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Capitulo 1



1.1:  1mix(5280ft/mi)x (12in/ft)x (2.54cm/in.)x (1 km/10° cm)=1.61km
Although rounded to three figures, this conversion is exact because the given conversion
from inches to centimeters defines the inch.

3 . 3
1.2: 0.473L>{1000Cm jx( lin J:28.9in3.

1L 2.54cm

1.3:  The time required for light to travel any distance in a vacuum is the distance
divided by the speed of light;

3
w—fgz3,33x10*6s=3.33x103ns.
3.00x10° m/s
3
1.4: 113 £ x| xe | J100em |y 45,000 Xe
cm® (1000 g ' m m

1.5:  (327in°)x(2.54cmfin)’ x (11/1000 cm® )= 5.36 L.

; (1000 L 1 gal 128 oz. 1 bottle
1.6: 1m’ x — [ X X .
I m 3.788 L 1 gal 16 oz.

=2111.9bottles ~ 2112 bottles

The daily consumption must then be
5 bottles x( I yr j 578 bottles

2.11x10 =
yr da

365.24 da

1.7: (1450 mi/hr)x (1.61km/mi)= 2330 km/hr.
2330km/hr x (10° m/km ) (1 hr/3600 s) = 648 m/s.

L.8: 180,000 furlo'ngs 5 1 mile " 1 fortnight 5 1 day _ g7 mi
fortnight | 8 furlongs 14 day 24 h h

19:  150Xkm (_Imi ) [3.788L) .o mi
L 1.609 km 1 gal gal



1.10:

1.11:

1.12:

1.13:

1.14:

2) (6OEJ 1h 5280.ft :SSE
hr /| 3600s 1mi s

b) 32% 30.48cm 1m =9.822
S 11t 100 cm S

3
c)(l.O g3](100cm] Lkg |_jpo ke
cm Im 1000 g m

The density is mass per unit volume, so the volume is mass divided by density.
v =(60x10°g)/(19.5g/cm’)=3077 em’

3

b

Use the formula for the volume of a sphere, V' = gnr

to calculate r: = (3V/4z)"* =9.0cm

(3.16x10" s —x1075)/(3.16x107 ) x 100 = 0.58%

10m

————=11x10"%.

890x10° m

b) Since the distance was given as 890 km, the total distance should be 890,000
meters.

To report the total distance as 890,010 meters, the distance should be given as
890.01 km.

a) (12mm)x (5.98 mm) =72 mm? (two significant figures).
b)28mm = () 50 (also two significant figures).

12mm
¢) 36 mm (to the nearest millimeter).
d) 6 mm.
e) 2.0.



1.15: a) If a meter stick can measure to the nearest millimeter, the error will be about
0.13%.b) If the chemical balance can measure to the nearest milligram, the error will be

about 8.3x107%. c) If a handheld stopwatch (as opposed to electric timing devices) can
measure to the nearest tenth of a second, the error will be about 2.8 x1072%.

1.16: The area is 9.69 + 0.07 cm?, where the extreme values in the piece’s length and
width are used to find the uncertainty in the area. The fractional uncertainty in the

area is gg; z:? =0.72%, and the fractional uncertainties in the length and width are
L0iem = ().20% and 9k = (.53%.

1.17: a) The average volume is
2
n@(aoso cm)=2.8 cm’
(two significant figures) and the uncertainty in the volume, found from the extreme
values of the diameter and thickness, is about 0.3 cm’, and so the volume of a

cookie is 2.8 +0.3cm’. (This method does not use the usual form for progation of errors,
which is not addressed in the text. The fractional uncertainty in the thickness is so much

greater than the fractional uncertainty in the diameter that the fractional uncertainty in the
volume is 10% , reflected in the above answer.)

b) £ =170+ 20.

1.18: (Number of cars x miles/carday)/mi/gal = gallons/day
(2 x10® cars x 10000 mi/yr/car x 1 yr/365 days)/(20 mi/gal) = 2.75 x 10* gal/day

1.19: Ten thousand; if it were to contain ten million, each sheet would be on the order
of a millionth of an inch thick.

1.20: Ifit takes about four kernels to fill 1 cm’, a 2-L bottle will hold about 8000
kernels.



1.21: Assuming the two-volume edition, there are approximately a thousand pages, and
each page has between 500 and a thousand words (counting captions and the smaller
print, such as the end-of-chapter exercise and problems), so an estimate for the number of

words is about 10°.

1.22: Assuming about 10 breaths per minutes, 24 x 60 minutes per day, 365 days per
year, and a lifespan of fourscore (80) years, the total volume of air breathed in a lifetime

is about 2x10° m*. This is the volume of a room 100mx100mx20m , which is kind of

tight for a major-league baseball game, but it’s the same order of magnitude as the
volume of the Astrodome.

1.23: This will vary from person to person, but should be of the order of 1x10°.

1.24: With a pulse rate of a bit more than one beat per second, a heart will beat 10
times per day. With 365 days in a year and the above lifespan of 80 years, the number of

beats in a lifetime is about 3x10°. With 21—0 L (50 cm’) per beat, and about i gallon per

liter, this comes to about 4x10’ gallons.

1.25: The shape of the pile is not given, but gold coins stacked in a pile might well be in
the shape of a pyramid, say with a height of 2m and a base 3mx3m. The volume of

such a pile is 6 m’, and the calculations of Example 1-4 indicate that the value of this
volume is $6x10°.

1.26: The surface area of the earth is about 4nR* =5x10" m?, where R is the radius of
the earth, about 6x10° m, so the surface area of all the oceans is about 4x10" m*. An

average depth of about 10 km gives a volume of 4x10"*m® = 4x10*cm’. Characterizing
the size of a “drop” is a personal matter, but 25 drops/ cm’ is reasonable, giving a total of

10°° drops of water in the oceans.

1.27: This will of course depend on the size of the school and who is considered a
"student". A school of thousand students, each of whom averages ten pizzas a year
(perhaps an underestimate) will total 10* pizzas, as will a school of 250 students
averaging 40 pizzas a year each.



1.28: The moon is about 4x10°m =4x10" mm away. Depending on age, dollar

bills can be stacked with about 2-3 per millimeter, so the number of bills in a stack
to the moon would be about 10'2. The value of these bills would be $1 trillion (1
terabuck).

1.29: (Areaof USA)/(Area/bill ) = number of bills.
(9,372,571 km’” x10° m>/km? )/(15.6 cm x 6.7 cm x 1m*/10* cm® )= 9 x 10" bills
9x10" bills/2.5 10® inhabitants = $3.6 million/inhabitant.

1.30:

Y
Y
\

(a) (b) (c)

1.31:

7.8 km, 38 ° north of east



1.32:

a) 1.1m@ 77.6°
b) 28.5m @ 202°
¢) 1.1 m@ 258°
d) 28.5m@ 22°

1.33:

144 m, 41° south of west.



1.34:
y
(—15.6 km, 15.6 km) 4 (4.7 m, 8.1 m)

(3.82 cm, —5.07 cm)

1.35: A;4, =(12.0m)sin37.0" =7.2m, 4, = (12.0m)cos 37.0" = 9.6 m.
B;B, =(15.0m)cos40.0° =11.5m, B, =—(15.0m)sin 40.0° = -9.6 m.
C;C, =—(6.0m)cos 60.0° =-3.0m,C, =—(6.0m)sin 60.0° =52 m.

A _
1.36: (a) tan 0 = = Z100M _ 560
A, 2.00m

6 = tan"' (- 0.500) = 360° —26.6° = 333"

A
(b) tang = = 190M _ 4 509
A 2.00m
6 = tan"'(0.500) = 26.6°
A
©  tang=—2=100M _ 4509
A —2.00m
6 = tan"' (- 0.500)=180° — 26.6° =153°
A4
) tan 0 = - = ZLO0M 500
A —2.00m

X

6 = tan"(0.500) = 180° +26.6° = 207



1.37: Take the +x-direction to be forward and the +y-direction to be upward. Then the
second force has components F, = F,c0s32.4° =433N and F,, = F;sin32.4" =275N.

The first force has components F|, =725Nand F{ =0.
F,=F,+F, =1158N and F, =F +F, =275N

The resultant force is 1190 N in the direction 13.4° above the forward direction.

1.38: (The figure is given with the solution to Exercise 1.31).

The net northward displacement is (2.6 km) + (3.1 km) sin 45° = 4.8 km, and the
net eastward displacement is (4.0 km) + (3.1 km) cos 45° = 6.2 km. The

magnitude of the resultant displacement is \/ (4.8 km)® + (6.2 km)> = 7.8 km, and

the direction is arctan (48) = 38° north of east.




1.39: Using components as a check for any graphical method, the components of Bare
B =144mand B =10.8m, A has one component, A =-12m.

a) The x - and y - components of the sum are 2.4 m and 10.8 m, for a magnitude

of \/(2.4 m)* +(10.8m)* =11.1m,, and an angle of [%j =77.6".

b) The magnitude and direction of A + B are the same as B + A.
¢) The x- and y-components of the vector difference are — 26.4 m and

—10.8 m, for a magnitude of 28.5 mand a direction arctan (ﬂ) =202°. Note that

-26.4

180° must be added to arctan(—=12% )= arctan(1%®)=22" in order to give an angle in the
26.4 26.4 g g

third quadrant.

d) B-A=14.4mi +10.8mj+12.0mi =26.4 mi +10.8 mj.

Magnitude = \/(26.4 m)’ +(10.8 m)’ = 28.5 m at and angle of arctan(%j =22.2"

1.40: Using Equations (1.8) and (1.9), the magnitude and direction of each of the given
vectors is:

a) J(=8.6 cm)? + (5.20 cm)® = 10.0 cm, arctan (52) = 148.8° (which is
180° — 31.2°).

b) (9.7 m)>+ (-2.45m)> =10.0 m, arctan (Z3) = 14° + 180° = 194°.

9.7

¢) J(7.75 km)? + (<2.70 km)>  =8.21 km, arctan (521) = 340.8° (which is
360° - 19.2°).



1.41:

A

The total northward displacement is 3.25km —1.50 km =1.75 km, , and the total

westward displacement is 4.75 km . The magnitude of the net displacement is

\/ (1.75km)’ +(4.75km)’ =5.06 km. The south and west displacements are the same, so
The direction of the net displacement is 69.80° West of North.

1.42:

a) The x- and y-components of the sum are 1.30 cm + 4.10 cm = 5.40 cm,
2.25 ecm+ (-3.75 cm) =—-1.50 cm.

b) Using Equations (1-8) and (1-9),

\/(5.40cm)2 (~1.50 cm)® =5.60 cm, arctan (=132) = 344.5° ccw.

¢) Similarly, 4.10 cm — (1.30 cm) = 2.80 cm, —3.75 cm — (2.25 cm) = —6.00 cm.

d) \/(2.80 cm)® + (=6.0cm)’> = 6.62 cm, arctan (%) = 295° (which is 360° — 65



1.43: a) The magnitude of A+B s
((2.80 cm)cos 60.0° + (1.90 cm) cos 60.0° f
+((2.80 cm)sin 60.0° - (1.90 cm) sin 60.0° f

J =2.48cm

and the angle is

(2.80 cm)sin 60.0° — (1.90 cm)sin 60.0° j 1z

arctan
((2.80 cm)cos 60.0° + (1.90 cm)cos 60.0°

b) The magnitude of A-Bis
((2.80 cm)cos 60.0° - (1.90 cm) cos 60.0° f
+((2.80 cm)sin 60.0° + (1.90 cm)sin 60.0° ]

] =4.10cm

and the angle is

(2.80 cm)sin 60.0° +(1.90 cm)sin 60.0° ) _ "
(2.80 cm)cos 60.0° —(1.90 cm)cos 60.0°

c) B- A= —(;1 — E’} the magnitudeis 4.10 cm and the angleis 84° +180° =264".

arctan (

—

144: A =(-12.0m) i . More precisely,

A=(120m)cos 180" Jf +(12.0 m)(sin 180" ).

— A
.

B =(18.0m)cos37°  +(180m)sin 37° )j = (14.4 m)i +(10.8m);

1.45: A=(12.0m)sin37.0°% +(12.0m)cos 37.0°j = (7.2m)i + (9.6 m)j
B =(15.0m)cos 40.0°i —(15.0m)sin 40.0°j = (11.5m)i — (9.6 m);

C = —(6.0m)cos 60.0°i — (6.0 m)sin 60.0° j = —(3.0m)i — (5.2 m)j



A
.

1.46: a) A=(3.60m)cos70.0°i +(3.60m)sin70.0°j = (1.23 m)i + (3.38 m);
B=—(2.40m)cos30.0°i —(2.40m)sin 30.0° j = (- 2.08 m)i + (~1.20 m)j
b)
C =(3.00) 4—(4.00)B

(3.00)(1.23m)i +(3.00Y3.38 m); — (4.00)— 2.08 m)i — (4.00)(—1.20 m);

=(12.01m)i +(14.94);

(Note that in adding components, the fourth figure becomes significant.)
c¢) From Equations (1.8) and (1.9),

C=+(12.01my +(14.94m} =19.17m, arctan(gg‘l‘mj: 51.2°
VUlim

147: a)  A=4(4.00) +(3.00) =5.00, B =4/(5.00) +(2.00 =5.39
b)  A-B=(4.00-3.00) +(5.00—(-2.00))j = (~1.00)i +(5.00);

o +(L.00Y +(5.00) =5.10, arctan( 51'%%

j:101.3°

d)




1.48: a) ‘f+}'+l€‘=\/12 +1> +1> =+/3 #1 so it is not a unit vector

b) A =4+ 42+ 42

-1, |A|>1, so it cannot be a unit

vector. A can have negative components since the minus sign goes away when the
component is squared.

c)

|4 =1

Ja* (3.0 +a*(4.0) =1

Ja? 25 =1
1

a=+— =+0.20
5.0

1.49: a)Let A=Ai+A4,], B=Bi+B,j

A+B=(4,+B)i+(4,+B)j
B+A=(B,+4)i+(B,+4,)j

A-B=AB +4B,
B-A=BA +BA,

Scalar multiplication is commutative, so A - B=B-A

b)  AxB=(4,B. —AB,)i+(4B —4B)j+(4.B, -48)k
BxA=(B,A —B.A)i+(B.A -BA)j+ (BxAy ~ B, A4, )k

Comparison of each component in each vector product shows that one is the
negative of the other.



1.50:

1.51:

Method 1: (Product of magnitudes x cos 0)
ABcosd =(12mx15m)cos93° = 9.4 m?
BCcos® =(15mx6m)cos80° =15.6m’
ACcosf =(12mx6m)cos187° =-71.5m>

Method 2: (Sum of products of components)
A B =(7.22)(11.49) +(9.58)(-9.64) = —9.4 m’

B C = (11.49)(=3.0) + (-9.64)(=5.20) = 15.6 m
= (7.22)(=3.0) + (9.58)(=5.20) = —71.5 m’

a) From Eq.(1.21),

A-B =(4.00)5.00)+(3.00)—2.00)=14.00.

b) A-B=ABcos,so06 =arccos [(14.00)/(5.00 X 5.39)] =arccos(.5195)=58.7".

1.52: For all of these pairs of vectors, the angle is found from combining Equations

(1.18) and (1.21), to give the angle ¢ as

A-B AB, +4,B,
@ =arccos = arccos| ————
AB AB

In the intermediate calculations given here, the significant figures in the dot
products and in the magnitudes of the vectors are suppressed.

a) A-B =-22, 4=1./40, B=,/13, and so

@ = arccos =2 |
V40 V13
b 1?1-l§:60,A= 34, B =4/136, = arccos 28°.
: ’ (ij

c) A-B=0,¢=90.



1.53: Use of the right-hand rule to find cross products gives (a) out of the page and b)
into the page.

1.54: a) From Eq. (1.22), the magnitude of the cross product is
(12.0m)(18.0m)sin (180" —37°)=130m?

The right-hand rule gives the direction as being into the page, or the — z-direction. Using
Eq. (1.27), the only non-vanishing component of the cross product is

C.=A4.B, =(-12m)(18.0m)sin37" )= ~130m’

b) The same method used in part (a) can be used, but the relation given in Eq.
(1.23) gives the result directly: same magnitude (130 m?), but the opposite
direction (+z-direction).

1.55: In Eq. (1.27), the only non-vanishing component of the cross product is

C.=A,B, - A,B, =(4.00)-2.00)-(3.00)5.00)=—23.00,
so Ax B =—(23.00)k, and the magnitude of the vector product is 23.00.



1.56: a) From the right-hand rule, the direction of AxB is into the page (the —
z-direction). The magnitude of the vector product is, from Eq. (1.22),

AB sin ¢ = (2.80 cm)(1.90 cm)sin120° = 4.61 cm”.
Or, using Eq. (1.27) and noting that the only non-vanishing component is

C.=A4B,—A4B,
=(2.80 cm)co0s60.0° (—1.90 cm)sin 60°
—(2.80 cm)sin 60.0°(1.90 cm)cos 60.0°
=—4.61 cm®

gives the same result.

b) Rather than repeat the calculations, Eq. (1-23) may be used to see that
Bx A has magnitude 4.61 cm® and is in the +z-direction (out of the page).

1.57: a) The area of one acre is 1 mix - mi == mi’, so there are 640 acres to a square
mile.
.2 2
b) (1acre)x| M|, (Szgo,ftj = 43,560 ft>
640 acre I mi

(all of the above conversions are exact).

7.477 gal

9) (1 acre-foot)= (43,560 ft? )x( P j =3.26x10° gal,

which is rounded to three significant figures.

1.58: a)  ($4,950,000/102acres) x (acre/43560ft*) x (10.77ft*/m* )= $12/m’.
b) ($12/m?) x (2.54cm/in)* x (1m/100cm)? = $.008/in>.
c) $.008/in2 x (lin x 7/81in) = $.007 for postage stamp sized parcel.



1.59: a) To three significant figures, the time for one cycle is

1
1.420x10° Hz

S 1h h

=7.04x107s.

¢) Using the conversion from years to seconds given in Appendix F,

!
(1.42x10° Hz)x (%}(4.600“09 y)=2.06x10%.

d) 4.600x10° y = (4.60 x10* Xl 00x10° yl so the clock would be off by 4.60x10" s.

1.60: Assume a 70-kg person, and the human body is mostly water. Use Appendix D to
find the mass of one H,O molecule: 18.015u % 1.661 X 10" kg/u =2.992 X 102°
kg/molecule. (70 kg/2.992 x 107%° kg/molecule) = 2.34 % 10*” molecules. (Assuming
carbon to be the most common atom gives 3 X 10*” molecules.

1.61: a) Estimate the volume as that of a sphere of diameter 10 cm:
V= gmﬁ =52x10"m’

Mass is density times volume, and the density of water is 1000 kg/m?* , so
m=(0.98)1000 kg/m*)(5.2x10™“m*)= 0.5 kg

b) Approximate as a sphere of radius » =0.25um (probably an over estimate)

V= i7l7’3 =6.5x10"m?

m=(0.98)(1000 kg/m*)(6.5x10"m* )= 6x10""kg =6x10™g

c) Estimate the volume as that of a cylinder of length 1 cm and
radius 3 mm:

V=m’l=28x10"m’
m = (0.98)1000 kg/m*)(2.8x107m*)=3x10*kg=03g



M
p
=2.54x10"m?

1.62: a) ng,soV:

3 0.200 kg
X = 3 3
7.86x10° kg/m

x=294%x10"m=2.94cm

4 3 -5 3
— 7R =2.54x10"m
b) 3

R=1.82x10"m=1.82cm

1.63: Assume each person sees the dentist twice a year for checkups, for 2 hours. Assume
2 more hours for restorative work. Assuming most dentists work less than 2000 hours per
year, this gives 2000 hours/4 hours per patient =500 patients per dentist. Assuming only
half of the people who should go to a dentist do, there should be about 1 dentist per 1000
inhabitants. Note: A dental assistant in an office with more than one treatment room
could increase the number of patients seen in a single dental office.

6.0 x 10% soms
1.64: 6.0x10* kg) x| —————mole | =2 6x10° atoms.
? ( &) (14x103 e ]
b) The number of neutrons is the mass of the neutron star divided by the

mass of a neutron:

(2)(2.0x 10” kg)
(1.7 x 107" kg/neutron)
¢) The average mass of a particle is essentially Z the mass of either the proton or

=2.4x10"" neutrons.

=27

the neutron, 1.7x10™"" kg. The total number of particles is the total mass divided by this
average, and the total mass is the volume times the average density. Denoting the density
by p (the notation introduced in Chapter 14).

4 3
— TR
M _3"FP masx10" m? 0" ke/m) o
2 (1.7 x 107 kg)
3™

Note the conversion from g/cm’ to kg/m’.



1.65: Let D be the fourth force.
A+B+C+D=0,s0 5:—(;1+B+€‘)
A =+Aco0s30.0° = +86.6N, Ay =+4c0s30.0° =+50.00N

B, =-Bsin30.0" =—40.00N, B =+Bc0s30.0° =+69.28 N
C, =+Cco0s53.0" =-24.07N, C, =-Csin53.0° =-31.90N

Then D, =-22.53 N, D, =-87.34N

D=,/D?+D? =902N;

)7
D, o]

\

<n'\ 1 X

tana =|D, / D,| =87.34/22.53

a=7554
»=180"+a = 256", counterclockwise from + x - axis

R =4 +B =(170km)sin 68" +(230km)cos 48" =311.5km
R,=A4,+B, =(170km)cos 68" —(230 km)sin 48" = -107.2 km

R= \/Rf +R = JB1L5km) +(=107.2km)* =330km
R

y

R

X

_107.2km

= =0.344
311.5km

tand, =

0, =19° south of east



1.67: a)

b) Algebraically, A=C - B,andso the components of Aare
A, =C,—B,_=(6.40cm)cos22.0° —(6.40 cm)cos 63.0° =3.03cm

A, =C, - B, =(6.40 cm)sin 22.0° +(6.40 cm)sin 63.0° =8.10 cm.

c) A= \/(3.03 cm)’ +(8.10cm)’ =8.65cm, arctan(&10 cm] =69.5°
3.03cm



1.68:a)R, = A, + B, +C,
= (12.0m)cos (90" —37° )+ (15.00 m)cos(— 40° )+ (6.0 m)cos(180° + 60 )
=15.7m, and
R =4,+B,+C,
= (12.0m)sin (90° — 37° )+ (15.00 m)sin(— 40° )+ (6.0 m)sin(180" + 60 )
=-53m.

The magnitude of the resultant is R = /R’ + Ry2 =16.6 m, and the direction from

the positive x-axis is arctan (ﬁ) =—18.6". Keeping extra significant figures in the
intermediate calculations gives an angle of —18.49°, which when considered as a
positive counterclockwise angle from the positive x-axis and rounded to the

nearest degree is 342°.

S, =-3.00m-7.22m-11.49m=-21.71m;
S,=-520m—(-9.64m)-9.58m=-5.14m;

@ =arctan LM) =13.3°
(-21.71)

S=4/(=21.71m)* + (-5.14m)* =22.3m




1.69:

Take the east direction to be the x - direction and the north direction to be the
y - direction. The x- and y-components of the resultant displacement of the

first three displacements are then

(—180m)+ (210 m)sin 45° +(280 m)sin 30° =108 m,
—(210m)cos 45° +(280 m)cos 30° = +94.0 m,

keeping an extra significant figure. The magnitude and direction of this net displacement
are

\/(108 m) + (94.0 m)2 =144 m, arctan( 194 =

j: 40.9°.
&m

The fourth displacement must then be 144 m in a direction 40.9° south of west.



1.70:

The third leg must have taken the sailor east a distance
(5.80 km)—(3.50 km)cos 45° — (2.00 km) =1.33 km
and a distance north

(3.5km)sin 45° = (2.47 km)
The magnitude of the displacement is

J(1.33km)’ + (2.47 km)* = 2.81km

and the direction is arctan (%)= 62° north of east, which is 90° —62° = 28° east

of north. A more precise answer will require retaining extra significant figures in
the intermediate calculations.

1.71: a)

b) The net east displacement is
—(2.80 km)sin 45° +(7.40 km)cos 30° —(3.30 km)cos 22° = 1.37 km, and the net north

displacement is —(2.80 km)cos 45° +(7.40 km)sin 30° —(3.30 km)sin 22.0° = 0.48 km,
and so the distance traveled is \/ (1.37km) +(0.48km)* =1.45km.




1.72: The eastward displacement of Manhattan from Lincoln is

(147 km)sin85° + (106 km)sin 167° + (166 km)sin 235° = 34.3 km
and the northward displacement is

(147 km)cos85° + (106 km)cos 167° + (166 km)cos 235" = —185.7 km

(A negative northward displacement is a southward displacement, as indicated in
Fig. (1.33). Extra figures have been kept in the intermediate calculations.)

a) J(34.3km)? + (185.7 km)? =189 km
b) The direction from Lincoln to Manhattan, relative to the north, is

34.3 km

arctan | —
(—185.7 km

] =169.5

and so the direction to fly in order to return to Lincoln is 169.5° +180° +349.5".

NEBRASKA \ IOWA
147 k
85°m Clarinda

Lincoln

Manhattan
166 km
235°

S KANSAS MISSOURI




1.73: a) Angle of first line is 6 = tan™'(22-2) = 42", Angle of
second line is 42° +30° = 72°. Therefore

X =10+250cos 72" =87

Y =20+250sin 72° =258

for a final point of (87,258).
b) The computer screen now looks something like this:

(10,20)

(210, 200)

(87, 258)

The length of the bottom line is /(210 —87) +(200—258) =136 and its direction is

tan! (2822) = 25° below straight left.



1.74:

a)

b) To use the method of components, let the east direction be the x-direction
and the north direction be the y-direction. Then, the explorer’s net x-
displacement is, in units of his step size,

(40)cos45° —(80)cos 60° = —11.7
and the y-displacement is
(40)sin 45° +(80)sin 60° — 50 = 47.6.

The magnitude and direction of the displacement are

J(11.7) + (47.6)* =49, arctan ( 4171'67] =104°.

(More precision in the angle is not warranted, as the given measurements are to
the nearest degree.) To return to the hut, the explorer must take 49 steps in a

direction 104° —90° =14° east of south.



1.75: Let +x be east and +y be north. Let A be the displacement 285 km at 40.0° north
of west and let B be the unknown displacement.

B.=R -4, B, =R, -4,
A, =—Ac0s40.0" =-218.3km, 4, =+A4sin40.0" = +183.2 km
R, =115km,R =0

Then B, =333.3km, B, =-183.2 km.

B=.B;+B. =380km.

N
.

W- D) : E

B |

“““ B tana: =|B, /B,| = (183.2km)/(333.3 km)
S
o = 28.8°, south of east
1.76:
(a) O, = O Ssino
(b) O ey = @ COSQL
(c) @, = O Ssino
1)
w=—""= 350N =960 N

~ sino. sin 35.0°



1.77:

43°

B is the force the biceps exerts.

E is the force the elbow exerts.

E + B =R, where R =132.5N and is upward.
E.=R.-B,, E,=R -B,

B, =-Bsin43’ =-1582N, B, =+Bcos43’=+169.7N
R, =0,R, =+132.5N

Then E, = +1582N,E =-37.2N

E=\E+E} =160N;

tana = |E, /E,|=37.2/158.2

o =13°, below horizontal



1.78: (a) Take the beginning of the journey as the origin, with north being the y-
direction, east the x-direction, and the z-axis vertical. The first displacement is then

—30k, the second is — 15} , the third is 2007 (0.2 km =200 m), and the fourth is 100}' .
Adding the four:

—30k —15+200i +100j = 200i +85j — 30k

(b) The total distance traveled is the sum of the distances of the individual segments: 30
+ 15 +200 + 100 = 345 m. The magnitude of the total displacement is:

D=\D}+D!+D? = 2007 +85% +(=30) =219m

1.79: Let the displacement from your camp to the store be A

A=240m,32° south of east

Bis32° south of west and C is 62° south of west

Let + x be east and + y be north

A+B+C=0

A +B +C_ =0,5s0A4cos32° —Bcos48 —Ccos62° =0
A4,+B,+C, =0, so—Asin32°+ Bsin48° —Csin62° =0

A is known so we have two equations in the two unknowns B and C. Solving gives
B=255mand C=70 m.

1.80: Take your tent's position as the origin. The displacement vector for Joe's tent is

(21 cos 23° ); — (21 sin 23° )] =19.33i - 8.205}'. The displacement vector for Karl's tent is

(32cos37°)f +(32sin37°)j = 25.56i +19.26 . The difference between the two
displacements is:

(19.33-25.56)i +(—8.205-19.25)j = —6.23i —27.46 .

The magnitude of this vector is the distance between the two tents:

D=(-6.23) +(~27.46f =282m



1.81: a) With 4, = B, =0,Eq.(1.22) becomes
AB . +A4B, = (Acos @, )Bcos 8,)+(4sin 6, )Bsin 6,)
= AB(cos 0 ,cos 0, +sin 0 sin 6,,)
= ABcos(6, - 0,)
= ABcos ¢

where the expression for the cosine of the difference between two angles has been used
(see Appendix B).
b) With 4. =B, =0, C=C.kandC =
IC|=|4,B, - 4,B,
= |(A cosf, (B cosb,)—(Asin b, B cos 0/11
= AB|cos 0,sin0, —sind , cos 03|
= AB|sin(93 - GAX
= ABsin ¢

CZ

. From Eq. (1.27),

[
)

a)  The angle between the vectors is 210" — 70" =140°, and so Eq. (1.18) gives
A-B=(3.60m)2.40m)cos140° = —6.62 m* Or, Eq. (1.21) gives
A-B =AB +AB,

=(3.60 m)cos 70°(2.4 m)cos 210° + (3.6 m)sin 70°(2.4 m)sin 210°
=-6.62m’
b)  From Eq. (1.22), the magnitude of the cross product is

(3.60 m)(2.40 m)sin 140° = 5.55 m?,

and the direction, from the right-hand rule, is out of the page (the
+z-direction). From Eq. (1-30), with the z-components of Aand B

vanishing, the z-component of the cross product is
A.B,— A B, =(3.60m)cos 70°(2.40 m)sin 210*

—(3.60 m)sin 70°(2.40 m)cos 210°
=555m’



1.83: a) Parallelogram area = 2 x area of triangle ABC
Triangle area = 1/2 (base J(height) = 1/2(B)(A sin 6)
Parellogram area = BA sin 6

b) 90°

1.84: With the +x-axis to the right, +y-axis toward the top of the page, and +z-axis out
of the page, (;l X E)x =87.8 cm’, (;1 X B)y =68.9 cm’, (;1 X E)Z =0.

(2.00)" +(3.00)” +(4.00)° =5.39.

1.85: a) J
—/(3.00)" +(1.00) +(3.00)* =4.36.

b A-B=(4,-B)i+(4,-B,)j+(4 -B)k
(-5.00)i +(2.00)j +(7.00 )k

¢) (5.00) +(2.00) +(7.00) =8.83,

and this will be the magnitude of B— Aas well.

1.86: The direction vectors each have magnitude NE) , and their dot product is (1) (1) +
(D) (1) + (1) (1) =—1, so from Eq. (1-18) the angle between the bonds is arccos

—|_-1

IYE

)— arccos (— —) 109°.



1.87: The best way to show these results is to use the result of part (a) of Problem 1-65,
a restatement of the law of cosines. We know that

C* = A* + B> +2A4B cosg,

where ¢ is the angle between A and B.

a) If C* = 4> + B?, cos ¢ = 0, and the angle between Aand Bis 90° (the vectors are
perpendicular).

b) If C* < 4* + B*,cos¢ < 0, and the angle between Aand Bis greater than90° .
¢) If C* > A” + B* cosg > 0, and the angle between A4 and B is less than 90°.



1.88: a) This is a statement of the law of cosines, and there are many ways to
derive it. The most straightforward way, using vector algebra, is to assume the linearity
of the dot product (a point used, but not explicitly mentioned in the text) to show that

the square of the magnitude of the sum A+ B is

(4+B)(1+B)=4- 4

Using components, if the vectors make angles 6, and 6 with the x-axis, the components
of the vector sum are 4 cos 8 + B cos 6 and A sin 6 + B sin &z, and the square of the
magnitude is

(Acos@, + Bcos,) +(AsinH, + Bsinb,,
= Az(coszﬁA +sin’ HA)+ Bz(coszﬁB +sin’ 03)
+ 2AB(C050A cosf, +sinf  sin 93)
=A>+ B’ +24Bcos(9, - 6,)
=A>+ B’ +2A4Bcos ¢

where ¢= 64— 05 is the angle between the vectors.

b) A geometric consideration shows that the vectors A, B and the sum A + I

must be the sides of an equilateral triangle. The angle between A, and B i
120°, since one vector must shift to add head-to-tail. Using the result of pa
(a), with 4 = B, the condition is that 4> = 4> + 4> + 2 A4*cos ¢ , which solv
for 1 =2+ 2 cos ¢, cos ¢=—7, and ¢=120°.

c)  Either method of derivation will have the angle ¢ replaced by 180°— ¢, so

the cosine will change sign, and the result is \/ A® + B> — 24B cos .

d)  Similar to what is done in part (b), when the vector difference has the same
magnitude, the angle between the vectors is 60°. Algebraically, ¢ is obtain
from 1 =2 -2 cos ¢, so cos ¢= 1 and ¢= 60°.

2



1.89: Take the length of a side of the cube to be L, and denote the vectors from a to b, a
tocand atodas E,é, and D . In terms of unit vectors,
B =Lk, 6‘:L(}'+I€l ﬁzL(f+}'+l€)

Using Eq. (1.18),

~°T!
(T

arccos

. I?
= arccos =54.7°,
BD j ((L) L3 j
2I’

arccos : = arccos =35.3".
( CD ] ( L2243 j

a\
(ot

1.90: From Eq. (1.27), the cross product is

» A ~ - 6.00 Y\, 11.00 ~
—13.00) i + (6.00) j + (-11.00) k=13 |—-(1.00)i + j — k|
(-13.00) { + (6.00) j + (~11.00) { (1.00) [13.00)’ T }

The magnitude of the vector in square brackets is 4/1.93, and so a unit vector in this

direction (which is necessarily perpendicular to both A and B) is

—(1.00)i + (6.00/13.00) j — (11.00/13) k
V1.93 '

The negative of this vector,

(1.00)i — (6.00/13.00)j + (11.00/13)k
J1.93 ’

is also a unit vector perpendicular to Aand B.



1.91: Aand C are perpendicular, so A-C =0. A.C, +4,C, =0,, which gives
5.0C, -6.5C, =0.
B-C=15.0,50-3.5C, +7.0C, =15.0
We have two equations in two unknowns C, and C, . Solving gives
C,=80andC =6.1.

1.92: \21 x B\ — ABsin 0
AxB 2 2
sin 0 = & ‘ V(=5.00) +(2.00) —0.5984
AB (3.00)(3.00)

0 =sin'(0.5984)=36.8°

1.93: a) Using Equations (1.21) and (1.27), and recognizing that the vectors
A, B,and C do not have the same meanings as they do in those equations,

(4xB)-C =((4,8. - 4.B,f +(4.B, - 4,B.)j +(4,B, - 4,B k). €

=A4,B.C,-A.BC +A4.BC, -4BC +4BC —-A4B.C..

y oz x z 7y x
A similar calculation shows that

A-(BxC)=4B,C. —4BC, +AB.C,-ABC. +ABC,—ABC,

x"z>y y oz x yox Tz zox "y
and a comparison of the expressions shows that they are the same.

b) Although the above expression could be used, the form given allows for ready
compuation of Ax B the magnitude is 4B sin ¢ = (20.00)sin 37.0°and the direction
is, from the right-hand rule, in the +z-direction, and so

(4x B)- € =+(20.00)sin 37.0°(6.00) = +72.2.



1.94: a) The maximum and minimum areas are
L+DhW+wy=LW+IW+Lw, (L-D)(W—-w)=LW—IW-Lw,

where the common terms w/ have been omitted. The area and its
uncertainty are then WL £ (IW + Lw), so the uncertainty in the area is
a=IW +Lw.

b) The fractional uncertainty in the area is

a_w+wl_1  w
A WL L w,
the sum of the fractional uncertainties in the length and width.

¢) The similar calculation to find the uncertainty v in the volume will involve
neglecting the terms /wH, [Wh and Lwh as well as Iwh; the uncertainty in the volume is v
= [WH + LwH + LWh, and the fractional uncertainty in the volume is

v _IWH +LwH + LWh _ |
v LW H L

w h
+—+—,
W H

the sum of the fractional uncertainties in the length, width and height.

1.95: The receiver's position is

~ A
. .

(+1.049.0-6.0+12.0)i +(-5.0+11.0+4.0+18.0)j = (16.0)i +(28.0);.

The vector from the quarterback to the receiver is the receiver's position minus the
quarterback's position, or (16.0)1' + (35.0) j , a vector with magnitude

\/ (16.0)2 + (35.0)2 =38.5, given as being in yards. The angle is arctan(%) =24.6to the
right of downfield.



1.96: a)

b) i) InAU, {/(0.3182)> +(0.9329)> =0.9857.

ii) In AU, \/(1.3087)2 + (—.4423)° + (—-.0414)* =1.3820
iii)  In AU,

\/(0.3182 — (1.3087))* +(0.9329 — (—.4423))> +(0.0414)> =1.695.

c) The angle between the directions from the Earth to the Sun and to
Mars is obtained from the dot product. Combining Equations (1-18)
and (1.21),

(~0.3182)(1.3087 — 0.3182) + (~0.9329)(~0.4423 — 0.9329) -

@ = arccos (
(0.9857)(1.695)

d) Mars could not have been visible at midnight, because the Sun-Mars angle is less
than 90°.



1.97: a)

Alkaid

O .

Sun Merak

The law of cosines (see Problem 1.88) gives the distance as

J381y) +(771y) +2(1381y)(77 ly)cos154.4° = 7621y,

where the supplement 0f25.6” has been used for the angle between the direction
vectors.

b) Although the law of cosines could be used again, it's far more convenient to use the
law of sines (Appendix B), and the angle is given by

arcsin| SM230 130101 5157, 180° —51.5" = 129"
7621y

where the appropriate angle in the second quadrant is used.

1.98: Define S = 4i + B} + Ck

F-S=(xi+y+zk)-(4i+ Bj + Ck)
=Ax+ By +(Cz

If the points satisfy Ax + By + Cz=0, then 7 - § = 0 and all points 7 are
perpendicular to S.

YA

p B,C)

/w

(0,0,0) X




Capitulo 2



2.1:  a) During the later 4.75-s interval, the rocket moves a distance
1.00x10° m—63m, and so the magnitude of the average velocity is
1.00x10° m-63 m
475

=197 m/s.

b) 1.00x10°m _ 169 l’l’l/S

590s

2.2:  a) The magnitude of the average velocity on the return flight is

3
(5150 x 10° m) = 4.42 m/s.
(13.5 da) (86, 400 s/da)

The direction has been defined to be the —x-direction (—f ).

b) Because the bird ends up at the starting point, the average velocity for the round
trip is 0.

2.3:  Although the distance could be found, the intermediate calculation can be avoided
by considering that the time will be inversely proportional to the speed, and the extra time
will be

105 km/hr

140 min
( ) ( 70 km/hr

- 1) =70 min.

