ПATIBIA UПIVERSITY

FEEDBACK TUTORIAL LETTER

ASSIGNMENT 1

SEMESTER 1-2018

BASIC BUSINESS STATISTICS 1A

[BBS111S]

Course Name:
 Course Code:
 BBS111S
 Department: MATHEMATICS AND STATISTICS
 Course Duration: ONE SEMESTER
 NQF Level and Credit: NQF Level and Credit: LEVEL 6; 12 CREDITS

Your marker-tutor for BASIC BUSINESS STATISTICS 1A
The Namibia University of Science and Technology has appointed MR A. ROUX , MR C. MAPIRA,
DR I. MAPOSA, \& MR E. MWAHI as marker-tutors for BASIC BUSINESS STATISTICS 1A
They will be at your service, should you experience any problems with your studies or with the assignments. Contact details are as follows:

TUTOR NAME	TEL NO	E-MAIL ADDRESS
MR. A. ROUX	$+26461-2072166$	$\underline{\text { aroux@nust.na }}$
MR. C. MAPIRA	$+26461-2072788$	$\underline{\text { cmapira@nust.na }}$
Dr I. MAPOSA	$+26461-2072191$	$\underline{\text { imaposa@nust.na }}$
MR. E. MWAHI	$+26461-2072781$	emwahi@nust.na

ASSIGNMENT 1

Question 1 [20 marks]

1.1 D [1]
1.2 E [1]
1.3 C [3]
1.4 D [3]
1.5 C [3]
$1.6 \mathrm{E}[3]$
1.7 C [3]
$1.8 \mathrm{D}[3]$

BASIC BUSINESS STATISTICS

QUESTION 2 [37 marks]

2.1. A The number of families who used the Windhoek YWCA day care service was recorded during a $30-$ day period. The results are as follows:

31	49	19	62	24	45	23	51	55	60
40	35	54	26	57	37	43	65	18	41
50	56	4	54	39	52	35	51	63	42

2.1.1. Construct an ordered stem-and-leaf plot for the data.
[4]

Solution

2.1.2. Calculate the following statistics for the number of families that used the day care service:
2.1.2.1 Mean.

Solution
$\bar{x}=\frac{1}{n} \sum x=\frac{1}{30}(1281)=42.7$
2.1.2.2 Median.

Solution
Median $=44 \quad \sqrt{ } \sqrt{ }$
2.1.2.3 Mode.

Solution
Mode $=35,51$ and $54 \checkmark \sqrt{ }$
2.1.2.4 Standard deviation.

Solution

$$
s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{61389-\frac{1281^{2}}{30}}{29}}=\sqrt{230.7}=15.1888
$$

2.1.2.5 Coefficient of variation.

Solution
$C V=\frac{s}{\bar{x}} \times 100 \%=\frac{15.1888}{42.7} \times 100 \%=35.6 \%$
2.1.2.6 Inter-quartile range.

Solution

$$
\begin{aligned}
& Q_{1}=34 \\
& Q_{3}=54.25 \\
& I Q R=Q_{3}-Q_{1} \quad \\
& I Q R=54.25-34=20.25 \quad
\end{aligned}
$$

2.1.3. Using your answers in 2.1.2., what can you conclude about the distribution of the data? Motivate your answer.

Solution

The distribution is left skewed \checkmark
Median $=44>42.7=$ Mean \downarrow
2.1.4. Using the classes in your stem and leaf define class boundaries and use them to construct a frequency table with the following distributions: frequency distribution and cumulative (\%) distribution.

Lower bound	Upper bound	Frequency	\% Cumulative frequency
0	10	1	3.3
10	20	2	10
20	30	3	20
30	40	5	36.7
40	50	6	56.7
50	60	9	86.7
60	70	4	100

2.1.5. Only on graph paper, construct the less than ogive for the data.

Solution

TUTORIAL LETTER MEMO
SEMESTER 1/2018

BASIC BUSINESS STATISTICS

2.1.6. Using the frequency distribution compute the following statistics:
2.1.6.1. Median.

Solution

Lower bound	Upper bound	Frequency	Cumulative frequency
0	10	1	1
10	20	2	3
20	30	3	6
30	40	5	11
40	50	6	17
50	60	9	26
60	70	4	30

Median $=L_{m}+\frac{c\left(0.5 n-F_{m-1}\right)}{f_{m}} \quad \checkmark$

$$
\begin{aligned}
& \checkmark \\
= & 40+\frac{10(0.5(30)-11)}{6} \\
= & 46.6667 \quad \checkmark
\end{aligned}
$$

2.1.6.2. Mode.

Solution

$$
\begin{aligned}
\text { Mode }= & L_{\mathrm{m}}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \\
& \checkmark \\
& =50+\frac{9-6}{2(9)-6-4} \checkmark \\
& =50.375 \mathrm{~V}
\end{aligned}
$$

QUESTION 3 [9 marks]

3.1. A study done on a sample of 1000 people to determine the dominant hand used by individuals produced the following data classified by gender.

	Men	Women
Left-handed	63	50
Right-handed	462	425

If a person is selected at random from this group, calculate the probability that the person:
3.1.1. Is left-handed.

Solution

$$
P(L H)=\frac{113}{1000}=0.113 \checkmark \checkmark
$$

3.1.2. Is either a man or is left-handed.

Solution

$$
\begin{aligned}
P(M \cup L H) & =P(M)+P(L H)-P(M \cap L H) \\
& =\frac{525}{1000}+\frac{113}{1000}-\frac{63}{1000} \checkmark \\
& =\frac{575}{1000} \\
& =0.575
\end{aligned}
$$

3.1.3. If the person is a woman, she is left-handed.

Solution

$$
\begin{aligned}
P(L H / W) & =\frac{P(L H \cap W)}{P(W)} \\
& =\frac{50 / 1000}{475 / 1000} \mathrm{~V} \\
& =0.1053 \mathrm{~V}
\end{aligned}
$$

QUESTION 4 [6 marks]

4.1. The probability that a student passes Statistics is 0.8 if he/she studies for the exam and 0.3 if he/she does not study. If 60% of the class studied for the exams, and a student chosen at random from the class passes:
4.1.1. What is the probability that the student passed?

Solution

$$
\begin{aligned}
& P(\text { Study })=060 \text { P(Ptudy })=0.40 \\
& \begin{array}{ll}
P(\text { Pass }) & =P(\text { Study }) \cdot P(\text { Pass } / \text { Study })+P(\text { Study })^{c} \cdot P\left(\text { Pass } / \text { Study }^{c}\right) V \\
& =0.6 \times 0.8+0.4 \times 0.3 \\
V \\
V
\end{array} \\
& =0.48+0.12 \\
& =0.6 \mathrm{~V}
\end{aligned}
$$

4.1.2. What is the probability that the student studied?

Solution

$$
\begin{aligned}
P(\text { Study } / \text { Pass }) & =\frac{P(\text { Study }) \cdot P(\text { Pass } / \text { Study })}{P(\text { Pass })} \\
& =\frac{0.6 \times 0.8}{0.6} \\
& =\frac{0.48}{0.6} \checkmark \\
& =0.8 \quad \mathrm{~V}
\end{aligned}
$$

