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ME2353 Finite Element Analysis
UNIT |

FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS

1.1 INTRODUCTION

The finite element method constitutes a general tool for the numerica solution of partial
differential equations in engineering and applied science

The finite element method (FEM), or finite element analysis (FEA), is based on the idea of
building a complicated object with ssmple blocks, or, dividing a complicated object into small and

manageable pieces. Application of this smple idea can be found everywherein everyday lifeaswell as
in engineering.

Examples:
Lego (kids” play) Buildings
Approximation of the area of a circle:

“Element” §

Why Finite Element Method?
Design analysis. hand calculations, experiments, and computer Smulations
FEM/FEA is the most widely applied computer simulation method in engineering
Closelyintegrated with CAD/CAM applications

1.1.1 A Brief History of the FEM
- 1943 --- Courant (variational method)
1956 --- Turner, clough, martin and top(stiffness)
1960 --- Clough (finite element plan problems)
1970 --- Applications on mainframe computer
1980 --- Microcomputers, pre and post processors
1990 --- Analysis of large structural systems
112 General M ethods of the Finite Element Analysis

1. Force Method — Internal forces are considered as the unknowns of the problem.

2. Displacement or giffness method — Displacements of the nodes are considered as the
unknowns of the problem.

1.1.3 General Stepsof the Finite Element Analysis

Discretization of structure
Numbering of Nodes and Elements
Selection of Displacement function or interpolation function

Define the material behavior by using Stran — Displacement and Stress — Strain
relationships

SCE 1 Department of Mechanical Engineering
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Finite Element Analysis
Derivation of element stiffness matrix and equations
Assemble the element equations to obtain the global or total equations
Applying boundary conditions
Solution for the unknown displacements computation of the element strains and stresses
from the nodal displacements
Interpret the results (post processing).

114 Obj ectivesof ThisFEM

Understand the fundamental ideas of the FEM

Know the behavior and usage of each typeof elements coveredin this course
Beableto prepare a suitable FE model for given problems

Can interpret and evaluate the quality of the results (know the physics of the problems)
Beaware of the limitations of the FEM (dont misuse the

FEM - anumerical tool)

1.1. 5App||cat|ons of FEM in Engineering

M echanical/Aerospace/Civil/Automobile Engineering Structure anaysis
(static/dynamic, linear/nonlinear) Thermal/fluid flows
Electromagnetics

Geomechanics

Biomechanics

1.2 WEIGHTED RESIDUAL METHOD

It is a powerful approximate procedure applicable to several problems. For non — structural

problems, the method of weighted residuals becomes very useful. It has many types. The popular

four

methods are,

1. Point collocation method,

Residuals are set to zero at n different locations X;, and the weighting function w;
isdenoted as d(x - xi).

Od(x- X)R(X; &, &, a... an) dx - 0

2. Subdomain collocation method
3. Least square method,

O[R (X; &, &, 8a... an)]*dx = minimum.

4. Galerkin’s method. w; = N; (x)
ON;i (X) [R (X; & @, 8s... an)]>dx = 0, i=123, ..n.

Problem |

SCE

Find the solution for the following differential equation.

2 Department of Mechanical Engineering



ME2353 Finite Element Analysis
d4u

EI E _qo :O
The boundary conditionsare u(0)=0, Z—:(O)zo,

d2u _ d3u _
—5()=0, ——(L)=0,

Given: The governing differential equation

El =% —q,=0
Solution: assume atrial function
Let u(X) = aptax+ax’+ag+ax’.....
Apply 1% boundary condition
x=0, u(x)=0
O=ay+0
a0=0

Apply 2™ boundary condition
du
x=0, E:O

=0

Apply 3" boundary condition
d2u
x=L, —=0
dx2

ap=-[3asl+6a4L7]

Apply 4™ boundary condition

_ d3u__
x=L, =, =0
ag=-dauL

Substitute ag, al, a2 and agvaluesin trial function
u(x)= 0+0-[3asL+6a4L%] -dayl
u(x)= au[6 L4 Lx>+ x|
s 2406 L2 (20)-12 L+ 4X7]

2 24 ay

dx4 i
L1 _
R= El E; _qo _O
qo
. =351 _
Substitute asvalues in u(x)

u(x) = % [X4-4LX5+6LX5]

Result:
Final solution u(x) = %[x4-4Lx3+6L2x2]

Problem 2
The differentia equation of a physical phenomenon is given by

SCE 3 Department of Mechanical Engineering



ME2353 Finite Element Analysis
i
%% +y=4 0<x<1
The boundary conditions are: y(0)=0
y(1)=1

Obtain one term approximate solution by using galerkin method
Solution:

Here the boundary conditions are not homogeneous so we assume atria function as,

y=ax(x-1)+x

first we have to verify whether the trial function satisfies the boundary condition or not

y=agxX(x-1)+x

when x=0, y=0

x=1, y=1

Resuldua R:

Y=ayX(x-1)+x=ay(X*-X)+x

z—;=a1(2x-l)+1

d—z = 2{1]_

2

Substitute %val uein given differential equation.

2ay+y=4x
Substitute y viue

R=2a;+a;x(X-1)+x-4x
In galerkin’s method

J, wi R dx
Substitute w; and R value in equation
&=0.83
So one of the approximate solution is, y= 0.83x(Xx-1)+x

= 0.83x*-0.83x+x
y=0.83 x*+0.17x

Problem 3

Find the deflection at the center of a simply supported beam of span length | subjected to
uniform distributed load throughout its length as shown using (a) point collection method (b) Sub-
domain method (c)least squared and (d) galerkin’n method.
Solution:

B =0 0<x<l
dx4

The boundary condition are y=0, x= 0and y= [

E19%Y—0 &t x=0 znd x=1

x4
Where, EIZ = M
Let us select the trail function for deflection as,
y=asinmx/l
1.3THE GENERAL WEIGHTED RESIDUAL STATEMENT

SCE 4 Department of Mechanical Engineering



ME2353 Finite Element Analysis
After understanding the basic techniques and successfully solved afew problem generad
weighted residual statement can be written as

R dx=0 fori=1,2,.....n
Where wi=N;
The better result will be obtained by considering more terms in polynomial and trigonometric series.

1.4 WEAK FORMULATION OF THE WEIGHTED RESIDUAL STATEMENT.

The analysis in Section as applied to the model problem provides an attractive perspective to the
solution of certain partial differential equations. the solution is identified with a “point”, which
minimizes an appropriately constructed functional over an admis- sible function space. Weak
(variational) forms can be made fully equivalent to respective strong forms, as evidenced in the
discussion of the weighted residua methods, under certain smoothness assumptions. However, the
equival ence between weak (variational) forms and variational principlesis not guaranteed: indeed, there
exists no general method of construct-

ing functionas | [u], whose extremization recovers adesired weak (variational) form. In this

sense, only certain partial differential equations are amenable to analysis and solution by
variational methods.

Vainberg’s theorem provides the necessary and sufficient condition for the equivalence of a
wesak (variational) form to afunctional extremization problem. If such equivalence holds, the functional
isreferred to as a potential.

Theorem (Vainberg)
Consider aweak (variational) form

G(u, du) := B(u,0du) +(f,éu) +(q ,du)frq =0,

where u U, du UO0,and fandq are independent of u. Assume that G pos- sesses a
G ateaux derivative in a neighborhood N of u, and the G ateaux differen- tial Ddul B(u, du2) is
continuous in u at every point of N .

Then, the necessary and sufficient condition for the above weak form to be derivable from a
potentia in N is that
Doéul G(u, 6u2) = Ddu2 G(u, dul),

Namely that Ddul G(u, du2) be symmetric for all dul, du2 = UOandal u=N.

Preliminary to proving the above theorem, introduce the following two lemmas:

Lemmal Showthat Dylu = Ilim

SCE 5 Department of Mechanical Engineering



ME2353 Finite Element Analysis

In the above derivation, note that operations and |w=0 are not interchangeable (as they
both refer to the same variable w), while limAw - 0 and |w=0 are interchangeable, conditional upon
sufficient smoothness of | [u].

Lemma 2 (Lagrange’s formula)

Let | [u] be afunctional with Gateaux derivatives everywhere, and u, u + du be any points

of U. Then,

[[u+du]-1[u]=Ddul[u+qQ du] 0<o<1.

To prove Lemma 2, fix uand u+duin U,and define function f on R as

f() := lu + wdu .

It follows that
I (RO
= lim
gw 8(*)—’ Aw
= lim |[U+Q)6U+A(L)6U]—|[U+(L)6U] =D6U|[U+(JO6U],
Aw-0 Aw

Where Lemmal was invoked. Then, using the standard mean-value theorem of
calculus,

1.5PIECE WISE CONTINUOUSTRIAL FUNCTION

In weighted residual method the polynomia and trigonometric series are used as tria function.
This trial function is a single composite function and it is valid over the entire solution domain this
assumed trial function solution should match closely to the exact solution of the differential equation
and the boundary conditions, it is nothing but a process of curve fitting. This curve fitting is carried
out by piecewise method i.e., the more numbers of piece leads better curve fit. Piecewise method can
be explained by the following simple problem.

We know that the straight line can be drawn through any two points.

Let, f(X)=sin— isthe approximated function for straight line segments.

One straight line segment
Two straight line segment

One Spring Element
X

i > J
AN

SCE 6 Department of Mechanical Engineering



ME2353 Finite Element Analysis

Two nodes: I ]

Nodal displacements: uj, uj (in, m, mm)

Nodal forces: fi, fj (Ib, Newton) Spring constant (stiffness):  k (Ibfin,
N/m, N/mm)

Spring force-displacement rel ationship:

Linear

E onlinear

D

k F/ (>0)istheforceneeded to produceaunit stretch.

Weonly consider linear problemsin this introductory course. Consider the equilibrium of
forcesfor the spring.

At node 1 wehave

fl F k(UJ U ) kUI kUJ
and at nodej,
fJ F k(UJ U; ) kUI kUJ
In matrix form,
k k u f;
k k Uj f J
or, where

(element) stiffnessmatrix
u = (element nodal) displacement vector
f = (element nodal) forcevector

Note:

That kissymmetric. Isk singular or non singular? That is, can wesolvethe
equation? If not, why?

SCE 7 Department of Mechanical Engineering



ME2353 Finite Element Analysis

Problem 4
To find the deformation of the shape
—_— x
— NN o —
ik wk UsF3
1 2 3
For element 1,
2
kl k1 u2 fl
2
kl kl u3 E
element 2,
2
K, K, U, f
2
K, k, U f

where f| at node2 F,

M isthe (internal) forceacting on local nodei of element Consider the quilibrium of
forcesat node
Checking the Results

Deformed shape of the structure
Balance of the external forces
Order of magnitudes of the numbers

Notes about the Spring Elements

Suitable for stiffness analysis

Not suitable for stress analysis of the spring itself

Can have spring elements with stiffnessin the lateral direction,

Spring elements for torsion, etc.
1.6 EXAMPLESOF A BAR FINITE ELEMENT

The finite element method can be used to solve a variety of problem types in

engineering, mathematics and science. The three main areas are mechanics of materias, heat
transfer and fluid mechanics. The one-dimensiona spring element belongs to the area of
mechanics of materials, since it deals with the displacements, deformations and stresses
involved in a solid body subjected to externa loading.

SCE 8 Department of Mechanical Engineering



ME2353 Finite Element Analysis

Element dimensionality:

An element can be one-dimensional, two-dimensional or three-dimensional. A spring element
is classified as one-dimensional.

Geometric shape of the element

The geometric shape of element can be represented as a line, area, or volume. The one-
dimensional spring element is defined geometrically as:

AN o

Spring law

The spring is assumed to be linear. Force (f) is directly proportional to deformation (A) via the
spring constant k, i.e.

f =kau 5

Types of degrees of freedom per node

Degrees of freedom are displacements and/or rotations that are associated with a node. A one-
dimensional spring element has two translational degrees of freedom, which include, an axid
(horizontal) displacement (u) at each node.

v Translation

r N

/ — = Translation
I.’/

z Translation

Element formulation

There are various ways to mathematically formulate an element. The simplest and limited
approach is the direct method. More mathematically complex and general approaches are energy
(variation) and weighted residual methods.

SCE 9 Department of Mechanical Engineering



ME2353 Finite Element Analysis

The direct method uses the fundamentals of equilibrium, compatibility and spring law from a
sophomore level mechanics of material course. We will use the direct method to formulate the one-
dimensional spring element because it is simple and based on a physical approach.

The direct method is an excellent setting for becoming familiar with such basis concepts of
linear agebra, stiffness, degrees of freedom, etc., before using the mathematical formulation
approaches as energy or weighted residuals.

Assumptions

Spring deformation
The spring law isalinear force-deformation as follows:
f=kA
f - Spring Force (units: force)
k - Spring Constant (units: force/length)
A - Spring Deformation (units: length)
Spring Behaviour:

A spring behaves the same in tension and compression.
Spring Stiffness:

Spring stiffness k is always positive, i.e., k>0, for aphysical linear system.
Nodal Force Direction:

Loading is uniaxidl, i.e., the resultant force is aong the element. Spring has no resistance to
lateral force.

Weightless Member:
Element has no mass (weightless).
Node Location:

The geometric location of nodes | and J cannot coincide, i.e., X; # X;. The length of the element
isonly used to visually see the spring.

A column of Kg is a vector of nodal loads that must be applied to an element to sustain a
deformed state in which responding nodal DOF has unit value and all other nodal DOF are zero. In
other words, a column of Kg represents an equilibrium problem.

SCE 10 Department of Mechanical Engineering
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Example, u =1, u;=0.
f, _1 1T =1(u, = _ k
fI -1 1]y, =0 -k

U, =0 (Fixed Wall)

f=k f =k

— % X

Note: Y, =0

Element Problem

Spring element has one rigid body mode.

Inter-Element Axia Displacement

The axia displacement (u) is continuous through the assembled mesh and is described by a
linear polynomia within each element. Each element in the mesh may be described by a different
linear polynomial, depending on the spring rate (k), external loading, and constraints on the element.

Inter-Element Deformation

The deformation (A) is piecewise constant through the assembled mesh and is described by a
constant within each element. Each element in the mesh may be described by a different constant,

Finite Element Analysis

Actual Problem

depending on the spring constant (k), external loading, and constraints on the element.

Inter-Element Internal Axial Force

The internal axia force (f) is piecewise continuous through the assembled mesh and is
described by a constant within each element. Each element in the mesh may be described by a different

constant, depending on the spring constant, external loading, and constraints on the element.

SCE 11
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.. fdu
Slope continuity [-:1_] not
b4

required at inter — element interface (node).

ulx)

Ug

1 @ 2 @ 3
u; — Axal displacement of node 1.
u, — Axial displacement of node 2.

u; — Axial displacement of node 3.

t (O 2z ()3
2~ Deformation of element@_

a,-Deformation of element @

BROIENCE
f, - Internal axial force of element @ .
f, - Internal azial force of element @ )

SCE 12
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ME2353 Finite Element Analysis

1.6.1 Rigid Body

A body is considered rigid if it does not deform when a force is applied. Consider rigid and
non-rigid bars subjected to a gradually applied axial force of increasing magnitude as shown.

The reader should note the following characteristics of rigid and non-rigid (flexible) bodies:

Force Magnitude - Even if forces are large, arigid body does not deform. A non-rigid body will
deform even if aforceis small. In redlity, all bodies deform.

Failure - A rigid body does not fail under any load; while a non-rigid body will result either in
ductile or brittle failure when the applied load causes the normal stress to exceed the breaking
(fracture) stress 7y, of the materia. Brittle failure occurs when the applied load on the non-rigid
bar shown above causes the breaking strength of the bar to be exceeded.

Material - The material is not considered in arigid body. Since arigid body does not deform (=
= 0) this is equivalent to an infinite modulus of elasticity. In contrast the modulus of elasticity
for a non-rigid materia is finite, e.g., for steel, Eges = 30 x 10° psi. (200 GPa). For rigid and
non-rigid bars the material laws are:

AC AC
E=0C0 E = Finite Value
€ £
> >
Rigid Eody Nen-Rigid Bedy
Rigid Body Motion

Rigid body motion occurs when forces and/or moments are applied to an unrestrained mesh
(body), resulting in motion that occurs without any deformations in the entire mesh (body). Since no
strains (deformations) occur during rigid body motion, there can be no stresses devel oped in the mesh.

A rigid body in genera can be subjected to three types of motion, which are translation,
rotation about afixed axis, and general motion which consists of a combination of both translation and
rotation. These three motion types are as follows:

Trandation - If any line segment on the body remains paralel to its original direction during
the motion, it is said to be in translation. When the path of motion is along a straight line, the motion is
called rectilinear trandation, while a curved path is considered as a curvilinear trandation. The
curvilinear motion shown below is a combination of two translational motions, one horizontal motion
and one vertical motion.

SCE 13 Department of Mechanical Engineering



ME2353 Finite Element Analysis

I
I
¢—r—o—w—~+—+——r+
—l-—l—*f—*f—f——b**— +—~...__, ~
T .
I

Fecllnesn Translalion Curvilinear Translation |

Rotation About a Fixed Axis - If al the particles of arigid body move along circular paths,
except the ones which lie on the axis of rotation, it is said to be in rotation about a fixed axis.

P

Eotation about a Fixed Ass

Genera Motion - Any motion of arigid body that consists of the combination of both
trangdations

—
—
Zenerzl Motion

There are six rigid body modes in general three-dimensional situation; three trandlational
along the x, y, and z axes and three rotational about X, y, and z axes. Illustrations of these rigid body
modes are presented as follows:

SCE 14 Department of Mechanical Engineering



ME2353 Finite Element Analysis

Trand ational Rotational
Rigid Body Modes Rigid Body Modes
x-direction about x-axis
y-direction about y-axis
z-direction about z-axis

1-D 3-NODED QUADRATIC BAR ELEMENT
Problem 6

A single 1-D 3-noded quadratic bar element has 3 nodes with local coordinates as shown in
Figure

@

@
11U, 21 U, 3

U, Note that node 2 is at the midpoint of
the element.

i 4
= X=—
0 2
The chosen approximation function for the field variable u is u = a+bx+cx?

Let the field variable u have valuesu,, u,and u,at nodes 1, 2 and 3, respectively.

