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UNIT I

FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS

1.1 INTRODUCTION
The finite element method constitutes a general tool for the numerical solution of partial

differential equations in engineering and applied science
The finite element method (FEM), or finite element analysis (FEA), is based on the idea of

building a complicated object with simple blocks, or, dividing a complicated object into small and
manageable pieces. Application of this simple idea can be found everywhere in everyday life as well as
in engineering.

Examples:
Lego (kids’play) Buildings
Approximation of the area of a circle:

“Element” Si

i

R

Why Finite Element Method?
 Design analysis: hand calculations, experiments, and computer simulations
 FEM/FEA is the most widelyapplied computer simulation method in engineering
 Closelyintegrated with CAD/CAM applications

1.1.1 A Brief History of the FEM
 1943 --- Courant (variational method)
 1956 --- Turner, clough, martin and top(stiffness)
 1960 --- Clough (finite element plan problems)
 1970 --- Applications on mainframe computer
 1980 --- Microcomputers, pre and post processors
 1990 --- Analysis of large structural systems

1.1.2 General Methods of the Finite Element Analysis

1. Force Method – Internal forces are considered as the unknowns of the problem.

2. Displacement or stiffness method – Displacements of the nodes are considered as the
unknowns of the problem.

1.1.3 General Steps of the Finite Element Analysis

 Discretization of structure
 Numbering of Nodes and Elements
 Selection of Displacement function or interpolation function
 Define the material behavior by using Strain – Displacement and Stress – Strain

relationships
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 Derivation of element stiffness matrix and equations
 Assemble the element equations to obtain the global or total equations
 Applying boundary conditions
 Solution for the unknown displacements computation of the element strains and stresses

from the nodal displacements
 Interpret the results (post processing).

1.1.4 Objectives of This FEM
 Understand the fundamental ideas of the FEM
 Know the behavior and usage of each type of elements covered in this course
 Be able to prepare a suitable FE model for given problems
 Can interpret and evaluate the quality of the results (know the physics of the problems)
 Be aware of the limitations of the FEM (don’t misuse the
 FEM - a numerical tool)

1.1.5 Applications of FEM in Engineering
 Mechanical/Aerospace/Civil/Automobile Engineering Structure analysis

(static/dynamic, linear/nonlinear) Thermal/fluid flows
 Electromagnetics
 Geomechanics
 Biomechanics

1.2 WEIGHTED RESIDUAL METHOD

It is a powerful approximate procedure applicable to several problems. For non – structural

problems, the method of weighted residuals becomes very useful. It has many types. The popular

four methods are,

1. Point collocation method,

Residuals are set to zero at n different locations Xi, and the weighting function wi

is denoted as (x - xi).

  (x  xi) R (x; a1, a2, a3… an) dx = 0

2. Subdomain collocation method

3. Least square method,

 [R (x; a1, a2, a3… an)]2 dx = minimum.

4. Galerkin’smethod. wi = Ni (x)

 Ni (x) [R (x; a1, a2, a3… an)]2 dx = 0, i = 1, 2, 3, …n.

Problem I
Find the solution for the following differential equation.
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EI −qo =0

The boundary conditions are u(0)=0, (0)=0,

(L)=0, (L)=0,

Given: The governing differential equation

EI −qo =0

Solution:  assume a trial function
Let u(x) = a0+a1x+a2x

2+a3x
3+a4x

4…..
Apply 1st boundary condition
x=0,    u(x)=0
0=a0+0
a0=0

Apply 2nd boundary condition

x=0, =0

a1=0

Apply 3rd boundary condition

x=L, =0

a2=-[3a3L+6a4L
2]

Apply 4th boundary condition

x=L, =0

a3=-4a4L

Substitute a0, a1, a2 and a3values in trial function
u(x)= 0+0-[3a3L+6a4L

2] -4a4L
u(x)= a4[6 L2x2-4 Lx3+ x4]

= a4[6 L2 (2x)-12 Lx2+ 4x3]

=24 a4

R= EI −qo =0

a4=

Substitute a4values in u(x)
u(x) = [x4-4Lx3+6L2x2]

Result:
Final solution u(x) = [x4-4Lx3+6L2x2]

Problem 2
The differential equation of a physical phenomenon is given by
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+ = 4, 0 ≤ ≤ 1
The boundary conditions are: y(0)=0

y(1)=1
Obtain one term approximate solution by using galerkin method
Solution:

Here the boundary conditions are not homogeneous so we assume a trial function as,
y=a1x(x-1)+x
first we have to verify whether the trial function satisfies the boundary condition or not
y=a1x(x-1)+x
when x=0, y=0

x=1, y=1
Resuldual R:
Y=a1x(x-1)+x=a1(x

2-x)+x

=a1(2x-1)+1= 2 1

Substitute value in given differential equation.

2a1+y=4x
Substitute y vlue

R=2a1+a1x(x-1)+x-4x
In galerkin’s method∫
Substitute wi and R value in equation
a1=0.83
So one of the approximate solution is, y= 0.83x(x-1)+x

= 0.83x2-0.83x+x
y=0.83 x2+0.17x

Problem 3
Find the deflection at the center of a simply supported beam of span length l subjected to

uniform distributed load throughout its length as shown using (a) point collection method (b) Sub-
domain method  (c)least squared and (d) galerkin’n method.
Solution:

EI - = 0, 0≤ ≤
The boundary condition are y=0, x= 0and y=

EI =0 at x=0 and x=

Where, EI =
Let us select the trail function for deflection as,

y= a sin /
1.3 THE GENERAL WEIGHTED RESIDUAL STATEMENT
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After understanding the basic techniques and successfully solved a few problem general
weighted residual statement can be written as

R dx=0 for i= 1,2,…..n

Where wi=Ni

The better result will be obtained by considering more terms in polynomial and trigonometric series.

1.4 WEAK FORMULATION OF THE WEIGHTED RESIDUAL STATEMENT.

The analysis in Section as applied to the model problem provides an attractive perspective to the
solution of certain partial differential equations: the solution is identified with a “point”, which
minimizes an appropriately constructed functional over an admis- sible function space. Weak
(variational) forms can be made fully equivalent to respective strong forms, as evidenced in the
discussion of the weighted residual methods, under certain smoothness assumptions. However, the
equivalence between weak (variational) forms and variational principles is not guaranteed: indeed, there
exists no general method of construct-

ing functionals I [u], whose extremization recovers a desired weak (variational) form. In this

sense, only certain partial differential equations are amenable to analysis and solution by
variational methods.

Vainberg’s theorem provides the necessary and sufficient condition for the equivalence of a
weak (variational) form to a functional extremization problem. If such equivalence holds, the functional
is referred to as a potential.

Theorem (Vainberg)

Consider a weak (variational) form

G(u, δu)  :=  B(u, δu)  + (f, δu)  + (q¯ , δu)Γq    = 0 ,

where  u ∈ U , δu ∈  U0 , and  f and q¯  are  independent  of u. Assume  that G pos- sesses a

Gˆateaux derivative in a neighborhood N of u, and the Gˆateaux differen- tial Dδu1 B(u, δu2) is

continuous in u at every point of N .

Then, the necessary and sufficient  condition for the above weak form to be derivable from a

potential in N is that
Dδu1 G(u, δu2) =  Dδu2 G(u, δu1) ,

Namely that Dδu1 G(u, δu2) be symmetric for all δu1, δu2 = U0 and all u = N .

Preliminary to proving the above theorem, introduce the following two lemmas:

Lemma 1 Show that Dv I[u] = lim
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In the above derivation, note that operations and |ω=0 are not interchangeable (as they
both refer to the same variable ω), while lim∆ω→0 and |ω=0 are interchangeable, conditional upon
sufficient smoothness of I [u].

Lemma 2 (Lagrange’s formula)
Let I [u] be a functional with Gateaux derivatives everywhere, and u, u + δu be any points

of U. Then,

I [u + δu] − I [u] = Dδu I [u + ǫ δu] 0 < ǫ < 1.

To prove Lemma 2, fix u and u + δu in U, and define function f on R as

f(ω) := I[u + ω δu] .

It follows that

F = df
dω = lim

∆ω→
0

f (ω  + ∆ω) − f (ω)
∆ω

= lim
∆ω→0

I [u + ω δu + ∆ω δu] − I [u + ω δu]
∆ω

= Dδu I [u + ω δu] ,

Where Lemma 1 was invoked. Then, us in g the standard mean-value theorem of
calculus,

1.5 PIECE WISE CONTINUOUS TRIAL FUNCTION

In weighted residual method the polynomial and trigonometric series are used as trial function.
This trial function is a single composite function and it is valid over the entire solution domain this
assumed trial function solution should match closely to the exact solution of the differential equation
and the boundary conditions, it is nothing but a process of curve fitting. This curve fitting is carried
out by piecewise method i.e., the more numbers of piece leads better curve fit. Piecewise method can
be explained by the following simple problem.

We know that the straight line can be drawn through any two points.
Let, ƒ(x)=sin is the approximated function for straight line segments.

One straight line segment
Two straight line segment

One Spring Element
x

i j

fi ui uj fj
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Two nodes: i, j
Nodal displacements: ui, uj (in, m, mm)
Nodal forces: fi, fj (lb, Newton) Spring constant (stiffness): k (lb/in,
N/m, N/mm)

Spring force-displacement relationship:

Linear

F Nonlinear

k

D

k F / (> 0) is the force needed to produce a unit stretch.
We only consider linear problems in this introductory course. Consider the equilibrium of

forces for the spring.
At node 1 we have

fi
and at node j,

F k(uj ui ) kui kuj

f j

In matrix form,

F k(uj ui ) kui kuj

k k ui fi

k k uj f j
or, where

(element) stiffness matrix

u = (element nodal) displacement vector

f = (element nodal) force vector

Note:
That k is symmetric. Is k singular or non singular? That is, can we solve the

equation? If not, why?



ME2353 Finite Element Analysis

SCE 8 Department of Mechanical Engineering

f

f

2

2

f

f

2

2

Problem 4
To find the deformation of the shape

X

K1 K2

u1F1 u2F2 u3F3

1 2 3

For element 1,

k1 k1 u2 1

k1 k1 u3 2

element 2,

k2 k2 u2

k2 k2 u3

where fI at  node 2 F2

M is the (internal) force acting on local node i of element Consider the quilibrium of
forces at node

Checking the Results

Deformed shape of the structure
Balance of the external forces
Order of magnitudes of the numbers

Notes about the Spring Elements

Suitable for stiffness analysis
Not suitable for stress analysis of the spring itself
Can have spring elements with stiffness in the lateral direction,
Spring elements for torsion, etc.

1.6 EXAMPLES OF A BAR FINITE ELEMENT
The finite element method can be used to solve a variety of problem types in

engineering, mathematics and science. The three main areas are mechanics of materials, heat
transfer and fluid mechanics. The one-dimensional spring element belongs to the area of
mechanics of materials, since it deals with the displacements, deformations and stresses
involved in a solid body subjected to external loading.
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Element dimensionality:

An element can be one-dimensional, two-dimensional or three-dimensional. A spring element
is classified as one-dimensional.

Geometric shape of the element

The geometric shape of element can be represented as a line, area, or volume. The one-
dimensional spring element is defined geometrically as:

Spring law

The spring is assumed to be linear. Force (f) is directly proportional to deformation (Δ) via the
spring constant k, i.e.

Types of degrees of freedom per node

Degrees of freedom are displacements and/or rotations that are associated with a node. A one-
dimensional spring element has two translational degrees of freedom, which include, an axial
(horizontal) displacement (u) at each node.

Element formulation

There are various ways to mathematically formulate an element. The simplest and limited
approach is the direct method. More mathematically complex and general approaches are energy
(variation) and weighted residual methods.
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The direct method uses the fundamentals of equilibrium, compatibility and spring law from a
sophomore level mechanics of material course. We will use the direct method to formulate the one-
dimensional spring element because it is simple and based on a physical approach.

The direct method is an excellent setting for becoming familiar with such basis concepts of
linear algebra, stiffness, degrees of freedom, etc., before using the mathematical formulation
approaches as energy or weighted residuals.

Assumptions

Spring deformation

The spring law is a linear force-deformation as follows:

f = k Δ

f - Spring Force (units: force)

k - Spring Constant (units: force/length)

Δ - Spring Deformation (units: length)

Spring Behaviour:

A spring behaves the same in tension and compression.

Spring Stiffness:

Spring stiffness k is always positive, i.e., k>0, for a physical linear system.

Nodal Force Direction:

Loading is uniaxial, i.e., the resultant force is along the element. Spring has no resistance to
lateral force.

Weightless Member:

Element has no mass (weightless).

Node Location:

The geometric location of nodes I and J cannot coincide, i.e., xi ≠ xj. The length of the element
is only used to visually see the spring.

A column of KE is a vector of nodal loads that must be applied to an element to sustain a
deformed state in which responding nodal DOF has unit value and all other nodal DOF are zero. In
other words, a column of KE represents an equilibrium problem.
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Example, uI = 1, uJ = 0.

Spring element has one rigid body mode.

Inter-Element Axial Displacement

The axial displacement (u) is continuous through the assembled mesh and is described by a
linear polynomial within each element. Each element in the mesh may be described by a different
linear polynomial, depending on the spring rate (k), external loading, and constraints on the element.

Inter-Element Deformation

The deformation (Δ) is piecewise constant through the assembled mesh and is described by a
constant within each element. Each element in the mesh may be described by a different constant,
depending on the spring constant (k), external loading, and constraints on the element.

Inter-Element Internal Axial Force

The internal axial force (f) is piecewise continuous through the assembled mesh and is
described by a constant within each element. Each element in the mesh may be described by a different
constant, depending on the spring constant, external loading, and constraints on the element.
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1.6.1 Rigid Body

A body is considered rigid if it does not deform when a force is applied. Consider rigid and
non-rigid bars subjected to a gradually applied axial force of increasing magnitude as shown.

The reader should note the following characteristics of rigid and non-rigid (flexible) bodies:

 Force Magnitude - Even if forces are large, a rigid body does not deform. A non-rigid body will
deform even if a force is small. In reality, all bodies deform.

 Failure - A rigid body does not fail under any load; while a non-rigid body will result either in
ductile or brittle failure when the applied load causes the normal stress to exceed the breaking
(fracture) stress b of the material. Brittle failure occurs when the applied load on the non-rigid
bar shown above causes the breaking strength of the bar to be exceeded.

 Material - The material is not considered in a rigid body. Since a rigid body does not deform (
= 0) this is equivalent to an infinite modulus of elasticity. In contrast the modulus of elasticity
for a non-rigid material is finite, e.g., for steel, Esteel = 30 x 106 psi. (200 GPa). For rigid and
non-rigid bars the material laws are:

Rigid Body Motion
Rigid body motion occurs when forces and/or moments are applied to an unrestrained mesh

(body), resulting in motion that occurs without any deformations in the entire mesh (body). Since no
strains (deformations) occur during rigid body motion, there can be no stresses developed in the mesh.

A rigid body in general can be subjected to three types of motion, which are translation,
rotation about a fixed axis, and general motion which consists of a combination of both translation and
rotation. These three motion types are as follows:

Translation - If any line segment on the body remains parallel to its original direction during
the motion, it is said to be in translation. When the path of motion is along a straight line, the motion is
called rectilinear translation, while a curved path is considered as a curvilinear translation. The
curvilinear motion shown below is a combination of two translational motions, one horizontal motion
and one vertical motion.
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Rotation About a Fixed Axis - If all the particles of a rigid body move along circular paths,
except the ones which lie on the axis of rotation, it is said to be in rotation about a fixed axis.

General Motion - Any motion of a rigid body that consists of the combination of both
translations

There are six rigid body modes in general three-dimensional situation; three translational
along the x, y, and z axes and three rotational about x, y, and z axes. Illustrations of these rigid body
modes are presented as follows:
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Translational
Rigid Body Modes

Rotational
Rigid Body Modes

x-direction about x-axis

y-direction about y-axis

z-direction about z-axis

1-D 3-NODED QUADRATIC BAR ELEMENT

Problem 6

A single 1-D 3-noded quadratic bar element has 3 nodes with local coordinates as shown in
Figure

The chosen approximation function for the field variable u is 2u a bx cx  

Let the field variable u have values 1u , 2u and 3u at nodes 1, 2 and 3, respectively.

To find the unknowns a, b and c, we apply the boundary conditions

 

1 1 1

3 2 12

2 2

2
3 2 13 1 2

at 0,

4 3

at ,              +
    solving2 2 4

2
2at ,

x u u u a a u

u u u
bl l l

x u u u a b c l

c u u ux l u u u a bl cl
l

     
  


     


             

Substituting the values of a, b and c in equation (1) and collecting the coefficients of 1 2 3,  andu u u

1 1 2 2 3 3u N u N u N u  

e

1 2 3

0x 
2

l
x  x l

1u 2u
3u Note that node 2 is at the midpoint of

the element.