2.4: The eastward run takes (200 m/5.0m/s) = 40.0 s and the westward run takes
(280 m/4.0 m/s) =70.0s. a) (200 m + 280 m)/(40.0 s +70.0 s) = 4.4 m/s to two
significant figures. b) The net displacement is 80 m west, so the average velocity is
(80 m/110.0 s) = 0.73 m/s in the —x-direction ().

2.5: In time ¢ the fast runner has traveled 200 m farther than the slow runner:
(5.50 m/s)t + 200 m = (6.20 m/s)t, sot =286s.

Fast runner has run (6.20 m/s)r =1770 m.
Slow runner has run (5.50m/s)s =1570 m.



2.6:  The s-waves travel slower, so they arrive 33 s after the p-waves.

t,=t,+33s
d=vt—>t:£
v
i=i+33s
v v,
d = d +33s
3.5km 6.5k
d =250km

2.7: a) The van will travel 480 m for the first 60 s and 1200 m for the next 60 s, for a
total distance of 1680 m in 120 s and an average speed of 14.0 m/s. b) The first stage of

the journey takes 3% =30 s and the second stage of the journey takes
(240 m/20 m/s)=12s, so the time for the 480-m trip is 42 s, for an average speed of

11.4 m/s. ¢) The first case (part (a)); the average speed will be the numerical average
only if the time intervals are the same.

2.8: From the expression for x(¢), x(0) = 0, x(2.00 s) = 5.60 m and x(4.00 s) = 20.8 m. a)

S0 =280 m/s b) BimL=52m/s o) LGSR =7.6m/s

29: a)Att =0, x, =0,s0Eq(2.2) gives

b2 (2.4 m/s?)(10.0s)> —(0.120 m/s’)(10.0s)° 120 ms.
1 (10.0)

b) From Eq. (2.3), the instantaneous velocity as a function of time is
v, =2bt —3ct? = (4.80 m/s*)r — (0.360 m/s’ )¢,

soi) v (0)=0,
i) v (5.0s) = (4.80 m/s*)(5.0s) — (0.360 m/s)(5.05)* =15.0 m/s,
and iii) v_(10.0s) = (4.80 m/s*)(10.05) — (0.360 m/s*)(10.05)? =12.0m/s.
¢) The car is at rest when v_ = 0 . Therefore (4.80 m/s’)r—(0.360 m/s’)t*> =0 . The

2
only time after 7 =0 when the car is at rest is # = —<"*_ —13 33
0.360 m/s




2.10: a) IV: The curve is horizontal; this corresponds to the time when she stops. b) I:
This is the time when the curve is most nearly straight and tilted upward (indicating
postive velocity). ¢) V: Here the curve is plainly straight, tilted downward (negative
velocity). d) II: The curve has a postive slope that is increasing. ) III: The curve is still
tilted upward (positive slope and positive velocity), but becoming less so.

2.11: Time (s) 0 2 4 6 8 10 12 14
16
Acceleration (m/s®) 0 1 2 2 3 15 15 0

a) The acceleration is not constant, but is approximately constant between the times
t=4s and 1 =8s.

2.12: The cruising speed of the car is 60 km/hr =16.7 m/s. a) 24 =1 7m/s’ (to

10s
0-16.7 m/s

°Tms — —1.7m/s” ¢) No change in speed, so the acceleration

two significant figures). b)

is zero. d) The final speed is the same as the initial speed, so the average acceleration is
Zero.

2.13: a) The plot of the velocity seems to be the most curved upward near £ =5 s.

b) The only negative acceleration (downward-sloping part of the plot) is between ¢ = 30 s
and 1 =40 s. c) At¢=20 s, the plot is level, and in Exercise 2.12 the car is said to be
cruising at constant speed, and so the acceleration is zero. d) The plot is very nearly a

straight line, and the acceleration is that found in part (b) of Exercise 2.12, —1.7 m/ s”.

e)

Vv v, Vy

X X
*r—> & [ 2
o—— eoaq =0 -~
a a

t ' 5s t 155,255 i 35s



2.14: (a) The displacement vector is:
7(t)=—(5.0 m/s)ti +(10.0 m/s)j +((7.0 m/s)t— (3.0 m/s*)¢* )&
The velocity vector is the time derivative of the displacement vector:

df:) = (-5.0 m/s)i +(10.0 m/s)j + (7.0 m/s—2(3.0 m/s*)1) k

and the acceleration vector is the time derivative of the velocity vector:

Atr=50s:

7(£) = ~(5.0 m/s)(5.05)i +(10.0 m/s)(5.05) ]+ ((7.0m/s)(5.05) — (3.0 m/s*)(25.05°) )&
= (=25.0m)i +(50.0m)j — (40.0 m)k

e ;(t) = (=5.0 m/s)i +(10.0 m/s) j +((7.0 m/s — (6.0 m/s”)(5.0s)) k
= (=5.0 m/s)i +(10.0 m/s)j — (23.0 m/s) k
dzfz(t) ——6.0m/s’ k
dt

(b) The velocity in both the x- and the y-directions is constant and nonzero; thus
the overall velocity can never be zero.

(c) The object's acceleration is constant, since # does not appear in the acceleration
vector.



215: v =%=2.00 cm/s —(0.125 cm/s? )¢t

X

a = v, =—-0.125cm/s’
dt

X

a) Atz =0,x=50.0cm, v, =2.00cm/s, a, =—0.125cm/s’.
b) Setv, =0andsolveforz:f=16.0s.

c) Set x =50.0 cm and solve for ¢#. This gives #=0and 7 =32.0s. The turtle returns

to the starting point after 32.0 s.
d) Turtle is 10.0 cm from starting point when x = 60.0 cm or x = 40.0 cm.
Set x = 60.0cm and solvefor¢:¢ =6.20sand ¢ = 25.8s.

Att=6.20s,v_=+1.23 cm/s.
Att=258s,v. =-1.23 cm/s.
Set x =40.0 cm and solve for 7 :¢ =36.4 s (other root to the quadratic equation is negative

and hence nonphysical).
Attr=36.4s, v, =-2.55 cm/s.

e)

2.16: Use of Eq. (2.5), with Az =10 s in all cases,
a) ((5.0m/s)—(15.0m/s))/(10s) = —1.0 m/s?
by  ((-15.0m/s)—(~5.0m/s))/(10s)=~1.0 m/s’

¢) ((-15.0m/s)—(~15.0m/s))/(10s) = —3.0 m/s* .
In all cases, the negative acceleration indicates an acceleration to the left.

2.17: a) Assuming the car comes to rest from 65 mph (29 m/s) in 4 seconds,
a,=(29 m/s—0)/(4s)=7.25m/s’.
b) Since the car is coming to a stop, the acceleration is in the direction opposite to the

velocity. If the velocity is in the positive direction, the acceleration is negative; if the
velocity is in the negative direction, the acceleration is positive.



2.18: a) The velocityatt=0is

(3.00 m/s) +(0.100 m/s*) (0)=3.00 m/s,
and the velocity at #=5.00 s is

(3.00 m/s) +(0.100 m/s*) (5.00 s)* = 5.50 m/s,
so Eq. (2.4) gives the average acceleration as

(5.50 m/s)—(3.00 m/s) _ 50 m/s’
(5.005) ' '

b) The instantaneous acceleration is obtained by using Eq. (2.5),

dv 3
=—=206=(0.2 m/s”)t.
a=— At=(0.2 m/s")
Then, i) at =0, a, = (0.2 m/s’) (0) = 0, and
i) at 1=5.00s, a, = (0.2 m/s>) (5.00 s) = 1.0 m/s’>.

55 + T B
525 o 09
5 I T 0.8
4.75 : v 5 0.7
w0 T T w |
4 ; : 0.4 [ /
375 03 |-
35 o ; . 0.2 [ ;
3.25 : 0.1

3 0 -
0051 152253354455 00511522533544535
t t



2.19:

b)

a)

t=10s
t=20s
t=30s
t=375s




2.20: a) The bumper’s velocity and acceleration are given as functions of time by

v, = % = (9.60 m/s’)t — (0.600 m/s°)¢°
dv 2 6.4
a,=— = (9.60 m/s”) — (3.000 m/s”)¢".

There are two times at which v = 0 (three if negative times are considered), given by =
Oand =165 Atr=0,x=2.17mand a,=9.60 m/s >. When ' =16 s",
x=(2.17 m) + (4.80 m/s %) /(16 s*) — (0.100) m/s° )(16 s*)** = 14.97 m,
ax = (9.60 m/s %) —(3.000 m/s")(16 s*) = —38.4 m/s 2.

b)
15 / 15

11.25 10
x(f) 75 / (B s /

2.21: a) Equating Equations (2.9) and (2.10) and solving for vy,
oo 2amx) | 200m) s 66— 500 m)s.
t 7.00s
b) The above result for v, may be used to find
g oY Vor _ 15.0 m/s —5.00 m/s
* t 7.00s

or the intermediate calculation can be avoided by combining Egs. (2.8) and (2.12) to
eliminate v, and solving for a,,

0 =2 v_x_x—zx0 _ 15.0m/s 70.0m2 143 m/s’.
i 7.00s  (7.00s)

X

=1.43m/s?,




2.22:

a) The acceleration is found from Eq. (2.13), which v, = 0;

b

v (73 mifhr) (270me )

a =—>—= =32.0m/s’,
2x-x0) 2307 (ki)
where the conversions are from Appendix E.
b) The time can be found from the above acceleration,
173 mi/hr) (*10
:Vx:( / )( 12m1/hr ):242S
a. 32.0m/s

The intermediate calculation may be avoided by using Eq. (2.14), again with vy, = 0,

2.23:

2.24:

2.25:

2(x—x,) 2((307 fr(s1n5))
= = =2.42s.
! v (173 mi/hr) (0'4470 m/ 5) >

x 1mi/hr

From Eq. (2.13), with v, =0, a, =Z:f—%5 <a,,. . Taking x, =0,

Ve, _ ((105 km/hr)(1 m/s)(3.6 km/ hr))?
2a_ 2(250 m/s?)

max

x>

=1.70m.

In Eq. (2.14), with x — x¢ being the length of the runway, and v, = 0 (the plane
starts from rest), v =2--2=228%n-70.0m/s.

a) From Eq. (2.13), with v, =0,
vi  (20m/s)*

a = = =
Y 2(x-x,) 2(120m)

1.67m/s>.

b) Using Eq. (2.14), 1 =2(x—x,)/v=2(120m)/(20 m/s) =12s.
c) (125)(20 m/s) =240 m.



2.26:

a) x0 <0, v, <0,a,<0

3
Vo4
b) x0>0,v0:<0, a,>0
day
=0 — 1 —e————Xx
Vox
a
5
t=1 x
¥y
a,
i
=21 x
v, 0
a);
t=31¢ x
Vx

c) x0>0,v0,>0,a,<0

*o




2.27: a) speeding up:

x—-x,=13201t,v, =0,7=19.9s,a ="

X=X, =V, t+La t’ gives a, =6.67 ft/s’
slowing down:
x—x,=1461t,v, =88.0 ft/s, v =0, a, =?

vi = vgx +2a (x—x,)givesa, =-26.5 f‘[/s2 .

b) x—x, =1320ft,v,, =0,a, =667 ft/s*, v, =2
v:=v] +2a_(x—x,) gives v. =133 ft/s =90.5mph.

a, must not be constant.

c)v,, =88.0 ft/s, a, =—26.5ft/s’, v, =0,1="

v, =V, +a.tgivest=3.32s.



2.28: a) Interpolating from the graph:

At 4.0s, v =+2.7 cm/s (to the right)
At 7.0s, v =—1.3 cm/s(to the left)

_80cm/s

o =—1.3 cm/ s which is constant

b) a =slope of v-¢ graph =
¢) Ax = area under v-f graph

8 cm/s
2cm/s
0 4.5s
First 4.5 s:
Ax = ARectangle + ATriangle
= (4.5 S)(Qﬂj n 1(4.5 s)(6ﬂj =22.5cm
S 2 s
From0to7.5s:
8em/s
\\\
\\ 7.58
=

—2cm/s

The distance is the sum of the magnitudes of the areas.

d=1(6s) 8™ )+ L(155) 2™ )= 25.50m
2 S 2

S

N

d)

-13em/s? I



2.29:

b)

2.30:
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2.31: a) Att=3 s the graph is horizontal and the acceleration is 0. From¢=5sto ¢=

9 s, the acceleration is constant (from the graph) and equal to w =6.3m/ s*. From

t =9 stot= 13 s the acceleration is constant and equal to
OHmE — 112 m/s’.

4s

b) In the first five seconds, the area under the graph is the area of the rectangle, (20
m)(5s) =100 m. Between =5 s and ¢ =9 s, the area under the trapezoid is (1/2)(45 m/s
+ 20 m/s)(4 s) = 130 m (compare to Eq. (2.14)), and so the total distance in the first 9 s is
230 m. Between #=9 s and ¢ = 13 s, the area under the triangle is

(1/2)(45m/s)(4s) =90 m , and so the total distance in the first 13 s is 320 m.

2.32:

150

S(m/s) B 1
100 : o i
\ i x{m) P
v, T \ T SV SRS SO W
Y 1(s) :
{ 10 20 \ 3 40 50 E

—5(m/s)

10 20 30 40
£(s)

2.33: a) The maximum speed will be that after the first 10 min (or 600 s), at which time
the speed will be

(20.0 m/s*)(900s) =1.8x10* m/s =18 km/s.

b) During the first 15 minutes (and also during the last 15 minutes), the ship will travel
(1/2)(18 km/s)(900s) = 8100 km , so the distance traveled at non-constant speed is 16,200
km and the fraction of the distance traveled at constant speed is

16,200 km
1-———=0.958,
384,000 km
keeping an extra significant figure.

3 - . 384,000 km—16,200 ki
¢) The time spent at constant speed is ———>——

TSkm/s =2.04x10"s and the time spent

during both the period of acceleration and deceleration is 900 s, so the total time required
for the trip is 2.22x10*s , about 6.2 hr.



2.34: After the initial acceleration, the train has traveled
%(1.60 m/s*)(14.0s)* =156.8 m

(from Eq. (2.12), with xo = 0, vo, = 0), and has attained a speed of
(1.60 m/s*)(14.05)=22.4 m/s.

During the 70-second period when the train moves with constant speed, the train travels
(22.4 m/ s) (70 s) =1568 m. The distance traveled during deceleration is given by Eq.

(2.13), with v. =0,v, =22.4m/s and a, =-3.50m/s”, so the train moves a distance
x—x, =—24m° _ 71 68 m. The total distance covered in then 156.8 m + 1568 m+ 71.7 m

2(-3.50 m/s?)

= 1.8 km.

In terms of the initial acceleration a;, the initial acceleration time #,, the time #, during
which the train moves at constant speed and the magnitude a, of the final acceleration,
the total distance xt is given by

2
X = laltf + (a,t)t, + 1an) _[ 4l t+2t, + ahy ,
2 2 |a,| 2 la, |

which yields the same result.



2.35: a)

Py ® Y £ >
oy, =0 v — >V
0a, =0 o, =0 ou, =0
- L g L g
x ¥,

b) From the graph (Fig. (2.35)), the curves for 4 and B intersect at /=1 sand t =3 s.

¢)

v (m/s)

#s)

d) From Fig. (2.35), the graphs have the same slope at 1 =2 s . e) Car 4 passes car B
when they have the same position and the slope of curve 4 is greater than that of curve B
in Fig. (2.30); this is at =3 s. f) Car B passes car 4 when they have the same position
and the slope of curve B is greater than that of curve 4; thisisat =1 s.



2.36: a) The truck’s position as a function of time is given by xr = vrt, with vr being the
truck’s constant speed, and the car’s position is given by xc = (1/2) act’. Equating the
two expressions and dividing by a factor of ¢ (this reflects the fact that the car and the
truck are at the same place at # = 0) and solving for ¢ yields

_ 2v;  2(20.0m/s) 2.5

ac  320m/s’
and at this time
xr =xc =250 m.

b) act = (3.20 m/s%)(12.5 s) = 40.0 m/s (See Exercise 2.37 for a discussion of why the
car’s speed at this time is twice the truck’s speed.)

c)
400 -y
360 —.mﬂ
e e
320
280
240
Hm) 509
160
120 A ’
80 >
3} =27 -
0123456789101112131415
Ks)

40

v {1m/s) [t




2.37: a)

Officer

1

The car and the motorcycle have gone the same distance during the same time, so their
average speeds are the same. The car's average speed is its constant speed v, and for
constant acceleration from rest, the motorcycle's speed is always twice its

average, or 2vc. b) From the above, the motorcyle's speed will be v¢ after half the time
needed to catch the car. For motion from rest with constant acceleration, the distance
traveled is proportional to the square of the time, so for half the time

one-fourth of the total distance has been covered, or d/4.

2.38: a) An initial height of 200 m gives a speed of 60 m/s when rounded to one
significant figure. This is approximately 200 km/hr or approximately 150 mi/hr .

(Different values of the approximate height will give different answers; the above may be
interpreted as slightly better than order of magnitude answers.) b) Personal experience
will vary, but speeds on the order of one or two meters per second are reasonable. ¢) Air
resistance may certainly not be neglected.

2.39: a) FromEq. (2.13), with v, =0and a, =-g,

Vo, =28 —1y) =1 2(9.80 m/s>)(0.440 m) = 2.94 m/s,
which is probably too precise for the speed of a flea; rounding down, the speed is about
29m/s.
b) The time the flea is rising is the above speed divided by g, and the total time is twice
this; symbolically,

o280y :2J2<y—yo> :2\/2(0.440m> 05995,

g g (9.80m/s®)

or about 0.60 s.

2.40: Using Eq. (2.13), with downward velocities and accelerations being positive, vi =

(0.8 m/s)*+2(1.6 m/s*)(5.0 m) = 16.64 m*/s* (keeping extra significant figures), so v,
=4.1 m/s.



2.41: a) If the meter stick is in free fall, the distance d is related to the reaction time 7 by
d= (1/ 2)gt’ , s0 t =+/2d/g. 1f d is measured in centimeters, the reaction time is

z:\ﬁx/ﬁz %ﬁ:m.sleoﬂ s)\/d/(Lcm).
g 980 cm/s

b) Using the above result, (4.52x107s)4/17.6 =0.190s.

2.42: a) (1/2)gt* =(1/2)(9.80 m/s*)(2.55)* =30.6 m.
b) gt=(9.80m/s*)(2.55)=24.5.m/s.

c)

40 0

30 -175

\ \

¥(® 20 \\ ; v 15 \ ;

10 \\ 225 : \

0 - : > 30 : - >
0 05 1 5 2 25 0 05 1 15 2 25
I I




2.43: a) Using the method of Example 2.8, the time the ring is in the air is
Vo +yv, —28(y =)
g
_ (5.00m/s)+ \/(5.00 m/s)” —2(9.80 m/s*)(—12.0 m)
(9.80 m/s?)

=2.156s,
keeping an extra significant figure. The average velocity is then 1242 =5.57 m/s, down.

As an alternative to using the quadratic formula, the speed of the ring when it hits the
ground may be obtained from vi = vgy -2g(y-,), and the average velocity found

v

from % ; this is algebraically identical to the result obtained by the quadratic formula.
b) While the ring is in free fall, the average acceleration is the constant acceleration due
to gravity, 9.80m/s’ down.

1
9) Y= YoVt gl
. 1 28,2
0= 12.0m+(5.00m/s)t—5(9.8m/s )
Solve this quadratic as in part a) to obtain = 2.156 s.

d) v =v;, —2g(y—y,) =(5.00 m/s)* —2(9.8 m/s*)(~12.0 m)
‘vy‘:16.1m/s

15 H 10

11.25 \ 25|

¥ 75 H v 5

3.75 \ —12.5

a(n—10

=15

=20



2.44: a) Using a, = —g, vo, = 5.00 m/s and y, = 40.0 m in Egs. (2.8) and (2.12) gives
1) at t=0.250s,

3= (40.0 m) + (5.00 m/s)(0.250 s) — (1/2)(9.80 m/s*)(0.250 s)* = 40.9 m,
v, = (5.00 m/s) — (9.80 m/s”)(0.250 s) = 2.55 m/s

and 11) at £ =1.00 s,

= (40.0 m) + (5.00 m/s)(1.00 s) — (1/2)(9.80 m/s*)(1.00 s)> = 40.1 m,
vy = (5.00 m/s) — (9.80 m/s*)(1.00 s) = —4.80 m/s.

b) Using the result derived in Example 2.8, the time is

,_ (500 m/s) + J(s.oo m/s)’ —2(9.80 m/s’)(0 —40.0 m) _
(9.80 m/s?)

3.41s.

c) Either using the above time in Eq. (2.8) or avoiding the intermediate calculation by
using Eq. (2.13),

v2=v, —2g(y — y,) =(5.00 m/s)* — 2(9.80 m/s’)(-40.0 m) = 809 m?/s’,
v, =28.4m/s.

d) Using v, =0 in Eq. (2.13) gives

v _ (5.00 m/s)?

= — + =
d Yo 2(9.80 m/s”)

+40.0m=41.2m.
2g

60 : ; g ; : 20

45

5

y(1) 30 V()10

4 0 08 16 24 32 4




2.45: a) v, =v,, —gt =(-6.00 m/s)—(9.80 m/s”)(2.00s) =—25.6 m/s, so the speed is
25.6 m/s.

b) ¥ =vy,t —% gt® = (—6.00 m/s)(2.00s) —%(9.80 m/s*)(2.00s)> =—31.6 m, with the

minus sign indicating that the balloon has indeed fallen.
c)
v2 =vy, —2g(y, — ¥) =(6.00 m/s)* —2(9.80 m/s”)(—10.0m) =232 m*/s’,s0 v, =15.2 1

2.46: a) The vertical distance from the initial position is given by
— 1 o
Y=Vl = ng >

solving for vy,,

y 1 _(=50.0m)

1 2
=2 + —(9.80 m/s")(5.00 s) = 14.5 m/s.
S8 T o0 T OB mIG00) /

b) The above result could be used in vi = véy ~2g(y = y,), with v=0, to solve for y
—yo = 10.7 m (this requires retention of two extra significant figures in the calculation
for voy). ¢) 0 d) 9.8 m/s”, down.

e) Assume the top of the building is 50 m above the ground for purposes of graphing:

80 20
60 5
¥ ,
a0 AN v 210 \\
20 AN 225 AN
0 240
0 1 2 4 5 o 1 2 3 4 s
t i
1]
25
ay 210
215




2.47: a) (224 m/s)/(0.95) =249 m/s’. b) 22 —254. ¢) The most direct way to

9.80 m/s>

find the distance is v, ./ =((224 m/s)/2)(0.9s) =101 m.
d) (283 m/s)/(1.40s) = 202 m/s’ but40 g =392 m/s” , so the figures are not consistent.

2.48: a) From Eq. (2.8), solving for # gives (40.0 m/s —20.0 m/s)/9.80 m/s’> =2.04 s.
b) Again from Eq. (2.8),

40.0 m/s —(-20.0 m/s)

=6.12s.
9.80 m/s’

c¢) The displacement will be zero when the ball has returned to its original vertical
position, with velocity opposite to the original velocity. From Eq. (2.8),

40 m/s — (—40 m/s)

=8.16 s.
9.80 m/s’

(This ignores the ¢ = 0 solution.)

d) Again from Eq. (2.8), (40 m/s)/(9.80 m/s*)=4.08 s. This is, of course, half the
time found in part (c).

¢) 9.80 m/s’, down, in all cases.

f)

100 | S 50

/\ — 2 \

¥ 59

4] 2 4 6 8 10 o 2 4 6 8 10




2.49: a) For a given initial upward speed, the height would be inversely proportional to
the magnitude of g, and with g one-tenth as large, the height would be ten times higher,
or 7.5 m. b) Similarly, if the ball is thrown with the same upward speed, it would go ten
times as high, or 180 m. c) The maximum height is determined by the speed when hitting
the ground; if this speed is to be the same, the maximum height would be ten times as
large, or 20 m.



2.50: a) From Eq. (2.15), the velocity v, at time ¢

t
v, =V, + | at dt
gt

a 2
:V1+E(t — 1)

o o
=v, ——t] +5t2

= (5.0 m/s) — (0.6 m/s’)(1.0 s)* + (0.6 m/s’) 7
= (4.40 m/s) + (0.6 m/s’) 7.

At 1, =2.0's, the velocity is v, = (4.40 m/s) + (0.6 m/s’)(2.0 s)* = 6.80 m/s, or 6.8 m/s
to two significant figures.
b) From Eq. (2.16), the position x; as a function of time is
x, =x + fﬁl v, dt
= (6.0 m) +J; ((4.40 m/s) + (0.6 m/s*)i*)dr

= (6.0 m) + (4.40 m/s)(t — ¢,) +(0'6Tm/53) GE)

Att=2.0s,and with 4 =1.0 s,

x=(6.0m) + (4.40 m/s)((2.0 s) — (1.0 s)) + (0.20 m/s’)((2.0 5)*— (1.0 5)°)
=11.8 m.

20

x(H 15
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2.51: a) From Egs. (2.17) and (2.18), with vy=0 and x,=0,

2_£t2

v, = [ (4r-B*)dt = gz = (0.75 m/s*)t* - (0.040 m/s*)¢®

(A, B ; A4, B, 3.3 4,4
x=||=t —=t |dt=—t"——1t" =(025m/s”)t" —(0.010 m/s™)t".
jo( 3 j =025 m/s —( /s*)
b) For the velocity to be a maximum, the acceleration must be zero; this occurs at /=0

and t =4 =12.5s. At =0 the velocity is a minimum, and at =12.5 s the velocity is

v. =(0.75 m/s*)(12.55)* —(0.040 m/s*)(12.5s)* =39.1 m/s.



2.52: a) Slope=a=0fort>1.3ms
b) A, = Areaunderv—tgraph
~ A + 4

Triangle Rectangle

~ %(1.3 ms)(m@j +(2.5ms—1.3ms)(133 cm/s)
S
~0.25cm

133 cm/s

0 1.3 ms 2.5ms

¢) a = slope of v— ¢ graph

=1.0x10° cm/s’

a(0.5ms) = a(1.0ms) = 1313&/5

a (1.5 ms) = Obecause the slope is zero.

d) 4 = area under v— ¢ graph

h(0.5ms) ~ Ay = %(0.5 ms)(33@j =8.3x10” cm
S

1

h(1.0ms)~ A, .. = 5(1.0 ms)(100 cm/s) = 5.0x107> cm

riangle

(1.5 m8) % Apange + Arecinge = %(1 3 ms)(133@j +(0.2ms)(1.33)
S

=0.11cm



2.53: a) The change in speed is the area under the a, versus ¢ curve between
vertical lines at # =2.5s and ¢#=7.5s. This area is

1(4.00 cm/s” +8.00cm/s*)(7.5s —2.55) = 30.0 cm//s
This acceleration is positive so the change in velocity is positive.

b) Slope of v, versus ¢ is positive and increasing with ¢.

¥y

2.54: a) To average 4 mi/hr, the total time for the twenty-mile ride must be five
hours, so the second ten miles must be covered in 3.75 hours, for an average of 2.7
mi/hr. b) To average 12 mi/hr, the second ten miles must be covered in 25 minutes and

the average speed must be 24 mi/hr. c¢) After the first hour, only ten of the twenty miles
have been covered, and 16 mi/hr is not possible as the average speed.



2.55: a)

3 8
22{ ;;;;;; . H i \
X0 15 /\ v 2
0.75 /

0 . —4

The velocity and acceleration of the particle as functions of time are

v.(£) = (9.00 m/s*)t* — (20.00 m/s*)z + (9.00 m/s)
a,(f) = (18.0 m/s*) — (20.00 m/s?).

b) The particle is at rest when the velocity is zero; setting v = 0 in the above expression
and using the quadratic formula to solve for the time ¢,

,_ (200 m/s’) +4/(20.0 m/s*)> —4(9.0 m/s*)(9.0 m/s)
- 2(9.0 m/s?)

and the times are 0.63 s and 1.60 s. c) The acceleration is negative at the earlier time and
positive at the later time. d) The velocity is instantaneously not changing when the
acceleration is zero; solving the above expression for a (t) =0 gives

20.00 m/s?
18.00 m/s’

Note that this time is the numerical average of the times found in part (c). e) The greatest
distance is the position of the particle when the velocity is zero and the acceleration is
negative; this occurs at 0.63 s, and at that time the particle is at

=1.11s.

(3.00m/s*)(0.63s)’ — (10.0 m/s°)(0.63s)* +(9.00 m/s)(0.63s) = 2.45 m.

(In this case, retaining extra significant figures in evaluating the roots of the quadratic
equation does not change the answer in the third place.) f) The acceleration is negative at
t =0 and is increasing, so the particle is speeding up at the greatest rate at = 2.00 s and
slowing down at the greatest rate at = 0. This is a situation where the extreme values of

. . . da
a function (in the case the acceleration) occur not at times when — = 0 but at the
t

endpoints of the given range.



2.56: a) 24 =1.25m/s.

20.0s

b)£2 =1.67m/s.

15s

c) Her net displacement is zero, so the average velocity has zero magnitude.

d) 34 —1.43 m/s. Note that the answer to part (d) is the ~armonic mean, not the

arithmetic mean, of the answers to parts (a) and (b). (See Exercise 2.5).

2.57: Denote the times, speeds and lengths of the two parts of the trip as #; and %, v; and
vy, and /i and /.

a) The average speed for the whole trip is

[ +1, _ L +1, _ (76761§nn)+(3;1k1r<nm) — 82 km/h,
th+t,  ()v)+(,)v,) (88km/h)+(m)

or 82.3 km/h, keeping an extra significant figure.

b) Assuming nearly straight-line motion (a common feature of Nebraska
highways), the total distance traveled is /;—/» and

I, -1, (76km)—(34km)

= = =31 km/h.
MUty (ke )+ () /

(31.4 km/hr to three significant figures.)

2.58: a) The space per vehicle is the speed divided by the frequency with which the cars
pass a given point;
96 km/h
2400 vehicles/h

= 40 m/vehicle.

An average vehicle is given to be 4.5 m long, so the average spacing is 40.0 m— 4.6 m
=354m.

b) An average spacing of 9.2 m gives a space per vehicle of 13.8 m, and the traffic
flow rate is
96000 m/h

OO _ 6960 vehicle/h.
13.8 m/vehicle



2.59: (a) Denote the time for the acceleration (4.0 s) as ¢; and the time spent running at
constant speed (5.1 s) as ©,. The constant speed is then at;, where a is the unknown
acceleration. The total / is then given in terms of @, #; and #, by

1
l=—at] +att,,
2

and solving for a gives

. ! _ (100 m) _
1/2)t} +t,t,  (1/2)(4.0s)* +(4.05)(5.1s)

3.5m/s”.

(b) During the 5.1 s interval, the runner is not accelerating, so a = 0.
(c) Av/At =[(3.5 m/s*)(45)]/(9.1s) =1.54 m/s>.

(d) The runner was moving at constant velocity for the last 5.1 s.

2.60: a) Simple subtraction and division gives average speeds during the 2-second
intervals as 5.6, 7.2 and 8.8 m/s.

b) The average speed increased by 1.6 m/s during each 2-second interval, so the

. . 2
acceleration is 0.8 m/s”.

¢) From Eq. (2.13), with vy = 0, v = \/2(0.8 m/s*)(14.4 m) = 4.8 m/s. Or,
recognizing that for constant acceleration the average speed of 5.6 m/s is the speed one
second after passing the 14.4-m mark, 5.6 m/s — (0.8 m/s’)(1.0 s) =4.8 m/s.

d) With both the acceleration and the speed at the 14.4-m known, either Eq. (2.8)
or Eq. (2.12) gives the time as 6.0 s.

e) From Eq. (2.12), x —xo = (4.8 m/s)(1.0 s) + 1 (0.8 m/s*)(1.0 s)* = 5.2 m. This
is also the average velocity (1/2)(5.6 m/s + 4.8 m/s) times the time interval of
1.0 s.

2.61: Ifthe driver steps on the gas, the car will travel

(20 m/s)(3.0s)+(1/2)(2.3 m/s*)(3.0s)> = 70.4m.
If the brake is applied, the car will travel

(20 m/s)(3.0s) + (1/2)(-3.8 m/s?)(3.0s5)*> =42.9m,
so the driver should apply the brake.



2.62: a) d=ct=(3.0x10° 2)(1y)(365id]£24hj(3600sj
S

ly A 1d | 1n
=9.5x10" m
b) d=ct=(3.0x10°2)(107 5)=0.30m
S
11
©) _d_15A0Tm <605~ 833 min
¢ 3.0x10° m/s
8
O t:i:2(3.84x£0 m
¢ 3.0x10°m/s
9 .
e) g4 3A0mME 005 =45k

¢ 186,000 mi/s

2.63: a) v=27R,/t =464m/s

b) v =2/t =2.99x10" m/s (r is the radius of the earth's orbit)

c) Let ¢ be the speed of light, then in one second light travels a distance ¢(1.00s). The
number of times around the earth to which this corresponds is ¢(1.00s)/2nR, = 7.48



2.64: Taking the start of the race as the origin, runner A's speed at the end of 30 m can
be found from:

v:=vZ +2a,(x—x,)=0+2(1.6 m/s*)(30m) =96 m*/s’
v, =4/96 m*/s* =9.80m/s
A’s time to cover the first 30 m is thus:

foVaTVon _ 9.80 m/s

> —6.13s
a, 1.6 m/s
and A’s total time for the race is:
6135+ 320=30m _ 40 o
80 m/s

B’s speed at the end of 30 m is found from:

v2 =vl +2a,(x—x,)=0+2(2.0 m/s*)(30m) =120 m?/s*

vy =+/120 m%/s> =10.95m/s

B’s time for the first 30 m is thus
Vg =V 10.95m/s

t= = > =5.48s
ag 2.0 m/s
and B's total time for the race is:
5485 3030m 4, o
10.95 m/s

B can thus nap for 38.8 —34.7 = 4.1s and still finish at the same time as A.

2.65: For the first 5.0 s of the motion, v,, =0, £ =5.0s.
v, =V, tat gives v.=a (5.05s).

This is the initial speed for the second 5.0 s of the motion. For the second 5.0 s:
Vo, =a,(5.0s), 1=5.0s, x—x, =150m.

X=X, =V, t+La 1’ gives150m = (255)a, +(12.55*)a, anda, = 4.0 m/s’

Use this a, and consider the first 5.0 s of the motion:
X=X, =Vt +Lat’ =0+1(4.0 m/s*)(5.05)* =50.0m.



2.66: a) The simplest way to do this is to go to a frame in which the freight train (which
moves with constant velocity) is stationary. Then, the passenger train has

an initial relative velocity of viei0 = 10 m/s. This relative speed would be decreased to

2
Vrel s 0

zero after the relative separation had decreased to 55— = +500 m. Since this is larger in

magnitude than the original relative separation of 200 m, there will be a collision. b) The
time at which the relative separation goes to zero (i.e., the collision time) is found by
solving a quadratic (see Problems 2.35 & 2.36 or Example 2.8). The time is given by

1 [
r= ; Vrel,O - vrel,O + 2a‘xrel,O

= (10 52/m)(10 m/s — {100 m*/s’ — 40 m?/s’)

= (100 s)((1 - +/0.6).

Substitution of this time into Eq. (2.12), with xo = 0, yields 538 m as the distance the
passenger train moves before the collision.

2.67: The total distance you cover is 1.20m+0.90 m = 2.10 m and the time available is
o= 0.80s . Solving Eq. (2.12) for a;,
_ (x—x,) = vyt 5 (2.10m) — (0.80m/s)(0.805s)

a = = =4.56m/s”.
¥ £ (0.805)> /




2.68: One convenient way to do the problem is to do part (b) first; the time spent

accelerating from rest to the maximum speed is % =80s.

At this time, the officer is
B ﬁ ~ (20 m/s)’

. =80.0 m.

2a 225m/s?)

This could also be found from (1/2)a,t}, where t, is the time found for the acceleration.

At this time the car has moved (15 m/s )(8.0 s) = 120 m, so the officer is 40 m behind the
car.

a) The remaining distance to be covered is 300 m — x; and the average speed is
(1/2)(v; + ;) = 17.5 m/s, so the time needed to slow down is

360 m — 80 m
17.5 m/s
and the total time is 24.0 s.

=16.0s,

¢) The officer slows from 20 m/s to 15 m/s in 16.0 s (the time found in part (a)), so

the acceleration is —0.31 m/s”.

d), e)




2.69: a) x; = (1/2)a,¢*, and with x, = 40.0m, solving for the time gives

_ [20400m) _
= oiom = 6.17s

b) The car has moved a distance
2
Lyt ey 340m)s
2 a; ' 2.10m/s

40.0m = 64.8 m,
and so the truck was initially 24.8 m in front of the car.

¢) The speeds are a,t=13 m/sand a.t =21 m/s.

d)

100

[
[T -
=)
%0




2.70: The position of the cars as functions of time (taking x; = 0 at t = 0) are
1
xlzzat , X, =D — vyt
The cars collide when x; = x;; setting the expressions equal yields a quadratic in ¢,
[P
Eat +VOI—D:0,
the solutions to which are
1 1
t=—(1/v§ + 2aD —vo), t=—(—1/v§ + 2aD —vo).
a a

The second of these times is negative and does not represent the physical situation.

b) v, =at= (ﬁvé + 2aD - vo)

c)

{1y




2.71: a) Travelling at 20 m/s, Juan is x, =37 m—(20 m/s)(0.80s) =21 m from the
spreader when the brakes are applied, and the magnitude of the acceleration will be

a= % Travelling at 25m/s, Juan is x, =37m—(25m/s)(0.80s) =17m from the

spreader, and the speed of the car (and Juan) at the collision is obtained from

; 1
vi=ve —2a.x, =v —2 A X, =vg, =V} %2 =(25m/s)> — (20 m/s)’ 17m
2 X 2lm

X 1
=301 m?/s’
and so v, =17.4m/s.

b) The time is the reaction time plus the magnitude of the change in speed (v,—Vv)

divided by the magnitude of the acceleration, or
v, :vx1 — (0.805) +2 25 m/s—17.éim/s
v, (20 m/s)

) (21m) =1.60s.

t flash — t reaction

2.72: a) There are many ways to find the result using extensive algebra, but the most
straightforward way is to note that between the time the truck first passes the police car
and the time the police car catches up to the truck, both the truck and the car have
travelled the same distance in the same time, and hence have the same average velocity

over that time. Since the truck had initial speed 3 v, and the average speed is v, the

truck’s final speed must be Jv,.

2.73: a) The most direct way to find the time is to consider that the truck and the car are
initially moving at the same speed, and the time of the acceleration must be that which
gives a difference between the truck's position and the car's position as

24m+21m+26m+4.5m = 75.5m,or = /2(75.5m)/(0.600 m/s>) =15.9s.
b) vyt + (1/2)a t* =(20.0 m/s)(15.95s) + (1/2)(0.600 m/s*)(15.95)* = 394 m.
¢) vy, +a,t =(20.0 m/s) +(0.600 m/s*)(15.9s) = 29.5 m/s.




