MATH CURRICULUM MAP 2013-14
with enVisionMath

FIFTH GRADE ENVISION MATH CURRICULUM MAP
 CANYONS SCHOOL DISTRICT

$$
2013-2014
$$

Curriculum Mapping Purpose

Canyons School District's curriculum math maps are standards-based maps driven by the Common Core State Standards and implemented using Scott Foresman-Addison Wesley enVisionMATH ©2011. Student achievement is increased when both teachers and students know where they are going, why they are going there, and what is required of them to get there. To that end, curriculum maps answer these questions:

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	VOCABULARY \& NOTES
What do students know?	What concepts and skills do students need to know?	How will students learn the What vocabulary is necessary for depth of understanding?	

Curriculum Maps are a tool for:

- ALIGNMENT: Provides support and coordination between concepts, skills, standards, curriculum, and assessments
- COMMUNICATION: Articulates expectations and learning goals for students
- PLANNING: Focuses instruction and targets critical information
- COLLABORATION: Promotes professionalism and fosters dialogue between colleagues about best practices pertaining to sequencing, unit emphasis and length, integration, and review strategies

These maps were collaboratively developed and refined by teacher committees using feedback from classroom teachers, achievement coaches, building administrators, and the office of Evidence-Based Learning. It is with much appreciation that we recognize the many educators that collaborated in the effort to provide these maps for the teachers and students of CSD. Specific individuals that have assisted in the writing and editing of this document include:

Tana	Allred	Karen	Davis	Sheila	McDonald
Marlene	Barbano	Celeste	Erickson	Julie	McFarland
Karen	Bentley	Julie	Fielding	Kimille	Moreton
Catherine	Bond	Barbara	Foltz	Debbie	Owens
Trish	Boswell	Patricia	French	Teresa	Ramey
Jen	Buttars	Melissa	Garber	Joani	Richardson
Rebekah	Callahan	LaNae	Goates	Piper	Riddle
Wendy	Casperson	Elizabeth	Gould	Amber	Roderick-Landward
Trudy	Cloward	Amanda	Hansen	Jan	Shreeve
Stephanie	Cobabe	Lisa	Hubbard	Cathy	Sunderland
Bethany	Cordes	Tanya	Johnson	Nancy	Swinyard
MaryLou	Damjanovich	Kimberly	Jones	Tara	Toraya
Tami	Dautel	Jones	Karlie	Jessica	Vidal
Steve	Davies	Emigh	Lo	LeeAnne	Walker

TABLE OF CONTENTS

General Information

page 1CSD Academic Framework to Support Continuous Improvementpage 3
Evidence-Based Instructional Priorities Applied to Math Instruction page 4
Common Core Standards for Mathematical Practice page 5
Fifth Grade Math Common Core At a Glance page 6
I-CANyons Report Card Standards page 7
Math Block page 8
Fith Grade Year at a Glance page 9
Fifth Grade Scope and Sequence page 10
The Core and More Lesson Checklist page 42
Assessment Continuum page 46
Fifth Grade Math Core Standards page 47

General Information
 $5^{\text {th }}$ Grade

Purpose

This map was created by grade level teachers as a scope and sequence to guide and support math curriculum planning and instruction for the year.

Topics

Topics identified as review are covered in a previous grade and may be used as necessary. Topics identified as core must be covered.
Topics identified as not in grade-level core should be used sparingly and only if the grade-level core has been sufficiently taught and mastered.

Common Core Lessons (CC)

Common Core lessons have been added to better align enVision 2011 to the Common Core State Standards. CC lessons can be accessed through SuccessNet's "Teacher Resources" by clicking on "Transitioning to Common Core with envision Math."

SuccessNet

SuccessNet is the digital platform for enVisionMATH. Each teacher has 2 SuccessNet accounts:

- Teaching Account-this account houses the 2011 enVisionMATH digital resources adopted by Canyons School District. This account is used for math instruction, lesson planning, lesson videos, topic or weekly tests, etc. This account can also be used to customize assessments for classroom use. Teachers are responsible for setting up their own SuccessNet accounts so that they can choose their log-in and passwords.
- Team CFA Account-this account is used for quarterly CFA administration and reports. Though this account houses the 2012 enVisionMATH resources, we have not adopted these materials and only have permission from Pearson to use this account for assessment purposes. The log-in is: SchoolNameGrade. The password is: CSDcfa.

Common Formative Assessment (CFA)

CFA's are an informational assessment for you as a teacher. The data should be used to help guide and inform your instruction. For example: Which problem(s) did all students get correct? Which problem(s) did a lot of students miss? What concepts need to be retaught? Be aware that there is a period of time (from a few days to 2 weeks) between the end of instruction and the deadline for completion of CFA's. These assessments may be taken any time before the date specified.

CFA \# 1 by early November covers Topics 1, 2, 3, 4, 5
CFA \# 3 by end of March covers Topics 10, 11, 12, 13, 14
CFA \#2 by end of January covers Topics 6, 7, 8, 9
CFA \# 4 by middle of May covers Topics 15, 16, 17, 18

Cumulative Review

It is critical to provide an ongoing review of previously taught concepts and skills. Teacher-directed, interactive reviews daily are ideal. EnVision includes a Daily Spiral Review that should be utilized for this purpose.