ME2353 Finite Element Analysis

SCE 16 Department of Mechanical Engineering

Where

2
1

1 2 2

2
2

2 2 2

2

3 2

2 3
1 3 2      1 1                      4

4
4 4           4 1    8

2
2           1

Nx x x x x
N

l l l l x l l

Nx x x x x
N

l l l l x l l

x x x x
N

l l l l

               
         

       
 

3
2

1
                  4

N x

x l l


  



Derivation of stiffness matrix for 1-D 3-noded quadratic bar element:
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To determine 11K :

2

11 2 2 2 3 3 4
0 0

3 4 3 4 9 12 12 16l lx x x x x
K AE dx AE dx

l l l l l l l l

             
    

 

Integrating and applying limit we get,

2 2 3 2 3

11 2 3 4 2 3 4 2 3 4
0 0

9 24 16 9 24 16 9 24 16

2 3 2 3

ll x x x x x l l l
K AE dx AE AE

l l l l l l l l l

     
             

     


 11

9 12 16 27 36 16
7

3 3 3

AE
K AE AE

l l l l l

              

11

7

3

AE
K

l


To determine   and12 21K K :

2

12 2 2 2 3 3 4
0 0

3 4 4 8 12 24 16 32l lx x x x x
K AE dx AE dx

l l l l l l l l

              
    

 

2 3

12 2 3 4

0

12 40 32

2 3

l
x x x

K AE
l l l

 
    

 

 

2 3 2 3

12 2 3 4 2 3 4

0

12 21

12 40 32 12 40 32 12 20 32 36 60 32

2 3 2 3 3 3

8
3

l
x x x l l l

K AE AE AE AE
l l l l l l l l l l

AE
K K

l

                                  

  

To determine   and13 31K K :

2

13 2 2 2 3 3 4
0 0

3 4 1 4 3 12 4 16l lx x x x x
K AE dx AE dx

l l l l l l l l

              
    

 

2 2 3 2 3

13 2 3 4 2 3 4 2 3 4
0 0

3 16 16 3 16 16 3 16 16 3 8 16

2 3 2 3 3

ll x x x x x l l l
K AE dx AE AE AE

l l l l l l l l l l l l

                               


 13 31

9 24 16
1

3 3

AE
K AE K

l l

      



ME2353 Finite Element Analysis

SCE 18 Department of Mechanical Engineering

To determine 22K
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Assembling, we get  
7 8 1
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L
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  

1.7 PRINCIPLE OF STATIONERY TOTAL POTENTIAL (PSTP)

1.7.1 Potential energy in elastic bodies

Potential energy is the capacity to do the work by the force acting on deformable bodies; the
forces acting on a body may be classified as external forces and internal forces. External forces are the
applied loads while internal force is the stresses developed in the body. Hence the total potential
energy is the sum of internal and external potential energy.

Consider a spring mass system let its stiffness be k and length L, due to a force P let it extend
by u

The load P moves down by distance u. hence it loses its capacity to do work by P u. the
external potential energy in this case is given by.

H = -P u

Average force =

The energy stored in the spring due to strain = Average force x Deflection

= x u

= K u2

Total potential energy in the spring = K u2- P u

1.7.2 Principle of Minimum Potential Energy

From the expression for total potential energy,

= U+H= +
In principle of virtual work == 0

Hence we can conclude that a deformable body is in equilibrium when the potential energy is
having stationary value.
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3

4

Hence the principle of minimum potential energy states among all the displacement equations
that internal compatibility and the boundary condition those that also satisfy the equation of
equilibrium make the potential energy a minimum is a stable system

Problem 7

k1 k2 P k

x
1 2 3

Given: For the spring system shown above,

k1 100 N / mm,

k2 200 N / mm,

k3 100 N / mm

P 500 N,

u1 0

u4 0

Find: (a) The global stiffness matrix
(b) Displacements of nodes 2 and 3
(c) The reaction forces at nodes 1 and 4
(d) the force in the spring 2

Solution:

(a) The element stiffness matrices are

100 100
k (N/mm) (1)1

100 100

200 200
k (N/mm) (2)2

200 200

100 100
k (N/mm) (3)3

100 100

A

p

p

l

y

i

n

g

t

h

e
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100 100 0 0 u1 F1

100 300 200 0 u2 0

0 200 300 100 u3 P

0 0 100 100 u4 F4

u1 u2 u3 u4

100 100 0 0

100 100 200 200 0
K

0 200 200 100 100

200 300 100

0 100 100

which is symmetric and banded.

Equilibrium (FE) equation for the whole system is

(4)

(b) Applying the BC

300        200 u2 0

200 300 u3 P

Solving Eq.(5), we obtain

(5)

u2 P / 250

u3 3P / 500

2
(mm)

3

(6)

(c) From the 1
st

and 4
th

equations in (4), we get the reaction forces

F1 100u2

F4 100u3

200 (N)

300 (N)



ME2353 Finite Element Analysis

SCE 22 Department of Mechanical Engineering

(d) The FE equation for spring (element) 2 is

200 200 ui f i

200 200 uj f j

Here i = 2, j = 3 for element 2. Thus we can calculate the spring force as

Problem 8

k1

4 k4 F1

1

2
4 1

k2 k3 F2

2

For the spring system with arbitrarily numbered nodes and elements, as
shown above, find the global stiffness matrix.

Solution:

First we construct the following

Element Connectivity Table

Element Node i (1) Node j (2)

1
2
3
4

4
2
3
2

2
3
5
1

Which specifies the global node numbers corresponding to the local node numbers for
each element? Then we can write the element stiffness matrices as follows
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2

3 4

u4 u2

k
k1 k1

u2 u3

k
k2 k2

k1 k1 k2 k2

u3 u5

k
k3 k3

u2 u1

k
k4 k4

k3 k3 k4 k4

Finally, applying the superposition method, we obtain the global stiffness matrix as
follows

We may note that N1 and N2 obey the definition of shape function that is the shape
function will have a value equal to unity at the node to which it belong and zero value at other
nodes.

u1 u2 u3 u4 u5

k4 k4 0 0 0

k4 k1

K 0

0

k2 k4

k2

k1

k2 k1 0

k2 k3 0 k3

0 k1 0

0 0 k3 0 k3
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1.8 RAYLEIGH – RITZ METHOD (VARIATIONAL APPROACH)

It is useful for solving complex structural problems. This method is possible

only if a suitable functional is available. Otherwise, Galerkin’s method of weighted

residual is used.

Problems (I set)

1. A simply supported beam subjected to uniformly distributed load over entire

span. Determine the bending moment and deflection at midspan by using Rayleigh –

Ritz method and compare with exact solutions.

2. A bar of uniform cross section is clamed at one end and left free at another end

and it is subjected to a uniform axial load P. Calculate the displacement and stress in

a bar by using two terms polynomial and three terms polynomial. Compare with

exact solutions.

1.9 ADVANTAGES OF FINITE ELEMENT METHOD

1. FEM can handle irregular geometry in a convenient manner.
2.   Handles general load conditions without difficulty

3.   Non – homogeneous materials can be handled easily.
4. Higher order elements may be implemented.

1.10 DISADVANTAGES OF FINITE ELEMENT METHOD

1. It requires a digital computer and fairly extensive
2. It requires longer execution time compared with FEM.
3.   Output result will vary considerably.
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UNIT II

ONE DIMENSIONAL FINITE ELEMENT ANALYSIS

2.1 ONE DIMENSIONAL ELEMENTS

Bar and beam elements are considered as One Dimensional elements. These
elements are often used to model trusses and frame structures.

 Bar, Beam and Truss

Bar is a member which resists only axial loads. A beam can resist axial,
lateral and twisting loads. A truss is an assemblage of bars with pin joints and a frame
is an assemblage of beam elements.

 Stress, Strain and Displacement

Stress is denoted in the form of vector by the variable x as σx, Strain is denoted

in the form of vector by the variable x as ex, Displacement is denoted in the form of
vector by the variable x as ux.

 Types of Loading

(1) Body force (f)

It is a distributed force acting on every elemental volume of the body. Unit is
Force / Unit volume. Ex: Self weight due to gravity.

(2) Traction (T)

It is a distributed force acting on the surface of the body. Unit is Force / Unit
area. But for one dimensional problem, unit is Force / Unit length. Ex: Frictional
resistance, viscous drag and Surface shear.

(3) Point load (P)

It is a force acting at a particular point which causes displacement.

 Finite Element Modeling

It has two processes.

(1) Discretization of structure

(2) Numbering of nodes.
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

 CO – ORDINATES

(A) Global co – ordinates,

(B) Local co – ordinates and

(C) Natural co –ordinates.

 Natural Co – Ordinate (ε)

Integration of polynomial terms in natural co – ordinates for two dimensional
elements can be performed by using the formula,

   Shape function

N1N2N3 are usually denoted as shape function. In one dimensional

problem, the displacement

u =  Ni ui =N1 u1

For two noded bar element, the displacement at any point within the

element is given by,

u =  Ni ui =N1 u1 + N2 u2

For three noded triangular element, the displacement at any point

within the element is given by,

u =  Ni ui =N1 u1 + N2 u2 + N3 u3

v =  Ni vi =N1 v1 + N2 v2 + N3 v3

Shape function need to satisfy the following

(a) First derivatives should be finite within an element; (b) Displacement should
be continuous across the element boundary


 Polynomial Shape function

Polynomials are used as shape function due to the following reasons, (1)

Differentiation and integration of polynomials are quite easy.

(2) It is easy to formulate and computerize the finite element equations.

(3) The accuracy of the results can be improved by increasing the order of
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 Properties of Stiffness Matrix

1. It is a symmetric matrix,

2. The sum of elements in any column must be equal to zero,

3. It is an unstable element. So the determinant is equal to zero.

 Problem (I set)

1. A two noded truss element is shown in figure. The nodal displacements are

u1 = 5 mm and u2 = 8 mm. Calculate the displacement at x = ¼, 1/3 and ½.

 Problem (II set)

1. Consider a three bar truss as shown in figure. It is given that E = 2 x 105

N/mm2. Calculate
(a) Nodal displacement,
(b) Stress in each member and

(c) Reactions at the support. Take Area of element 1 = 2000 mm2, Area of

element 2 = 2500 mm2, Area of element 3 = 2500 mm2.

 Types of beam

1. Cantilever beam,

2. Simply Supported beam,

3. Over hanging beam,

4. Fixed beam and

5. Continuous beam.

 Types of Transverse Load

1. Point or Concentrated Load,
2. Uniformly Distributed Load and
3. Uniformly
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 Problem (III set)

1. A fixed beam of length 2L m carries a uniformly distributed load of w (N/m)

which runs over a length of L m from the fixed end. Calculate the rotation at Point

B.

2.2 LINEAR STATIC ANALYSIS( BAR ELEMENT)

Most structural analysis problems can be treated as linear static problems, based on the
following assumptions

1. Small deformations (loading pattern is not changed due to the deformed
shape)

2. Elastic materials (no plasticity or failures)
3. Static loads (the load is applied to the structure in a slow or steady fashion)

Linear analysis can provide most of the information about the behavior of a
structure, and can be a good approximation for many analyses. It is also the bases of
nonlinear analysis in most of the cases.

2.3 BEAM ELEMENT

A beam element is defined as a long, slender member (one dimension is much larger
than the other two) that is subjected to vertical loads and moments, which produce vertical
displacements and rotations. The degrees of freedom for a beam element are a vertical
displacement and a rotation at each node, as opposed to only an horizontal displacement at
each node for a truss element.

Degrees of Freedom

Degrees of freedom are defined as the number of independent coordinates necessary
to specify the configuration of a system. The degrees of freedom for a general situation
consists of three translations in the x, y, and z directions and three rotations about the x, y, and
z axes. A one-dimensional beam element has four degrees of freedom, which include, a
vertical displacement and a rotation at each node.
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Assumptions

Nodal Forces and Moments

Forces and moments can only be applied at the nodes of the beam element, not
between the nodes. The nodal forces and moments, , are related to the nodal displacements
and rotations, through the element stiffness matrix, .

Constant Load
The loads that are applied to the beam element are assumed to be static and not to

vary over the time period being considered, this assumption is only valid if the rate of change
of the force is much less than the applied force (F >> dF/dt). If the loads vary significantly,
(if the variation in load is not much less than the applied force) then the problem must be
considered as dynamic.

Weightless Member
The weight (W) of the beam is neglected, if it is much less than the total resultant

forces (F) acting on the beam. If the weight of the beam is not neglected, then its effects must
be represented as vertical forces acting at the nodes, by dividing up the weight and lumping it
at the nodes, proportionally according to it's placement along the beam.

Prismatic Member
The beam element is assumed to have a constant cross-section, which means that the

cross-sectional area and the moment of inertia will both be constant (i.e., the beam element is
a prismatic member). If a beam is stepped, then it must be divided up into sections of
constant cross-section, in order to obtain an exact solution. If a beam is tapered, then the
beam can be approximated by using many small beam elements, each having the same cross-
section as the middle of the tapered length it is approximating. The more sections that are
used to approximate a tapered beam, the more accurate the solution will be.

The moment of inertia is a geometric property of a beam element, which describes the
beams resistance to bending and is assumed to be constant through the length of the element.
The moment of inertia can be different along different axes if the beam element is not
symmetric, we use the moment of inertia (I) of the axis about which the bending of the beam
occurs
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Where (Iz) refers to the moment of inertia, resisting bending about the "z" axis and (Iy) about
the "y" axis.

The Beam Element is a Slender Member

A beam is assumed to be a slender member, when it's length (L) is more than 5 times
as long as either of it's cross-sectional dimensions (d) resulting in (d/L<.2). A beam must be
slender, in order for the beam equations to apply, that were used to derive our FEM
equations.

The Beam Bends without Twisting.
It is assumed that the cross-section of the beam is symmetric about the plane of

bending (x-y plane in this case) and will undergo symmetric bending (where no twisting of
the beam occurs during the bending process). If the beam is not symmetric about this plane,
then the beam will twist during bending and the situation will no longer be one-dimensional
and must be approached as an unsymmetric bending problem (where the beam twists while
bending) in order to obtain a correct solution.

Cross Section Remains Plane
When a beam element bends, it is assumed that it will deflect uniformly, thus the

cross section will move uniformly and remain plane to the beam centerline. In other words,
plane sections remain plane and normal to the x axis before and after bending.

Axially Rigid
The one-dimensional beam element is assumed to be axially rigid, meaning that there

will be no axial displacement (u) along the beams centriodal axis. This implies that forces
will only be applied perpendicular to the beams centriodal axis. The one-dimensional beam
element can be used only when the degrees of freedom are limited to vertical displacements
(perpendicular to the beams centriodal axis) and rotations in one plane. If axial displacements
are present then a one-dimensional bar element must be superimposed with the one-
dimensional beam element in order to obtain a valid solution.

Homogenous Material
A beam element has the same material composition throughout and therefore the same

mechanical properties at every position in the material. Therefore, the modulus of elasticity E
is constant throughout the beam element. A member in which the material properties varies
from one point to the next in the member is called inhomogenous (non-homogenous). If a
beam is composed of different types of materials, then it must be divide up into elements that
are each of a single homogeneous material, otherwise the solution will not be exact.

ME2353 Finite Element Analysis

SCE 30 Department of Mechanical Engineering

Where (Iz) refers to the moment of inertia, resisting bending about the "z" axis and (Iy) about
the "y" axis.

The Beam Element is a Slender Member

A beam is assumed to be a slender member, when it's length (L) is more than 5 times
as long as either of it's cross-sectional dimensions (d) resulting in (d/L<.2). A beam must be
slender, in order for the beam equations to apply, that were used to derive our FEM
equations.

The Beam Bends without Twisting.
It is assumed that the cross-section of the beam is symmetric about the plane of

bending (x-y plane in this case) and will undergo symmetric bending (where no twisting of
the beam occurs during the bending process). If the beam is not symmetric about this plane,
then the beam will twist during bending and the situation will no longer be one-dimensional
and must be approached as an unsymmetric bending problem (where the beam twists while
bending) in order to obtain a correct solution.

Cross Section Remains Plane
When a beam element bends, it is assumed that it will deflect uniformly, thus the

cross section will move uniformly and remain plane to the beam centerline. In other words,
plane sections remain plane and normal to the x axis before and after bending.

Axially Rigid
The one-dimensional beam element is assumed to be axially rigid, meaning that there

will be no axial displacement (u) along the beams centriodal axis. This implies that forces
will only be applied perpendicular to the beams centriodal axis. The one-dimensional beam
element can be used only when the degrees of freedom are limited to vertical displacements
(perpendicular to the beams centriodal axis) and rotations in one plane. If axial displacements
are present then a one-dimensional bar element must be superimposed with the one-
dimensional beam element in order to obtain a valid solution.

