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1. (4 points) Find all solutions to x2 + 28x+ 31 ≡ 0 (mod 35), using a method other than
simply testing all 35 congruence classes modulo 35. Show your work.

Since 35 = (5)(7), we can solve this equation by finding all solutions modulo 5 and
modulo 7, then applying the Chinese Remainder Theorem. Our equation reduces to:

x2 + 3x+ 1 ≡ 0 (mod 5) and x2 + 0 + 3 ≡ 0 (mod 7)

We could solve these two equations by simply plugging in all congruence classes modulo
in Z/5Z and Z/7Z, respectively, until we find the roots (if any exist). Alternatively, we
can notice that if we choose suitable representatives of the coefficients, we can factor the
polynomials over Z:

x2 + 3x+ 1 ≡ 0 (mod 5)

x2 − 2x+ 1 ≡ 0 (mod 5)

(x− 1)2 ≡ 0 (mod 5)

x2 + 3 ≡ 0 (mod 7)

x2 − 4 ≡ 0 (mod 7)

(x− 2)(x+ 2) ≡ 0 (mod 7)

Because there are no zero divisors in Z/5Z, the only way that the product (x− 1)2 can
be zero modulo 5 is if one of the factors (x − 1) is zero modulo 5, that is, if x ≡ 1
(mod 5). Similarly, the product (x − 2)(x + 2) can only be zero modulo 7 if one of the
factors is zero, so x ≡ ±2 (mod 7).

To find all solutions x modulo 35, we use the Chinese Remainder Theorem. First, using
the Euclidean algorithm, we find integers u, v so that 5u+ 7v = 1.

7 = 5 + 2

5 = 2(2) + 1

1 = 5− 2(2)

1 = 5− 2(7− 5)

1 = 3(5)− 2(7)

Then the simultaneous system x ≡ 1 (mod 5) and x ≡ 2 (mod 7) has the solution:

3(5)(2)− 2(7)(1) ≡ 16 (mod 35)

and the system x ≡ 1 (mod 5) and x ≡ −2 (mod 7) has the solution:

3(5)(−2)− 2(7)(1) ≡ −44 ≡ 26 (mod 35)

and so we conclude that there are two solutions in Z/35Z, 16 and 26.
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2. (a) (2 points) Andrei and Bruno are using RSA with modulus n = pq = 9991. Naively,
Bruno chose values of p and q with a very small difference. Use this information to
factor n. Show your work.

When p and q have a small difference, n is vulnerable to Fermat factorization. We
compute n + a2 for a = 1, 2, 3, 4 . . . until we find a perfect square. In this case, we
notice that n+ 32 = 10000 = (100)2. Then, using the difference of squares formula:

n = (100)2 − 32

n = (100 + 3)(100− 3)

n = (103)(97)

(b) (2 points) Amélie and Becca are using RSA with modulus n = pq = 5671. The
eavesdropper Erin discovers that 6392 ≡ 9 (mod n). Show how Erin uses this in-
formation to factor n.

Since n divides the product (6392 − 32) = (639 − 3)(639 + 3), any prime factor of
n must divide the factors 636 and 642. We choose one of these numbers use the
Euclidean algorithm to compute its gcd with n:

5671 = 8(636) + 583

636 = 583 + 53

583 = 11(53)

We find that gcd(636, 5671) = 53, and we can factor 5671 = (53)(107).
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3. (4 points) Use the Miller–Rabin test with a base b of your choice to investigate whether
n = 221 is prime. What can you conclude?

We choose the base b = 2, and factor n− 1 = 220 = 22(55).