Homework

The struggle to develop new concepts should occur while the teacher is available to support and scaffold the learning and correct students' errors in thinking. Work that is sent home for students to complete should consist of concepts that have already been taught in class, been practiced, and the student can already do independently. Math homework should be for practice of learned skills and not for development of new skills. Practicing concepts incorrectly at home can reinforce errors in thinking and cause frustration for students and families. Practicing the skill to automaticity with homework assignments is appropriate after students have acquired the skill.

Canyons School District Academic Framework to Support Effective Instruction

Response to Intervention (RtI): Multi-Tiered System of Supports (MTSS) for Academics and Behavior

RtI	(1) providing high quality core instruction (and intervention) matched to students' needs	(2) using data over time (i.e. rate of learning, level of performance, fidelity of implementation)	(3) to make important educational decisions.
CSD Student Achievement Principles	- ALL CSD students and educators are part of ONE proactive educational system. - Evidence-based instruction and interventions are aligned with rigorous content standards. - Quality professional development supports effective instruction - Leadership at all levels is vital.	- Data are used to guide instructional decisions, align curriculum horizontally and vertically, and allocate resources. - CSD educators use instructionally relevant assessments that are reliable and valid. or ALL students.	CSD educators problem solve collaboratively to meet student needs.

Core Expectations for ALL students in the General Education Classrooms and Common Areas

Curriculum (Standards and Materials)	Evidence-Based Instructional Priorities	Time Allocation	Data Collection and Use	Fidelity of Implementation	Data-based Decision Making
- Big ideas, bodies of knowledge - Content standards and expectations aligned with the Utah Core Standards - World-Class Instructional Design and Assessment (WIDA) Schoolwide Positive Behavioral Interventions and Supports - Prioritized Curriculum Maps and Scientific, research-based programs - National Educational Technology Standards (NETS)	- Explicit instruction (I, We, Ya'll, You) - Maximizing opportunities to respond - Feedback - Vocabulary - Scaffolded instruction \& grouping structures - Acquisition, automaticity, then application - Classroom Positive Behavioral Interventions and Supports	-Daily maximization of instructional time - English Language Development (ELD) time - Building Leadership Team (BLT) meetings - Protected time for grade level and/or department team learning \& planning - Establish rules, routines, and arrangements to increase efficiency for adults and students Working smarter, not harder		Monitoring and evaluating effectiveness of implementation using formalized protocols (e.g. Walk-Throughs, fidelity checks) - Instructional and Peer Coaching supports - Products to demonstrate evidence of implementation	Use problem solving protocol to: Evaluate the effectiveness of Core/ Initial instruction (>80\% proficiency) for all subgroups and maintain or adjust - Analyze trends to inform decisions - Evaluate and adjust CSIP - Determine needs for supplemental instruction

Evidence-Based Instructional Priorities

Applied to Math Instruction

The Common Core Standards for Mathematical Practice

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important processes and proficiencies with longstanding importance in mathematics education.

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content

"The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices" (CCSS, 2010).

- Common Core State Standards Initiative, 2010: Mathematics>Introduction>Standards for Mathematical Practice @ Corestandards.org

Fifth Grade Overview

Operations and Algebraic Thinking (5.0A)

- Write and interpret numerical expressions.
- Analyze patterns and relationships.

Number and Operations in Base Ten (5.NBT)

- Understand the place value system.
- Perform operations with multi-digit whole numbers and with decimals to hundredths.

Number and Operations-Fractions

(5.NF)

- Use equivalent fractions as a strategy to add and subtract fractions.
- Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Measurement and Data

(5.MD)

- Convert like measurement units within a given measurement system.
- Represent and interpret data.
- Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

Geometry

(4.G)

- Graph points on the coordinate plane to solve real-world and mathematical problems.
- Classify two-dimensional figures into categories based on their properties.

Three Critical Areas

In Grade 5, instructional time should focus on three critical areas:

- developing fluency with addition and subtraction of fractions, and
- developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions);
- extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and
- developing understanding of volume.

Common Core Practice Standards

Overarching habits of mind of a productive mathematical thinker

1. Make sense of problems and persevere in solving them
2. Attend to precision

Reasoning and explaining

2. Reason abstractly and quantitatively
3. Construct viable arguments and critique the reasoning of others
Modeling and using tools
4. Model with mathematics
5. Use appropriate tools strategically

Seeing structure and generalizing

7. Look for and make use of structure
8. Look for and express regularity in repeated reasoning

I- Canyons Report Card Standards
Fifth Grade

Academic Standards

M = Mastered \quad NYM $=$ Not Yet Mastered $\quad *=$ Not Assessed

CSD Math Block 90 Minutes Daily

(Bolded items should be part of a daily math lesson.)
Math-Core-Standards.aspx
http://www.schools.utah.gov/fsp/College-and-Career-Ready/Meetings/2012-Spriing-Directors/Utah-

