.1)–(2.2) correspond to a planar first-order elliptic boundary
value problem of Petrovsky type with C = 0, i.e., L(U) = AUx + BUy, RU = RU
where R is again a full-rank n × 2n matrix. To define the subdomain Galerkin
least-squares method for (2.1)–(2.2), we consider a finite element space Xh consisting
of continuous piecewise-linear functions defined on a regular triangulation Th of the
domain Ω into triangles Ωk. These triangles will also serve as collocation subdomains.
We let K and N denote the number of triangles and vertices, respectively, in Th.
For simplicity, we shall assume that the finite element functions in Xh satisfy the
essential boundary conditions (2.2). Then, a set of discrete equations is formed by
averaging separately the components of the differential system (2.1)–(2.2) over each
of the triangles Ωk ∈ Th, as follows:

(6.2)
∫

Ωk

(
LUh

)
j
dΩ =

∫
Ωk

(f)j dΩ for k = 1, . . . ,K and j = 1, . . . , 2n .

Once a basis for Xh is chosen, it is not difficult to see that (6.2) is equivalent to a
rectangular linear algebraic system of the form CU = F , which consists of 2nK equa-
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tions in approximately 2nN unknowns, i.e., there are about twice as many equations
as unknowns. The subdomain Galerkin least-squares method of [56] consists per se of
forming the matrix C and subsequently solving the above linear system by a discrete
least-squares technique. If the data F are sufficiently smooth, we can show (see [56])
that the resulting method is optimal in the sense that

‖U − Uh‖1 ≤ C1h‖F‖1 and ‖U − Uh‖0 ≤ C0h
2‖F‖1 .

We note that the discretization step in (6.2) can also be interpreted as an application
of a nonstandard Galerkin method to the system (2.1)–(2.2) in which the test space
consists of piecewise-constant test functions with respect to Th.

Similar subdomain collocation least-squares methods have also been developed
for the numerical solution of Maxwell’s equations; see [46].

6.2. Restricted least-squares methods. In general, when a least-squares
method is used for the numerical solution of incompressible flow problems, com-
puted velocity fields do not exactly satisfy the continuity equation. As a result,
least-squares methods conserve mass only in an approximate manner and usually we
can show that ‖div uh‖0 = O(hr), where r > 0 depends on the particular finite el-
ement space employed. One way to enhance mass conservation involves the use of
local mesh-dependent weights along with special weights for the continuity equation.
For example, the weighted functional (4.14) can be modified as follows (see [68]):
(6.3)

JK(ωωω, p,u)

=
1
2

(
‖νcurlωωω + grad p− f‖20 +

J∑
j

h−2
j

(
W‖div u‖20,Ωj + ‖curl u− ωωω‖20,Ωj

))
,

where Ωj , j = 1, . . . , J , denotes the jth finite element, hj denotes the diameter
of Ωj , and W is a weight for the continuity equation. Computational results with
the corresponding finite element method reported in [68] indicate very good mass
conservation properties with a moderate continuity equation weight (W = 10). Note
that finite element methods based on the functional (6.3) do fit into the framework
of section 2.

Another approach, suggested in [59], which does not fit into the framework of
section 2, combines least-squares and Lagrange multiplier techniques into a method
called restricted least-squares. The main idea of this method is to consider the con-
tinuity equation as a constraint that is enforced on each finite element via Lagrange
multipliers. In this sense, the restricted least-squares method has some similarities
with the methods of [5] and [7], where Lagrange multipliers are employed to enforce
boundary conditions. To state the method of [59], let Th denote a triangulation of
Ω with n finite elements, L denote a first-order Stokes differential operator, and Xh

denote a suitable finite element space defined over Th. The variational problem asso-
ciated with the restricted least-squares method for the Stokes equations is then given
by

seek Uh ∈ Xh and λj ∈ R, j = 1, . . . , J , such that∫
Ω
LUh · LV hdΩ+

J∑
j

(
λj

∫
Ωj

div vhdΩ + µj

∫
Ωj

div uhdΩ
)

=
∫

Ω
LV h · F ∀ V h ∈ Xh, µj ∈ R, j = 1, . . . , J .
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Although computational results obtained with the restricted method are very satis-
factory, the method also has some shortcomings. The use of Lagrange multipliers
leads to a linear algebraic system with a symmetric but indefinite matrix that has a
structure very similar to the matrices arising in mixed methods. Likewise, the size
of the discrete problem increases by the number of additional constraints. Thus, at
present it remains unclear whether the advantages of the restricted method outweigh
the problems associated with imposing constraints on the velocity approximation. In
particular, the loss of positive definiteness negates the main advantage of the least-
squares formalism.