In order to compute powers of 2 modulo n, we compile a table:

20 ≡ 1 (mod n)

21 ≡ 2 (mod n)

22 ≡ 4 (mod n)

24 ≡ 16 (mod n)

28 ≡ 35 (mod n)

216 ≡ 120 (mod n)

232 ≡ 35 (mod n)

So
255 = 232+16+4+2+1 ≡ (35)(120)(16)(4)(2)(1) ≡ 128 (mod 221)

We let b0 ≡ 128 (mod 221), and we iteratively square it.

b1 = b20 ≡ (128)2 ≡ 30 (mod 221)

Since 30 is not ±1 (mod 221), if n = 221 were prime, b21 ≡ 2n−1 (mod 221) could not
be 1 and so would violate Fermat’s Little Theorem. We conclude that 221 must be
composite.
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4. (3 points) The prime p = 83 has primitive root 5. Solve 5x ≡ 42 (mod 83), given that:

56 ≡ 21 (mod 83)

58 ≡ 27 (mod 83)

521 ≡ 24 (mod 83)

Use a method other than guess-and-check. Show your work.

We have the information we need to solve for the discrete logarithm of 42 = (2)(3)(7)
using the index calculus.

56 ≡ (3)(7) (mod 83)

58 ≡ 33 (mod 83)

521 ≡ (23)(3) (mod 83)

The second equation tells us that 8 ≡ 3L5(3) (mod 82). Since 3 is invertible modulo
82, this equation has a single possible solution for L5(3) (mod 82), which we find by
computing the inverse for 3:

82 = 3(27) + 1

1 = 82− 3(27)

so 3−1 ≡ −27 ≡ 55 (mod 82), and we can solve for

L5(3) ≡ (55)(8) ≡ 30 (mod 82).

The third equation tells us that

21 ≡ 3L5(2) + L5(3) (mod 82)

3L5(2) ≡ 21− 30 (mod 82) multiplying by 3−1

L5(2) ≡ 55(−9) ≡ 79 (mod 82)

The first equation tells us that 6 ≡ L5(3) + L5(7) (mod 82). We could solve for L5(7)
(mod 82), but there’s no need, since

L5(42) ≡ L5(2) + (L5(3) + L5(7)) ≡ 79 + 6 ≡ 3 (mod 82).

Since 5 is a primitive root, the integers congruent to 3 (mod 82) are all integer solutions.
We can easily verify our answer by computing 53 (mod 83).
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5. (2 points) The prime p = 47 has primitive root 10. Solve 10x ≡ 30 (mod 47).
Show your work.

10−1 ≡ 33 (mod 47)

100 ≡ 1 (mod 47)

101 ≡ 10 (mod 47)

102 ≡ 6 (mod 47)

103 ≡ 13 (mod 47)

104 ≡ 36 (mod 47)

105 ≡ 31 (mod 47)

106 ≡ 28 (mod 47)

(30) · (330) ≡ 30 (mod 47)

(30) · (337) ≡ 32 (mod 47)

(30) · (3314) ≡ 31 (mod 47)

(30) · (3321) ≡ 8 (mod 47)

(30) · (3328) ≡ 43 (mod 47)

(30) · (3335) ≡ 2 (mod 47)

(30) · (3342) ≡ 46 (mod 47)

We can solve the discrete log problem using the baby step, giant step method. We see
that the leftmost list gives numbers of the form 10a (mod 47) for integers 0 ≤ a < 7,
and the rightmost list gives numbers of the form

(30) · (33)7a ≡ (30) · (10−1)7a ≡ (30) · (10)−7a (mod 47)

for integers 0 ≤ a < 7.

We notice that 31 appears on both lists. Thus,

105 ≡ (30) · (3314) (mod 47)

105 ≡ (30) · (10−14) (mod 47)

1019 ≡ (30) (mod 47).

The solutions are all integers x congruent to 19 (mod 46).
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6. Let An be a set of length-n words in some alphabet A. Suppose that two words u and
v are Hamming distance d(u, v) ≥ (2t+ 1) apart for some t ∈ Z.

(a) (1 point) Define the Hamming sphere of radius t around a word w.