Month	MATH CONCEPTS	TOPICS from EnVision	CFA and CBM ASSESSMENT DATES
August (10 days)	- Numeration	Topic 1	
September (20 days)	- Adding and Subtracting Whole Numbers and Decimals - Multiplying Whole Numbers	Topic 2 Topic 3	M-COMP \& M-CAP
October (21 days)	- Dividing by 1-Digit Divisors - Dividing by 2-Digit Divisors	Topic 4 Topic 5	
November (16 days)	- Variables and Expression - Multiplying and Dividing Decimals	Topic 6 Topic 7	CFA \#1-Nov. 8
December (15 days)	- Multiplying and Dividing Decimals - Shapes	Topic 7 Topic 8	
January (19 days)	- Fractions and Decimals - Adding and Subtracting Fractions and Mixed Numbers - Multiplying Fractions and Mixed Numbers	Topic 9 Topic 10 Topic 11	M-COMP \& M-CAP $\text { CFA \#2 - Jan. } 31$
February (18 days)	- Adding and Subtracting Fractions and Mixed Numbers - Multiplying Fractions and Mixed Numbers	Topic 10 Topic 11	
March (20 days)	- Perimeter and Area - Solids - Measurement Units, Time, and Temperature	Topic 12 Topic 13 Topic 14	CFA \#3-Mar. 28
$\begin{gathered} \text { April } \\ \text { (18 days) } \end{gathered}$	- Equations and Graphs	Topic 17	
May/June (21 Days)	- Graphs and Data	Topic 18	M-COMP \& M-CAP CFA \#4 - May 16

AUGUST/ SEPTEMBER (30 days)
TOPIC 1 - NUMERATION

TOPIC 2 - ADDING AND SUBTRACTING WHOLE NUMBERS AND DECIMALS
 TOPIC 3- MULTIPLYING WHOLE NUMBERS
 Building Classroom Routine, Beginning of Year Assessment

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	NOTES	VOCABULARY
ASSESS		Beginning of Year Testing/Placement Testing	"Placement Test Master" (from Topic 1 in printable resources: Comprehensive pg. 53-58)	digits: The symbols used to write a number: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 value: the place of a digit in a number tells you the value: The number a digit represents, which is determined by the position of the digit.
REVIEW			Beginning of year review (teacher discretion)	
REVIEW		Topic 1: 1-1: Place Value	(Yellow highlight indicates lessons are not grade-level core.)	
REVIEW		1-2: Comparing and Ordering Whole Numbers		standard form: A way to write a number showing only its digits. e.g.: 2,613
CORE	5.NBT. 3 Read, write, and compare decimals to thousandths. a: Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7$ $\times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$	1-3: Decimal Place Value		expanded form: A number written as the sum of the values of its digits. e.g.: $2,000+400+70+6$

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

	(1/1000).			word formA number written in words. e.g.: four thousand, six hundred, thirty-two CORE5.NBT.3, 5.NBT.3.a 5.NBT.3.b Compare two decimals to thousandths based on meanings of the digits in each place, using $>=$, and $<$ symbols to record the results of comparisons.
ASSESS	1-4: Comparing and Ordering Decimals	equivalent decimals: Decimal numbers that have equivalent value. e.g. $3.5=3.50$		

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	NOTES	VOCABULARY
ASSESS	M-CBM	$\begin{gathered} \text { M-COMP \& } \\ \text { M-CAP } \end{gathered}$		SEPTEMBER 5-28
REVIEW		Topic 2: 2-1: Mental Math		commutative property: Numbers can be
CORE	5.NBT.4. Use place value understanding to round decimals to any place.	Topic 2: 2-2: Rounding Whole Numbers		added in any order and the sum remains the same.

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

		and Decimals		associative property: Addends can be regrouped and the sum remains the same. compensation: Adding and subtracting the same number to make the sum or difference easier to find. compatible numbers: Numbers that are easy to compute mentally.
REVIEW		2-3: Estimating Sums and Differences		
REVIEW		2-4 Problem Solving: Draw a Picture and Write an Equation	Reviews 4.OA. 3	
REVIEW		2-5: Adding and Subtracting	Reviews 4.NBT. 4	rounding: Replacing a number with a number that tells about how many or how
CORE	5.NBT.7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	CC 2-6a Modeling Addition and Subtraction of Decimals	-New materials available through SuccessNet	
CORE	5.NBT. 7	2-6: Adding Decimals		
CORE	5.NBT. 7	2-7: Subtracting Decimals		
CORE	5.NBT. 7	2-8: Problem Solving: MultipleStep Problems		

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

				that shows the place value of each digit. ex.: $3,000+500+60+2$ standard form: A common way of writing a number with commas separating groups of three digits starting from the right. ex.: 3,458 distributive property: Multiplying a sum (or difference) by a number is the same as multiplying each number in the sum (or difference) by the number and adding (or subtracting) the products. partial products: Products found by breaking one of two factors into ones, tens, hundreds, and so on, and then multiplying each of these by the other factor.

OCTOBER (21 days)

TOPIC 4 - DIVIDING BY 1-DIGIT DIVISORS

TOPIC 5 - DIVIDING BY 2-DIGIT DIVISORS

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	NOTES	VOCABULARY
CORE	5.NBT.6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Topic 4: 4-1: Dividing Multiples of 10 and 100		dividend: The number to be divided divisor: The number used to divide another number. quotient: The answer to a division problem.
CORE	5.NBT.6.	4-2: Estimating Quotients		
CORE	5.NBT. 6	4-3: Problem Solving: Reasonableness		
CORE	5.NBT. 6	4-4: Connecting Models and Symbols		
CORE	5.NBT. 6	4-5: Dividing by 1Digit Divisors		
CORE	5.NBT. 6	4-6: Zeros in the Quotient		
REVIEW		4-7: Understanding Factors	Reviews 4.OA. 4	