2.74: a) From Eq. (2.17), x(f) = at =2 = (4.00 m/s)t—(0.667 m/s’)r’. From Eq.
(2.5), the acceleration is a(f) = -2 = (- 4.00 m/s’)z.
b) The velocity is zero at ¢ = \/% (a=0at ¢ =0, but this is an inflection point, not an

extreme). The extreme values of x are then

eedlafE L)) a2 e
p3Np) 3\p

1
3\2
ng m :2 32m? =3.77m.
3( 2.00 m/s 3

The positive value is then

2.75: a) The particle's velocity and position as functions of time are
v.(£) = v,, + jo ((=2.00m/s*) +(3.00m/s* )r) dt
=v,, —(2.00m/s’ )t + (MJ%,
x(t) = Lv ()t = v, t —(1.00 m/s>)¢> +(0.50 m/s*)s’
= t(v,, — (1.00 m/s?)¢ + (0.50 m/s*)¢?),
where xo has been set to 0. Then, x(0) = 0, and to have x(4 s) =0,
v,, — (1.00m/s?)(4.00s) + (0.50m/s*)(4.00s)* = 0,

which is solved for v,, =—4.0m/s. b) v_(4s) =12.0m/s.

2.76: The time needed for the egg to fall is

t:\/ZAh :\/2(46.0m—1.80 m 2o .

9 (9.80 m/s”)

and so the professor should be a distance v,z = (1.20 m/s )(3.00 s) = 3.60 m.



2.77: Let t; be the fall for the watermelon, and #, be the travel time for the sound to
return. The total time is 7' =¢, +¢, = 2.5s. Let y be the height of the building, then,

y=1gt’andy =v_t, There are three equations and three unknowns. Eliminate ,, solve
for #1, and use the result to find y. A quadratic results: L gt +v.¢, —v.T =0. If

at’> +bt +c=0,thent =@

Here,t=t,,a=1/2g=4.9 m/s*,b=v_ =340 m/s,andc = —v,T = —(340 m/s)(2.5s) = -850 m

Then upon substituting these values into the quadratic formula,

L _-G40ms) J(340m/s)” — 4(4.9 m/s*)(-850 m)
b 2(4.9 m/s*)

t, = ﬂ;}%%ﬁ) =2.42s . The other solution, —71.8 s has no real physical meaning.

Then, y = Egtf =4(9.8 m/sz)(2.42 s)2 =28.6m. Check: (28.6m)/(340 m/s) =.08s, the
time for the sound to return.

2.78: The elevators to the observation deck of the Sears Tower in Chicago move from
the ground floor to the 103™ floor observation deck in about 70 s. Estimating a single

floor to be about 3.5 m (11.5 ft), the average speed of the elevator is % =5.15m/s.

Estimating that the elevator must come to rest in the space of one floor, the acceleration

is about 0—_2(5%@ =-3.80m/s”.

2.79: a) v=.42gh= \/2(9.80 m/s*)(21.3m) =20.4 m/s; the announcer is mistaken.

b) The required speed would be

vy = V2 +28(y—,) = J(zs m/s)” +2(9.80 m/s*)(-21.3m) =14.4 m/s,

which is not possible for a leaping diver.



2.80: Ifthe speed of the flowerpot at the top of the window is vy, height / of the
window is

h=v,t=vt+(/2)gt’, or v, = é - (1/2)gt.

The distance / from the roof to the top of the window is then
v_g ~ ((1.90 m)/(0.420 s) — (1/2)(9.80 m/sz)(0.420 s))’

=0.310m.
2g 2(9.80 m/s”)

l:

An alternative but more complicated algebraic method is to note that ¢ is the difference
between the times taken to fall the heights / + 4 and 4, so that

t= /2(Z+h) —\/Z, Jegt? /2 + 1 =1 +h.
g g

Squaring the second expression allows cancelation of the / terms,

(1/2)gt® + 2 gt*1)2 = h,

which is solved for

1 (h ’
l—£(7—(1/2)gf] ;

which is the same as the previous expression.

2.81: a) The football will go an additional ;—; = % =1.27m above the window, so

the greatest height is 13.27 m or 13.3 m to the given precision.

b) The time needed to reach this height is y/2(13.3m)/(9.80 m/s?) =1.65s.



2.82: a)

375 200
200 e 100 /\
y 225 \ ; ), 50 NN
150 \ 0 NG
75 50 N
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]
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2.83: a) From Eq. (2.14), with v=0,

v, =24,y — ) =+/2(45.0 m/s?)(0.640m) = 7.59 m/s.

b) The height above the release point is also found from Eq. (2.14), with
Vo, =7.59m/s,v =0anda, =-g,
V2 2
_ 0y _ (759 m/s)2 —204m
2g  2(9.80 m/s?)
(Note that this is also (64.0 cm) (#).The height above the ground is then 5.14 m.

¢) See Problems 2.46 & 2.48 or Example 2.8: The shot moves a total distance 2.20 m
—1.83 m = 0.37 m, and the time is

(7.59 m/s) + \/(7.59 m/s)* +2(9.80 m/s*)(0.37 m)

=1.60s.
(9.80 m/s?)




2.84: a) In 3.0 seconds the teacher falls a distance

y :%gtz :%(9.8 m/s?)(9.0s%)=44.1m

To reach her ears after 3.0 s, the sound must therefore have traveled a total distance of
h+(h—44.1)m =2h—44.1 m ,where 4 is the height of the cliff. Given 340 m/s for the

speed of sound: 24 —44.1m = (340 m/s)(3.0s) =1020 m, which gives
h=532m or 530m to the given precision.

b) We can use vf, = véy +2g(y—y,) to find the teacher's final velocity. This gives
V2 =2(9.8m/s*)(532m)=10427 m*/s’ and v, =102m/s .

2.85: a) Let +y be upward.
At ceiling, v, =0,y -y, =3.0m,a, =-9.80m/s’ . Solve for vy
v:=vy, +2a,(y—y,)givesv,, =7.7m/s.
b) v, =v,, +a,t with the information from part (a) gives #=0.78s.
c) Let the first ball travel downward a distance d in time z. It starts from its maximum
height, so Vo, = 0.
Y=Yy =Vt +%ay12 givesd = (4.9 m/s*)¢?
The second ball has v,, =4(7.7 m/s) =5.1 m/s. In time ¢ it must travel upward
3.0m —d to be at the same place as the first ball.
Y=Yy =vo,t+1a,t’ gives3.0m—d =(5.1m/s)t - (4.9 m/s*)r’.
We have two equations in two unknowns, d and ¢. Solving gives #=0.59s and

d=1.7m.
d)3.0m-d=13m



2.86: a) The helicopter accelerates from rest for 10.0 s at a constant 5.0 m/s” . It thus
reaches an upward velocity of

v, =v,, +a,t=(5.0 m/s*)(10.0s) =50.0m/s
and a height of y = %ayt2 =3(5.0 m/s*)(10.0s)* = 250 m at the moment the engine is shut
off. To find the helicopter's maximum height use

Vj = V(?y +2a,(y—y,)

Taking y, =250 m, where the engine shut off, and since vﬁ =0 at the maximum height:

2
— _ _voy
ymax yO 2g
2
. =250m—M= 78m
2(-9.8 m/s?)

or 380 m to the given precision.

b) The time for the helicopter to crash from the height of 250 m where Powers
stepped out and the engine shut off can be found from:

Y=Y+t +%ayt2 =250m +(50.0 m/s)t +1(-9.8 m/s*)r* =0

where we now take the ground as y =0 . The quadratic formula gives solutions of
t=3.67sand 13.88 s, of which the first is physically impossible in this situation. Powers'
position 7.0 seconds after the engine shutoff is given by:

¥y =250m+(50.0 m/s)(7.0s) +%(—9.8 m/s?)(49.05%)=359.9m

at which time his velocity is
v, =V, +gt="50.0 m/s+(-9.80 m/s*)(7.0s) =—18.6 m/s
Powers thus has 13.88—7.0 = 6.88s more time to fall before the helicopter crashes, at his

constant downward acceleration of 2.0m/s* . His position at crash time is thus:

|
Y=Y +v0yt+5ayt

=359.9m + (-18.6 m/s)(6.88s) + %(—2.0 m/s?)(6.88s)’
=184.6 m

or 180 m to the given precision.



2.87: Take +y to be downward.
Last 1.0 s of fall:

Y=Yy =vo,t +1a,t’ givesh/4=v, (1.05)+(4.9 m/s*)(1.0s)’
voy 1s his speed at the start of this time interval.
Motion from roofto y —y, =3h/4:

vy, =0,v, =7

v =2 +2a,(y—y,)givesv, =4/2(9.80 m/s>)(3h/4) =3.834/h m/s
This is v, for the last 1.0 s of fall. Using this in the equation for the first 1.0 s gives
hj4=3.834h +4.9

Leth=u”andsolveforu:u =16.5. Thenh=u’> =270 m.

2°88: a) tfall + tsound return 100 S
t,+t.=10.0s (1)
dRock = dSound
1
Egt f: vsts
%(9.8 m/s?)t? = (330 m/s)z, )

Combine (1) and (2): t, =8.84s,t, =1.165s
h=vt, :(3302)(1.165):383m
S

b) You would think that the rock fell for 10 s, not 8.84 s, so you would have thought
it fell farther. Therefore your answer would be an overestimate of the cliff's height.

2.89: a) Let +y be upward.
Y=y, =-150m, t=3.25s, a, =-9.80 m/s*,v,, =?
Y=Yy =Vt +1a it givesv,, =11.31 m/s

Use this vo, inv, =v,, +a t tosolveforv :v =-20.5m/s

b) Find the maximum height of the can, above the point where it falls from the
scaffolding:

v, =0, v, =+11.31m/s, a, =-9.80 m/s’, y—y, =?
vi=v,, +2a,(y—y,) givesy—y, =6.53m
The can will pass the location of the other painter. Yes, he gets a chance.



2.90: a) Suppose that Superman falls for a time #, and that the student has been
falling for a time ¢y before Superman’s leap (in this case, o =5 s). Then, the height / of
the building is related to ¢ and # in two different ways:

L
—h :voyt—Egt

1
= _Eg(t + to)za

where vy, i1s Superman’s initial velocity. Solving the second ¢ gives ¢ =, /% —t,.

. . h o . .
Solving the first for vy, gives vy, = —— + %t, and substitution of numerical values gives
t

t=1.06 s and vy, =165 m/s, with the minus sign indicating a downward initial velocity.

b)

A\

4 6\\ ®

t

[

c) Ifthe skyscraper is so short that the student is already on the ground, then
h = %gtg =123 m.



2.91: a) The final speed of the first part of the fall (free fall) is the same as the initial
speed of the second part of the fall (with the Rocketeer supplying the upward

acceleration), and assuming the student is a rest both at the top of the tower and at the
2

ground, the distances fallen during the first and second parts of the fall are ;—land 02"
g g
where v, is the student's speed when the Rocketeer catches him. The distance fallen in
free fall is then five times the distance from the ground when caught, and so the distance
above the ground when caught is one-sixth of the height of the tower, or 92.2 m. b) The

student falls a distance 5H/6 in time ¢ = ,/5H/3g, and the Rocketeer falls the same

distance in time #—#,, where #=>5.00 s (assigning three significant figures to #, is more or
less arbitrary). Then,

2
v

5SH 1
?:Vo(t—t0)+§g(t—t0)2,or

5H/6 1
Vo, =—T——g(—1,).
0 (—1,) 2 g(t—1,)
At this point, there is no great advantage in expressing ¢ in terms of H and g algebraically;

t—1, =+/5(553m)/29.40 m/s*> —5.00s = 4698, from which v, = 75.1m/s.

¢)

t t

2.92: a) The time is the initial separation divided by the initial relative speed, H/vo.
More precisely, if the positions of the balls are described by

yo=vt =g’ vy, =H - (12)gt’,
setting y; = y» gives H = wt. b) The first ball will be at the highest point of its motion if
at the collision time ¢ found in part (a) its velocity has been reduced from vy to 0, or gt =
gHNy =w,or H=v./g.



2.93: The velocities are v, = a + 2t and v, = 2t —368t" a) Since vp is zero at ¢ = 0, car
A takes the early lead. b) The cars are both at the origin at # = 0. The non-trivial solution
is found by setting x5 = xp, cancelling the common factor of #, and solving the quadratic
for

z=§[(ﬁ—y>i\/(ﬂ—y>2—4a5]

Substitution of numerical values gives 2.27 s, 5.73 s. The use of the term “starting point”
can be taken to mean that negative times are to be neglected. c) Setting va= vg leads to a
different quadratic, the positive solution to which is

(=~ Lep-2n-Jep-27 1200

Substitution of numerical results gives 1.00 s and 4.33 s.

d) Taking the second derivative of x, and x5 and setting them equal, yields,
2 =2y —60t. Solving, t =2.67s.

2.94: a) The speed of any object falling a distance H — 4 in free fall is
\J2g(H — h).b) The acceleration needed to bring an object from speed v to rest over a

2 —
distance & is ~— = M = g(ﬁ - 1).
2h 2h h



2.95: For convenience, let the student's (constant) speed be vy and the bus's initial
position be xo. Note that these quantities are for separate objects, the student and the bus.
The initial position of the student is taken to be zero, and the initial velocity of the bus is
taken to be zero. The positions of the student x; and the bus x; as functions of time are
then

X, =Vt x, = x, +(1/2)at’.

a) Setting x, = x, and solving for the times ¢ gives

t:l(vo +4/v; —2ax, )
a
B 1
(0.170 m/s?)
=9.55s,493s.

((5.0 m/s)%+/(5.0 m/s)> —2(0.170 m/s* )(40.0 m))

The student will be likely to hop on the bus the first time she passes it (see part (d) for a
discussion of the later time). During this time, the student has run a distance
vt = (5 m/s)(9.558) =47.8 m.

b) The speed of the bus is (0.170m/s*)(9.55s) =1.62m/s.

c) The results can be verified by noting that the x lines for the student and the bus
intersect at two points:

400 :
E—0)
300 |- Xh(l) 5 ‘
200 / P
100 Toantl
- '-/—“
0

d) At the later time, the student has passed the bus, maintaining her constant speed,
but the accelerating bus then catches up to her. At this later time the bus's velocity is

(0.170 m/s* 49.3 s)=8.38 m/s.



2.96: The time spent above ypx/2 is % the total time spent in the air, as the time is

proportional to the square root of the change in height. Therefore the ratio is

N2 1
1-1/42 {2 -1

24.




2.97: For the purpose of doing all four parts with the least repetition of algebra,
quantities will be denoted symbolically. That is,

lety, =h+vt —%gtz,y2 =h —%g(t —to)z. In this case, 7, =1.00s. Setting
y, =¥, =0, expanding the binomial (t —1, )2 and eliminating the common term
Lgr® yieldsv,t = gt,t — L gt;, which can be solved for £

38ty 1

t= =
gty—v, 21-

v °

&l
Substitution of this into the expression for y, and setting y, = 0 and solving for 4 as a
function of vy yields, after some algebra,

1 2
— ot —
h=1 2—(2g0 Voj.

27" (gto_vo)2

a) Using the given value #, =1.00s and g = 9.80 m/s’,

2
7=200m=(4.9m) 22—V |
9.8m/s—v,

This has two solutions, one of which is unphysical (the first ball is still going up when
the second is released; see part (c)). The physical solution involves taking the negative
square root before solving for v,, and yields 8.2 m/s.

10 | \
N\
1 2 \3
t
b) The above expression gives for 1), 0.411 m and for ii) 1.15 km. ¢) As vy approaches
9.8 m/s, the height /& becomes infinite, corresponding to a relative velocity at the time

the second ball is thrown that approaches zero. If v, >9.8 m/s, the first ball can never

catch the second ball. d) As vy approaches 4.9 m/s, the height approaches zero. This
corresponds to the first ball being closer and closer (on its way down) to the top of the
roof when the second ball is released. If v, >4.9 m/s, the first ball will already have

passed the roof on the way down before the second ball is released, and the second ball
can never catch up.




2.98: a) Let the height be # and denote the 1.30-s interval as At; the simultaneous

equations & =1 gr*, 2h =1 g(t — Ar)’ can be solved for ¢. Eliminating 4 and taking the

square root, - = \/g ,andt = 1-33% , and substitution into 4 =1 gt’ gives h =246 m.

This method avoids use of the quadratic formula; the quadratic formula is a
generalization of the method of “completing the square”, and in the above form,

2h=1g(t- At)’, the square is already completed.

b) The above method assumed that # >0 when the square root was taken. The
negative root (with Az = 0) gives an answer of 2.51 m, clearly not a “cliff”. This would
correspond to an object that was initially near the bottom of this “cliff” being thrown
upward and taking 1.30 s to rise to the top and fall to the bottom. Although physically
possible, the conditions of the problem preclude this answer.



Capitulo 3



3.1: a)
_(53m)—(1.1m)

Ve = =1.4m/s,
’ (3.05)

. (-0.5m)—(3.4m) 13 ms.
’ (3.05)

by, = \/(1.4 m/s)’ +(-1.3 m/s)> =1.91 m/s, or 1.9 m/s to two significant figures,
0= arctan(ﬁ) =—43°,

1.4

3.2: a)
X = (V, 0o )AT = (3.8 m/s)(12.05) = —45.6m and

Y=V, )AL = (4.9 m/s)(12.05) = 58.8 m.

b) r =/x% + 1> = /(-45.6m)> +(58.8m)> = 74.4m.

3.3: The position is given by ¥ =[4.0cm + (2.5 cm/sz)tz]lc +(5.0 cm/s)t}' .
(a)r(0) =[4.0cm]i , and
r(2s) =[4.0cm+(2.5 cm/sz)(Z s)’ ]f +(5.0 cm/s)(2 s)}' =(14.0 cm)f +(10.0 cm)}'. Then

using the definition of average velocity, ¥, = {emdemil0em0) _ (5 ¢m/s)i + (5 cm/s) .

ave 2s

V.. =7.1cm/s at an angle of 45°.

b) ¥ = < = (2)(2.5 cm/s)ti + (5 cm/s)j = (5 cm/s)ti + (5 cm/s)j . Substituting for
t=0,1s, and 2 s, gives:

$(0) = (5 cm/s) j,¥(1s) = (5 cm/s)i + (5 cm/s) j, and ¥(2s) = (10 cm/s)i + (5 cm/s)j .
The magnitude and direction of v at each time therefore are: 1 =0:5.0 cm/s at 90°;
t=1.05:7.1cm/s at 45°, t=2.05:11cm/s at 27°.

c)

[— v,
==-v(0)

10 10

y(t)

0
4 6 & 10 12 14 16 0 0.5 1 1.5 2 2.5
x(1) t



3.4: v =2bii + 3ct2}' . This vector will make a 45°-angle with both axes when the x- and
y-components are equal; in terms of the parameters, this time is 25/3c.

3.5:a)
b) 0. - (=170 m/s) — (90 m/s) 87 m)s’,
: (30.05)
_ (40 m/s)— (110 m/s) 23 m)s’
yave (30.0) ' '

¢) V(8.7 m/s?)’ +(-23m/s>)> =9.0m/s, arctan (22)=14.8°+180° =195°.

3.6: a) a, = (0.45 m/s*)c0s31.0°=0.39 m/s’, a, = (0.45 m/s’)sin31.0°=0.23 m/s’,
s0 v, =2.6 m/s +(0.39 m/s*)(10.0s) = 6.5 m/s and
v, =-1.8 m/s+(0.23 m/s*)(10.0s) = 0.52 m/s.

b) v= \/(6.5 m/s)> +(0.52 m/s)*> = 6.48 m/s , at an angle of arctan (%)= 4.6° above the
horizontal.

c)

Y1



3.7: a)

) . \ ;

b
) V=ai —25=(2.4m/s)i —[(2.4m/s )]}
d=-2ff=(-24m/s)].
c) At 1 =2.0s, the velocity is ¥ = (2.4 m/s)i — (4.8 m/s)j ; the magnitude is
\/(2.4 m/s)* +(—4.8 m/s)* = 5.4 m/s, and the direction is arctan (%): —63°. The

acceleration is constant, with magnitude 2.4 m/ s’ in the — y -direction. d) The velocity

vector has a component parallel to the acceleration, so the bird is speeding up. The bird is
turning toward the — y -direction, which would be to the bird’s right (taking the + z -

direction to be vertical).
\\IE w;:

3.8:

]

)
/
- ,/
P
¢

(a) (b) (c)



3.9: a) Solving Eq. (3.18) with y =0, v;, =0 and 7 =0.350s gives y, =0.600 m.
b) v.t=0.385m c) v, =v,, =1.10m/s, v, = —gt =-3.43 m/s, v=3.60 m/s,72.2°
below the horizontal.

[y - g 1)
0.3
04
xH 02 hits]
02 \
0 0 — -
0 0.1 0.2 0.3 0.4 0 0.1 02 0.3 0.4

o

3.10: a) The time ¢ is given by £ = [22 =7.82s.
b) The bomb’s constant horizontal velocity will be that of the plane, so the bomb
travels a horizontal distance x = v ¢ = (60 m/s)(7.82s) =470 m.

c¢) The bomb’s horizontal component of velocity is 60 m/s, and its vertical component
is —gt=-76.7m/s.

e
400
x(f)
0 : - 0 - - A
0 100 200 300 400 500 0 2 4 6 8
1 i
100 |
50 —.
== 3
i .
~
—50
; =l
—100 .
o 4 [ 8
¥

e) Because the airplane and the bomb always have the same x-component of velocity and
position, the plane will be 300 m above the bomb at impact.



3.11: Take + y to be upward.

Use Chirpy’s motion to find the height of the cliff.

v, =0, a, ==9.80 m/s*, y—y, =—h, t =3.50s

Y=Yy =Vt +5a,t” givesh=60.0m

Milada: Use vertical motion to find time in the air.

Vo, =V, 8in32.0°, y—y, =—60.0m, a, =-9.80 m/s’, t="?
Y=o =Vl +4a,1’ givest =3.55s

Then v,, =v,c0s32.0°, a, =0, t =3.55s gives x —x, =2.86m.

3.12: Time to fall 9.00 m from rest:

1
=—of
y Zg

9.00m=%(9.8m/s2)t2
t=136s

Speed to travel 1.75 m horizontally:
X =y,
1.75m =v,(1.365)

v, =1.3m/s

3.13: Take +y to be upward.
Use the vertical motion to find the time in the air:

Vo, =0, @, =—9.80 m/s’, y—y, =—(21.3m—1.8m)=—19.5m, ¢ =?
Y=Yy =Vt +5a,t’ givest =1.995s
Then x—x, =61.0m, a_ =0, t =1.995s,v, =?
X=X, =Vt +1at’ givesv,, =30.6 m/s.
b) v, =30.6 m/s since a, =0

v, =v,, +a,t=-19.6 m/s

v=1vi+v, =363 m/s



3.14: To make this prediction, the student needs the ball’s horizontal velocity at the
moment it leaves the tabletop and the time it will take for the ball to reach the floor (or
rather, the rim of the cup). The latter can be determined simply by measuring the height

of the tabletop above the rim of the cup and using y =3 gt’ to calculate the falling time.

The horizontal velocity can be determined (although with significant uncertainty) by
timing the ball’s roll for a measured distance before it leaves the table, assuming that its
speed doesn’t change much on the hard tabletop. The horizontal distance traveled while
the ball is in flight will simply be horizontal velocity x falling time. The cup should be
placed at this distance (or a slightly shorter distance, to allow for the slowing of the ball
on the tabletop and to make sure it clears the rim of the cup) from a point vertically below
the edge of the table.



3.15: a) Solving Eq. (3.17) for v, =0, with v, =(15.0 m/s)sin 45.0°,

T (15.0 m/s)sin 45° _
9.80 m/s’
b) Using Equations (3.20) and (3.21) gives at #,, (x,y) = (6.18m,4.52m):
t,, 11.5m,5.74 m):¢,,(16.8 m,4.52 m).

1.08s.

¢) Using Equations (3.22) and (3.23) gives at
ty, (v,,v,)=(10.6 m/s,4.9 m/s):¢,, (10.6 m/s,0)¢, : (10.6 m/s,— 4.9 m/s), for

velocities, respectively, of 11.7 m/s @ 24.8°, 10.6 m/s @ 0° and 11.7 m/s @ —24.8°.
Note that v_ is the same for all times, and that the y-component of velocity at ¢, is
negative that atz, .

d) The parallel and perpendicular components of the acceleration are obtained from

“L|=\/|“|_‘”H"

For projectile motion, a = —g}', so a-v =—gv,, and the components of acceleration

@y
Q="

_ a-v|
"u‘ = ,
Vv

parallel and perpendicular to the velocity are 7, : —4.1m/s*,8.9m/s* . £,:0,9.8 m/s* .
t,:4.1m/s* 8.9 m/s* .
e)

4] 3 10 15 20
X

f) At ¢, the projectile is moving upward but slowing down; at #, the motion is
instantaneously horizontal, but the vertical component of velocity is decreasing; at #3, the
projectile is falling down and its speed is increasing. The horizontal component of
velocity is constant.




3.16: a) Solving Eq. (3.18) with y =0, y, =0.75m gives ¢ =0.391s.

b) Assuming a horizontal tabletop, v,, =0, and from Eq. (3.16),

Vo, =(x—x,)/t=3.58m/s.

¢) On striking the floor, v, =—gt = —@ =-3.83m/s, and so the ball has a velocity
of magnitude 5.24m/s, directed 46.9° below the horizontal.

d)

Although not asked for in the problem, this y vs. x graph shows the trajectory of the
tennis ball as viewed from the side.

¥

0.5

0 N\

0 0.5 1 1.5
x(1)

3.17: The range of a projectile is given in Example 3.11, R =v]sin2¢q,/g .
a)(120 m/s)® sin110°/(9.80 m/s”) = 1.38 km .b) (120 m/s)* sin110°/(1.6 m/s”) = 8.4 km.



3.18: a) The time ¢ is 2 = 2505 =163 5.

~ 9.80mys’
b) Lgr® =Llv,f=2r=13.1m.
c¢) Regardless of how the algebra is done, the time will be twice that found in part (a),
or3.27s d) v, is constant at 20.0 m/s, so (20.0 m/s)(3.27 s) = 653 m.
e)

X

3.19: a) v, = (30.0 m/s)sin36.9° = 18.0 m/s ; solving Eq. (3.18) for ¢ with y, =0 and
y=10.0m gives

_(80m)s) J18.0 m/s)? — 2(9.80 m/s>)(10.0 m)
9.80 m/s’
b) The x-component of velocity will be (30.0 m/s)c0s36.9° =24.0 m/s at all times.

The y-component, obtained from Eq. (3.17), is 11.3 m/s at the earlier time and
—11.3 m/s at the later.

¢) The magnitude is the same, 30.0 m/s, but the direction is now 36.9° below the
horizontal.

=0.685,2.99s



3.20: a) If air resistance is to be ignored, the components of acceleration are 0
horizontally and — g = -9.80 m/ s® vertically.

b) The x-component of velocity is constant at v, = (12.0 m/s)co0s51.0° = 7.55 m/s. The
y-component is v,, = (12.0 m/s)sin51.0°=9.32 m/s at release and
Vo, — gt = (10.57 m/s) - (9.80 m/s*)(2.08 s) = —11.06 m/s when the shot hits.

¢) v,,t =(7.55m/s)(2.08s) =157 m.

d) The initial and final heights are not the same.
e) With y =0 and vy, as found above, solving Eq. (3.18) for y, =1.81m.

20 10
x(1) . / ¥t 5 //’\
0 0
0 1 2 3 0 1 2 3

- 2 3
Voy 7.55 V()
-10

7.54 —20

r t

3.21: a) The time the quarter is in the air is the horizontal distance divided by the
horizontal component of velocity. Using this time in Eq. (3.18),

2
x ogx
— =V _
g yo » VOx 2v§x
2
= tan OyX — %
v,2c08” &,
2 2
 tan60°(2.1m)— 230 m/s 2)(2'12“1) — 1.53 mrounded.
2(6.4 m/s)” cos” 60°

b) Using the same expression for the time in terms of the horizontal distance in
Eq. (3.17),

2
v, =V, sina, & (6.4 m/s)sin 60° — (080 m/s )21 m) =

—-0.89 m/s.
Vv, cosa 4 m/s)cos
0 0 (6.4 m/s)cos 60°



3.22: Substituting for ¢ in terms of d in the expression for y, ., gives

Vart = d(tan a, —zg—dj

2
2v, cos”

Using the given values for d and ¢, to express this as a function of v,
26.62m’/s’
y = (3.00 m)(0.90 —“—Zrl/sj
Vo
Then, a) y=2.14m,b) y=145m, c) y=-2.29m. In the last case, the dart was fired

with so slow a speed that it hit the ground before traveling the 3-meter horizontal

distance.

3.23: a) With v, =0 in Eq. (3.17), solving for 7 and substituting into Eq. (3.18) gives
Vo, _vesin®a, (30.0 m/s)*sin® 33.0°

0
_ =% =13.6 m
=y = = g 2(9.80 m/s?)

b) Rather than solving a quadratic, the above height may be used to find the time the
rock takes to fall from its greatest height to the ground, and hence the vertical component

of velocity, v, =/2yg = \/2(28.6 m)(9.80m/s*) = 23.7m/s , and so the speed of the

rock is J(23.7 m/s)” +((30.0 m/s)(cos33.0°))> =34.6m/s .

c¢) The time the rock is in the air is given by the change in the vertical component of
velocity divided by the acceleration —g; the distance is the constant horizontal
component of velocity multiplied by this time, or

¥ = (30.0 m/s)cos33.0° (—23.7 m/s — ((30.0 m/s)sin33.0°))

=103 m.

2
(-9.80m/s”)
A
150 s 0
100 : ”
= (1)
50 0 ! 4
0 20
( 2 4 6
! i
252 %
0 S ;
Vo 25.15 0,0
—20
25.1 10

0 2 4 6



3.24: a)
v, cosar =45.0m

o 45.0m — 0.600
(25.0 m/s)(3.00s)

o =53.1°

b)

v, =(25.0m/s)cos 53.1°=15.0 m/s
v,=0
v=15.0m/s

a =9.80 m/s”> downward
¢) Find y when #=3.00s
. 1,
y=v, smat—Egt

=(25.0 m/s)(sin53.1°)(3.00s) — % (9.80m/s*)(3.00s)’

=159m
v, =15.0 m/s = constant

v, =V, sina — gt =(25.0 m/s)(sin53.1°) — (9.80 m/s*)(3.00s) = —9.41

v= v+, =(15.0m0s)° +(-9.41m/s* =17.7 m/s




3.25: Take + y to be downward.

a) Use the vertical motion of the rock to find the initial height.
1=6.00s, v, =+20.0s, a, =+9.80 m/s’, y - Yo ="

Y= Yo =Vo,t +5a,t’ givesy — y, =296m

b) In 6.00 s the balloon travels downward a distance y — y, = (20.05)(6.005) =120m .
So, its height above ground when the rock hits is 296m -120m =176 m.

c¢) The horizontal distance the rock travels in 6.00 s is 90.0 m. The vertical component
of the distance between the rock and the basket is 176 m, so the rock is

\/ (176 m)* +(90m)* =198 m from the basket when it hits the ground.

d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0
m/s relative to the basket.
Just before the rock hits the ground, its vertical component of velocity is

v, =vy, +at=20.0s+(9.80 m/s*)(6.00s) = 78.8 m/s , downward, relative to the ground.

The basket is moving downward at 20.0 m/s, so relative to the basket the rock has
downward component of velocity 58.8 m/s.
e) horizontal: 15.0 m/s; vertical: 78.8 m/s

60.0 m

3.26: a) horizontal motion: x —x, = v,/ S0 ¢ = "=

vertical motion (take +y to be upward):
Y=Yy =Vt +5a,t’ gives 25.0m = (v, sin 43.0°) +4(-9.80 m/s* )¢*
Solving these two simultaneous equations for v, and ¢ gives v, =3.26 m/s and ¢ =2.51s.
b) v, when shell reaches cliff:
v, =v,, +a,t=(32.6m/s)sin 43.0°—(9.80 m/s*)(2.51s) = 2.4 m/s

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of
the cliff.

3.27: Take + y to be upward.
Use the vertical motion to find the time it takes the suitcase to reach the ground:
Vo, =V, 8in23°% a, = -9.80m/s*, y—y, =-114m,t="?

Y=Y, =Vt +5a,t’ gives 1 =9.60s

The distance the suitcase travels horizontally is x — x, =v,, = (v, c0s 23.0°)t =795 m



3.28: For any item in the washer, the centripetal acceleration will be proportional to the
square of the frequency, and hence inversely proportional to the square of the rotational
period; tripling the centripetal acceleration involves decreasing the period by a factor of

V3 , so that the new period 7" is given in terms of the previous period Tby 7' =T/ V3.

3.29: Using the given values in Eq. (3.30),

2 6
g =2 OI8XIO M) _ 34 s> ~3.4x107 .
(24 h)(3600s/h)

(Using the time for the siderial day instead of the solar day will give an answer that
differs in the third place.) b) Solving Eq. (3.30) for the period 7 with a_, =g,

> 6
Tz\/4” (638x10"m) _ 53705141,

9.80 m/s>

3.30: 550 rev/min=9.17 rev/s , corresponding to a period of 0.109 s. a) From Eq. (3.29),
v =2 =196 m/s. b) From either Eq. (3.30) or Eq. (3.31),

a,,=1.13x10* m/s> =1.15x10° g .

3.31: Solving Eq. (3.30) for 7 in terms of R and a,,,
a)\/47r2(7.0 m)/(3.0)(9.80m/s’) =3.07s. b) 1.68s.

3.32: a) Using Eq. (3.31), 22 =2.97x10* m/s. b) Either Eq. (3.30) or Eq. (3.31) gives
a,=591x10"m/s>. ¢)v=4.78x10"m/s,and a =3.97x107 m/s’.

3.33: a) From Eq. (3.31), a = (7.00 m/s)* /(15.0 m) = 3.50 m/s” . The acceleration at the
bottom of the circle is toward the center, up.

b)a =3.50m/s’, the same as part (a), but is directed down, and still towards the center.
¢) FromEq. (3.29), T =2zR/v=27z(15.0m)/(7.00m/s)=12.65.



3.34: a) a,, = 3m/s)’ /(14 m) = 0.643 m/s’, and a,, =0.5m/s’. So,
a=((0.643m/s*)* +(0.5m/s*)*)""* = 0.814 m/s*,37.9° to the right of vertical.
b)

3.35: b) No. Only in a circle would a_, point to the center (See planetary motion in

Chapter 12).
c) Where the car is farthest from the center of the ellipse.

3.36: Repeated use of Eq. (3.33) gives a) 5.0 =m/s to the right, b) 16.0 m/s to the left,
and ¢) 13.0 =m/s to the left.

3.37: a) The speed relative to the ground is 1.5 m/s +1.0 m/s = 2.5 m/s, and the time is
35.0m/2.5m/s =14.0s. b) The speed relative to the ground is 0.5 m/s, and the time is
70 s.

3.38: The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a
time of three fourths of an hour (45.0 min). The boat’s speed relative to the shore is 6.8
km/h downstream and 1.2 km/h upstream, so the total time the rower takes is

Lokm ~ 15km _, 000 egmin.
6.8km/h 1.2 km/h

3.39: The velocity components are
—0.50m/s +(0.40 m/s)/\/Eeast and (0.40 m/s)/\/E south,
for a velocity relative to the earth of 0.36 m/s, 52.5° south of west.



3.40: a) The plane’s northward component of velocity relative to the air must be 80.0
80.8

km/h, so the heading must be arcsin 535 =14° north of west. b) Using the angle found in
part (a), (320 km/h) cos14° =310 km/h . Equivalently,

J(320 km/h)* — (80.0 km/h)> =310 km/h .

-

Vv
Vw/G P/W

Vp/G

3.41: a) \/(2.0 m/s)’ + (4.2 m/s)> = 4.7 m/s, arctan 22 = 25.5°, south of east.

b) 800 m/4.2 m/s=190s.
¢) 2.0m/sx190s=381m.

3.42: a) The speed relative to the water is still 4.2 m/s; the necessary heading of the boat

is arcsin 22 = 28° north of east. b) J(4.2 m/s)> — (2.0 m/s)> = 3.7 m/s, east. d)
800 m/3.7m/s =217 s, rounded to three significant figures.

3.43:a)

Vpia
VAE

b) x:—(10m/s)cos45°=—-7.1m/s.y :=—(35m/s) — (10 m/s)sin 45° = —-42.1m/s .
c) \/(—7.1 m/s)* +(—42.1m/s)* =42.7 m/s, arctan =21 = 80° , south of west.

3.44: a) Using generalizations of Equations 2.17 and 2.18,
V.=V, +%t3,vy =V, + t—%tz, and x =v, ¢ +%t4, y= voyt+§12 —%t3 . b) Setting

v, =0 yields a quadratic in £,0 =v,, + ¢ —2¢*, which has as the positive solution

t=l[ﬁ+,/ﬁ2 + 2v07]= 13.59s,
v

keeping an extra place in the intermediate calculation. Using this time in the expression
for y(¢) gives a maximum height of 341 m.



3.45:a) The a, =0 and a, =-28, so the velocity and the acceleration will be
perpendicular only when v, =0, which occurs at £=0.

b) The speed is v=(a® +48%*)"?,dv/dt =0 at t=0. (See part d below.)

c¢) r and v are perpendicular when their dot product is 0:
(aut)(o) +(15.0m— Bt*)x (=2 ft) = a’t —(30.0 m) Bt + 2%t = 0. Solve this for ¢:

2 2 . . .
t= i\/ (300 m)(zo(‘gos(:)gﬁ/s)[)(;'z ™Y — 45208 s, and 0 s, at which times the student is at (6.25 m,

1.44 m) and (0 m, 15.0 m), respectively.
d) At t =5.208 s, the student is 6.41 m from the origin, at an angle of 13° from the x-

axis. A plot of d(t) = (x(¢)> + y(¢)*)"? shows the minimum distance of 6.41 m at 5.208
s:

40
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e) In the x - y plane the student’s path is:

y(n —10 AN

—20

30 [ \

gl ! i
0 2 4 6 & 10 12
x(1)

3.46: a) Integrating, r = (ot —éﬁ)f + (41 )/ . Differentiating, @ = (—Zﬂ)f + 7/}' .

b) The positive time at which x =0 is given by ¢* =3a/ 3. At this time, the y-coordinate
is

y Y 3ay  3(2.4m/s)(4.0m/s”)

3 =9.0m
2 2/ 2(1.6 m/s”)




3.47: a) The acceleration is
_ v_2 _ (88 km/h)(1m/s)/(3.6 km/h))2
2x 2(300 m)

b) arctan(513m-—)=5.4° . ¢) The vertical component of the velocity is

(88 km/h)(5tme - )13 — 2 3m/s . d) The average speed for the first 300 m is 44 km/h, so
3.6km/h

160 m

=0.996 m/s* ~ 1 m/s’

the elapsed time is
300 m 160 m

+
(44 km/h)(1m/s)(3.6 km/h) (88 km/h)(1m/s)cos5.4°/(3.6 km/h)
or 31 s to two places.