The Hamming sphere of radius t around w is the closed ball of radius t in the
Hamming metric centered at w, that is, it is the set of all words {v | d(v, w) ≤ t}.

(b) (2 points) Prove that the Hamming spheres of radius t around u and v are disjoint,
that is, no word is contained in both spheres. You can assume without proof that
Hamming distance satisfies the triangle inequality.

Let w be any word; we will show that w cannot be contained in both the Hamming
sphere of radius t around u and the Hamming sphere of radius t around v. By the
triangle inequality:

2t+ 1 ≤ d(u, v) ≤ d(u,w) + d(w, v)

which means that at least one of the two distances d(u,w) or d(w, v) must be strictly
greater than t, and so w can be contained in at most one of the two Hamming
spheres.

(c) (2 points) Conclude that a code with minimal distance d ≥ 2t + 1 can correct t
errors (using nearest-neighbour decoding).

If a codeword v is transmitted but errors occur in up to t of its coordinates, then
the resulting word will still be contained in the Hamming sphere of radius t around
v. The triangle inequality shows that this word must strictly greater than distance
t away from all other codewords; it cannot be contained in a Hamming sphere of
radius t around any other codeword. Thus its unique nearest neighbour codeword
is the original codeword v, and it can be accurately decoded.
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7. (3 points) Prove that a binary (7, 17, 3) code cannot exist. Give a justification for any
“bounds on codes” that you use.

A binary (7, 17, 3) would violate the Hamming Bound.

Assume a length-7 binary code with 17 codewords and minimal distance 3 did exist.
Then since 3 ≥ 2(1) + 1, by the previous question we could place disjoint Hamming
spheres of radius 1 around each codeword. Each of these balls would contain(

7

0

)
+

(
7

1

)
= 1 + 7 = 8

words in them. Because they are disjoint, the 17 Hamming spheres would collectively
contain (8)(17) = 136 words. But there only 27 = 128 binary length-7 words in total, so
this code is impossible.
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8. Let C be the [5, 2] linear binary code associated to the generator matrix

G =

[
1 0 1 0 1
0 1 0 0 1

]
(a) (1 point) List all codewords in C, and state the minimal distance.

Since C is 2-dimensional, it contains 22 = 4 codewords, all vectors in the span of
10101 and 01001. These are:

C = {00000, 10101, 01001, 11100}.

The minimal distance of the code is equal to the minimal Hamming weight of the
codewords; by inspection this is 2.

(b) (1 point) Write down a parity check matrix for the code C, and compute the syn-
drome of v = (1, 0, 0, 1, 1).

A parity check matrix for G = [I2 P ] is

H = [−P T I3] =

 1 0 1 0 0
0 0 0 1 0
1 1 0 0 1


The syndrome of v is

vHT =
[

1 0 0 1 1
]


1 0 1
0 0 1
1 0 0
0 1 0
0 0 1

 =
[

1 1 0
]

Since it is nonzero, we know v is not a codeword.

(c) (1 point) Write down all vectors in the coset v + C, and identify a coset leader.

v + C = {v + c | c ∈ C} = {10011, 00110, 11010, 01111}

The coset leader is the word in v + C with least Hamming weight; by inspection
this is 00110.

(d) (1 point) Find the nearest codeword (in Hamming distance) to v.

The nearest codeword to v obtained by subtracting v from the coset leader in v+C.
We get 00110− 10011 = 10101.
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9. (3 points) Let P (x) be the irreducible polynomial P (x) = x3 + 2x + 1 with coefficients
in Z/3Z. Find a multiplicative inverse for (x+ 1) modulo P (x). Show your work.

