

13 Storch Street Windhoek NAMIBIA

T: +264 61 207 2081 Private Bag 13388 F: +264 61 207 9081 Windhoek E: coll@nust.na W: www.nust.na

FEEDBACK TUTORIAL LETTER

ASSIGNMENT 1

SEMESTER 1 - 2018

BASIC BUSINESS STATISTICS 1A

[BBS111S]

BASIC BUSINESS STATISTICS BBS111S

Course Name: BASIC BUSINESS STATISTICS 1A

Course Code: BBS111S

Department: MATHEMATICS AND STATISTICS

Course Duration: ONE SEMESTER

NQF Level and Credit: NQF Level and Credit: LEVEL 6; 12 CREDITS

Your marker-tutor for BASIC BUSINESS STATISTICS 1A

The Namibia University of Science and Technology has appointed MR A. ROUX, MR C. MAPIRA,

DR I. MAPOSA, & MR E. MWAHI as marker-tutors for BASIC BUSINESS STATISTICS 1A

They will be at your service, should you experience any problems with your studies or with the assignments. Contact details are as follows:

TUTOR NAME	TEL NO	E-MAIL ADDRESS
MR. A. ROUX	+264 61 – 207 2166	aroux@nust.na
MR . C. MAPIRA	+264 61 – 207 2788	cmapira@nust.na
Dr I. MAPOSA	+264 61 – 207 2191	imaposa@nust.na
MR. E. MWAHI	+264 61 – 207 2781	emwahi@nust.na

ASSIGNMENT 1 Question 1 [20 marks]

- 1.1 D [1]
- 1.2 E [1]
- 1.3 C [3]
- 1.4 D [3]
- 1.5 C [3]
- 1.6 E [3]
- 1.7 C [3]
- 1.8 D [3]

QUESTION 2 [37 marks]

2.1. A The number of families who used the Windhoek YWCA day care service was recorded during a 30-day period. The results are as follows:

31	49	19	62	24	45	23	51	55	60
40	35	54	26	57	37	43	65	18	41
50	56	4	54	39	52	35	51	63	42

2.1.1. Construct an ordered stem-and-leaf plot for the data. [4]

Solution

- 2.1.2. Calculate the following statistics for the number of families that used the day care service:
 - 2.1.2.1 Mean. [2]

Solution
$$\sqrt{x} = \frac{1}{n} \sum x = \frac{1}{30} (1281) = 42.7$$

2.1.2.2 Median. [2]

Solution

Median = 44 \checkmark

2.1.2.3 Mode. [2]

Solution

2.1.2.4 Standard deviation. [4]

Solution $s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} = \sqrt{\frac{61389 - \frac{1281^2}{30}}{29}} = \sqrt{230.7} = 15.1888$

2.1.2.5 Coefficient of variation. [2]

TUTORIAL LETTER MEMO SEMESTER 1/2018

BASIC BUSINESS STATISTICS BBS111S

Solution

$$CV = \frac{s}{\overline{x}} \times 100\% = \frac{15.1888}{42.7} \times 100\% = 35.6\%$$

2.1.2.6 Inter-quartile range.

[4]

Solution

$$Q_1 = 34$$

$$Q_3 = 54.25$$
 \checkmark

$$IQR = Q_3 - Q_1 \quad \checkmark$$

$$IOR = 54.25 - 34 = 20.25$$

2.1.3. Using your answers in 2.1.2., what can you conclude about the distribution of the data? Motivate your answer. [2]

Solution

The distribution is left skewed \checkmark

$$Median = 44 > 42.7 = Mean \checkmark$$

2.1.4. Using the classes in your stem and leaf define class boundaries and use them to construct a frequency table with the following distributions: frequency distribution and cumulative (%) distribution.

Solution

Lower bound	Upper bound	Frequency	% Cumulative frequency
0	10	1	3.3
10	20	2	10
20	30	3	20
30	40	5	36.7
40	50	6	56.7
50	60	9	86.7
60	70	4	100

2.1.5. Only on graph paper, construct the less than ogive for the data.

[4]

[3]

Solution

TUTORIAL LETTER MEMO SEMESTER 1/2018

BASIC BUSINESS STATISTICS BBS111S

2.1.6. Using the frequency distribution compute the following statistics:

2.1.6.1. Median. [4]

Solution

Lower bound	Upper bound	Frequency	Cumulative frequency
0	10	1	1
10	20	2	3
20	30	3	6
30	40	5	11
40	50	6	17
50	60	9	26
60	70	4	30

Median =
$$L_m + \frac{c(0.5n - F_{m-1})}{f_m}$$

$$= 40 + \frac{10(0.5(30) - 11)}{6}$$

$$= 46.6667$$

2.1.6.2. Mode.

Solution

[4]

Mode =
$$L_{\rm m} + \frac{f_1 - f_0}{2f_1 - f_0 - f_2}$$

= $50 + \frac{9 - 6}{2(9) - 6 - 4}$
= 50.375

QUESTION 3 [9 marks]

3.1. A study done on a sample of 1000 people to determine the dominant hand used by individuals produced the following data classified by gender.

	Men	Women
Left-handed	63	50
Right-handed	462	425

If a person is selected at random from this group, calculate the probability that the person:

3.1.1. Is left-handed. [2]

Solution

$$P(LH) = \frac{113}{1000} = 0.113$$

3.1.2. Is either a man or is left-handed.

Solution

$$P(M \cup LH) = P(M) + P(LH) - P(M \cap LH)$$

$$= \frac{525}{1000} + \frac{113}{1000} - \frac{63}{1000}$$

$$= \frac{575}{1000}$$

$$= 0.575$$

3.1.3. If the person is a woman, she is left-handed.

Solution

$$P(LH/W) = \frac{P(LH \cap W)}{P(W)}$$

$$= \frac{\frac{50}{1000}}{\frac{475}{1000}}$$

$$= 0.1053$$

[3]

[4]

QUESTION 4 [6 marks]

- 4.1. The probability that a student passes Statistics is 0.8 if he/she studies for the exam and 0.3 if he/she does not study. If 60% of the class studied for the exams, and a student chosen at random from the class passes:
- 4.1.1. What is the probability that the student passed?

[4]

Solution

$$P(Pass) = P(Study) \cdot P(Pass / Study) + P(Study)^{c} \cdot P(Pass / Study^{c})$$

$$= 0.6 \times 0.8 + 0.4 \times 0.3$$

$$= 0.48 + 0.12$$

$$= 0.6$$

4.1.2. What is the probability that the student studied?

[2]

Solution

$$P(Study / Pass) = \frac{P(Study) \cdot P(Pass / Study)}{P(Pass)}$$

$$= \frac{0.6 \times 0.8}{0.6}$$

$$= \frac{0.48}{0.6}$$

$$= 0.8$$

TOTAL MARKS: 72