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

REVIEW		4-8: Prime and Composite Numbers	Reviews 4.OA. 4
CORE	5.NBT. 6	4-9: Problem Solving: Drawing a Picture and Write an Equation	
ASSESS		Topic 4 Assessment	
CORE	5.NBT. 6	Topic 5: 5-1: Using Patterns to Divide	
CORE	5.NBT. 6	5-2: Estimating Quotients with 2Digit Divisors	
CORE	5.OA.3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	CC 5-3a: Connecting Models and Symbols	
CORE	5.NBT. 6	5-3: Problem Solving:	

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

		Multiple-Step Problems	
CORE	$\underline{\mathbf{5 . N B T . 6}}$	5-4: Dividing by Multiples of 10	
CORE	$\underline{\mathbf{5 . N B T . 6}}$	5-5: 1-Digit Quotients	
CORE	$\underline{\mathbf{5 . N B T . 6}}$	5-6: 2- Digit Quotients	
CORE	$\underline{\mathbf{5 . N B T . 6}}$	5-7: Estimating and Dividing with Greater Numbers	
CORE	$\underline{\mathbf{5 . N B T . 6}}$	5-8: Problem Solving: Missing or Extra Information	
ASSESS		Topic 5 Assessment	

NOVEMBER \& DECEMBER (16 days \& 15 days)
TOPIC 6 - VARIABLES AND EXPRESSIONS
TOPIC 7 - MULTIPLYING AND DIVIDING DECIMALS
TOPIC 8 - SHAPES

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	$\begin{gathered} \text { ENVISION } \\ \text { LESSON } \end{gathered}$	NOTES	VOCABULARY
CORE	5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+$ 921) is three times as large as $18932+921$, without having to calculate the indicated sum or product.	Topic 6: 6-1: Variables and Expressions		variable: A symbol or letter that stands for a number. algebraic expression : An expression with variables
CORE	5.NBT.6. Find whole-number quotients of whole numbers with up to four-digit dividends and twodigit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	6-2: Patterns and Expressions	Extends $\text { 5.OA. } 2$	order of operations: The order in which operations are done in calculations. Work inside parentheses is done first. next, terms with exponents are evaluated. Then multiplication and division are done in order from left to right, and finally addition and
CORE	5.OA. 2	6-3: More Patterns and Expressions		subtraction are done in order from left to right. sequences: an ordered list of terms
CORE	5.OA. 2	CC 6-4a Patterns: Extending Tables		corresponding terms: two terms that are in the same position

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

CORE	5.OA.1 Use order of operations to solve problems	6-4: Distributive Property	
CORE	$\mathbf{5 . O A . 1}$	6-5: Order of Operations	
CORE	$\mathbf{5 . O A . 1}$	CC 6-6a Evaluating Expressions	
CORE	$\underline{\mathbf{5 . O A . 3}}$	CC 6-6b Addition and Subtraction Expressions	
CORE	$\mathbf{5 . O A . 2}$	CC 6-6c Multiplication and Division Expressions	
REVIEW		6-6: Problem Solving: Act It Out and Use Reasoning	Reviews $4 . O A .3$
ASSESS		Topic 6 Assessment	Topics 1, 2, 3, 4,5

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

		Decimals	
CORE	5.NBT.7.	7-4: Multiplying Two Decimals	
CORE	$\underline{\mathbf{5 . N B T . 2 , ~ 5 . N B T . 7 .}}$	7-5: Dividing Decimals by 10, 100, or 1,000	
CORE	$\underline{\mathbf{5 . N B T . 7 .}}$	CC 7-6a Number Sense: Decimal Division	
CORE	$\underline{\mathbf{5 . N B T . 7 .}}$	7-6: Dividing a Decimal by a Whole Number	
CORE	$\underline{\mathbf{5 . N B T . 7 .}}$	7-7: Estimation: Decimals Divided by a Whole Number	
CORE	$\underline{\mathbf{5 . N B T . 7 .}}$	7-8: Dividing a Decimal by a Decimal	
REVIEW		Topic 7: $7-9: ~ P r o b l e m ~$ Solving: Multiple-Step Problems	Reviews $4 . O A .3$

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

ASSESS		Topic 7: Assessment		
REVIEW		Topic 8: 8-1: Basic Geometric	Reviews 4.G. 1	polygon: A closed plane figure made up of line segments.
REVIEW		8-2: Measuring and Classifying Angles	Reviews 4.G. 1 4.MD. 5	regular polygon: A polygon that has sides of equal length and angles of equal measure.
CORE	5.G. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. 5.G. 4 Classify two-dimensional figures in a hierarchy based on properties.	8-3: Polygons		triangle: A polygon with 3 sides. quadrilateral: A polygon with 4 sides. pentagon: A polygon with 5 sides. hexagon: A polygon with 6 sides.
CORE	5.G.3, 5.G. 4	8-4: Triangles		octagon: A polygon with 8 sides.
CORE	5.G.3, 5.G. 4	8-5: Quadrilaterals		equilateral triangle A triangle in which all
CORE	5.G.3, 5.G.4	CC- 8-6a Special Quadrilaterals		isosceles triangle: A triangle that has at least two equal sides.
CORE	5.G. 4	CC 8-6b Classifying Quadrilaterals		scalene triangle: A triangle in which no sides

