

FINANCIAL IMPACT OF SPACE WEATHER ANOMALIES – AN INSURER'S PERSPECTIVE

D. Wade D. Hoffer R. Gubby Atrium Space Insurance Consortium

OUTLINE

- Background on Lloyd's and Atrium Space Insurance Consortium (ASIC)
- The Space Insurance Market
- Space Weather versus Satellite Anomalies and Insurance Claims
- Relevance of Space Weather Forecasting to Insurers
- Summary/Conclusions

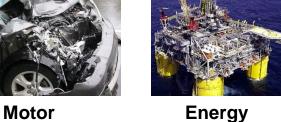
INSURANCE AT LLOYD'S

1688 - Edward Lloyd's coffee shop

 Began with shipping, but continued to evolve with each new emerging market – automobiles, aviation, space

Lloyd's will insure (almost) anything:

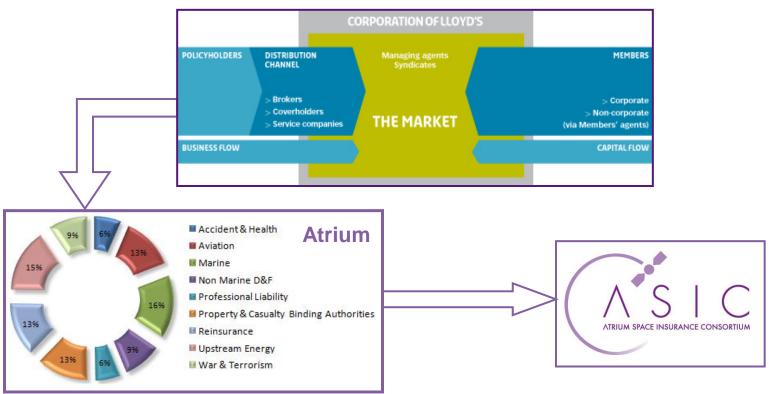
- Egan Ronay's tastebuds (\$400,000)
- Celine Dion's vocal chords
- Michael Flatley's legs (\$47 million)


- 84 syndicates
- 773 names (unlimited liability)
- 1238 corporate members (limited liability)
- £22 billion of gross premium was written in 2010

CLASSES OF INSURANCE

Property

Kidnap & Ransom


Cargo

Specie

Marine

ATRIUM SPACE INSURANCE CONSORTIUM

Atrium is a specialist insurer and reinsurer at Lloyd's. Its underwriting capacity for 2012 is £420M (approximately \$650M)

ASIC comprises 8 Lloyd's syndicates

\$30M line on any one launch / satellite

SPACE INSURANCE SCOPE

Pre-Launch

Third Party Liability

THE SPACE INSURANCE MARKET

Customer base: 50 or so satellite operators, primarily GEO communication

satellite operators and a small number of LEO operators

Insured launches per year: Between 30-35 insured launches take place every year.

Coverage typically begins at "intentional ignition" and

expires 1 year from launch

Insured in-orbit satellites

per year:

Approximately 190 satellites are insured each year, typically

on an annual basis, representing approximately half of all

commercial satellites,

Total insured value in orbit: ~\$22 billion; \$20.6 billion in GEO, \$1.4 billion in LEO

Basis of coverage: Replacement value (Total Loss), or lost capacity (Partial

Loss)

Scope of coverage: Insured against any and all causes of failure except

terrorism, civil unrest, and war, including the use of anti-

satellite weapons

RISK ASSESSMENT

- We know space weather causes satellite anomalies
- Space insurance covers "all risks"
- As Insurers, what we have to assess is:
 - 1) What is the likelihood of a claim arising from a space weather event?
 - 2) How much is the claim likely to be?