=31.1s,



3.48:

ANGEE
| N

The equations of motions are:
y=h+(v,sin oc)t—%gt2
x = (v, cos a)t
v, =V, sina— gt
V. =V, cosa

Note that the angle of 36.9" results in sin 36.9°=3/5 and co0s 36.9°=4/5.
b) At the top of the trajectory, v, =0. Solve this for 7 and use in the equation for y to

find the maximum height: 7 === ¢ Then, y =&+ (v, sin a)(% Sm“) 1 g(v° Sgi““)z , which

reducesto y=h+2-—> Csin’ Usmg v, =+/25gh/8, and sin o =3/5, this becomes

y=nh +% =h +%h ,or y =23 . Note: This answer assumes that y, = 4. Taking

¥, =0 will give a result of y =24 (above the roof).
c¢) The total time of flight can be found from the y equation by setting y =0, assuming
¥, = h, solving the quadratic for 7 and inserting the total flight time in the x equation to

find the range. The quadratic is § gt’ —3v, —h=0. Using the quadratic formula gives
375 v+ (—(3/5)v ) —4(Le)(=h) L. . (3/5)7[25gh/ 8+, L2288 1681
= B {6548 . Substituting v, =/25gh/8 gives t = £ P M

2(1g)

Collecting terms gives ¢: ¢ = %(\/% +, /%”)= %(3\/% +5 %) Only the positive root is
meaningful and so ¢ = 4\/% . Then, using x = (v, cosa)t, x = w/%gh(%)(ﬁ/%): 4h.

3.49: The range for a projectile that lands at the same height from which it was launched
js R =lisn . Assuming a =45°,and R=50m,v, =,/gR =22 m/s.



3.50: The bird’s tangential velocity can be found from
_ circumference  27(8.00m) 50.27 m
" timeof rotation  5.00s  5.00s
Thus its velocity consists of the components v, =10.05m/s and v, =3.00 m/s . The speed

=10.05m/s

relative to the ground is then
v=v+ vi =10.052+3.002=10.49 m/sor 10.5 m/s

(b) The bird’s speed is constant, so its acceleration is strictly centripetal-entirely in the
horizontal direction, toward the center of its spiral path—and has magnitude

_vi_ (10.05m/s)’

=12.63m/s*> or 12.6m/s*

Cor 8.00 m
(c) Using the vertical and horizontal velocity components:
4 3.00m/s

0 = tan =16.6°
10.05m/s

3.51: Take + y to be downward.
Use the vertical motion to find the time in the air:
Vo, =0,a, = 9.80m/sz,y—y0 =25m,t ="
Y=Yy =Vt + %ayt2 givest=2.259s
During this time the dart must travel 90 m horizontally, so the horizontal component of
its velocity must be
_x—X,  90m

Vo, =———= =40m/s
t 2.25s



3.52: a) Setting y =—h in Eq. (3.27) (h being the stuntwoman’s initial height above the
ground) and rearranging gives

2 2
o 2v; sin a,, €OS a,, N 2v;, h=0,
g g
The easier thing to do here is to recognize that this can be put in the form
2v, v 2y?
P S et U3y A §
g g
the solution to which is
v
x=-1 [voy +Vo, + 2gh]= 55.5 m (south).
g
b) The graph of v _(¢) is a horizontal line.
100 [y 40
. -
x(@) 50 A y(ry 20
/
% 2 4 0 2 4
t t
. 0 5 -
¢
20 ™

—40

3.53: The distance is the horizontal speed times the time of free fall,
v, 2 (64.0 m/s) &m)z =27
g (9.80m/s”)

3.54: In terms of the range R and the time # that the balloon is in the air, the car’s original
distance is d = R+ v, ¢ . The time ¢ can be expressed in terms of the range and the

horizontal component of velocity, t = —£X—, so d = R(l o ) Using

Vg cosag 2 Vg €OS Ot

R =V} sin 20,/ g and the given values yields d =29.5m .



3.55: a) With o, =45°, Eq. (3.27) is solved for v; = f%zy In this case, y =—-0.9m is the
change in height. Substitution of numerical values gives v, =42.8 m/s. b) Using the

above algebraic expression for v, in Eq. (3.27) gives

2
X
—x—| 2| (1889
yes (188mj( ™)

Using x =116 m gives y =44.1m above the initial height, or 45.0 m above the ground,
which is 42.0 m above the fence.

3.56: The equations of motions are y = (v, sin a)t —1/2gt* and x = (v, cos @)t , assuming
the match starts out at x =0 and y = 0. When the match goes in the wastebasket for the
minimum velocity, y =2D and x = 6D . When the match goes in the wastebasket for the

maximum velocity, y=2D and x =7D . In both cases, sina =cosa = J272..
To reach the minimum distance: 6D = %vot ,and 2D = gvot —1gt?. Solving the first

equation for # gives ¢ = %. Substituting this into the second equation gives
2D=6D —%g(%)z . Solving this for v, gives v, =34/gD .

To reach the maximum distance: 7D = gvot ,and 2D = @vot —1gt?. Solving the first
equation for 7 gives ¢ = % . Substituting this into the second equation

gives2D =7D —%g(%)z. Solving this for v, gives v, =+/49gD/5 =3.13,/gD , which,

as expected, is larger than the previous result.

3.57: The range for a projectile that lands at the same height from which it was launched
. We must find R

vg sin’ «
2g

when H =D and v, =,/6gD . Solving the height equation for sin o, D = —égDzznz"‘ , or
sina =(1/3)"?. Then, R =M, or R=5.6569D = 4+/2D.

vg sin 2a . . . .
s R=—"— 2% | and the maximum height that it reaches is H =




3.58: Equation 3.27 relates the vertical and horizontal components of position for a given
set of initial values.

a) Solving for v, gives

2= gx’/2cos’
xtang,—y '

Insertion of numerical values gives v, =16.6 m/s .

b) Eliminating 7 between Equations 3.20 and 3.23 gives v, as a function of x,
. X
v, =V, sinq, &

Vv, Cos &,

Using the given values yields v, = v, cosa, =8.28 m/s,v, =—-6.98 m/s, so

v =4/(8.28m/s)? +(~6.98 m/s)> =10.8 m/s, at an angle of arctan (=) =—40.1°, with

8.24
the negative sign indicating a direction below the horizontal.

c¢) The graph of v (¢) is a horizontal line.

20 15
/.
/ 10 AT
X1 10 ()
/ 5
0 0
0 1 2 3 0 1 2 3
t t
20
10 \\
vil®) \\ %0




3.59: a) In Eq. (3.27), the change in height is y =—/ . This gives a quadratic equation in
x, the solution to which is

2
x =200 % [‘[an2 ay+—5——— 28h }
g

v, COS
V, COS & : 7 2
ZM[VO s1na0+\/v0 sin a0+2gh]

If 4 =0, the square root reduces to v, sin ¢, and x = R. b) The expression for x

becomes x = (10.2 m) cos &, +[sin’ &, +/sin” &, + 0.98]

The angle a, =90° corresponds to the projectile being launched straight up, and there

is no horizontal motion. If ¢, = 0, the projectile moves horizontally until it has fallen the

distance A.
A
15 1
12 N
x(ex) ’ | \
o \

\

0
0 10 20 30 40 50 60 70 80 90
&y
c¢) The maximum range occurs for an angle less than 45°, and in this case the angle is
about 36°.




3.60: a) This may be done by a direct application of the result of Problem 3.59; with
a, =—40°, substitution into the expression for x gives 6.93 m.

b)

X

\

N\

c¢) Using (14.0 m—19 m) instead of / in the above calculation gives x = 6.3 m, so the
man will not be hit.

3.61: a) The expression for the range, as derived in Example 3.10, involves the sine of
twice the launch angle, and

sin (2(90° - «,)) = sin (180° - 2¢, ) = sin 180° cos 2¢, — cos 180° sin 2a1, = sin 2¢,
and so the range is the same. As an alternative, using sin(90° —¢,) = cosa and
cos(90° — ) = sin¢, in the expression for the range that involves the product of the sine

and cosine of ¢, gives the same result.
b) The range equation is R = @Tﬂa. In this case, v, =2.2 m/s and R=0.25 m.

Hence sin 2a = (9.8 m/s*)(0.25 m)/(2.2 m/s*), or sin 2a = 0.5062 ; and o =15.2° or
74.8°.



3.62: a) Using the same algebra as in Problem 3.58(a), v, =13.8 m/s.

b) Again, the algebra is the same as that used in Problem 3.58; v =8.4 m/s, at an angle
of 9.1°, this time above the horizontal.

c¢) The graph of v _(¢) is a horizontal line.

10 10

8 / 8
x(n 6 v 6 /

4 4 /
2 2 %
0 - [} - >
0 025 05 075 1 0 025 05 075 1
t t
15
12
V(1) 9\
6
3 B
™~

0
0 025 05 075 1
i

A graph of y(¢) vs. x(¢) shows the trajectory of Mary Belle as viewed from the side:
A

10

y(@)

-

S Nk~ O

x(1)

d) In this situation it’s convenient to use Eq. (3.27), which becomes
y=(1.327)x—(0.071115 m™")x*. Use of the quadratic formula gives x =23.8 m.

3.63: a) The algebra is the same as that for Problem 3.58,
2 gx’

* " 2cos’a,(xtana, — )

In this case, the value for y is —15.0 m, the change in height. Substitution of numerical
values gives 17.8 m/s. b) 28.4 m from the near bank (i.e., in the water!).



3.64: Combining equations 3.25, 3.22 and 3.23 gives
v =v; cos’ a, + (v, sina, — gt)’

= v, (sin” @, +cos’ a,) — 2v, sina, gt + (gt)’
: 1

=v, —2g(v, sina,t —Egtz)

= vé _283/,

where Eq. (3.21) has been used to eliminate ¢ in favor of y. This result, which will be seen
in the chapter dealing with conservation of energy (Chapter 7), is valid for any y,

positive, negative or zero, as long asv’> > 0. For the case of a rock thrown from the roof
of a building of height 4, the speed at the ground is found by substituting y =—#4 into the

above expression, yielding v =/v; +2gh , which is independent of ¢, .



3.65: Take + y to be upward. The vertical motion of the rocket is unaffected by its
horizontal velocity.
a) v, =0 (at maximum height), v,, =+40.0m/s, a, =-9.80 m/s’, y—y, =2

vi = vgy +2a,(y-y,) gives y—y, =81.6m

b) Both the cart and the rocket have the same constant horizontal velocity, so both
travel the same horizontal distance while the rocket is in the air and the rocket lands in
the cart.

c¢) Use the vertical motion of the rocket to find the time it is in the air.
Vo, =40 m/s, a,=-9.80 m/sz,vy =—40m/s,t =7

v, =V, +at gives  =8.164s

Then x —x, =v,,t =(30.0m/s)(8.164s) =245m.
d) Relative to the ground the rocket has initial velocity components v, =30.0m/s and

Vo, =40.0m/s, so it is traveling at 53.1° above the horizontal,

e) (i)

y

Relative to the cart, the rocket travels straight up and then straight down

(i)

v

‘ X

Relative to the ground the rocket travels in a parabola.



3.66: (a)
v_(runner) = v_(ball)
6.00 m/s = (20.0 m/s) cosd

cos® =0.300
0 ="72.5°

Time the ball is in the air:

y=v,sinft —Lgr’

—45.0m = (20.0 m/s)(sin72.5°)¢ — % (9.80 m/s*)z>

Solve for t: £ =5.549s.
x =V, cos0t =(20.0m/s)(cos72.5°)(5.5495s)
=334m

(b)
(i)

45.0m {

334 m

(i) {

45.0 m




3.67: Take + y to be downward.
a) Use the vertical motion of the boulder to find the time it takes it to fall 20 m to the
level of the surface of the water.
Vo, =0,a, =9.80m/s*, y -y, =20m, 1 =7
Y=Yy = Vo,l +%Clyl2 givest =2.02s
The rock must travel 100 m horizontally during this time, so
L= x—x _100m =49 m/s.
’ t 2.20s

b) The rock travels downward 45 m in going from the cliff to the plain. Use this
vertical motion to find the time:

Yo

Vo, =0,a, =9.80m/s’, y—y,=45m,t="?
Y=Yo =Vt +%ayt2 givest =3.03s

During this time the rock travels horizontally
X=X, =v,,t=(49m/s)(3.035) =150 m

The rock lands 50 m past the foot of the dam.

3.68: (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time
for the bagels to fall 43.9 m from rest. Get the time to fall:

e
y 2g

43.9m = %(9.80 m/s?)t>
t=2.99s

So she has been jogging for 9.00s +2.99s =12.0s. During this time she has gone
x=vt=(3.05m/s)(12.0s) =36.6 m. Bruce must throw the bagels so they travel 36.6 m
horizontally in 2.99 s

X =Vt
36.6m =v(2.995)
y=12.2m/s

(b) 36.6 m from the building.



3.69: Take + y to be upward.

a) The vertical motion of the shell is unaffected by the horizontal motion of the tank.
Use the vertical motion of the shell to find the time the shell is in the air:

Vo, =V sina=43.4m/s,a, =-9.80 m/s’, y — y, =0 (returns to initial height), z = ?
Y=Yy = Vo,l +%Clyl2 givest =8.865s

Relative to tank #1 the shell has a constant horizontal velocity v, cosa =246.2m/s.
Relative to the ground the horizontal velocity component is
246.2m/s +15.0m/s = 261.2 m/s . Relative to tank #2 the shell has horizontal velocity
component 261.2 m/s—35.0m/s =226.2m/s. The distance between the tanks when the
shell was fired is the (226.2 m/s)(8.86s) = 2000 m that the shell travels relative to tank

#2 during the 8.86 s that the shell is in the air.

b) The tanks are initially 2000 m apart. In 8.86 s tank #1 travels 133 m and tank #2
travels 310 m, in the same direction. Therefore, their separation increases by
310m—-183m =177 m. So, the separation becomes 2180 m (rounding to 3 significant
figures).

3.70: The firecracker’s falling time can be found from the usual

2h
t=|==

g
The firecracker’s horizontal position at any time # (taking the student’s position as x =0)

is x =vt—Lar’ =0 when cracker hits the ground, from which we can find that ¢ =2v/a.
Combining this with the expression for the falling time:

2 _ [
a g
SO
h=2v2g

2
a



3.71: a) The height above the player’s hand will be vzi; =M% 0 40m, so the

2g -
maximum height above the floor is 2.23 m. b) Use of the result of Problem 3.59 gives
3.84 m. c) The algebra is the same as that for Problems 3.58 and 3.62. The distance y is
3.05m—-1.83m=1.22m, and

_ \/ (9.80 m/s?)(4.21m)>

=8.65m/s.

2cos”35°((4.21m)tan 35° —1.22 m)
d) As in part (a), but with the larger speed,
1.83m +(8.65m/s)* sin® 35°/2(9.80 m/s*) = 3.09 m.

The distance from the basket is the distance from the foul line to the basket, minus half
the range, or

4.21m—(8.655m/s)*sin 70°/2(9.80 m/s*) = 0.62 m.
Note that an extra figure in the intermediate calculation was kept to avoid roundoff error.

3.72: The initial y-component of the velocity is v,, =/2gy , and the time the pebble is in

flight is ¢ =/2y/g . The initial x-component is v, = x/t =+/x’g/2y . The magnitude of

the initial velocity is then
> 2
Vo = 2gy+£=1/2gy 1+ = ,
2y 2y

and the angle is arctan(%)= arctan (2y/x) .



3.73: a) The acceleration is given as g at an angle of 53.1° to the horizontal. This is a 3-
4-5 triangle, and thus, a, =(3/5)ganda, =(4/5)g during the "boost" phase of the flight.
Hence this portion of the flight is a straight line at an angle of 53.1° to the horizontal.
After time T, the rocket is in free flight, the acceleration is @, =0 and a, = g, and the

familiar equations of projectile motion apply. During this coasting phase of the flight, the
trajectory is the familiar parabola.

X

b) During the boost phase, the velocities are: v, =(3/5)gt and v, =(4/5)gt , both
straight lines. After ¢t =T, the velocities are v_ = (3/5)gT , a horizontal line, and

v, =(4/5)gT — g(t —T), a negatively sloping line which crosses the axis at the time of
the maximum height.

| N

¢) To find the maximum height of the rocket, set v, =0, and solve for 7, where =0
when the engines are cut off, use this time in the familiar equation for y. Thus, using
t=(4/5)T and
Vuax = Vo +Vo,t =387, Yoy = 38T +28TGT) —38(3T), v, =38T° +358T° — 58
Combining terms, y, . =1g7?.

d) To find the total horizontal distance, break the problem into three parts: The boost
phase, the rise to maximum, and the fall back to earth. The fall time back to earth can be

found from the answer to part (c), (18/25)gT* = (1/2)gt*, or t = (6/5)T . Then,
multiplying these times and the velocity, x =3 gT* + R gT)(ET)+ (2 gT)(ET), or
x=2gT*+L2gT? + % g7 Combining terms gives x =3 g7T”.



3.74: In the frame of the hero, the range of the object must be the initial separation plus
the amount the enemy has pulled away in that time. Symbolically,
R =X, +vgut =X, + vy % , where v, is the velocity of the enemy relative to the hero, ¢

is the time of flight, v, is the (constant) x-component of the grenade’s velocity, as
measured by the hero, and R is the range of the grenade, also as measured by the hero.
Using Eq. (3-29) for R, with sin2a, =1 and v,, =v, /2,

2
Vgo =X, + Vg ‘i?o\/z, or Vg - (\/EVE/H Vo — 8%, =0.

This quadratic is solved for

v, :%(\/EVEM +\/2v2,, +4gx,)=61.1km/h,

where the units for g and x, have been properly converted. Relative to the earth, the x-
component of velocity is 90.0 km/h + (61.1km/h)cos45° =133.2 km/h , the y-component,
the same in both frames, is (61.1km/h)sin45° =43.2km/h , and the magnitude of the
velocity is then 140 km/h.

3.75:a) x>+’ =(Rcoswt)’ + (Rsinwt)’ = R*(cos’ @t +sin’ o) = R*,
so the radius is R.

b) v, =—@Rsinat, v, = wRcosat,
and so the dot product
FV=xv, +yv,
= (Rcosmt)(—wRsin wt) + (R sin wt )(wR cos wxt)
= wR(—cos wt sin @t + sin wt cos wt)
=0.

2 2 2 : 2
¢) a,=-® Rcoswt=-0"x, a,=0 Rsinwt=-w"y,

and so @ =—w’F and a = ®*R.

d) v’ =v +v. = (-oRsinar)’ + (@R coswt)’ = w’R*(sin’ ot + cos’ wr) = @’ R*, and so

v=wR.

e) a=w'R= =



3.76: a)

dv d 5
— =itV
dt dt
2 2
_ 1/2) 5 (v, +v))
2 2
\/vx +v,
_va tva,

2 2
,/vx+vy

b) Using the numbers from Example 3.1 and 3.2,
dv _ (=1.0m/s)(=0.50 m/s*) + (13 m/s)(0.30 m/s?)

dt J(1.0m/s)? + (13 m/s)’
The acceleration is due to changing both the magnitude and direction of the velocity. If
the direction of the velocity is changing, the magnitude of the acceleration is larger than
the rate of change of speed. ¢)v-a=va +v.a, v= VI + vi , and so the above form

v
dt

=0.54 m/s.

for ¢ isseento be v-a/v.

3.77: a) The path is a cycloid.

b) To find the velocity components, take the derivative of x and y with respect to time:
v, = Ro(l-coswt), and v, = Rw sinwt. To find the acceleration components, take the
derivative of v, and v, with respect to time: a, = Rw’sinet, and a,= R’ cosat.

¢) The particle is at rest (v, =v, =0) every period, namely at =0, 27/ w, 47/ w,.... At
that time, x = 0, 27R, 47R,...; and y = 0. The acceleration is @ = R in the
+ y - direction.

d) No, since a = [(Ra)2 sin a)t)z + (Ra)2 coscot)z]/2 =Ro’.

3.78: A direct way to find the angle is to consider the velocity relative to the air and the
velocity relative to the ground as forming two sides of an isosceles triangle. The wind
direction relative to north is half of the included angle, or arcsin(10/50)=11.53°, east of

north.



3.79: Finding the infinite series consisting of the times between meeting with the brothers
is possible, and even entertaining, but hardly necessary. The relative speed of the brothers
is 70 km/h, and as they are initially 42 km apart, they will reach each other in six-tenths
of an hour, during which time the pigeon flies 30 km.

3.80: a) The drops are given as falling vertically, so their horizontal component of
velocity with respect to the earth is zero. With respect to the train, their horizontal
component of velocity is 12.0 m/s, west (as the train is moving eastward). b) The
vertical component, in either frame, is (12.0 m/s)/( tan30°) = 20.8 m/s, and this is the

magnitude of the velocity in the frame of the earth. The magnitude of the velocity in the
frame of the train is \/ (12.0m/s)* +(208m/s)> =24 m/s. This is, of course, the same as
(12.0m/s)/sin30°.

3.81: a) With no wind, the plane would be 110 km west of the starting point; the wind has
blown the plane 10 km west and 20 km south in half an hour, so the wind velocity is

\/(20 km/h)*> + (40km/h)’ = 44.7km/h at a direction of arctan(40/20) = 63° south of
west. b) arcsin(40/220) =10.5° north of west.

3.82:a) 2D/v b) 2Dv/(v* = w?) ¢) 2D/Nv* —w? d) 1.50 h, 1.60 h, 1.55 h.

3.83: a) The position of the bolt is 3.00 m + (2.50 m/s)t —1/2(9.80 m/s*)¢>, and the
position of the floor is (2.50 m/s)¢. Equating the two, 3.00 m = (4.90 m/s*)t>. Therefore

t=0.782s. b) The velocity of the bolt is 2.50 m/s —(9.80 m/s*)(0.782s) = —5.17 m/s

relative to Earth, therefore, relative to an observer in the elevator
v=-5.17m/s-2.50m/s =-7.67m/s. c) As calculated in part (b), the speed relative to

Earth is 5.17 m/s. d) Relative to Earth, the distance the bolt travelled is
(2.50 m/s)t —1/2(9.80m/s*)t* = (2.50m/s)(0.782s) — (4.90 m/s*)(0.7825s)> = —1.04 m

3.84: Airspeed of plane = 22X — 8045 km/h

6.60 h
With wind from A to B:
tyg +tg, =6.70h

Same distance both ways:

(804.5km/h + v, )t = % =2655km

(804.5km/h +v_ )t,, =2655km
Solve (1), (2), and (3) to obtain wind speed v, :
v, =98.1km/h



3.85: The three relative velocities are:
V). Juan relative to the ground. This velocity is due north and has magnitude

Vg =8.00m/s.
Vi the ball relative to the ground. This vector is 37.0° east of north and has magnitude
Ve =12.0m/s.

vy, the ball relative to Juan. We are asked to find the magnitude and direction of this

vector.
The relative velocity addition equation is vy =V, +V 5 SOV =Vy — V5.

Take + y to be north and + x to be east.
Ve = HVi sIN37.0°=7.222 m/s
Vg, = Vg €0837.0°—v, . =1.584 m/s

These two components give v,, =7.39m/s at 12.4° north of east.

3.86: ) v,, =/2gh =1/2(9.80 m/s*)(4.90m) =9.80m/s. b) v,, /g =1.00s. c) The

speed relative to the man is \/(10.8 m/s)’ —(9.80m/s)* =4.54m/s, and the speed relative

to the hoop is 13.6 m/s (rounding to three figures), and so the man must be 13.6 m in

front of the hoop at release. d) Relative to the flat car, the ball is projected at an angle

0= tan_l(iiig ffv/:)= 65°. Relative to the ground the angle is 6 = tan_l(&F 35.7°

4.54 m/s+9.10 m/s

3.87: a) (150 m/s)*sin2°/9.80 m/s* = 80 m.
b) 1000 x 224 ™" _ 1 65107,

7(80 m)?
c¢) The slower rise will tend to reduce the time in the air and hence reduce the radius.
The slower horizontal velocity will also reduce the radius. The lower speed would tend
to increase the time of descent, hence increasing the radius. As the bullets fall, the friction
effect is smaller than when they were rising, and the overall effect is to decrease the
radius.

3.88: Write an expression for the square of the distance (D) from the origin to the

particle, expressed as a function of time. Then take the derivative of D* with respect to ¢,
and solve for the value of ¢ when this derivative is zero. If the discriminant is zero or

negative, the distance D will never decrease. Following this process, sin™'+/8/9 = 70.5°.



3.89: a) The trajectory of the projectile is given by Eq. (3.27), with o, =0 + ¢, and the
equation describing the incline is y = xtan@. Setting these equal and factoring out the
x =0 root (where the projectile is on the incline) gives a value for x,; the range

measured along the incline is
2

2
x/cosf = [ﬁ}[tan(ﬁ 1 ) — tan 6]{ cos (0 + gp)} ‘
g cosd

b) Of the many ways to approach this problem, a convenient way is to use the same
sort of "trick", involving double angles, as was used to derive the expression for the range
along a horizontal incline. Specifically, write the above in terms of o =60 + ¢, as

2v] . .
R :[ V02 6}[smacosacos0 —cos’ asind].
gcos

The dependence on & and hence ¢ is in the second term. Using the identities

sinacosa = (1/2)sin 2 and cos’ & = (1/2)(1 + cos2e), this term becomes
(1/2)[cosBsin2a. —sinfcos2a —sin O] = (1/2)[sin(2a — O) —sin O].

This will be a maximum when sin(2a —6) is a maximum, at 2a.—6 =2¢ + 60 =90°, or

@ =45°—-0/2. Note that this reduces to the expected forms when 6 =0 (a flat incline,

@ =45° and when 6 =-90° (a vertical cliff), when a horizontal launch gives the greatest
distance).



3.90: As in the previous problem, the horizontal distance x in terms of the angles is
ax 1
tand =tan(@0 + ¢) —| = |—5——.
©+9) (2\/3 j cos’ (0 + @)
Denote the dimensionless quantity gx/2v; by f; in this case
5= (9.80 m/s*)(60.0 m)cos30.0°

2(32.0m/s)?

The above relation can then be written, on multiplying both sides by the product
cosfcos(6 + ¢),

=0.2486.

sin@ cos(0 + @) = sin(6) + @) cos & — M,
cos(6 + @)
and so
sin(@ + @) cos@ —cos(@ + ¢)sin @ = _Peost )
cos(6 + @)

The term on the left is sin((€@ + @) — @) =sin g, so the result of this combination is
singcos(f + @) = [ cosb.

Although this can be done numerically (by iteration, trial-and-error, or other methods),
the expansion sinacosb = 5 (sin(a + b) + sin(a — b)) allows the angle ¢ to be isolated;

specifically, then
%(sin(2¢ +60) +sin(-0)) = fcosH,
with the net result that
sin(2¢ + 0) =2 fcosd +sinb.

a) For 8 =30°, and S as found above, ¢ =19.3° and the angle above the horizontal is
0+ ¢ =49.3°. For level ground, using £ =0.2871, gives ¢ =17.5°. b) For 8 =-30°, the
same £ as with 8 =30° may be used (cos30° = cos(—30°)), giving ¢ =13.0° and
p+60=-17.0°.



3.91: In a time At the velocity vector has moved through an angle (in radians) A¢g = ¢

(see Figure 3.23). By considering the isosceles triangle formed by the two velocity
vectors, the magnitude |A17| is seen to be 2vsin(¢/2), so that

=2V sin AL = 10m/Ssirl(l.O/s~At)
At 2R At

Using the given values gives magnitudes of 9.59m/s*, 9.98 m/s* and 10.0 m/s>. The

aave

instantaneous acceleration magnitude, v>/R = (5.00m/s)* /(2.50 m) =10.0 m/s” is indeed
approached in the limit at Az — 0. The changes in direction of the velocity vectors are
VAt

given by A@ =** and are, respectively, 1.0 rad, 0.2 rad, and 0.1 rad. Therefore, the angle

of the average acceleration vector with the original velocity vector is
280 — 77 /2 +1/21ad(118.6°),7/2+0.1rad(95.7°), and 7/2+0.05rad(92.9°).



3.92:

o —»’ 1000 m ‘«—
Airliner

Rocket

The x-position of the plane is (236 m/s)¢ and the x-position of the rocket is
(236 m/s)t +1/2(3.00)(9.80 m/s*)cos30°(t — T')*. The graphs of these two have the form,

A

Rocket

Airliner

t

If we take y =0 to be the altitude of the airliner, then
y(t)=-1/2gT* —gT(t—T)+1/2(3.00)(9.80 m/s* )(sin30°)(t — T)* for the rocket. This
graph looks like

y
Airliner }

Rocket

By setting y =0 for the rocket, we can solve for 7 in terms of
T,0=—(4.90m/s*)T* —(9.80 m/s*)T(t — T) +(7.35m/s*)(t — T)’. Using the quadratic
formula for the variable x =7 -7, we find

9.80 m/s?)T++/(9.80 m/s>T)? +(4)(7.35 m/s> )(4.9)T? .
x=t— =0 TNOR W ) B0 W )EDT or £ =2.72 T. Now, using

2(7.35 m/s?)
the condition that x, . — X1, = 1000 m, we find

(236 m/s)t + (12.7m/s” )x (t —=T)* — (236 m/s)t = 1000 m, or (1.727)° =78.6s".
Therefore T'=5.15s.

3.93: a) Taking all units to be in km and h, we have three equations. We know that
heading upstream v,,, —v, ,, =2 where v, is the speed of the curve relative to water
and v, is the speed of the water relative to the ground. We know that heading
+v,,6)t =5. We also know that for the bottle

v, ¢ (t+1)=3. Solving these three equations for v, ,; = x,v,,, =2+ x, therefore
Q+x+x)t=50r (2+2x)t=5. Also t=3/x-1,s0 (2+2x)(Z-1)=5 or

2x* + x — 6= 0. The positive solution is x =v,,,, =1.5km/h.

b) v, =2km/h+v,, =3.5km/.

clw

downstream for a time ¢, (v

c/lw



Capitulo 4



4.1:  a) For the magnitude of the sum to be the sum of the magnitudes, the forces must
be parallel, and the angle between them is zero. b) The forces form the sides of a right
isosceles triangle, and the angle between them is 90°. Alternatively, the law of cosines
may be used as

F?+F? =(V2F) -~2F? coso,
from which cos@ =0, and the forces are perpendicular. ¢) For the sum to have 0
magnitude, the forces must be antiparallel, and the angle between them is 180°.

4.2: In the new coordinates, the 120-N force acts at an angle of 53° from the — x -axis,
or 233° from the + x -axis, and the 50-N force acts at an angle of 323° from the + x -
axis.

a) The components of the net force are
R =(120N)cos233°+(50N)cos323°=-32N

R, = (250 N)+ (120 N)sin 233° + (S0 N)sin 323° = 124 N,
b) R=,/R? +R? =128 N, arctan(12)=104°. The results have the same magnitude,

and the angle has been changed by the amount (37°) that the coordinates have been
rotated.

4.3: The horizontal component of the force is (10 N)cos 45°=7.1 N to the right and the
vertical component is (10 N)sin 45°=7.1 N down.

4.4: a) /.= Fcos 6, where 6 is the angle that the rope makes with the ramp (6 =30° in
this problem), so F =‘F ‘ =L = IR _693N.

c0s@  cos 30°

b) F, =Fsinf =F tan6 =34.6 N.



4.5: Of the many ways to do this problem, two are presented here.
Geometric: From the law of cosines, the magnitude of the resultant is
R= \/(270 N)* + (300 N)* +2(270 N)(300 N)cos 60° = 494 N.

The angle between the resultant and dog 4’s rope (the angle opposite the side
corresponding to the 250-N force in a vector diagram) is then

arcsin sin 120°(300 N) =31.7°.
(494N)

Components: Taking the +x -direction to be along dog A’s rope, the components of the
resultant are

R, =(270N) + (300 N)cos 60° = 420 N
R, =(300 N)sin 60° =259.8 N,

so R= \/(420 N)* +(259.8N)> =494 N, 0 = arctan (228)=31.7°.

420

4.6:a) F_+F, =(9.00 N)cos 120° + (6.00 N)cos (-126.9°) = —8.10N
F,, +F,, =(9.00 N)sin 120° + (6.00 N)sin (~126.9°) = +3.00 N.

b) R=1/R? + R’ =/(8.10N)* + (3.00N)* =8.64 N.

4.7: a=F/m=(132N)/(60kg) =2.2m/s* (to two places).
4.8: F =ma=(135kg)(1.40m/s*) =189 N.
4.9: m=F/a=(48.0N)/(3.00m/s*) =16.00kg.

4.10: a) The acceleration is ¢ =2 =202 — ) 88 m /s’ . The mass is then

t (5.005)°
m=L=2308_—909kg.
a 0.88 m/s
b) The speed at the end of the first 5.00 seconds is at =4.4m/s, and the block on the
frictionless surface will continue to move at this speed, so it will move another
vt =22.0m in the next 5.00 s.



4.11: a) During the first 2.00 s, the acceleration of the puck is F/m =1.563 m/s’
(keeping an extra figure). At 1 =2.00s, the speed is af =3.13m/s and the position is

at’/2=vt/2=3.13m. b) The acceleration during this period is also 1.563m/s”, and the

speed at 7.00 s is 3.13m/s +(1.563 m/s*)(2.00s) = 6.26 m/s . The position at z =5.00s is
x=3.13m+(3.13m/s)(5.00s —2.00s) =125m, and at t =7.00s is

12.5m +(3.13m/s)(2.00s) + (1/2)(1.563 m/s*)(2.00s)* = 21.89 m,
or 21.9 m to three places.

4.12:2) a, = F/m=140N/32.5kg = 431 m/s’.
b) With v,, =0,x=1at’ =215m.
c) With v, =0,v =at=2x/t=43.0m/s.

413:2) YF=0
b), ¢), d)

4.14: a) With v, =0,
Vi _(3.00x10° m/s)’

X

U 2x  2(1.80x1072m)
b) == 200t mis. 1 20% 107 s . Note that this time is also the distance divided by

a, ~ 2.50x10™ m/s?

=2.50x10" m/s*.

the average speed.
¢) F=ma=(9.11x107" kg)(2.50x10" m/s*) =2.28 x107'* N.

4.15: F =ma =w(a/g) = (2400 N)(12 m/s*)(9.80 m/s*) = 2.94 x 10> N.

4.16: a _E_F 160
m

S . (—j@.go m/s?) = 22.0 m/s’.
w

w/g 71.2

4.17: aym=w/ g = (44.0N)/(9.80m/s*) = 4.49 kg b) The mass is the same, 4.49 kg, and
the weight is (4.49kg)(1.81m/s*) =8.13 N.



4.18: a) From Eq. (4.9), m=w/g = (3.20N)/(9.80 m/s”) = 0.327 kg.
b) w=mg =(14.0kg)(9.80m/s*) =137 N.

4.19: F =ma = (55kg)(15m/s*) =825N. The net forward force on the sprinter is
exerted by the blocks. (The sprinter exerts a backward force on the blocks.)

4.20: a) the earth (gravity) b) 4 N, the book c) no d) 4 N, the earth, the book, up ) 4 N,
the hand, the book, down f) second g) third h) no i) no j) yes k) yes 1) one (gravity) m) no

4.21: a) When air resistance is not neglected, the net force on the bottle is the weight of
the bottle plus the force of air resistance. b) The bottle exerts an upward force on the
earth, and a downward force on the air.

4.22: The reaction to the upward normal force on the passenger is the downward normal
force, also of magnitude 620 N, that the passenger exerts on the floor. The reaction to the
passenger’s weight is the gravitational force that the passenger exerts on the earth,

. DF _ 0N650N _ 2 )
upward and also of magnitude 650 N. 5— = === = —0.452m/s”. The passenger’s

acceleration is0.452 m/s* , downward.

2
423:a, = 18 _(45ke)080m/s)

N =74x10"" m/s’.
mg  my (6.0x10™ kg)




4.24: (a) Each crate can be considered a single particle:

ng
ny

W

F,; (the force on m, dueto my)and Fj, (the force on my dueto m, ) form an
action-reaction pair.

(b) Since there is no horizontal force opposing F, any value of F, no matter how
small, will cause the crates to accelerate to the right. The weight of the two crates acts at
a right angle to the horizontal, and is in any case balanced by the upward force of the
surface on them.

4.25: The ball must accelerate eastward with the same acceleration as the train. There
must be an eastward component of the tension to provide this acceleration, so the ball
hangs at an angle relative to the vertical. The net force on the ball is not zero.



4.26: The box can be considered a single particle.

For the truck:

%

n (sum of box weight
and truck weight)

fr

(rolling friction
of road on tires)

wg [

Frusd
(reaction force to
tires' backward push)

Wirick

The box’s friction force on the truck bed and the truck bed’s friction force on the box
form an action-reaction pair. There would also be some small air-resistance force action
to the left, presumably negligible at this speed.



4.27: a)

b) For the chair, a, =0 so ZFy =ma, gives
n—mg—Fsin37°=0

n=142N
4.28: a)
N NS
Q«S\'\ & &
W go«;{-@
aeio® s
Tenst
T
™
7777 77
777
gravity =mg
b)

T =mgsin@
= (65.0kg)(9.80m/s)sin 26.0° = 279 N



4.29: tricycle and Frank
|

™8

T'is the force exerted by the rope and f, is the force the ground exerts on the tricycle.

spot and the wagon

mg

T’ is the force exerted by the rope. T'and T’ form a third-law action-reaction pair,
T=-T.

4.30: a) The stopping time is = = —5 = 220 _ 7 43510 s,

v = ul2) — 350m/s

b) F =ma=(1.80x107" kg)-E2™%)_ _ 848 N. (Using a = vy /2x gives the same

(7.43x10% s)

result.)

4.31: Take the +x -direction to be alongﬁ1 and the + y -direction to be along R . Then
F,,=-1300N and F, =1300N, so F, =1838 N, at an angle of 135° from F.

4.32: Get g on X:
1o
y ) g
10.0m = %g(2.2 s)°

g=4.13m/s?
wy, =mg, =(0.100kg)(4.03m/s*)=0.41N



4.33: a) The resultant must have no y-component, and so the child must push with a force
with y-component (140 N)sin30°— (100 N)sin60° = —16.6 N. For the child to exert the
smallest possible force, that force will have no x-component, so the smallest possible
force has magnitude 16.6 N and is at an angle of 270°, or 90° clockwise from the

+ x -direction.

b)m = &L = WO N Newsi0” _ g5 5 kg 3= g = (85.6 kg)(9.80m /s”) = 84ON..

2.0m/s’

4.34: The ship would go a distance
vo  ve _mvy  (3.6x10" kg)(1.5m/s)’
2a 2(F/m) 2F  2(8.0x10°N)

so the ship would hit the reef. The speed when the tanker hits the reef is also found from

4
y =2 —(2Fx/m) = \/(1.5 gy — 280N NNE00m) _ 17

(3.6x10” kg)

=506.25m,

so the oil should be safe.