Homogenous Material
A beam element has the same material composition throughout and therefore the same

mechanical properties at every position in the material. Therefore, the modulus of elasticity E
is constant throughout the beam element. A member in which the material properties varies
from one point to the next in the member is called inhomogenous (non-homogenous). If a
beam is composed of different types of materials, then it must be divide up into elements that
are each of a single homogeneous material, otherwise the solution will not be exact.

ME2353 Finite Element Analysis

SCE 30 Department of Mechanical Engineering

Where (Iz) refers to the moment of inertia, resisting bending about the "z" axis and (Iy) about
the "y" axis.

The Beam Element is a Slender Member

A beam is assumed to be a slender member, when it's length (L) is more than 5 times
as long as either of it's cross-sectional dimensions (d) resulting in (d/L<.2). A beam must be
slender, in order for the beam equations to apply, that were used to derive our FEM
equations.

The Beam Bends without Twisting.
It is assumed that the cross-section of the beam is symmetric about the plane of

bending (x-y plane in this case) and will undergo symmetric bending (where no twisting of
the beam occurs during the bending process). If the beam is not symmetric about this plane,
then the beam will twist during bending and the situation will no longer be one-dimensional
and must be approached as an unsymmetric bending problem (where the beam twists while
bending) in order to obtain a correct solution.

Cross Section Remains Plane
When a beam element bends, it is assumed that it will deflect uniformly, thus the

cross section will move uniformly and remain plane to the beam centerline. In other words,
plane sections remain plane and normal to the x axis before and after bending.

Axially Rigid
The one-dimensional beam element is assumed to be axially rigid, meaning that there

will be no axial displacement (u) along the beams centriodal axis. This implies that forces
will only be applied perpendicular to the beams centriodal axis. The one-dimensional beam
element can be used only when the degrees of freedom are limited to vertical displacements
(perpendicular to the beams centriodal axis) and rotations in one plane. If axial displacements
are present then a one-dimensional bar element must be superimposed with the one-
dimensional beam element in order to obtain a valid solution.

Homogenous Material
A beam element has the same material composition throughout and therefore the same

mechanical properties at every position in the material. Therefore, the modulus of elasticity E
is constant throughout the beam element. A member in which the material properties varies
from one point to the next in the member is called inhomogenous (non-homogenous). If a
beam is composed of different types of materials, then it must be divide up into elements that
are each of a single homogeneous material, otherwise the solution will not be exact.



ME2353 Finite Element Analysis

SCE 31 Department of Mechanical Engineering

Isotropic Material
A beam element has the same mechanical and physical properties in all directions,

i.e., they are independent of direction. For instance, cutting out three tensile test specimens,
one in the x-direction, one in the y-direction and the other oriented 45 degrees in the x-y
plane, a tension test on each specimen, will result in the same value for the modulus of
elasticity (E), yield strength and ultimate strength . Most metals are considered
isotropic. In contrast fibrous materials, such as wood, typically have properties that are
directionaly dependant and are generally considered anisotropic (not isotropic).

The Proportional Limit is not Exceeded

It is assumed that the beam element is initially straight and unstressed. It is also
assumed that the material does not yield, therefore the beam will be straight after the load is
released. These assumptions mean that the beam must be made of an elastic material, one
which will return to it's original size and shape when all loads are removed, if not stressed
past the materials elastic or proportional limit. It is also assumed that the beam is not stressed
past the proportional limit, at which point the beam will take a permanent set and will not
fully return to it's original size and shape, when all loads are removed. Below the proportional
limit an elastic material is in the linear elastic range, where the strain ( ) varies linearly with
the applied load and the stress ( ) varies linearly according to: , where E is the
modulus of elasticity.

Rigid Body Modes for the One-Dimensional Beam Element

Rigid body motion occurs when forces and/or moments are applied to an unrestrained
mesh (body), resulting in motion that occurs without any deformations in the entire mesh
(body). Since no strains (deformations) occur during rigid body motion, there can be no
stresses developed in the mesh. In order to obtain a unique FEM solution, rigid body motion
must be constrained. If rigid body motion is not constrained, then a singular system of
equations will result, since the determinate of the mesh stiffness matrix is equal to zero (i.e.,

).

There are two rigid body modes for the one-dimensional beam element, a translation
(displacement) only and a rotation only. These two rigid body modes can occur at the same
time resulting in a displacement and a rotation simultaneously. In order to eliminate rigid
body motion in a 1-D beam element (body), one must prescribe at least two nodal degrees of
freedom (DOF), either two displacements or a displacement and a rotation. A DOF can be
equal to zero or a non-zero known value, as long as the element is restrained from rigid body
motion (deformation can take place when forces and moments are applied) .

For simplicity we will introduce the rigid body modes using a mesh composed of a
single element. If only translational rigid body motion occurs, then the displacement at local
node I will be equal to the displacement at local node J. Since the displacements are equal
there is no strain developed in the element and the applied nodal forces cause the element to
move in a rigid (non-deflected) vertical motion (which can be either up as shown below or it
can be in the downward direction depending on the direction of the applied forces).
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This rigid body mode can be suppressed by prescribing a vertical nodal displacement.

If rotational rigid body motion occurs, then the rotation at local node I will be equal to
the rotation at local node J (i.e., in magnitude and direction). In this situation the nodal forces
and/or moments applied to the element, cause the element to rotate as a rigid body (either
clockwise as shown below or counterclockwise depending on the direction of the applied
forces and/or moments).

This rigid body mode can be suppressed by prescribing a nodal translation or rotation.

If translational and rotational rigid body motion occurs simultaneously then:

Simple Examples of Beam Problems
with and without Rigid Body Motion

Case
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Unstable Dependent
Equations

Stable None
Independen
t Equations

Stable None
Independen
t Equations

2.4 1-D 2-NODED CUBIC BEAM ELEMENT MATRICES

A single 1-d 2-noded cubic beam element has two nodes, with two degrees of
freedom at each node (one vertical displacement and one rotation or slope). There is a total of
4 dof and the displacement polynomial function assumed should have 4 terms, so we choose
a cubic polynomial for the vertical deflection.  Slope is a derivative of the vertical
deflections.

The vertical displacement 2 3v a bx cx dx    …………………..(1)

The slope 22 3
dv

b cx dx
dx

     …………………..(2)

Apply the boundary conditions

 

1 1 1

1 1 1

2 3 2 1 12
2 2

2
2 2

at 0,
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3 1
2

at ,                +
  solving

at ,                2 3

x v v v a a v

x b b

c v v
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x l b cl dl
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
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 
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1 2 1 23 2
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l l



    

Substituting the values of a, b, c and d in equation (1), and collecting the coefficients of

1 1 2 2, , ,v v  we obtain

1 1 2 1 3 3 4 2v N v N N v N    

where
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2.5 DEVELOPMENT OF  ELEMENT EQUATION
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2.6 BEAM ELEMENT

A beam is a long, slender structural member generally subjected to transverse loading
that produces significant bending effects as opposed to twisting or axial effects. An elemental
length of a long beam subjected to arbitrary loading is considered for analysis.  For this
elemental beam length L, we assign two points of interest, i.e., the ends of the beam, which
become the nodes of the beam element. The bending deformation is measured as a transverse
(vertical) displacement and a rotation (slope). Hence, for each node, we have a vertical
displacement and a rotation (slope) – two degrees of freedom at each node.  For a single 2-
noded beam element, we have a total of 4 degrees of freedom.  The associated “forces” are
shear force and bending moment at each node.

Nodal “displacements” Nodal “forces”

1st

degree
of

freedom

vertical
displacement at

node i
1 1 oriv v

corres-
pond-
ing to

shear force at node
i 1 oriF F 1

2nd

degree of
freedom

slope or rotation at
node i

2 1 ori  bending moment at
node i 1 oriM M 2

3rd vertical 3 2 orjv v shear force at node 2 orjF F 3

1v
1

2

2v
1F 2F

1M
2M
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degree of
freedom

displacement at
node j

i

4th

degree of
freedom

slope or rotation at
node j

4 2 orj  bending moment at
node j 2 orjM M 4

The stiffness term ijk indicates the force (or moment) required at i to produce a unit

deflection (or rotation) at j, while all other degrees of freedom are kept zero.

Sign conventions followed

Upward forces are positive and upward displacements are positive.

Counter-clockwise moments are positive and counter-clockwise rotations are positive.

Formulae required – cantilever beam subjected to concentrated load and moment.

2

3

2

3

PL

EI

PL

EI








2

2

ML

EI

ML

EI









2.6.1 ELEMENT MATRICES AND VECTORS

Derivation of first column of stiffness matrix: 1 1 2 21,  0v v     , i.e., allow the first

degree of freedom to occur and arrest all other DoF. (The deformed configuration is shown in
Figure 2).

Initially you have a horizontal beam element. Since 2 2 0v   , we can fix node j. To produce

an upward deflection at node i (i.e., allowing first degree of freedom to occur), apply an
upward force 11k (first suffix indicates the force or moment DoF and the second suffix

indicates the displacement or rotational DoF).
3

11
1 3

k L
v

EI
 upwards. Refer table for

displacement DoF number and force DoF number.  Now the beam configuration is given by
Figure 1.  We can observe from the figure that the slope at node i is not zero.  To make the
slope at i equal to zero, we need to apply a counter-clockwise moment 21k . Refer Figure 2.

But this moment 21k will produce a downward deflection
2

21

2

k L

EI
at node i.  Refer Figure

3.  In order to have a resultant unit upward displacement at node i, upward displacement
produced by force 11k must be greater than the downward displacement produced by the

moment 21k . i.e.,
3 2

11 21 1
3 2

k L k L

EI EI
  …..(1). At the same time, the negative slope produced at

node i by the force 11k must be cancelled by the positive slope produced by the moment 21k .

i.e.,
2

11 21

2

k L k L

EI EI
 ….(2).   Solving these two equations, 11k and 21k are found.  The fixed end

P M
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reaction force and the reaction moment are assumed to be acting upwards and
counterclockwise, respectively. Now use force equilibrium equation to find fixed end
reaction force 31k ….…  11 310    0yF k k    and moment equilibrium equation about

node i to find fixed end reaction moment 41k ....  21 31 410      0iM k k L k     .

11
3

21 2

331

2
41

12

6

12

6

EIk
L
EIk
L

EI
k

L
EI

k L

  
  
  
  
      
   
  
  
     

11k

41k

31k
11k
11k

21k





21k

Figure 1.
Figure 2. Figure 3.

Figure 4.
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Derivation of second column of stiffness matrix: 1 1 2 20,  1, 0v v     , i.e., allow the

second degree of freedom to occur and arrest all other DoF.  (The deformed configuration is
shown in Figure 2).

Initially you have a horizontal beam element. Since 2 2 0v   , we can fix node j. To produce

a counterclockwise (positive) rotation or slope  at node i (i.e., allowing second degree of

freedom to occur), apply a counterclockwise moment 22k . 22
1

k L

EI
  . Refer Figure 1. This

moment 22k will produce a downward deflection
2

22

2

k L

EI
.  This downward deflection should be

canceled by applying an upward force 12k at node i. The upward deflection produced by 12k is
3

12

3

k L

EI
. Refer Figure 2. Equating these two deflections

2 3
22 12

2 3

k L k L

EI EI
 …(1)  But this upward

force 12k will also produce a negative slope at node i which is
2

12

2

k L

EI
. Refer Figure 3. Hence

the rotation produced by 22k should be greater than that produced by 12k so that the resultant

rotation is 1 radians.
2

22 12 1
2

k L k L

EI EI
  ….(2). Solving these two equations, 12k and 22k are

found.  The fixed end reaction force and the reaction moment are assumed to be acting
upwards and counterclockwise, respectively. Now use force equilibrium equation to find
fixed end reaction force 32k …  12 320    0yF k k    and moment equilibrium

equation about node i to find fixed end reaction moment 42k ....

 22 32 420      0iM k k L k     .

Derivation of third column of stiffness matrix: 1 1 2 20,  0, 1, 0v v     , i.e., allow the

third degree of freedom to occur and arrest all other DoF.  (The deformed configuration is
shown in Figure 2).

12
2

22

232

42

6

4

6

2

EIk
L
EIk
L
EI

k
L
EI

k L

  
  
  
  
      
   
  
  
     

12k

22k

42k

32k

12k
12k

22k 



22k

Figure 3.Figure 2.

Figure 1. Figure 4.

1 rad 
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Initially you have a horizontal beam element. Since 1 1 0v   , we can fix node i. To produce

an upward deflection at node j (i.e., allowing third degree of freedom to occur), apply an
upward force 33k .

3
33

2 3

k L
v

EI
 upwards. Now the beam configuration is given by Figure 1.  We can observe from

the figure that the slope at node j is not zero.  To make the slope at j equal to zero, we need to
apply a clockwise moment 43k . Refer Figure 2.  But this moment 43k will produce a downward

deflection
2

43

2

k L

EI
at node j.  Refer Figure 3.  In order to have a resultant unit upward

displacement at node j, upward displacement produced by force 33k must be greater than the

downward displacement produced by the moment 43k . i.e.,
3 2

33 43 1
3 2

k L k L

EI EI
  …..(1). At the

same time, the positive slope produced at node j by the force 33k must be cancelled by the

negative slope produced by the moment 43k . i.e.,
2

33 43

2

k L k L

EI EI
 ….(2).   Solving these two

equations, 33k and 43k are found.  The fixed end reaction force and the reaction moment are

assumed to be acting upwards and counterclockwise, respectively. Now use force equilibrium
equation to find fixed end reaction force 13k …  13 330    0yF k k    and moment

equilibrium equation about node i to find fixed end reaction moment 23k ....

 23 33 430      0iM k k L k     .

Derivation of fourth column of stiffness matrix: 1 1 2 20, 0, 1v v     , i.e., allow the

fourth degree of freedom to occur and arrest all other DoF.  (The deformed configuration is
shown in Figure 2).

Initially you have a horizontal beam element. Since 1 1 0v   , we can fix node i. To produce a

counterclockwise (positive) rotation or slope  at node j (i.e., allowing fourth degree of freedom

to occur), apply a counterclockwise moment 44k . 44
2

k L

EI
  . Refer Figure 1. This moment 44k will

13k

23k

43k

33k

33k

33k

43k





43k

Figure 1.

Figure 2.
Figure 3.

Figure 4.

1unit
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6
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EIk
L
EIk
L
EI

k
L
EI

k L

     
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produce a upward deflection
2

44

2

k L

EI
.  This upward deflection should be canceled by applying a

downward force 34k at node j. The downward deflection produced by 34k is
3

34

3

k L

EI
. Refer Figure

2. Equating these two deflections
32

3444

2 3

k Lk L

EI EI
 …(1)  But this downward force 34k will also

produce a negative slope at node j which is
2

34

2

k L

EI
. Hence the rotation produced by 44k should be

greater than that produced by 34k so that the resultant rotation is 1 radians.
2

3444 1
2

k Lk L

EI EI
  ….(2)

Refer Figure 3.  Solving these two equations, 34k and 44k are found.  The fixed end reaction force

and the reaction moment are assumed to be acting upwards and counterclockwise, respectively.
Now use force equilibrium equation to find fixed end reaction force 14k …

 14 340    0yF k k    and moment equilibrium equation about node i to find fixed end

reaction moment 24k ....  24 34 440      0iM k k L k     .

Problem

Find the slopes at the supports and support reaction forces and support reaction moments for the
beam shown in Figure.  Take E=210 GPa, I = 2×10-4 m4.  Daryl Logan P4-24 page 208.

Finite element representation of the problem

14
2

24

234

44

6

2

6

4

EIk
L
EIk
L
EI

k
L
EI

k L

  
  
  
  
      
   
  
  
     

14k

24k 44k

34k

44k

34k



Figure 1.

Figure 2.

Figure 4.

1 

44k



34k

Figure 3.