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

CORE	5.G.3, 5.G. 4	8-6: Problem Solving: Make and Test Generalizations	are the same length. right triangle: A triangle in which there is one right angle. acute triangle: A triangle with three acute angles. obtuse triangle: A triangle in which there is one obtuse angle. parallelogram: A quadrilateral in which opposite sides are parallelogram. trapezoid: A quadrilateral with only one pair of parallel sides. rectangle: A quadrilateral with 4 right angles. rhombus: A quadrilateral in which opposite sides are parallel and all sides are the same length. square: A quadrilateral with 4 right angles and sides the same length. generalization: A general statement. Example: A generalization about rectangles
ASSESS		Topic 8: Topic 8 Assessment	

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

				applies to all rectangles. polygon: A closed plane figure made up of line segments. regular polygon: A polygon that has sides of equal length and angles of equal measure. triangle: A polygon with 3 sides. quadrilateral: A polygon with 4 sides. pentagon: A polygon with 5 sides. hexagon: A polygon with 6 sides. octagon: A polygon with 8 sides. equilateral triangle A triangle in which all sides are the same length. isosceles triangle: A triangle that has at least two equal sides. scalene triangle: A triangle in which no sides are the same length. right triangle: A triangle in which there is

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

				one right angle. acute triangle: A triangle with three acute angles. obtuse triangle: A triangle in which there is one obtuse angle. parallelogram: A quadrilateral in which opposite sides are parallelogram. trapezoid: A quadrilateral with only one pair of parallel sides. rectangle: A quadrilateral with 4 right angles. rhombus: A quadrilateral in which opposite sides are parallel and all sides are the same length. square: A quadrilateral with 4 right angles and sides the same length.

JANUARY \& FEBRUARY (19 days \& 18 days)
Topic 9 - Fractions and Decimals
Topic 10 - Adding and Subtracting Fractions and Mixed Numbers
Topic 11- Multiplying Fractions and Mixed Numbers

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	NOTES	VOCABULARY
ASSESS	M-CBM	$\begin{gathered} \text { M-COMP \& } \\ \text { M-CAP } \end{gathered}$		
REVIEW		Topic 9: 9-1: Meanings of Fractions	Reviews 3.NF. 1	Equivalent Fractions: Fractions that name the same
CORE	5.NF.3. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	9-2: Fractions and Division		region, part of a set, or part of a segment. Simplest Form: A fraction in which the numerator and denominator have no common factors other than 1. Benchmark Fraction: Fractions that are commonly used for estimation: $1 / 4,1 / 3$, $1 / 2,2 / 3$, and $3 / 4$.
CORE	5.NF. 3. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$.	9-3: Mixed Numbers and Improper Fractions		Proper Fraction: A fraction

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

	Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?		
REVIEW		9-4 Equivalent Fractions	Reviews 4.NF. 1
REVIEW		9-5 Comparing and Ordering Fractions and Mixed Numbers	Reviews 4.NF. 2
REVIEW		9-6 Common Factors and Greatest Common Factor	Reviews $\text { 4.OA. } 4$
CORE	5.NF.2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$.	9-7 Fractions in Simplest Form	
CORE	5.NBT.3. Read, write, and compare decimals to thousandths.	9-8 Tenths and Hundredths	

whose numerator is less than its denominator.

Improper Fraction: A fraction whose numerator is greater than or equal to its denominator.

Mixed Number: A number that has a whole number and a fraction.

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

CORE	5.NF.1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d$ $=(a d+b c) / b d$.)	10-2 Common Multiples and Least Common Multiple	Common Denominator: A number that is the denominator of two or more fractions.
CORE	5.NF.1, 5.NF. 2	10-3 Adding Fractions with Unlike Denominators	(LCD): The least common multiple of the denominators of two or more fractions.
CORE	5.NF.1, 5.NF. 2	10-4 Subtracting Fractions with Unlike Denominators	
CORE	5.NF.1, 5.NF. 2	CC 10-5a Modeling Addition and Subtraction of Mixed Numbers	
CORE	5.NF.1, 5.NF. 2	10-5 Adding Mixed Numbers	
CORE	5.NF.1, 5.NF. 2	10-6 Subtracting Mixed Numbers	
CORE	5.NF.1, 5.NF. 2	CC 10-7a More Adding and Subtracting Mixed Numbers	
CORE	5.NBT.5.	10-7 Problem	

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

		Solving: Try, Check, and Review	
ASSESS		Topic Assessment	
CORE	5.NF.4, 5.NF.4.a, 5.NF. 6 4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(\mathbf{a} / \mathbf{b}) \times \mathbf{q}$ as a parts of a partition of \mathbf{q} into \mathbf{b} equal parts; equivalently, as the result of a sequence of operations $\mathbf{a} \mathbf{X} \mathbf{q} \div \mathbf{b}$. For example, use a visual fraction model to show (2/3)"a"4"="8/3, and create a story context for this equation. Do the same with $(2 / 3)$ a $X(4 / 5)=8 / 15$. (In general, $(a / b) X(c / d)=$ ac/bd.) 5.NF. 6 6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.	Topic 11: 11-1: Multiplying Fractions and Whole Numbers	Scaling: Comparing the actual length of an object to a drawing of the object. Resizing: When you increase or decrease the size of a object but it shapes remains similar. Reciprocals: A given number is a reciprocal of another number if the product of the numbers is one. Example: The numbers $1 / 8$ and $8 / 1$ are reciprocals because $1 / 8 \times 8 / 1=$ 1.
CORE	5.NF.5.a.	CC- 11-2a Estimating Products	
CORE	5.NF.4, 5.NF4.a, 5.NF. 6	11-2: Multiplying Two Fractions	
CORE	5.NF.4.b Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence a / b	CC 11-3a Area of Rectangle	