We use the Euclidean algorithm and polynomial division. Here I will use equal signs,
even though all coefficients are understood to be congruence classes modulo 3.

x2 − x + 3

x+ 1
)

x3 + 2x + 1
− x3 − x2

− x2 + 2x
x2 + x

3x + 1
− 3x− 3

− 2

x3 + 2x+ 1 = (x2 + 2x)(x+ 1) + 1

1 = x3 + 2x+ 1− (x2 + 2x)(x+ 1)

1 = (x3 + 2x+ 1) + (−x2 − 2x)(x+ 1)

1 = (x3 + 2x+ 1) + (2x2 + x)(x+ 1)

We conclude that (x+ 1)−1 (mod P (x)) ≡ 2x2 + x.

It is easy to verify the answer by multiplying out (x+ 1)(2x2 + x).
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10. (9 points) State whether each of the following assertions is always true by writing “True”
or “False”. No justification necessary.

(a) If φ is Euler’s totient function, then φ(nm) = φ(n)φ(m) for any integers n and m.

False. This is true in general only when n and m are coprime.

(b) The equation x28 ≡ 1 (mod 29) has exactly 28 solutions in Z/29Z.

True. Since 29 is prime, all 28 units satisfy this equation by Fermat’s Little Theo-
rem. The congruence class of zero does not satisfy the equation, so there are exactly
28 solutions.

(c) The Jacobi symbol

(
122

1235

)
= 1.

False.(
122

1235

)
=

(
2

1235

)(
61

1235

)
= (−1)

(
61

1235

)
since 1235 ≡ 3 (mod 8)

= (−1)

(
1235

61

)
since 61 ≡ 1 (mod 4)

= (−1)

(
15

61

)
since 1235 ≡ 15 (mod 61)

= (−1)

(
3

61

)(
5

61

)
= (−1)

(
61

3

)(
61

5

)
since 61 ≡ 1 (mod 4)

= (−1)

(
1

3

)(
1

5

)
reducing modulo 3 and modulo 5

= (−1)(1)(1) = −1
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(d) Suppose φ(n) is even and Z/nZ has a primitive root. Then exactly half the units
in Z/nZ are squares.

True. If α is a primitive root, then the φ(n) units are exactly the powers of alpha

α, α2, α3, . . . , αφ(n) = 1.

Half of these powers are even, and these elements are evidently squares. The odd
powers cannot be squares: if a unit αm had a square root β, then we can express β
as a power of α, say, β ≡ αk (mod n), and

αm ≡ β2 ≡ (αk)2 ⇐⇒ m ≡ 2k (mod φ(n)).

Since φ(n) is even, this can happen only if m is even. Thus only the even powers
of α are squares.

(e) For b ∈ Z not a multiple of 103, exactly one of b and −b is a square modulo the
prime 103.

True. Since b is not a multiple of 103, it is invertible modulo 103. If b and −b were
both squares, then their quotient b(−b)−1 ≡ −1 mod 103 would also be a square.
We proved that −1 is never a square modulo any prime congruent to 3 (mod 4).

On the other hand, one of b and −b must be a square, since we proved b
103+1

4 ≡ b26

(mod 103) is a square root of either b or −b.

(f) If n has a prime factor p such that p− 1 = 2332, then n can be successfully factored
using the (p− 1) algorithm with bound B = 5.

False. For the (p− 1) algorithm to have a hope of succeeding, we need (p− 1) to
divide B!. In this case, since 5! is not divisible by 9, 5! is not divisible by (p − 1).
We need B at least 6.
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(g) Running the Miller-Rabin test with base b may allow us to find a nontrivial factor
of a composite integer n, but only if n is a Fermat pseudoprime to the base b.

True. The Miller-Rabin test can factor n only if bi 6= 1 and bi+1 ≡ b2i ≡ 1 (mod n)
at some step i with 0 < i < k − 1. In this case, bk ≡ b2

k−i−1

i+1 ≡ bn−1 (mod n) will
necessarily also be 1; n is a Fermat pseudoprime for the base b.

(h) If a linear code C has minimal distance d, then there is a codeword in C with
Hamming weight d.