5 m 4 m

kN
5

m

2v

2
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Conversion of UDL into nodal forces and nodal moments

for element 1,

for element 2,

4 4 6 4 4 2
2

210 GPa  2 10  m 210 10   2 10  m 42000 kN-m
kN

EI
m

        

Stiffness matrix for element 1

 (1)

4,032 10,080 4032 10,080

10,080 33,600 10,080 16,800

4032 10,080 4,032 10,080

10,080 16,800 10,080 33,600

K

 
  
   
  

Stiffness matrix for element 2

 (2)

7,875 15,750 7,875 15,750

15,750 42,000 15,750 21,000

7,875 15,750 7,875 15,750

15,750 21,000 15,750 42,000

K

 
  
   
  

Assembly of finite element equations

kN
q

m 
2

qL
Force kN

2

qL
kN

2

12

qL
Moment kN m 

2

12

qL
kN m

5
kN

m 
12.5 kN 12.5 kN

10.416667 kN m 10.416667 kN m

5
kN

m 
10 kN 10 kN

Lm

5 m

4 m
6.66667 kN m 6.66667 kN m
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1 1

1

2 2

2

2 2

3

12.5 12.5

10.416667 0 10.416667

12.5 10 22.5

10.416667 6.66667 0 3.75

10 10

6.66667 0 6.66667

support              applied f

F F

M

F F

M

F F

M

      
           
                    
      
     

      
orces

reactions

1 2 3 1 2 30      ?     ?    ?v v v        

1

2

3

12.5 4,032 10,080 4,032 10,080 0 0

0 10.416667 10,080 33,600 10,080 16,800 0 0

22.5 4,032 10,080 4,032 7,875 10,080 15,750 7,875 15,750

0 3.75 10,080 16,800 10,080 15,750 33,600 4

10

0 6.66667

F

F

F

  
   
       

     
 
 

 

1

2

3

0

0

2,000 15,750 21,000

00 0 7,875 15,750 7,875 15,750

0 0 15,750 21,000 15,750 42,000







  
  
  
    
     
    
  

     

Eliminating the first, third and fifth rows and columns of the stiffness matrix, the reduced matrix
becomes

1

2

3

10.416667 33,600 16,800 0

3.75 16,800 75,600 21,000

6.66667 0 21,000 42,000





     
        
         

Solving these equations

4 5 4
1 2 33.59623 10  rad     9.9206349 10  rad     1.0912698 10  rad          

Substituting these values in the assembled matrix to find the support reactions, we find

    
      

 

4 5
1

4 5 4
2

5
3

12.5   10,080 3.59623 10 10,080 9.92 10

22.5 10,080 3.59623 10 5,670 9.92 10 15,750 1.0913 10

10                15,750 9.92 10 15,750 1.0913

F

F

F

 

  



       

           

      410

1

2

3

12.5 2.625 kN

22.5 5.9062 kN

12.5 3.2812 kN

F

F

F

  
 
  

which means
1

2

3

9.875 kN

28.406 kN

6.71869 kN

F

F

F





Support reaction moments at all simply

supported ends are zero. 1 2 3 0M M M  
All support reaction forces are unknowns.
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It is verified that the total applied load 5 5 45
kN

m kN
m

   
 

is equal to the sum of the support

reaction forces  (9.875+28.406+6.71869 = 45 kN).

Total force and moment diagram

Individual force and moment diagrams

Individual force and moment calculations

Element 1

    
    
    
  

(1) 4 5
1

(1) 4 5
1

(1) 4 5
2

(1) 4
2

10,080 3.59623 10 10,080 9.92 10 2.624832 kN

33,600 3.59623 10 16,800 9.92 10 10.416 kN-m

10,080 3.59623 10 10,080 9.92 10 2.624832 kN

16,800 3.59623 10 33,60

F

M

F

M

 

 

 



        

        

        

     50 9.92 10 2.70816 kN-m   

Element 2

   
   
   
 

(1) 5 4
1

(1) 5 4
1

(1) 5 4
2

(1) 5
2

15,750 9.92 10 15,750 1.0913 10 3.2811975 kN

42,000 9.92 10 21,000 1.0913 10 6.45813 kN-m

15,750 9.92 10 15,750 1.0913 10 3.2811975 kN

21,000 9.92 10 42,000 1.0913

F

M

F

M

 

 

 



      

      

        

     410 6.66667 kN-m 

9.875 kN 28.406 kN 6.71869 kN

10.416667 kN-m 3.75 kN-m 6.66667 kN-m

2.624832 kN 2.624832 kN

10.416667 kN-m 2.70816 kN-m 6.45813 kN-m 6.66667 kN-m

3.2811975 kN 3.2811975 kN
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PROBLEM

Given that E=210 GPa and I=4×10-4 m4, cross section of the beam is constant.
Determine the deflection and slope at point C. calculate the reaction forces and moments.
DARYL LOGAN P 171-172

Solution:-

Degree of freedom in numbers:-

Degree of freedom of forces and moments:-

Degree of freedom of displacement and rotation:-

Stiffness matrix for element 1 and 2:-

B

3 m

20 kN-m

3 m

1kN

A C

1

2 4

3 5

6

M3M2M1

F1 F3F2

v2v1

Ѳ1 Ѳ2

v3

Ѳ3
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   

3 2 3 2

2 2
1 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

EI EI EI EI

l l l l
EI EI EI EI

l l l lK K
EI EI EI EI

l l l l
EI EI EI EI

l l l l

  
 
  

   
   
 
 
 
 

   1 2 6

12 18 12 18

18 36 18 18

12 18 12 18

18 18 18 36

K K

 
    
   
  

Assembling:-

1 1

1 1

2 26

2 2

3 3

3 3

12 18 12 18 0 0

18 36 18 18 0 0

12 18 24 0 0 0
3.1

18 18 0 72 18 18

0 0 12 18 12 18

0 0 18 18 18 36

F v

M

F v

M

F v

M







     
        
                 
      
    

       

Boundary condition:-

F2=-10 kN; M2=20 kN-m                v1 =v3= Ѳ1=Ѳ3=0

Therefore first, second, fifth, sixth columns are ineffective

and hence the reduced matrix is given by

Deflection and slope at point c:-

V2= -1.34×10-4 m = -0.134 mm

Ѳ2= 8.96×10-5 rad

2 26

2 2

24 0
3.1 10

0 72

F v

m

    
          
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Reaction forces and moments:-

2

2 6

3

3

12 18

18 18
3.1 10

12 18

18 18

F

m

F

m

   
                  

individual element forces and moments are

F1=10000N

M1=12500N-m

F3=0

M3= -2500N-m

12.5kN-m 20kN-m

10kN

10kN

2.5kN-m

10,000N

12,500N-m 17,500N-m

10,000N

0

2,500N-m 2500N-m

0
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UNIT III

TWO DIMENSIONAL FINITE ELEMENT ANALYSIS

3.1 INTRODUCTION

Two dimensional elements are defined by three or more nodes in a two dimensional

plane (i.e., x, y plane). The basic element useful for two dimensional analysis is the

triangular element.

 Plane Stress and Plane Strain

The 2d element is extremely important for the Plane Stress analysis and Plane

Strain analysis.

Plane Stress Analysis:

It is defined to be a state of stress in which the normal stress () and shear

stress () directed perpendicular to the plane are assumed to be zero.

Plane Strain Analysis:

It is defined to be a state of strain in which the normal to the xy plane and the

shear strain are assumed to be zero.

3.2 THREE NODED LINEAR TRIANGULAR ELEMENT

The physical domain considered is geometrically a 2-Dimensional domain, i.e., an area with
uniform thickness and the single variable can be one of pressure, temperature, etc. (a scalar
quantity, not a vector quantity).  An example is the temperature distribution in a plate.  At each
point there can be only one temperature.  We consider such an area meshed with triangular
elements. Each triangular element has three nodes, (i.e., one node at each corner). Let us consider

one such element with coordinates      1 1 2 2 3 3, , ,  and ,x y x y x y . The single variable (for example,

temperature) at these nodes 1, 2 and 3 are 1 2 3,  andu u u , respectively.  If so, then the unknown single

variable u (temperature) at any non-nodal point  ,x y in the 2-D domain can be expressed in terms

of the known nodal variables (temperatures) 1 2 3,  andu u u .
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Let us assume that the single variable can be expressed as

1 2 3u c c x c y  

In order to find the three unknowns 1 2 3,  andc c c , we apply the boundary conditions

A is the area of the triangle.

1 1 2 3 1

2 1 2 3 2

3 1 2 3 3

1

2

c u

c u
A

c u

  
  
  

     
        
         

Substituting the values of c1, c2 and c3 in 1 2 3u c c x c y   , we get

 
1 1 2 2 3 3

1
where ,         1,2,3

2i i i i

u N u N u N u

N x y i
A

  

  

   

 
 
 

1 1 1 1 2 1 3 1

2 2 2 1 2 2 3 2

3 3 3 1 2 3 3 3

1 1 1

2 2 2

3 3 3

at , ,

at , ,

at , ,

Writing the above three equations in matrix form

1

1

1

x y u u u c c x c y

x y u u u c c x c y

x y u u u c c x c y

u x y

u x y

u x y

    

    

    

   
      
     

1

2

3

1 2 3

1

1 1 1 1

2 2 2 2

3 3 3 3

1

1 1 1 2 3

2 2 1 2 3 1 2 3

3 3 1 2 3

We need to find ,  and

1

1

1

1
1

1        where     2    and
2

1

c

c

c

c c c

c x y u

c x y u

c x y u

x y

x y A
A

x y

  
     
  







 
 
 
   

     
        
         

   
         
      

 
 
 

1 2 3 3 2 1 2 3 1 2 3

2 3 1 1 3 2 3 1 2 3 1

3

i j k k j i j k i j kx y x y y y x x

x y x y y y x x

x y x y y y x x

 

  

  



      

      

      

  1 2 2 1 3 1 2 3 1 2x y x y y y x x      

1 (x1,y1)

2 (x2,y2)

3 (x3,y3)

1u
2u

3u

x

y
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3.3 FOUR NODED LINEAR RECTANGULAR ELEMENT

Let us assume that the single variable can be expressed as

  1 2 3 4,u x y c c x c y c x y    ………………(1)

This polynomial contains four linearly independent terms and is linear in x and y, with a
bilinear term in x and y. The polynomial requires an element with four nodes.  There are two
possible geometric shapes: a triangle with the fourth node at the centroid of the triangle or a
rectangle with nodes at the vertices.

A triangle with a fourth node at the center does not provide a single-valued variation of u at
inter-element boundaries, resulting in incompatible variation of u at inter-element boundaries and is
therefore not admissible.

The linear rectangular element is a compatible element because on any side, the single
variable u varies only linearly and there are two nodes to uniquely define it.

Here we consider an approximation of the form given in eqauation (1) and use a rectangular
element with sides a and b.  For the sake of convenience we choose a local coordinate system

 ,x y to derive the interpolation functions.

In order to find the three unknowns 1 2 3,  andc c c , we apply the boundary conditions

Solving for c1, c2, c3 and c4

1 2 3 42 1 4 1
1 1 1 3 4,        ,        ,        ,

u u u uu u u u
c u c c c

a b ab

   
   

 
 
 
 

1 1

2 1 2

3 1 2 3

3 1 4

at 0,0 ,

at ,0 ,

at , ,

at 0, ,

u u u c

a u u u c c a

a b u u u c c a c ab

b u u u c c b

  

   

    

   

1 (0,0) 2 (a,0)

3 (a,b)4 (0,b)

x

y

x

y
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3.4 TWO-VARIABLE 3-NODED LINEAR TRIANGULAR ELEMENT

Figure shows a 2-D two-variable linear triangular element with three nodes and the two dof at each
node. The nodes are placed at the corners of the triangle.  The two variables (dof) are displacement
in x-direction (u) and displacement in y-direction (v). Since each node has two dof, a single element
has 6 dof.  The nodal displacement vector is given by

 

1

1

2

2

3

3

u

v

u
U

v

u

v

 
 
 
    
 
 
 
  

We select a linear displacement function for each dof as

 
 

1 2 3

4 5 6

,

,

u x y c c x c y

v x y c c x c y

  

  

where  ,u x y and  ,v x y describe displacements at any interior point  ,x y of the element.

The above two algebraic equations can also be written as

1

2

3

4

5

6

1 0 0 0

0 0 0 1

c

c

cu x y

cv x y

c

c

 
 
 
          

     
 
 
  

x

y

1u

1v

2u

2v

3u

3v

 1 11 ,x y

 2 22 ,x y

 1 13 ,x y
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Using steps we had developed for the 2-D single-variable linear triangular element, we can write

1 1 2 3 1

2 1 2 3 2

3 1 2 3 3

4 1 2 3 1

5 1 2 3 2

6 1 2 3 3

1

2

1

2

c u

c u
A

c u

c v

c v
A

c v

  
  
  

  
  
  

     
        
         
     
        
         

and using the interpolation functions we had developed for the 2-D single-variable linear triangular
element, we can write

 
 

1 1 2 2 3 3

1 1 2 2 3 3

,

,

u x y N u N u N u

v x y N v N v N v

  

  

where

 1
,         1, 2,3

2i i i iN x y i
A

     

Writing the above equations in matrix form

 
 

    

1

1

1 2 3 2

1 2 3 2

3

3

, 0 0 0

, 0 0 0

u

v

u x y N N N u

v x y N N N v

u

v

U N a

 
 
 
           

      
 
 
  



The

strains associated with the two-dimensional element are given by
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 

 

1

1
1

23 31 2 1 2
1 1 2 2 3 3 2

2
3

3

3

        and note that

0 0 0

i
x i

y
i

ixy

u
Nx

v x
Ny
yu v

y x

u

v
u

uN NN N N Nu
N u N u N u u

vx x x x x x x x
u

u

v

 
 



 
     
                
 

  
 
 
  
                           

   
 
  

 

   

1

1
1

23 31 2 1 2
1 1 2 2 3 3 2

2
3

3

3

1

1

23 31 1 2 2
1 1 2 2 3 3 1 1 2 2 3 3

2

3

3

0 0 0

u

v
v

uN NN N N Nv
N v N v N v v

vy y y y y y y y
v

u

v

u

v

uN NN N N Nu v
N u N u N u N v N v N v

vy x y x y x y x y x

u

v

 
 
  
                           

   
 
  




       

                 

 

1 1
31 2

1 1
1 2 3

231 2
1 2 3

2
1 1 2 2 3 3

33 31 1 2 2

3

0 0 0
0 0 0

0 0 0 0 0 0
x

y

xy

u uNN N
v vx x x
uNN N

vy y y

uN NN N N N

y x y x y x v

   
    

      




 


 
 
 
  

   
  

        
                                 
            

     

2

2

3

3

3 1 6 13 6

u

v

u

v

B a
 

 
 
 
  
 
 
 
 
  


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    

 

     

x x

y y

xy xy

D

D

D B a

 

 
 
 





   
      
   
   



The stiffness matrix is given by             6 6 6 3 3 3 3 6

T T

Volume Area

K B D B dV t B D B dxdy
   
   .

where t is the thickness of the plate. The integrand     T
B D B is not a function of x and y and

hence can be taken outside the integral to yield

      T
K tA B D B

Dmatrix is the material constitutive matrix, either for the plane-stress case or for the plane-strain
case depending on the problem in hand.

and substituting them back in u, we get

1 1 2 2 3 3 4 4

1

2

3

4

where 1 1

1

1

u N u N u N u N u

x y
N

a b

x y
N

a b

x y
N

a b
x y

N
a b

   

      
  
   
 



   
 

3.5 STRAIN – STRESS RELATION

EEE

EEE

EEE

zyx
z

zyx
y

zyx
x



























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3.5.1 Plane stress conditions

  

  yxy

yxx

yx

yx
y

yx
x

z

yzxzz

xyyx

E

E

EE

EE














































2

2

1

and
1
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3.5.2 Plane strain conditions
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 

 
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It is difficult to represent the curved boundaries by straight edges element a large number of
element may be used to obtain reasonable resembalance between original body and the
assemblage

Two-Dimensional Problems
Review of the Basic Theory

In general, the stresses and strains in a structure consist of six components:

and

sx , sy , sz , txy , tyz , tzx

ex , ey , ez , g,xy, g,yz , g,zx,

for stresses,

for strains.

s y

t yz

y
sz

x
z

t xy

sxtzx

Under contain conditions, the state of stresses and strains can be simplified. A general
3-D structure analysis can, therefore, be reduced to a 2-D analysis.

Plane (2-D) Problems

Plane stress:

sz tyz

tzx 0 (ez 0) (1)
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y y

Plane strain:

A long structure with a uniform cross section and transverse loading along its
length (z-direction).

y y

p

x z

Stress-Strain-Temperature (Constitutive) Relations

For elastic and isotropic materials, we have,

ex 1/ E

ey n / E

n / E

1/ E

0 sx

0 sy

ex 0

ey 0

gxy 0 0 1/ G txy gxy 0

where e0 is the initial strain, E the Young’s modulus, n the Poisson’s ratio and G the

shear modulus. Note that,G = ( )
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which means that there are only two independent materials constants for homogeneous and
isotropic materials.

We can also express stresses in terms of strains bysolving the aboveequation,

The aboverelations are valid for plane stress case. For plane strain case, we
need to replace the material constants in the aboveequations in the following fashion,

n
n

1 - n

For example, the stress is related to strain by

Initial strains due to temperature change (thermal loading) is given by,

where a is the coefficient of thermal expansion, T the change of temperature. Note that
if the structure is free to deform under thermal loading, there will be no (elastic) stresses in the
structure.