To find the unknowns a, b and ¢, we apply the boundary conditions

ax=0, u=u P uy=a P a=uy

- + -
| RE p= 2t TR 3
ax=—, u=u, b u,=atb—-+c—| . I
2 4y solving D 6
ax=l, u=u, b u1:a+bl+clzb c=8|—zg(u3-2u2+u1)

Substituting the values of a, b and ¢ in equation (1) and collecting the coefficients of u,,u, and u,

u=Nu +N,u, + Nyu,

SCE 15 Department of Mechanical Engineering



ME2353 Finite Element Analysis

2

N, =1-3X42X =F X0% 2X0 N o 3,42

I & 1 1y ™ 1

NG X X0 IN, 4 _ X

N, =42 4% =42%. 29 2-2_gX

Where TME Tl ™ 1 I
N3:-§+2X_2 :_Z%- gg &:-1—+412

I 7 & | 5 @ 1 1

[D] = E for abar element (1-D case- only axid stress (s ) and strain(e,) exist P s, =Ee,)

o adv= OAdx AOZiX since the cross-sectional area A is constant for the total length of the bar.

vol ume

] |

J 4 3 Xo al X9 al
k A —- E 8— “+4=—2>=)d
[ ] |2 y <8 |2g 8| |2g 8 I |2@> X

%e:'% xoae3 xo ae3 xoae4 xo ae3 X0l X 6U
I

+|Eé| |2g8| |58| |2g8| |g8|4|2‘”

e

' & xoaa3 Xo X 0 Xoael XOU
K| = AER 2 X6 & X X6 & gX 1 dx
[K] Cél B AR TG N R N U gﬂ

@ae_:}+4lqae§+ X6 @l ,xoe ox6 @l ,xbel, , xoU

& N T Ny €T B ST 1T

M= o [6]'[o][e]av

N, TN, TINGY ai§ X0 ot xo &1 X0
[B]= < x ﬂx>'<8 4 12y &1 |2g & 4|25>
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TodetermineK ;:

\ae3 4xoae3 4xo

a@ 12x  12x 16x

K,, = AE Qaix = : O
N L € E R R T
Integrating and applying limit we get,
9 24x 16X°6 €ox 24x> 16x°0 _ , 69 24 16/°0
K= ABG 7~ 73 EERETE 67" 5ty
(T g2 2% 3ty EE 2% 3t
€9 12 16u_, 627- 36+16u_ AE
K,=AE&- ==+>2U= AE =217
. § 7 3 Cg 3 H3|[]
_7AE
K
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é Go
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AE
Ky = [8] Ky
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O
C§e§ 4_293?1+4_2"9d - AEES 12 4,164
& 1> 5 (N ERNERN T
I 3 4 2
&3 16x  16x° 0 é3x  16x° . 16x°U é3 1612 161°U
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To determine K ,,

Finite Element Analysis

[ 2 .
K,, = AE¢ ae4 8;<oae4 8xod agrg 323x_ 323x+64;< E;)dx
IR TR Oe RN ER T
|
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AEé? -8 1u
Assembling, we get [k] = 3L g' 16 - 83
él -8 7@

1.7PRINCIPLE OF STATIONERY TOTAL POTENTIAL (PSTP)
1.7.1 Potential energy in elastic bodies

Potential energy is the capacity to do the work by the force acting on deformable bodies; the
forces acting on a body may be classified as external forces and internal forces. External forces are the
applied loads while internal force is the stresses developed in the body. Hence the total potential
energy isthe sum of internal and external potentia energy.

Consider a spring mass system let its stiffness be k and length L, due to aforce P let it extend
by u

The load P moves down by distance u. hence it loses its capacity to do work by P u. the
external potential energy in this caseis given by.

H=-Pu
Ku
Average force = =

The energy stored in the spring due to strain = Average force x Deflection

Total potential energy inthespring m = %K u-Pu
1.7.2 Principle of Minimum Potential Energy
From the expression for total potential energy,
m = U+H
om = 6U + 6H
In principle of virtual work U = §H
om=20

Hence we can conclude that a deformable body isin equilibrium when the potential energy is
having stationary value.
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Hence the principle of minimum potential energy states among all the displacement equations
that interna compatibility and the boundary condition those that also satisfy the equation of

equilibrium make the potential energy a minimum is a stable system

Problem 7

Given;

For the spring system shown above,

kl 100 N/ mm,
k2 200 N/ mm,

k3 100N/mm
P 500N,

Ut o

U4 0

Find: (a) The global stiffnessmatrix

(b) Displacements of nodes2 and 3
(c) The reaction forcesat nodes1 and 4

(d) the forcein the spring 2

Solution:

(@) The element stiffnessmatrices are

k3

SCE

100 100
(N/mm)
100 100
200 200
(N/mm)
200 200
100 100
(N/mm)
100 100

20

@)

)

3)
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Ul U2 U3 U4
100 100 0 0
w108 TR o
© 7 Y S 7o ST

200 300 100

0 100 100

which is symmetric and banded.
Equilibrium (FE) equation for the wholesystemis

100 100 0 0 W Fp
100 300 200 0 U 0
0 200 300 100 ug P “)
0 0 100 100 Uy Fy
(b) Applyingthe BC
300 200 up 0
200 300 ug P ®)
Solving Eq.(5), weobtain
Uy P/250 2 ) (©6)
Ug 3P/500 3

st th . .
(c) Fromthe1l and 4 equationsin (4), weget the reaction forces

Fp 100u, 200 (N)

Fq 100ug 300 (N)
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(d) The FE equation for spring (element) 2 is
200 200 f;

200 200 Uj f j

Herei =2, j = 3for element 2. Thus wecan calculate the spring forceas

Problem 8

@

For the spring system with arbitrarily numbered nodes and elements, as
shown above, find the global stiffness matrix.

Solution:
First weconstruct the following
Element Connectivity Table

Element Nodei (1) Nodej (2)
1 4 2
2 2 3
3 3 5
4 2 1

Which specifiesthe global node numbers corresponding to the local node numbers for
each element? Then wecan write the el ement stiffnessmatrices as follows
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U4 U2 U2 U3
ky ky ko ko
k k,
kq kq ko ko
U3 U5 U2 Ul
K k k K
3 3 4 4
k 4 k ,
ks ks Ky Ky

Finally, applying the superposition method, we obtain the global stiffnessmatrix as
follows

We may note that N1 and N2 obey the definition of shape function that is the shape
function will have a value equal to unity at the node to which it belong and zero value at other
nodes.

U, u, U, u, U
K, K, 0O 0 O
""" k, k. k, k, k k 0
K o0 k, k, k,_ 0 Kk
0 k, 0 k O
o o kK, 0 Kk,
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1.8 RAYLEIGH -RITZ METHOD (VARIATIONAL APPROACH)
It is useful for solving complex structural problems. This method is possible
only if a suitable functional is available. Otherwise, Galerkin’s method of weighted
residual is used.

Problems (I set)
1. A simply supported beam subjected to uniformly distributed load over entire
span. Determine the bending moment and deflection at midspan by using Rayleigh —

Ritz method and compare with exact solutions.

2. A bar of uniform cross section is clamed at one end and left free at another end
and it is subjected to a uniform axial load P. Calculate the displacement and stressin
a bar by using two terms polynomial and three terms polynomial. Compare with
exact solutions.

1.9ADVANTAGESOF FINITE ELEMENT METHOD

1. FEM can handle irregular geometry in a convenient manner.
2. Handles general load conditions without difficulty

3. Non - homogeneous materials can be handled easily.

4. Higher order elements may be implemented.

1.10 DISADVANTAGESOF FINITE ELEMENT METHOD

1. Itrequiresadigital computer and fairly extensive
2. It requires longer execution time compared with FEM.
3. Output result will vary considerably.
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UNIT Il
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
2.1 ONE DIMENSIONAL ELEMENTS

Bar and beam elements are considered as One Dimensional elements. These
elements are often used to model trusses and frame structures.

> Bar, Beam and Truss

Bar is a member which resists only axial loads. A beam can resist axial,
lateral and twisting loads. A truss is an assemblage of bars with pin joints and a frame
is an assemblage of beam elements.

» Stress, Strain and Displacement

Stress is denoted in the form of vector by the variable x as oy, Strain is denoted
in the form of vector by the variable x as e, Displacement is denoted in the form of
vector by the variable x as uy.

» Typesof Loading

(1) Body force (f)

It isadistributed force acting on every elemental volume of the body. Unit is
Force/ Unit volume. Ex: Self weight due to gravity.

(2) Traction (T)

It is adistributed force acting on the surface of the body. Unit is Force / Unit
area. But for one dimensional problem, unit is Force / Unit length. Ex: Frictional
resistance, viscous drag and Surface shear.

(3) Point load (P)

It isaforce acting at a particular point which causes displacement.
» Finite Element Modeling

It has two processes.
(1) Discretization of structure

(2) Numbering of nodes.
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ELEB{ENT—--?’@ @ @ @ @

NODE —— ] 2 3 4 5 6

» CO - ORDINATES
(A) Globa co - ordinates,
(B) Local co — ordinates and
(C) Natural co —ordinates.

» Natural Co- Ordinate (g)

Integration of polynomial terms in natural co — ordinates for two dimensional
elements can be performed by using the formula,

> Shape function ¢ B
N1N2N3 are usualy denoted as shape function. In one dimensional
problem, the displacement
u=%N;u=Niu
For two noded bar element, the displacement at any point within the
element is given by,
U=2% N ui=Nyu;+ Nz u
For three noded triangular element, the displacement at any point

within the element is given by,
U=2 Nju=Nju;+Nzaup+Nszus
V=2 N;Vi=Nivi+NyVvy+N3vs
Shape function need to satisfy the following
(@ First derivatives should be finite within an element; (b) Displacement should
be continuous across the element boundary
» Polynomial Shape function
Polynomials are used as shape function due to the following reasons, (1)
Differentiation and integration of polynomials are quite easy.
(2) It is easy to formulate and computerize the finite element equations.

(3) The accuracy of the results can be improved by increasing the order of
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» Properties of StiffnessMatrix

1. It is a symmetric matrix,
2. The sum of elements in any column must be equal to zero,
3. Itisan unstable element. So the determinant is equal to zero.
» Problem (I set)
1. A two noded truss element is shown in figure. The nodal displacements are

u; =5 mm and u, = 8 mm. Calculate the displacement at x = %, 1/3 and Y.

» Problem (11 set)
1. Consider a three bar truss as shown in figure. It is given that E = 2 x 10°

N/mm?. Calculate
(8 Nodal displacement,
(b) Stress in each member and

(c) Reactions at the support. Take Area of element 1 = 2000 mm?, Area of
element 2 = 2500 mm?, Area of element 3 = 2500 mm?.

2150 KN

500 mm @ @

O
&> s
e 1000 m ——|

» Typesof beam
1. Cantilever beam,
2. Simply Supported beam,
3. Over hanging beam,
4. Fixed beam and
5. Continuous beam.

» Typesof Transverse Load

1. Point or Concentrated Load,
2. Uniformly Distributed Load and
3. Uniformly
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» Problem (111 set)
1. A fixed beam of length 2L m carries a uniformly distributed load of w (N/m)

which runs over a length of L m from the fixed end. Calculate the rotation at Point

B.
B P
A bt“

I L | L

2.2LINEAR STATIC ANALYSIS(BAR ELEMENT)

Most structural analysis problems can betreated as linear static problems, based on the
followingassumptions

1. Small deformations (loading pattern is not changed due to the deformed

shape)
2. Elastic materials (no plasticity or failures)
3. Static loads (the load is applied to the structure in a slow or steady fashion)

Linear analysiscan providemost of the information about the behavior of a
structure, and can be a good approximation for many analyses. It is also the basesof
nonlinear analysisin most of the cases.

23 BEAM ELEMENT

A beam element is defined as along, slender member (one dimension is much larger
than the other two) that is subjected to vertical loads and moments, which produce vertical
displacements and rotations. The degrees of freedom for a beam element are a vertica
displacement and a rotation at each node, as opposed to only an horizontal displacement at
each node for atruss element.

Degrees of Freedom

Degrees of freedom are defined as the number of independent coordinates necessary
to specify the configuration of a system. The degrees of freedom for a genera situation
consists of three trandlations in the x, y, and z directions and three rotations about the x, y, and
z axes. A one-dimensional beam element has four degrees of freedom, which include, a

vertical displacement :viand arotation (#)at each node.
WV 5
J

G 7
y I \t?J

(2§
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Assumptions

Nodal Forcesand Moments

Forces and moments can only be applied at the nodes of the beam element, not
between the nodes. The nodal forces and moments, /&, are related to the nodal displacements
and rotations, Ethrough the element stiffness matrix, £s.

Constant L oad

The loads that are applied to the beam element are assumed to be static and not to
vary over the time period being considered, this assumption isonly valid if the rate of change
of the force is much less than the applied force (F >> dF/dt). If the loads vary significantly,
(if the variation in load is not much less than the applied force) then the problem must be
considered as dynamic.

Weightless Member

The weight (W) of the beam is neglected, if it is much less than the total resultant
forces (F) acting on the beam. If the weight of the beam is not neglected, then its effects must
be represented as vertical forces acting at the nodes, by dividing up the weight and lumping it
at the nodes, proportionally according to it's placement along the beam.

Prismatic M ember

The beam element is assumed to have a constant cross-section, which means that the
cross-sectional area and the moment of inertiawill both be constant (i.e., the beam element is
a prismatic member). If a beam is stepped, then it must be divided up into sections of
constant cross-section, in order to obtain an exact solution. If a beam is tapered, then the
beam can be approximated by using many small beam elements, each having the same cross-
section as the middle of the tapered length it is approximating. The more sections that are
used to approximate a tapered beam, the more accurate the solution will be.

The moment of inertiais a geometric property of a beam element, which describes the
beams resistance to bending and is assumed to be constant through the length of the element.
The moment of inertia can be different along different axes if the beam element is not
symmetric, we use the moment of inertia (1) of the axis about which the bending of the beam
occurs

Y
Iz =1y »
, ]
/|
7 Iz = Iy ;y’['
/
/ x, .z |:|
,J
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Where (1) refers to the moment of inertia, resisting bending about the "z" axis and (ly) about
the"y" axis.

The Beam Element isa Slender Member

A beam is assumed to be a slender member, when it's length (L) is more than 5 times
as long as either of it's cross-sectional dimensions (d) resulting in (d/L<.2). A beam must be
dlender, in order for the beam equations to apply, that were used to derive our FEM
equations.

d < c
/ k; 3 7
’ : 1.X

Valid L=20, d=2

dL=.] Invalid L=10, d=5

dL=.2

The Beam Bends without Twisting.

It is assumed that the cross-section of the beam is symmetric about the plane of
bending (x-y plane in this case) and will undergo symmetric bending (where no twisting of
the beam occurs during the bending process). If the beam is not symmetric about this plane,
then the beam will twist during bending and the situation will no longer be one-dimensional
and must be approached as an unsymmetric bending problem (where the beam twists while
bending) in order to obtain a correct solution.

Cross Section Remains Plane

When a beam element bends, it is assumed that it will deflect uniformly, thus the
cross section will move uniformly and remain plane to the beam centerline. In other words,
plane sections remain plane and normal to the x axis before and after bending.

Axially Rigid

The one-dimensional beam element is assumed to be axially rigid, meaning that there
will be no axia displacement (u) along the beams centriodal axis. This implies that forces
will only be applied perpendicular to the beams centriodal axis. The one-dimensiona beam
element can be used only when the degrees of freedom are limited to vertical displacements
(perpendicular to the beams centriodal axis) and rotations in one plane. If axia displacements
are present then a one-dimensional bar element must be superimposed with the one-
dimensional beam element in order to obtain avalid solution.

Homogenous M aterial

A beam element has the same material composition throughout and therefore the same
mechanical properties at every position in the material. Therefore, the modulus of easticity E
is constant throughout the beam element. A member in which the material properties varies
from one point to the next in the member is called inhomogenous (non-homogenous). If a
beam is composed of different types of materias, then it must be divide up into elements that
are each of a single homogeneous material, otherwise the solution will not be exact.
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| sotropic M aterial

A beam element has the same mechanical and physical properties in all directions,
i.e., they are independent of direction. For instance, cutting out three tensile test specimens,
one in the x-direction, one in the y-direction and the other oriented 45 degrees in the x-y
plane, a tension test on each specimen, will result in the same value for the modulus of
elasticity (E), yield strength @y and ultimate strength ©“w. Most metals are considered
isotropic. In contrast fibrous materials, such as wood, typically have properties that are
directionaly dependant and are generally considered anisotropic (not isotropic).

The Proportional Limit isnot Exceeded

It is assumed that the beam element is initialy straight and unstressed. It is also
assumed that the material does not yield, therefore the beam will be straight after the load is
released. These assumptions mean that the beam must be made of an elastic material, one
which will return to it's origina size and shape when all loads are removed, if not stressed
past the materials elastic or proportional limit. It is also assumed that the beam is not stressed
past the proportional limit, at which point the beam will take a permanent set and will not
fully return to it's original size and shape, when al loads are removed. Below the proportional
limit an elastic materia isin the linear elastic range, where the strain () varies linearly with
the applied load and the stress () varies linearly according to: O =E&Z, where E is the
modulus of elasticity.

Rigid Body Modesfor the One-Dimensional Beam Element

Rigid body motion occurs when forces and/or moments are applied to an unrestrained
mesh (body), resulting in motion that occurs without any deformations in the entire mesh
(body). Since no strains (deformations) occur during rigid body motion, there can be no
stresses developed in the mesh. In order to obtain a unique FEM solution, rigid body motion
must be constrained. If rigid body motion is not constrained, then a singular system of
equations will result, since the determinate of the mesh stiffness matrix is equal to zero (i.e,,

K]=0),

There are two rigid body modes for the one-dimensional beam element, a trandation
(displacement) only and a rotation only. These two rigid body modes can occur at the same
time resulting in a displacement and a rotation simultaneoudly. In order to eliminate rigid
body motion in a 1-D beam element (body), one must prescribe at |east two nodal degrees of
freedom (DOF), either two displacements or a displacement and a rotation. A DOF can be
equal to zero or anon-zero known value, as long as the element is restrained from rigid body
motion (deformation can take place when forces and moments are applied) .

For simplicity we will introduce the rigid body modes using a mesh composed of a
single element. If only translational rigid body motion occurs, then the displacement at local
node | will be equal to the displacement at local node J. Since the displacements are equal
there is no strain developed in the element and the applied nodal forces cause the element to
move in arigid (non-deflected) vertical motion (which can be either up as shown below or it
can be in the downward direction depending on the direction of the applied forces).

SCF 21 NDenartment nf Mechaniral Fnoineering



ME2353 Finite Element Analysis

a—
5

I

This rigid body mode can be suppressed by prescribing a vertical nodal displacement.

If rotational rigid body motion occurs, then the rotation at local node | will be equal to
the rotation at local node J (i.e., in magnitude and direction). In this situation the nodal forces
and/or moments applied to the element, cause the element to rotate as a rigid body (either
clockwise as shown below or counterclockwise depending on the direction of the applied
forces and/or moments).

F1=¢7

1A

fi

il o

This rigid body mode can be suppressed by prescribing anodal translation or rotation.