True. Since d(u, v) = wt(u−v), if codewords u and v realize the minimum distance
d of the code C, then (u− v) will have weight d. By linearity u− v must also be a
codeword.

(i) The subset of rational numbers

{
b

2r

∣∣∣∣ b ∈ Z, 0 < r ∈ Z
}

is a field.

False. Not all nonzero elements in this set have multiplicative inverses, for example,
the integer 5 is in the set, but 1

5
is not.
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11. (10 points) Give examples of each of the following, or briefly state why an example can-
not exist.

(a) An integer n so that Z/nZ contains exactly 8 units.

We want an integer n so that φ(n) = 8. The valid solutions are 15, 16, 20, 24, and
30.

(b) An integer n > 1 that cannot be a primitive root for any prime p > 2.

An integer n cannot be a primitive root of any prime p > 2 if it is a perfect square,
since then every unit would have a square root, which is impossible (citing, for exam-
ple, properties of Legendre symbols, or Problem 10(d).) So integers 4, 9, 16, 25, . . .
are solutions.

(c) A prime p > 7 such that 7 is a square modulo p, but p is not a square modulo 7.

By quadratic reciprocity, this can only be true when p is congruent to 3 (mod 4).
So candidate solutions are p = 11, 19, 23, 31, 43, 47, 51, 59 . . .

From here, we can search by trial and error for one of these primes p with

(
7

p

)
= 1.

Or, we can notice that the square units modulo 7 are 1, 4, and 2, so we want a
prime p congruent to 3, 5, or 6 modulo 7. Solutions are 19, 31, 47, 59, . . .

(d) A positive prime p such that 102 ≡ 212 (mod p).

This relationship will hold when p divides the difference

(212 − 102) = (21− 10)(21 + 10) = (11)(31).

Equivalently, we know squares have at most two roots modulo a prime p, so this
relationship can only hold when 10 ≡ ±21 (mod p)

The two possible solutions are p = 11 and p = 31. .

(e) A ternary linear code with M = 6 codewords.

A ternary linear code of dimension k will contain 3k vectors. Since 6 is not a power
of 3, no such code can exist.

Page 13 of 20 Please go on to the next page . . .



Math 110 Final Exam 19 March 2015

(f) A [3, 2] binary linear code.

A solution is any set of four length-3 binary vectors that are closed under linear
combinations. For example,

C = {000, 100, 010, 110}.

(g) A (5, 3, 5) code.

We must choose 3 words of length 5 that all differ in all 5 positions. Using the
alphabet Z/3Z, one solution are the words

C = {00000, 11111, 22222}.

(h) A code with code rate 2/3.

Examples are any q-ary code of length 3 containing q2 codewords. One example is
the [3, 2] binary code from part (f).

(i) A finite field of characteristic 6.

No such field can exist: we proved on the homework that the characteristic of a
field must be a prime number. In this case, if a field had characteristic 6, then the
field elements (1 + 1) and (1 + 1 + 1) would be (nonzero) zero divisors; these cannot
exist in a field.

(j) An elliptic curve E over Z/5Z along with two of the points on the curve.

Let’s choose an elliptic curve of the form y2 = x3+bx+c. The easiest way to generate
an elliptic curve with known points is to choose b, then choose a point, then solve
for c. Let’s take b ≡ 1 (mod 5) and choose the point P = (1, 1). Solving, we find
c ≡ −1 ≡ 4 (mod 5). This curve contains the points P = (1, 1) and −P = (1,−1).
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12. (3 points) Let F be a field. Let 1 denote the multiplicative identity, and (−1) denote its
additive inverse. Use the field axioms to prove that (−1) · (−1) = 1.

Definition. A field is a set F with two binary operations on F called addition, denoted +, and
multiplication, denoted · , satisfying the following field axioms:

FA0 (Closure under Addition) For all x, y ∈ F, the sum x+ y is contained in F

FA0 (Closure under Multiplication) For all x, y ∈ F, the product x · y is contained in F.