3.6 GENERALIZED COORDINATES APPROACH TO NODEL APPROXIMATIONS

ty

p
y tx

St

Su
x

The boundary S of the body can be divided into two parts, Su and St. The boundary
conditions (BC’s) are described as, in which tx and ty are traction forces (stresses on the boundary)
and the barred quantities are those with known values.

In FEM, all types of loads (distributed surface loads, body forces, concentrated forces
and moments, etc.) are converted to point forces acting at the nodes.

Exact Elasticity Solution

The exact solution (displacements, strains and stresses) of a given problem must satisfy the
equilibrium equations, the given boundary conditions and compatibility conditions (structures
should deform in a continuous manner, no cracks and overlaps in the obtained displacement field)
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3.7 ISOPARAMETRIC ELEMENTS

In one dimensional problem, each node is allowed to move only in  x direction.

But in two dimensional problem, each node is permitted to move in the two directions i.e., x

and y.

The element connectivity table for the above domain is explained as table.

Element (e) Nodes
(1) 123
(2) 234
(3) 435
(4) 536
(5) 637
(6) 738
(7) 839
(8) 931


 Constant Strain Triangular (CST) Element

A three noded triangular element is known as constant strain triangular (CST)

element. It has six unknown displacement degrees of freedom (u1v1, u2v2, u3v3).

 Shape function for the CST element Shape function N1 = (p1 + q1x + r1y) / 2A
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 v 1 v v 0 0 0 
 



 

Shape function N2 = (p2 + q2x + r2y) / 2A

Shape function N3 = (p3 + q3x + r3y) / 2A

 Displacement function for the CST element

u1
 




Displacement function u =
u(x, y) N1 0






N2 0 N3 0

v1
 u2

X
     
v(x, y)  0 N1 0 N2 0 N3 v2

u3
 
v3



 Strain – Displacement matrix [B] for CST element

q1
 1 

0 q2 0 q3 0 


Strain – Displacement matrix [B] = 2A 
0 r1 0 r2 0 r3 
 r1

Where, q1 = y2 – y3 r1 = x3 – x2

q2 = y3 – y1 r2 = x1 – x3

q3 = y1 – y2 r3 = x2 – x1

q1 r2 q2 r3 q3

 Stress – Strain relationship matrix (or) Constitutive matrix [D] for two

dimensional element


 1 v v





v 0 0 0






E
 v v 1 v 0 0 0 
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 Stress – Strain relationship matrix for two dimensional plane stress problems

The normal stress z and shear stresses xz, yz are zero.

 

E 1 v 0 
v 1 0 

[D] = 1 v 2 
0

1 v 
0  2 




 Stress – Strain relationship matrix for two dimensional plane strain

problems

Normal strain ez and shear strains exz, eyz are zero.


 Stiffness matrix equation for two dimensional element (CST element)

Stiffness matrix [k] = [B]T [D] [B] A t

q1
 1 

0 q2 0 q3 0 


[B] = 2A 
0 r1 0 r2 0 r3 
 r1

For plane stress problems,

q1 r2 q2



E 1 v

v 1

r3 q3

0 
0 

[D] = 1 v 2 
0

1 v 
0 


For plane strain problems,

 2 




 Temperature Effects

Distribution of the change in temperature (ΔT) is known as strain. Due to the

change in temperature can be considered as an initial strain e0.

σ = D (Bu - e0)

 Galerkin Approach

Stiffness matrix [K]e = [B]T [D][B] A t.

Force Vector {F}e = [K]e {u}
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 Linear Strain Triangular (LST) element

A six noded triangular element is known as Linear Strain Triangular (LST)

element. It has twelve unknown displacement degrees of freedom. The displacement

functions of the element are quadratic instead of linear as in the CST.

 Problem (I set)

1. Determine the shape functions N1, N2 and N3 at the interior point P for the

triangular element for the given figure.

The two dimensional propped beam shown in figure. It is divided into two CST

elements. Determine the nodal displacement and element stresses using plane stress

conditions. Body force is neglected in comparison with the external forces.

Take, Thickness (t) = 10mm,

Young’s modulus (E) = 2x105 N/mm2,

Poisson’s ratio (v) = 0.25.
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3. A thin plate is subjected to surface traction as in figure. Calculate the global stiffness matrix.

 Scalar variable problems

In structural problems, displacement at each nodal point is obtained. By using

these displacement solutions, stresses and strains are calculated for each element. In

structural problems, the unknowns (displacements) are represented by the

components of vector field. For example, in a two dimensional plate, the unknown

quantity is the vector field u(x, y), where u is a (2x1) displacement vector.
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3.8 STRUCTURAL MECHANICS APPLICATIONS IN 2 DIMENSIONS

Elasticity equations are used for solving structural mechanics problems. These
equations must be satisfied if an exact solution to a structural mechanics problem is to be
obtained. Thest are four basic sets of elasticity equations they are

 Strain displacement relationship equations
 Stress strain relationship equations
 Equilibrium equations
 Compatibility equations

TRUSS ELEMENT

A truss element is defined as a deformable, two-force member that is subjected to
loads in the axial direction. The loads can be tensile or compressive. The only degree of
freedom for a one-dimensional truss (bar) element is axial (horizontal) displacement at each
node.

Assumptions for the One-Dimensional Truss Element

Prismatic Member

The truss element is assumed to have a constant cross-section, i.e., it is a prismatic
member. If a truss structure is stepped, then it must be divided up into sections of constant
cross-section in order to obtain an exact solution as shown below.

If a truss structure is tapered, then it can be approximated by using many small truss
elements, each having the same cross-section as the middle of the tapered length it is
approximating. The more sections that are used to approximate a tapered truss, the more
accurate the solution will be.
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Weightless Member

The weight (W) of the truss is neglected since it is assumed to be much less than the
total resultant forces (F) acting on the truss. If the weight of the truss is not neglected, then
its effects must be represented as vertical forces acting at the nodes. But since truss element
is defined as two-force member it cannot have any vertical (shear) force, thus the member
weight has to be neglected. If shear forces exist, then a beam element must be used to model
the structure.

Nodal Forces

For one-dimensional truss element, forces (loads) can only be applied at the nodes of
the element, but not between the nodes. This is consistent with the FEM equations which
relate nodal forces to nodal displacements through the stiffness matrix.

Axially Loaded

For one-dimensional truss element, forces (loads) can only be applied at the centroid
of the element cross-sectional area.

Buckling Effect not Considered

A bar element can be subjected to either tensile or compressive forces. Tensile forces
can be applied to a bar of any cross-sectional area or member length, and failure is
associated with sudden fracture or general yielding. When compressive forces are applied to
a member, it can either fail due to crushing or buckling. Buckling is present when the
member bends and laterally deflects as shown on the right figure below.

Buckling is not accounted for in the formulation of the truss element. Members that
do not buckle are classified as short columns and members that buckles are classified as
long columns. The structural response of a short column can be predicted with a truss
element.

To determine if buckling will occur the reader should refer to a mechanics of
material textbook. We will now introduce a simple geometric guideline to determine if
buckling might occur. If the ratio between the member length and the least dimension of the
cross-section is equal or less than 10, the member is considered a short column and buckling
will not occur, i.e.,
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Two examples include

In the second case if a bar element is subjected to a compressive force, the element will not
predict the buckling response. One should note that the above geometric rule is a simple
guideline, however, in reality buckling depends not only on the member length and cross-
sectional area, but material properties and support conditions.

Isotropic Material

A truss element has the same mechanical and physical properties in all directions, i.e., they
are independent of direction. For instance, cutting out three tensile test specimens, one in the
x-direction, one in the y-direction and the other oriented 45 degrees in the x-y plane, a
tension test on each specimen, will result in the same mechanical values for the modulus of
elasticity (E), yield strength y and ultimate strength u. Most metals are considered
isotropic. In contrast fibrous materials, such as wood, typically have properties that are
directionally dependant and are generally considered anisotropic (not isotropic).

Constant (Static) Load

The loads that are applied to the truss element are assumed to be static and not to vary over
the time period being considered. This assumption is only valid if the rate of change of the
force is much less than the applied force (F >> dF/dt), i.e., the loads are applied slowly. If
the loads vary significantly, (if the variation in load is not much less than the applied force)
then the problem must be considered as dynamic.

Poisson's Effect not Considered

Poisson's ratio is a material parameter. Poisson's effect is when a uniform cross-section bar
is subject to a tensile load, and the axial stretching is accompanied by a contraction in the
lateral dimension. For one-dimensional truss element., this effect is neglected for simplicity,
i.e., v = 0.

Cross Section Remains Plane

For one-dimensional element, although the force(s) are acting on only the centroid of the
truss (bar) element, it is assumed that it has a uniform effect to the plane. Thus the cross
section will move uniformly and remain plane and normal to the axial axis before and after
loading.
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Homogenous Material

A truss element has the same material composition throughout and therefore the same
mechanical properties at every position in the material. Therefore, the modulus of elasticity
E is constant throughout the truss element. A member in which the material properties varies
from one point to the next in the member is called inhomogenous (non-homogenous). If a
truss is composed of different types of materials, then it must be divide up into elements that
are each of a single homogeneous material, otherwise the solution will not be exact.

The left figure shows a composite bar composed of brass and aluminum. This structure can
be divided into two elements as shown on the right, one element for the brass with E1 = 15 x
106 psi and one for the aluminum with E2 = 10 x 106 psi.

TRUSS ELEMENT (OR SPAR ELEMENT OR LINK ELEMENT)

Differentiate between a truss and a frame.

Truss Frame

Only concentrated loads act.
Concentrated loads, uniformly distributed
loads, moments, all can act.

Loads act only at the joints.
Loads can be applied at the joints and/or
in-between the joints

Truss members undergo only axial
deformation (along the length of the
member).

Frame members can undergo axial and
bending deformations (translations as well as
rotations).

A grid is a structure on which loads applied perpendicular to the plane of the
structure, as opposed to a plane frame, where loads are applied in the plane of the structure.

6.7.1 Derivation of stiffness matrix and finite element equation for a truss element.

There are two joints for an arbitrarily inclined single truss element (at an angle , positive
counter-clockwise from +ve x-axis).  For each joint i, there are two degrees of freedom, i.e.,
a joint can have horizontal displacement  iu and vertical displacement  iv .  Hence, for a

single truss element, there are 4 degrees of freedom.  The nodal displacement degrees of
freedom and the nodal force degrees of freedom are shown in the following figure.
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Note that the deformations occurring in the truss members are so small that they are only
axial. The axial displacement of the truss can be resolved along horizontal x-axis and
vertical y-axis. But in our derivation, let us resolve the horizontal and vertical displacements
(in xy-axes) of a joint along and perpendicular to the truss member (in x y  -axes).  Refer to

the Figure in the next page. Note siniu  component acting towards negative y -direction

and all other components acting towards in +ve x - and y -directions.

cos sin

sin cos
i i i

i i i

u u v

v u v

 

 

  
   

cos sin

sin cos
j j j

j j j

u u v

v u v

 

 

  

   

The above equations can be written in the matrix form as follows

      

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

         where  is the transformation matrix

i

i i

j j

j j

u u

v v

u u

v v

u T u T

 
 

 
 

    
                          
 

It is important to note that the displacements  andi jv v  are both zero since there can be no

displacements perpendicular to the length of the member. Also    1 T
T T
 
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Similarly, we resolve forces along the length of the member (positive x direction)
and perpendicular to the length of the member (positive ydirection)

      

cos sin 0 0

sin cos 0 0

0 0 cos sin

0 0 sin cos

         where  is the transformation matrix
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 

 
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 

The arbitrarily inclined truss member can be thought of as a simple bar element
oriented at the same angle  .  Hence, we can write the finite element equation for this
inclined bar element (in x y  coordinate system) as

    
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Substituting  F  and  u from the previous equations, we can write
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Pre-multiplying the above equation by   1
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,
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  and the above equation can be written as
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Carrying out the matrix multiplication for  k , we obtain
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F uc cs c cs
F vcs s cs sAE
F uL c cs c cs
F vcs s cs s

     
                          

where 2cosc  and 2sins  .

Computation of strain and stress in the truss element
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The change in length of the truss member is equal to the change in axial displacement of the
truss member in the x y  co-ordinate system

   cos sin cos sin

cos sin cos sin

j i

j j i i

i

i

j

j

u u

u v u v

u

v

u

v



    

    

  

   

 
 
     
 
  

Strain in the truss element is given by e

L


  , i.e.,

cos sin cos sin
i

ie

j

j

u

v

uL

v

   


 
      
 
  

Stress in the truss element is given by e eE  , i.e.,

cos sin cos sin
i

ie

j

j

u

v
E

uL

v

   


 
      
 
  

Problem

The two-element truss is subjected to external loading as shown in figure. Using the
same node and element numbering as shown in figure, determine the displacement
components at node 3, the reaction components at nodes 1 and 2, and the element
displacement, stresses and forces. The elements have modulus of elasticity E1 = E2 = 10×10⁶

2

lb

in
and cross-sectional areas A1 = A2 = 1.5 2in

(0,0)

2

(0, 40) ② 300 lb 500 lb

①

1
3

(40, 40)
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For element 1

For element 2

b. Nodal forces

element  1 element  2

iv

6

5
3

4

①

②31

②

①

2

1

Fix

②i j

ju

i

①

jv

j

3

iv

1

3

Fjx

Finite element model
Degree of freedom

3

1 3

Fiy

Fjy

2

2

1

iu

②i j

ju
jv



ME2353 Finite Element Analysis

SCE 79 Department of Mechanical Engineering

FINITE ELEMENT EQUATION

ix

iy

jx

jy

F

F AE
F L

F

 
 
   
 
 
 

2 2

2 2

2 2

2 2

c cs c cs

cs s cs s

c cs c cs

cs s cs s

  
 

  
  
   

i

i

j

j

u

v

u

v

 
 
 
 
  
 

For element 1

For element 2

  ( 2 ) 5

                       3              4        5              6

31 0 1 0 3 .7 5 0 3 .7 5 0

0 0 0 0 0 0 0 0
1 0

1 0 1 0 3 .7

4

5

6

5 0 3 .7 5 0

0 0 0 0 0 0 0 0

A E
K

L

    
   
    
    
   
   

Assembly of finite element e

1

1

2 5

2

3

3

                    1              2          3             4             5

1.325 1.325 0 0 1.325 1.325

1.325 1.3

           6

1

2

3

4

25 0 0 1.325 1.325

0 0 3.7

5

6

10

x

y

x

y

x

y

F

F

F

F

F

F

   
 

  
 
  
 
 
 
 
 

1

1

2

2

3

3

5 0 3.75 0

0 0 0 0 0 0

1.325 1.325 3.75 0 5.0751 1.325

1.325 1.325 0 0 1.325 1.325

u

v

u

v

u

v

  
  
  
  
  
  
    
       

quation

ixF

6
5

2

1 .5 1 0 1 0
4 5,               2 .6 5 1 6 5 1 0

5 6 .5 6 8 5

A E lb

L in


 
   

6
51.5 10 10

0,                 3 .75 10
40

A E

L


 
   

 (1)

1                   2         5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.

 6

AE
K

L

 
 


 

5

1.325826 1.325826 1.325826 1.325826

1.325826 1.325826 1.325826 1.325826
10

1.325826 1.325826 1.325826 1.325826

5 0.5 0.5 0.5 1.325826 1.325826 1.325826 1.32

1

2

5

6 5826

    
       
    
   

     
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Applying boundary conditions knowns                           unknowns

1

1

2 5

2

1.325826 1.325826 0 0 1.325826 1.325826

1.325826 1.325826 0 0 1.325826 1.325826

0 0 3.75 0 3.75 0
10

0 0 0 0 0 0

1.325826 1.325826 3.75 0 5.0751826 1.325826500
1.325826 1.325826 0 0 1.3258300

x

y

x

y

F

F

F

F

   
 

  
  
  
 
     
    

3

3

0

0

0

0

26 1.325826

u

v

  
  
  
  
  
  
  
      

Eliminating the 1st, 2nd, 3rd and 4th column to solve 3 3 andu v

 5
3 3500 10 5.075   1.325u v  ①

 5
3 3300 10 1.325 1.325u v  ②

Solve the equation①and②

Finding element stresses

For element  1

4
3 5.33 10u in 

3
3 1.731 10v in 

1

1

2

2

3

3

x

y

x

y

F

F

F

F

u

v

3

3

1

1

2

2

500  lb

300  lb

0

0

0

0

x

y

F

F

u

v

u

v










3

3

1

2

1

2

500 lb

300 lb

0

0

0

0

x

y

F

F

u

u

v

v










1

1

2

2

300

300

200

0

x

y

x

y

F lb

F lb

F lb

F

 

 

 


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 
6

1 5 3 2

10 10
[ cos 0 sin 0 ] (0.5333 1) (0 0) 133.325

40

E lb
u u

L in



       

2 5 6 1 2( cos 45 sin 45 ) ( cos 45 sin 45 )
E

u u u u
L

      
   

6
3 310 10

(0.5333 10 cos 45 ) (1.731 10 sin 45 ) 0
56.57

        
 

 
6

2

10 10
0.0003771 0.001224 283.03

56.57

lb

in


  

PROBLEM

To illustrate how we can combine spring and bar element in one structure, we can
solve the two-bar truss supported by a spring as shown below. Both bars have E = 210 GPa
and A = 5.0 x10-4 m2. Bar one has a length of 5 m and bar two a length of 10 m. the spring
stiffness is k = 2000 kN/m.