If translational and rotational rigid body motion occurs simultaneously then:

s
A b
Simple Examples of Beam Problems
with and without Rigid Body Motion
Stable/Unsta  Rigid Body gceter mina
Case ble M ode(s) Stiffress Equations
Structure Present M atrix
&
1 i 3 _ Dependent
o \J’_’\ O Unstable and K| =0 Equations
v
L gi 3 . Dependent
ng O O Unstable & I£]=0 Equations
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1 Ei 3
, B Dependent

§:¢§,=0 ~ f;oit Unstable ! [£]=0 Equations
Guide ride
1] ¥, =0 21 3

0O - Independen
}5‘1-0 e Stable None £l=C t Equations
Fixed

1 EJL 3 Independ
£ ependen
g, v =0 vs—om? Stable None [£]=0 t Equations

Fin Roller

2.41-D 2-NODED CUBIC BEAM ELEMENT MATRICES

A single 1-d 2-noded cubic beam element has two nodes, with two degrees of
freedom at each node (one vertical displacement and one rotation or slope). Thereis atota of
4 dof and the displacement polynomia function assumed should have 4 terms, so we choose
a cubic polynomia for the vertica deflection. Slope is a derivative of the vertical
deflections.

The vertical displacement v=a+bx+ox®+dx® (1)
dv »
The slope q =d—=b+2cx+3dx ....................... @)
X

Apply the boundary conditions

ax=0, v=vy = v=a = a=\
ax=0, gq=q, = gq=b = b=q,

3 1
ax=l, v=v, = v,=a+bl+c’+d® solving C:I_Z(Vz_vl)_l_ 2, +G;)
ax=l, q=9, = q,=b+2c+3d? 2 1

d =|_3(V1_V2)+ 2 (q1+q2)

Substituting the values of a, b, c and d in equation (1), and collecting the coefficients of
v;,q,,V,,q, we obtain

V=NV, +N,g, +Nv, + Ng,

where
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2 3 2 3
X X X X
Nl:1_3|_2+2|_3’ N2=X—2I—+I—2,
2 3 2 3
X X X X
No= 37-25 No= -7 +7

25DEVELOPMENT OF ELEMENT EQUATION

LN
/

R
y
dx=Rg
R— _ _ 2
ex=( y)q Rlz_yz_ydz/
Ry R dx

v= NV, + N, + Nov, + N9,
d3v d?
Ex= _yy = _YW( N,v, + N, + Ny, + N4q2)
Vl
[N @, dN, 0N,
dx*  dx*  dx*  dx® |V,
\ | \a,

] @

X

0 —=

c,=[B){a}
We Know that,
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[K]= g[B]TD[B]dv

Finite Element Analysis

d®N,
dx?
d®N,
X2 d®N, d?N, d?N, d°N
K — _ E _ 1 2 3 4 dV
K- [ ()] 5 on[ G S S
dx?
d’N,
dx?
d2N,)"  (d?N,d?N,) (d2N,d?N,) (d2N, d®N,
dx? dx®>  dx? dx*  dx? dx®>  dx?
d?N, d2N, d>N,)"  (d?N, d?N,) (d®N, d°N,
Ll a dx dx? dx? dx? dx* dx?
[K]=E[[y i dAdx
Y d?N, d2N, ) (dN, d?N, d?N, d?N, d?N,
dx* dx? ax*  dx? dx? dx*  dx?
d2N, d?N,) (d?N, d2N,) (d?N, d®N, d2N, )’
dx®>  dx? dx*>  dx? dx*>  dx? dx?
Where, [ yrda=1
d®N,
dx?
d®N,
v > 2 2 2 2
k=g [} @ [4N dN M dT g
of d’N, |{ dx dx dx dx
dx?
d’N,
dx?
Where,
3¢ 2x3 dN, -6x 6x* d°N, -6 12x
N, =1->2 2% T 6 12x
! 12 ° dx 12 ® S N
2 3 2 2 _
N2=x—zi+x—2 szzl_ﬁﬁ_’; d_'\2'2=_4 6_5
| [ dx I I dx I |
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6 12x

|3

J

3¢ 3 dN, Bx_ 6 d°N,_ 6_
TPl Toax 12 1B T e 12
x x* dN, 3x 2x d°?N, 6x 2
= — —4:———:> 4 —_—
A dx 12 ] 12|
-6 12x
[
-4  6X
. (T+|_2j 6 12x) (-4 6x
K]=El el B B S
(K] jo 6 12x ((IZ |3J(| |2
I_z__3
(#4
12
I —6 12x 6 12x
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2.6 BEAM ELEMENT

Finite Element Analysis

A beam is along, slender structural member generally subjected to transverse loading
that produces significant bending effects as opposed to twisting or axial effects. An elemental
length of a long beam subjected to arbitrary loading is considered for analysis. For this
elemental beam length L, we assign two points of interest, i.e., the ends of the beam, which
become the nodes of the beam element. The bending deformation is measured as a transverse
(vertical) displacement and a rotation (slope). Hence, for each node, we have a vertical
displacement and a rotation (slope) — two degrees of freedom at each node. For a single 2-
noded beam element, we have a total of 4 degrees of freedom. The associated “forces” are

shear force and bending moment at each node.

P

Nodal “displacements”

U P

1
Nodal “forces”

@2
2

1% .
vertical
deg][ee displacement at Vv, orv, shear fort_:e a node FoF |1
freedom node corres-
ond ] pond- _
degree of slope or rotgtlon a qorg, | N9 to | bending moment at M, orM, | 2
node i
freedom
3" vertical Vj Orv, shear forceatnode | F, orF, |3
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degreeof | displacement at [

freedom node |

4th . .
degree of slope or rotation at 4 q orq, bending moment at M, orM, | 4
freedom node | node j

The stiffness term k; indicates the force (or moment) required at i to produce a unit
deflection (or rotation) at j, while all other degrees of freedom are kept zero.

Sign conventions followed
Upward forces are positive and upward displacements are positive.
Counter-clockwise moments are positive and counter-clockwise rotations are positive.

Formulaerequired — cantilever beam subjected to concentrated load and moment.

P B PL?
7 R

 3E

26.1ELEMENT MATRICESAND VECTORS

Derivation of first column of stiffness matrix: v, =1, q,=v,=q, =0, i.e, alow the first

degree of freedom to occur and arrest all other DoF. (The deformed configuration is shown in
Figure 2).

Initially you have ahorizontal beam element. Sincev, =q, =0, we can fix nodej. To produce

an upward deflection a node i (i.e., alowing first degree of freedom to occur), apply an
upward force ki, (first suffix indicates the force or moment DoF and the second suffix

kL’
3El
displacement DoF number and force DoF number. Now the beam configuration is given by
Figure 1. We can observe from the figure that the slope at node i is not zero. To make the
sope at i equal to zero, we need to apply a counter-clockwise momentk,, . Refer Figure 2.

indicates the displacement or rotational DoF). v, = upwards. Refer table for

2
But this moment k,, will produce a downward deflection %at nodei. Refer Figure

3. In order to have a resultant unit upward displacement at node i, upward displacement
produced by force k, must be greater than the downward displacement produced by the
k11|-3 _ k21L2
3El  2El

node i by the force k, must be cancelled by the positive slope produced by the momentk,, .

i.e, kl#LZ:&
2El El

momentk,, . i.e., =1.....(1). At the same time, the negative slope produced at

..(2). Solving these two equations, k;,and k, are found. The fixed end
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reaction force and the reaction moment are assumed to be acting upwards and
counterclockwise, respectively. Now use force equilibrium equation to find fixed end

reaction force k, ....... (>)F,=0 = k,+ky=0)and moment equilibrium eguation about
nodei to find fixed end reaction moment k41....(z M, =0 = Kk,+k,L+k, = 0) :

_ N K,
VAN . \ ZA ‘T)
Tkkﬁ FiFgI%L;gef- E K, FigurFelg:re 3. K,

lunit i_"g\ k21

- E *‘?O"

] [ 126
L3
6El

k21 L2

| 12E

k31 - E
6El

Kl | 2]
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Derivation of second column of stiffness matrix: v, =0, ¢, =1v,=0q, =0, i.e, dlow the

second degree of freedom to occur and arrest all other DoF. (The deformed configuration is
shown in Figure 2).

Initially you have a horizontal beam element. Sincev, =g, =0, we can fix node . To produce
a counterclockwise (positive) rotation or slope at node i (i.e., alowing second degree of

freedom to occur), apply a counterclockwise moment k,,.q, = kIZEZIL . Refer Figure 1. This
2

moment K,,will produce a downward deflecti on% . This downward deflection should be

canceled by applying an upward force k,, at nodei. The upward deflection produced by k,,is

3 2 3
Kol . Refer Figure 2. Equating these two deflections Kol _ bl
3El 2El 3El

2
force k, will also produce a negative slope at node i which is kzlz?l'l Refer Figure 3. Hence

...(1) But this upward

the rotation produced by k,,should be greater than that produced by k., so that the resultant

2
rotation is 1 radians. %—%:1....(2). Solving these two equations, k, and k,, are

found. The fixed end reaction force and the reaction moment are assumed to be acting
upwards and counterclockwise, respectively. Now use force equilibrium equation to find

fixed end reaction force k;, ... (3.F,=0 = kj,+k;,=0) and moment equilibrium
equation about node i to find fixed end reaction moment K,

(DM =0 = ky+kyL+k,=0).

k.l [ 6EI |
T T 42 K 4El
+Q\ 22 e
ke Figure 4 ke = L
Figure 1. ' | 6El
ks, T2
L
o 2El
k22 +J =1rad —q /1\ _k42_ i T ]

'
—>
&

Yz

Tku Figure 2. Figure 3.

Derivation of third column of stiffness matrix: v, =0, ¢, =0,v, =10, =0, i.e,, alow the

third degree of freedom to occur and arrest all other DoF. (The deformed configuration is
shown in Figure 2).
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Initially you have a horizontal beam element. Sincev, =q, =0, we can fix nodei. To produce
an upward deflection at node j (i.e., alowing third degree of freedom to occur), apply an
upward forcek,, .

3
Vv, = I;BEII upwards. Now the beam configuration is given by Figure 1. We can observe from

the figure that the slope at node j is not zero. To make the Slope at j equal to zero, we need to
apply a clockwise momentk,,. Refer Figure 2. But this moment k,,will produce a downward

o k,l? . . .
deflection 2“3?& node j. Refer Figure 3. In order to have a resultant unit upward

displacement at node j, upward displacement produced by force k., must be greater than the

3 2
downward displacement produced by the moment k. i.e, kaLI'—k“3—|'=1.....(1). At the

3ElI  2El
same time, the positive slope produced at node j by the force k,,must be cancelled by the
kul? kL

£ ...(2). Solving these two
2El El @) g

equations, ky;and k,,are found. The fixed end reaction force and the reaction moment are
assumed to be acting upwards and counterclockwise, respectively. Now use force equilibrium
equation to find fixed end reaction force ky; ... (3. F, =0 = k;+k;=0)and moment

equilibrium equation about node i to find fixed end reaction moment Kk, ...
(XM =0 = Ky+kyl+k;y=0).

negative slope produced by the momentk,,. i.e,

k43
/ m ) ] ] )
= _X_q TJ‘% k,] [ 12E
JPURTNI WO - L3
T kg Figure 4. K 6El
Figure 1. Kas 3 BNE
| 12EI
k43 k33 L3
“)-&-- 6El
\ //_> unit Kk -—
N—" --Y-- el L L
Figure 2. T k33

Figure 3.

Derivation of fourth column of stiffness matrix: v, =q,=0,v,=0,q, =1, i.e, dlow the

fourth degree of freedom to occur and arrest al other DoF. (The deformed configuration is
shown in Figure 2).

Initially you have a horizontal beam element. Sincev, =g, =0, we can fix node i. To produce a
counterclockwise (positive) rotation or slope at nodej (i.e., alowing fourth degree of freedom

to occur), apply a counterclockwise moment k,,.q, = % . Refer Figure 1. This moment k,,, will
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2

produce a upward deflection k244EII . This upward deflection should be canceled by applying a

KoL
3El

downward force k,, at node j. The downward deflection produced by k,,is . Refer Figure

2 3
2. Equating these two deflections %z% ...(1) But this downward force k,, will also

2
produce a negative slope at node j which is k234—EII Hence the rotation produced by k,, should be

2
greater than that produced by k,,so that the resultant rotation is 1 radians. % —% =1....(2)

Refer Figure 3. Solving these two equations, k,,and k,,are found. The fixed end reaction force

and the reaction moment are assumed to be acting upwards and counterclockwise, respectively.
Now use force equilibrium equation to find fixed end reaction force Kk,

(>)F,=0 = k,+ky, =0)and moment equilibrium equation about node i to find fixed end
reaction moment K,,....(3"M; =0 =k, +kyL+k,=0).

k,] [ 6El |

v/j(zz: .{)kzm s 12

T T k 2El
24 —

Figure 1. Ky Figure 4. Kay _ L
6El

k34 - LZ
48l

L L L

Figure 3.

Figure 2.

Problem

Find the slopes at the supports and support reaction forces and support reaction moments for the
beam shown in Figure. Take E=210 GPa, | = 2x10™*m*. Daryl Logan P4-24 page 208.

SN

AT eIy
sl am

Finite element representation of the problem

Vo
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Finite Element Analysis

Conversion of UDL into nodal forces and nodal moments

_q_L qL
k_N Force= kN = kN
g Aﬁ\ /l\
BYYYYVYYYYYYYEF = -
L m qu qu \>
Moment =—— kN —m — kKN-m
12 12
for element 1,
KN 12.5 kN 12.5 kN
ok 10.416667 %m 10.41666F KN —m
m )
for e‘ement 2, ‘ T ‘/ \
1
KN OkN 10 kN
i Wl\ &
m
EYYYVYVYYYYVYLYYF =
4m ‘/ \
6.66667 kKN —m 6.66667 KN —m

El =210 GPa x 2x10™* m* = 210x 106k—N2 x 2x10™* m* = 42000 kN-m?
m

Stiffness matrix for element 1

4,032
10,080
| —4032
10,080

<]

10,080
33,600
-10,080
16,800

Stiffness matrix for element 2

7,875
15,750
7,875
15,750

K] -

15,750
42,000
-15,750
21,000

Assembly of finite element equations

SCE

-4032 10,080
-10,080 16,800
4,032 -10,080
-10,080 33,600
-7,875 15,750
-15,750 21,000
7,875 -15,750
-15,750 42,000
48 Department of Mechanical Engineering
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Fl -12.5 F1 -125 Support reaction moments at all simply
M, -10.416667 0-10.416667 supported ends are zero. M; =M, =M, =0
F, . -12.5-10 _ F,-225 All support reaction forces are unknowns.
M, 10.416667 — 6.66667 0+3.75
F, ~10 F,~10
M, 6.66667 0+ 6.66667

support applied forces

reactions

F,-125] [ 4,032 10,080 —4,032 10,080 0 0]
0-10.416667 10,080 33,600 -10,080 16,800 0 0
F,-225 —4,032 -10,080 4,032+7,875 -10,080+15,750 -7,875 15,750
0+3.75 10,080 16,800 -10,080+15,750 33,600+42,000 -15,750 21,000
F,-10 0 0 -7,875 -15,750 7,875 -15,750

0+ 6.66667 0 0 15,750 21,000 -15,750 42,000 |

Eliminating the first, third and fifth rows and columns of the stiffness matrix, the reduced matrix

becomes
-10.416667 33,600 16,800 0l(q,
3.75 =116,800 75,600 21,000 49,
6.66667 0 21,000 42,000||(q 3

Solving these equations
g, =—3.59623x 10 rad q, = 9.9206349x10° rad g, =1.0912698 x 10 rad
Substituting these values in the assembled matrix to find the support reactions, we find

F,—125= {10,080x(-359623x10*)} +{10,080x9.92x10°°}
F, —22.5={-10,080x(~359623x10 *)| +{5,670x9.92x10 °} + {15,750 1.0913x10 *}

F,-10= {15,750%9.92x10°*} - {15,750x 1.0913x 10}
F,—12.5=-2.625 kN F, =9.875 kN

F,—22.5=5.9062 KN which means F, = 28.406 kN

F,—-12.5=-3.2812 kN F, = 6.71869 kN
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kN

It is verified that the total applied load (S—X 5m = 45kN j is equal to the sum of the support
m

reaction forces (9.875+28.406+6.71869 = 45 kN).

Total force and moment diagram

10.416667 kN-m 3.75 kN-m 6.66667 kN-m
9.875 kN 28.406 kN 6.71869 kN

Individual force and moment diagrams

10.416667 kN-m 2.70816 kN-m 6.45813 kN-m 6.66667 KN-m
2.624832 kN 2.624832 kN 3.2811975 kN 3.2811975 kN

Individual force and moment calculations

Element 1

FO = {10, 080x (-3.59623x10™* )} +{10,080x9.92x10°°| = ~2.624832 kN
M = {33,600 (~3.59623x10 )| +{16,800x9.92x10™*} = ~10.416 kN-m
F? ={-10,080x(~359623x10 *)| - {10,080x 9.92x10 °} = 2.624832 kN

M = {16,800 (~3.59623x10™ )} + {33,600 9.92x10™° | = ~2.70816 kN-m

Element 2

R ={15,750x9.92x10°°} + {15,750x1.0913x10™*} = 3.2811975 kN
M,? ={42,000x9.92x10°°} +{21,000x1.0913x 10 *} = 6.45813 kN-m
FY ={-15,750x9.92x10™°} - {15,750x 1.0913x10 | = ~3.2811975 kN
MY ={21,000x9.92x10 | +{42,000x1.0913x 10"} = 6.66667 kN-m
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PROBLEM

Finite Element Analysis

Given that E=210 GPaand 1=4x10*m®, cross section of the beam is constant.
Determine the deflection and slope at point C. calculate the reaction forces and moments.

DARYL LOGAN P 171-172

1kN

A 20 kN-m

A
Y
A

3m

Solution:-

Degree of freedom in numbers:-

©

3m

€
(o
© ©

Degree of freedom of forces and moments:-

M,

(o

Fl Fz

Degree of freedom of displacement and rotation:-

V1 V2

Stiffness matrix for element 1 and 2:-

SCE 51
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[ 12EI 6El 12El  6El |
1® 12 I° |2
6EI 4B _6EI 2B
KE=IKF=| Do am om
_12EI BEI 12EI  GEl
I® 12 1 12
6El 2B 6EI 4B
|2 I 12 |
(12 18 -12 18]
18 36 -18 18
[K] =[K] =3.1x10°
-12 -18 12 -18
|18 18 -18 36|
Assembling:-
F, 2 18 12 18 0 014
M, 18 % 1818 0 0 |g
F -2 1824 0 0 0]y
~31x10
M, 18 18 0 72 -18 18 ||g,
R 0 0 1218 12 18y
M, 0 0 18 18 -18 3 ||g

Boundary condition:-

F2=-10 kN; M2=20 kN-m

V1 =V3= 81:83:0

Therefore first, second, fifth, sixth columns are ineffective

and hence the reduced matrix is given by

F,
m,

24
=3.1x10° 0
72

0

Deflection and slope at point c:-

Vo= -1.34x10*m = -0.134 mm

0,=8.96x10°rad

SCE

Jie

}
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Reaction forces and moments:-

. _ _
F, -12 18
m, -18 18
L= 3.1x10°
F, ~12 -18
wy | 18 18 |
F,=10000N
M1=12500N-m
F3:O
M= -2500N-m
12,500N-m 17,500N-m
10,000N 10,000N
individual element forces and moments are
2,500N-m 2500N-m
' {
0 0
10kN
12.5kN-
g/\ 20kN-m q 2.5kN-m
' \
10kN
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UNIT I11
TWO DIMENSIONAL FINITE ELEMENT ANALYSIS
3.1INTRODUCTION

Two dimensional elements are defined by three or more nodes in a two dimensional
plane (i.e., X, y plane). The basic element useful for two dimensional analysis is the

triangular element.

