
F2FS: A New File System Designed for

Flash Storage in Mobile

Presented at ELC Europe 2012

Nov 05, 2012

Joo-Young Hwang

S/W Development Team

Memory Business, Samsung Electronics Co., Ltd.

Agenda

• Introduction

• Design Overview

• Performance Evaluation Results

• Summary

Introduction

• NAND Flash-based Storage Devices

– SSD for PC and server systems

– eMMC for mobile systems

– SD card for consumer electronics

• The Rise of SSDs

– Much faster than HDDs

– Low power consumption

Source: March 30th, 2012 by Avram Piltch, LAPTOP Online Editorial Director

Introduction (cont’d)

• File System

– Serve directory and file operations to users

– Manage the whole storage space

OS

storage

File System

Applications

open(/dir/file)

create(/dir/file)

unlink(/dir/file)

“/”

inode

“dir”

inode

“file”

inode
data

read(file, offset)

write(file, offset)

Super

block

Directory structure File structure

Memory management

Space management

Index structure

Power-Off Recovery

Memory Management

Introduction (cont’d)

• NAND Flash Memory
– Erase-before-write

– Sequential writes inside the erase unit

– Limited program/erase (P/E) cycle

• Flash Translation Layer (FTL)
– Conventional block device interface: no concern about erase-before-write

– Garbage collection

– Wear-leveling

– Bad block management

• Issues in cheap FTL devices
– Random write performance

– Life span and reliability

• Conventional file systems for FTL devices?
– Optimization for HDD performance characteristics may not be good for FTL.

– No consideration for FTL device characteristics

LFS Approach

• Sequential write is preferred by FTL devices.

• Log-structured File System (LFS)[1] fits well to FTL devices.

– Assume the whole disk space as a big log, write data and metadata sequentially

– Copy-on-write: recovery support is made easy.

Metadata Area

User Data Area

Metadata Area

Logical

Block

Address

Time

[non LFS]

1

2

3

4

5

6

7

8

Time

User-data Area

+ Metadata Area

[LFS]

1

2

3

4

5

6

7

8

[1] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system. ACM Trans. Comput. Syst. 10, 1

(February 1992), 26-52.

Conventional Log-structured File System (Index Structure)

C

P

S

B

Inode

Map

Dir Inode

Directory data

File data

Indirect

Pointer block

Segment

Summary

Segment

Usage

File Inode

File data
…

Used for cleaning

Fixed location, but separated One big log

Direct

Pointer block

•Wandering tree problem

•Performance drop at high utilization

due to cleaning cost.

F2FS Design Overview

• Alignment with FTL operation unit

– Align FS data structures to the FTL operation units.

• Avoiding Metadata Update Propagation

– Indirection for inode and pointer blocks

• Efficient Cleaning using Multi-head Logs and Hot/Cold Data Separation

– Write-time data separation  more chances to get binomial distribution

– Two different victim selection policies for foreground and background cleaning

– Automatic background cleaning

• Adaptive Write Policy for High Utilization

– Switches write policy to threaded logging at right time (logging to FTL overprovision space)

– Graceful performance degradation at high utilization

FTL Device Characteristics

• FTL Functions

– Address Mapping

– Garbage Collection

• Address Mapping Methods

– Block Mapping

– Page Mapping

– Hybrid Mapping

Hybrid Mapping

• Hybrid Mappings

– BAST

– FAST

– SAST (N: N+K mapping)

• Merge in Hybrid Mapping

– Performed to get a new log block

– Merge types

– Full merge

– Partial merge (aka copy merge)

– Switch merge

Free

Block
Free

Block

Log Block

Data

Block

Free

Block

Data

Block
Data

Block

Log Block

Data

Block
Data

Block
Data

Block
Data

Block

Log Block
Log Block

Data

Block
Data

Block
Data

Block
Data

Block

Log Block

Data block group #1 Data block group #2

Log block group #1 Log block group #2

[Example - 4:4+2 mapping]

FTL Device Characteristics (cont’d)

• FTL operation unit

– Superblock – simultaneously erasable unit

– Superpage - simultaneously programmable unit

• Implications for segment size

FTL Device Characteristics (cont’d)

• FTL device may have multiple logging streams without performance

degradation.

– How many streams? How to identify?

– Data block group geometry?

• Implications for multi-headed logging

FTL Awareness

• All the FS metadata are located together for locality

• Start address of main area is aligned to the zone* size

• Cleaning operation is done in a unit of section*

Check

point

Area

Segment

Info.

Table

(SIT)

Node

Address

Table

(NAT)

Superblock 0

Superblock 1

Segment Number

(1 segment = 2MB)

Segment

Summary

Area

(SSA)

Main Area

2 segments

Per 2044GB

of main area

0.4% over

main area

0.2% over

main area Hot/Warm/Cold

node segments

Hot/Warm/Cold

data segments

0 1 2 …

Section

Zone Zone

Section Section Section Section Section Section

Zone Zone

Section

Random writes Sequential writes

*zone: data block group

*section: FTL GC unit

Avoiding Metadata Update Propagation

C

P

S

B
NAT

Dir Inode

Directory data

File data

Indirect

Node

Segment

Summary

(SSA)

Segment Info.