4.35: a) Motion after he leaves the floor: vi = vgy +2a,(y—yy)-

v, =0 at the maximum height, y—y, =1.2m, a, =-9.80 m/s*, so

vy, =4.85m/s.
b) a,, = Av/At =(4.85m/s)/(0.3005s) =16.2 m/s”.
C) V
F,—w=ma,
F,=w+ma, =890N+(890N/9.80m/s*)(16.2m/s?)
F,=236x10°N
4.36:

ve (12.5m/s)’

F =ma=m—=(850kg) ——=3.7x10°N.
2x 2(1.8x107" m)



4.37: a)

| F .. =F —mg (upward)

b) When the upward force has its maximum magnitude F,_ (the breaking strength),
the net upward force will be F_—mg and the upward acceleration will be

Fmax_mg_Fmax_ _ 750N

m m £ 4.80kg

ax

a= —-9.80m/s* =5.83m/s’.

4.38:a) w=mg =539N
b)

F‘au

mg

Downward velocity is decreasing so @ is upward and the net force should be upward.
F. >mg, so the net force is upward.

c¢) Taking the upward direction as positive, the acceleration is

_E_Eymmg _Fy gg00e - 620N
m m m 55.0kg

a

—9.80m/s* =1.47m/s>.



4.39: a) Both crates moves together, so @ =2.50m/s’

T =ma = (4.00kg)(2.50m/s*) =10.0N

F >T and the net force is to the right, in the direction of a .
d) F-T=mya
F=T+m,a=10.0N+(6.00kg)(2.50m/s*)=25.0N

4.40: a) The force the astronaut exerts on the rope and the force that the rope exerts on

the astronaut are an action-reaction pair, so the rope exerts a force of 80.0 N on the

80.0 N

astronaut.  b) The cable is under tension. ¢) a =4 = 15757, = 0.762m/ s*. d) There is no

net force on the massless rope, so the force that the shuttle exerts on the rope must be
80.0 N (this is not an action-reaction pair). Thus, the force that the rope exerts on the

shuttle must be 80.0 N.¢) g =£ = 20X 8 84x10~* m/s>.

m T 905x10°kg

4.41: a) x (0.025s) = (9.0x10° m/s)(0.025s)> — (8.0x10* m/s)(0.025s)’ = 4.4 m.
b) Differentiating, the velocity as a function of time is
v(t) =(1.80x10* m/s*)t —(2.40x10° m/s’)t*, so
v(0.0255) = (1.80x10* m/s°)(0.025s) — (2.40x10° m/s%)(0.0255s)"
=3.0x10°m/s.

c¢) The acceleration as a function of time is
a(t)=1.80x10" m/s* — (4.80x10° m/s’)z,

so (i) atz =0,a=1.8x10* m/s*, and (ii) a(0.025s) =6.0x10° m/s*, and the forces are
(i) ma =2.7x10* Nand (ii) ma =9.0x10’ N.



4.42: a) The velocity of the spacecraft is downward. When it is slowing down, the
acceleration is upward. When it is speeding up, the acceleration is downward.

b)

» speeding up: w> F and the net force is downward
slowing down: w < F' and the net force is upward
c¢) Denote the y-component of the acceleration when the thrust is / by g, and the y-
component of the acceleration when the thrust is ¥, by a,. The forces and accelerations
are then related by
F-w=ma,, F,—w=ma,.
Dividing the first of these by the second to eliminate the mass gives

h-w_a
F,—w az,
and solving for the weight w gives
a,F,—a,F
w=2 " %0
a, —a,

In this form, it does not matter which thrust and acceleration are denoted by 1 and which
by 2, and the acceleration due to gravity at the surface of Mercury need not be found.
Substituting the given numbers, with +y upward, gives

e (1.20m/s*)(10.0x10°> N) = (=0.80m/s*)(25.0x10° N)

SR : =16.0x10° N.
1.20m/s” —(-0.80m/s”)

In the above, note that the upward direction is taken to be positive, so that a, is negative.
Also note that although a, is known to two places, the sums in both numerator and
denominator are known to three places.



4.43:

a) The engine is pulling four cars, and so the force that the engine exerts on the first car
is 4m| a | . b), ¢), d): Similarly, the forces the cars exert on the car behind are

3m|¢7 , 2m|t7| and — m|E| . €) The direction of the acceleration, and hence the direction of

the forces, would change but the magnitudes would not; the answers are the same.

4.44: a) If the gymnast climbs at a constant rate, there is no net force on the gymnast, so
the tension must equal the weight; 7' = mg .

b) No motion is no acceleration, so the tension is again the gymnast’s weight.
)T —w=T—-mg=ma= m|é| (the acceleration is upward, the same direction as the

tension), so 7' = m(g +|E|).
d)T—w=T-mg=ma= —m|ﬁ| (the acceleration is downward, the same opposite as

the tension), so 7 = m(g —|ﬁ|) .

4.45: a)

Fpog=T-mg

mg

The maximum acceleration would occur when the tension in the cables is a maximum,

F —
g=tw Tomg T 28000N 00062 = 2.93m/s2.
m m m 2200kg

28,000 N
2200kg

b) —1.62m/s*=11.1m/s".



4.46: a) His speed as he touches the ground is

v=1/2gh =+/2(9.80m/s*)(3.10m) = 7.80m/s.

b) The acceleration while the knees are bending is
_ v’ _(7.80m/s)’

= =50.6m/s’.
2y 2(0.60m)

The net force that the feet exert on the ground is the force that the ground exerts on the
feet (an action-reaction pair). This force is related to the weight and acceleration by

F-w=F—-mg=ma, soF =m(a+ g)=(75.0kg)(50.6m/s*+9.80m/s’) =4532 N . As
a fraction of his weight, this force is ng = (? + l)z 6.16 (keeping an extra figure in the

intermediate calculation of a). Note that this result is the same algebraically as (gégz + 1).

4.47: a)

nail

hand |Y¥

F

b) The acceleration of the hammer head will be the same as the nail,
a=vy/2x=(3.2m/s)*/2(0.45cm) =1.138x10° m/s*. The mass of the hammer head is

its weight divided by g, 4.9N/9.80m/s* = 0.50 kg, and so the net force on the hammer

head is (0.50kg)(1.138x10° m/s*) = 570 N. This is the sum of the forces on the hammer

head; the upward force that the nail exerts, the downward weight and the downward 15-N
force. The force that the nail exerts is then 590 N, and this must be the magnitude of the
force that the hammer head exerts on the nail. ¢) The distance the nail moves is .12 m, so
the acceleration will be 4267 m/s”, and the net force on the hammer head will be 2133
N. The magnitude of the force that the nail exerts on the hammer head, and hence the
magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200
N.



4.48:

172

(a), (b) (©)

a) The net force on a point of the cable at the top is zero; the tension in the cable must
be equal to the weight w.

b) The net force on the cable must be zero; the difference between the tensions at the
top and bottom must be equal to the weight w, and with the result of part (a), there is no
tension at the bottom.

c¢) The net force on the bottom half of the cable must be zero, and so the tension in the
cable at the middle must be half the weight, w/2. Equivalently, the net force on the
upper half of the cable must be zero. From part (a) the tension at the top is w, the weight
of the top half is w/2 and so the tension in the cable at the middle must be
w—w/2=w/2.

d) A graph of T vs. distance will be a negatively sloped line.

4.49: a)

F T,

” W, w
« .
T, o

b) The net force on the system is 200 N — (15.00 kg)(9.80m/s*) = 53.0N (keeping
three figures), and so the acceleration is (53.0 N)/(15.0kg) = 3.53m/s’, up. ¢) The net
force on the 6-kg block is (6.00kg)(3.53m/s*)=21.2 N, so the tension is found from
F-T—-mg=212N,or T=(200N)—(6.00kg)(9.80m/s*)-21.2N=120N.

Equivalently, the tension at the top of the rope causes the upward acceleration of the rope
and the bottom block, so 7 —(9.00kg)g = (9.00kg)a, which also gives 7 =120N . d)

The same analysis of part (c) is applicable, but using 6.00 kg +2.00kg instead of the

mass of the top block, or 7.00 kg instead of the mass of the bottom block. Either way
gives T =93.3N.



4.50: a)

Barbell Athlete

Fitoor

b) The athlete’s weight is mg = (90.0kg)(9.80m/s*) =882 N . The acceleration of the
barbell is found from v,, =0.60m/1.6s =0.375m/s . Its final velocity is thus
(2)(0.375m/s) =0.750m/s , and its acceleration is

g=Y =V _ 0.750m/s 0469/
t 1.65
The force needed to lift the barbell is given by:
Fro = Fig = Wygpey = Ma

The barbell’s mass is (490 N)/(9.80m/s*) = 50.0kg , so
Fi = Wy + ma =490 N +(50.0 kg)(0.469 m/s”)

=490 N+23N=513N
The athlete is not accelerating, so:
F_ =F,

net floor
F,

floor

= Flig = Watere =0

= F + Wy, =513N+882N =1395N

athlete



4.51: a)

"7
‘Mg
L is the lift force
b)XF, =ma,
Mg—L=M(g/3)
L=2Mg/3

c) L—-mg =m(g/2), where m is the mass remaining.
L=2Mg/3,s0 m=4M/9.Mass SM /9 must be dropped overboard.



4.52: a) m = mass of one link

chain: Top link: Middle link: Bottom link:

Fmiddle

2ma
ma

mg

3Img 3mg

The downward forces of magnitude 2ma and ma for the top and middle links are the
reaction forces to the upward force needed to accelerate the links below.

b) (i) The weight of each link is mg = (0.300kg)(9.80m/s*) =2.94 N . Using the free-

body diagram for the whole chain:
_F, 12N -3(2.94N) 3.18N

net __ —
3m 0.900 kg 0.900 kg

(ii) The second link also accelerates at 3.53m/s”, so:

=3.53m/s’ or 3.5m/s?

Fnet =
F,, =2ma+2mg = 2(0.300kg)(3.53m/s>) + 2(2.94 N)
=2.12N+583N=8.0N

F,, —ma—2mg =ma

4.53: Differentiating twice, the acceleration of the helicopter as a function of time is
a=(0.120m/s*)ti —(0.12m/s>)k,
and at 1 =5.0s, the acceleration is
d=(0.60m/s?)i —(0.12m/s>)k.
The force is then

W _ (275x10° N)
g (9.80m/s?)
=(1.7x10* N)i —(3.4x10° N)k.

F=md = (0.60m/s*)i —(0.12m/s*)k



4.54: The velocity as a function of time is v(¢) = A —3Bt* and the acceleration as a
function of time is a(z) = —6Bt, and so the Force as a function of time is
F(t)=ma(t)=—-6mBt .

4.55:

1 ¢ 1 s kP o
vit)=— | adt=—|kti+—1t*j|.
0=-1, m( ; Jj



4.56: a) The equation of motion, — Cv* = m< cannot be integrated with respect to time,

as the unknown function v(¢) is part of the integrand. The equation must be separated
before integration; that is,

m \%
e _ 1.1
m \% VO,

where v, is the constant of integration that gives v=v, at  =0. Note that this form

shows that if v, = 0, there is no motion. This expression may be rewritten as
-1
dx 1 Ct
v=—"=|—4—|,
dt \v, m

X —X, z%ln[1+cwo}
m

which may be integrated to obtain

To obtain x as a function of v, the time ¢ must be eliminated in favor of v; from the

. . . . C
expression obtained after the first integration, =*=>—1, so

X=X, = %ln (%‘)j

& _dvdv _dv,

dt dvdt  dx
and using the given expression for the net force,

—-Cv’ = (vﬂjm
dx
C dv

=2
m 1%

—g(x—xo) :ln(lj
m Vo

X=X, = %ln (%Oj

b) By the chain rule,



4.57: In this situation, the x-component of force depends explicitly on the y-component of
position. As the y-component of force is given as an explicit function of time, v, and y

can be found as functions of time. Specifically, a, = (ks /m)t, so v, = (k;/ 2m)t* and
y = (k,/6m)t’ , where the initial conditions v, , =0,y, =0 have been used. Then, the

expressions for a_,v_ and x are obtained as functions of time:

ki koky
m o 6m’
v, =£z+—kzk32 tt
m 24m
x=£t2 +_k2k3 £.
2m 120m?

In vector form,

F= £t2+k2—k32t5 Faffap j
2m 120m 6m

- k,k (K o
V= ﬁz+2—32z“ i+ =1 |j.
m  24m 2m



Capitulo 5



5.1: a) The tension in the rope must be equal to each suspended weight, 25.0 N. b) If the
mass of the light pulley may be neglected, the net force on the pulley is the vector sum of
the tension in the chain and the tensions in the two parts of the rope; for the pulley to be
in equilibrium, the tension in the chain is twice the tension in the rope, or 50.0 N.

5.2: In all cases, each string is supporting a weight w against gravity, and the tension in
each string is w. Two forces act on each mass: w down and 7'(= w) up.

5.3: a) The two sides of the rope each exert a force with vertical component 7" siné , and
the sum of these components is the hero’s weight. Solving for the tension 7,

w_(90.0kg) (9.80m/s*)

~ 2sin® 25in10.0°
b) When the tension is at its maximum value, solving the above equation for the angle

6 gives
2
0= arcsin[lj = arcsin (90.0ke) (9'8? m/s =1.01°.
2T 2(2.50x10" N)

=2.54x10° N.

5.4: The vertical component of the force due to the tension in each wire must be half of
the weight, and this in turn is the tension multiplied by the cosine of the angle each wire
makes with the vertical, so if the weight is w,% =2 cos 6 and 6 = arccos3 = 48°.

5.5: With the positive y-direction up and the positive x-direction to the right, the free-
body diagram of Fig. 5.4(b) will have the forces labeled n and T resolved into x- and y-
components, and setting the net force equal to zero,
F. =Tcosa—-nsina=0
F,=ncosa+Tsina—-w=0.
Solving the first forn =T cot a and substituting into the second gives
cos’a cos’ a sinzaj T
+ = =w

r =—
sina

sina sina

- +Tsina=T
sin

and so n =T cota. = wsina cot o = wcosa, as in Example 5.4.

5.6: wsin a = mg sin a = (1390 kg) (9.80 m/s?)sin 17.5° = 4.10x10° N.



5.7: 2) T, cos 0 = W,or T, = W/ cos = “0K08m) _ 5 93, 10% N,

cos 40°

b) T, =T,sinf =(5.23x10* N)sin 40°=3.36x10" N.

5.8:a) T, =w,T,sin30°+T,sin45° =T, = w,and T, cos 30° — T, cos45° = 0. Since
sin45° = cos45°, adding the last two equations gives 7,(cos30° +sin30°) = w, and so
T,=12%-=0.732w. Then, T, =T, <3¢ = 0.897w.

b) Similar to part (a), 7, =w,—T,c0s60° + T, sin45° =w, and

T,sin60°—T, cos45° = 0. Again adding the last two, 7, =
T, =T,08% =3.35w.

B cos45°

=2.73w, and

(sin 60 —c0s 60°)

5.9: The resistive force is wsina = (1600 kg)(9.80 m/s?)(200 m/6000 m) = 523 N..

5.10: The magnitude of the force must be equal to the component of the weight along the
incline, or W sin 6 = (180 kg)(9.80 m/sz)sinl 1.0°=337 N.

5.11: a) W =60N,Tsinf =W, soT =(60N)/sin45°, or T =85 N.
b) F,=F, =T cos0,F =F, =85Ncos45°=60 N.

5.12: If the rope makes an angle & with the vertical, then sind =210 =0.073 (the

denominator is the sum of the length of the rope and the radius of the ball). The weight is
then the tension times the cosine of this angle, or

2
oW mg _ (0270 kg)(9.80m/s’) _ 565 N,
cosf  cos(arcsin(.073)) 0.998

The force of the pole on the ball is the tension times siné , or (0.073)7 =0.193 N.

5.13: a) In the absence of friction, the force that the rope between the blocks exerts on
block B will be the component of the weight along the direction of the incline,

T =wsina . b) The tension in the upper rope will be the sum of the tension in the lower
rope and the component of block A4’s weight along the incline,

wsina +wsina = 2w sina. ¢) In each case, the normal force is wcos a. d) When
a=0,n=w, when . =90°,n=0.



5.14: a) In level flight, the thrust and drag are horizontal, and the lift and weight are
vertical. At constant speed, the net force is zero, and so F' = f and w= L. b) When the

plane attains the new constant speed, it is again in equilibrium and so the new values of
the thrust and drag, F' and f', are related by F'= f';if F'=2F, f'=2f. c¢) In order to

increase the magnitude of the drag force by a factor of 2, the speed must increase by a
factor of /2. .

5.15: a)

15.0 kg {28.0 ke

mg myg
The tension is related to the masses and accelerations by
T'—mg=ma,

T'-m,g =ma,.
b) For the bricks accelerating upward, let a, = —a, = a (the counterweight will

accelerate down). Then, subtracting the two equations to eliminate the tension gives
(my, —m,)g = (m, + m,)a, or

g=gMa M _ggm/s? | 28:0ke=150ke ), o0 e
m, +m, 28.0 kg +15.0kg

c¢) The result of part (b) may be substituted into either of the above expressions to find
the tension 7 =191 N. As an alternative, the expressions may be manipulated to

eliminate a algebraically by multiplying the first by m, and the second by m, and adding

(with a, =—a,) to give

T'(m +m,y)—2mm,g =0, or
_2mm,g  2(15.0kg) (28.0kg) (9.80 m/s’)
Com+m, (15.0 kg + 28.0 kg)
In terms of the weights, the tension is

T =191N.

2m 2m
T=w, - =w, —.
m, +m, m, +m,

If, as in this case, m, > m,2m, > m, + m,and 2m, <m, +m,, so the tension is greater
than w, and less than w,; this must be the case, since the load of bricks rises and the
counterweight drops.



5.16: Use Second Law and kinematics: a = g sin @, 2ax =v>, solve for 6.
gsin® =v*/2x, or
6 =arcsin(v*/2gx) = arcsin[(2.5 m/s)> /[(2)(9.8 m/s*)(1.5 m)]], 6 = 12.3°.

5.17: a)

400kg ——> m

Yw

b) In the absence of friction, the net force on the 4.00-kg block is the tension, and so
the acceleration will be (10.0 N)/ (4.00kg) = 2.50m/ s>. ¢) The net upward force on the
suspended block is 7 —mg = ma, or m =T/(g + a). The block is accelerating downward,
so a=-2.50m/s*, and so m = (10.0 N)/(9.80 m/s* —=2.50 m/s?) =1.37 kg.

d) T =ma+mg, so T <mg, because a <0.
5.18: The maximum net force on the glider combination is
12,000 N -2x2500 N =7000 N,

. . . 2
so the maximum acceleration is d,,,, = {3, = 9-0 m/s’.

a) In terms of the runway length L and takoff speed v,a = % <a,., SO

vi (40m/s)’
2a.. 2(5.0m/s?)

max

max ?

L > = 160 m.

b) If the gliders are accelerating at a__ , from

T-F,, = (700 kg)(5.0m/s*) + 2500 N = 6000 N. Note that this is

exactly half of the maximum tension in the towrope between the plane and the first
glider.

=ma,T =ma+F)

rag

5.19: Denote the scale reading as F,, and take positive directions to be upward. Then,

F—w=ma:1a, or a:g(i—l}
g w

a) a = (9.80 m/s*)((450 N)/(550N) —1) = —1.78 m/s” , down.
b) a =(9.80m/s*)((670 N)/(550 N)—1)=2.14m/s*, up. ¢) If F =0,a=—g and the
student, scale, and elevator are in free fall. The student should worry.



5.20: Similar to Exercise 5.16, the angle is arcsin(;—ﬁ), , but here the time is found in

terms of velocity along the table, # ==, x being the length of the table and v, the

velocity component along the table. Then,

. ( 2L J . (2Lv§]
arcsin Y w |~ arcsin >
g(x/vo) &x

-2 2
_ arcsin| 2(2:50x10 ;n)(3.80rr§/s) _1age.
(9.80m/s?1.75 m)

5.21:
I n n
w ’{ w f j w
() (b) (©
”é*r i
e
W
Wy
() (©)
5.22:
no
\ motion . < moving .
1 N 1
- 0.8 N 0.8
f /A aw 0.6 \ fw 0.6
/ 04 i\ ' N\

/ 0.4 V. N
02 -y N 02 \
ol ol— : _ 1) AN S —
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
T 6 9

5.23: a) For the net force to be zero, the applied force is
F=f =pun=pumg=(020)(11.2kg)(9.80 m/s?) =22.0 N.
b) The acceleration is g, and 2ax =v>, so x = v2/2,ukg, or x=3.13m.



5.24: a) If there is no applied horizontal force, no friction force is needed to keep the
box in equilibrium. b) The maximum static friction force is, from Eq. (5.6),

un=puw=(0.40)(40.0 N)=16.0 N, so the box will not move and the friction force

balances the applied force of 6.0 N. ¢) The maximum friction force found in part (b),
16.0 N. d) From Eq. (5.5), #,n=(0.20)(40.0 N) =8.0 N e) The applied force is enough

to either start the box moving or to keep it moving. The answer to part (d), from
Eq. (5.5), is independent of speed (as long as the box is moving), so the friction force is

8.0 N. The acceleration is (F' — fk)/m =2.45m/s’.

5.25: a) At constant speed, the net force is zero, and the magnitude of the applied force
must equal the magnitude of the kinetic friction force,

‘ F ‘ = fo = uwn = pumg =(0.12) (6.00 kg) (9.80 m/s?)=7 N.
b) ‘F‘—fk=ma, $0
‘F‘:ma““fk:maZﬂkmg=m(a+ykg)

= (6.00 kg)(0.180 m/s” +(0.12)9.80 m/s*) =8 N.
¢) Replacing g =9.80 m/s2 with 1.62 m/s2 gives 1.2 N and 2.2 N.

5.26: The coefficient of kinetic friction is the ratio f7k , and the normal force has
magnitude 85 N+25N =110 N. The friction force, from F, — f, =ma =w+ is

_ 2
f. =FH—w£=20N—85N(Lm/Sj=28 N

g 9.80 m/s”
(note that the acceleration is negative), and so g, =75 =0.25.

5.27: As in Example 5.17, the friction force is g, n = g, wcosa and the component of the
weight down the skids is wsin . In this case, the angle « is arcsin(2.00/20.0) = 5.7°.

The ratio of the forces is #-o% = £ = 035 5 1 g0 the friction force holds the safe back,

sina  tana  0.10
and another force is needed to move the safe down the skids.
b) The difference between the downward component of gravity and the kinetic
friction force is

w(sina — u, cos a) = (260 kg) (9.80 m/sz) (sin 5.7°—(0.25) cos 5.7°) = =381 N.



5.28: a) The stopping distance is
v v (287mfs)’ 3 m
2a 2p.g  2(0.80)(9.80 m/s?) '
b) The stopping distance is inversely proportional to the coefficient of friction and
proportional to the square of the speed, so to stop in the same distance the initial speed

should not exceed
y [Hrve _ 08 7m/6) |92 __ 16 mps.
Ky gy 0.80

5.29: For a given initial speed, the distance traveled is inversely proportional to the

coefficient of kinetic friction. From Table 5.1, the ratio of the distances is then 43¢ =11.

5.30: (a) If the block descends at constant speed, the tension in the connecting string
must be equal to the hanging block’s weight, w,. Therefore, the friction force x, w, on

block 4 must be equal to w,, and w, = 1, w,.
(b) With the cat on board, a = g(w, —, 2w,)/(w, +2w,).

T ny T ng
T
fa T

l !
Wy Wp

a) For the blocks to have no acceleration, each is subject to zero net force. Considering
the horizontal components,

5.31:

T=f, F‘:T+f3,0r
‘F‘:fA—i_fB'
Using f, = m.gm, and f, = py.gmy gives ‘F ‘ =W g(m, +my).

b) T=f,=mugm,.



5.32:

2 .2 2 1.2 2
_a_ V=V Vo~V zévo

He g 2Lg 2Lg 8Lg’
where L is the distance covered before the wheel’s speed is reduced to half its original

speed. Low pressure, L =18.1m; 3__G30m’ g 259, High pressure,

> 8 (18.1m)(9.80m/s)

L=92.9m; 3G _ 000505

> 8 (92.9m)(9.80m/s?)

5.33: Without the dolly: n=mg and F —u,n=0 (a,_=0 since speed is constant).
F 160 N
m= = 5
g (0.47)(9.80m/s?)
With the dolly: the total mass is 34.7 kg + 5.3 kg =40.04 kg and friction now is rolling
friction, f, = u,mg.

=34.74kg

F — pumg=ma

a=EZHME _ 305/
m

5.34: Since the speed is constant and we are neglecting air resistance, we can ignore the
2.4 m/s, and F, in the horizontal direction must be zero. Therefore f, = u.n =

net

= F,.., = 200 N before the weight and pressure changes are made. After the changes,

(0.81)(1.42n) = F;,
divide the two equations:

because the speed is still constant and F,, =0. We can simply

oriz

(0.81,)(1.42n)  p, .
n = 200N.

(0.81) (1.42) (200 N) = F,

=230N

oriz



5.35: First, determine the acceleration from the freebody diagrams.

Ay AT

A

Y

Yw A Wp

There are two equations and two unknowns, a and 7
—um,g+T =m,a
myg—T =mza
Add and solve for a:a = g(m, —um,)/(m, +m,),a=0.79m/s*.
(@) v=(2ax)"* =0.22m/s.
(b) Solving either equation for the tension gives 7 =11.7 N.

5.36: a) The normal force will be wcos @ and the component of the gravitational force
along the ramp is wsin @ . The box begins to slip when wsin8 > g wcos@, or

tan 0 > u = 0.35, so slipping occurs at 6 = arctan(0.35) =19.3°, or 19° to two figures.

b) When moving, the friction force along the ramp is g, wcos@ , the component of the
gravitational force along the ramp is wsin @, so the acceleration is
(wsin®@) —wu, cosf)/m = g(sinf — u, cosf) =0.92 m/s>.
(¢) 2ax=v*, so v=(2ax)"*, or v=[(2)(0.92m/s*)(5m)]"* =3 m.

5.37: a) The magnitude of the normal force is mg +‘ F ‘sin 0. The horizontal component

ofF,

F ‘cos@ must balance the frictional force, so
‘ F ‘cos@ =, (mg +‘ F ‘sin@);
solving for ‘ F ‘ gives
‘ F ‘ _ Hmg .
cost — u, sinf
b) If the crate remains at rest, the above expression, with z instead of , , gives the

force that must be applied in order to start the crate moving. If cotf < u, the needed

force is infinite, and so the critical value is z, = cot6.



5.38: a) There is no net force in the vertical direction, so n+ Fsin® —w=0, or
n=w-Fsinf =mg — Fsin@. The friction force is f, = g, n = p, (mg — Fsin@). The net
horizontal force is F'cos@ — f, = F cosf —p, (mg — F'sin@), and so at constant speed,
_ HMmg
cosf + u, sinf
b) Using the given values,
7 (03590 kg)(9.80m/s”)

, =293 N,
(cos25°+(0.35)sin 25°)
or 290 N to two figures.
5.39: a)
T 4 1 )
P >
fa T,
l \/VA Tl fB WB

b) The blocks move with constant speed, so there is no net force on block A4; the
tension in the rope connecting 4 and B must be equal to the frictional force on block 4,
i, =(0.35)(25.0N) =9 N. c) The weight of block C will be the tension in the rope
connecting B and C; this is found by considering the forces on block B. The components
of force along the ramp are the tension in the first rope (9 N, from part (a)), the
component of the weight along the ramp, the friction on block B and the tension in the
second rope. Thus, the weight of block C is

We =9 N+ w,(sin36.9°+ 1, c0s36.9°)
=9N+(25.0N)(sin 36.9°+(0.35)c0s 36.9°) =31.0 N,

or 31 N to two figures. The intermediate calculation of the first tension may be avoided to
obtain the answer in terms of the common weight w of blocks 4 and B,

We = w(u, +(sinf + y, cosh)),
giving the same result.

(d) Applying Newton’s Second Law to the remaining masses (B and C) gives:
a=g(w, —p,w,cosf —w,sin0)/(w, +w,)=1.54m/s’.



5.40: Differentiating Eq. (5.10) with respect to time gives the acceleration
a=v, ( k j N = gl
m

where Eq. (5.9), v, = mg/k has been used.
Integrating Eq. (5.10) with respect to time with y, =0 gives

t
y= J.vt[l — e MmN dy

0

Aoy

:Vt[t_%(l_ewm»)}.

5.41: a) Solving for D in terms of v,,

p="5 (80ke) ©-80 f‘/sz) = 0.44kg/m.
v (42 m/s)

b ) :\/nZgZ (45ke)O80m/sY) _ o
‘ D (0.25kg/m) '

5.42: At half the terminal speed, the magnitude of the frictional force is one-fourth the
weight. a) If'the ball is moving up, the frictional force is down, so the magnitude of the
net force is (5/4)w and the acceleration is (5/4)g, down. b) While moving down, the
frictional force is up, and the magnitude of the net force is (3/4)w and the acceleration is
(3/4)g, down.

5.43: Setting F

net

equal to the maximum tension in Eq. (5.17) and solving for the speed v

e \/FnetR _ \/(600 N)(©0.90m) _ o s,
m (0.80kg)

gives

or 26 m/s to two figures.

5.44: This is the same situation as Example 5.23. Solving for x, yields

2 2
v (25.0m/s) _~0.290.
Rg (220 m)(9.80m/s*)

Hy



5.45: a) The magnitude of the force F is given to be equal to 3.8w. “Level flight” means
that the net vertical force is zero, so F cos = (3.8)wcos f =w,, and
[ = arccos(1/3.8) =75°.

(b) The angle does not depend on speed.

5.46: a) The analysis of Example 5.22 may be used to obtain tanf = (v* / gR), but the
subsequent algebra expressing R in terms of L is not valid. Denoting the length of the

horizontal arm as r and the length of the cable as /,R = r +Isin 8. The relation v = 2%

7 18

still valid, so tan g = 4;;2’* = 4”2(;;12“” ! Solving for the period 7,

_ \/4n2(r+lsinB) ~ \/4n2(3.00m+(5.00m)sin30°)

=6.19s.

gtanf (9.80 m/s?) tan 30°

Note that in the analysis of Example 5.22, § is the angle that the support (string or cable)
makes with the vertical (see Figure 5.30(b)). b) To the extent that the cable can be
considered massless, the angle will be independent of the rider’s weight. The tension in
the cable will depend on the rider’s mass.

5.47: This is the same situation as Example 5.22, with the lift force replacing the tension
in the string. As in that example, the angle f is related to the speed and the turning
radius by tan f = 2—;. Solving for S,
2 2
f = arctan Y |=arctan (240 km/h x ((lrrzl/s)/(3.6km/h))) =20.7°.
gR (9.80 m/s?)(1200 m)

5.48: a) This situation is equivalent to that of Example 5.23 and Problem 5.44, so

M= ;—;. Expressing v in terms of the period T, v =22, so u = %. A platform speed

0f40.0 rev/min corresponds to a period of 1.50 s, so
47%(0.150 m)
K= 2 2
(1.505)%(9.80 m/s?)
b) For the same coefficient of static friction, the maximum radius is proportional to

the square of the period (longer periods mean slower speeds, so the button may be moved
further out) and so is inversely proportional to the square of the speed. Thus, at the higher

speed, the maximum radius is (0.150 m) (%)2 =0.067m.

=0.269.




5.49: a) Setting a_, = g in Eq. (5.16) and solving for the period T gives

T=2n R 20g | 20M 4015,
g 9.80 m/s

so the number of revolutions per minute is (60s/min)/(40.1s) =1.5rev/min.

b) The lower acceleration corresponds to a longer period, and hence a lower rotation
rate, by a factor of the square root of the ratio of the accelerations,

=15 reV/min) X 4/3.70/9.8 = 0.92 rev/min. .

5.50: a) 2nR/T =27(50.0 m)/(60.0s) =5.24 m/s. b) The magnitude of the radial force

is mvz/ R =m4r’ R/ T? =w(4r’ R/ gT*)=49 N (to the nearest Newton), so the apparent
weight at the top is 882 N —49 N =833 N, and at the bottom is 882 N+ 49 N =931 N.

c¢) For apparent weightlessness, the radial acceleration at the top is equal to g in
magnitude. Using this in Eq. (5.16) and solving for 7" gives

T=om B oon | 200M _yyy
g 9.80 m/s

d) At the bottom, the apparent weight is twice the weight, or 1760 N.

5.51: a) Ifthe pilot feels weightless, he is in free fall, and a =g = vz/R , SO
v=4/Rg = \/(150 m)(9.80m/s’) =38.3m/s, or 138 km/h. b) The apparent weight is

the sum of the net inward (upward) force and the pilot’s weight, or
w+ma=w (1 + ﬁj

g
~ (280 km/h)
=(700 N)(l 3.6 (kmy/h)/ (m/5))*(9.80 m/s*)(150 m)j
=3581N,

or 3580 N to three places.

5.52: a) Solving Eq. (5.14) for R,
R=v/a=v*/4g =(95.0m/s)*/(4x9.80 m/s*) = 230 m.
b) The apparent weight will be five times the actual weight,
5mg =5(50.0kg) (9.80 m/s*) = 2450 N
to three figures.



5.53: For no water to spill, the magnitude of the downward (radial) acceleration must be
at least that of gravity; from Eq. (5.14), v>/gR = \/(9.80 m/sz)(0.600 m) =2.42m/s.

5.54: a) The inward (upward, radial) acceleration will be % = (‘(‘32;3{: ))2 =4.64m/ s’. At the

bottom of the circle, the inward direction is upward.
b) The forces on the ball are tension and gravity, so 7' —mg = ma,
4.64m/s

_ —wl & _ b Al
T—m(a+g)—w(g+l] (71.2 N)(9.80m/s2

+1J:105 N.

5.55: a)

1, is more vertical so supports more

of the weight and is larger.
You can also see this from 2 F, =ma_:

T, cos40° -7, cos60° =0

1:(cos40 sz _ 15307,

cos 60°

b) T, is larger so set 7, =5000 N. Then 7, =7;/1.532=3263.5 N,
2LF, =ma,

T;sin60° + T, sin40° = w
w=6400 N



5.56:

[\

T, Yw T T

The tension in the lower chain balances the weight and so is equal to w. The lower
pulley must have no net force on it, so twice the tension in the rope must be equal to w,
and so the tension in the rope is w/2. Then, the downward force on the upper pulley due
to the rope is also w, and so the upper chain exerts a force w on the upper pulley, and the
tension in the upper chain is also w.

5.57: In the absence of friction, the only forces along the ramp are the component of the
weight along the ramp, wsina , and the component of F along the ramp,

‘ F ‘cosoc = F cosa . These forces must sum to zero, so /' = wtanc .

Considering horizontal and vertical components, the normal force must have horizontal
component equal to nsina , which must be equal to F; the vertical component must
balance the weight, ncosa = w. Eliminating n gives the same result.

5.58: The hooks exert forces on the ends of the rope. At each hook, the force that the
hook exerts and the force due to the tension in the rope are an action-reaction pair.

The vertical forces that the hooks exert must balance the weight of the rope, so each hook
exerts an upward vertical force of w/2 on the rope. Therefore, the downward force that
the rope exerts at each end is 7, ;sin€ = w/2, so T, , = w/(2sin8) = Mg/(2sin0).

b) Each half of the rope is itself in equilibrium, so the tension in the middle must balance
the horizontal force that each hook exerts, which is the same as the horizontal component
of the force due to the tension at the end; 7, ,cos0 =T ., SO

end
T aae = Mg cos0/(2sin0) = Mg/(2tan 0).
(c) Mathematically speaking, € # 0 because this would cause a division by zero in the
equation for 7, , or T ... - Physically speaking, we would need an infinite tension to
keep a non-massless rope perfectly straight.



5.59: Consider a point a distance x from the top of the rope. The forces acting in this

point are 7 up and (M + @) g downwards. Newton’s Second Law becomes
T—(M +242) g = (M +249)q. Since a = £Ume 7 (pr 4 2E0)(E) A¢
x=0,T=F,andat x=L, T =% =M(a+g) as expected.

5.60: a) The tension in the cord must be m,g in order that the hanging block move at
constant speed. This tension must overcome friction and the component of the
gravitational force along the incline, so m,g = (m1 gsina + u,m,g cos oc) and
m, =m,(sina + p, cosa) .

b) In this case, the friction force acts in the same direction as the tension on the block
of mass m,, so m,g =(m,gsina— u, m,gcosa), or m, =m, (sino — i, cosq).

c) Similar to the analysis of parts (a) and (b), the largest m, could be is

m,(sina + p, cosar) and the smallest m, could be is m,(sina — y, cosar) .

5.61: For an angle of 45.0°, the tensions in the horizontal and vertical wires will be the
same. a) The tension in the vertical wire will be equal to the weight w=12.0 N ; this must

be the tension in the horizontal wire, and hence the friction force on block A4 is also 12.0
N. b) The maximum frictional force is yw, =(0.25)(60.0 N) =15 N ; this will be the

tension in both the horizontal and vertical parts of the wire, so the maximum weight is 15
N.

5.62: a) The most direct way to do part (a) is to consider the blocks as a unit, with total
weight 4.80 N. Then the normal force between block B and the lower surface is 4.80 N,
and the friction force that must be overcome by the force F'is

w,n=1(0.30)(4.80 N)=1.440 N,or1.44 N, to three figures. b) The normal force
between block B and the lower surface is still 4.80 N, but since block 4 is moving
relative to block B, there is a friction force between the blocks, of magnitude
(0.30)(1.20 N)=0.360 N, so the total friction force that the force F must overcome is

1.440 N+ 0.360 N =1.80 N. (An extra figure was kept in these calculations for clarity.)



5.63: (Denote ‘ F ‘ by F.) a) The force normal to the surface is n = F cos 8 ; the vertical
component of the applied force must be equal to the weight of the brush plus the friction
force, so that F'sinfd = w+ u, F cos 0, and

w B 12.00 N
sinf — u, cosd ~sin53.1°— (0.51)cos53.1°
keeping an extra figure. b) F cosd =(16.91 N)cos53.1°=10.2 N.

F: :16.9 N,

5.64: a)
2> F =ma=m(62.5g)=62.5mg

= (62.5)(210x107°)(980 cm/s?)

=13dynes=1.3x10"* N
This force is 62.5 times the flea’s weight.

b)
F . =ma, =m(140g)=140mg
=29dynes=2.9x10"* N

Occurs at approximately 1.2 ms.

c) Av=v—v, =v—-0=v= area under a-f graph. Approximate area as shown:
140g A

62.5g

1.2ms 1.25ms
A= A1)+ AQ2) + AQ3)

= %(1 2ms)(77.5g)+(1.2ms)(62.5 g)

+ %(0.05 ms)(140 g)

=120cm/s =1.2 m/s



5.65: a) The instrument has mass m = w/g =1.531kg . Forces on the instrument:
y

mg

XF, =ma,
T —mg =ma
a zﬂzl?a.mm/s2
m

vy, =0,v, =330 m/s,a, =13.07 m/s’,t ="
v, =V, +atgivest=253s
Consider forces on the rocket; rocket has the same a . Let F be the thrust of the
rocket engines. V
F—mg=ma
F =m(g +a) = (25,000 kg) (9.80 m/s* +13.07 m/s*) =5.72x10°N
b) ¥y =y, =Vt +3a,r’ gives y— y, =4170 m.