3
TRIANGLE RECTANGLE QUADRILATERAL PARALLELOGRAM

» Plane Stressand Plane Strain
The 2d element is extremely important for the Plane Stress analysis and Plane
Strain analysis.
Plane Stress Analysis.
It is defined to be a state of stress in which the normal stress (o) and shear
stress (t) directed perpendicular to the plane are assumed to be zero.
Plane Strain Analyss.
It is defined to be a state of strain in which the normal to the xy plane and the

shear strain are assumed to be zero.

3.2 THREE NODED LINEAR TRIANGULAR ELEMENT

The physical domain considered is geometrically a 2-Dimensional domain, i.e., an areawith
uniform thickness and the single variable can be one of pressure, temperature, etc. (a scalar
guantity, not a vector quantity). An example is the temperature distribution in a plate. At each
point there can be only one temperature. We consider such an area meshed with triangular
elements. Each triangular element has three nodes, (i.e., one node at each corner). Let us consider

one such element with coordinates (X, ¥;),(%,,Y,) and (X, ;). The single variable (for example,

temperature) at these nodes 1, 2 and 3 are u,,u, and u,, respectively. If so, then the unknown single

variable u (temperature) at any non-nodal point (x, y)in the 2-D domain can be expressed in terms

of the known nodal variables (temperatures) u,,u, and u,.
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Let us assume that the single variable can be expressed as
U=C, +C,X+Cy

In order to find the three unknowns ¢, c, and ¢, , we apply the boundary conditions

a(x,y), U=t = U=G+CX+GY, y
at(XZvY2)’ u=u, = U=G+GCX, +GY, *
a (X,Y;), U=U;, = U=G+CX+GY, 3 (X3,y3)
Writing the above three equations in matrix form
wl [T % wlla U,
=1 % ¥, 16 ! 2 (x2,y)
Us _1 X Y3 G 1 (xyy1)
Weneedtofind c,c, and c, X
o] [t % w] (u
Cr=|1 % VY, U,
G [1 %X Y] (U
1 Xl yl N l al a2 a'3
1 % VY, =oh b, b, b, where 2A=a,+a,+a, and
1% Y 9 9 G
a; =X Y — XY bi:yj_yk giz_( _Xk)
a; =XY;— XY, b1=y2—y3 91__( _X3)
a, =Xy, —XY; b2:y3_yl gz__( _Xi)
a;=XY, =Xy b3:yl_y2 gsz_( _Xz)
Aisthe area of thetriangle.
Cl 1 a'l a2 a3 ul
C, =5A b, b, b;liu,
C; g 9, 0;](YU

Substituting the values of ¢;, ¢, and ¢z in u=c¢, +C,X+C,y, we get

u=Nu + N,u, + N,u,

where N, :%\(ai+bix+giy), i=123

55 Department of Mechanical Engineering

SCE



ME2353 Finite Element Analysis

3.3FOUR NODED LINEAR RECTANGULAR ELEMENT

4
y oo
A |
14 (0,b) 3 (a,b)
---------- X
1(0,0) 2 (a,0)

Let us assume that the single variable can be expressed as
U(X,Y)=C+CX+CY+CXY i (1)

This polynomial contains four linearly independent terms and is linear in x and y, with a
bilinear term in x and y. The polynomia requires an element with four nodes. There are two
possible geometric shapes. a triangle with the fourth node at the centroid of the triangle or a
rectangle with nodes at the vertices.

A triangle with a fourth node at the center does not provide a single-valued variation of u at
inter-element boundaries, resulting in incompatible variation of u at inter-element boundaries and is
therefore not admissible.

The linear rectangular element is a compatible element because on any side, the single
variable u varies only linearly and there are two nodes to uniquely defineit.

Here we consider an approximation of the form given in eqauation (1) and use a rectangul ar
element with sides a and b. For the sake of convenience we choose a local coordinate system

(i, 7) to derive the interpolation functions.

In order to find the three unknowns c,,c, and ¢, , we apply the boundary conditions
a (0,0), u=u, = u=g

a (a,0), u=u, = u=cg+ca

a (a,b), u=u;, = u=c+ca+cab

a (0,b), u=u; = u=cg+cb

Solving for ¢y, ¢y, cz and ¢4

SCE 56 Department of Mechanical Engineering



ME2353 Finite Element Analysis

34 TWO-VARIABLE 3-NODED LINEAR TRIANGULAR ELEMENT

Figure shows a 2-D two-variable linear triangular element with three nodes and the two dof at each
node. The nodes are placed at the corners of the triangle. The two variables (dof) are displacement
in x-direction (u) and displacement in y-direction (v). Since each node has two dof, asingle element
has 6 dof. The nodal displacement vector is given by

<

We select alinear displacement function for each dof as

u(X,y)=0c+CX+Cy
V(X,¥)=C, +CX+Cgy

where u(x, y)and v(X, y)describe displacements at any interior point (x, y)of the element.

The above two agebraic equations can also be written as

K_H
< C
H_J
Il
1
O R
o X
o<
= O
o
< O
| |
-boupl\)nlp

&

N
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Using steps we had devel oped for the 2-D single-variable linear triangular element, we can write

G 1 a, a, az||y
G :ﬁ\ b1 bz b3 u,
G 19 9 O ](Ys
ol [a, a, a,]|(v
G =ZA\ bl bz b3 Vv,
Cs 19 9 O] (Vs

and using the interpolation functions we had developed for the 2-D single-variable linear triangular
element, we can write

u(%y) =Ny, + N,u, + Nyu,

V(% Y)= NV, + Nov, + Nov,

where
N.:i(a.+bx+g.y), i=123
1 2A 1 I 1
ul
Vl
uxy)| [N, 0 N, 0 N 0]y,
Writing the above equations in matrix form V(X y) |0 N O N, 0 N||lv,[The
u3
V3

Ui=[N]{a}

strains associated with the two-dimensional element are given by
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ou
le}= N and notethat ¥
’ oy ON; _
o, ov o
oy oOX
ul
u %
! u
@=3(Nlul+N2uz+N3u3)= N, - oN, - N, u, = Ny g Ny Ny )L
OX OX oX OX OX OX OX OX v,
u3
u3
V3
U,
v, Y
1
u
@=£(va1+N2v2+N3V3)=<5N1 oN, 8N3> v =<o N, g N, 8N3> )
oy oy o o ¥/ oy oy [ |V
’ 3
VS
ul
Vl
a @:—(Nlu1+N2u2+N3u3)+£(va1+N2v2+N3v3)= N, 0Ny ON, ON,  ON; - ONg ) ju
oy OX OX oy oOXx oy oOx oy OX/|V,
u3
V3
oN, oN, N, o |[w Uy
V, V
le} = 0 — 0 —2 0 —=2l%=0g 049 0 g~
’ oy o ||Va v,
I9) Ion, N, oN, oN, oN, oN, ||u glblgzbzg3b3u
1 1 2 2 3 3 3 3
Loy OX oy oOx oy OX ||V, A
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fs}-[D]{e}
s, =0l e,
t g,

The stiffness matrix is given by [K]6X$ = J. [B];Q)[D]sxs[B]3Xe dv =t H [B]T [D][B]dxdy.

Volume Area

where t is the thickness of the plate. The integrand [B]T [D][B] is not a function of x and y and

hence can be taken outside the integral to yield
[K]=tA[B] [D][B]

D matrix is the material constitutive matrix, either for the plane-stress case or for the plane-strain
case depending on the problem in hand.

and substituting them back in u, we get

o |«
|

N—
o |«

pd
S

I
VR

i
o | X

3.5STRAIN - STRESSRELATION

ex =—X_n _Y_n_z
E E E
S S S
E E E
S S S
E
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3.5.1 Plane stress conditions

S »S, andt , arepresent.
s,=t,=t,=0.

z XZ

sinces , =0, fromequationsland 2

S S
e, =N+
E E

solving the above two equations
fors, ands , weget

E
S, :(1_7)(eX +ney)and

S, = Ez(nex+ey)
il—n D

E
t :G =
= 20y = 5

_[1-n?) E
 (1-n? 2(1+n)gxy
@+n)1-n) E
(1-n?) 2(1+n)gxy

_ E (1-n)

t

9y

writings ,,s , andt , inamatrix form

« £ 1n 0 e,
= n 1 0 e

y 2 y
1-n 0 0 (1—n) .

Xy 2 Xy

3.5.2 Plane strain conditions

S ,,S , andt , arepresent.

€& =V =Yy, = 0.

S, isnot zero.

sinceg, =0, weget from equation 3
S z =n(s X +S X)

SCE
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substitutings , in equationsland 2

e _Sx_ Sy 2(Sx+sy)
“ E E E

s, S

ey =- E+_

rearranging the termswe get
=—>11-n°)-—n(l+n

s, Sy
e =—En(1+n)+Ey(1 n?)

y

mutiplying by X byn and Y by (1-n)

ne, :SEXn (1—n2)—SEyn2(l+n)
Xn(l—n)(1+n)+SEy(1—n)(1—n2)

-ne, -~
~i-n)a-n?)

= —SEXn(l—n 2)+

adding the above two equations to eliminate s ,

ne, +(1-n)e, = [— (1+n)+(1-n)1-n2)]
ne, +(1-n)e, = —y[—n 2(1+n)+(1—n)(1+n)(1—n)]
ne, +(1-n)e, = E “Y(1+n [—n +(@1-n)1- n)]
it J(rl(inr;)e [n +1+n? —21]

- ne +(1-n,
Sy_E(1+n)(1—2h)
similarly

__[-n, +ne,
S =E i m)
andasbefore

E
Xy_2(1—+n)gxy

writing ,,s , andt, inmatrixorr
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S, @-n) n 0 |le,

y = WE]__Z‘]) n (1—n) 0 ex

t, 0 0 @ Oy
2

It is difficult to represent the curved boundaries by straight edges element alarge number of
element may be used to obtain reasonable resembalance between origina body and the
assemblage

Two-Dimensional Problems

Review of the Basic Theory
In general, the stressesand strains in a structure consist of six components:

sx,sy,sz,txy,tyz,tzx for stresses,

and €y » ey 167, Gy, Oyz » Gx, for strains.
Sy
A

o L
y % )%_’S&
tZX
X
Z

Under contain conditions, the state of stressesand strains can besimplified. A genera
3-D structure analysis can, therefore, bereduced to a 2-D analysis.

t, O (e, 0 (1)
Plane (2-D) Problems

Plane stress:

s, ty
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LY y

Plane strain:

A long structure with a uniform cross section and transverse loading along its
length (z-direction).

\Y A Y

Stress-Strain-Temperature (Constitutive) Relations
For elastic and isotropic materials, wehave,

ey 1VE n/E 0 Sy & 0
Sy NE - ye Y 0
gxy 0 0 1/G txy g(y 0

where ey istheinitia strain, E the Youngs modulus, n the Poisson$ratio and G the

E
2(1-n)

shear modulus. Notethat,G =
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which means that there are only twoindependent materials constants for homogeneous and
isotropic materials.
We can also expressstressesin terms of strains by solving the aboveequation,

The aboverelations are valid for plane stress case. For plane strain case, we
need to replace the material constants in the aboveequationsin the followingfashion,

n
1-n

For example, the stressis related to strain by

Initial strains dueto temperature change (thermal loading) is given by,

where a isthe coefficientof thermal expansion, T the change of temperature. Notethat
if the structure is free to deform under thermal loading, there will beno (elastic) stressesin the
structure.

3.6 GENERALIZED COORDINATES APPROACH TO NODEL APPROXIMATIONS

by

ST

»
|

X

The boundary S of the body can be divided into two parts, §; and &. The boundary
conditions (BC%) are described as, in which ty and ty are traction forces (stresses on the boundary)
and the barred quantities are those with known values.

In FEM, all types of loads (distributed surface loads, body forces, concentrated forces
and moments, etc.) are converted to point forcesacting at the nodes.

Exact Elagticity Solution

The exact solution (displacements, strains and stresses) of a given problem must satisfy the
equilibrium equations, the given boundary conditions and compatibility conditions (structures
should deform in a continuous manner, no cracks and overlaps in the obtained displacement field)
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3.71SOPARAMETRIC ELEMENTS
In one dimensional problem, each node is allowed to move only in + x direction.

But in two dimensional problem, each node is permitted to move in the two directions i.e., X

andy.

1

The element connectivity table for the above domain is explained as table.

Element (e Nodes
(1) 123
(2) 234
(3) 435
(4) 536
(5) 637
(6) 738
(7) 839
(8) 931

» Constant Strain Triangular (CST) Element
A three noded triangular element is known as constant strain triangular (CST)

element. It has six unknown displacement degrees of freedom (u1vy, Uz, UsVs).
T\':rs

| 1,
» Shapefunction for the CST element Shape function Ny = (p1 + quX + r1y) / 2A
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Shape function Na = (p2 + gox + 12y) / 2A
Shape function N3 = (ps + gsx + r3y) / 2A

» Displacement function for the CST element

ul
vl
lux,y)) TNL 0 N2 0 N3 oTX u2|
iv(x,y)f LO NI 0O N2 O NBJ %VZ
u3
V3

Displacement function u =

» Strain — Displacement matrix [B] for CST element

@ 0 9 0 g O
=1
Strain - Displacement matrix [B] =, o O r 01, 0

Where, g1 =y2— V3 1 =X3—Xz
G=¥3—\1 2 =X1—X3
B=Y1—Y2 3 =X>—Xz1

» Stress — Strain relationship matrix (or) Constitutive matrix [D] for two
dimensional element
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» Stress— Strain relationship matrix for two dimensional plane stress problems

The normal stress ¢, and shear Stresses ty,, 1y, are zero.

_E
[O1=71_v?

o < Bk
O <

=
N[l © O
<

» Stress-— Strain relationship matrix for two dimensional plane strain
problems

Normal strain e, and shear strains ey, €y, are zero.

» Stiffnessmatrix equation for two dimensional element (CST element)
Stiffness matrix [k] =[B]" [D] [B] A t

@ 0 9 O g, O
[B]=:_ 0 r 0 r, 0 Iy

2A
rl ql r2 q2 r3 q3
For plane stress problems,

B
[D] =1 y?

For plane strain problems,

» Temperature Effects
Distribution of the change in temperature (AT) is known as strain. Due to the
change in temperature can be considered as an initial strain ep.
o=D (Bu - ey)

» Galerkin Approach

Stiffness matrix [K]e =[B] " [D][B] A t.
Force Vector {F} ¢ = [K]e { U}

SCE 68 Department of Mechanical Engineering



ME2353 Finite Element Analysis
» Linear Strain Triangular (L ST) element
A six noded triangular element is known as Linear Strain Triangular (LST)

element. It has twelve unknown displacement degrees of freedom. The displacement

functions of the element are quadratic instead of linear asin the CST.

Vi

» Problem (I set)
1. Determine the shape functions N1, N, and N3 & the interior point P for the
triangular element for the given figure.

v 3(4.7)

The two dimensional propped beam shown in figure. It is divided into two CST
elements. Determine the nodal displacement and element stresses using plane stress
conditions. Body force is neglected in comparison with the external forces.

Take, Thickness (t) = 10mm,

Young's modulus (E) = 2x10° N/mn,

Poisson’s ratio (v) = 0.25.
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Y
—> 7500 N

750

e 1000 mm——f

3. A thin plate is subjected to surface traction as in figure. Calculate the global stiffness matrix.

= T=0.4 N/inm?

[ =]

Mo B "B BB TR
E

mnin

— 500 jn ———=

» Scalar variable problems

In structural problems, displacement at each nodal point is obtained. By using
these displacement solutions, stresses and strains are calculated for each element. In
structural problems, the unknowns (displacements) are represented by the
components of vector field. For example, in a two dimensional plate, the unknown

quantity is the vector field u(x, y), where u isa (2x1) displacement vector.
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3.8 STRUCTURAL MECHANICS APPLICATIONS IN 2 DIMENSIONS

Elasticity equations are used for solving structural mechanics problems. These
equations must be satisfied if an exact solution to a structural mechanics problem is to be
obtained. Thest are four basic sets of elasticity equations they are

Strain displacement relationship equations
Stress strain relationship equations
Equilibrium equations

Compatibility equations

TRUSS ELEMENT

A truss element is defined as a deformable, two-force member that is subjected to
loads in the axial direction. The loads can be tensile or compressive. The only degree of
freedom for a one-dimensional truss (bar) element is axial (horizontal) displacement at each
node.

U.I UJ—
L, =L,
—*CI O

J g r
£ ty

Assumptions for the One-Dimensional Truss Element

Prismatic Member

The truss element is assumed to have a constant cross-section, i.e,, it is a prismatic
member. If atruss structure is stepped, then it must be divided up into sections of constant
cross-section in order to obtain an exact solution as shown below.

/ ::| As=2u® a=12
/| E::> J
/ 1 © @

, A=1in?
A=2in

If atruss structure is tapered, then it can be approximated by using many small truss
elements, each having the same cross-section as the middle of the tapered length it is
approximating. The more sections that are used to approximate a tapered truss, the more
accurate the solution will be.

L 10 @
Je I
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Weightless Member

The weight (W) of the trussis neglected since it is assumed to be much less than the
total resultant forces (F) acting on the truss. If the weight of the truss is not neglected, then
its effects must be represented as vertical forces acting at the nodes. But since truss el ement
is defined as two-force member it cannot have any vertical (shear) force, thus the member
weight has to be neglected. If shear forces exist, then a beam element must be used to model
the structure.

Nodal Forces

For one-dimensional truss element, forces (loads) can only be applied at the nodes of
the element, but not between the nodes. This is consistent with the FEM eguations which
relate nodal forcesto nodal displacements through the stiffness matrix.

Axially Loaded

For one-dimensional truss element, forces (loads) can only be applied at the centroid
of the element cross-sectional area.

Buckling Effect not Considered

A bar element can be subjected to either tensile or compressive forces. Tensile forces
can be applied to a bar of any cross-sectional area or member length, and failure is
associated with sudden fracture or general yielding. When compressive forces are applied to
a member, it can either fail due to crushing or buckling. Buckling is present when the
member bends and laterally deflects as shown on the right figure below.

. Crushmg . Buckling
P | | o P' Il _i : ::’ E_ I:.
Short Column Long Column

Buckling is not accounted for in the formulation of the truss element. Members that
do not buckle are classified as short columns and members that buckles are classified as
long columns. The structural response of a short column can be predicted with a truss
element.