Solution :
Given :  E = 210 GPa

A = 5.0 x10-4 m2 ,    L1 = 5 m,    L2 = 10 m,      K = 2 x 106
2

N

m

NOTE: A spring is considered as a bar element whose stiffness is 2 x 106
2

N

m

1

2

3

4

45o

5m

10m

25kN

1

2

3 k=2000 kN/m
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STEP 1 : Finite Element Representation Of Forces And Displacements

Displacements

Total # Of Degrees Of Freedom: 8

Forces

Step 2: Finite Element Equations

Element 1:θ=1350

l2=cos2θ =0.5
m2=sin2θ =0.5
lm=cosθ sinθ =-0.5

1

1

2

3

2

3

4

F1X

F1Y

F2X

F2Y

F3X

F3Y

F4X

F4Y

1

1

2

3

2

3

4

u1

v1

u2

v2

u3

v3

u4

v4

1

2

3

4

5

6

7

8

1

1

2

135O

x
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1

2

3

180O

x

    4 2 6 2
(1)

                                1   2         3        4

1 0.5 0.5 0.5 0.5
5 10 m 210 10 kN/m 2 0.5 0.5 0.5 0.5

3 0.5 0.5 0.5 0.55 m

4 0.5 0.5 0.5 0.5

K


  
     
 
   

 (1) 5

                                   1   2      3     4

1 1 1 1 1

2 1 1 1 1
105 10

3 1 1 1 1

4 1 1 1 1

K




  
    
  
   

Element 2:
θ=1800

l2=cos2θ =1
m2=sin2θ =0
lm=cosθ sinθ =0

Element 3:
θ=2700

l2=cos2θ =0
m2=sin2θ =1
lm=cosθ sinθ =0

    

 

4 2 6 2
(2)

(2) 5

                              1    2  5    6

1 1 0 1 0
5 10 m 210 10 kN/m 2 0 0 0 0

3 1 0 1 010 m

4 0 0 0 0

1  2

1 0 1 0

0 0 0 0
105 10

1 0 1 0

0

5 6

1

2

5

6 0 0 0

K

K



 
    
 
 
 



 


 
 
 
 
 
 
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 (3) 6

1 2 7 8

1

2

7

8

0 0 0 0

0 1 0 1
10

0 0 0 0

0 1 0 1

K

 
   
 
  

STEP 3: Combination Of Finite Element Equations

STEP 4: Applying Boundary Conditions:
Since nodes 1, 2, and 3 are fixed, we have

u2 = v2 = 0; u3 = v3 = 0; u4 = v4 = 0;

F1x = 0 and F1y = -25 kN

1

1

2

2 5

3

3

4

4

      1   2     3    4    5        6       7    8

1

2

210 105 105 105 105 0 0 0

105 125 105 105 0 0 0 20

105 105 105 105 0 0 0 0

105 108 105 105 0 0 0 0
10

105 0 0 0 105 0 0 0

3

4

5

6

7

8

0 0 0

X

Y

X

Y

X

Y

X

Y

F

F

F

F

F

F

F

F

   
     
   
         
 
 
 
  

1

1

2

2

3

3

4

4

0 0 0 0 0

0 0 0 0 0 0 0 0

0 20 0 0 0 0 0 20

u

v

u

v

u

v

u

v

  
  
  
  
  
                       

1

1

2

2 5

3

3

4

4

0 210 105 105 105 105 0 0 0

25 105 125 105 105 0 0 0 20

105 105 105 105 0 0 0 0

105 108 105 105 0 0 0 0
10

105 0 0 0 105 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 20 0 0 0 0 0 20

X

Y

X

Y

X

Y

u

v

F

F

F

F

F

F

     
         
    
                            

0

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
  
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Check whether there are as many unknowns as knowns.

STEP 5: SOLVING THE EQUATIONS:

Reduced matrix:

15

1

0 210 105
10

25 105 125

u

v

     
           

On solving,
u1=-1.724 x 10-3 m v1=-3.4482 x 10-3 m

Find the reactions at supports by substituting the known nodal values
F2x = -18.104 kN F2y = 18.1041 kN

F3x = 18.102 kN F3y = 0

F4x = 0 F4y = 6.89 kN

STEP 6: Post Processing
Stress in element 1:

 (1) 3

1.724

3.4482
σ 10

0

0

E
l m l m

L


 
      
 
  

(1) 51.2 MPa (Tensile) 

Stress in element 2:

 (1) 3

1.724

3.4482
σ 10

0

0

E
l m l m

L


 
      
 
  

PROBLEM

A circular concrete beam structure is loaded as shown. Find the deflection of points
at 8”,16”, and the end of the beam. E = 4 x 106 psi

(2) 36.2 MPa (Compressive)  
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y

12 in 3 in 50000 lb
x

24 in

Solution

The beam structure looks very different from a spring. However, its behavior is
very similar. Deflection occurs along the x-axis only. The only significant difference
between the beam and a spring is that the beam has a variable cross-sectional area. An
exact solution can be found if the beam is divided into an infinite number of elements,
then, each element can be considered as a constant cross-section spring element, obeying
the relation F = ku, where k is the stiffness constant of a beam element and is given by
k = AE/L.

In order to keep size of the matrices small (for hand- calculations), let us divide the
beam into only three elements. For engineering accuracy, the answer obtained will be in
an acceptable range. If needed, accuracy can be improved by increasing the number of
elements.

As mentioned earlier in this chapter, spring, truss, and beam elements are line-
elements and the shape of the cross section of an element is irrelevant. Only the cross-
sectional area is needed (also, moment of inertia for a beam element undergoing a
bending load need to be defined). The beam elements and their computer models are
shown

Here, the question of which cross-sectional area to be used for each beam section
arises. A good approximation would be to take the diameter of the mid-section and use
that to approximate the area of the element.

k1 k2 k3

1 2 3

k1 k2 k3

1 2 2 3 3 4
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Cross-sectional area
The average diameters are: d1 = 10.5 in., d2 = 7.5 in., d3 = 4.5. (diameters are taken at the
mid sections and the values are found from the height and length ratio of the triangles
shown in figure 2.10), which is given as

12/L = 3/(L-24), L = 32

Average areas are:

A1 = 86.59 in2 A2 = 56.25 in2 A3 = 15.9 in2

24 in

12 in d1 d2 d3

3 in

Original Averaged 8 8 8 L- 24

L

Stiffness

k1 = A1 E/L1 = (86.59)(4 × 106/8) = 4.3295 ×107 lb./in., similarly,

k2 = A2 E/L2 = 2.8125 ×107 lb./in.
k3 = A3 E/L3 = 7.95 ×106 lb./in.

Element Stiffness Equations

[K(1)] = 43.295 × 107 1 -1
-1 1

Similarly,

[K(2)] = 28.125 × 106 1 -1
-1 1

[K(3)] = 7.9500 × 106 1 -1
-1 1
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Global stiffness matrix is

43.295 -43.295 0 0
[Kg] = -43.295 43.295+28.125 -28.125 0 106

0 -28.125 28.125+7.95 -7.95
0 0 -7.95 7.95

Now the global structural equations can be written as,

43.295 -43.295 0 0 u1 F1
106 -43.295 71.42 -28.125 0 u2 = F2

0 -28.125 36.075 -7.95 u3 F3
0 0 -7.95 7.95 u4 F4

Applying the boundary conditions: u1 = 0, and F1 = F2 = F3 = 0, F4 = 5000 lb., results in
the reduced matrix,

71.42 -28.125 0 u2 0
106 -28.125 36.075 -7.95 u3 = 0

0 -7.95 7.95 u4 5000

Solving we get,

u2 0.0012

u3 = 0.0029 in.
u4 0.0092

The deflections u2, u3, and u4 are only the approximate values, which can be
improved by dividing the beam into more elements. As the number of elements increases,
the accuracy will improve.
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UNIT IV

DYNAMIC ANALYSIS USING ELEMENT METHOD

4.1 INTRODUCTION

It provides the basic equations necessary for structural dynamical analysis and developed
both the lumped and the consistent mass matrix  involved   in the analysis of bar beam and spring
elements.

4.1.1 Fundamentals of Vibration

Any motion which repeats itself after an interval of time is called vibration or oscillation or
periodic motion

All bodies possessing mass and elasticity are capable of producing vibration.

4.1.2 Causes of Vibrations

o Unbalanced forces in the machine. These force are produced from within the machine
itself

o Elastic nature of the system.
o Self excitations produced by the dry friction between the two mating surfaces.
o External excitations applied on the system.
o Wind may causes vibrations
o Earthquakes may causes vibrations

4.1.3 Types of Vibrations

1.According to the actuating force

Free or natural vibrations

Forced vibrations

Damped vibrations

Undamped vibrations

2.According to motion of system with respect to axis

Longitudinal vibrations

Transverse vibrations

Torsional vibrations
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4.2 EQUATION OF MOTION

There is two types of equation of motion

Longitudinal vibration of beam or axial vibration of a rod

Transverse vibration of a beam

z y

Mid surface 4
3

x

1 2

w1 ,
w

,
w t

x 1 y
1

w w
w2 , ,

x 2 y
2

DOF at each node: w, v
w

,
y

w
.

y

On each element, the deflection w(x,y) is represented by

w(x, y)
Ni wi
i 1

Nxi ( w

x
)i

Nyi ( w

y
)i ,

where Ni, Nxi and Nyi are shape functions. This is an incompatible element! The

stiffness matrix is still of the form

k  = BTEBdV ,
where B is the strain-displacement matrix, and E the stress- strain matrix.

Minding Plate Elements:

4-Node Quadrilateral 8-Node Quadrilateral
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Three independent fields.
Deflection w(x,y) is linear for Q4, and quadratic for Q8.

Discrete Kirchhoff Element:

Triangular plate element (not available in ANSYS). Start with a 6-node riangular element,

z y 3

4 6

1 2
t 5

DOF at corner nodes: w,

x

w
,

w
, , ;

x y
x y

DOF at mid side nodes: Total DOF

= 21.

Then, impose conditions

x , y .

xz
yz

0, etc., at selected

nodes to reduce the DOF (using relations in (15)). Obtain:

z y 3

1 2
x

At each node: w, x
w

,
x

y
w

.
y

Total DOF = 9 (DKT Element).

Incompatible w(x,y); convergence is faster (w is cubic along each edge) and it is efficient.
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Test Problem:

z

P

y
C

L

L
x L/t = 10, = 0.3

ANSYS 4-node quadrilateral plate element.

ANSYS Result for wc

Mesh wc ( PL2/D)
2 2
4 4
8 8

16 16
:

Exact Solution

0.00593
0.00598
0.00574
0.00565

:
0.00560

Question:Converges from “above”? Contradiction to what we learnt about the nature of
the FEA solution?

Reason: This is an incompatible element ( See comments on p. 177).

Shells and Shell Elements

Shells – Thin structures witch span over curved surfaces.



ME2353 Finite Element Analysis

SCE 92 Department of Mechanical Engineering

Example:

Sea shell, egg shell (the wonder of the nature); Containers, pipes, tanks;

Car bodies;

Roofs, buildings (the Superdome), etc.
Forces in shells:

Membrane forces + Bending Moments

(cf. plates: bending only)

Example: A Cylindrical Container.

internal forces:

p p

membrane stresses
dominate
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u

Shell Theory:
Thin shell theory

Shell theories are the most complicated ones to formulate and analyze in mechanics
(Russian’s contributions).

Engineering Craftsmanship Demand strong analytical skill

Shell Elements:

+

plane stress element plate bending element

flat shell element

cf.: bar + simple beam element => general beam element.

DOF at each node:

w
v

u x

y

Q4 or Q8 shell element.

Curved shell elements:

z
i w

v

i
x

y
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Based on shell theories;
Most general shell elements (flat shell and plate elements are subsets);
Complicated in formulation.

Test Cases:

q

R A

80o

L/2

R

L/2

F

A

Roof

F

Pinched Cylinder

F2

F R F
b

A

A F L
F1

F

Pinched Hemisphere

4.3CONSISTENT MASS MATRICES

Natural frequencies and modes

Frequency response (F(t)=Fo sinwt) Transient

response (F(t) arbitrary)

F(t)

4.3.1 Single DOF System

k

f=f(t)
m - mass

m k - stiffness
c c - damping
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Free Vibration:
f(t) = 0 and no damping (c = 0)

Eq. (1) becomes

mu ku
(meaning: inertia force + stiffness force = 0)

Assume:

u(t) U sin (wt) ,
where is the frequency of oscillation, U the amplitude.

Eq. (2) yields

Uù
2

m sin( ùt) kU sin( ùt) 0

i.e., w
2

m k U 0.

For nontrivial solutions for U, we must have

w
2

m k 0,

which yields

w
k

m
.

This is the circular natural frequency of the single DOF system (rad/s). The cyclic frequency
(1/s = Hz) is

w
f ,

2p
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u = U s in w t
U

U
t

T = 1 / f

U n d a m p e d F r e e V i b r a t i o n

With non-zero damping c, where

0 c cc 2mw 2 k m (cc = critical damping)

we have the damped natural frequency:

wd

where x

w 1 x
2

,

c
(damping ratio).

cc

For structural damping: 0 x 0.15 (usually 1~5%)

wd w.

Thus, we can ignore damping in normal mode analysis.

u

t

Damped Free Vibration
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1 2

4.3.2.Multiple DOF System

Equation of Motion

Equation of motion for the whole structure is

Mu Cu Ku f (t) ,                                             (8)

in which: u nodal displacement vector,

M mass matrix,

C damping matrix,

K stiffness matrix,

f forcing vector.

Physical meaning of Eq. (8):

Inertia forces + Damping forces + Elastic forces

= Applied forces

Mass Matrices

Lumped mass matrix (1-D bar element):

rAL 1 r,A,L 2 rAL

2 u1 u2

Element mass matrix is found to be

rAL

m 2

0

0

rAL
2

diagonal atrix
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Simple Beam Element:

v 1

q 1

v2

r, A, L q 2

m rNT NdV
V

156 22L 54
2

13L
2

V1

rAL

420

22L

54

13L

4L

13L

3L2

13L

156

22L

3L

22L

4L2

Q1

v2
Q2

Units in dynamic analysis (make sure they are consistent):

Choice I Choice II
t (time)

L (length)
m (mass)
a (accel.)
f (force)

r (density)

s
m
kg

m/s2

N
kg/m3

s
mm
Mg

mm/s2

N
Mg/mm3

4.4 VECTOR ITERATION METHODS

Study of the dynamic characteristics of a structure:

natural frequencies normal modes shapes)

Let f(t) = 0 and C = 0 (ignore damping) in the dynamic equation (8) and obtain
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2

Mu Ku 0

Assume that displacements vary harmonically with time, that is,

u (t ) u sin( w t ),

u (t ) w u cos( w t ),

u (t )
w

2
u sin( w t ),

where u is the vector of nodal displacement amplitudes.

Eq. (12) yields,

K w
2

M u 0

This is a generalized eigenvalue problem (EVP).

Solutions?

This is an n-th order polynomial of from which we can find n solutions (roots) or
eigenvalues

i (i = 1, 2, …, n) are the natural frequencies (or characteristic frequencies) of the

structure (the smallest one) is called the fundamental frequency. For each gives one

solution (or eigen) vector

K w i M u i 0 .

u i (i=1,2,…,n) are the normal modes (or natural modes, mode shapes, etc.).
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u

u

i j

M ui j

v2

r, A, EI q2

1 2
L

Properties of Normal Modes

T
K u 0 ,

T
0 , for i ¹j,

if wi wj . That is, modes are orthogonal (or independent) to each other with respect to K and

M matrices.

Note:

Magnitudes of displacements (modes) or stresses in normal mode analysis have no physical
meaning.

For normal mode analysis, no support of the structure is necessary.

i = 0 there are rigid body motions of the whole or a part of the structure. apply this to check

the FEA model (check for mechanism or free elements in the models).

Lower modes are more accurate than higher modes in the FE calculations (less spatial variations
in the lower modes fewer elements/wave length are needed).

Example:

K w
2

M

K
EI 12

L
3
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q 2 1

q 2 2

EVP: 12 156l

6L 22Ll

6L

4L
2

22Ll
0,

4L
2
l

in which l w
2

rAL
4 / 420 EI .