5.66: The elevator’s acceleration is:

a= % =3.0m/s> +2(0.20 m/s )t =3.0m/s> + (0.40 m/s* )¢
At t=4.0s,a=3.0 m/s2 +(0.40 m/s3)(4.0 s)=4.6 m/s2 . From Newton’s Second Law,
the net force on you is

Fnet = F;cale —w=ma
F

' .. =apparent weight =w+ ma = (72kg)(9.8 m/s”)+(72kg)(4.6 m/s*)
=1036.8 Nor1040 N



5.67: Consider the forces on the person:

¥

ZFyzmay
n—mg =ma
n=1.6mgsoa=0.60g=>588m/s’
y=y,=3.0m, a, =5.88m/s’, vy, =0,v, =2

v =vy, +2a,(y—y,)gives v, =5.0m/s

5.68: (a) Choosing upslope as the positive direction:
F . =-mgsin37°— f, =—mgsin37° — y, mg cos37° =ma
and
a=—(9.8m/s%)(0.602 + (0.30)(0.799)) = —8.25m/s
Since we know the length of the slope, we can use v’ =v; +2a(x — x,) with x, =0 and

v =0 at the top.
vi =—2ax = -2(-8.25m/s*)(8.0 m) =132 m*/s’

v, =4/132m?/s? =11.5m/s or 11m/s

(b) For the trip back down the slope, gravity and the friction force operate in opposite
directions:
F . =-mgsin37°+ u,mgcos37°=ma

net

a=g(—sin37°+0.30 cos37°) = (9.8 m/s*)((—0.602) + (0.30)(0.799)) = —3.55 m/s’
Now
v, =0,x, =-8.0m,x =0, and

v =v2 +2a(x —x,) = 0+2(-3.55m/s?)(—8.0 m)
=56.8m?/s’

v=4/56.8m?/s* =7.54m/sor 7.5 m/s



5.69: Forces on the hammer:

Hig

2 F,=ma, givesTsin74° —mg = 0so T'sin 74° = mg
2 F =ma_givesT cos74° —ma

Divide the second equation by the first:
a__1 and g = 2.8 m/s’
g tan74°




5.70:

It’s interesting to look at the string’s angle measured from the perpendicular to the top of
the crate. This angle is of course 90°—angle measured from the top of the crate. The
free-body diagram for the washer then leads to the following equations, using Newton’s
Second Law and taking the upslope direction as positive:

-m,gsinf,  +Tsin0, =ma
—m,gcosb,, . +Tcosb, =0
T sin Qsmng =m,(a+g s1n9510pe)
TCOS Hstring = mwg COs eslope
Dividing the two equations:
and . < a+gsing,, .
string 0
g COs slope

For the crate, the component of the weight along the slope is —m_ gsiné, . and the

slope

normal force is m_g cos0, Using Newton’s Second Law again:

slope *

- mchIH eslope + :ukmcg COsS eslope = mca
a+gsindy,.
My =————

gcosf

slope
which leads to the interesting observation that the string will hang at an angle whose
tangent is equal to the coefficient of kinetic friction:

M, =tand, . = tan(90°—68°) =tan 22°=0.40

string



5.71: a) Forces on you:

X F, =ma,givesn=mg cosa
X F. =ma,
mgsina — f, =ma
a = g(sina— g, cos ar) =—3.094 m/s’
Find your stopping distance
v, =0,a, =-3.094m/s* v, =20m/s,x —x, =?
v =v. +2a, (x—x,)gives x —x, = 64.6 m, which is greater than 40 m. You don’t

stop before you reach the hole, so you fall into it.
b) a, =-3.094m/s*,x —x, =40m,v_=0,v, =?

v =vi +2a, (x—x,)givesv,, =16m/s.



5.72: The key idea in solving this problem is to recognize that if the system is
accelerating, the tension that block A4 exerts on the rope is different from the tension that
block B exerts on the rope. (Otherwise the net force on the rope would be zero, and the
rope couldn’t accelerate.) Also, treat the rope as if it is just another object. Taking the
“clockwise” direction to be positive, the Second Law equations for the three different
parts of the system are:
Block A4 (The only horizontal forces on A are tension to the right, and friction to the left):
—um,g+T, =m,a.
Block B (The only vertical forces on B are gravity down, and tension up):
myg—T, =mya.
Rope (The forces on the rope along the direction of its motion are the tensions at either
end and the weight of the portion of the rope that hangs vertically):
mR(%)g+TB -T, =mga.
To solve for a and eliminate the tensions, add the left hand sides and right hand sides of

d
Mmp+mp- =Ny
g (my+mp+mg) *

the three equations: —,ukmAg+mBg+mR(%)g =(m, +my +my)a,ora=

mp+mp 4 . . .
(a) When g, =0,a = g%:m—t?f,jll). As the system moves, d will increase, approaching

L as a limit, and thus the acceleration will approach a maximum value of
— o MstMr
a=g (my+mp+mp)*

(b) For the blocks to just begin moving, a >0, so solve 0 =[m, +m, (%)— u.m ] for d.
Note that we must use static friction to find d for when the block will begin to move.
Solving for d, d == (u,m, —my), or d = Toois (:25(2kg) —.4kg) =.63m..

(c) When m,, =.04kg, d =32 (25(2kg) —.4kg) =2.50 m. This is not a physically

~ T04kg

possible situation since d > L. The blocks won’t move, no matter what portion of the
rope hangs over the edge.

5.73: For a rope of length L, and weight w, assume that a length L is on the table, so that
a length (1-r)L is hanging. The tension in the rope at the edge of the table is then

(1=7)w, and the friction force on the part of the rope on the table is f, = g rw. This must

be the same as the tension in the rope at the edge of the table, so
ugw=(1-r)w and r=1/(1+ 4,). Note that this result is independent of L and w for a

uniform rope. The fraction that hangs over the edge is 1—7 = u_ /(1+ 1) ; note that if
u,=0,r=1land1-r=0.



5.74: a) The normal force will be mgcosa + F'sina , and the net force along (up) the
ramp 1is
F cosa —mgsina — u (mg cosa+ F sina) = F(cosa — u sina) —mg(sina + u, cosa).
In order to move the box, this net force must be greater than zero. Solving for F,

F oo SiNatH cosa

cosa — g, sina’
Since F is the magnitude of a force, /' must be positive, and so the denominator of this
expression must be positive, or cosa > y sina, and u < cota. b) Replacing p with 2,

with in the above expression, and making the inequality an equality,
sin o + u, cosa
F =mg 1uk

cosa — y, sina

5.75: a) The product u g =2.94 m/ s’ is greater than the magnitude of the acceleration of
the truck, so static friction can supply sufficient force to keep the case stationary relative
to the truck; the crate accelerates north at 2.20 m/ s?, due to the friction force of

ma = 66.0 N. b) In this situation, the static friction force is insufficient to maintain the
case at rest relative to the truck, and so the friction force is the kinetic friction force,
mn=pumg=>59N.

5.76: To answer the question, v, must be found and compared with 20 m/s (72 km/hr).

The kinematics relationship 2ax = —v; is useful, but we also need a. The acceleration

must be large enough to cause the box to begin sliding, and so we must use the force of
static friction in Newton’s Second Law: — ymg < ma,or a =—pug. Then,

2(—p,g)x ==V, Or v, = ~|24.gx = \/2(.30)(9.8 m/sz)(47 m). Hence,
v, =16.6 m/s = 60 km/h, which is less than 72 km/h, so do you not go to jail.




5.77: See Exercise 5.40. a) The maximum tension and the weight are related by
T ..cosf=u(w-T,sinp),
and solving for the weight w gives

w= Tmax(cos p +sin ,6’)
My

This will be a maximum when the quantity in parentheses is a maximum. Differentiating
with respect to S,

i(M+sinﬂj=—ﬂ+cosﬂ=o,
ap\ w Hy

or tan@ = g, , where 0 is the value of # that maximizes the weight. Substituting for

in terms of 4,
w=T__ ,CLQ +sin6
sin 6/cos 0

2 c 2
cos 0 +sin” 0
= Tmax .
sin @
j— Tmax
sin @’
b) In the absence of friction, any non-zero horizontal component of force will be
enough to accelerate the crate, but slowly.

5.78: a) Taking components along the direction of the plane’s descent,
f =wsinaand L =wcosa. b) Dividing one of these relations by the other cancels the
weight, so tan @ = f/L. c¢) The distance will be the initial altitude divided by the tangent

of a. f=Ltanaand L =wcosa, therefore sina = f/w =55 g and so o =5.78°,

This makes the horizontal distance (2500 m)/tan(5.78°) =24.7 km. d) If the drag is
reduced, the angle « is reduced, and the plane goes further.

5.79: If the plane is flying at a constant speed of 36.1m/s, then X F =0, or

T —wsina — f =0. The rate of climb and the speed give the angle

a, o = arcsin(5/36.1) = 7.96°. Then,

T=wsinoa+ f. T=(12,900 N)sin 7.96°+1300 N =3087 N. Note that in level flight
(a =0), the thrust only needs to overcome the drag force to maintain the constant speed
of 36.1m/s.



5.80: If the block were to remain at rest relative to the truck, the friction force would
need to cause an acceleration of 2.20 m/ s?; however, the maximum acceleration possible
due to static friction is (0.19)(9.80 m/ s*)=1.86 m/ s*, and so the block will move relative

to the truck; the acceleration of the box would be z, g = (0.15)(9.80 m/ s)=1.47 m/ s°.

The difference between the distance the truck moves and the distance the box moves (i.e.,
the distance the box moves relative to the truck) will be 1.80 m after a time

[ 2080m o
Airuck ~ Dpox (220 m/Sz —1.47 m/S )

In this time, the truck moves L a,,,t> = £(2.20m/s*)(2.2215)* = 5.43 m. Note that an
extra figure was kept in the intermediate calculation to avoid roundoff error.

5.81: The friction force on block 4 is g, w, =(0.30)(1.40 N) = 0.420 N, as in Problem 5-

68. This is the magnitude of the friction force that block A exerts on block B, as well as
the tension in the string. The force ' must then have magnitude

F=pwg+w)+uw,+T = (wy+3w,)
=(0.30)(4.20 N +3(1.40N))=2.52 N.

Note that the normal force exerted on block B by the table is the sum of the weights of
the blocks.



5.82: We take the upward direction as positive. The explorer’s vertical acceleration is
—3.7m/s* for the first 20 s. Thus at the end of that time her vertical velocity will be

v, =at=(=3.7 m/ 5°)(20s) = =74 m/s. She will have fallen a distance

d=v t= (%m/sj(zo s)=-740m

and will thus be 1200 — 740 = 460 m above the surface. Her vertical velocity must reach
zero as she touches the ground; therefore, taking the ignition point of the PAPS as

¥ =0,
Vi =v +2a(y-y,)

Vi—v,  0—(-74m/s)’

— Y

a= =5.95m/s? or 6.0 m/s>
2(y =) —460

which is the vertical acceleration that must be provided by the PAPS. The time it takes to
reach the ground is given by

LYV 0—(—74m§s) 1245
a 5.95m/s

Using Newton’s Second Law for the vertical direction

Fioppsy +mg =ma
F, s, = ma—mg = m(a+ g) = (150kg)(5.95 - (-3.7)) m/s”
=1447.5Nor1400 N

which is the vertical component of the PAPS force. The vehicle must also be brought to a

stop horizontally in 12.4 seconds; the acceleration needed to do this is
_ _ 2
g ¥=Ve _0-33m/s =2.66m/s
t 12.4s

and the force needed is F, ., = ma = (150kg)(2.66 m/s*) =399 N or 400 N, since there
are no other horizontal forces.




5.83: Let the tension in the cord attached to block 4 be 7, and the tension in the cord
attached to block C be T,.. The equations of motion are then

I,—m,g=m,a
Te — pmpg =T, =mga
m.g—T.=mea.
a) Adding these three equations to eliminate the tensions gives

a(m,+my+m.)=g(m. —m,— p,my),
solving for m_. gives

_ m(a+g)+my(a+1.g)
C g —a ’
and substitution of numerical values gives m. =12.9 kg.

b) T, =m,(g+a)=472 N, T, =m (g —a)=101 N.

5.84: Considering positive accelerations to be to the right (up and to the right for the left-
hand block, down and to the right for the right-hand block), the forces along the inclines
and the accelerations are related by

T —(100kg)gsin30°=(100kg)a,(50kg)gsin53°—T = (50kg)a, where T is the tension
in the cord and a the mutual magnitude of acceleration. Adding these relations,

(50kgsin 53°-100kg sin 30°)g = (50 kg + 100 kg)a, or a =—-0.067 g. a) Since a comes
out negative, the blocks will slide to the left; the 100-kg block will slide down. Of course,
if coordinates had been chosen so that positive accelerations were to the left, @ would be

+0.067 g. b) 0.067(9.80m/s>) =0.658 m/s .

c¢) Substituting the value of a (including the proper sign, depending on choice of
coordinates) into either of the above relations involving 7 yields 424 N.



5.85: Denote the magnitude of the acceleration of the block with mass m, as a; the block
of mass m, will descend with acceleration a/2. If the tension in the rope is T, the
equations of motion are then

T'=ma

m,g —2T =m, a/2.
Multiplying the first of these by 2 and adding to eliminate 7, and then solving for a gives

g ™8 g 2m, '
2m +m, /2 T 4m +m,

The acceleration of the block of mass m, is half of this, or g m, /(4m, +m,).

5.86: Denote the common magnitude of the maximum acceleration as a. For block 4 to
remain at rest with respect to block B, a < y,g. The tension in the cord is then

T=(m,+my)a+pug(im,+m,)=(m,+my)(a+ ug). This tension is related to the mass
m. by T =m.(g —a). Solving for a yields

Solving the inequality for m yields

< (m +mg)(u, + 44
c .

1=

5.87: See Exercise 5.15 (Atwood’s machine). The 2.00-kg block will accelerate upward
2Wke 200k —3¢/7, and the 5.00-kg block will accelerate downward at 3g/7. Let the

at g 5.00kg+2.00kg

initial height above the ground be /4, ; when the large block hits the ground, the small
block will be at a height 2/, , and moving upward with a speed given by

ve =2ah, = 6gh,/7. The small block will continue to rise a distance v; /2g = 3h,/7, and
so the maximum height reached will be 24, +3h,/7 =17h,/7 =1.46 m, which is 0.860 m
above its initial height.



5.88: The floor exerts an upward force n on the box, obtained from n —mg = ma, or
n=m(a+ g). The friction force that needs to be balanced is

un=pu ma+g)(0.32)(28.0kg)(1.90 m/s2 +9.80 m/sz) =105N.

5.89: The upward friction force must be f, = yn=m,g, and the normal force, which is
the only horizontal force on block 4, must be n=m ,a, and so a = g/u,. An observer on

the cart would “feel” a backwards force, and would say that a similar force acts on the
block, thereby creating the need for a normal force.

5.90: Since the larger block (the trailing block) has the larger coefficient of friction, it
will need to be pulled down the plane; i.e., the larger block will not move faster than the
smaller block, and the blocks will have the same acceleration. For the smaller block,
(4.00kg)g(sin30°—(0.25)cos 30°) -7 = (4.00kg)a,or11.11 N—-T =(4.00kg)a, and

similarly for the larger, 15.44 N+ T = (8.00 kg)a, a) Adding these two relations,
26.55N =(12.00kg)a,a =2.21 m/s2 (note that an extra figure was kept in the

intermediate calculation to avoid roundoff error). b) Substitution into either of the above
relations gives 7' =2.27 N. Equivalently, dividing the second relation by 2 and

subtracting from the first gives 27 =11.11 N — 33X ' giving the same result. c) The

string will be slack. The 4.00-kg block will have a =2.78 m/s” and the 8.00-kg block

will have @ =1.93m/s?, until the 4.00-kg block overtakes the 8.00-kg block and collides
with it.

5.91: a) Let n, be the normal force between the plank and the block and 7, be the
normal force between the block and the incline. Then, n, = wcosf and

n, =ny+3wcosf = 4wcosd. The net frictional force on the block is

M, (n,+n,)=pu Swcosd . To move at constant speed, this must balance the component
of the block’s weight along the incline, so 3wsin® = x4, Swcosd, and

W, =+tand = 1tan37° = 0.452.



5.92: (a) There is a contact force n between the man (mass M) and the platform (mass m).
The equation of motion for the man is 7'+ n — Mg = Ma, where T is the tension in the

rope, and for the platform, 7 —n—mg = ma . Adding to eliminate n, and rearranging,
T =%(M + m)(a+ g). This result could be found directly by considering the man-
platform combination as a unit, with mass m + M, being pulled upward with a force 27

due to the two ropes on the combination. The tension 7 in the rope is the same as the
force that the man applies to the rope. Numerically,

T= %(70.0 kg +25.0kg)(1.80 m/s2 +9.80m/s’) =551 N.

(b) The end of the rope moves downward 2 m when the platform moves up 1 m, so

a_.=-2a Relative to the man, the acceleration of the rope is 3a = 5.40 m/ s,

rope platform*

downward.

5.93: a) The only horizontal force on the two-block combination is the horizontal
component of F,F cosa. The blocks will accelerate with a = F cosa/(m, +m,). b) The
normal force between the blocks is m g + Fsine, for the blocks to move together, the
product of this force and x, must be greater than the horizontal force that the lower block

exerts on the upper block. That horizontal force is one of an action-reaction pair; the
reaction to this force accelerates the lower block. Thus, for the blocks to stay together,
mya < u (m,g + Fsina). Using the result of part (a),

Fcosao

<u,(mg+ Fsina).
m, +m,

Solving the inequality for F gives the desired result.



5.94: The banked angle of the track has the same form as that found in Example 5.24,
tan f = ;—i, where v, is the ideal speed, 20 m/s in this case. For speeds larger than v, , a

frictional force is needed to keep the car from skidding. In this case, the inward force will
consist of a part due to the normal force » and the friction force

finsin B+ fcos f=ma,_,. The normal and friction forces both have vertical
components; since there is no vertical acceleration, n cos f — f sin f = mg. Using

V2 (1.5vg)?

f=un and a,, =% =—73—=2.25gtan f, these two relations become
nsin f + uncos f =225 mgtan f,

ncos f — unsin ff = mg.
Dividing to cancel n gives

sin f + 4, cos =2.25tan .
cosff — . sin f
Solving for 4, and simplifying yields
_ 1.25sinf cos
A T 1 25sin’ B

Using B = arctan(MF 18.79° gives u, =0.34.

(9.80 m/s?)(120 m)

5.95: a) The same analysis as in Problem 5.90 applies, but with the speed v an unknown.
The equations of motion become

nsin f+ pncos f = mvz/R,

ncos ff— punsin f =mg.
Dividing to cancel n gives
2

sin B+ p.cosf v
cos B—usinfB Rg
Solving for v and substituting numerical values gives v=20.9 m/s (note that the value

for the coefficient of static friction must be used).
b) The same analysis applies, but the friction force must be directed up the bank; this
has the same algebraic effect as replacing f* with — f°, or replacing g, with — z,

(although coefficients of friction may certainly never be negative). The result is
v = (gR) LTSS
cos S+ u sin ff
and substitution of numerical values gives v =38.5m/s.




5.96: (a) 80 mi/h is 35.7m/s in SI units. The centripetal force needed to keep the car on
the road is provided by friction; thus
pmg ==
vi (35.7m/s)’

r= = 5 =17Im or170m
ug (0.76)(9.8m/s?)

(b) If 1, =0.20:
v’ =ru g = (171m) (0.20) (9.8 m/s?) = 335.2 m*/s’
v=18.3m/s or about 41 mi/h
() If 4, =0.37:
v: =(171m) (0.37) (9.8 m/s?) = 620 m* /s
v =24.9 m/s or about 56 mi/h
The speed limit is evidently designed for these conditions.

5.97: a) The static friction force between the tires and the road must provide the

centripetal acceleration for motion in the circle.
2

,
pmg =m—
r

V)

N
road.

fy =} .50 v, = (27 m/s)/v2 =19 m/s
b) Calculate the time it takes you to reach the curve
Vo, =27m/s, v, =19m/s, x —x, =800 m, s =?

m, g, and r are constant so where 1 refers to dry road and 2 to wet

X—X,= (‘}Ox—;‘}‘j tgivest=34.7s

During this time the other car will travel x — x, =v, ¢ = (36 m/s) (34.7s) =1250 m. The

other car will be 50 m behind you as you enter the curve, and will be traveling at nearly
twice your speed, so it is likely it will skid into you.

5.98: The analysis of this problem is the same as that of Example 5.22; solving for v in
terms of f and R,v=,/gRtan f = \/(9.80 m/sz) (50.0) tan 30.0° =16.8 m/s, about
60.6 km/h.




5.99: The point to this problem is that the monkey and the bananas have the same
weight, and the tension in the string is the same at the point where the bananas are
suspended and where the monkey is pulling; in all cases, the monkey and bananas will
have the same net force and hence the same acceleration, direction and magnitude. a) The
bananas move up. b) The monkey and bananas always move at the same velocity, so the
distance between them stays the same. ¢) Both the monkey and bananas are in free fall,
and as they have the same initial velocity, the distance bewteen them doesn’t change. d)
The bananas will slow down at the same rate as the monkey; if the monkey comes to a
stop, so will the bananas.

5.100: The separated equation of motion has a lower limit of 3v, instead of 0;

rodv v, =V v 1 k
I =In =ln|]—-—|=——¢, or
2V -2v v, 2 m
L -ty
v=2v|=+e .
2

Note that the speed is always greater than v, .

specifically,




5.101: a) The rock is released from rest, and so there is initially no resistive force and
a, = (18.0N)/(3.00kg) = 6.00 m/s”.

b) (18.0N—(2.20 N -s/m) (3.00 m/s))/(3.00 kg) =3.80 m/sz. c¢) The net force must be
1.80 N, s0 kv=16.2 N and v=(16.2 N)/(2.20 N-s/m) =7.36 m/s. d) When the net
force is equal to zero, and hence the acceleration is zero, kv, =18.0 N and
v, =(18.0 N)/(2.20N-s/m)=8.18 m/s. ¢) From Eq. (5.12),

3.00kg ~((2.20N-5/m)/(3.00 kg))(2.00 s
yz@iSmﬁ{QDO@—Ezaﬁzﬁgﬂ—e“ /m)/(3.00 k)i )ﬁ

=47.78 m.
From Eq. (5.10),

V= (8. 1 8 m/s)[l _ e—((2.2 N-s/m)/(3.00 kg))(2.00s) ]
=6.29m/s.
From Eq. (5.11), but with a, instead of g,

a= (600 m/SZ)ef((2.20N»s/m)/(3.00kg))(2A005) — 138 m/SZ .

1-Y —01=e% g0

Vi

z=%mam=3Ms



5.102: (a) The retarding force of the surface is the only horizontal force acting. Thus
F _&_ _kvl/Z _ﬂ

net

a= =
m m m dt
dv k
W = ——dt
v m
cdv kg
[m=far
Vo v m 0
2vl/2 v _ﬁ
Vo m
which gives
vkt kK
V=V, — +—
m 4m
For the rock’s position:
dx vkt kK
R — +

dt " om 4m’
v kedt .\ Kt dt

dx =v,dt -
0 m 4m’
and integrating gives
v vkt kT
0 2
2m  12m
(b)
1/2 2.2
v=0=v0—v° kt+k 12
m 2m

This is a quadratic equation in #; from the quadratic formula we can find the single
solution:
. 2mv(1)/ :
k

(c) Substituting the expression for ¢ into the equation for x:

2mvé/ 2 vé/ ’k 4m2v0 K’ 8m3vg/ :
. — . + .

k 2m k> 12m* K

_ 2mv3/ 2

3k

xX=v,



5.103: Without buoyancy, kv, = mg,sok = me_ 8
v, 036s

With buoyancy included there is the additional upward buoyancy force B, so
B—kv, =mg

=mg/3

B=mg—kv, =mg[l—wj

0.36 m/s

5.104: Recognizing the geometry of a 3-4-5 right triangle simplifies the calculation. For
mstance, the radius of the circle of the mass’ motion is 0.75 m.
a) Balancing the vertical force, 7,2 -7, +=w, so
I, =T, —%w =80.0N —%(4.00 kg) (9.80 m/s*) =31.0N.

b) The net inward force is F =T, +27; =66.6 N. Solving F =ma,, = m“’T’# for

T =2z, IR _ o (4.00kg) (0.75m) _; 35, ¢
F (66.6N)

or 0.02223 min, so the system makes 45.0 rev/min. ¢c) When the lower string becomes
slack, the system is the same as the conical pendulum considered in Example 5.22. With

cos 3 =0.800, the period is T = 274/(1.25 m) (0.800)/(9.80 m/s*) = 2.007 s, which is the

same as 29.9 rev/min. d) The system will still be the same as a conical pendulum, but
the block will drop to a smaller angle.

the period 7,




5.105: a) Newton’s 2nd law gives
dv mg
m—==mg —kv,, where —==v
a8 P
ody ‘
[t g
Vo Vy Vi m 0
This is the same expression used in the derivation of Eq. (5.10), except the lower limit
in the velocity integral is the initial speed v, instead of zero.

Evaluating the integrals and rearranging gives
y = voe"’“/’” +v,(1- e"“/’”)
Note that at 7 =0 this expression says v, =V, and at  —> o it says v, = V,.

b) The downward gravity force is larger than the upward fluid resistance force so the
acceleration is downward, until the fluid resistance force equals gravity when the
terminal speed is reached. The object speeds up until v, =v,. Take + y to be downward.

Vo —

c¢) The upward resistance force is larger than the downward gravity force so the
acceleration is upward and the object slows down, until the fluid resistance force equals
gravity when the terminal speed is reached. Take + y to be downward.



5.106: (a) To find find the maximum height and time to the top without fluid resistance:
Vi = V(?y +2a(y - y,)
22 . 2
yo gy =t O (6'0m/52) ~1.84morl.8m
2a 2(-9.8m/s?)

v—v, 0-6.0m/s

t= =0.61s
a —9.8m/s?
(b) Starting from Newton’s Second Law for this situation
dv
m— =mg — kv
a

we rearrange and integrate, taking downward as positive as in the text and noting that the
velocity at the top of the rock’s “flight” is zero:

]1 dv ——kt

V-V, m

tn(v—v,)|? =ln—*- ~1n —20ms  _025)= 1386
V=, -6.0m/s—2.0m/s

From Eq. 5.9, m/k=v,/g = (2.0 m/s*)/(9.8 m/s*) = 0.204s, and
t=—4(-1.386)=(0.204s) (1.386) = 0.283 s to the top. Equation 5.10 in the text gives us

L P Gl
dt t t t

jfdx = jvtdt - Jvte_(k/m)'dt
0 0
N

m . _(k/m
=vt+—}( (e _1)

= (2.0m/5) (0.283 5) +(2.0m/s) (0.2045)(e* ~1)
=0.26m



5.107: a) The forces on the car are the air drag force f;, = Dv’ and the rolling friction
force n,mg. Take the velocity to be in the + x -direction. The forces are opposite in
direction to the velocity. 2 F, = ma, gives
— DV’ — umg = ma

We can write this equation twice, once with v=32m/s and a =—0.42 m/ s* and once
with v=24m/s and a =-0.30m/s’. Solving these two simultaneous equations in the
unknowns D and g gives p. =0.015 and D =0.36 N-sz/mz.

b) n=mgcos f and the component of gravity parallel to the incline is mgsin f3,
where f =2.2°.

For constant speed, mg sin 2.2° — umg cos 2.2° — Dv’ = 0.

Solving for v gives v =29 m/s.

¢) For angle B, mgsin 8 — ymg cos B—Dv’ =0

and v = \/mg(sin B —u, cos f)

D
The terminal speed for a falling object is derived from Dv; —mg =0, so

v, =+/mg/D.
v/vt = \/sin B —u cosp
And since g, =0.015,v/v, = /sin #—(0.015) cos 8

5.108: (a) One way of looking at this is that the apparent weight, which is the same as
the upward force on the person, is the actual weight of the person minus the centripetal
force needed to keep him moving in its circular path:

eV _ 2y _(12m/s)*
Wy =M= —(70kg){(9.8m/s) om }

=434 N
(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when
the road no longer has to exert any upward force on it:
mv’
R
V2

mg — =0

= Rg = (40 m) (9.8 m/s*) =392 m?*/s*
v=19.8 m/s or 20 m/s

The answer doesn’t depend on the cart’s mass, because the centripetal force needed to
hold it on the road is proportional to its mass and so is its weight, which provides the
centripetal force in this situation.



5.109: a) For the same rotation rate, the magnitude of the radial acceleration is
proportional to the radius, and for twins of the same mass, the needed force is
proportional to the radius; Jackie is twice as far away from the center, and so must hold
on with twice as much force as Jena, or 120 N.

b) Z}rjawkie = mvz/r.

_ [a20NGem)
V=g =3.8m/s.

5.110: The passenger’s velocity is v =2z R/t =8.80 m/s. The vertical component of the

seat’s force must balance the passenger’s weight and the horizontal component must
provide the centripetal force. Therefore:
F,.sin0=mg=833N
2

F__cos@ = my

seat

=188 N

Therefore tan 6 =833 N/188 N =4.43;0 = 77.3° above the horizontal. The magnitude of
the net force exerted by the seat (note that this is not the net force on the passenger) is

F = \/ (mg)” + (’%2] = J(833N)* + (188 N)?

=854 N
(b) The magnitude of the force is the same, but the horizontal component is reversed.

5.111: a)

1

b) The upward friction force must be equal to the weight, so
un = um(4r’ R/Tz) >mg and
gl*  (9.80m/s®) (1s/0.60 rev)”
4n*R 47* (2.5 m)
¢) No; both the weight and the required normal force are proportional to the rider’s
mass.

0.28.

Hy >



5.112: a) For the tires not to lose contact, there must be a downward force on the tires.
Thus, the (downward) acceleration at the top of the sphere must exceed mg, so

m>->mg, and v>[gR =/(9.80m/s?) (13.0m) =11.3m/s.
b) The (upward) acceleration will then be 4g, so the upward normal force must be
5mg =5(110kg) (9.80 m/s*) = 5390 N.

5.113: a) What really happens (according to a nosy observer on the ground) is that you
slide closer to the passenger by turning to the right. b) The analysis is the same as that of
Example 5.23. In this case, the friction force should be insufficient to provide the inward

radial acceleration, and so umg < mv*/R, or
2 2
_Y _ (0m)s) _120m
g (0.35)(9.80m/s?)
to two places. Why the passenger is not wearing a seat belt is another question.

5.114: The tension F in the string must be the same as the weight of the hanging block,
and must also provide the resultant force necessary to keep the block on the table in
uniform circular motion; Mg = F = m%, S0 v=+lgrM/m.

5.115: a) The analysis is the same as that for the conical pendulum of Example 5.22, and

SO
2 2 2

A 477(0.100 m)

b) For the bead to be at the same elevation as the center of the hoop, f =90° and

cos f# =0, which would mean 7 =0, the speed of the bead would be infinite, and this is
not possible. c¢) The expression for cos f gives cos S = 2.48, which is not possible. In
deriving the expression for cos /5, a factor of sin f was canceled, precluding the
possibility that f = 0. For this situation, S =0 is the only physical possibility.



5.116: a) Differentiating twice, a,_ = —6f¢ and a,= —20, so
F.=ma, =(2.20kg) (-0.72 N/s)t = —(1.58 N/s)t
2
F,=ma, = (2.20kg) (-2.00 m/s )=—-4.40N.
b)

¢) At 1 =3.00s, F, =—4.75Nand F, =—4.40 N, so

F =J(-4.75N)* + (-4.40 N)* =6.48 N,
at an angle of arctan (ﬂ) =223°.

-4.75

5.117:

5.118: See Example 5.25.
a) F, = m(g +2)= (1.60 ke)(0.80m/s? + L2202 |_ 61 g N,

5.00m
b) F, = mlg —2)= (1.60 kg)[9.80m/s* ~129%° ) _ 30 4N, where the minus sign
indicates that the track pushes down on the car. The magnitude of this force is 30.4 N.



5.119: The analysis is the same as for Problem 5.95; in the case of the cone, the speed is
related to the period by v=2x R/T =2rxhtan B/T, or T =2xhtan 8/v. The maximum and

minimum speeds are the same as those found in Problem 5.95,
v = |ghtan p C.OS L+ usinf
sin f — u,cos f
Vinin = gh tan /B C.OS ﬂ — A Slnﬂ .
sin f + p cos f
The minimum and maximum values of the period 7 are then
T —on htan fsin f — pu, c.osﬂ
g cosf+usinp
T =2z htan Bsin f + p, C.OSﬂ.
g cosf—pusinf




5.120: a) There are many ways to do these sorts of problems; the method presented is
fairly straightforward in terms of application of Newton’s laws, but involves a good deal
of algebra. For both parts, take the x-direction to be horizontal and positive to the right,
and the y-direction to be vertical and positive upward. The normal force between the
block and the wedge is 7; the normal force between the wedge and the horizontal surface
will not enter, as the wedge is presumed to have zero vertical acceleration. The horizontal

acceleration of the wedge is 4, and the components of acceleration of the block are a,
and a, . The equations of motion are then

MA =-nsina

ma_ =nsino

ma, = ncoso —mg.
Note that the normal force gives the wedge a negative acceleration; the wedge is expected
to move to the left. These are three equations in four unknowns, 4, a,,a, and n. Solution
is possible with the imposition of the relation between 4, a, and a, .

An observer on the wedge is not in an inertial frame, and should not apply Newton’s
laws, but the kinematic relation between the components of acceleration are not so
restricted. To such an observer, the vertical acceleration of the block is a,, but the

horizontal acceleration of the block is a, — 4. To this observer, the block descends at an

angle a, so the relation needed is

a,

a, —A

=—tana.

At this point, algebra is unavoidable. Symbolic-manipulation programs may save some
solution time. A possible approach is to eliminate a, by noting that a, =~ 4 (a result
that anticipates conservation of momentum), using this in the kinematic constraint to
eliminate a, and then eliminating n. The results are:

A=
(M + m) tan o+ (M /tan o)
a, = sM
(M +m)tan a + (M/tan a)
-g(M +m)tana

Y (M +m)tan o + (M /tan a)
(b) When M >>m, A — 0, as expected (the large block won’t move). Also,
a, —> m = g% = gsinacosa, which is the acceleration of the block
(g sin a in this case), with the factor of cos a giving the horizontal component. Similarly,
a, —»>—gsin’a.

(c) The trajectory is a spiral.



5.121: If the block is not to move vertically, the acceleration must be horizontal. The
common acceleration is @ = g tan 8, so the applied force must be

(M +m)a=(M +m)g tan 6.

5.122: The normal force that the ramp exerts on the box will be n =wcos a —T sin 6.
The rope provides a force of 7' cos @ up the ramp, and the component of the weight down
the ramp is wsin a. Thus, the net force up the ramp is
F=Tcos0—wsina—u (wcosa—1T sin0)
=T(cos O+ p, sin ) —w(sin o + p, cos a).
The acceleration will be the greatest when the first term in parantheses is greatest; as in
Problems 5.77 and 5.123, this occurs when tan 6 = g, .

5.123: a) See Exercise 5.38; F = g, w/(cos 6 + g, sin 0).
b)

400 . /

320 !
240 . . !
F(N) / |

160

80 |-

0
0 10 20 30 40 50 60 70 80 90
é

c¢) The expression for £ is a minimum when the denominator is a maximum; the
calculus is identical to that of Problem 5.77 (maximizing w for a given F gives the same
result as minimizing F for a given w), and so F is minimized at tan 6 = . For

4, =0.25,0 =14.0°, keeping an extra figure.



5.124: For convenience, take the positive direction to be down, so that for the baseball
released from rest, the acceleration and velocity will be positive, and the speed of the
baseball is the same as its positive component of velocity. Then the resisting force,
directed against the velocity, is upward and hence negative.

a)
f

w

b) Newton’s Second Law is then ma = mg — Dv*. Initially, when v =0, the

acceleration is g, and the speed increases. As the speed increases, the resistive force
increases and hence the acceleration decreases. This continues as the speed approaches
the terminal speed.  ¢) At terminal velocity, a =0, so v, =+/"5, in agreement with
Eq. (5.13). d) The equation of motion may be rewritten as <4 = %(vf —v*). Thisis a
separable equation and may be expressed as

j dv —éjdt, or

2 27 .2
v, =V v,
1 v t
— arctanh| — | = %,
Vv, v, v

so v=v, tanh(gt/v, ).
Note: If inverse hyperbolic functions are unknown or undesirable, the integral can be
done by partial fractions, in that

1 1] 1 N 1
vf—v2 2v | v,—v vt+v’

and the resulting logarithms in the integrals can be solved for v(¢) in terms of
exponentials.




5.125: Take all accelerations to be positive downward. The equations of motion are
straightforward, but the kinematic relations between the accelerations, and the resultant
algebra, are not immediately obvious. If the acceleration of pulley B is a,, then

a, =—a,, and a, 1s the average of the accelerations of masses 1 and 2, or
a, +a, = 2a, = —2a,. There can be no net force on the massless pulley B, so 7. =2T,.
The five equations to be solved are then

mg—T,=ma,

m,g =T, =m,a,

myg — T = mya,

a,+a,+2a,=0

2T, -T,. =0.

These are five equations in five unknowns, and may be solved by standard means. A

symbolic-manipulation program is of great use here.
a) The accelerations g, and a, may be eliminated by using

2a,=—(a, +a,) =—(2¢ - T, ((1/m1) + (l/mz)))
The tension 7, may be eliminated by using
T,=0/2)T. =(1/2)m,(g —a,).
Combining and solving for a, gives

—4mm, + m,m, + m;m,

a, =
3
4‘”1‘”2 ‘”2‘”3 ‘”1‘”3

b) The acceleration of the pulley B has the same magnitude as a, and is in the
opposite direction.

T T m
c) a=g-—t=g-——=g-—-(g-a,).
m, 2m, 2m,

Substituting the above expression for a, gives

4mm, —3m,m, + mm,

¢ g
1

d) A similar analysis (or, interchanging the labels 1 and 2) gives
4mm, —3mm, + m,m,

a, =
? dmm, + mym; + mm,
e) & f) Once the accelerations are known, the tensions may be found by substitution
into the appropriate equation of motion, giving

4m,m,m, T - &m,m,m,
c=&

TA =8 > .
4mm, + m,m, + mm, dm,m, +m,m, + mm,
g) If m; =m, =m and m, =2m, all of the accelerations are zero, 7. =2mg and

T, = mg. All masses and pulleys are in equilibrium, and the tensions are equal to the
weights they support, which is what is expected.



5.126: In all cases, the tension in the string will be half of F.

a) F/2=62N, which is insufficient to raise either block; a, = a, =0.

b) F/2=62N. The larger block (of weight 196 N) will not move, so @, =0, but the
smaller block, of weight 98 N, has a net upward force of 49 N applied to it, and so will

. 2
accelerate upwards with a, = 75 =4.9 m/s’.

c) F/2=212N, so the net upward force on block 4 is 16 N and that on block B is
114N, 50 ¢, =5~ = 0.8m/s* and a, = 14~ =11 4 m/s”.