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

	$=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .		
CORE	5.NF.4, 5.NF.4.a, 5.NF. 6	11-3: Multiplying Mixed Numbers	
CORE	5.NF.5.b, 5.NF. 5 Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .	CC 11-4a Multiplication as Scaling	
CORE	5.NF. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. 5.NF.7.b Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 " \div$ " $1 / 5$), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 " \div(1 / 5)=20$ because $20 \times(1 / 5)=4$.	11-4: Relating Division to Multiplication of Fractions	
CORE	5.NF. 7 5NF.7.a Interpret division of a unit fraction by a non-zero whole number and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$. 5.NF.7.C Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much	CC 11-5a Dividing Unit Fractions by Non-Zero Whole Numbers	

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

	chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$. of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?	$11-5:$ Problem Solving: Draw a Picture and Write an Equation	Reviews $4 . O A .2$
CORE	$\underline{4 . O A .2}$	Topic 11 Assessment	
ASSESS			

MARCH \& APRIL (20 days \& 18 days)
TOPIC 12 - PERIMETER AND AREA
TOPIC 13 - SOLIDS
TOPIC 14 - MEASUREMENT UNITS, TIME, AND TEMPERATURE
TOPIC 17 - EQUATIONS AND GRAPHS

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	NOTES	VOCABULARY
CORE	5.MD. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.	Topic 12: 12-1: Using Customary Units of Length		
CORE	5.MD. 1	12-2: Using Metric Units of Length		
REVIEW		12-3: Perimeter	Reviews $\text { 4.MD. } 1$	
REVIEW	4.MD. 3	12-4: Area of Squares and Rectangles		
REVIEW	4.MD. 3	12-5: Area of Parallelograms	Reviews 4.MD. 3	
ASSESS		Topic 12 Assessment		

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

Not in grade-level core		Topic 13: 13-1: Solids 13-2: Relating Shapes and Solids 13-3: Surface Area	
CORE	5.MD.3.a A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.	13-4: Views of Solids	
CORE	5.MD. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement. 5.MD.3.b A solid figure that can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. 5.MD. 4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft., and improvised units. 5.MD.5a Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with wholenumber side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.	CC 13-5a Models and Volumes	
CORE	5.MD.3, 5.MD.3.b., 5.MD.5, 5.MD.5.a, 5MD.5.b Apply the formulas $V=I \times w \times h$ and $V=b \times h$	13-5: Volume	

Three-dimensional shape: Any geometric solid

Face: A flat surface of a solid that does not roll.

Cube: A solid figure with six congruent squares as its faces.

Edges: A line segment where two faces of a solid figure meet.

Vertices (vertex): The point where two rays meet to form an angle. The points where the sides of a polygon meet. The points where three or more edges meet in a solid figure that does not roll. The pointed part of a cone.

Prism: A solid figure with two congruent parallel bases and faces that are parallelograms.

Cylinder: A solid figure with two congruent circular bases.

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

Canyons School District elementary math maps are created by CSD elementary teachers and published by the CSD Office of Evidence-Based Learning.

CORE	5.MD. 1	14-2: Metric Units of Capacity	Outlier: A number in a data set that is very different from the rest of the numbers.
CORE	5.MD. 1	14-3: Units of Weight and Mass	Survey: Collecting information by asking a number of people the same question and recording their answers,
CORE	5.MD. 1	14-4: Converting Customary Units	
CORE	5.MD. 1	14-5: Converting Metric Units	
Not in grade-level core		Topic 14: 14-6: Elapsed Time 14-7: Elapsed Time in Other Units 14-8: Temperature Change 14-9: Problem Solving: Make a Table	Data: Pieces of collected information. Sample: A representative part of a larger group. Frequency Table: A table used to show the number of times something occurs.
ASSESS		Topic 14 Assessment	
ASSESS	CFA \#3	$\begin{gathered} \text { Topics 10, } 11,12, \\ 13,14 \end{gathered}$	Completed by March 28
Not in grade-level core		Topic 17: 17-1: Understanding Integers	

CORE	5.G.1. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). 5.G.2. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	17-2: Ordered Pairs		
CORE	5.G. 1	17-3: Distances on a Number Line		
CORE	5.G. 1	CC 17-4a Distances on the Coordinate Plane		
CORE	5.G.1, 5.G. 2 5.OA. 3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	CC 17-4b Patterns and Graphing		

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

CORE	5.G.1, 5.G.2, 5.OA.3	CC 17-4c More Patterns and Graphing		
Not in grade-level core		17-4: Graphing Equations $17-5: ~ P r o b l e m ~$ Solving: Work Backward		
ASSESS		Topic 17 Assessment		