Table (SIT)

File Inode

File data …

Fixed location w/ locality Multiple logs

Direct

Node

-Direct node blocks for dir

-Direct node blocks for file

-Indirect node blocks

-Dir data

-File data

-Cleaning data

Translated by NAT

File Indexing

Direct [929]

Indirect [2]

Double [2]

Triple [1]

928

929 1946 1947 2964

2965 3982
2075613

About 3.94 TB

For 4KB block

Cleaning

• Cleaning Process

– Reclaim obsolete data scattered across the whole storage for new empty log space

– Get victim segments through referencing segment usage table

– Load parent index structures of there-in data identified from segment summary blocks

– Move valid data by checking their cross-reference

• Goal

– Hide cleaning latencies to users

– Reduce the amount of valid data to be moved

– Move data quickly

• Issues

– Hot and cold data separation

– Victim selection policy

Cleaning (cont’d)

• Efficient hot/cold separation is possible by exploiting the FTL’s multiple logs.

• Hot/cold separation at data writing time based on object types

– Cf) hot/cold separation at cleaning time requires per-block update frequency information.

Type Update frequency Contained Objects

Node

Hot Directory’s inode block or direct node block

Warm Regular file’s inode block or direct node block

Cold Indirect node block

Data

Hot Directory’s data block

Warm Updated data of regular files

Cold

Appended data of regular files,

moved data by cleaning,

multimedia file’s data

Cleaning (cont’d)

• Automatic Background Cleaning

– Kicked in when I/O is idle.

– Lazy write: cleaning daemon marks page dirty, then flusher issued I/O later.

– Do not intervene foreground jobs.

• Victim Selection Policies

– Greedy algorithm for foreground cleaning

– Cost-benefit algorithm for background cleaning

Adaptive Write Policy

• Normal write policy is logging to a clean segment

– Need cleaning operations if there is no clean segment.

– Cleaning causes mostly random read and sequential writes.

• Change policy to threaded logging if there are not enough clean segments.

– Reuse obsolete blocks in a dirty segment

– No need to run cleaning

– May cause random writes (in a small range)

Performance (Panda board + eMMC)

seq. Read seq. Write rand. Read rand. Write

EXT4 30.753 17.066 5.06 4.15

F2FS 30.71 16.906 5.073 15.204

0

5

10

15

20

25

30

35

B
an

dw
id

th
 (

M
B

/s
)

CPU ARM Cortex-A9 1.2GHz

DRAM 1GB

Storage Samsung eMMC 64GB

Kernel Linux 3.3

Partition Size 12 GB

seq.create seq.stat seq.delete rand.create rand.stat rand.delete

EXT4 692 1238 1370 663 1250 915

F2FS 631 7871 10832 620 7962 5992

0

2000

4000

6000

8000

10000

12000

Fi
le

s
/

se
c

[iozone]

[fs_mark] [bonnie++]

[System Specification]

Performance on Galaxy Nexus

CPU ARM Coretex-A9 1.2GHz

DRAM 1GB

Storage Samsung eMMC (VFX) 16GB

Kernel 3.0.8

Android ver. Ice Cream Sandwich

Items Ext4 F2FS Improv.

Contact sync time

(seconds)
431 358 20%

App install time

(seconds)
459 457 0%

RLBench (seconds) 92.6 78.9 17%

IOZoneWith

AppInstall

(MB/s)

Write 8.9 9.9 11%

Read 18.1 18.4 2%

Items Ext4 F2FS Improv.

Contact sync time

(seconds)
437 375 17%

App install time

(seconds)
362 370 -2%

RLBench (seconds) 99.4 85.1 17%

IOZone With

AppInstall

(MB/s)

Write 7.3 7.8 7%

Read 16.2 18.1 12%

< Clean > < Aged >

Evaluation: Cleaning Victim Selection Policies

• Setup

– In x86, set 3.7 GB partition

– Create three files having 1GB data

– Write 256MB data randomly to the three files

– Write 256MB data randomly to one of them, 30 times

Evaluation: Adaptive Write Policy

• Experimental setup

– Embedded system with eMMC 12GB partition

– Iozone random write tests on several 1GB files

• Results

– Sustained performance is improved by adaptive write.

– Ext4 shows about 4MB/s sustained performance.

Summary

• Flash-Friendly File System

– File system for FTL block devices

– Optimized for mobile flash solutions

• Performance evaluation on Android Phones

– /data is F2FS volume

– Factory reset & run android apps

• Current Status

– Patch review in progress at LKML: v3 patch series are released.

– Code and performance review on various devices are welcome.

Thank you!