To determine if buckling will occur the reader should refer to a mechanics of
material textbook. We will now introduce a simple geometric guideline to determine if
buckling might occur. If the ratio between the member length and the least dimension of the
cross-section is equal or less than 10, the member is considered a short column and buckling
will not occur, i.e.,

d - Least Cross-Sectional
Dumnension

L - MMember Length

L < 1g
L <
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Two examplesinclude

4
2 P
TG=]OS]U ¥=202=]U
20 . 20
Shert Column Long Column

In the second case if a bar element is subjected to a compressive force, the element will not
predict the buckling response. One should note that the above geometric rule is a simple
guideline, however, in reality buckling depends not only on the member length and cross-
sectional area, but materia properties and support conditions.

Isotropic Material

A truss element has the same mechanical and physical propertiesin al directions, i.e., they
are independent of direction. For instance, cutting out three tensile test specimens, one in the
x-direction, one in the y-direction and the other oriented 45 degrees in the x-y plane, a
tension test on each specimen, will result in the same mechanical values for the modulus of
elasticity (E), yield strength =, and ultimate strength = ,. Most metals are considered
isotropic. In contrast fibrous materias, such as wood, typically have properties that are
directionally dependant and are generally considered anisotropic (not isotropic).

Constant (Static) Load

The loads that are applied to the truss element are assumed to be static and not to vary over
the time period being considered. This assumption is only valid if the rate of change of the
force is much less than the applied force (F >> dF/dt), i.e., the loads are applied slowly. If
the loads vary significantly, (if the variation in load is not much less than the applied force)
then the problem must be considered as dynamic.

Poisson's Effect not Considered

Poisson's ratio is a material parameter. Poisson's effect is when a uniform cross-section bar
is subject to atensile load, and the axial stretching is accompanied by a contraction in the
lateral dimension. For one-dimensional truss element., this effect is neglected for smplicity,
i.e,v=0.

Cross Section Remains Plane
For one-dimensional element, although the force(s) are acting on only the centroid of the
truss (bar) element, it is assumed that it has a uniform effect to the plane. Thus the cross

section will move uniformly and remain plane and normal to the axial axis before and after
loading.
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Homogenous Material

A truss element has the same materia composition throughout and therefore the same
mechanical properties at every position in the material. Therefore, the modulus of easticity
E is constant throughout the truss element. A member in which the material properties varies
from one point to the next in the member is called inhomogenous (non-homogenous). If a
truss is composed of different types of materials, then it must be divide up into elements that
are each of a single homogeneous material, otherwise the solution will not be exact.

The left figure shows a composite bar composed of brass and aluminum. This structure can
be divided into two elements as shown on the right, one element for the brass with E; = 15 x
10° psi and one for the aluminum with E, = 10 x 10° psi.

TRUSSELEMENT (OR SPAR ELEMENT OR LINK ELEMENT)

Differentiate between atruss and a frame.

Truss Frame

Concentrated loads, uniformly distributed

Only concentrated loads act. loads, moments, all can act.

Loads can be applied at the joints and/or

Loads act only at the joints. in-between the joints

Truss members undergo only axial Frame members can undergo axia and
deformation (along the length of the bending deformations (translations as well as
member). rotations).

A grid is a structure on which loads applied perpendicular to the plane of the
structure, as opposed to a plane frame, where loads are applied in the plane of the structure.

6.7.1 Derivation of stiffnessmatrix and finite element equation for a truss element.

There are two joints for an arbitrarily inclined single truss element (at an angleq, positive
counter-clockwise from +ve x-axis). For each joint i, there are two degrees of freedom, i.e.,

ajoint can have horizontal displacement (u,)and vertical displacement (v;). Hence, for a

single truss element, there are 4 degrees of freedom. The noda displacement degrees of
freedom and the nodal force degrees of freedom are shown in the following figure.
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Note that the deformations occurring in the truss members are so small that they are only
axial. The axia displacement of the truss can be resolved along horizontal x-axis and
vertical y-axis. But in our derivation, let us resolve the horizontal and vertical displacements
(in xy-axes) of ajoint along and perpendicular to the truss member (in Xy’ -axes). Refer to

the Figure in the next page. Note u sinqg component acting towards negative y'-direction
and all other components acting towardsin +ve X' - and Yy’ -directions.

\\ A
U COST_y,
N q U = U cosq +V, sing
v ide , :
L sing - V/ =—U,sing +V, cosq
, .
N ' =u, cosq +V, sing

uJ
- \ l__ "
\ Vi =—u, sing +V, cosq

The above equations can be written in the matrix form as follows

u’ cosq sinq 0 0 u
v —-sing  cosq 0 0 ||V
u’ 1o 0 cosq sing ||y
Vi 0 0 -sing cosq ||V,

{u}=[T]{u} where [T] isthe transformation matrix

It is important to note that the displacements v/ and v; are both zero since there can be no

displacements perpendicular to the length of the member. Also [T]" =[T]'
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Similarly, we resolve forces along the length of the member (positive X' direction)
and perpendicular to the length of the member (positive Y’ direction)

F. cosg sing 0 0 F,
Fy| |-sing cosg O 0 ||Fy
Fi 0 0 cosq sing ||Fjx
Fy 0 0 -sing cosq ||Fy

{F'}=[T]{F} where [T] isthe transformation matrix

The arbitrarily inclined truss member can be thought of as a smple bar element
oriented at the same angle . Hence, we can write the finite element equation for this
inclined bar element (in X'y’ coordinate system) as

F! 1 0 -1 0]fu
F,l AE|O 0 0 0|V
F.l L|-10 1 oflu
F, 0 0 0 0]V
{Fy=[K{u}

Substituting {F ’} and {u'} from the previous equations, we can write

[TIF}=[K][THuj

Pre-multiplying the above equation by [T]fl,

[T [THFY =TT KT M)

But [T] '[T]=1and the above equation can be written as
{F}=[K]{u} where [K]=[T] [K][T]

Carrying out the matrix multiplication for [k], we obtain

o
< x
>
m
8 %
0, 8
L
8 %
L
0, 8
<

_T
<
|
%
wn
N
%
wn
< Cc

where c=cos’q and s=sin’q.

Computation of strain and stressin the truss element
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The change in length of the truss member is equal to the change in axial displacement of the

truss member in the X'y’ co-ordinate system
d=u; -u

d =(u, cosq +v, sing ) - (u cosq +V, sinq)

U
q . : v
=(—co —sinq cosq sin
(~cosq q cosq sing) l
Vi
Strain in the truss element is given by ee:dr : i.e.,
U
ee_(—cosq -sing cosq sing) |V,
- L u,
Vi
Stressin the truss element isgiven by s © = Ee®, i.e,
U
—cosg -sSing cosqg Sin \
se_plocosd g cosq sing)
L u,
v

Problem

The two-element truss is subjected to external loading as shown in figure. Using the
same node and element numbering as shown in figure, determine the displacement
components at node 3, the reaction components a nodes 1 and 2, and the element
displacement, stresses and forces. The elements have modulus of elasticity E; = E, = 10x10°

g and cross-sectional areas Ay = A, = 1.5 in?

n
(0, 40) . 001b 509 |
1
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TFinite element model

o—

For element 1

gdement 1

SCE

1

Finite Element Analysis

I Degree of frEéedom

For element 2

v V
i
[ ®
17, .03
i J
element 2
F.
JY‘ Fio
le Fix e3
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FINITEEELEMENT EQUATION
1X

Finite Element Analysis

Fx c> ¢s -c? -cs)\(u
v| AE| ¢cs s —cs -—-s?||V
F, L | —c® -cs c? cs | | U,
F, -cs s cs  s?)\y
For element 1
6
g = 45, AE _1.5x10x10° _, o ec 108 .Ibz
L 56.5685 in
1 2 5 6
05 05 -05 -05 1( 1.325826 1.325826 -1.325826 -—1.325826
K] = AE| 05 05 -05 -05| 2| 1325826 1325826 -1.325826 1325826
L |-05 -05 05 05| ~ 5/ -1.325826 -1.325826 1.325826 1.325826
05 -05 05 05 6\ -1.325826 -1.325826 1.325826 1.325826
q-0 AE _1.5x10x10° _ 3755 10° For element 2
L 40
3 4 5 6
1 0 -1 0 3[ 3.75 0 -3.75 0
[K](z)_AE 0 0 0 0|_ .4 0 0 0 0
L -1 O 1 O 5| -3.75 0 3.75 0
0 0 O 6 0 0 0 0
Assembly of finiteelement e
1 2 3 4 5 6
Fy 1135 135 0 0 -13% -135\(u
Fy 201325 135 0 0 -1325 -1325||yv,
Fol_yp3 O 0O 375 0 3755 0 |uy _
= t
F,l 4 0 0 0 0 0 0 |y "
F, 5 -1325 -1325 -375 0 50751 1325 ||u,
ng 6l -1.325 -1.325 0 0 1325 1325 )\\v,
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Applying boundary conditions

T

. =5001b
=300 Ib

o

=
=

< =
[l Il
o O o o

<
I

x

T

<

x
I
H
(S)
[

<

Eliminating the 1%, 2, 3" and 4™ column to solve

500 =10° (5075, + 1325,

1.325826
1.325826

500 —-1.325826
300 —-1.325826

1.325826
1.325826
0

0
—-1.325826
—-1.325826

300 =10°(1.325u, +1.325v,)

Solve the equation & and

u, =5.33x10* in

v, =1.731x10%in

Finding element stresses

For element 1

SCE

Finite Element Analysis

knowns unknowns
F,, =500 Ib F..
ng =3001b Fy
Ul =0 F2x
Vl = O Fzy
u,=0 U,
v, =0 A
0 0 -1.325826 -1.325826)(0
0 0 -1.325826 -1.325826 1| O
3.75 0 -3.75 0|/l 0
0 0 0 0|l 0
-3.75 0 50751826 1.325826 || u,
0 0 1325826 1.325826)\ v,
u, and v,
F, =-3001b
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6
10230 [(0.5333x1) — (0x 0)] = 133.325%
|

S, = %[u5 cosO" —u,sin0’] =

s, = %[(u5 c0S45° —u, sin45°) — (u, cos45° + u, sin 45“’)]

6
B 12(? ég [ (0.5333x10°°c0s45°) + (1.731x 10 °sin 45°) - 0|
6
= 1049714 0003771+ 0.001224] = 283.03 2
56.57 "
PROBLEM

To illustrate how we can combine spring and bar element in one structure, we can
solve the two-bar truss supported by a spring as shown below. Both bars have E = 210 GPa
and A = 5.0 x10™* m% Bar one has alength of 5 m and bar two a length of 10 m. the spring
stiffnessis k = 2000 kN/m.

25kN
2
5m @
45°
73 @
] 10m 1
@§ k=2000 kN/m
4
AN N

Solution :
Given: E =210 GPa

N
A=50x10"m*, Li=5m, Lp,=10m, K=2x10"—
m

o . . _ N
NOTE: A spring is considered as a bar element whose stiffnessis 2 x 10° ey
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Finite Element Analysis

STEP 1 : Finite Element Representation Of Forces And Displacements

v12
L)Ul 1

FlX

F4X

4
Displacements G
L)Uz 3
2
\EL @
usg
[ 3 @
|
Forces 4
Fav
T—>sz
2
Fay @ E
| 1y
F3X |
@ 3 @ 1
@ Fay
4

Step 2: Finite Element Equations

Element 1:

9=135° 2

|?=cos’6 =0.5

m’=sin’e =0.5 @ 135°

Im=coso sind =-0.5

SCE 82
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1
1[ 05
[K]m__(5x104nﬁ)(21ox106ann2) 2| -05
5m 3| -0.5
4 05
1 2 3 4

[K]® = 105x10°

A W DN PP
I
=
[EEY
[EEN
I
=

Element 2:

2
-0.5
0.5
0.5
—0.5

Finite Element Analysis

3
-0.5
0.5
0.5
—0.5

4
0.5]

-0.5

-0.5
0.5

6=180°
1>=cos0 =1 ) /\
@------------oo - > 5

m?=sin’9 =0 o
Im=cos6 sin6 =0

1 2 5
11 1 0 -1
1 (5x10m*)(210x10°kN/m*) 2( 0 0 0
[K]™ = 10 m 3l-1 0 1
4 0 0 O
1 2 5 6
11 1 0 -1 O
2l 00O 0O
[K]® =105x10°
5-1 0 10
6/ 00 0O
Element 3:
9=270°
1?=cos?0 =0
m?=sin’ =1
Im=cos6 sin6 =0
SCE 83
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1 2 7 8
10 0 0 0
200 1 0 -1
[KIP=2100) 0 5 o o
8 0-1 0 1]

Finite Element Analysis

STEP 3: Combination Of Finite Element Equations

1 2 3
F,, 1[ 210 -105 -105
F, 2/-105 125 105
= 3[-105 105 105
JFor | 4,4 105 -108 105
= 5-1056 0 O
= 66 0 0 0
= 770 0o 0
F, 88 0 -20 0O

<

STEP 4: Applying Boundary Conditions:
Sincenodes 1, 2, and 3 are fixed, we have

UW=Vo=0; Uu3=Vv3=0; us=Vvs=0;

Fi,=0and Fy, = -25 kN

(0 [ 210 -105 -105
_25 ~105 125 105
= ~105 105 105
JFor | _ 4, | 105 -108 105
= 1056 0 0
= O 0 O
Fux O 0 O
Far 0 -20 0

4
105
—-105
—105
105

o O o O

105
-105
-105

105

o O O O

84

5 6 7 8
1056 0 0 0]y
0 0 0 -20||v
o 0o o 0|y
0 0 0o 0y
105 0 0 ofly
o 0 o 0|y
o o o 0|y
0o 0 0 20|y
105 0o 0 0][y
0o 0 0 -2|yv
o o o ollo
o o o ollo
05 0 o oflof
o o o ollo
o o o ollo
o o o 2|0

Department of Mechanical Engineering
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Check whether there are as many unknowns as knowns.,

STEP 5: SOLVING THE EQUATIONS:

Reduced matrix:
0 . [ 210 -105] [y,
=10’ x

—25 ~105 125 | |v,
On solving,
u=-1.724 x 10°m Vv1=-3.4482 x 10°m
Find the reactions at supports by substituting the known nodal values
Fox=-18.104 kN Fay=18.1041 kN
Fsx=18.102 kN Fsy=0
Fix=0 Fay=6.89 kN

STEP 6: Post Processing
Stressin element 1:

-1.724

0“’:%[4 -m | m10° 34482

s ¥ =51.2 MPa(Tensile)

Stressin e ement 2:
-1.724

0‘1)=%[—I -m | ml|10° m34482

s @ = _36.2 MPa (Compressive)

PROBLEM

A circular concrete beam structure is loaded as shown. Find the deflection of points
at 8”,16”, and the end of the beam. E = 4 x 106 psi
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A y
1 ﬂ
12in 3in | 50000Ib
> X
! H

24in

Solution

The beam structure looks very different from a spring. However, its behavior is
very similar. Deflection occurs aong the x-axis only. The only significant difference
between the beam and a spring is that the beam has a variable cross-sectional area. An
exact solution can be found if the beam is divided into an infinite number of elements,
then, each element can be considered as a constant cross-section spring element, obeying
the relation F = ku, where k is the stiffness constant of a beam element and is given by
k=AE/L.

In order to keep size of the matrices small (for hand- calculations), let us divide the
beam into only three elements. For engineering accuracy, the answer obtained will be in
an acceptable range. If needed, accuracy can be improved by increasing the number of
elements.

As mentioned earlier in this chapter, spring, truss, and beam elements are line-
elements and the shape of the cross section of an element is irrelevant. Only the cross-
sectional area is needed (also, moment of inertia for a beam element undergoing a
bending load need to be defined). The beam elements and their computer models are
shown

Here, the question of which cross-sectional area to be used for each beam section

arises. A good approximation would be to take the diameter of the mid-section and use
that to approximate the area of the element.

Ky ko ks
k]_ k2 k3
: BB = WS WS W,
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Cross-sectional area

The average diametersare: d; = 10.5in., d, = 7.5in., d3 = 4.5. (diameters are taken at the
mid sections and the values are found from the height and length ratio of the triangles
shown in figure 2.10), which is given as

12/L = 3/(L-24), L=32

Averageareas are:
A1 =86.59in2 A =56.25in2 As=15.9in2
24in
— >
\\ l
— 2in | d| &b |d | >
— 1t
M 3in
Averaged gl g lglL-24
l L Ll

Stiffness

ki = Ay E/L1 = (86.59)(4 x 10%8) = 4.3295 x10’ Ib./in., similarly,

ko = A, E/L, = 2.8125 x10’ Ib./in.
ks = A3 E/L3 = 7.95 x10° Ib./in.

Element Stiffness Equations

[K®] = 43.295 x 107{1 -1}

11
Similarly,

-

[KP]=28125x10°( 1 -1

11
/
N

[K®] =7.9500% 10° |1 -1
-1 1)
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Global stiffnessmatrix is

43.295 -43.295 0 0

[Kgl = |-43.295 43.295+28.125  -28.125 0 |10°
0 -28.125 28.125+7.95 -7.95
0 0 -7.95 7.95

Now the global structural equations can be written as,

43.295 -43.295 0 0 Up F1
10° | -43295 7142 -28125 O | = |F2
0 -28.125 36.075 -7.95 Uz F3
0 0 -7.95 7.95 Ug F4

Applying the boundary conditions: u;=0,and F, = F, = F3=0, F,=5000Ib., resultsin
the reduced matrix,

7142 -28125 O u 0
10° | -28.125  36.075 -7.95 ug 3 0
0 195 79 u 500

Solving we get,
Up 0.0012
{u3 }= 0.0029 in.
Usg 0.0092

The deflections u,, us, and u, are only the approximate values, which can be
improved by dividing the beam into more elements. As the number of elements increases,
the accuracy will improve.
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UNIT IV
DYNAMIC ANALYSISUSING ELEMENT METHOD

4.1 INTRODUCTION

It provides the basic equations necessary for structural dynamical analysis and developed
both the lumped and the consistent mass matrix involved inthe analysis of bar beam and spring
elements.

4.1.1 Fundamentals of Vibration

Any motion which repeats itself after an interval of timeis called vibration or oscillation or
periodic motion

All bodies possessing mass and elasticity are capable of producing vibration.
4.1.2 Causes of Vibrations

0 Unbalanced forces in the machine. These force are produced from within the machine
itself

Elastic nature of the system.

Self excitations produced by the dry friction between the two mating surfaces.
External excitations applied on the system.

Wind may causes vibrations

Earthquakes may causes vibrations

O O O O O

4.1.3 Types of Vibrations
1.According to the actuating force
Free or natural vibrations
Forced vibrations
Damped vibrations
Undamped vibrations
2.According to motion of system with respect to axis
Longitudinal vibrations
Transverse vibrations

Torsional vibrations
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4.2 EQUATION OF MOTION
Thereistwo types of equation of motion
Longitudinal vibration of beam or axial vibration of arod

Transverse vibration of abeam

zA / y
Mid surface 4

DOF at each node: W W

On each element, the deflection w(x,y) is represented by

W W
i1 X y

where Nj, Nxj and Nyj are shape functions. Thisis anincompatible element! The

stiffness matrix is still of the form

k = B'EBdV,
where B is the strain-displacement matrix, and E the stress- strain matrix.
Minding Plate Elements:

4-Node Quadrilateral 8-Node Quadrilateral
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Three independent fields.
Deflection w(x,y) islinear for Q4, and quadratic for Q8.