~ 20.0kg 10.0kg

5.127: Before the horizontal string is cut, the ball is in equilibrium, and the vertical
component of the tension force must balance the weight, so 7, cos f =w, or

T, =wj/cos B. At point B, the ball is not in equilibrium; its speed is instantaneously 0, so
there is no radial acceleration, and the tension force must balance the radial component of
the weight, so 7, = wcos f, and the ratio (TB/TA) =cos’ f.



Capitulo 6



6.1: 2)(2.40N)(1.5m)=3.607 b) (=0.600 N)(1.50 m) = —0.900J
¢) 3.60J-0.7201 =2.707..

6.2: a) “Pulling slowly” can be taken to mean that the bucket rises at constant speed, so
the tension in the rope may be taken to be the bucket’s weight. In pulling a given length
of rope, from Eq. (6.1),
W = Fs =mgs = (6.75kg) (9.80m/s*)(4.00m) = 264.6 J.
b) Gravity is directed opposite to the direction of the bucket’s motion, so Eq. (6.2)
gives the negative of the result of part (a), or —2651J . ¢) The net work done on the bucket
is zero.

6.3: (25.0N)(12.0m) =30017 .

6.4: a) The friction force to be overcome is
f=un=pumg=(025)30.0kg)(9.80m/s*)=73.5N,
or 74 N to two figures.

b) From Eq. (6.1), Fs =(73.5N)(4.5m) =331J . The work is positive, since the worker
is pushing in the same direction as the crate’s motion.

¢) Since f'and s are oppositely directed, Eq. (6.2) gives

— fs =—(73.5N)(4.5m) = —3311.

d) Both the normal force and gravity act perpendicular to the direction of motion, so
neither force does work. e) The net work done is zero.



6.5: a) See Exercise 5.37. The needed force is

B M ,mg ~ (0.25)(30kg)(9.80 m/s”) _ 999N
Cos @ — p, sin¢g c0s30°—(0.25)sin 30° T

keeping extra figures. b) Fscos¢ =(99.2 N)(4.50m) cos 30° =386.5J, again keeping an
extra figure. ¢) The normal force is mg + F'sin¢g , and so the work done by friction is
—(4.50m)(0.25)((30 kg)(9.80 m/s*) +(99.2 N)sin 30°) = —386.5 J . d) Both the normal

force and gravity act perpendicular to the direction of motion, so neither force does work.
e) The net work done is zero.

6.6: From Eq. (6.2),

Fscosd = (180 N)(300m)cos15.0° =5.22x10* J.

6.7: 2Fscos¢ =2(1.80x10° N)(0.75x10° m)cos14° =2.62x10° J, or 2.6x10° J to
two places.

6.8: The work you do is:

F -5 = ((30N)i — (40N) /) - ((=9.0m)i — (3.0m) )
= (30 N)(=9.0 m) + (—40 N)(=3.0 m)
=270N-m+120N-m=-150J

6.9: a) (i) Tension force is always perpendicular to the displacement and does no work.
(i) Work done by gravity is —mg(y, —y,). When y, =y,, W, =0.
b) (i) Tension does no work.

(i) Let / be the length of the string. W, =-mg(y, — y,) = —-mg(2l) =-25.1]

The displacement is upward and the gravity force is downward, so it does negative
work.



6.10: a) From Eq. (6.6),

2
K = L1600 kg)| (50.0kmm)| ——-15 1| Z154x10° 7.
2 3.6 km/h

b) Equation (6.5) gives the explicit dependence of kinetic energy on speed; doubling the
speed of any object increases the kinetic energy by a factor of four.

6.11: For the T-Rex, K =1(7000kg)((4 km/hr)s+o-)® = 4.32x10° J. The person’s

3.6 km/hr

velocity would be v =/2(4.32x10° I)/70 kg = 11.1m/s, or about 40 knv/h,

6.12: (a) Estimate: v~1m/s (walking)

v~2m/s (running)

m~=~70kg

Walking: KE =1mv? =1(70kg)(1m/s)> =35]
Running: KE =1(70kg)(2m/s)* =1407
(b) Estimate: v = 60 mph =88ft/s~30m/s

m ~ 2000 kg

KE =1(2000kg)(30m/s)* =9x10° J
(©) KE =Wy

KE = (1kg)(9.8m/s*)(2m) ~20]J

=mgh Estimate 7~ 2m

6.13: Let point 1 be at the bottom of the incline and let point 2 be at the skier.
w.,=K,-K,

tot
1

K, ZEmvg,Kz =0

Work is done by gravity and friction, so W,,, =W, +W .

ng = _mg(y2 _.yl) = _mgh

W, =—fs=—(u,mgcosa)(h/sina) =—u mgh/tanc

Substituting these expressions into the work-energy theorem and solving for v, gives

Vo = \/2gh(1+ u, /tana)




6.14: (a)
W = AKE

—mgh=—mv; ——my
g 5 M TS M

Vv, =AlVi +2gh

=/(25.0m/s)* +2(9.80m/s*)(15.0m)
=303m/s

(b)
W = AKE

—mgh:%mvf2 —%mvg

v; —vi (30.3m/s)’ -0’
2g 2(9.80ms/s’)
=46.8m

h=

6.15: a) parallel to incline: force component = mg sina , down incline; displacement
= h/sina , down incline

W, = (mgsina)(h/sina) = mgh perpendicular to incline: no displacement in this
direction, so W, =0.

W, =W, +W_=mgh,same as falling height 4.

b) W, =K, —K, gives mgh=1my* and v = \/E , same as if had been dropped
from height 4. The work done by gravity depends only on the vertical displacement of the
object.

When the slope angle is small, there is a small force component in the direction of
the displacement but a large displacement in this direction. When the slope angle is large,
the force component in the direction of the displacement along the incline is larger but
the displacement in this direction is smaller.

c) h=150m,so v=4/2gh =17.1s

6.16: Doubling the speed increases the kinetic energy, and hence the magnitude of the
work done by friction, by a factor of four. With the stopping force given as being
independent of speed, the distance must also increase by a factor of four.

6.17: Barring a balk, the initial kinetic energy of the ball is zero, and so
W =(1/2)mv* = (1/2)(0.145kg)(32.0m/s)’ = 74.2 J.



6.18: As the example explains, the boats have the same kinetic energy K at the finish line,
so (1/2)ym v3 =(1/2)m,v;, or, with m, =2m ,,v> =2v,. a) Solving for the ratio of the
speeds, v, /v, = V2. b) The boats are said to start from rest, so the elapsed time is the
distance divided by the average speed. The ratio of the average speeds is the same as the
ratio of the final speeds, so the ratio of the elapsed times is ¢, /¢, =v, /v, = V2.

6.19: a) From Eq. (6.5), K, =K, /16, and from Eq. (6.6), W =—(15/16)K, . b) No;
kinetic energies depend on the magnitudes of velocities only.

6.20: From Equations (6.1), (6.5) and (6.6), and solving for F,

P AK Lm(v; —=v}) _ 3(8.00kg)((6.00 m/s)’ —(4.00m/s)?) .
s s (2.50m)

1 2 _ 2
621:  _AK _3(0420kg)((6.00m/s)* —(2.00m/8)") | o
F (40.0N)

6.22: a) If there is no work done by friction, the final kinetic energy is the work done by
the applied force, and solving for the speed,

v:\/ZW =\/2FS _ [2G6.0N)@.20m) _, 4o o
m m (4.30kg)

b) The net work is Fs — f, s = (F — g, mg)s , so

o |2 = pymg)s
m

_2(36.0N —(0.30)(4.30 kg)(9.80 m /52))(1.20 m)
- (4.30kg)

=3.61m/s.

(Note that even though the coefficient of friction is known to only two places, the
difference of the forces is still known to three places.)



6.23: a) On the way up, gravity is opposed to the direction of motion, and so
W =-mgs = —(0.145kg)(9.80 m/s*)(20.0m) = —28.4J .

b) v, = \/vf LA (25.0m/s)’ L 2A2840)
m (0.145kg)

c¢) No; in the absence of air resistance, the ball will have the same speed on the way
down as on the way up. On the way down, gravity will have done both negative and
positive work on the ball, but the net work will be the same.

=15.26m/s.

6.24: a) Gravity acts in the same direction as the watermelon’s motion, so Eq. (6.1) gives
W = Fs = mgs = (4.80kg)(9.80m/s*)(25.0m) =1176J.
b) Since the melon is released from rest, K, =0, and Eq. (6.6) gives

K=K, =W=11761.

6.25: a) Combining Equations (6.5) and (6.6) and solving for v, algebraically,

2(10.0 N)(3.0m)
(7.00kg)

=496m/s.

/4
v, = \/vf +2—1t = \/(4.00m/s)2 +
m

Keeping extra figures in the intermediate calculations, the acceleration is
a=(10.0kg-m/s*)/(7.00 kg) =1.429 m/s*. From Eq. (2.13), with appropriate change in
notation,

v =v +2as =(4.00m/s)” +2(1.429m/s*)(3.0m),
giving the same result.

6.26: The normal force does no work. The work-energy theorem, along with Eq. (6.5),
gives

v= "= |"—=\2gh =/2gLsin 0,
m m

where /= Lsin@ is the vertical distance the block has dropped, and & is the angle the
plane makes with the horizontal. Using the given numbers,

v =+/2(9.80m/s%)(0.75 m) sin 36.9° =2.97 m/s.



6.27: a) The friction force is x, mg , which is directed against the car’s motion, so the net
work done is — 4, mgs . The change in kinetic energy is AK = —K, =—(1/2)mv, , and so
s=v;/2u.g. b)From the result of part (a), the stopping distance is proportional to the
square of the initial speed, and so for an initial speed of 60 km/h,

5 =(91.2m)(60.0/80.0)* = 51.3m . (This method avoids the intermediate calculation of
M, , which in this case is about 0.279.)

6.28: The intermediate calculation of the spring constant may be avoided by using Eq.
(6.9) to see that the work is proportional to the square of the extension; the work needed

to compress the spring 4.00 cm is (12.0 J)(4'0° - )2 =2131J.

3.00 cm

6.29: a) The magnitude of the force is proportional to the magnitude of the extension or
compression;
(160 N)(0.015m/0.050m) = 48N, (160 N)(0.020m/0.050 m) = 64 N.

b) There are many equivalent ways to do the necessary algebra. One way is to note
169 N
0.050 m
so that stretching 0.015 m requires (4 J)(0.015/0.050)* = 0.360J and compressing 0.020

m requires (4 J)(0.020/0.050)* = 0.64J . Another is to find the spring constant
k =(160N)+(0.050m) =3.20x10° N/m, from which(1/2)(3.20x10°> N/m)(0.015 m)*
=0.360Tand (1/2)(3.20x10° N/m)(0.020 m)* = 0.64 J .

that to stretch the spring the original 0.050 m requires %( j =(0.050m)*> =417,

6.30: The work can be found by finding the area under the graph, being careful of the
sign of the force. The area under each triangle is 1/2 base x height .

a) 1/2 (8 m)(10N) =407 .
b) 1/2 (4m)(10N) = +207.
) 1/2(12m)(10N) =607

6.31: Use the Work-Energy Theorem and the results of Problem 6.30.

a)v= fw =2.83m/s
10kg

b) At x =12m, the 40 Joules of kinetic energy will have been increased by 20 J, so

V= M =3.46m/s.
10kg



6.32: The work you do with your changing force is

6.9 6.9 6.9 N
jo F(x)dx = L (—20.0 N)dx — jo 3.0 xdv

— (<20.0N)x % —(3.0 ) (x2 /2) |°
m
=—138N-m-714N-m=-2094] or —209]

The work is negative because the cow continues to advance as you vainly attempt to push
her backward.

6.33: 17,

tot

=K, -K,
1
K, zzmvé, K,=0
Work is done by the spring force. W, =—Lkx*, where x is the amount the spring is
compressed.
1

—E/’cx2 z—%mvg and x=v,vm/k =85cm

6.34: a) The average force is (80.0J)/(0.200 m) =400 N, and the force needed to hold

the platform in place is twice this, or 800 N. b) From Eq. (6.9), doubling the distance
quadruples the work so an extra 240 J of work must be done. The maximum force is
quadrupled, 1600 N.

Both parts may of course be done by solving for the spring constant

k =2(80.0 J)+(0.200 m)*> = 4.00x10° N/m, giving the same results.



6.35: a) The static friction force would need to be equal in magnitude to the spring force,

_ (200 N/m)(0.086 m)
wmg = kd or Hs = (0.100 kg)(9.80 m/s?)

the intermediate calculation for d gives a different answer.) b) In Example 6.6, the
relation

=1.76 , which is quite large. (Keeping extra figures in

2

1 1
mgd +—kd> =—mv
Hmg > 5

was obtained, and d was found in terms of the known initial speed v, . In this case, the
condition on d is that the static friction force at maximum extension just balances the
spring force, or kd = u mg . Solving for v/ and substituting,

v = ia’2 +2gdu, d
m

2
k([ pmg mmg
( A J /Jkg( A

m

2
m
,f (1l +2p,1,)

[ (0.10kg)(9.80 m/s*)?
- (20.0 N /m)

J((O.60)2 +2(0.60)(0.47)),

from which v, =0.67m/s.

6.36: a) The spring is pushing on the block in its direction of motion, so the work is

positive, and equal to the work done in compressing the spring. From either Eq. (6.9) or
Eq. (6.10), W =1kx* =1(200 N/m)(0.025m)* = 0.067J .
b) The work-energy theorem gives

v:\/z_Wz 200.060) _ o 19 mys.
m \ (40kg)

6.37: The work done in any interval is the area under the curve, easily calculated when
the areas are unions of triangles and rectangles. a) The area under the trapezoid is
40N-m=4.0J. b) No force is applied in this interval, so the work done is zero. c¢)

The area of the triangle is 1.0 N-m =1.0J, and since the curve is below the axis
(F, <0), the work is negative, or—1.0J . d) The net work is the sum of the results of
parts (a), (b) and (c), 3.0J. (e) +1.0J-2.0J=-1.0J.



6.38: a) K =4.0J,50 v=142K/m =4/2(4.07)/(2.0kg) =2.00m/s. b) No work is
done between x =3.0m and x =4.0m, so the speed is the same, 2.00 m/s. c¢)

K=3.0J,s0 v=+2K/m =4,/2(3.0])/(2.0kg) =1.73m/s.

6.39: a) The spring does positive work on the sled and rider; (1/2)kx* = (1/2)mv*, or
v=xvk/m =(0.375 m)\/(4000 N/m)/(70kg) =2.83m/s. b) The net work done by
the spring is (1/2)k(x; —x3), so the final speed is

ks _ (4000 N/m 2 2y _
V—\/m()c1 x5) \/—(70kg) ((0.375m)” —(0.200m)~) =2.40m/s.

6.40: a) From Eq. (6.14), with d/ = Rd¢,
W= I:z Fcosgdl = 2wRJ.0670 cos@dgp =2wRsin6,.

In an equivalent geometric treatment, when F is horizontal, F -dl = Fdx , and the total
work is F = 2w times the horizontal distance, in this case (see Fig. 6.20(a)) Rsin@,,

giving the same result. b) The ratio of the forces is —2—=2cot0,.

wtan 0,

2wRsin6, _5 sin 6, :2cot&.
wR(1—-cos6,) (1-cosb,) 2

c)

6.41: a) The initial and final (at the maximum distance) kinetic energy is zero, so the
positive work done by the spring, (1/2)kx”, must be the opposite of the negative work
done by gravity, —mgLsin6, or

e [2mgLsin@  [2(0.0900 kg)(9.80 m/s>)(1.80 m)sin 40.0° _57em
k (640 N/m) '

At this point the glider is no longer in contact with the spring. b) The intermediate
calculation of the initial compression can be avoided by considering that between the
point 0.80 m from the launch to the maximum distance, gravity does a negative amount

of work given by — (0.0900 kg)(9.80 m/s*)(1.80 m —0.80 m)sin 40.0° = —0.567 J , and so

the kinetic energy of the glider at this point is 0.567 J. At this point the glider is no longer
in contact with the spring.




6.42: The initial and final kinetic energies of the brick are both zero, so the net work done
on the brick by the spring and gravity is zero, so (1/2)kd*> —mgh =0, or
d=+2mghlk = \/2(1.80 kg)(9.80 m/s*)(3.6m)/(450 N/m) = 0.53m. The spring will

provide an upward force while the spring and the brick are in contact. When this force
goes to zero, the spring is at its uncompressed length.

6.43: Energy = (power)(time) = (100 W)(3600s) =3.6x10° J
K =%mv2 so v=+2K/m =100s for m=70kg.

6.44: Set time to stop:

XF =ma: u mg=ma
a=u.g=1(0.200)9.80m/s*)=1.96m/s’
v=yv,+at
0=8.00m/s—(1.96m/s*)t
t=4.08s
P :E _ 1my

t t
1(20.0kg)(8.00m/s?)

4.08s

2

6.45: The total power is (165N)(9.00m/s) =1.485x10° W , so the power per rider is

742.5 W, or about 1.0 hp (which is a very large output, and cannot be sustained for long
periods).

(1.0x10" T/ yr)

6.46: a) - =3.2x10" W.
(3.16x10" s/ yr)
11
b) M =1.2 kW/person.
2.6x10° folks
11
0) 320 W ¢ 510" m? = 800 km?.

(0.40)1.0x10° W /m>



6.47: The power is P = F -v. F'is the weight, mg, so
P =(700kg) (9.8 m/s*) (2.5m/s) =17.15kW. So, 17.15kW/75kW.=0.23, or about
23% of the engine power is used in climbing.

6.48: a) The number per minute would be the average power divided by the work (mgh)
required to lift one box,

(0.50 hp) (746 W /hp)
> =1.41/s,
(30 kg) (9.80 m/s*) (0.90 m)
or 84.6 /min. b) Similarly,
(100 Wz =0.378 /s,
(30kg) (9.80 m/s ) (0.90 m)
or 22.7 /min.
6.49: The total mass that can be raised is
(40.0 hp) (746 W/hp)(16.05s) 2436 ke,

(9.80 m/s?) (20.0 m)

. . 1836k
so the maximum number of passengers is +; k: =28.

6.50: From any of Equations (6.15), (6.16), (6.18) or (6.19),
_Wh _ (3800N) (2.80m)

P =2.66x10° W =3.57 hp.
‘ (4.00'5)
6.51: F (0.70) B, _ (0.70) (280,000 hp)(746 W/hp) 3 1x10° N,
% (65 km/h) ((1km/h)/(3.6 m/s))

6.52: Here, Eq. (6.19) is the most direct. Gravity is doing negative work, so the rope
must do positive work to lift the skiers. The force F is gravity, and F' = Nmg, where N
is the number of skiers on the rope. The power is then

P =(Nmg)(v)cos ¢
1m/s

= (50) (70 kg) (9.80 m/s*) (12.0 km/h) (m

j c0s (90.0°—15.0°)

=2.96x10" W.
Note that Eq. (1.18) uses ¢ as the angle between the force and velocity vectors; in this

case, the force is vertical, but the angle 15.0° is measured from the horizontal, so
¢ =90.0°—15.0° is used.



6.53: a) In terms of the acceleration @ and the time ¢ since the force was applied, the
speed is v =at and the force is ma, so the power is P = Fv = (ma) (at) = ma’t. b) The

power at a given time is proportional to the square of the acceleration, tripling the
acceleration would mean increasing the power by a factor of nine. c) If the magnitude of
the net force is the same, the acceleration will be the same, and the needed power is
proportional to the time. At # =15.0s, the needed power is three times that at 5.0 s, or
108 W.

6.54:

6.55: Work done in each stroke is W = Fs and P, =W/t =100 Fs/t
t=1.00s, F =2mgand s =0.010m. P, =020 W.



6.56:

dm >
w
Pivot N \ |
_/ — L
X dx

Let M =total mass and T = time for one revolution

KE = J.%(dm)v2

dmzﬂdx
L

e )
Ao
)2

5 revolutions in 3 seconds — 7 =3/5's

KE :%;;2(12.0 ke) (2.00m)*/(3/5s)> =877 7.

6.57: a) (140 N)(3.80m) = 5327 b) (20.0kg) (9.80 m/s?) (3.80 m) (—sin 25°) = -315]
¢) The normal force does no work.
d)
Wf =—f.8 =—pns = —u, mgs cos
=—(0.30) (20.0 kg) (9.80 m/s?) (3.80 m) cos 25° = —203 J

e) 532J-315J-203J =157 (14.7 J to three figures).
f) The result of part (e) is the kinetic energy at the top of the ramp, so the speed is

v=2K/m =/2(14.77)/(20.0 kg) =1.21m/s.




6.58: The work per unit mass is (W/m) = gh.

a) The man does work, (9.8 N/kg) (0.4 m) =3.92 J/kg.

b) (3.92 J/kg)/(70 J/kg) x 100 = 5.6%.

¢) The child does work, (9.8 N/kg) (0.2 m)=1.96J/kg.

(196 J/kg)/(703/kg) x 100 = 2.8%.

d) If both the man and the child can do work at the rate of 70 J/kg, and if the child
only needs to use 1.96 J/kg instead of 3.92 J/kg, the child should be able to do more pull
ups.

1

sina *

)= (810 /Sou) and so (F,,) (Se) = (F,) (s;,) , or W, =W,

6.59: a) Moving a distance L along the ramp, s, =L, s, = Lsina, so IMA=
b) If AMA = IMA,(F,,/F,

in n*

c)
d)
— VVoul _ (F;ut )(Sout) _ E)ul/En — AMA
Win (En )(Sin) Sin /Soul [MA .
— 3
g g (9.80 m/s?) (18.0 m)
3
b) n= W _ w=458N.
S 18.0m
c¢) The weight is mg = @ =408 N, so the acceleration is the net force divided by the
mass, AS8N—408N _ 1.2m/s?.
41.7kg
6.61: a)

2 6 2
LI lm(ziRj _ L (86,400 kg)| 2F(666x10"m) | 5 59,1027,
2 2 T 2 (90.1min) (60 s/min)

b) (1/2) mv* = (1/2) (86,400 kg) ((1.00 m)/(3.005))* = 4.80x 10° J.



6.62: a)
W, ==/ =—pmg cosOs
=—(0.31) (5.00 kg) (9.80 m/s?) cos 12.0°(1.50 m) = —22.3J

(keeping an extra figure) b) (5.00kg) (9.80 m/sz) sin12.0°(1.50 m)=15.3 J.
¢) The normal force does no work. d) 15.3J-22.3J=-7.0 J.
e) K, =K, +W =(1/2) (5.00kg) (2.2m/s)> =7.0] =5.1], and so

v, =42(5.11)/(5.00kg) =1.4m/s.

6.63: See Problem 6.62: The work done is negative, and is proportional to the distance s

that the package slides along the ramp, W = mg(sinf — 1, cos®)s . Setting this equal to

the (negative) change in kinetic energy and solving for s gives

3 a/ 2)mvl2 _ V12

mg(sinf — u, cosd) 2g(sin@ — p, cosd)

B (2.2m/s)’ _,
2(9.80m/s*)(sin12° —(0.31)cos12°)

As a check of the result of Problem 6.62, (2.2 m/s)\/l —(1.5m)/(2.6m) =1.4m/s.

6m.

6.64: a) From Eq. (6.7),
w :rz F.dx=—k de_’;: _k{_l} = k[L_l}
X1 X X M X, X
The force is given to be attractive, so /. <0 , and k£ must be positive. If x, > x,, t < x—‘] ,

and W < 0. b) Taking “slowly” to be constant speed, the net force on the object is zero,

so the force applied by the hand is opposite F, and the work done is negative of that

found in part (a), ork(x% - L) , which is positive if x, > x,. c) The answers have the same

X2

magnitude but opposite signs; this is to be expected, in that the net work done is zero.
6.65: F=mg(R,/r)
g — [ meRe
W=—[ Fds=-[ ( B

Weo =K, K, K, =0
This gives K, = mgR, =1.25x10"J

K, =1imv; so v, =2K,/m =11,000m/s

]dr = —mgR: (~(1/r)[*) = mgR,



6.66: Let x be the distance past P.
4, =0.100 + Ax

when x=12.5m, g, =0.600
A4=0.500/12.5m = 0.0400/m

(a)
W = AKE :W, = KE, — KE,

—I,ukmgdx = 0—%mvi2

Xr _ 1 2
g jo (0100 + Ax)dv =,

x2 1
0.100)x, + A= |=—1?
g|:( ) f 2 2 1

2

(9.80m/52){(0.100)xf + (0.0400/m)x7f} = %(4.50m/s)2

Solve for x; :x; =5.11m
(b) 14, =0.100+ (0.0400/m)(5.11m)=0.304
(c) W, = KE; - KE,

—umgx =0— %mvf

2
(4.50m/s) _-103m
2(0.100)(9.80m/s")

x=v/2ug=

6.67: a) ox’ =(4.00 N/m*)(1.00m)’ = 4.00 N.
b) o, = (4.00 N/m?*)(2.00 m)* = 32.0 N. ¢) Equation 6.7 gives the work needed to
move an object against the force; the work done by the force is the negative of this,

- J% ax’dx = —%(x;‘ —x).

With x, =x, =1.00m and x, =x, =2.00m, W =-15.0J, this work is negative.



6.68: From Eq. (6.7), with x, =0,

% % k b c
W= IO Fdx = IO (kx —bx* +cx’)dx = Exzz —Exg +Zx;

= (50.0N/m)x? —(233 N/m>)x. + (3000 N /m’)x

a) When x, =0.050m, W =0.115J, or 0.12 J to two figures. b) When
x, =-0.050m, W =0.173J, or 0.17 J to two figures. c¢) It’s easier to stretch the spring;

the quadratic —bx” term is always in the — x -direction, and so the needed force, and
hence the needed work, will be less when x, > 0.

6.69: a) T =ma,,, =m> = (0.120kg) G2 w9~ 0.147 N, or 0.15 N to two figures. b) At

(0.40 m)

the later radius and speed, the tension is (0.120kg (2(301(;“ ﬁ;z =9.41IN, or 9.4 N to two

figures. c) The surface is frictionless and horizontal, so the net work is the work done by
the cord. For a massless and frictionless cord, this is the same as the work done by the
person, and is equal to the change in the block’s kinetic energy,

K, =K, =(1/2)ym(v; —v])=(1/2)(0.120kg)((2.80 m/s)* — (0.70m/s)*) = 0.441] . Note
that in this case, the tension cannot be perpendicular to the block’s velocity at all times;

the cord is in the radial direction, and for the radius to change, the block must have some
non-zero component of velocity in the radial direction.

6.70: a) This is similar to Problem 6.64, but here « >0 (the force is repulsive), and
x, <X, so the work done is again negative;

W= a(i —i} =(2.12x107*° N-m?*((0.200m ™) — (1.25x10° m™))
XX
=-2.65x10""J.
Note that x, is so large compared to x” that the term xl] is negligible. Then, using Eq.

(6.13)) and solving for v, ,

. -17
b= v+ 2 2 3.00x107 m/s) + 20200 D 5 415105 mys.
m (1.67x107"" kg)

b) With K2 :0, W:_Kl' Using W:—L,

N 200 2(2.12x107° N-m?)
K om? (1.67x107kg)(3.00x10° m/s)?
¢) The repulsive force has done no net work, so the kinetic energy and hence the speed of

the proton have their original values, and the speed is 3.00x10° m/s .

=2.82x10"" m.




6.71: The velocity and acceleration as functions of time are
v(t) = % =20t +3pt°, a(t)=2a+6p
a) v(t=4.00s)=2(0.20m/s”)(4.00s) +3(0.02 m/s’)(4.00s)’ = 2.56 m/s.

b) ma=(6.00kg)(2(0.20m/s’) +6(0.02m/s*)(4.00s) = 5.28 N.
o) W=K,-K, =K, =(1/2)(6.00kg)(256 m/s)> =19.7I.

6.72: In Eq. (6.14), dl = dx and ¢ =31.0° is constant, and so
P, X,
W= IPI Fcosgdl = Ll F cosgdx
5 1.50 m 2
=(5.00N/m )cos31.0°j1 Xdx=3.39].
The final speed of the object is then

v, =\/v12 2 (4.00m/s)? L 26390 6 57mys.
m (0.250kg)

6.73: a) K, — K, =(1/2)m(v; —v})
— (1/2)(80.0kg)((1.50 m/s)? — (5.00m/s)*) = =910 J.
b) The work done by gravity is —mgh = —(80.0kg)(9.80m/s*)(5.20m) = —4.08x10’J
so the work done by the rider is —910J —(—4.08x10°J)=3.17x10J.

6.74: a) W =[x = b —
x x" (—=n—1))x" N

© b
S (=D

Note that for this part, for n>1, x'™" — 0 as x = o0 . b) When 0 < n <1, the improper
integral must be used,

b n=1 _ _ n-1
1)(x2 xO ):|’

and because the exponent on thex, ™ is positive, the limit does not exist, and the integral
diverges. This is interpreted as the force /' doing an infinite amount of work, even though
F—0 as x, > .

6.75: Setting the (negative) work done by the spring to the needed (negative) change in
kinetic energy, +kx* =1mv; , and solving for the spring constant,
_mv; _ (1200kg)(0.65m/s)’

k=— 5 =1.03x10° N/m.
X (0.070 m)




6.76: a) Equating the work done by the spring to the gain in kinetic energy,

%kxz—imv )
v—w/ _ [A0ON/m ) 660 m) = 6.93m/s.
0.0300 kg

b) W, must now include friction, so Lmv’ =W, =L1kx; - fx,, where fis the magnitude
of the friction force. Then,
V= ﬁxo —ﬂxo
m m
_ [A0ON/m ) o6y = 2600N) 6 66 m) = 4.90 m/s.
0.0300kg (0.0300kg)

c¢) The greatest speed occurs when the acceleration (and the net force) are zero, or
kx=f,x= i = _WN__0.0150 m. To find the speed, the net work is

400 N/m

W, =1k(x; —x*)= f(x, — x), so the maximum speed is

vmax:\/k( __f(xo_x)
m
=\/M((o 060m)’ - (0.0150m)") — = C0N)_ 6 660m —0.0150 m)
(0.0300kg) (0.0300kg)
=5.20m/s,

which is larger than the result of part (b) but smaller than the result of part (a).

6.77: Denote the initial compression of the spring by x and the distance from the initial
position by L. Then, the work done by the spring is —kx2 and the work done by friction is
— p#,mg(x+ L) ; this form takes into account the fact that while the spring is compressed,
the frictional force is still present (see Problem 6.76). The initial and final kinetic
energies are both zero, so the net work done is zero, and 4 kx* = g mg(x+ L) . Solving for
L,
(1/2)kx* . (1/2)(250 N/m)(0.250m)*
u,mg (0.30)(2.50 kg)(9.80m/s*)
or 0.81 m to two figures. Thus the book moves .81m+.25m =1.06 m, or about 1.1 m.

L=

—(0.250m)=0.813m,

6.78: The work done by gravity is W, = -mgLsin6 (negative since the cat is moving

up), and the work done by the applied force is FIL, where F' is the magnitude of the
applied force. The total work is

W, = (100 N)(2.00m) — (7.00 kg)(9.80 m/s*)(2.00 m)sin30° =131.4J.
The cat’s initial kinetic energy is 5mv1 =1(7.00kg)(2.40m/ s)>=20.27, and

) _\/2(K1+W)  [2(2027+131.41)
t "\ (7.00kg)

=6.58m/s.

m



6.79: In terms of the bumper compression x and the initial speed v,, the necessary

relations are
1, ., 1 .,
—kx*==—mv;, kx<5mg.
> 5o g
Combining to eliminate k and then x, the two inequalties are
2 2
x>~ and k<25 m‘% .
S5g %

a) Using the given numbers,
(20.0m/s)’
g N
5(9.80m/s”)
5 (1700kg)(9.80 m/s?)’
(20.0m/s)’
b) A distance of 8 m is not commonly available as space in which to stop a car.

8.16m,

k<2 =1.02x10* N/m.

6.80: The students do positive work, and the force that they exert makes an angle of
30.0° with the direction of motion. Gravity does negative work, and is at an angle of
60.0° with the chair’s motion, so the total work done is

W, =((600 N)cos30.0° — (85.0 kg)(9.80 m/s*) cos 60.0°)(2.50m) = 257.8 J , and so the
speed at the top of the ramp is
v, = \/vf + W _ (2.00m/s)* + 2257.8)) _ 3.17m/s.
m (85.0kg)
Note that extra figures were kept in the intermediate calculation to avoid roundoff error.

6.81: a) At maximum compression, the spring (and hence the block) is not moving, so the
block has no kinetic energy. Therefore, the work done by the block is equal to its initial

kinetic energy, and the maximum compression is found from 1kX* =Lmv’, or

X = [y = [290ke 6 60m/s)=0.600m.
k 500 N/m
b) Solving for v in terms of a known X,
k ., [500N/m

V=4

(0.150 m) =1.50 m/s.
m 5.00kg



6.82: The total work done is the sum of that done by gravity (on the hanging block) and
that done by friction (on the block on the table). The work done by gravity is (6.00 kg) gh

and the work done by friction is — , (8.00kg) gh, so
W, =(6.00kg—-(0.25)(8.00 kg) (9.80 rn/s2) (1.50m) =58.81.

This work increases the kinetic energy of both blocks;

W, = %(m1 +m)V,

tot

v= 20887) _ 2.90 m/s.
(14.00kg)
6.83: See Problem 6.82. Gravity does positive work, while friction does negative work.
Setting the net (negative) work equal to the (negative) change in kinetic energy,

SO

1
(m, — wm,)gh = _E(ml + mz)vza

and solving for g, gives
= m, +(1/2) (m, + mz)vz/gh

k

m,

_ (6.00 kg) +(1/2) (14.00 kg) (0.900 m/s)* /((9.80 m/s”) (2.00 m))
- (8.00 kg)
=0.79.

6.84: The arrow will acquire the energy that was used in drawing the bow (i.e., the work
done by the archer), which will be the area under the curve that represents the force as a
function of distance. One possible way of estimating this work is to approximate the /" vs.
x curve as a parabola which goes to zero at x =0 and x = x,, and has a maximum of F,

X0

at X==,

so that F'(x) = ‘iix()c0 — x). This may seem like a crude approximation to the

2
0

figure, but it has the ultimate advantage of being easy to integrate;

to, 4R} n o AR x x ) 2
.([Fdx— 5 .([(xox—x )dx = 2 (x()?—? —EFoxo-

0

With £, =200N and x, =0.75m,W =100]J. The speed of the arrow is then
V=, (3(32050 kJ;) =89 m/s. Other ways of finding the area under the curve in Fig. (6.28)

should give similar results.




6.85: f, =0.25mgsoW, =W, =—(0.25mg)s, where s is the length of the rough patch.
w,=K,-K,

tot
K, =tmv, K, =L mv =1m(0.45%2) = 0.2025(1 m?)

The work-energy relation gives —(0.25mg)s = (0.2025 — 1)%mv§
The mass divides out and solving gives s =1.5m.

6.86: Your friend’s average acceleration is

g V=V _ 6.00 m/s .00 s’
t 3.00s

Since there are no other horizontal forces acting, the force you exert on her is given by

F

net

= ma = (65.0 kg)(2.00 m/s>) =130 N

Her average velocity during your pull is 3.00 m/s, and the distance she travels is thus 9.00
m. The work you do is Fx = (130 N)(9.00m)=1170J, and the average power is

therefore 1170 J/3.00 s =390 W. The work can also be calculated as the change in the
kinetic energy.

6.87: a) (800 kg)(9.80 m/s*)(14.0 m) =1.098x10° J, or 1.10x 10 J to three figures.

b) (1/2)(800 kg)(18.0 m/s*) =1.30x10° J.
5 5
0 1.10x10° J+1.30x10 J=3.99kW.
60 s
6.88:
P=Fv=mav
=mQ2a + 6t)(2at +3t%)

=m(4a’t +18aft” +185°t)
=(0.96 N/s)t +(0.43 N/s*)t* +(0.043 N/s*)z’.

At t =400s, the power output is 13.5 W.

6.89: Let ¢ equal the number of seconds she walks every day. Then,
(280 J/s)t + (100 J/s)(86400 s —) =1.1x10" J. Solving for ¢, t =13,111s = 3.6 hours.



6.90: a) The hummingbird produces energy at a rate of 0.7 J/sto 1.75 J/s. At

10 beats/s, the bird must expend between 0.07 J/beat and 0.175 J/beat.
b) The steady output of the athlete is 500 W/70 kg = 7 W/kg, which is below the

10 W/kg necessary to stay aloft. Though the athlete can expend
1400 W/70 kg =20 W/kg for short periods of time, no human-powered aircraft could

stay aloft for very long. Movies of early attempts at human-powered flight bear out this
observation.

6.91: From the chain rule, P =<W =-<(mgh) = gh, for ideal efficiency. Expressing
the mass rate in terms of the volume rate and solving gives

6 3
(2000x10" W) —=130x10° .
(0.92)(9.80 m/s”)(170 m)(1000 kg/m™) s
6.92: a) The power P is related to the speed by Pt=K = —mvz, S0 v =4/,

2P 2P 2P
K df V m \m 2\/_ V
a) x_xo:J.Vdf:ﬂz—PJ.t% dt=1/2—§t;: /S_E 3
m m m

6.93: a) (7500x10~° kg’)(1.05x10° kg/m>)(9.80 m/s*)(1.63 m) =1.26x10° J.
b) (1.26x10° 1)/(86,400s) =1.46 W.



6.94: a) The number of cars is the total power available divided by the power needed per
car,

134x10°W
(2.8x10° N)(27 m/s)

b

rounding down to the nearest integer.
b) To accelerate a total mass M at an acceleration a and speed v, the extra power
needed is Mav. To climb a hill of angle «, the extra power needed is Mg sin av. These

will be nearly the same if a ~ g sin «; if g sin a ~ g tan & ~ 0.10 m/s”, the power is
about the same as that needed to accelerate at 0.10 m/s”.

c) (1.10x10° kg)(9.80 m/s*)(0.010)(27 m/s) = 2.9 MW. d) The power per car needed

is that used in part (a), plus that found in part (c) with M being the mass of a single car.
The total number of cars is then

13.4x10° W —-2.9x10° W B
(2.8x10° N +(8.2x10* kg)(9.80 m/s*)(0.010))(27 m/s)
rounding to the nearest integer.

b

6.95: a) P, = Fv=(53x10" N)(45m/s) =2.4 MW.

b) P =mav=(9.1x10° kg)(1.5 m/s*)(45 m/s) = 61 MW.

¢) Approximating sin &, by tan ¢, and using the component of gravity down the
incline as mg sin «,
P, =(mg sin a)v = (9.1x10° kg)(9.80 m/s*)(0.015)(45 m/s) = 6.0 MW.

6.96: a) Along this path, y is constant, and the displacement is parallel to the force, so
W = ay [ xdx = (2.50 N/m*)(3.00 m) %"= = 15,0 J.
b) Since the force has no y-component, no work is done moving in the y-direction.
c) Along this path, y varies with position along the path, given by y =1.5x, so
F.=a(l.5x)x =1.5ax", and

=10.0J.