Solving the EVP, we obtain,
1

#3 #2

w1 3.533 EI 2 v2
,

rAL
4

1

1.38 ,

L

1

#1

Exact solutions:

w2 34.81

1

EI
2 v2

,
rAL

4

1

1

7.62 .

L

w1 3.516 EI
2

,
rAL

4
w2 22.03 EI

2

.
rAL

4

4.5 MODELLING OF DAMPING

Two commonly used models for viscous damping.

4.5.1 Proportional Damping (Rayleigh Damping)

C M K
(17)

where the constants & are found from

with
1 , 2 , 1 & 2 (damping ratio) being selected.
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D
am

pi
ng

ra
tio

u

u

K

M

u

u

0

0

,

,

u M u 1,

u K u ,

i i

Modal Damping

Incorporate the viscous damping in modal equations.

Modal Equations
Use the normal modes (modal matrix) to transform the coupled system of
dynamic equations to uncoupled system of equations.

We have

K
2

M u 0 , i 1,2,..., n
(18)

where the normal mode u i satisfies:

T
i j
T for i j,

i j

and
T
i i

T 2
i i i

for i = 1, 2, …, n.
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z p

Form the modal matrix:

Ö ( n n ) u 1 u 2 L u n

are called principal coordinates.

Substitute (21) into the dynamic equation:

M &z& C z& K z f ( t ).

Pre-multiply by
T

, and apply (20):

&z& C

where C

p

z& z

I

T
f ( t ) .

p ( t ),

(proportional damping),

Using Modal Damping

Can verify that

Transformation for the displacement vector,

z1 (t) z2 (t) M

zn (t)

Equation (22) becomes,

&z&i 2 i i z&i
2
i i
i

( t ),
i = 1,2,…,n. (24)

Equations in (22) or (24) are called modal equations. These are uncoupled, second-
order differential equations, which are much easier to solve than the original dynamic
equation (coupled system).

To recover u from z, apply transformation (21) again, once z is obtained from (24).
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z

)z i

2

i i )i

Notes:

Only the first few modes may be needed in constructing the modal matrix (i.e.,
could be an n m rectangular matrix with m<n). Thus, significant reduction in the

size of the system can be achieved.

Modal equations are best suited for problems in which higher modes are not
important (i.e., structural vibrations, but not shock loading).

4.5.2 Frequency Response Analysis

(Harmonic Response Analysis)

Ku E u
Harmonicloading

(25)

Modal method: Apply the modal equations,

&z&i 2 i i Zk i i i pi
sin t ,

i=1,2,…,m. (26)

These are 1-D equations. Solutions are

p 2
zi (t) i i sin( t

(1

where

2 2
(2

2

/ ii

ci ci , damping ratio

cc 2m i

Recover u from (21).

Direct Method: Solve Eq. (25) directly, that is, calculate

the inverse. With u

becomes
u e

i t
(complex notation), Eq. (25)

This equation is expensive to solve and matrix is ill- conditioned if is close
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4.6TRANSIENT RESPONSE ANALYSIS

(Dynamic Response/Time-History Analysis)

Structure response to arbitrary, time-dependent loading.

f(t)

t

u(t)

t

Compute responses by integrating through time:

u 1

u n u n+1
u 2

t 0 t 1 t 2 t n t n+1
B. Modal Method

First, do the transformation of the dynamic equations using the modal matrix before the
time marching:

Then, solve the uncoupled equations using an integration method. Can use, e.g.,
10%, of the total modes (m= n/10).

Uncoupled system, Fewer equations,

No inverse of matrices,
More efficient for large problems.
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4.6.1Cautions in Dynamic Analysis
Symmetry: It should not be used in the dynamic analysis (normal modes, etc.)
because symmetric structures can have antisymmetric modes.

Mechanism, rigid body motion means = 0. Can use this to check FEA models
to see if they are properly connected and/or supported.

Input for FEA: loading F(t) or F( ) can be very complicated in real applications
and often needs to be filtered first before used as input for FEA.

Examples
Impact, drop test, etc.

PROBLEM

In the spring structure shown k1 = 10 lb./in., k2 = 15 lb./in., k3 = 20 lb./in., P= 5 lb.
Determine the deflection at nodes 2 and 3.

k1 k2 k3

o o o o
1 2 3 4

Figure 2.4

Solution:

Again apply the three steps outlined previously.

Step 1: Find the Element Stiffness Equations

Element 1:
1     2

[K(1)] = 10 -10 1
-10 10 2

Element 2: 2 3
[K(2)] = 15 -15 2

-15 15 3

Element 3: 3 4

[K(3)] = 20 -20 3

-20 20 4
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Step 2: Find the Global stiffness matrix

1 2 3 4
1 10 -10 0 0 10 -10 0 0
2 -10 10 + 15 -15 0 = -10 25 -15 0
3 0 -15 15 + 20 -20 0 -15 35 -20
4 0 0 -20 20 0 0 -20 20

Now the global structural equation can be written as,

F1 10 -10 0 0 u1

F2 = -10 25 -15 0 u2

F3 0 -15 35 -20 u3

F4 0 0 -20 20 u4

Step 3: Solve for Deflections

The known boundary conditions are: u1 = u4 = 0, F3 = P = 3lb. Thus, rows and columns 1 and 4 will drop
out, resulting in the following matrix equation,

03 = 25 −15−15 35 = 23
Solving, we get u2 = 0.0692 & u3 = 0.1154

PROBLEM
In the spring structure shown, k1 = 10 N/mm, k2 = 15 N/mm, k3 = 20 N/mm, k4 = 25 N/mm, k5 = 30

N/mm, k6 = 35 N/mm. F2 = 100 N. Find the deflections in all springs.

k1

k3

k2 F2 k6

k4

k5
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Solution:

Here again, we follow the three-step approach described earlier, without specifically
mentioning at each step.

Element 1: 1        4
[K(1)] = 10 -10 1

-10 10 4

Element 2: 1 2

[K(2)] = 15 -15 1

-15 15 2

Element 3: 2 3

[K(3)] = 20 -20 2

-20 20 3

Element 4:
[K(4)] =

2
25

3
-25 2

-25 25 3

Element 5: 2 4

[K(5)] = 30 -30 2

-30 30 4

Element 6: 3 4

[K(6)] = 35 -35 3

-35 35 4

The global stiffness matrix is,

1 2 3 4

10+15 -15 0 -10 1

[Kg] = -15 15+20+25+30 -20-25 -30 2

0 -20-25 20+25+35 -35 3

-10 -30 -35 10+30+35 4

And simplifying, we get

25 -15 0 -10
[Kg] = -15 90 -45 -30

0 -45 80 -35
-10 -30 -35 75
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And the structural equation is,

F1 25 -15 0 -10 u1

F2 = -15 90 -45 -30 u2

F3 0 -45 80 -35 u3

F4 -10 -30 -35 75 u4

Now, apply the boundary conditions, u1 = u4 = 0, F2 = 100 N. This is carried out by
deleting the rows 1 and 4, columns 1 and 4, and replacing F2 by 100N. The final matrix
equation is,

Which gives

Deflections:

Spring 1: u4 – u1 = 0

Spring 2: u2 – u1 = 1.54590

Spring 3: u3 – u2 = -0.6763

Spring 4: u3 – u2 = -0.6763

Spring 5: u4 – u2 = -1.5459

Spring 6: u4 – u3 = -0.8696

100 90 -45 u2

0 = -45 80 u3
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UNIT V

APPLICATIONS IN HEAT TRANSFER &FLUID MECHANICS

5.1 ONE DIMENSIONAL HEAT TRANSFER ELEMENT

In structural problem displacement at each nodel point is obtained. By
using these displacement solutions, stresses and strains are calculated for each
element. In structural problems, the unknowns are represented by the
components of vector field. For example, in a two dimensional plate, the
unknown quantity is the vector field u(x,y),where u is a (2x1)displacement
vector.

Heat transfer can be defined as the transmission of energy from one
region another region due to temperature difference. A knowledge of the
temperature distribution within a body is important in many engineering
problems. There are three modes of heat transfer.

They are: (i) Conduction

(ii) Convection

(iii) Radiation

5.1.1Strong Form for Heat Conduction in One Dimension
with Arbitrary Boundary Conditions

Following the same procedure as in Section, the portion of the
boundary where the temperature is prescribed, i.e. the essential boundary is
denoted by T and the boundary where the flux is prescribed is recommended
for Science and Engineering Track. Denoted by q ; these are the
boundaries with natural boundary conditions. These boundaries are
complementary, so

q = ¼ ; q \ T ¼ 0:

With the unit normal used in , we can express the natural boundary
condition as qn ¼ q. For example, positive flux q causes heat inflow (negative
q ) on the left boundary point where qn ¼ q ¼ q and heat outflow (positive
q ) on the right boundary point where qn ¼ q ¼ q.

Strong form for 1D heat conduction problems
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5.1.2Weak Form for Heat Conduction in One Dimension with
Arbitrary Boundary Conditions

We again multiply the first two equations in the strong form by the weight
function and integrate over the domains over which they hold, the domain for the
differential equation and the domain q for the flux boundary condition, which
yields ws dx with w ¼
Recalling that w ¼ 0 on T and combining with gives

Weak form for 1D heat conduction problems
Find T ðxÞ 2 U such that

Notice the similarity between

5.2 APPLICATION TO HEAT TRANSFER TWO-DIMENTIONAL

5.2.1Strong Form for Two-Point Boundary Value Problems

The equations developed in this chapter for heat conduction, diffusion and
elasticity problems are all of the following form:

Such one-dimensional problems are called two-point boundary value
problems. gives the particular meanings of the above variables and parameters
for several applications. The natural boundary conditions can also be
generalized as (based on Becker et al. (1981))

Þ ¼ 0 on :

Equation is a natural boundary condition because the derivative of the
solution appears in it. reduces to the standard natural boundary conditions
considered in the previous sections when bðxÞ ¼ 0. Notice that the essential
boundary condition can be recovered as a limiting case of when bðxÞ is a
penalty parameter, i.e. a large number In this case, and Equation is
called a generalized boundary condition.

An example of the above generalized boundary condition is an elastic bar
with a spring attached as shown in In this case, bðlÞ ¼ k and reduces to

E(n-l) ( k-uð) uÞ ¼ 0 at    x ¼ l;
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where ¼ k is the spring constant. If the spring stiffness is set to a very large
value, the above boundary condition enforces ¼ u; if we let k ¼ 0, the above
boundary condition corresponds to a prescribed traction boundary. In practice,
such generalized boundary conditions are often used to model the influence of
the surroundings. For example, if the bar is a simplified model of a building and its
foundation, the spring can represent the stiffness of the soil.

5.2.2 Two-Point Boundary Value Problem With Generalized Boundary
Conditions

- ku(l)

u(l)
u k

t

An example of the generalized boundary for elasticity problem.

Another example of the application of this boundary condition is
convective heat transfer, where energy is transferred between the surface of the
wall and the surrounding medium. Suppose convective heat transfer occurs at x
¼ l. Let T ðlÞ be the wall temperature at x ¼ l and T be the temperature in the
medium. Then the flux at the boundary x ¼ l is given by qðlÞ ¼ hðT ðlÞ T Þ, so
bðlÞ ¼ h and the boundary condition is

where h is convection coefficient, which has dimensions of W m 2 o

C 1 . Note that when the convection coefficient is very large, the temperature
T is immediately felt at x ¼ l and thus the essential boundary condition is
again enforced as a limiting case of the natural boundary condition.

There are two approaches to deal with the boundary condition . We will
call them the penalty and partition methods. In the penalty method, the
essential boundary condition is enforced as a limiting case of the natural
boundary condition by equating bðxÞ to a penalty parameter. The resulting
strong form for the penalty method is given in.

General strong form for 1D problems-penalty method

þ f ¼ 0 on ;
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

In the partition approach, the total boundary is partitioned into the natural
boundary, and the complementary essential boundary, The natural boundary condition has
the generalized form defined by The resulting strong form for the partition method is
summarized in.

5.2.3 Weak Form for Two-Point Boundary Value Problems

In this section, we will derive the general weak form for two-point boundary value
problems. Both the penalty and partition methods described in will be considered. To
obtain the general weak form for the penalty method, we multiply the two equations in the
strong by the weight function and integrate over the domains over which they hold: the
domain for the differential equation and the domain for the generalized boundary
condition.

5.3 SCALE VARIABLE PROBLEM IN 2 DIMENSIONS

 x1 
 
y2 
 x1 
 

x N1

u  
0 N2 0 N3 0 N4 0 y2 

    
y  0 N1 0 N2 0 N3 0 N4 x3 

y 
 3 
x4 
 y4 



N1=1/4(1-Ɛ) (1-ɳ); N2=1/4(1+Ɛ) (1-ɳ); N3=1/4(1+Ɛ) (1+ɳ); N4=1/4(1-Ɛ) (1+ɳ).

 Equation of Stiffness Matrix for 4 noded isoparametric quadrilateral element

J  J11 J12 
 ;

J 21 J 22 
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
0

0



0

B 1

J

 J 22








 J12

0

0

 J 21

0

J11

N1

 


N1

 



0

0

N1

N 2


N 2




0

0

N 2

N3


N3




0

0

N3

N 4


N 4







0 


N 4


 J 21 J11 J 22  J12
 0


0


0 0   

 0
N1 0

N 2 0
N3 0

N4 




 

E 1 v v 

  

[D]   v 1 0 
(1 v2 ) 

 0
1 v  , for plane stress conditions;

0 




E 1 v

2 


v 0 
[D]   v 1 v 0 

(1 v)(1 2v) 
 0

1 2v  , for plane strain conditions.
0  2 



 Equation of element force vector

F F  [N ]T 
x
e F ;

 y 


N – Shape function, Fx – load or force along x direction,

Fy – load or force along y direction.

 Numerical Integration (Gaussian Quadrature)

The Gauss quadrature is one of the numerical integration methods to calculate the

definite integrals. In FEA, this Gauss quadrature method is mostly preferred. In

this method the numerical integration is achieved by the following expression,

1 n

 f (x)dx wi f (xi )
1 i1

Table gives gauss points for integration from -1 to 1.
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



Number of

Points

n

Location

xi

Corresponding Weights

wi

1 x1 = 0.000 2.000

2 1
x1, x2 =   0.577350269189

3 1.000

3
x1, x3  

3
 0.774596669241

5

x2=0.000

5
 0.555555

9

8
 0.888888

9

4 x1, x4= 0.8611363116

x2, x3= 0.3399810436

0.3478548451

0.6521451549

 Problem (I set)

1 x
1. Evaluate I  cos

1 2
dx , by applying 3 point Gaussian quadrature and

compare with exact solution.

1  1 
2. Evaluate I   3e x  x2 

1 x  2
dx , using one point and two point

Gaussian quadrature. Compare with exact solution.

3. For the isoparametric quadrilateral element shown in figure, determine the

local co –ordinates of the point P which has Cartesian co-ordinates (7, 4).
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4.   A four noded rectangular element is in figure. Determine (i) Jacobian

matrix, (ii) Strain – Displacement matrix and (iii) Element Stresses. Take

E=2x105N/mm2,υ= 0.25, u=[0,0,0.003,0.004,0.006, 0.004,0,0]T, Ɛ= 0, ɳ=0.
Assume plane stress condition.

5.4  2 DIMENTIONAL FLUID MECHANICS

The problem of linear elastostatics described in detail in can be extended to include the
effects of inertia. The resulting equations of motion take the form

∇ · σ + f = ρü in Ω ×I ,

σn = t̄ on Γq ×I ,

u = ū on Γu ×I ,

u(x1 ,x2 ,x3,0) = u0 (x1,x2 ,x3 ) in Ω ,

v(x1, x2 ,x3,0) = v0 (x1,x2 ,x3) in Ω ,
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where u = u(x1 , x2, x3 , t) is the unknown displacement field, ρ is the mass density, and I
= (0, T ) with T being a given time. Also, u0 and v0 are the prescribed initial displacement
and velocity fields. Clearly, two sets of boundary conditions are set on Γu and Γq ,
respectively, and are assumed to hold throughout the time interval I . Likewise, two sets of
initial conditions are set for the whole domain Ω at time t = 0. The strong form of the
resulting initial/boundary- value problem is stated as follows: given functions f , t̄ , ū , u0 and
v0, as well as a constitutive equation for σ, find u in Ω × I , such that the equations are
satisfied.

A Galerkin-based weak form of the linear elastostatics problem has been derived in Sec-
tion In the elastodynamics case, the only substantial difference involves the inclusion

of the term
R

Ω w · ρü dΩ, as long as one adopts the semi-discrete approach. As a result, the

weak form at a fixed time can be expressed as
Z

w · ρü dΩ +
Ω

Z
∇sw : σ dΩ =

Ω

Z Z
w · f dΩ +

Ω Γ
w · t̄ dΓ .