Discrete Kirchhoff Element:

Triangular plate element (not available in ANSYS). Start with a 6-node riangular element,

DOF at corner nodes: w,

DOF at mid side nodes; Total DOF X'y
=21.

Then, impose conditions

%7 0, etc., at selected

yz
nodes to reduce the DOF (using relationsin (15)). Obtain:

At each node: w, X

Total DOF =9 (DKT Element).

Incompatible w(x,y); convergenceisfaster (wiscubic along each edge) and it is efficient.
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Test Problem:

X L/t=10, =0.3
ANSYS4-node quadrilateral plate element.

ANSY S Result for w¢

Mesh w. ( PL%D)
2 2 0.00593
4 4 0.00598
8 8 0.00574
16 16 0.00565
Exact Solution 0.00560

Question: Converges from “above”? Contradiction to what we learnt about the nature of
the FEA solution?
Reason: Thisisan incompatible element ( See comments on p. 177).

Shells and Shell Elements

Shells— Thin structures witch span over curved surfaces.
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Example:

Sea shell, egg shell (the wonder of the nature); Containers, pipes, tanks;
Car bodies;

Roofs, buildings (the Superdome), etc.
Forcesin shells:

Membrane forces + Bending Moments

(cf. plates: bending only)

e

— %
L

Example: A Cylindrical Container.

A TH
<auy

internal forces:

/\

— QA
-

b / i / p d
b

- \\ e
et}
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Shell Theory:
Thin shell theory

Shell theories are the most complicated ones to formulate and analyze in mechanics
(Russian’s contributions).

Engineering Craftsmanship Demand strong analytical skill

Shell Elements; ,

e

/ plane stress element plate bending element

-
=> */4:; %/L‘_,

/ flat shell element

cf.: bar + simple beam element => general beam element.

DOF at each node:
@
/ W/
/ v
@ —_—
A

y
Q4 or Q8 shell element.

Curved shell elements:
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Based on shell theories;
Most general shell elements (flat shell and plate elements are subsets);
Complicated in formulation.

Test Cases:

Pinched Cylinder

Fa
A
Pinched Hemisphere
4.3CONSISTENT MASSMATRICES
Natural frequencies and modes _ = (t)
Frequency response (F(t)=Fg snwt) Transient
response (F(t) arbitrary)
4.3.1 Single DOF System
Kk
\ (D—
4 m - Mass
k - stiffness
¢ C - damping
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Free Vibration:
f(t) = 0 and no damping (c = 0)

Eq. (1) becomes

nuku

(meaning: inertia force + stiffness force = 0)
Assume:

u®)  ysinqw),
where isthe frequency of oscillation, U the amplitude.

Eq. (2) yields
2 . P
Uu msin(ut) kUsin(ut) O
2

ie. w m kU O,

For nontrivid solutionsfor U, we must have

w2m k O,
which yields
k
W,
m

Thisisthe circular natural frequency of the single DOF system (rad/s). The cyclic frequency
(Ys=Hz)is

W
f )
Zie
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u=Usinwt
A
A
Tzl/v \\/

Free Vibration

With non-zero damping c, where

0 ¢ c 2mw ij (cc = critical damping)

we have the damped naturd frequency:

(damping ratio).

c
For structural damping: 0 X 0.15  (usudly 1~5%)
Wy w.

Thus, we can ignore damping in norma mode analysis.

uy

Damped Free Vibration
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4.3.2.Multiple DOF System

Equation of Motion

Equation of motion for the whole structure is

Mu Cu Ku f(1),

in which: u nodal displacement vector,

M mass matrix,
C damping matrix,
K giffness matrix,

f forcing vector.
Physica meaning of Eq. (8):
Inertia forces + Damping forces + Elagtic forces
= Applied forces

Mass M atrices

Lumped mass matrix (1-D bar element):

rAL 1 rAL 2
1 2 '_» ._>
U; U,

Element mass matrix is found to be

rAL

rAL
2

rAL
0 2

diagona atrix

Finite Element Analysis

(8)

rAL
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Simple Beam Element:

156 22L 54 13L
rAL 221 4% 13L 32 Q
420 54 13L 156  22L.v
3L 3°  22L 418 Q

Unitsin dynamic analysis (make sure they are consistent):

Choice | Choice |l
t (time) S S
L (Iength) m mm
m (mass) kg Mg
a (accel.) m/s’ mm/s’
f (force) N N
r (density) kg/m?® Mg/mm®

44VECTOR ITERATION METHODS
Study of the dynamic characteristics of a structure:

natura frequencies normal modes shapes)

Let f(t) = 0 and C = 0 (ignore damping) in the dynamic equation (8) and obtain
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Mu Ku O
Assume that displacements vary harmonically with time, that is,

u(t) usin( wt),
Ut)  wuoos( wt),
) qu_sin( wit),
where u isthe vector of nodd displacement amplitudes.

Eq. (12) yieds,

K W2|\/| u O
Thisis a generdized eigenvaue problem (EVP).

Solutions?

Thisis an n-th order polynomia of from which we can find n solutions (roots) or
eigenvaues

i (i=1,2 ..., n) ae the natural frequencies (or characteritic frequencies) of the
structure (the smallest one) is called the fundamental frequency. For each gives one

solution (or eigen) vector

K w

u; (i=1,2,...,n) are the normal modes (or natural modes, mode shapes, €etc.).
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Properties of Normal Modes

u'Mu, o

fori 1,
if wy w; . That is, modes are orthogonal (or independent) to each other with respect to K and
M matrices.
Note:
Magnitudes of displacements (modes) or stresses in norma mode anaysis have no physicad
meaning.

A
For norma mode analysis, no support of the structure is necessary.

i =0 there arerigid body motions of the whole or a part of the structure. apply this to check
the FEA mode (check for mechanism or free elements in the models).

Lower modes are more accurate than higher modes in the FE caculations (less spatia variaions
in the lower modes fewer e ements/wave length are needed).

Example:
V2
r, A, El <Nz
i )
1 2 -
- L
K W2|\/| —
Bl 12
K 3
L
101
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EVP: 12 156l 6L

2211
2 0
6L 22L1 4L 4L2I
2 4
inwhich | w " rAL | 420 El
Solving the EVP, we obtain,
| 2} —
F%éed Beam Free Wl 3.533 El y V2_ -
rAL d, 1 ' K
Modes #D
3
T = /\/ El 2}/ Y 1

Exact solutions:

7 ¥

w, 3516 _° w, 2203 _F
2 2
rAL rAL

45 MODELLING OF DAMPING
Two commonly used models for viscous damping.
4.5.1 Proportional Damping (Rayleigh Damping)

C M K
(17)

wherethe constants & arefound from

with 5 1 & 5 (damping ratio) being selected.
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o Design
8 Spectrum
=
Q.
€
8
—A—————————
& F— Stiffness-proportional
damping: _ %9 ,_
3 2 =0
Mass-proportional B
damping: ._ _ P _
/ £ %0 0
0 |
0 wy wy
Freguency
Modal Damping

Incorporate the viscous damping in modal equations.

Modal Equations

Use the norma modes (modal matrix) to transform the coupled system of
dynamic equations to uncoupled system of equations.

We have
2 —_ .
K M U 0, i 12.., n (18)
where the norma mode uj satisfies:;
T K 0
U, Ko, ,
T fori j,
u, Mo, O,
and
— T -
a Mo, 1,
fori=1,2, ...,n.
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Finite Element Analysis

Form the modal matrix:

O(n n) 1 Uz L up

are called principal coordinates.
Substitute (21) into the dynamic equation:
M & C 4 K z f(t).

Pre-multiply by T, and apply (20):

E C & z p (1),

where C | (proportional damping),
P T

Using Modal Damping
Can verify that

Transformation for the displacement vector,
zq t) Zy L

zn (1)

Equation (22) becomes,

i 2 g i 2 P (0, i =1.2,...,n. (24)

Equationsin (22) or (24) are called modal equations. These are uncoupled, second-
order differential equations, which are much easier to solve than the original dynamic
equation (coupled system).

To recover u from z, apply transformation (21) again, once z is obtained from (24).
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Notes:

Only the first few modes may be needed in constructing the modal matrix (i.e,
could be an n m rectangular matrix with m<n). Thus, significant reduction in the

size of the system can be achieved.

Modal equations are best suited for problems in which higher modes are not
important (i.e., structural vibrations, but not shock loading).

4.5.2 Frequency Response Analysis

(Harmonic Response Analysis)
Ku Eu
Harmonicloadin
° (25)
Modal method: Apply the modal equations,
2 sin t,
E 2, & i Zi B i=1,2,..m. (26)
These are 1-D equations. Solutions are
2
p/ i | ,
z (1) sin( t
2\ 2 2
ol ewol || fisg \/(1 ") (3 1)
os where
ofF =03 Q CI - -
{ i - , damping ratio
L.o \ L - CC 2m I

Recover u from (21).

Direct Method: Solve Eq. (25) directly, that is, calculate

' ithu — i t
the inverse. With ue (complex notation), Eq. (25)

becomes

This equation is expensive to solve and matrix isill- conditioned if is close
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4.6TRANSIENT RESPONSE ANALYSIS
(Dynamic Response/ Time-History Analysis)

Structure response to arbitrary, time-dependent loading.

2 f®

—
\ 4

A u®

Compute responses by integrating through time:

A
ui

un Un+1

>
topt1 t2 th th+l
B. Modal Method

First, do the transformation of the dynamic equations using the modal matrix before the
time marching:

Then, solve the uncoupled equations using an integration method. Can use, e.g.,
10%, of the total modes (m= n/10).
Uncoupled system, Fewer equations,

No inverse of matrices,
More efficient for large problems.
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4.6.1Cautionsin Dynamic Analysis

Symmetry: It should not be used in the dynamic analysis (normal modes, etc.)
because symmetric structures can have antisymmetric modes.

Mechanism, rigid body motion means =0. Can usethisto check FEA models
to seeif they are properly connected and/or supported.

Input for FEA: loading F(t) or F( ) can be very complicated in real applications
and often needs to be filtered first before used as input for FEA.

Examples
Impact, drop test, etc.

PROBLEM

In the spring structure shown k; = 10 1b./in., ko = 151Ib./in., ks = 20 Ib./in., P=51b.
Determine the deflection at nodes 2 and 3.

2

Figure2.4
Solution:
Again apply the three steps outlined previously.
Step 1: Find the Element Stiffness Equations

Element 1;

1 2
[K®] = (10 -10)1
-10 10)2

Element 2: 2 3
[KP] = 15 -15)2
-15 153

Element 3: 3 4

[K®) :[ 20 -23 3
20 20 4
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Step 2: Find the Global stiffness matrix

1 2 3 4
1 10 -10 0 10 -10 O
2 -10 10+15 -15 = -10 25 -15
3 0 -15 15+20 - 0 -15 35 -0
4 0 0 -20 0 0 -20 20

Now the global structural equation can be written as,

F1 10 -10 O Uy
F, = -10 25 -15 Uz
Fs 0 -15 35 -20| |us
Fa 0 0 -20 20 Jus

Step 3: Solve for Deflections

The known boundary conditions are: u; = us= 0, F3= P = 3Ib. Thus, rows and columns 1 and 4 will drop
out, resulting in the following matrix equation,

0_ 25 —15_u2
3°-15 35 u3

Solving, weget U, =0.0692 & uz =0.1154

PROBLEM
In the spring structure shown, k; = 10 N/mm, k, = 15 N/mm, k3 = 20 N/mm, k4 = 25 N/mm, ks = 30
N/mm, ke = 35 M/mm. F ' ionsin af}/springs.
|2 V2 NIl I
ks
e | BoAAAAS
K |

ks
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Solution:

Here again, we follow the three-step approach described earlier, without specifically

mentioning at each step.

Element 1: 1 4

[K®] = (10 -10) 1
-10 10) 4

Element 2: 1
K@= [15 -15
15 15 2

[En

Element 3: 23
[K®]= |20 -20| 2
-20 20) 3

Element 4: 2 3
[K#W = |25 -25| 2
-25 25 3

Element 5: 2 4
[K®]= (30 -30) 2
-30 30) 4

Element 6: 3 4
[K®]= (35 -35) 3
-35 35) 4

The global stiffnessmatrix is,

1 2 3 4
10+15 -15 0 -10 1
[Kgl = -15  15+20+25+30 -20-25 -30 2
0 -20-25 20+25+35 -35 3
-10 -30 -35 10+30+35| 4

And ssimplifying, we get

25 -15 0 -10
[KJ=1|-15 90 -45 -30
0 -45 80 -35
10 -30 -35 75
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And the structural equation s,

Fl 25 -15 0 -10 Uq
Fof = -15 90 -45 -30 Uz
F3 0 -45 80 -35 Us
F4 -10 -30 -35 75 u

Now, apply the boundary conditions, u; = us= 0, F,= 100 N. Thisis carried out by
deleting the rows 1 and 4, columns 1 and 4, and replacing F, by 100N. The final matrix
equationis,

10 90 -45 Uy
Which 0 =45 80 | Us| giyes

Deflections:

Spring 1: Up—u; =0
Spring 2: Us — Uy = 1.54590
Spring 3: Uz — Uy =-0.6763
Spring 4: Uz — Uy =-0.6763
Spring 5: Ug — Up = -1.5459
Spring 6: us — Uz = -0.8696
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UNIT V
APPLICATIONSIN HEAT TRANSFER & FLUID MECHANICS
5.1 ONE DIMENSIONAL HEAT TRANSFER ELEMENT

In structural problem displacement at each nodel point is obtained. By
using these displacement solutions, stresses and strains are calculated for each
element. In structural problems, the unknowns are represented by the
components of vector field. For example, in a two dimensiona plate, the
unknown quantity is the vector field u(x,y),where u is a (2x1)displacement
vector.

Heat transfer can be defined as the transmission of energy from one
region another region due to temperature difference. A knowledge of the
temperature distribution within a body is important in many engineering
problems. There are three modes of heat transfer.

They are: (i) Conduction
(ii) Convection
(iii) Radiation

5.1.1Strong Form for Heat Conduction in One Dimension
with Arbitrary Boundary Conditions

Following the same procedure as in Section, the portion of the
boundary where the temperature is prescribed, i.e. the essential boundary is
denoted by T and the boundary where the flux is prescribed is recommended
for Science and Engineering Track. Denoted by q ; these are the
boundaries with natural boundary conditions. These boundaries are
complementary, so

q= Ya;q\ T %O

With the unit normal used in , we can express the natural boundary
condition as gn ¥4 g. For example, positive flux q causes heat inflow (negative
g) on the left boundary point where gn ¥4 g ¥4 q and heat outflow (positive
g) on the right boundary point where gqn ¥ q ¥4 Q.

Strong form for 1D heat conduction problems
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512Weak Form for Heat Conduction in One Dimension with
Arbitrary Boundary Conditions

We again multiply the first two equations in the strong form by the weight
function and integrate over the domains over which they hold, the domain  for the
differential equation and the domain g for the flux boundary condition, which
yieldswsdx with w %

Recallingthat w %2 0on T and combining with gives

Weak form for 1D heat conduction problems
Find T dxP 2 U such that
Notice the similarity between

5.2 APPLICATION TO HEAT TRANSFER TWO-DIMENTIONAL
5.2.1Strong Form for Two-Point Boundary V aue Problems

Theequations devel oped inthis chapter for heat conduction, diffusion and
elasticity problemsareall of the following form:

Such one-dimensional problems are called two-point boundary value
problems. gives the particular meanings of the above variables and parameters
for several applications. The natural boundary conditions can aso be
generalized as (based on Becker et al. (1981))

P%0 on D

Equation is a natural boundary condition because the derivative of the
solution appears in it. reduces to the standard natural boundary conditions
considered in the previous sections when boxb %2 0. Notice that the essential
boundary condition can be recovered as a limiting case of when bdxp is a
penalty parameter, i.e. a large number In this case, and Equation is
called a generalized boundary condition.

An example of the above generalized boundary condition is an elastic bar
with a spring attached as shownin In this case, bdlb %2k and reducesto

E(nl)—  (k-ud) ub¥%0 a xYl;
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where Y4k isthe spring constant. If the spring stiffnessis set to avery large
value, the above boundary condition enforces % u; if we let k ¥4 0, the above
boundary condition corresponds to a prescribed traction boundary. In practice,
such generalized boundary conditions are often used to model the influence of
the surroundings. For example, if the bar isasimplified model of abuilding and its
foundation, the spring can represent the stiffness of the soil.

5.2.2 Two-Point Boundary Value Problem With Generaized Boundary
Conditions B
b

u(l
2 k

) t
An example of the generalized boundary for elasticity problem.

Another example of the application of this boundary condition is
convective heat transfer, where energy is transferred between the surface of the
wall and the surrounding medium. Suppose convective heat transfer occurs at x
Y 1. Let T dlP be the wall temperature at x ¥ | and T be the temperature in the
medium. Then the flux at the boundary x ¥4 1 isgiven by golp YahdT dl> Th, so
bdlP ¥2h and the boundary conditionis

where h is convection coefficient, which has dimensions of W m 20

C 1. Notethat when the convection coefficient is very large, the temperature
T isimmediately felt at x % | and thus the essential boundary condition is
again enforced as alimiting case of the natural boundary condition.

There are two approaches to deal with the boundary condition . We will
call them the penalty and partition methods. In the penaty method, the
essential boundary condition is enforced as a limiting case of the natural
boundary condition by equating bdxp to a penalty parameter. The resulting
strong form for the penalty method is givenin.

Genera strong form for 1D problems-penalty method

pbf¥%0 on ;
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In the partition approach, the total boundary is partitioned into the natural
boundary, and the complementary essential boundary, The natural boundary condition has
the generalized form defined by The resulting strong form for the partition method is
summarized in.

523 Weak Form for Two-Point Boundary V alue Problems

In this section, we will derive the general weak form for two-point boundary value
problems. Both the penalty and partition methods described in will be considered. To
obtain the general weak form for the penalty method, we multiply the two equationsin the
strong by the weight function and integrate over the domains over which they hold: the
doman for the differential equation and the domain  for the generalized boundary
condition.

5.3SCALE VARIABLE PROBLEM IN 2 DIMENSIONS

Ya
N1=1/4(1-€) (1-n); N2=1/4(1+€) (1-n); N3=1/4(1+€) (1+n); N,=1/4(1-E) (1+n).