MAY (21 days)
Topic 18: Graphs and Data

REVIEW, CORE, EXTEND, ASSESS	COMMON CORE STANDARD	ENVISION LESSON	NOTES	VOCABULARY
ASSESS	M-CBM	M-COMP \& M-CAP		
Not in gradelevel core		Topic 18: 18-1: Data from Surveys		Coordinate Grid: A grid used to show ordered pairs
CORE	5.MD. 2 Represent and interpret data. 2. Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	Topic 18: 18-2: Bar Graphs and Picture Graphs		X-Axis: A horizontal line that includes both positive and negative numbers. Y-Axis: A vertical line that includes both positive and negative numbers. Origin: The point where the two
CORE	5.MD. 2	Topic 18: CC 18-2a Making Line Plots		axes of a coordinate plane intersect. The origin is
CORE	5.MD. 2	Topic 18: CC 18-2b Measurement Data		$(0,0)$
Not in		Topic 18:		,

Canyons School District elementary math maps are created by CSD elementary teachers
and published by the CSD Office of Evidence-Based Learning.

gradelevel core		18-3: Line Graphs 18-4: Stem-and-Leaf Plots 18-5: Histograms 18-6: Circle Graphs 18-7: Mean 18-8: Median, Mode, and Range 18-9: Problem Solving: Make a Graph	that names a point on a coordinate grid. X-Coordinate: The first number in an ordered pair, which names the distance to the right or left from the origin along the x-axis. Y-Coordinate: The second number in an ordered pair, which names the distance up or down from the origin along the y-axis.
ASSESS		Topic 18 Assessment	
ASSESS	CFA \#4	Topics 17 \& 18	Completed by May 16

The CCSS Standard: The Envision Lesson:	
EXPLICIT INSTRUCTION	ENGAGEMENT
I do it, We do it, Y'all do it, You do it	All Students Saying, Writing, Doing
PROACTIVE PLANNING	VOCABULARY WORDS
The following questions should be considered for each part of the lesson: - What are the predictable failures for this lesson? (conceptually and behaviorally) - How will you prevent these failures? - What will you do to maintain consistency? - How will you know if it is working?	
\square cumulative review \square higher-order thinking, ask why \square have students visualize, draw, model \square math vocabulary \square milk the data \square incorporate measurement	\square real-world contexts \square number sense
ANTICIPATORY SET	(5 MINUTES)
Choose from the many options: - Review What You Know \square Interactive Math Stories \square Math Journaling \square Spiral Review \square Problem of the Day	C Choral Responses I Partner Responses Written Responses (Random call on students (No hand raising)
BUILDING A FOUNDATION	(5-10 MINUTES)
The Language of Math: Vocabulary instruction 1- How will you explicitly teach new vocabulary?	Choral Responses P Partner Responses Written Responses

Canyons School District's Evidence-Based Learning (EBL) Office ensures a proactive educational system for all students by supporting educators with proven practices in instruction, assessment, curriculum and problem-solving for improving academic and social competencies.

WHOLE GROUP INSTRUCTION: Concrete

Develop the Concept: Interactive Learning (Hands-on)
1- What materials/manipulatives will you need?
2- Will each student have enough materials to model the problems? -If they do not, will you have them pair up or adjust the problems?
3- Where will students record their work during this phase of the lesson?
(10-15 MINUTES)

4- How will you check for understanding during this phase of the lesson?
Choral Responses

- Partner Responses
- Written Responses

5- Will you use the Extend?
6- Will you use the Link to Investigations?

SCAFFOLDED INSTRUCTION: Representational

\square Paper

- Math Journal
\square Individual Whiteboards

Develop the Concept: Visual

The Visual Learning Bridge, at the top of each lesson, is critical to connecting the Concrete to the Representational and then to the Abstract. Look for Prevent Misconceptions.

Choose one option:

- Visual Learning Animation (on-line or CD)
- Overhead Transparency
- Visual Learning Bridge in Student textbook
- Document camera

1- Check for understanding during the Guided Practice.
2- Where will students record their work?
3- If most students are struggling during this phase of the lesson, what will you do?
\square Reteach explicitly with various problems from the Guided or Independent Practice or the Reteaching sets at the back of the Topic Guide.
\square Use lessons from Meeting Individual Needs.
\square Use the Differentiated Instruction: Intervention lesson.

Canyons School District's Evidence-Based Learning (EBL) Office ensures a proactive educational system for all students by supporting educators with proven practices in instruction, assessment, curriculum and problem-solving for improving academic and social competencies.

4- Will some of the problems from the Problem Solving be included in your Guided Practice or Independent Practice?

INDEPENDENT PRACTICE: ABSTRACT

(15-20 MINUTES)

Independent Practice and Problem Solving
1- Which problems will you assign?
2- Where will students record their work?
3- Will you collect, grade and record the independent practice?
4- How will you check for understanding?
5- If students do not finish the problems assigned for independent practice, will these problems be homework?

FORMATIVE ASSESSMENT

(5-10 MINUTES)
Concept Understanding

- PLC/Grade-Level common formative assessment
- Quick Check (in Teacher Resource Masters)
- Writing to Explain
- Mind Game Quiz Show
- Student buzzers or AverPens

Formative Assessment Tools
\square Topic tests (online or in text)

- Item Analysis for Diagnosis and Intervention
- Free-Response Test
- Performance Assessment
- CBM-Math
- PLC/Grade-Level common formative assessment
- Other assessment tool

End of each Quarter:
\square District Common Formative Assessment (CFA)
CENTER ACTIVITIES
*This part of the lesson is beneficial for providing engaging activities while the teacher works with small groups of students who need supplemental instruction.
Choose from the many options:
Canyons School District's Evidence-Based Learning (EBL) Office ensures a proactive educational system for all students by supporting educators with proven practices in instruction, assessment, curriculum and problem-solving for improving academic and social competencies.
\square Differentiated InstructionMath ProjectMeeting Individual NeedsTeacher-led interventionsLeveled HomeworkOnline games from Envision Digital Premium
1- Will you do these activities and if so, when?
2- When will you give directions on how to play?
3- What materials will be needed for the activities?
4- Will you work with the Intervention group?
5- How will you determine which activities will be assigned to each group of students?