Following the development of Section 7.3, the discrete counterpart of can be written as
Z

wh · ρüh dΩ + ǫ(wh) · Dǫ(uh) dΩ
=

Z Z
wh · f dΩ +

wh · t̄ dΓ .

Following a standard procedure, the contribution of the forcing vector Fint,e due to
interele- ment tractions is neglected upon assembly of the global equations. As a result, the
equations is give rise to their assembled counterparts in the form

Mu + Kû = F ,

where û is the global unknown displacement vector1 . The preceding equations are, of course,
subject to initial conditions that can be written in vectorial form as û(0) = û0 and v̂(0) = v̂0
.

The most commonly employed method for the numerical solution of the system of cou-

pled linear second-order ordinary differential equations is the Newmark method. This

method is based on a time series expansion of û and u̇̂ := v̂. Concentrating on the time
interval (tn , tn+1], the Newmark method is defined by the equations

1 2
ûn+1 =

v̂n+1 =

ûn + v̂n∆tn +
2

[(1 − 2β)ân + 2βân+1]∆tn ,

v̂n + [(1 − γ)ân + γân+1 ]∆tn ,
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n

n

It is clear that the Newmark equations define a whole family of time integrators.

It is important to distinguish this family into two categories, namely implicit and explicit
integrators, corresponding to β > 0 and β = 0, respectively.

The overhead “hat” symbol is used to distinguish between the vector field u and the
solution vector ûemanating from the finite element approximation of the vector field u.

The general implicit Newmark integration method may be implemented as follows: first,

solve (9.18)1 for ân+1 , namely write

ân+1 =
β∆t2

(ûn+1 − ûn − v̂n∆tn ) ân

Then, substitute (9.19) into the semi-discrete form (9.17) evaluated at tn+1 to find that

M + K ûn+1 = Fn+1
.

After solving for ûn+1, one may compute the acceleration ân+1 from and the velocity
v̂n+1 from.

Finally, the general explicit Newmark integration method may be implemented as follows:
starting from the semi-discrete equations evaluated at tn+1, one may substitute ûn+1from
to find that

Mân+1 = −K(ûn + v̂n∆tn +ân∆tn ) + Fn+1 .

If M is rendered diagonal (see discussion in Chapter 8), then ân+1 can be determined

without solving any coupled linear algebraic equations. Then, the velocities b̂vn+1 are
immediately computed from (9.18)2. Also, the displacements û n+1 are computed from
indepen-dently of the accelerations ân+1 .
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v̂n+1 from.

Finally, the general explicit Newmark integration method may be implemented as follows:
starting from the semi-discrete equations evaluated at tn+1, one may substitute ûn+1from
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QUESTION BANK

PART A QUESTIONS WITH ANSWERS

1. What is meant by finite element?

UNIT 1

A small units having definite shape of geometry and nodes is called finite element.

2. What is meant by node or joint?

Each kind of finite element has a specific structural shape and is inter- connected with

the adjacent element by nodal point or nodes. At the nodes, degrees of freedom are

located. The forces will act only at nodes at any others place in the element.

3. What is the basic of finite element method?

Discretization is the basis of finite element method. The art of subdividing a structure

in to convenient number of smaller components is known as discretization.

4. What are the types of boundary conditions?

Primary boundary conditions

Secondary boundary conditions

5. State the methods of engineering analysis?

Experimental methods

Analytical methods

Numerical methods or approximate methods

6. What are the types of element?

7. 1D element

2D element

3D element

8. State the three phases of finite element method.

Preprocessing

Analysis

Post Processing

9. What is structural problem?

Displacement at each nodal point is obtained. By these displacements solution

stress and strain in each element can be calculated.
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10. What is non structural problem?

Temperature or fluid pressure at each nodal point is obtained. By using these

values properties such as heat flow fluid flow for each element can be calculated.

10. What are the methods are generally associated with the finite element analysis?

Force method

Displacement or stiffness method.

11. Explain stiffness method.

Displacement or stiffness method, displacement of the nodes is considered as the

unknown of the problem. Among them two approaches, displacement method is

desirable.

12. What is meant by post processing?

Analysis and evaluation of the solution result is referred to as post processing.

Postprocessor computer program help the user to interpret the result by displaying

them in graphical form.

13. Name the variation methods.

Ritz method.

Ray-Leigh Ritz method.

14. What is meant by degrees of freedom?

When the force or reaction act at nodal point node is subjected to deformation. The

deformation includes displacement rotation, and or strains. These are collectively

known as degrees of freedom

15. What is meant by discretization and assemblage?

The art of subdividing a structure in to convenient number of smaller components

is known as discretization. These smaller components are then put together. The

process of uniting the various elements together is called assemblage.

16. What is Rayleigh-Ritz method?

It is integral approach method which is useful for solving complex structural

problem, encountered in finite element analysis. This method is possible only if a

suitable function is available.

17. What is Aspect ratio?

It is defined as the ratio of the largest dimension of the element to the smallest

dimension. In many cases, as the aspect ratio increases the in accuracy of the

solution increases. The conclusion of many researches is that the aspect ratio
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18. What is truss element?

The truss elements are the part of a truss structure linked together by point joint
which transmits only axial force to the element.

19. What are the h and p versions of finite element method?

It is used to improve the accuracy of the finite element method. In h version, the

order of polynomial approximation for all elements is kept constant and the numbers of

elements are increased. In p version, the numbers of elements are maintained constant and

the order of polynomial approximation of element is increased.

20. Name the weighted residual method

Point collocation method

Sub domain collocation method

Least squares method

Galerkins method.

UNIT 2

21. List the two advantages of post processing.

Required result can be obtained in graphical form. Contour diagrams can be used to

understand the solution easily and quickly.

22. During discretization, mention the places where it is necessary to place a

node?

Concentrated load acting point

Cross-section changing point

Different material interjections

Sudden change in point load

23. What is the difference between static and dynamic analysis?

Static analysis: The solution of the problem does not vary with time is known as

static analysis

Example: stress analysis on a beam

Dynamic analysis: The solution of  the problem varies with time is known as

dynamic analysis
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24. Name any four FEA softwares.

ANSYS

NASTRAN

COSMOS

25. Differentiate between global and local axes.

Local axes are established in an element. Since it is in the element level, they change

with the change in orientation of the element. The direction differs from element to

element.

Global axes are defined for the entire system. They are same in direction for all the

elements even though the elements are differently oriented.

26. Distinguish between potential energy function and potential energy functional

If a system has finite number of degree of freedom (q1,q2,and q3), then the potential

energy expressed as,

π = f (q1,q2,and q3)

It is known as function. If a system has infinite degrees of freedom then the potential

energy is expressed as

 dy d 2y 
 f x , y , , ....dx
 2 

 dx dx 
27. What are the types of loading acting on the structure?

Body force (f)

Traction force (T)

Point load (P)

28. Define the body force

A body force is distributed force acting on every elemental volume of the

body Unit: Force per unit volume.

Example: Self weight due to gravity

29. Define traction force

Traction force is defined as distributed force acting on the surface of the

body. Unit: Force per unit area.

Example: Frictional resistance, viscous drag, surface shear

30. What is point load?

Point load is force acting at a particular point which causes displacement.
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31. What are the basic steps involved in the finite element modeling.

Discretization of structure.

Numbering of nodes.

32. Write down the general finite element equation.

F K u


33. What is discretization?

The art of subdividing a structure in to a convenient number of smaller components is
known as discretization.

34. What are the classifications of coordinates?

Global coordinates

Local coordinates

Natural coordinates

35. What is Global coordinates?

The points in the entire structure are defined using coordinates system is known as

global coordinate system.

36. What is natural coordinates?

A natural coordinate system is used to define any point inside the element by a set

of dimensionless number whose magnitude never exceeds unity. This system is

very useful in assembling of stiffness matrices.

37. Define shape function.

Approximate relation φ (x,y) = N1 (x,y) φ1 + N2 (x,y) φ2 + N3 (x,y) φ3

Where φ1, φ2, and φ3 are the values of the field variable at the nodes N1, N2, and

N3 are the interpolation functions.

N1, N2, and N3 are also called shape functions because they are used to express the

geometry or shape of the element.

38. What are the characteristic of shape function?

It has unit value at one nodal point and zero value at other nodal points. The sum of

shape function is equal to one.

39. Why polynomials are generally used as shape function?

Differentiation and integration of polynomial are quit easy.

The accuracy of the result can be improved by increasing the order of the

polynomial. It is easy to formulate and computerize the finite element equations
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

40. How do you calculate the size of the global stiffness matrix?

Global stiffness matrix size = Number of nodes X Degrees of freedom per node

UNIT 3

41. Write down the expression of stiffness matrix for one dimensional bar element.

AE  1 1
K   

l  1 1 
42. State the properties of stiffness matrix

It is a symmetric matrix

The sum of elements in any column must be equal to zero
It is an unstable element. So the determinant is equal to zero.

43. Write down the expression of stiffness matrix for a truss element.

u 
1

u1  l m 0 
0 u 

 
u 

2

0 0l mu 
 2    3 

 
u
 4 

44. Write down  the expression  of shape function  N and  displacement u for one

dimensional bar element.

U= N1u1+N2u2

N1= 1-X /

l N2 = X / l

45. Define total potential energy.

Total potential energy, π = Strain energy (U) + potential energy of the external forces

(W)

46. State the principle of minimum potential energy.

Among all the displacement equations that satisfied internal compatibility and the

boundary condition those that also satisfy the equation of equilibrium make the

potential energy a minimum is a stable system.

47. Write down the finite element equation for one dimensional two noded bar element.

AE  1 1
K   



l  1 1 


48. What is truss?

A truss is defined as a structure made up of several bars, riveted or welded together.
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49. States the assumption are made while finding the forces in a truss.

All the members are pin jointed.

The truss is loaded only at the joint

The self weight of the members is neglected unless stated.

50. State the principles of virtual energy?

A body is in equilibrium if the internal virtual work equals the external virtual work

for the every kinematically admissible displacement field

51. What is essential boundary condition?

Primary boundary condition or EBC Boundary condition which in terms of field

variable is known as Primary boundary condition.

52. Natural boundary conditions?

Secondary boundary natural boundary conditions which are in the differential form

of field variable is known as secondary boundary condition

53. How do you define two dimensional elements?

Two dimensional elements are define by three or more nodes in a two dimensional

plane. The basic element  useful for  two dimensional analysis is the triangular

element.

54. What is CST element?

Three noded triangular elements are known as CST. It has six unknown

displacement degrees of freedom (u1, v1, u2, v2, u3, v3). The element is called

CST because it has a constant strain throughout it.

55. What is LST element?

Six nodded triangular elements are known as LST. It has twelve unknown

displacement degrees of freedom. The displacement function for the elements are

quadratic instead of linear as in the CST.

56. What is QST element?

Ten nodded triangular elements are known as Quadratic strain triangle. It is also

called as cubic displacement triangle.

58. What meant by plane stress analysis?

Plane stress is defined to be a state of stress in which the normal stress and shear

stress directed perpendicular to the plane are assumed to be zero.



ME2353 Finite Element Analysis

SCE 127 Department of Mechanical Engineering



60. Define plane strain analysis.

Plane strain is defined to be state of strain normal to the xy plane and the shear

strains are assumed to be zero.

UNIT 4

61. Write down the stiffness matrix equation for two dimensional CST elements.

Stiffness matrix K B T D B At

BT -Strain displacement D-Stress strain matrix B-Strain displacement matrix 

62. Write down the stress strain relationship matrix for plane stress conditions.

 
1  0 

E 
1 12 0

  




1 


0 

12 
 0 0 

 2 




63. What is axisymmetric element?

Many three dimensional problem in engineering exhibit symmetry about an axis of

rotation such type of problem are solved by special two dimensional element called

the axisymmetric element

64. What are the conditions for a problem to be axisymmetric?

The problem domain must be symmetric about the axis of revolution All

boundary condition must be symmetric about the axis of revolution All

loading condition must be symmetric about the axis of revolution

65. Give the stiffness matrix equation for an axisymmetric triangular

element. Stiffness matrix K B T D B 2rA

66. What is the purpose of Isoparametric element?

It is difficult to represent the curved boundaries by straight edges finite elements. A

large number of finite elements may be used to obtain reasonable resemblance

between original body and the assemblage.

67. Write down the shape functions for 4 noded rectangular elements using natural

coordinate system.
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N1
1 11 N2 

1 11
4 4

N3 
1 1 1 N4 

11 1 
4 4

68. Write down Jacobian matrix for 4 noded quadrilateral elements.

J J 
J  11 12

J
 21

J
22 

69. Write down stiffnes matrix equation for 4 noded isoparametric quadrilateral elements.

Stiffness matrix K t 1 1 B T D B  J 
1 1

70. Define super parametric element.

If the number of nodes used for defining the geometry is more than of nodes used

for defining the displacement is known as super parametric element

71. Define sub parametric element.

If the number of nodes used for defining the geometry is less than  number of nodes

used for defining the displacement is known as sub parametric element.

72. What is meant by Isoparametric element?

If the number of nodes used for defining the geometry is same as number of nodes

used for defining the displacement is known as Isoparametric element.

73. Is beam element an Isoparametric element?

Beam element is not an Isoparametric element since the geometry and displacement

are defined by different order interpretation functions.

74. What is the difference between natural coordinate and simple natural

coordinate?

L1 = 1-x/l

L2 = x/l

75. What is Area coordinates?

L1 = A1/A L2 = A2/A L3 = A3/A

76. What is simple natural coordinate?

A simple natural coordinate is one whose value between -1 and 1.

77. Give example for essential boundary conditions.

The geometry boundary condition are displacement, slope.
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78. Give example for non essential boundary conditions.

The natural boundary conditions are bending moment, shear force

79. What is meant by degrees of freedom?

When the force or reaction act at nodal point node is subjected to deformation. The

deformation includes displacement rotation, and or strains. These are collectively

known as degrees of freedom.

80. What is QST element?

Ten noded triangular elements are known as Quadratic strain triangle. It is also

called as cubic displacement triangle.

UNIT 5

81. What meant by plane stress analysis?

Plane stress is defined to be a state of stress in which the normal stress and shear

stress directed perpendicular to the plane are assumed to be zero.

82. Define plane strain analysis.

Plane strain is defined to be state of strain normal to the x,y plane and the shear

strains are assumed to be zero.

83. What is truss element?
The truss elements are the part of a truss structure linked together by point joint

which transmits only axial force to the element.

84. List the two advantages of post processing.

Required result can be obtained in graphical form.

Contour diagrams can be used to understand the solution easily and quickly.

85. What are the h and p versions of finite element method?

It is used to improve the accuracy of the finite element method. In h version, the order

of polynomial approximation for all elements is kept constant and the numbers of

elements are increased. In p version, the numbers of elements are maintained constant

and the order of polynomial approximation of element is increased.
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86. During discretization, mention the places where it is necessary to place a node?

Concentrated load acting point Cross-

section changing point Different

material inter junction point Sudden

change in point load

87. What is the difference between static and dynamic analysis?

Static analysis: The solution of the problem does not vary with time is known as

static analysis

Example: stress analysis on a beam

Dynamic analysis: The solution of  the problem varies with time is known as

dynamic analysis

Example: vibration analysis problem.

88. What is meant by discretization and assemblage?

The art of subdividing a structure in to convenient number of smaller components is

known as discretization. These smaller components are then put together. The

process of uniting the various elements together is called assemblage.

89. What is Rayleigh-Ritz method?

It is integral approach method which is useful for solving complex structural

problem, encountered in finite element analysis. This method is possible only if a

suitable function is available.

90. What is Aspect ratio?

It is defined as the ratio of the largest dimension of the element to the smallest

dimension. In many cases, as the aspect ratio increases the in accuracy of the solution

increases. The conclusion of many researches is that the aspect ratio should be close

to unity as possible.

91. What is essential boundary condition?

Primary boundary condition or EBC, Boundary condition which in terms of field

variable is known as Primary boundary condition

92. Natural boundary conditions.

Secondary boundary natural boundary conditions which are in the differential
form of field variable is known as secondary boundary condition.

93. How do you define two dimensional elements?

Two dimensional elements are define by three or more nodes in a two dimensional
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plane. The basic element useful for two dimensional analysis is the triangular

element.

94. State the principles of virtual energy?

A body is in equilibrium if the internal virtual work equals the external virtual work

for the every kinematically admissible displacement field..

96. What is non-homogeneous form?

When the specified values of dependent variables are non-zero, the boundary

conditi said to be non-homogeneous.

97. What is homogeneous form?

When the specified values of dependent variables is zero, the boundary condition are

said to be homogeneous.

98. Define initial value problem.

An initial value problem is one in which the dependent variable and possibly is

derivatives are specified initially.

99. Define boundary value problem.

A differential equation is said to describe a boundary value problem if the dependent

variable and its derivatives are required to take specified values on the boundary.
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