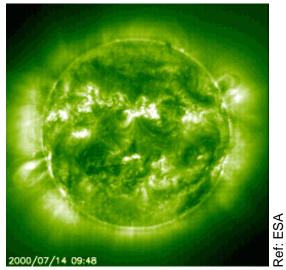
SATELLITE ANOMALIES

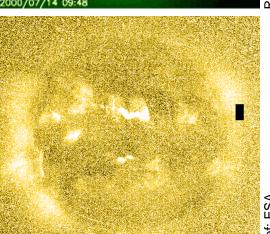
WHAT HAS BEEN OUR EXPERIENCE TO DATE?

SATELLITE ANOMALIES

Subsystem	All Anomalies	%	Space Environment only	%	TLs or PLs	%
Communications Payloads	572	25%	124	29%		
Optical / Imaging Payloads	11	0.5%	1	0.2%		
ACS incl. computer	567	25%	118	27%		
Power	432	19%	85	20%	8	89%
T & C / Data handling	257	11%	95	22%	1	11%
Prop	275	12%	4	1%		
Thermal	131	6%	8	2%		
Mechanisms	17	1%				
Structure	1	0.04%				
Unattributed	11	0.5%				
Launch Failure	28	1%				
Totals	2302	100%	435	100%	9	100%
			19%		0.4%	

The ASIC database includes anomalies from 922 satellites going back to 1986




SATELLITE ANOMALIES

- Only a relatively small proportion of satellite anomalies to date were attributable to space weather.
- How many of these anomalies resulted in claims?

REAL-LIFE WORST-CASE SCENARIOS

BASTILLE DAY STORM (July 2000)

- Coronal Mass Ejection (CME) unleashed billions of tons of plasma travelling at 4 million miles per hour (double usual speed)
- Nine hour G5 geomagnetic storm
- Aurora seen in El Paso, Texas (31°N)
- equide leading to reprouting of a
- 8 T DES TO ACE, WIND TO THO!
- · Astro D satellite permanently lost
- Degradation of solar arrays on numerous GEO satellites
- ati of poining on

(M) ()c ol el

- GPS accuracy degraded leading to re-routing of aircraft
- Power outage in Sweden
- More than half of deep space and near Earth missions experienced effects
- •45 satellites reported anomalies
- •Voyager 2 experienced diffuse particle stream in April 2004 at a distance of 7 billion miles

ef: ESA

NOAA Satellite Anomaly Mitigation Stakeholders Meeting 23 April 2012 Boulder, CO

ACTUAL CLAIMS

- During the years 1994 2011 the total amount of claims was \$10,793M. Only two claims were unambiguously attributable to space weather:
 - Anik E1 \$142.5M
 - Telstar 401 \$132.0M
 - \$274.5M, less than 3% of the overall total
- However, this does not imply that space weather can be ignored as a risk.

QUESTION NUMBER 1:

- We know that space weather causes satellite anomalies
- We know that satellite anomalies can result in claims
- We don't want to get claims.
- The more that can be done to prevent claims the happier we will be.

So - is the risk from space weather being adequately controlled?

RISK - SOME OPEN QUESTIONS

- Why is such a variation seen in anomalies between same-type satellites?
- Do designers have a full understanding of the interaction between the space environment and each design and manufacturing variable?
- What is the true worst-case boundary condition for design?
- Should top-level ESD-type immunity testing be included as part of a comprehensive test program?

SPACE WEATHER FORECASTING – IS IT USEFUL TO INSURERS?

SPACE WEATHER FORECASTING

- The decision overall risk, in
- Space weather exclusion; risk into the overa
- However, on a sensitivity to sensitivity to sensitivity to sensitivity to sensitivity to sensitivity to sensitivity.

essment of the

bject of a blanket ust be factored

shown abnormal s and exclusions gned, we are

SUMMARY & CONCLUSIONS

- Insurers know that space weather is a definite contributor to risk.
- ➤ However, this risk is usually small in relation to other risk factors.
- ➤ The risk posed by space weather is being controlled to a reasonable degree, although we feel there is room for some improvement.
- Space weather forecasting in its present state of development is of limited value to insurers.
 - That said, it can lead to improvements in the design of satellites which will benefit us all.