HOMEWORK

Choose from the many options:

- Finish Independent Practice and/or Problem Solving assignment
- Spiral ReviewQuick Check
- Leveled Homework
- Online games from Envision Digital Premium

O Online tutorials from Envision Digital Premium
1- Will you collect and grade homework?
2- Will you discuss homework? Is so, when?

Canyons School District's Evidence-Based Learning (EBL) Office ensures a proactive educational system for all students by supporting educators with proven practices in instruction, assessment, curriculum and problem-solving for improving academic and social competencies.

5th grade
 Math Assessment Continuum

$0=$ optional assessment

* Please submit quarterly CFA scores
to your school principal by this date.

MATHEMATICAL PRACTICES	
1.	Make sense of problems and persevere in
solving them.	
2.	Reason abstractly and quantitatively.
3.	Construct viable arguments and critique
the reasoning of others.	
4.	Model with mathematics.
5.	Use appropriate tools strategically.
6.	Attend to precision.
7.	Look for and make use of structure.
8.	Look for and express regularity in repeated
reasoning.	

based on their properties.
Graph points on the coordinate plane to solve
real world and mathematical problems.
पdeגפ
Кдәәшоә
to addition.

- Geometric measurement: Understand concepts of
volume and relate volume to multiplication and Represent and interpret data
Convert like measurement units within a given
measurement system.
Measurement and Data
fractions.
multiplication and division to multiply and divide
- Apply and extend previous understandings of
 Number and Operations-Fractions
- Perform operations with multi-digit whole
numbers and with decimals to hundredths. - Understand the place value system
Number and Operations in Base Ten
- Write and interpret numerical expressions.
Operations and Algebraic Thinking
UTAH CORE STATE STANDARDS for MATHEMATICS

Write and interpret numerical expressions.

1. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.

Analyze patterns and relationships.

3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add $6 "$ and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

Number and Operations in Base Ten
5.NBT

Understand the place value system.

1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
2. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .
3. Read, write, and compare decimals to thousandths.
a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times(1 / 10)$ $+9 \times(1 / 100)+2 \times(1 / 1000)$.
b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
4. Use place value understanding to round decimals to any place.

Perform operations with multi-digit whole numbers and with decimals to hundredths.

5. Fluently multiply multi-digit whole numbers using the standard algorithm.
6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
UTAH CORE STATE STANDARDS for MATHEMATICS
text of solving real world and mathematical problems
$\stackrel{\square}{\square}$
 the area of the base. Represent threefold whole-number products as volumes, found by multiplying the edge lengths, equivalently by multiplying the height by
a. Find the volume of a right rectangular prism with whole-number side lengths by and mathematical problems involving volume.
 -stuun pas!^odd A solid figure which can be packed without gaps or overlaps using n unit cubes
is said to have a volume of n cubic units. unit" of volume, and can be used to measure volume
a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic

multiplication and to addition.
8. Recognize volume as an attribute of solid figures and understand concepts of volGeometric measurement: understand concepts of volume and relate volume to
> total amount in all the beakers were redistributed equally
 information presented in line plots. For example, given different measurements of
 Represent and interpret data.

> multi-step, real world problems

1. Convert among different-sized standard measurement units within a given measure Convert like measurement units within a given measurement system.

еұед pue ұиәшәлnseәш

ly? How many $1 / 3$-cup servings are in 2 cups of raisins?
 fraction models and equations to represent the problem. For example, how Solve real world problems involving division of unit fractions by non-zero whole
numbers and division of whole numbers by unit fractions, e.g., by using visual division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$.
 tients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction

$\stackrel{\square}{2}$
Classify two-dimensional figures in a hierarchy based on properties. right angles and squares are rectangles, so all squares have four right angles. Understand that attributes belonging to a category of two-dimensional figures also
belong to all subcategories of that category. For example, all rectangles have four Classify two-dimensional figures into categories based on their properties.

1. Understand that attributes belonging to a category of two-dimensional figur context of the situation. quadrant of the coordinate plane, and interpret coordinate values of points in the

names of the two axes and the coordinates correspond (e.g., x-axis and x-coorditravel from the origin in the direction of one axis, and the second number indicates
how far to travel in the direction of the second axis, with the convention that the bers, called its coordinates. Understand that the first number indicates how far to
travel from the origin in the direction of one axis, and the second number indicates on each line and a given point in the plane located by using an ordered pair of num
bers, called its coordinates. Understand that the first number indicates how far to
Use a pair of perpendicular number lines, called axes, to define a coordinate sys-
tem, with the intersection of the lines (the origin) arranged to coincide with the 0
Graph points on the coordinate plane to solve real-world and mathematical
problems.
2. Use a pair of perpendicular number lines, called axes, to define a coordinate イиəәルоәэ

[^0] \cap

[^0]:
 Recognize volume as additive. Find volumes of solid figures composed of two
 non-overlapping right rectangular prisms by adding the volumes of the non-