FA1 (Commutativity of Addition) For all x, y ∈ F, x+ y = y + x.

FA2 (Associativity of Addition) For all x, y, x ∈ F, (x+ y) + z = x+ (y + z).

FA3 (Additive Identity) There exists an element 0 ∈ F such that x+ 0 = 0 + x = x for all x ∈ F.

FA4 (Additive Inverses) For any x ∈ F, there exists y ∈ F such that x+ y = y + x = 0.

FA5 (Commutativity of Multiplication) For all x, y ∈ F, x · y = y · x.
FA6 (Associativity of Multiplication) For all x, y, z ∈ F, (x · y) · z = x · (y · z).
FA7 (Multiplicative Identity) There exists an element 1 ∈ F such that x ·1 = 1 ·x = x for all x ∈ F.

FA8 (Multiplicative Inverses) For any x ∈ F such that x 6= 0, there exists y ∈ F such that
x · y = y · x = 1.

FA9 (Distributivity of Multiplication over Addition) For all x, y, z ∈ F, x · (y+ z) = x · y+x · z.
FA10 (Distinct Additive and Multiplicative Identities) 1 6= 0.

There are many ways to prove this result. Here is one possibility.

Proof. We first show that (−1) · (−1) + (−1) = 0.

(−1) · (−1) + (−1) = (−1)(−1) + (−1)(1) by definition of multiplicative identity

= (−1)(−1 + 1) FA9

= (−1)(0) by definition of multiplicative inverse,

= 0 by a result on the homework.

Then, adding 1 to both sides of the equation (−1) · (−1)− 1 = 0 gives

(−1) · (−1) = 1, as desired.
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13. (a) (2 points) Let F be a field, and u a nonzero element of F. Show that if a 6= b for
any a, b ∈ F, then ua 6= ub.

Suppose that ua = ub for some nonzero element u in F and elements a, b ∈ F.
Since u has an inverse, we can multiply both sides by u−1 to conclude a = b. Thus
whenever a 6= b, the products ua and ub cannot be equal.

(b) (3 points) Suppose F is a finite field containing q elements, and let 1 be the multi-
plicative identity. Prove that if u is a nonzero element of F, then uq−1 = 1.

Hint: Use (a) and adapt our proof of Euler’s theorem.

Suppose that u is a nonzero element of F, and let

a1, a2, . . . , aq−1

be a list of all nonzero elements of F. By a result on the homework, fields contain
no zero divisors, so the product uai will be nonzero for any i. By Part (a), the
product uai will be distinct for each i, and so the list

ua1, ua2, . . . , uaq−1

will again be a list of the (q − 1) nonzero elements of F, each appearing exactly
once, possibly in a different order. Thus, the products of all the elements in these
two lists will be equal:

a1a2 · · · aq−1 = (ua1)(ua2) · · · (uaq−1) = uq−1a1a2 · · · aq−1

Here, we are using both associativity and commutativity of multiplication in a field.
Since every element ai has an inverse, we can multiply both sides of this equation
by all the inverses of a1, a2, . . . aq−1 to find

1 = uq−1.
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14. (2 points) Below is an elliptic curve over R. Label the following points in the plane: 2Q,
P +R, and −R. Show your work.

R

Q

P+R

-R

P=2Q
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15. (5 points) Let P be a point on an elliptic curve E, and let n, k ∈ Z. State what it means
for P to have (additive) order n. Prove that if P has order n, and gcd(n, k) = 1, then
kP also has order n.

By definition, the order of a point Q on an elliptic curve is the smallest positive integer
m so that mQ =∞. So in this case n is the smallest positive integer such that nP =∞.

To prove that kP has order n, we must show two things: that n(kP ) = ∞, and that
`(kP ) 6=∞ for an 0 < ` < n.