6.3. Least-squares/optimization methods. The main idea of least-squares/
optimization methods is to transform the original boundary value problem into an
optimal control or optimization problem for which a cost functional is given by a least-
squares–type functional. To describe the method consider the following nonlinear
Dirichlet problem (see [31]):

(6.4) −4φ−G(φ) = 0 in Ω

along with the boundary condition (1.6). Then, an H−1 least-squares functional for
(6.4) is given by

(6.5) J (φ) = ‖4φ+G(φ)‖2−1 ,

where ‖ · ‖−1 denotes the negative norm of subsection 2.3. Minimization of (6.5)
over H1

0 (Ω) would lead to a least-squares principle that is similar to the principles of
section 2.

The least-squares/optimization approach, however, considers minimization of

(6.6) K(φ, ξ) = ‖4(φ− ξ)‖2−1 ,

where ξ ∈ H1
0 (Ω) is a solution of

(6.7) −4ξ = G(φ) in Ω and ξ = 0 on Γ .

In the context of optimal control problems, we can identify φ with the control vec-
tor, ξ with the state variable, (6.7) with the state equation, and (6.6) with the cost
functional. Furthermore, using the identity

‖4φ‖−1 = ‖gradφ‖0 ∀ φ ∈ H1
0 (Ω) ,

we can replace (6.6) with the more easily computable (and therefore practical) cost
functional

(6.8) K(φ, ξ) = ‖grad (φ− ξ)‖20 .

To summarize, the least-squares/optimization method for (6.4) can be stated as fol-
lows:

minimize K(φ, ξ) given by (6.8) over φ ∈ H1
0 (Ω), subject to the state equation (6.7).

To solve the above optimization problem we can use an abstract version of the conju-
gate gradient method; see [31]. At each iteration, this method would require solution
of two Dirichlet problems (6.7) for the computation of the descent direction; see [31].
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This class of methods has been developed for nonlinear flow problems, including
compressible flows (see [31], [32], and [81]) and the Navier–Stokes equations (see
[31] and [80]). For example, to derive the least-squares/optimization method for the
Navier–Stokes equations (1.25)–(1.28), let

Z = {u ∈ H1
0(Ω) | div u = 0 in Ω}

and

(6.9) K(u, ξξξ) =
ν

2
‖4(ξξξ − u)‖2−1 =

ν

2

∫
Ω
|grad (ξξξ − u)|2dx,

and consider the Stokes problem

(6.10)
−ν4ξξξ + grad q = −u · grad u in Ω,

div ξξξ = 0 in Ω,
ξξξ = 0 on Γ .

Then, the least-squares/optimization method for (1.25)–(1.28) is given by

minimize K(u, ξξξ) given by (6.9) over u ∈ Z, subject to the state equation (6.10).

To solve the above optimal control problem, we can again use an abstract conjugate
gradient process. Now, computation of the descent direction at each iteration involves
the solution of several Stokes problems; see [31] and [80].

7. Concluding remarks. In this paper, we have focused primarily on least-
squares methods for elliptic boundary value problems. Among the various applications
of least-squares principles, these methods appear currently to be at the most advanced
theoretical and practical stage. The mathematical framework for the analysis of such
methods is well developed, and their computational performance is well documented
in the literature. The limited space did not allow us to consider many other important
areas, such as hyperbolic problems, time-dependent problems, and time-space least-
squares. For further details on such applications, we refer interested readers to [4],
[9], [39], [40], [41], [62], [63], [88], [89], [110], [111], [112], and [113], among others.
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