» Equation of Stiffness Matrix for 4 noded isoparametric quadrilateral element

[J]:rJll ‘J12
“]21 ‘J22 ;
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_% 0 ON, 0 ON, 0 N, ]
O€ O€ O 0O€
[B]=il J,, -J, O 0 | aaNl 0 .aaNz aaNs N,
b o 0 -3, g, | M n n on
0 ON, 0 ON, 0 ON, 0 oN,
R Og Og g Og
o ON, oN, ON, ON,
on on on on
1-v v O W
E
[Dl]=——-| v 1 0 -
(A-v 1—v | for plane stress conditions;
0O 0 —
i 2 ]
1-v v 0
E
[D] = v 1-v 0 : iy
(1+Vv)(1-2v) 1— 2y | » for plane strain conditions.
0 0 >

» Equation of element force vector

(Fle =[NT'

X

F

y

N — Shape function, Fx — load or force along x direction,
Fy — load or force aong y direction.

» Numerical Integration (Gaussian Quadrature)
The Gauss quadrature is one of the numerical integration methods to calculate the
definite integrals. In FEA, this Gauss quadrature method is mostly preferred. In

this method the numerical integration is achieved by the following expression,

ff(x)dx=ivv.f(x)

Table gives gauss points for integration from -1 to 1.
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Number of Location Corresponding Weights
Points X W,
n
1 x; = 0.000 2.000

2
X1 Xo = + \/1 — +0.577350269189
3 1.000
3 S _ 0555555
2 X1 X = = = +0.774596669241 g~ 2
X2=0.000 g —0.888888
4 X1 X4=+ 0.8611363116 0.3478548451
Xo, X3=+ 0.3399810436 0.6521451549

» Problem (I set)

Lo
1. Evaluate | = J COS?dX, by applying 3 point Gaussian quadrature and
-1

compare with exact solution.
h 1

2. Evaluate | = j[3€x + X +m}dx , using one point and two point
-1

Gaussian quadrature. Compare with exact solution.
3. For the isoparametric quadrilateral element shown in figure, determine the

local co —ordinates of the point P which has Cartesian co-ordinates (7, 4).
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(6.1)

X

4. A four noded rectangular element is in figure. Determine (i) Jacobian

matrix, (i) Strain — Displacement matrix and (iii) Element Stresses. Take
E=2x10°N/mm?u= 0.25, u=[0,0,0.003,0.004,0.006, 0.004,0,0]', €= 0, n=0.

Assume plane stress condition.
v

(0,1)

(2,1)

(0,0)

54 2DIMENTIONAL FLUID MECHANICS

(2.0)

The problem of linear elastostatics described in detail in can be extended toinclude the
effects of inertia. The resulting equations of motion take the form

V.o +f = pu
on =t
u=u

u(x1,x2,x3,0) =
V(X1,x2,x3,0) =

SCE 117

uo (x1,X2,x3)
V0 (X1,X2,X3)

in Qxl ,

onlgxl,
only xI,
inQ,
inQ,
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where u = u(x1 ,x2,x3,t) is the unknown displacement field, p is the mass density, and |
= (0, T) with T being a given time. Also, up and vg are the prescribed initial displacement
and velocity fields. Clearly, two sets of boundary conditions are set on 'y and Iq ,

respectively, and are assumed to hold throughout the time interval | . Likewise, two sets of
initial conditions are set for the whole domain Q at time t = 0. The strong iorm of the

resulting initial/boundary- value problem is stated as follows: given functionsf , t, u, ug and
vQ, as well as a constitutive equation for o, find u in Q x I , such that the equations are
satisfied.

A Gaerkin-based weak form of the linear elastostatics problem has been derived in Sec-
tion In the elastodynamics case, the only substantial difference involves the inclusion

R
of the term ¢ w -pudQ, as long as one adopts the semi-discrete approach. As a result, the
weak form at a fixed time can be expressed as

Z Z Z Z
wpudQ+  ygw:gdQ = W fdd+ w.tdr.
Q 0 Q r
Following the development of Section 7.3, the discrete counterpart of can be written as
Z Z Z wh tdr.

Wh pUh dQ + o(wh) Do(un) dQ wh fdQ +

Following a standard procedure, the contribution of the forcing vector FINLe que to
interele- ment tractions is neglected upon assembly of the global equations. As a result, the
equationsis give rise to their assembled counterparts in the form

Mu + Kt = F,

where U isthe globa unknown displacement vectorl. The preceding equations are, of course,
subject to initial conditions that can be written in vectorial form as G(0) = G and V(0) = Vo

The most commonly employed method for the numerical solution of the system of cou-
pled linear second-order ordinary differential equations isthe Newmark method. This

method is based on a time series expansion of U and a = . Concentrating on the time
interval (tn,tn+1], the Newmark method is defined by the equations

1 2
Un+1 = On+UnAtn +,[(1-2B)an +2Ban+1]Ath
~ _ Vn +[(1-y)an +yan+1]Atn ,
n+1 =
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It is clear that the Newmark equations define a whole family of time integrators.

It is important to distinguish this family into two categories, namely implicit and explicit
integrators, corresponding to >0 and 3 = 0, respectively.

The overhead “hat” symbol is used to distinguish between the vector field u and the
solution vector Uemanating from the finite element approximation of the vector field u.

The general implicit Newmark integration method may be implemented as follows: first,
solve (9.18)1 for 8n+1, namely write

~

an+1 %(Gn+l -0n -VnAtn) an

~ At
Then, substitute (9.19) into the semi-discrete form (9.17) evaluated at tn+1 to find that

M + K Un+1 = Fn+1

n

After solving for Gp+1, one may compute the acceleration an+1 from and the velocity
Vn+1 from.

Finaly, the general explicit Newmark integration method may be implemented as follows:
starting from the semi-discrete equations evaluated at th+1, one may substitute in+1from
to find that

Man+1 = -K(Un +VnAtn +anAtp) + Fn+1 .

If M is rendered diagonal (see discussion in Chapter 8), then an+1 can be determined

without solving any coupled linear algebraic equations. Then, the velocities bvh+1 are
immediately computed from (9.18)2. Also, the displacements Gn+1 are computed from
indepen-dently of the accelerations an+1 .
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QUESTION BANK
PART A QUESTIONSWITH ANSWERS

UNIT 1
What is meant by finite element?
A small units having definite shape of geometry and nodesis called finite element.
What is meant by node or joint?
Each kind of finite element has a specific structura shape and is inter- connected with
the adjacent element by nodal point or nodes. At the nodes, degrees of freedom are
located. The forces will act only at nodes at any others place in the element.
What is the basic of finite element method?
Discretization is the basis of finite element method. The art of subdividing a structure
in to convenient number of smaller components is known as discretization.
What are the types of boundary conditions?
Primary boundary conditions
Secondary boundary conditions
State the methods of engineering analysis?
Experimental methods
Analytical methods
Numerical methods or approximate methods
What are the types of element?
1D element
2D element
3D element
State the three phases of finite element method.
Preprocessing
Analysis
Post Processing
What is structural problem?
Displacement at each nodal point is obtained. By these displacements solution
stress and strain in each element can be cal cul ated.
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10. What isnon structura problem?
Temperature or fluid pressure at each nodal point is obtained. By using these
values properties such as heat flow fluid flow for each element can be calculated.

10. What are the methods are generally associated with the finite element analysis?
Force method
Displacement or stiffness method.

11. Explain stiffness method.
Displacement or stiffness method, displacement of the nodes is considered as the
unknown of the problem. Among them two approaches, displacement method is
desirable.

12. What is meant by post processing?
Analysis and evaluation of the solution result is referred to as post processing.
Postprocessor computer program help the user to interpret the result by displaying
them in graphical form.

13. Name the variation methods.
Ritz method.
Ray-Leigh Ritz method.

14. What is meant by degrees of freedom?
When the force or reaction act at nodal point node is subjected to deformation. The
deformation includes displacement rotation, and or strains. These are collectively
known as degrees of freedom

15. What is meant by discretization and assemblage?
The art of subdividing a structure in to convenient number of smaller components
is known as discretization. These smaller components are then put together. The
process of uniting the various elements together is called assemblage.

16. What is Rayleigh-Ritz method?
It isintegral approach method which is useful for solving complex structural
problem, encountered in finite element analysis. This method is possible only if a
suitable function is available.

17. What is Aspect ratio?
It is defined as the ratio of the largest dimension of the element to the smallest
dimension. In many cases, as the aspect ratio increases the in accuracy of the
solution increases. The conclusion of many researches is that the aspect ratio
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18. What istruss element?

The truss elements are the part of a truss structure linked together by point joint
which transmits only axial force to the el ement.

19. What are the h and p versions of finite element method?

It is used to improve the accuracy of the finite element method. In h version, the
order of polynomia approximation for all elements is kept constant and the numbers of
elements are increased. In p version, the numbers of elements are maintained constant and
the order of polynomial approximation of element isincreased.

20. Name the weighted residual method
Point collocation method
Sub domain collocation method
Least squares method
Galerkins method.

UNIT 2

21. List the two advantages of post processing.
Required result can be obtained in graphical form. Contour diagrams can be used to
understand the solution easily and quickly.

22. During discretization, mention the places where it is necessary to place a
node?
Concentrated |oad acting point
Cross-section changing point
Different material interjections
Sudden change in point load

23. What isthe difference between static and dynamic analysis?
Static analysis: The solution of the problem does not vary with time is known as
static analysis
Example: stress analysis on a beam
Dynamic analysis: The solution of the problem varies with time is known as
dynamic analysis
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24.

25.

26.

27.

28.

29.

30.

SCE

Finite Element Analysis

Name any four FEA softwares.

ANSYS

NASTRAN

COSMOS

Differentiate between global and local axes.

Local axes are established in an element. Since it isin the element level, they change
with the change in orientation of the element. The direction differs from element to

element.

Global axes are defined for the entire system. They are same in direction for all the
elements even though the elements are differently oriented.

Distinguish between potential energy function and potentia energy functional

If a system has finite number of degree of freedom (q1,02,and g3), then the potential
energy expressed as,

1 = f (qu,02,and gg)

It is known as function. If a system has infinite degrees of freedom then the potential

energy is expressed as
( dy dy )
Lﬂx,y, .

—_—— X

\ dx dx
What are the types of loading acting on the structure?
Body force (f)
Traction force (T)
Point load (P)

Define the body force

A body force is distributed force acting on every elemental volume of the
body Unit: Force per unit volume.

Example: Self weight due to gravity

Define traction force

Traction force is defined as distributed force acting on the surface of the
body. Unit: Force per unit area

Example: Frictional resistance, viscous drag, surface shear

What is point load?

Point load is force acting at a particular point which causes displacement.
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31.

32.

33.

35.

36.

37.

38.

39.

SCE
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What are the basic steps involved in the finite element modeling.
Discretization of structure.
Numbering of nodes.

Write down the general finite element equation.

{F }=[K ]{u}
What is discretization?

Theart of subdividing a structure in to a convenient number of smaller componentsis
known as discretization.

What are the classifications of coordinates?

Global coordinates

Local coordinates

Natural coordinates

What is Global coordinates?

The points in the entire structure are defined using coordinates system is known as
global coordinate system.

What is natural coordinates?

A natura coordinate system is used to define any point inside the element by a set
of dimensionless number whose magnitude never exceeds unity. This system is
very useful in assembling of stiffness matrices.

Define shape function.

Approximate relation @ (x,y) = N1 (X,y) @1 + N2 (X,y) @2 + N3 (X,y) 03

Where @1 ¢, and @3 are the values of the field variable at the nodes N1, N, and
N3 are the interpolation functions.

N1, N2, and N3 are a'so called shape functions because they are used to express the
geometry or shape of the element.

What are the characteristic of shape function?

It has unit value at one nodal point and zero value at other nodal points. The sum of
shape function is equal to one.

Why polynomials are generally used as shape function?

Differentiation and integration of polynomial are quit easy.

The accuracy of the result can be improved by increasing the order of the
polynomial. It is easy to formulate and computerize the finite element equations
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40. How do you calculate the size of the global stiffness matrix?
Global stiffness matrix size = Number of nodes X Degrees of freedom per node

UNIT 3
41. Write down the expression of stiffness matrix for one dimensional bar element.
AE(1 -1)
[K]=——| |
| (-1 1)

42.  Statethe properties of stiffness matrix
It isasymmetric matrix

The sum of elementsin any column must be equal to zero
It isan unstable element. So the determinant is equal to zero.

43.  Write down the expression of stiffness matrix for a truss element.
(u l

1 [ mo .
[u moO o y: |

uF_L00| m

l2 J

u

| J\3\|

u

44.  Write down the expch)n of shape function N and displacement u for one
dimensional bar element.
U= Nqu1+Nouo
Ni= 1-X /
INo=X/I

45. Definetotal potential energy.
Total potentia energy, m = Strain energy (U) + potential energy of the external forces
(W)

46. State the principle of minimum potential energy.
Among all the displacement equations that satisfied internal compatibility and the
boundary condition those that also satisfy the equation of equilibrium make the
potential energy a minimum is a stable system.

47.  Write down the finite element equation for one dimensional two noded bar element.

AE[ 1 -1
[K]= — |

| L-1 1]

48. What istruss?
A trussis defined as a structure made up of several bars, riveted or welded together.
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49. States the assumption are made while finding the forcesin atruss.
All the members are pin jointed.
Thetrussisloaded only at the joint
The self weight of the members is neglected unless stated.
50. Statethe principlesof virtual energy?
A body isin equilibrium if the internal virtual work equals the external virtual work
for the every kinematically admissible displacement field
51. What isessentia boundary condition?
Primary boundary condition or EBC Boundary condition which in terms of field
variable is known as Primary boundary condition.

52. Natural boundary conditions?
Secondary boundary natural boundary conditions which are in the differential form
of field variable is known as secondary boundary condition

53.  How do you define two dimensional elements?
Two dimensional elements are define by three or more nodes in a two dimensional
plane. The basic element useful for two dimensional analysis is the triangular
element.

54. What is CST element?
Three noded triangular elements are known as CST. It has six unknown
displacement degrees of freedom (ul, v1, u2, v2, u3, v3). The element is called
CST because it has a constant strain throughout it.

55.  What isLST element?
Six nodded triangular elements are known as LST. It has twelve unknown
displacement degrees of freedom. The displacement function for the elements are
guadratic instead of linear asin the CST.

56. What is QST element?
Ten nodded triangular elements are known as Quadratic strain triangle. It isalso
called as cubic displacement triangle.

58. What meant by plane stress analysis?
Plane stress is defined to be a state of stress in which the normal stress and shear

stress directed perpendicular to the plane are assumed to be zero.
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60.

61.

62.

63.

65.

66.

67.
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Define plane strain analysis.
Plane strain is defined to be state of strain normal to the xy plane and the shear
strains are assumed to be zero.

UNIT 4

Write down the stiffness matrix equation for two dimensional CST elements.
Stiffness matrix [K ]=[B ]" [D ][B JAt
[B]" -Strain displacement [ D]-Stress strain matrix [ B]-Strain displacement matrix

Write down the stress strain relationship matrix for plane stress conditions.

( )
}1—\/ Y 0
E
v 12v |0 1-v 0 |‘
0 0 1—2\/‘
\ 2 )

What is axisymmetric element?

Many three dimensional problem in engineering exhibit symmetry about an axis of
rotation such type of problem are solved by specia two dimensiona element called
the axisymmetric element

What are the conditions for a problem to be axisymmetric?

The problem domain must be symmetric about the axis of revolution All

boundary condition must be symmetric about the axis of revolution All

loading condition must be symmetric about the axis of revolution

Give the stiffness matrix equation for an axisymmetric triangular

element. Stiffness matrix [K ]=[B]" [D ][B ]2nrA

What is the purpose of |soparametric element?

It is difficult to represent the curved boundaries by straight edges finite elements. A
large number of finite elements may be used to obtain reasonable resemblance
between origina body and the assemblage.

Write down the shape functions for 4 noded rectangular elements using natural
coordinate system.
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Ni=4(1-e)(1n) N =*(1re)(1-n)
4 4
N3 = (1 +¢)(14m) Ng = 2(1-€)(1+1)
4 4
68. Write down Jacobian matrix for 4 noded quadrilateral elements.
(3 W
[0 11 qo2

J J

k 21 22)

69. Write down stiffnes matrix equation for 4 noded isoparametric quadrilateral elements.
Stiffness matrix [K ]=t Ill_[j 8]'[D][8]13loeon

70.  Define super parametric element.
If the number of nodes used for defining the geometry is more than of nodes used
for defining the displacement is known as super parametric element

71. Define sub parametric element.
If the number of nodes used for defining the geometry is lessthan number of nodes
used for defining the displacement is known as sub parametric element.

72.  What is meant by Isoparametric element?
If the number of nodes used for defining the geometry is same as number of nodes
used for defining the displacement is known as |soparametric element.

73.  Isbeam element an Isoparametric element?
Beam element is not an Isoparametric e ement since the geometry and displacement
are defined by different order interpretation functions.

74. What is the difference between natural coordinate and simple natural
coordinate?
L1=1-x/l
L2=x/l

75. What is Area coordinates?
L1=ATA L2=A2/A L3=A3/A

76. What issimple natural coordinate?
A simple natural coordinate is one whose value between -1 and 1.

77. Give example for essential boundary conditions.

The geometry boundary condition are displacement, slope.
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78.

79.

80.

81.

82.

83.
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Give example for non essential boundary conditions.

The natural boundary conditions are bending moment, shear force

What is meant by degrees of freedom?

When the force or reaction act at nodal point node is subjected to deformation. The
deformation includes displacement rotation, and or strains. These are collectively
known as degrees of freedom.

What is QST element?

Ten noded triangular elements are known as Quadratic strain triangle. It is aso
called as cubic displacement triangle.

UNIT 5

What meant by plane stress analysis?

Plane stress is defined to be a state of stress in which the normal stress and shear
stress directed perpendicular to the plane are assumed to be zero.

Define plane strain analysis.

Plane strain is defined to be state of strain normal to the x,y plane and the shear
strains are assumed to be zero.

What is truss element?
The truss elements are the part of a truss structure linked together by point joint

which transmits only axial force to the element.

84.

85.

SCE

List the two advantages of post processing.

Required result can be obtained in graphica form.

Contour diagrams can be used to understand the solution easily and quickly.

What are the h and p versions of finite element method?

It is used to improve the accuracy of the finite element method. In h version, the order
of polynomial approximation for al elements is kept constant and the numbers of
elements are increased. In p version, the numbers of elements are maintained constant

and the order of polynomial approximation of element is increased.

129 Department of Mechanical Engineering



ME2353

86.

87.

88.

89.

90.

91.

92.

93.
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During discretization, mention the places where it is necessary to place a node?
Concentrated load acting point Cross-

section changing point Different

material inter junction point Sudden

change in point load

What is the difference between static and dynamic analysis?

Static analysis: The solution of the problem does not vary with time is known as
static analysis

Example: stress analysis on a beam

Dynamic analysis. The solution of the problem varies with time is known as
dynamic analysis

Example: vibration analysis problem.

What is meant by discretization and assemblage?

The art of subdividing a structure in to convenient number of smaller componentsis
known as discretization. These smaller components are then put together. The
process of uniting the various elements together is called assemblage.

What is Rayleigh-Ritz method?