By definition,
kP = P + P + · · ·+ P︸ ︷︷ ︸

k times

,

and
n(kP ) = kP + kP + · · ·+ kP︸ ︷︷ ︸

n times

= (nk)P = k(nP ),

so n(kP ) = k(nP ) = k(∞) = ∞ +∞ + · · · +∞ = ∞ as desired. This shows that the
order of kP is no greater than n.

Now suppose that `(kP ) = (`k)P =∞ for some ` ∈ Z. We can divide `k by n to write

(`k) = qn+ r for some remainder 0 ≤ r < n.

Then
∞ = `(kP ) = (qn+ r)P = q(nP ) + rP =∞+ rP = rP.

Since 0 ≤ r < n and n is the order of P , the remainder r must be zero.

It follows that `k ≡ 0 (mod n). By assumption, k is coprime to n, and so has an inverse
modulo n; multiplying through by k−1 (mod n) we see that ` ≡ 0 (mod n).

The smallest positive residue of 0 modulo n is the integer n. We conclude that n is the
smallest positive integer such that n(kP ) =∞, and therefore n is the order of kP .
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16. Consider the equation y2 = x3+43 defined over Z/55Z, containing the point P = (7, 34).

(a) (1 point) Use the elliptic curve addition law to compute 2P . Show your work.
Note that (68)−1 ≡ 17 (mod 55).

Using the formula for the addition law for P + P = (x3, y3)

m ≡ 3(x2) + b

2y
≡ (3(72) + 0)(2(34))−1 ≡ (147)(17) ≡ 24 (mod 55)

x3 ≡ m2 − 2x ≡ 242 − 2(7) ≡ 12 (mod 55)

y3 ≡ m(x− x3)− y ≡ 24(7− 12)− 34 ≡ 11 (mod 55)

So we have (7, 34) + (7, 34) = (12, 11) on the curve.

(b) (3 points) Factor n = 55 using the equation y2 = x3 + 43 and the point P .
Show your work.

We will compute multiples of P in hopes of finding a slope m with a denominator
that is not invertible modulo 55.

3P = P + 2P = (7, 34) + (12, 11)

First we compute the slope m:

m =
y2 − y1
x2 − x1

≡ (11− 34)(12− 7)−1 ≡ (32)(5)−1 (mod 55)

But when we use the Euclidean algorithm to attempt to invert 5 (mod 55), we find
that gcd(5, 55) = 5, and we are able to factor 55 = (5)(11).

Page 19 of 20 Please go on to the next page . . .



Math 110 Final Exam 19 March 2015

17. (4 points (bonus)) Find a polynomial q(x) with integer coefficients with no rational
roots, but satisfying the following property: q(x) has a root in Z/pZ for any prime
p. In other words, for each prime p the equation q(x) ≡ 0 (mod p) has a solution x.
Prove your answer.

Hint: It is possible to do this with a polynomial of the form q(x) = (x2−a)(x2−b)(x2−c)
for suitably chosen integers a, b, c.

One solution is the polynomial q(x) = (x2−2)(x2−3)(x2−6). None of the integers 2, 3,
or 6 is a square, so this polynomial has no rational roots.

However, we can show for any prime p, at least one of 2, 3, and 6 must be a square
modulo p, and so its square root will be a root of the polynomial modulo p. The crucial
feature is that 6 = (2)(3).

If the prime p is 2 or 3, then x = 0 is a solution.

If the prime p is not 2 or 3, then 2, 3, and 6 are all units modulo p. One way to proceed
is to cite the primitive root theorem, and express 2 and 3 as powers of a primitive root
α. If they are both non-squares and have odd exponents, then their product will have
an even exponent and necessarily be a square.

Equivalently, we can use properties of the Legendre symbols:(
6

p

)
=

(
2

p

)(
3

p

)
If neither 2 nor 3 is a square modulo p, then

(
2

p

)
and

(
3

p

)
will both be −1; their

product will be 1 and 6 must be a square modulo p.
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