It isintegral approach method which isuseful for solving complex structural
problem, encountered in finite element analysis. Thismethod is possible only if a
suitable function is available.

What is Aspect ratio?

It is defined as the ratio of the largest dimension of the element to the smallest
dimension. In many cases, as the aspect ratio increases the in accuracy of the solution
increases. The conclusion of many researches isthat the aspect ratio should be close

to unity as possible.

What is essentia boundary condition?

Primary boundary condition or EBC, Boundary condition which in terms of field
variable is known as Primary boundary condition

Natural boundary conditions.

Secondary boundary natural boundary conditionswhich areinthe differential
form of field variable is known as secondary boundary condition.

How do you define two dimensional elements?

Two dimensiona elements are define by three or more nodesin atwo dimensional
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9.

96.

97.

98.

99.
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plane. The basic element useful for two dimensional analysis is the triangular
element.

State the principles of virtual energy?

A body is in equilibrium if the internal virtual work equals the external virtual work
for the every kinematically admissible displacement field..

What is non-homogeneous form?

When the specified values of dependent variables are non-zero, the boundary
conditi said to be non-homogeneous.

What is homogeneous form?

When the specified values of dependent variables is zero, the boundary condition are
said to be homogeneous.

Defineinitia value problem.

An initial value problem is one in which the dependent variable and possibly is
derivatives are specified initially.

Define boundary value problem.

A differentia equation is said to describe a boundary value problem if the dependent
variable and its derivatives are required to take specified values on the boundary.
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Question Pé’per Code : 51652

'B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.
Sixth Semester
Mechanical Engineering

ME 2353/ME 63/10122 ME 605 — FINITE ELEMENT ANALYSIS

(Common to Automobile Engineering, Mechanical and Automation Engineering,
Industrial Engineering and Management)

(Regulation 2008/2010)

Time : Three hours Maximum : 100 marks

(Any missing data may be suitably assumed)

Answer ALL questions.
PART A — (10 x 2 = 20 marks)

1.  What is meant by node or joint?

2.  What ;s 'Ra(yleigh-Ritz method?

3. Deﬁ;le shape function.

4.  Whatis a truss?

5. How do you define two dimensional elements?

6.  What ié QST (Quadratic é‘train Triangle) element?
7. - Whatis meaﬁt by transverse. vibratioﬁs?

8. Define dynamic analysié.

9.  Write down the governing equation for two-dimensional steady state heat

conduction.

10. Define streamline.




11. (a)

(b) -

12, - (=a)

(b)

PART B — (5 x 16 = 80 marks)

List and briefly describe the general steps of the finite element method.
(16)

Or

The differential equation of a physical phenomenon is given by

d?y

2

+y=4x,0<x<1

¥(0)=

i T =0 . ' .
The boundary conditions are: (1) . Obtain one term approximate
y =]

solution by using Galerkin’s method.of weighted residuals. (16)

A two noded truss element is shown in figure. The nodal displacements

are u; =5 mm and u, =8 mm. Calculate the displacement at x = é, é ,
; :
and —. : 16
% | (16)
I ¢ : : 2
w=5mm we=8mm
| l {
Or

For the two bar truss shown in the figure, determine the displacements of
node 1 and the stress in element 1-3.

it 12
,‘1
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13.

14.

15.

(a)

(b)

(a)

(b)

(a)

(b)

Determine the shape functions N, N, and N; at the interior point p

for the triangular element shown in the figure. _ ‘ (16)
Y
7 J (4>1)
3
. P
(32.5,5)
1 2
N (T.4)
(2,3)

Or
Determine the shape functions for a constant strain triangular (CST)
element in terms of natural co-ordinate system. : (16)
Derive the equation of motion based on weak form for transverse
vibration of a beam. , (16)

Or
Determine the eigen values and natural frequencies of a system whose
stiffness and mass matrices are given below. _ (16)

2 3 «—1 AL |6 1|
] 2 =R ,
L (-1 1 12 (1 2

Derive a finite element equation for one dimensional heat conduction
with free end convection. (16)

Or

Derive the stiffness matrix and load vectors for fluid mechanics in two
dimensional finite element. - ) (16)
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B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2013.
Sixth Semester
Mechanical Engineering
080120032 — FINITE ELEMENT ANALYSIS
(Common to Automobile Engineering)

(Regulation 2008)

Time : Three hours : Maximum : 100 marks
Answer ALL questions.

PART A — (10 x 2 = 20 marks)

1; State the advantages of Gaussian elimination technique.
2.  What is Ritz method?

- 3. State the significance of shape function.

4. Whatis postAprocessing? Give an example.

5.  Whatis meant by primary and secondary node?

6.  Distinguish between CST and LST elements.

7.  Write the finite element equation used to analyse a two dimensional heat

transfer problem.
8. State the applications of axisymmetric elements.
9.  When are isoparameteric elements used?

10.  What are force vectors? Give an example.




11. (@ @)
-~ (ii)

®) @)
(i)

PART B — (5 x 16 = 80 marks) -
Discuss the importance of FEA in assisting design process. (6)
Solve the ordinary differential equation

2
(d_g_juoﬁ =0 for 0<x<1
dx :

Subject to the boundry conditions y(0)= y(l) =0 using the Galerkin
method with the trial functions N,(x)=0; N, (x)= x(l - x? ) (10)

Or

Discuss the factors to be considered in descretisation of a domain.
(10)

Solve the following equétions using the gauss elimination method.

2%, + Bx, + %, =9

X, +2%, +3x; =6 (6)

. %+ Xy + 2% =0,

12. (a) Fig.l shows the pin-jointed . configuration. Determine the nodal
displacements and stresses in each element. : (16)

1060 N

1
5
%
=
o
5
23
7
%

500 mm

\

(,

RN,

A

A\

|
foms iy ]
Fig.1
Or

(b)  For the beam shown in Fig.2, defcernﬁne

@
@

7

The slopes at node 2 and 3 and
Vertical deflection at the mid-point of the distributed load. All the

lemenets have E = 200 GPa and I = 5 x 105 mm4. (16)
24 kN/m
[EE!
2 T I 0 R P S I AP BT
D @ 3
b lm xi -~ 1m -+
Fig. 2
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13.

14

(a)

(b)

(a)

Compute the finite element equation for the LST element showﬁ in Fig.3.

(16)
— k Thickness = 2 mm
-~ E =200 GPa
e . v=0.3
3 5 Nmm
- Plane stress
2
s i
‘ b e
i
Bl o 1 1 L
I 3 4« s
Fig. 3
Oor

Determine the element matrices and vectors for the LST element shown
in Fig.4.The nodal coordinates are i (1, 1), j (5, 2) and k (3,:5). Convection
takes place along the edge jk. :

k ":/ K =175 Wmm°C
:';, h = 0.15 W/mm?2C
' > T, =30°C.
-~
e
&
=
, -
V/;
1
Fig. 4

Triangular elements are used for the stress analysis of plate subjected to
inplane loads. The (x, y) coordinates of nodes i, j and k of an element are
given by (2, 3), (4, 1), and (4, 5) mm respectively. The nodal
displacements are given as : '

u=2.0mm, uz=0.5 mm, us = 3.0 mm
vi=1.0 mm, ve= 0.0 mm, v3=0.5 mm
Determine element stresses. Let E = 160 GPa, Poisson’s ratio = 0.25 and

thickness of the element t = 10 mm. (16)

Or
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15.

(b)

(a)

(b)

(1) What are the non-zero strain and stress components of
axisymmetric element? Explain. (4)

(1) Derive the stiffness matrix of an axisymmetric element using
potential approach. (12)

(1) Consider the isoparametric quadrilateral element with nodes 1 — 4
at (5, 5), (11, 7), (12, 15), and (4, 10) respectively. Compute the
Jacobian matrix and its determinant at the element centroid. (10)

(i) Use Gaussian quadrature with two points to evaluate the integral

j[(cosx /(1 = xz))dx

=L

The Gaussian points are + 0.5774 and weights at the two points
are equal to unity. (6)

Or °

The nodal displacements of a rectangular element having nodal
coordinates (0, 0), (4, 0), (4,2) and (0,2) are : w1 = 0 mm, vi = 0 mm,
uz = 0.1 mm, vz = 0.05 mm, uz = 0.05 mm, vz = — 0.05, us = 0 and
v4 = 0 mm respectively. Determine the stress matrix at r = 0 and s = 0
using the isoparametric formulation. Take E = 210 GPa and Poisson’s
ratio = 0.25. ’
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Question Paper Code : 21042

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012.

Sixth Semester
Mechanical Engineering
080120032 —FINITE ELEMENT ANALYSIS

(Common to Automobile Engineering)

(Regulation 2008)

Time : Three hours Maximum : 100 marks

e T A

10.

11.

Answer ALL questions.
PART A — (10 x 2 = 20 marks)

Compare the Rayleigh Ritz method with Nodal Approximation method.

On what basis, collocation points are selected?

Define p-refinement.

What are the factors which govern the selection of nodes?

Define continuity.

When triangular element is preferred over quadrilateral elements?

Why variational formulation is called as weak formulation?

Differentiate between upper bound and lower bound solutions with an
example.

What are the characteristics of shape functions?

What is meant by natural coordinate system?

(a)

PART B — (5 x 16 = 80 marks)

An alloy bar 1 m long and 200 mm? in cross section is fixed at one end is
subjected to a compressive load of 20 kN. If the modulus of elasticity for
the alloy is 100 GPa, find the decrease in the length of the bar. Also
determine the stress developed and the decrease in length at 0.25 m, 0.5 -
m and 0.75m. Solve by collocation method. (16)

Or




12.

13.

14.

15.

(b)

(a)

(b)

(a)

(b)

(a)

(b)
(a)

(b)

An alloy bar 1m long and 200 mm? in cross section is fixed at one end is
subjected to a compressive load of 20 kN. If the modulus of elasticity for
the alloy is 100 GPa, find the decrease in the length of the bar. Also
determine the stress developed and the decrease in length at 0.25 m, 0.5
m and 0.75m. Solve by Ritz method. (16)

A tapered bar of aluminum is having a length of 500 cm. The area of
cross section at the fixed end is 80 cm? and the free end is 20 cm? with the
variation of the sectional area as linear. The bar is subjected to an axial
load of 10 kN at 240 mm from the fixed end. Calculate the maximum

displacement and stress developed in the bar. (16)
- Or |

A fixed beam AB of 5 m span carries a point load of 20 kN at a distance of

2m from A. Determine the slope and deflection under the load. (16)

Assume EI =10x10%EN —m?.

Find the temperature at a point P (2, 1.5) inside the triangular elements
with nodal temperatures given as Ti=40°C, T;j=54°C and Tx=46°C. The
nodal coordinates are 1(0, 0), J (4, 0.5) and K (3, 6). (16)

Or

A circular aluminum rod is having a length of 700 cm. The area of cross
section is 60cm?2. The bar is subjected to.an axial compressive load of 50
kN at the fixed end. Calculate the maximum displacement and stress
developed in the bar. Solve using two dimensional coordinates. (16)

What are lagrangian interpolation functions? Using lagrangian
polynomials derive the shape functions for ID quadratic element/cubic
element. - ' (16)

Or

Derive constitutive matrix for axisymmetric analysis. (16)

(i) Explain with an example of each of the following
(1) sub parametric element,

(2) 1iso parametric element,

(3) Super parametric element. (12)
(ii) Define bandwidth in finite element analysis and its significance in
_the solution of global system matrices? (4)

Or
(i) Derive the shape function for the one dimensional quadratic
element in Natural Coordinates? (8)

(ii) Derive the stiffness matrix for heat transfer using shape functions
for a four noded quadrilateral element. (8)
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Question Paper Code : 13055

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2012.
Sixth Semester
Automobile Engineering
080120032 — FINITE ELEMENT ALALYSIS
(Common to Mechanical Engineering)
(Regulation 2008) .

Time : Three hours Maximum : 100 marks

Answer ALL questions.
PART A — (10 x 2 = 20 marks)

I Give two sketches of structures that have both discrete elements and
continuum. -

2.  Write about the Galerkin’s residual method.
3.  State the principle of minimum potential energy theorem.

4. What is the need for developing the overall stiffness matrix of the entire
structure in terms of its global coordinate system? Give an example.

5.  List out the limitations of CST element.

6.  State Fourier’s law of heat conduction used in FEA.

7.  List the importance of two dimensional plane stress and plane strain analysis.
8.  Give four examples of practical application of axisymmetric elements.

9. What is the salient feature of an isoparametric element?

10. Give the Lagrange equation of motion and obtain the equation of motion of a
two degree of freedom system. ‘




PART B — (5 x 16 = 80 marks)
11. (a) The differential equation for a phenomenon is given by
d’y

2

+500x” =0;0<x<5.The boundary condition are y(0) = 0, ¥(5) = 0.

Find the approximate solution using any classical technique. Start with
minimal possible approximate solution.
Or
(b) (i) List and briefly describe the general steps of finite element method.
(6)
(ii)) Derive an equation to find the displacement at node 2 of
fixed- . fixed beam subjected to axial load P at node 2 using

Rayleigh -Ritz method. (10)
/ L
l/
A i—t iR
7 7 Figure 11(p)
A 4

EEm— ¥

12. (a) For the plane trusses supported by the spring at node 1 in figure 12 (a),
determine the nodal displacement and stresses in each element.

Let E-210GPaand A -5.0 x 10 *m?.

Figure 12 (a)
Or
(b) A concentrated load P = 50 kN is applied at the centre of a fixed beam of
length 3 m, depth 200 mm and width 120 mm. Calculate the deflection

and slope at the midpoint. Assume E = 2 X 10° N/mm?

B 1y E

1500 ——s¢— 1500 —~aE§

Figure 12 (b)
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13. (a) Calculate displacements and stress in the given triangular plate, fixed
along one edge and subjected to concentrated load at its free end.
Take E =70 GPa, thickness of the plate - 10 mm and poisson’s ratio = 0.3

ke ,lomxr‘l'2
43 -
T 4 50N
Z
=
4
20mm 2
4
“
4
“
l El
= X, u 1
Z 30 mm g
Figure 13(a)
Or

(b) A circular fin of 40 mm diameter is fixed to a base maintained at 50°C as
shown in figure 13(b). The fin is insulated on the surface except the end
face which is exposed to air at 25°C. The length of the pin is 1000 mm,
the fin is made of metal with thermal conductivity of 37W/m K. If the
convection heat coefficient with air is 15 W/m?2 K. Find the temperature
distribution at 250,500,750 and 1000 mm from base.

50°%

250 250 250 250

Figure 13(b)

14. (a) For the plane strain elements shown in figure 14 (a), the mnodal
displacements are given as u1=0.005 mm, vi=0.002 mm, uz=0.0, v2=0.0,
us = 0.005 mm, vz - 0.30 mm. Determine the element stresses and the
principle angle. Take E = 70 GPa and Poisson’s ratio = 0.3 and use unit
thickness for plane strain. All coordinates are in mm.

1 e
g

.
2 N4,1)

(2,1)

Figure 14 (a)
Or
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(b)

L.

15. (a)

(b)

3 (75,25)

2 (100,0)

A A

1{75,0)

Figure 14(b)

Derive the element characteristics of a four node quadrilateral element.
Or

Evaluate the intergrals

D I=[" [x*+cos(¥)]ax
1) f,_, [x +COS(2)]

@) I=[!, [3*-x)ax

Using appropriate Gaussian Quadrature.

—_—
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o

10.

Answer ALL questions.

PART A — (10 x 2 = 20 marks)
What is the limitation of using a finite difference method?
List the various methods of solving boundary value problems.

Write down the interpolation function of a field variable for three-node
triangular element.

Highlight at least two rules to guide the placement of the nodes when
obtaining approximate solution to a differential equation.

List the properties of the global stiffness matrix.

List the characteristics of shape functions.

What do you mean by the terms : ¢, ¢! and ¢” continuity?

Write down the nodal displacement equations for a two dimensional triangular
elasticity element.

List the required conditions for a problem assumed to be axisymmetric.

Name a few boundary conditions involved in any heat transfer analysis.




PART B — (5 x 16 = 80 marks)

Discuss the following methods to solve the given differential equation :

2
Er4Y M@ =0
dx

with the boundary conditions y(0)=0 and y(H)=0

(i) Variational method

(ii) Collocation method.
Or

For the spring system shown in Figure 1, calculate the global stiffness
matrix, displacements of nodes 9 and 3, the reaction forces at node 1 and
4. Also calculate the forces in the spring 2. Assume, k, = k; =100 N/m,

k, =200 N/m, u, =u, =0 and P = 500 N.

Figure 1 Spring System Assembly

Determine the joint displacements, the joint reactions, element forces
and element stresses of the given truss elements.

3
L

11.1 kN

-~ 22.2kN

1 .

(35

Figure 2 Truss with applied load
Table 1 : Element Property Data

Element A E L Global Node a Degree
cm? N/m? m Connection
1 32.2 6.9el10 2.54 2 to 3 90
2 38.7 20.7¢e10 2.54 2to1l 0
3 95.8 20.7e10 3.59 1to3 135
Or

2 D 2308



(b)  Derive the interpolation function for the one dimensional linear element

with a length ‘I’ and two nodes, one at each end, designated as 4’ and 9.

Assume the origin of the coordinate system is to the left of node 97
[ ,

Figure 3 the one-dimensional linear element

13. (a) Determine three points on the 50°C contour line for the rectangular

element shown in the Figure 4. The nodal values are D, =42°C,
D, =54°C, ®, =56°C and @ =46°C.

YA t

|

(5, 5) = ry (8, 5)
2 j — §
5. 3) (8.3)

> x

Figure 4 Nodal coordinates of the rectangular element

(b) The simply supported bea in Fi i bjected to a uniform

-length elements and work-

Figure 5 uniformly loaded beam
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14.

15.

(a)

(b)

(a)

(b)

For the plane strain element shown in the Figure 6, the
nodal displacements are given as : u, =0.005mm, u, =0.002 mm,

U3 =0.0 mm, u, =0.0mm, u; =0.004 mm, ug =0.0mm. Determine the
element stresses. Take E = 200 Gpa and y=0.3. Use unit thickness for
plane strain.

T y

(15, 15)

3
| Z
(5,5 (25, 5)
» x
Figure 6 Triangular Element

Or

Determine the element stiffness matrix and the thermal load vector for
the plane stress element shown in Figure 7. The element experiences
20°C increase in temperature. Take E = 15¢6 N/em?, y=0.25,t = 0.5 cm

and a = 6e—6/°C.
K (1,3

t=0.5cm
E= 15¢10% N/em?
u=025
o= 6(1078)/°C

©, 0) (2, 0)
Figure 7 Triangular elastic elements

Use Gaussian quadrature to obtain an exact value of the integral.

11
I={[0?-1)(s~1’drds.
1oy
Or

Define the following terms with suitable examples :
(i)  Plane stress, Plane strain
(ii) Node, Element and Shape functions
(1ii) Iso-parametric element
(iv) Axisymmetric analysis.

4 D 2308
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