3
W = J.F;dx = l.saszdx = 15(250 N/mz)@



6.97: a)

P=Fv=(F,+F,)v

= ((0.0045)(62.0 kg)(9.80 m/s*)

+(1/2)(1.00)(0.463 m*)(1.2 kg/m*)(12.0 m/s)*)(12.0 m/s)
=513 W.

P 28.0x10° W

= =1.68x10° N.
v (60.0 km/h)((1m/s)/(3.6 km/h))

6.98: a) F=

b) The speed is lowered by a factor of one-half, and the resisting force is lowered by a
factor of (0.65+0.35/4), and so the power at the lower speed is

(28.0 kW)(0.50)(0.65 +0.35/4) =10.3 kW =13.8 hp.

c¢) Similarly, at the higher speed,

(28.0 kW)(2.0)(0.65+0.35x 4) =114.8 kW =154 hp.



(8.00 hp)(746 W/hp)
(60.0 km/h)((1 m/s)/(3.6 km/h))

6.99: a)

b) The extra power needed is

60.6 km/h

km/h
3 m/s

mgv, = (1800 kg)(9.80 m/s”) sin(arctan(1/10)) = 29.3 kW =39.2 hp,

so the total power is 47.2 hp. (Note: If the sine of the angle is approximated by the
tangent, the third place will be different.) c¢) Similarly,

mgv, = (1800 kg)(9.80 m/sz)wsin(arctan(o.ow)) =2.94kW =3.94 hp,

km/h
3.6k

This is the rate at which work is done on the car by gravity. The engine must do work on
the car at a rate 0 4.06 hp. d) In this case, approximating the sine of the slope by the
tangent is appropriate, and the grade is

(8.00 hp)(746 W/hp) —0.0203,

(1800 kg)(9.80 m/s>)(60.0 km/h)((1 m/s)/(3.6 km/h))

very close to a 2% grade.



6.100: Use the Work—Energy Theorem, W = AKE, and integrate to find the work.

AKE =0- %mvg and W = I(—mg sin @ — umg cos a)dx.
0

Then,

X 2
W = —mg.[ (sin @ + Ax cos @)dx, W = —mg[sin ox + A; Ccos a}

0

Set W = AKE.

2
—lmvg =—mg| sin ax + cos o |
2 2

To eliminate x, note that the box comes to a rest when the force of static friction balances
the component of the weight directed down the plane. So, mg sin oo = Ax mg cos a; solve

this for x and substitute into the previous equation.

_ sina
Acosa’
Then,
. 2
sin o
) A

1, . sin o A cos o

—v, =+g|sina + cos a |,

2 Acosa

. . , 3gsin’a . .

and upon canceling factors and collecting terms, v, = —=———. Or the box will remain

cosa

. 3gsin’ a
stationary whenever v, > 2 @
Acosa



6.101: a) Denote the position of a piece of the spring by /; / =0 is the fixed point and
[ =L is the moving end of the spring. Then the velocity of the point corresponding to /,
denoted u, is u(/) = v+ (when the spring is moving, / will be a function of time, and so u

is an implicit function of time). The mass of a piece of length d/ is dm =*Ldl, and so

2
dK =ldmu2 :lM‘; I*dl,
2 2 L
and
2 L 2
K =[x =2 [par =22
20 6

b) Lk’ =Lmv?, s0 v =4/(k/m)x = /(3200 N/m)/(0.053 kg)(2.50x 10~ m) = 6.1 m/s. .
c¢) With the mass of the spring included, the work that the spring does goes into the
kinetic energies of both the ball and the spring, so+kx* =1mv’ + LMV, Solving for v,

VZ\/ k x=\/ (3200 N/m) (2.50x107m)=3.9m/s.
mt M3\ (0.053kg) + (0243 kg)/3

d) Algebraically,
2
12 (2)k
2 (1+ M/3m)
2
1o (V2)k
6 (1+3m/M)

=0.40J and

=0.601J.



6.102: In both cases, a given amount of fuel represents a given amount of work W that

the engine does in moving the plane forward against the resisting force. In terms of the
range R and the (presumed) constant speed v,

W, =RF = R(avz +ﬁzj
1%

In terms of the time of flight 7,R = v¢, so

W, =vTF = T(av3 +£}

v
a) Rather than solve for R as a function of v, differentiate the first of these relations with
respect to v, setting 4> =0 to obtain & F + R = (. For the maximum range, £ =0, so

4 — (). Performing the differentiation, 4 = 2av—2/v’ =0, which is solved for
/4 5 2/ 2\/4
v:[ﬁj _[3:5x10 sz és =32.9m/s =118 km/h.
a 0.30N-s’/m

b) Similarly, the maximum time is found by setting < (Fv) = 0; performing the

differentiation, 3av® — #/v* = 0, which is solved for

/4 5 2/.2 /4
v:(ﬁj _[3SACNmST) s 00 kmh.
3a 3(0.30N-s*/m

6.103: a) The walk will take one-fifth of an hour, 12 min. From the graph, the oxygen
consumption rate appears to be about 12 cm’ / kg - min, and so the total energy is

(12 cm® /kg - min) (70 kg) (12 min) (20J/cm®) = 2.0x10° J.

b) The run will take 6 min. Using an estimation of the rate from the graph of about
33cm’/kg-min gives an energy consumption of about 2.8x10° J. ¢) The run takes 4
min, and with an estimated rate of about 50 cm’/kg - min, the energy used is about

2.8x10° J. d) Walking is the most efficient way to go. In general, the point where the
slope of the line from the origin to the point on the graph is the smallest is the most
efficient speed; about 5 km/h.



6.104: From F = ma,F, =ma_F,=ma, and F, =ma_. The generalization of Eq. (6.11)
is then
dv dv, dv

X

X X dx

V4

a, =v,—*, a =v .
b b
Yol dy T T dz

The total work is then
(x2,52,23)
= [ Fdx+ Fdy + Fdz
(x1,01521) Y

rz v, 62:; dx + Lyz v, C;—‘;ydy + J;Zz v, b, dz}

X dz
Vx2 Vy2 V2

=m j v.dv, +.[ v dv +.[ v.dv,
Ve T Vil yeo Vo

_l 2 2 2 222

= zm(vxz Va TV =V, TV, =V,

1
=—mﬁ——mﬁ.
2

2



Capitulo 7



7.1: From Eq. (7.2),

mgy = (800kg) (9.80 m/s?) (440 m) =3.45x10° J =3.45 MJ.

7.2: a) For constant speed, the net force is zero, so the required force is the sack’s
weight, (5.00kg)(9.80 m/ s*) =49 N. b) The lifting force acts in the same direction as the

sack’s motion, so the work is equal to the weight times the distance,
(49.00 N) (15.0m) = 735 J; this work becomes potential energy. Note that the result is

independent of the speed, and that an extra figure was kept in part (b) to avoid roundoff
error.

7.3: InEq. (7.7), taking K, =0 (as in Example 6.4) and U, =0, K, =U, + W,

other *

Friction does negative work — fy, so K, =mgy — fy; solving for the speed v,,

- [2(mg - f)y _ \/2((200kg) (980 m/s*) ~60N) (3.00m) _ , < s,
m (200 kg)

7.4: a) The rope makes an angle of arcsin(é;ﬁ—ﬁ) =30° with the vertical. The needed

horizontal force is then wtan 8 = (120 kg) (9.80 m/sz) tan 30° =679 N, or 6.8x10>* N to

two figures. b) In moving the bag, the rope does no work, so the worker does an amount
of work equal to the change in potential energy,
(120 kg) (9.80 m/s?) (6.0 m) (1—cos 30°) = 0.95x 10> J. Note that this is not the product

of the result of part (a) and the horizontal displacement; the force needed to keep the bag
in equilibrium varies as the angle is changed.

7.5: a) In the absence of air resistance, Eq. (7.5) is applicable. With y, —y, =22.0m,

solving for v, gives

v, =V +22(3, — 1) =+/(12.0m/s)* +2(9.80 m/s*)(22.0 m) = 24.0 m/s.
b) The result of part (a), and any application of Eq. (7.5), depends only on the
magnitude of the velocities, not the directions, so the speed is again 24.0 m/s. c) The

ball thrown upward would be in the air for a longer time and would be slowed more by
air resistance.




7.6: a) (Denote the top of the ramp as point 2.) In Eq. (7.7),
K,=0,W,.,=—B5N)x(2.5m)=-87.5 J, and taking U, =0 and

other

U, =mgy, = (12kg) (9.80 m/s*) (2.5msin 30°) =147 J, v, = J%@”” =6.25m/s, or

6.3 m/s to two figures. Or, the work done by friction and the change in potential energy
are both proportional to the distance the crate moves up the ramp, and so the initial speed

is proportional to the square root of the distance up the ramp; (5.0 m/ 8) 4222 =6.25m/s.
b) In part a), we calculated W, .. and U, . Using Eq. (7.7),

other

K,=1(12kg) (11.0m/s)> —=87.5 J—147 J=491.5 ]

2k, 209151
Vy =5 =g = 9-05m/s.

7.7: Asin Example 7.7, K, =0, U, =94 J, and U, =0. The work done by friction is

—(35N)(1.6m)=-56 J, and so K, =381], and v, = |35 =2.5m/s.

7.8: The speed is v and the kinetic energy is 4K. The work done by friction is
proportional to the normal force, and hence the mass, and so each term in Eq. (7.7) is
proportional to the total mass of the crate, and the speed at the bottom is the same for any
mass. The kinetic energy is proportional to the mass, and for the same speed but four
times the mass, the kinetic energy is quadrupled.

7.9: InEq.(7.7), K, =0,W,.. is givenas —0.22 ], and taking
U,=0,K,=mgR-0.22 ], so

0.22]
0.20 kg

v, = \/2((9.80 m/s?) (0.50 m) — } =2.8m/s.



7.10: (a) The flea leaves the ground with an upward velocity of 1.3 m/s and then is in
free-fall with acceleration 9.8 m/s?> downward. The maximum height it reaches is

therefore (vi - vgy ) / 2(—g) =9.0 cm. The distance it travels in the first 1.25 ms can be
ignored.
(b)
W =KE = %mvz

=%(210x10_6 g) (130 cm/s)?

=1.8ergs=1.8x10"J

7.11: Take y=0 at point A. Let point 1 be A and point 2 be B.
K+U +W,. . =K,+U,

other

U, =0,U, =mg(2R) =28,2241, W, =W,

/

ther
K, = %mvf =37,500J,K, =L mv; =38401J

The work - energy relation then gives W, = K, + U, — K, =-5400 J.

7.12: Tarzan is lower than his original height by a distance /(cos30 —cos45), so his
speed is

v =4/2gl(cos 30°—cos 45°) = 7.9 m/s,
a bit quick for conversation.



7.13: a) The force is applied parallel to the ramp, and hence parallel to the oven’s
motion, and so W = Fs = (110 N) (8.0m) =880 J. b) Because the applied force F is

parallel to the ramp, the normal force is just that needed to balance the component of the
weight perpendicular to the ramp, n = wcos ¢, and so the friction force is

i = #mgcos a and the work done by friction is
W, =—-u mgcosas=—(0.25)(10.0kg) (9.80 m/sz) cos37°(8.0m)=—-157 J,
keeping an extra figure. ¢) mgssin o= (10.0 kg)(9.80 m/sz)(8.0 m)sin37°=472 ],

again keeping an extra figure. d) 880J—-472J—157J=251J. e) In the direction up the
ramp, the net force is
F—mgsina — y,mgcosa

=110N - (10.0 kg)(9.80 m/sz)(sin 37°+(0.25) cos 37°)
=31.46N,
so the acceleration is (31.46 N)/10.0 kg) =3.15m/s?. The speed after moving up the
ramp is v = V2as = \/2(3.15 m/s*)(8.0m) = 7.09 m/s, and the kinetic energy is

(1/2)mv* =252 J. (In the above, numerical results of specific parts may differ in the third
place if extra figures are not kept in the intermediate calculations.)

7.14: a) At the top of the swing, when the kinetic energy is zero, the potential energy
(with respect to the bottom of the circular arc) is mgl(1 —cos 8), where / is the length of

the string and € is the angle the string makes with the vertical. At the bottom of the
swing, this potential energy has become kinetic energy, so mgl(1—cosf) =1mv*, or

v=4/2gl(1-cosf) = \/2(9.80 m/sz) (080 m) (1—cos45°) =2.1m/s. b) At 45° from the
vertical, the speed is zero, and there is no radial acceleration; the tension is equal to the
radial component of the weight, or mg cos 6 = (0.12kg) (9.80 m/s*) cos 45° = 0.83 N. c¢)

At the bottom of the circle, the tension is the sum of the weight and the radial
acceleration,

mg + mvzz/l =mg(1+2(1-cos45°))=1.86 N,
or 1.9 N to two figures. Note that this method does not use the intermediate calculation of
V.

7.15:  Of the many ways to find energy in a spring in terms of the force and the
distance, one way (which avoids the intermediate calculation of the spring constant) is to
note that the energy is the product of the average force and the distance compressed or
extended. a) (1/2)(800 N)(0.200 m) =80.0 J. b) The potential energy is proportional to

the square of the compression or extension; (80.0J) (0.050 m/0.200m)* =5.01J.



7.16: U =1k’ where y is the vertical distance the spring is stretched when the weight

w=mg is suspended. y ==%, and k =£, where x and F are the quantities that

“calibrate” the spring. Combining,
U= 1 (mg)* 1 ((60.0kg) (9-80 m/s?))?
2 F/x 2 (720N/0.150 m)

=36.01J

7.17: ) Solving Eq. (7.9) for x,x = /2 = [ 2020 — 0,063 m.

b) Denote the initial height of the book as 4 and the maximum compression of the
spring by x. The final and initial kinetic energies are zero, and the book is initially a
height x + 4 above the point where the spring is maximally compressed. Equating initial

and final potential energies, L kx* = mg(x + h). This is a quadratic in x, the solution to

xzﬂ{li /1+2—kh}
k mg

_ (1.20kg)(9.80 m/s?) 1+ |1, 201600N/m)(0.80 m)
~ (1600 N/m) N (1.20kg) (9.80m/s?)

=0.116m,-0.101 m.

The second (negative) root is not unphysical, but represents an extension rather than a
compression of the spring. To two figures, the compression is 0.12 m.

which is

7.18: a) In going from rest in the slingshot’s pocket to rest at the maximum height, the
potential energy stored in the rubber band is converted to gravitational potential energy;
U =mgy=(10x107 kg)(9.80 m/s*) (22.0m) =2.16 J.

b) Because gravitational potential energy is proportional to mass, the larger pebble
rises only 8.8 m.

c¢) The lack of air resistance and no deformation of the rubber band are two possible
assumptions.

7.19: The initial kinetic energy and the kinetic energy of the brick at its greatest height
are both zero. Equating initial and final potential energies, 1kx* = mgh, where & is the
greatest height. Solving for 4,

_ k  (1800N/m)(0.15m)”

" 2mg  2(1.20kg) (9.80m/s*)




7.20:  As in Example 7.8, K, =0 and U, =0.02507J. For v, = 0.20 m/s,

K, =0.0040 J, so U, =0.0210J =L kx’, so x = £,/ 35757" = £0.092 m. In the absence

of friction, the glider will go through the equilibrium position and pass through
x =-0.092 m with the same speed, on the opposite side of the equilibrium position.

7.21: a) In this situation, U, =0 when x=0, so K, =0.0250J and
v, = 2000 = 0.500 my/s. b) If v, =2.50 m/s,
K, = (1/2) (0.200kg)(2.50m/s)*> = 0.625 T =U,, so x, = /222D — ( 500 m. Or,

5.00 N/m

because the speed is 5 times that of part (a), the kinetic energy is 25 times that of part (a),
and the initial extension is 5x0.100 m = 0.500 m.

7.22: a) The work done by friction is
W,,.. =—umghAx =—(0.05)(0.200 kg) (9.80 m/s*) (0.020 m) = —0.00196 J,

other
so K, =0.00704J and v, = ,/22297™) _ (27 m/s. b) In this case ¥, . =—0.0098], so

0.200 kg other

K, =0.0250J-0.0098J =0.0152J, and v, = ,/%ﬁffg” =0.39m/s.
¢) In this case, K, =0, U, =0, so
U +W,.,=0=0.0250J -4 (0.200 kg) (9.80 m/sz) x(0.100 m), or 1, =0.13.

other

7.23: a) In this case, K, =625,000] as before, W, .. =-17,000J and
U, = (1/2)]0’22 +mgy,

= (1/2)(1.41x10° N/m) (-1.00 m)* + (2000 kg) (9.80 m/s?) (=1.00)

=50,9001J.
The kinetic energy is then K, = 625,000 -50,900J -17,000J=557,10017,
corresponding to a speed v, =23.6 m/s. b) The elevator is moving down, so the friction
force is up (tending to stop the elevator, which is the idea). The net upward force is then
—mg + f —kx = —(2000kg)(9.80 m/s*) +17,000 N — (1.41x10° N/m)(—1.00 m) = 138,40(

for an upward acceleration of 69.2 m/s” .



7.24: From 1kx’ =L1mv?, the relations between m, v, k and x are
kx* =mv?,  kx = Smg.

Dividing the first by the second gives x = %, and substituting this into the second gives

k=25 soa) &),
2
= 20 gy
5(9.80 m/s”)
252
k=25 1O KOOSO M/ST) 46 q05 N/m.

(2.50 m/s)’

7.25: a) Gravity does negative work, — (0.75kg)(9.80 m/sz)(16 m)=-118J. b)

Gravity does 118 J of positive work. ¢) Zero d) Conservative; gravity does no net work
on any complete round trip.

7.26: a)&b) —(0.050kg)(9.80 m/sz)(S.O m)=-2.5J.

>
A

(a) (b)

c) Gravity is conservative, as the work done to go from one point to another is path-
independent.

7.27: a) The displacement is in the y-direction, and since F has no y-component, the
work is zero.

b)

_12N/m’

jfﬁ-di:—lszszdxz (x* —x¥) = —0.1047.

¢) The negative of the answer to part (b), 0.104m’ d) The work is independent of
path, and the force is conservative. The corresponding potential energy is

U :—(IZN/amz)x3 :(4 N/mz)x3.



7.28: a) From (0, 0) to (0, L), x =0 and so F =0,, and the work is zero. From (0, L) to
(L,L), F and dI are perpendicular, so F -dl = 0. and the net work along this path is
zero. b) From (0, 0) to (L, 0), F -dl =0. From (L, 0) to (L, L), the work is that found in
the example, W, = CL*, so the total work along the path is CL’. c) Along the diagonal
path, x =y, andso F -dl =Cydy; integrating from 0 to L gives % (Itisnota

coincidence that this is the average to the answers to parts (a) and (b).) d) The work
depends on path, and the field is not conservative.

7.29: a) When the book moves to the left, the friction force is to the right, and the work
is —(1.2N)(3.0m) =-3.6J. b) The friction force is now to the left, and the work is again

—3.6J. ¢c) —7.2J. d) The net work done by friction for the round trip is not zero, and
friction is not a conservative force.

7.30: The friction force has magnitude g, mg = (0.20)(30.0kg)(9.80 m/s*) = 58.8 N. a)
For each part of the move, friction does —(58.8 N)(10.6 m) = -623 ], so the total work
done by friction is —1.2kN. b) —(58.8 N)(15.0m) =—-882 N.
7.31: The magnitude of the friction force on the book is

w,mg = (0.25)(1.5kg)(9.80 m/s*) = 3.68 N.

a) The work done during each part of the motion is the same, and the total work done
is —2(3.68 N)(8.0m) =-591J (rounding to two places). b) The magnitude of the

displacement is V2 (8.0m), so the work done by friction is

—\2 (8.0m)(3.68 N) =—42 N. c) The work is the same both coming and going,
and the total work done is the same as in part (a), —59J. d) The work required to

go from one point to another is not path independent, and the work required for a
round trip is not zero, so friction is not a conservative force.

7.32: a) %k(xl2 —-x;) b)— %k(xf —x3). The total work is zero; the spring force is
conservative ¢) From x, to x,, W =—1k(x; —x]). From x, to x,, W =1k(x} —x;).

The net work is — %k(xz2 - )cl2 ). This is the same as the result of part (a).

7.33: From Eq. (7.17), the force is

F=2Y_c“% .
! dx  Cde\x® 7
The minus sign means that the force is attractive.

du d(ij__scé

X



7.34: FromEq. (7.15), F, = -4 = —4ax® = —(4.8 J/m*)x*, and so
F.(=0.800m) = —(4.8 J/m*)(~0.80m)’ = 2.46 N.

7.35: & =2kx+kly, & =2ky +kx and <L =0, so from Eq. (7.19),
F = —Qkx+k'y)i — Qky + k') .

7.36: FromEq. (7.19), F = —%f —%j since U has no z-dependence.

U — 20 U — =2a
= and G = i SO

3

F:—a(‘—fi+_—2°j.
X Yy



7.37: a)F, =—%_lr/=12r;73_6%_

0.6 \ 4 \
0.4 3
v - 2 \
F
0 [ \
e 1
—0.2 : \
: 0

—0.4 , e H ) - ,,,,,,,,,,,,,,,, \//‘
1

06 08 L 12 14 16 0.6 08 1
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2 14 Lo

b) Setting F. =0 and solving for r gives 7,,,, = (2a/b)""°. This is the minimum of
potential energy, so the equilibrium is stable.

c)
a b
Ulhi) =7~
B a B b
((Za/b)l/é)IZ ((2a/b)1/6)6
_abt p b
4a> 2a  da

To separate the particles means to remove them to zero potential energy, and requires the
negative of this, or £, =b*/4a. d) The expressions for E, and . in terms of @ and b

are

2
EO =b_ rniin =2_a‘
4a b

Multiplying the first by the second and solving for b gives b =2E,r’ , and substituting

this into the first and solving for a gives a = Ejr)> .
a=(1.54x10" 1)(1.13x107"" m)"”* =6.68x10"*" J.m"
b=2(1.54x10" )1.13x107"° m)® =6.41x107" J-m°.

(Note: the numerical value for a might not be within the range of standard calculators,

and the powers of ten may have to be handled seperately.)

Using the given numbers,

7.38: a) Considering only forces in the x-direction, F, = —4Z, and so the force is zero

when the slope of the U vs x graph is zero, at points b and d. b) Point b is at a potential
minimum; to move it away from b would require an input of energy, so this point is
stable. ¢) Moving away from point d involves a decrease of potential energy, hence an
increase in kinetic energy, and the marble tends to move further away, and so d is an
unstable point.



7.39: a) At constant speed, the upward force of the three ropes must balance the force,
so the tension in each is one-third of the man’s weight. The tension in the rope is the

force he exerts, or (70.0 kg)(9.80 m/sz)/3 =229 N. b) The man has risen 1.20 m, and so

the increase in his potential energy is (70.0kg)(9.80 m/ s°)(1.20m) = 823 J. In moving up

a given distance, the total length of the rope between the pulleys and the platform
changes by three times this distance, so the length of rope that passes through the man’s
hands is 3x1.20m =3.60m, and (229 N)(3.6 m) =824J.

7.40: First find the acceleration:
. V- _ (3.00 m/s)’
2(x—x,) 2(1.20m)
Then, choosing motion in the direction of the more massive block as positive:
F . =Mg—-mg=(M+m)a=Ma+ma

M(g—a)=m(g+a)
M _g+a_(9.80+3.75) m/s’
m g-a (9.80-3.75) m/s’
M =224m

=3.75m/s’

=224

Since M + m=15.0kg:
224m+m =15.0kg
m=4.63kg
M =150kg—-4.63kg =104 kg

741: a) K, +U +W,, =K, +U,
U=U,=K,=0

Woper =W, =—py,mgs, with s =2801ft =85.3m

The work-energy expression gives %mvf - p,mgs =0

v, = 24,85 =22.4 m/s = 50 mph; the driver was speeding.

a) 15 mph over speed limit so $150 ticket.



7.42: a) Equating the potential energy stored in the spring to the block's kinetic energy,

Lix® =1mv?, or
v=1/£x= 400 N/m 550 m) = 3.1 ms.
m 2.00kg

b) Using energy methods directly, the initial potential energy of the spring is the final
gravitational potential energy, 1 kx* = mgLsin @, or
/- Lk 1(400 N/m)(0.220 m)’

1 — =0.821m.
mgsind  (2.00kg)(9.80 m/s”)sin37.0°

7.43: The initial and final kinetic energies are both zero, so the work done by the spring
is the negative of the work done by friction, or L kx* = u, mgl, where [l is the distance the

block moves. Solving for 4,
~(1/2)kx* _ (1/2)(100 N/m)(0.20m)*
mgl  (0.50kg)(9.80 m/s*)(1.00m)

k

7.44: Work done by friction against the crate brings it to a halt:
f.x = potential energy of compressed spring
36017
,fk —

- 5.60m
The friction force working over a 2.00-m distance does work

fi.x =(—64.29 N)(2.00m) =—128.6J. The kinetic energy of the crate at this point is thus
360)J —128.6) =231.4J, and its speed is found from

2
my

=64.29N

=2314]

v = 2A23147) _ 9.256 mz/s2
50.0kg
v=3.04m/s

7.45: a) mgh=(0.650kg)(9.80 m/sz)(2.50 m)=1591]
b) The second height is 0.75(2.50m) =1.875m, so second mgh=11.9]J; loses
159J-11.9J=4.0J on first bounce. This energy is converted to thermal energy.
a) The third height is 0.75(1.875m) =1.40 m,, so third mgh=8.9J; loses
11.9J-8.9J=3.0J on second bounce.



746: a)U,-U,=mg(h—-2R)= %mvi. From previous considerations, the speed at the
top must be at least \/g_R . Thus,
mg(h—2R) > %ng, or h> %R.
b) U,-U, =(2.50)Rmg = K, so
ve =/(5.00)gR =+/(5.00)(9.80 m/s>)(20.0m) =31.3 m/s.

The radial acceleration is a,,, = % =49.0 m/s’. The tangential direction is down, the
normal force at point C is horizontal, there is no friction, so the only downward force is
=g=9.80m/s’.

gravity, and a

tan

7.47: a) Use work-energy relation to find the kinetic energy of the wood as it enters the
rough bottom: U, = K, gives K, =mgy, =78.4].

Now apply work-energy relation to the motion along the rough bottom:

K +U + Wy, =K, +U,

Wowea =W, =—pmgs, K, =U, =U, = 0; K,=7841]
78.4J — p,mgs = 0; solving for s gives s =20.0m.
The wood stops after traveling 20.0 m along the rough bottom.
b) Friction does —78.4J of work.



7.48: (a)

KEBottom + VVf = PETop
1
Emvé — u,mg cosOd = mgh
d = h/sin 6
lv2 - cos @ = gh
5o H 8 sing &
cos40°

%(15 m/s)? —(0.20)(9.8 m/s*) h=(9.8m/s*)h

sin 40°
h=93m
(b) Compare maximum static friction force to the weight component down the plane.

f. = pmg cos 6 = (0.75)(28 kg)(9.8 m/s”) cos 40°
=158 N
mg sin@ = (28 kg)(9.8 m/s”)(sin 40°) =176 N > /.

so the rock will slide down.
(¢) Use same procedure as (a), with #=9.3m

PETop + Wf = KEBottom
h 1,
mgh — p, mg cos@ ——=—mvy
sinf 2

Vg =+/2gh -2, ghcosO/sin @ =11.8 m/s



7.49: a) K +U, + W,

other — KZ + U2
Let point 1 be point A and point 2 be point B. Take y =0 at point B.

mgy, ++mv; =1mv;, with h=20.0m and v, =10.0 m/s

v, =4[V, +2gh =22.2 m/s

b) Use K, +U, +W .. = K, +U,, with point 1 at B and point 2 where the spring has
its maximum compression Xx.

U =U,=K,=0; K, =tmv] with v, =22.2 m/s

Woper =W, + Wy =—p,mgs 1k, with s =100m + x

The work-energy relation gives K, + W, .. =0.

other
Tmv — omgs —Lhkx* =0
Putting in the numerical values gives x° +29.4x — 750 = 0. The positive root to this
equation is x =16.4m.
b) When the spring is compressed x =16.4 m the force it exerts on the stone is
F, = kx=32.8 N. The maximum possible static friction force is

max f. = umg = (0.80)(15.0kg)(9.80 m/s*) =118 N.

The spring force is less than the maximum possible static friction force so the stone
remains at rest.

7.50: First get speed at the top of the hill for the block to clear the pit.

L
=—of
Y 2g

2mn=%@8mmﬁﬁ

t=20s
40m
vTopt =40m _)vTop :K = 20m/s
Energy conservation:
KE Bottom P ETop + KE Top

1 1
Emvé =mgh +Emv§

Vg =4V +2gh

= (20 m/s)? +2(9.8 m/s>)(70 m)
=42 m/s




7.51: K, +U +W,

other = Ko + U,

Point 1 is where he steps off the platform and point 2 is where he is stopped by the
cord. Let y =0 atpoint 2. y, =41.0m. W, =—1kx*, where x=11.0m is the amount
the cord is stretched at point 2.The cord does negative work.

K, =K,=U,=0, so mgy,—1kx’* =0 and k =631 N/m.

Now apply F = kx to the test pulls:

F=kx so x=F/k=0.602m.

7.52:  For the skier to be moving at no more than 30.0 m/s ; his kinetic energy at the
bottom of the ramp can be no bigger than
mv®  (85.0kg)(30.0 m/s)’

2 2
Friction does —4000J of work on him during his run, which means his combined PE

and KE at the top of the ramp must be no more than 38,250 +4000J =42,250J. His KE
at the top is

=38,2501]

mv®  (85.0kg)(2.0 m/s)’
2 2
His PE at the top should thus be no more than 42,250J —-170J =42,080J, which gives a

height above the bottom of the ramp of
b 42,080) 42,0807

mg  (85.0ke)(9.80 m/s’)

=1701J

0.5m.

7.53: The net work done during the trip down the barrel is the sum of the energy stored
in the spring, the (negative) work done by friction and the (negative) work done by

gravity. Using L kx* = 1(F° /k), the performer’s kinetic energy at the top of the barrel is

§ — 1 (4400 N)?
21100 N/m

and his speed is w/% =15.5 m/s.

— (40 N)(4.0 m) — (60 kg)(9.80 m/s>)(2.5m) = 7.17x 10° J,



7.54: To be at equilibrium at the bottom, with the spring compressed a distance x,, the

spring force must balance the component of the weight down the ramp plus the largest
value of the static friction, or kx, = wsin @ + f. The work-energy theorem requires that

the energy stored in the spring is equal to the sum of the work done by friction, the work
done by gravity and the initial kinetic energy, or

%kxé = (wsin 6— f)L +%mv2,

where L is the total length traveled down the ramp and v is the speed at the top of the
ramp. With the given parameters, Lkx; = 2487 and kx, =1.10x10° N. Solving for k

gives k = 2440 N/m.

7.55: The potential energy has decreased by
(12.0kg)(9.80 m/s”)(2.00 m) — (4.0kg) x (9.80 m/s*)(2.00 m) = 156.8 J. The kinetic

energy of the masses is then %(m1 +m,)v’ =(8.0kg)v’ =156.8J, so the common speed is

V=, (18531%:) =4.43 m/s, or 4.4 m/s to two figures.



7.56: a) The energy stored may be found directly from
%kyz2 =K, +W,,.. —mgy, =625000J]-51,000J - (-58,000]) = 6.33x10° J.

other

b) Denote the upward distance from point 2 by /4. The kinetic energy at point 2 and
at the height 4 are both zero, so the energy found in part (a) is equal to the negative of the
work done by gravity and friction,

—(mg + f)h =—((2000kg)(9.80 m/s*) + 17,000 N)A = (36,600 N)A, so

_633x10° )
3.66x10*

the rebound and the point where it next reaches the spring is
(mg — f)(h—3.00m) =3.72x10* J. Note that on the way down, friction does negative

work. The speed of the elevator is then 1/% =6.10 m/s. d) When the elevator

next comes to rest, the total work done by the spring, friction, and gravity must be the
negative of the kinetic energy K, found in part (c), or

=17.3m. c) The net work done on the elevator between the highest point of

K, =3.72x10" J = —(mg — f)x, +%kx32 =—(2,600 N)x, +(7.03x10* N/m)x;.

(In this calculation, the value of k£ was recalculated to obtain better precision.) This is
a quadratic in x;, the positive solution to which is

1
X, =
P 2(7.03x10* N/m)
x [2.60><103 N+\/(2.6O><103 N)* +4(7.03x10* N/m)(3.72x10* J)
=0.746 m,

corresponding to a force of 1.05x10° N and a stored energy of 3.91x10* J. It should be

noted that different ways of rounding the numbers in the intermediate calculations may
give different answers.



7.57: The two design conditions are expressed algebraically as

ky = f +mg =3.66x10" N (the condition that the elevator remains at rest when the
spring is compressed a distance y; y will be taken as positive) and

Imv’ + mgy — fy = 1kx* (the condition that the change in energy is the work

3.66x10* N

W see = —J¥ ). Eliminating y in favor of k by y ==——— leads to

1(3.66x10" N)* . (1.70x10* N)(3.66 x10* N)

2 k k

(1.96 x10* N)(3.66 x10* N)
p .

=62.5x10% J +

This is actually not hard to solve for £ =919 N/m, and the corresponding x is 39.8 m.
This is a very weak spring constant, and would require a space below the operating range
of the elevator about four floors deep, which is not reasonable. b) At the lowest point, the
spring exerts an upward force of magnitude f + mg . Just before the elevator stops,
however, the friction force is also directed upward, so the net force is

(f+mg)+ f—mg=2f, and the upward acceleration is % =17.0 m/s* .
7.58: One mass rises while the other falls, so the net loss of potential energy is

(0.5000 kg —0.2000 kg)(9.80 m/s>)(0.400 m) =1.176 J.

This is the sum of the kinetic energies of the animals. If the animals are equidistant from
the center, they have the same speed, so the kinetic energy of the combination is 3m

V= 20176 1) =1.83 m/s.
(0.7000 kg)

7.59: a) The kinetic energy of the potato is the work done by gravity (or the potential

energy lost), 2mv’ =mgl, or v=/2gl = \/2(9.80 m/s”)(2.50 m) =7.00 m/s..
b)

2
totv 4

and

2

T—mgzmvT=2mg,

so T = 3mg = 3(0.100 kg)(9.80 m/s>) = 2.94 N.



7.60: a) The change in total energy is the work done by the air,

(K, +U,))— (K, +U)) :m(%(vg _V12)+gy2j

=(0.145 kg)((l/z) ((18.6 m/s) —-(30.0 m/s) ]

—(40.0 m/s)*) +(9.80 m/s’)(53.6 m)
=-80.0 J.

b) Similarly,

(K5 +U;) - (K, +U,)=(0.145 kg)((I/Z)((l 1.9 m/s)” +(-28.7 m/s) }

—(18.6 m/s)?) — (9.80 m/s*)(53.6 m)
=-3131.

¢) The ball is moving slower on the way down, and does not go as far (in the x-direction),
and so the work done by the air is smaller in magnitude.

7.61: a) For a friction force f, the total work done sliding down the pole is mgd — fd .
This is given as being equal to mgh, and solving for f gives

f= mg@ = mg(l —gj

When 4 =d, f =0, as expected, and when 4 =0, f = mg ; there is no net force on the
fireman. b) (75 kg)(9.80 m/s?)(1—+32) =441 N . ¢) The net work done is

25 m

(mg — f)(d — ), and this must be equal to Lmv*. Using the above expression for f;

%mvz —(mg— f)(d~)

= mg(gj(d =)

= mgh[l - %),

from which v =/2gh(1- y/d) . When y =0 v =./2gh , which is the original condition.
When y=d, v =0; the fireman is at the top of the pole.



7.62: a) The skier’s kinetic energy at the bottom can be found from the potential energy
at the top minus the work done by friction,
K, =mgh—W, =(60.0 kg)(9.8 N/kg)(65.0 m)—10.500 J, or
K, =38,200 J—10,500 J = 27,720 J . Then v, = /2 = D = 30.4 mfs.

b) K, +K, =W, +W,)=27,720 ] - (umgd + f,.d), K, =27,720 J -[(.2)(588 N) x
(82 m)+ (160 N)(82 m)], ,or K, =27,720 J -22,763 ] =4957 J . Then,

y, = \/2_K _ 28T D) 55 m/s ~12.9 m/s.
m 60 kg

c¢) Use the Work-Energy Theorem to find the force. W = AKE,
F=KE/d=(4957 J)/(2.5 m) =1983 N ~ 2000 N.

7.63: The skier is subject to both gravity and a normal force; it is the normal force that
causes her to go in a circle, and when she leaves the hill, the normal force vanishes. The
vanishing of the normal force is the condition that determines when she will leave the
hill. As the normal force approaches zero, the necessary (inward) radial force is the radial

component of gravity, or mv’ / R =mg cosa, where R is the radius of the snowball. The
speed is found from conservation of energy; at an angle «, she has descended a vertical
distance R(1—cosa), so +mv’ =mgR(1-cosa), or v> = 2gR(1 —cosa) . Using this in

: . . 2 .
the previous relation gives 2(1 —cos &) = cos a, or a= arccos(gj =48.2°. This result

does not depend on the skier’s mass, the radius of the snowball, or g.

7.64: If the speed of the rock at the top is v;, then conservation of energy gives the
speed v, from Lmv; =1mv’ + mg(2R), R being the radius of the circle, and so

2
mv;

= and

ve =] +4gR . The tension at the top and bottom are found from 7, + mg =

T,—mg =2, 50 T, =T, =% (v —v2) + 2mg = 6mg = 6w

t




7.65: a) The magnitude of the work done by friction is the kinetic energy of the
package at point B, or g, mgL =L+mv;, or

_ 2wy 2480 mfs)” oo
gL (9.80 m/s?)(3.00 m)

k

b)
W,

other — KB - UA
= 1(0.200 kg)(4.80 m/s)? —(0.200 kg)(9.80 m/s>)(1.60 m)

=-0.832 J.

Equivalently, since K, =K, =0, U, +W , +W,. =0, or
W, =-U,—=Wy =mg(—(1.60 m)—-(0.300)(-3.00 m)) =—-0.832 J.

7.66: Denote the distance the truck moves up the ramp by x. K, = Lmv;,
U =mgLsina, K, =0, U, =mgxsin f and W, =—pu mgxcos . From
W =K, +U,)—(K,+U,), and solving for x,
oo Kit+mglsina _ (v2/2g)+ Lsin a
mg(sin S+ . cosf)  sin S+ u cosfB

7.67: a) Taking U(0) =0,
U(x) = j(:dex = %xz +§x3 = (30.0 N/m)x’ +(6.00 N/m’)x".

b)
K,=U-U,
= ((30.0 N/m)(1.00 m)* +(6.00 N/m*)(1.00 m)*)
—((30.0 N/m)(0.50 m)* + (6.00 N/m?)(0.50 m)*)
=27.751,
and so v, = [ 35 = 7.85 m/s .

7.68: The force increases both the gravitational potential energy of the block and the
potential energy of the spring. If the block is moved slowly, the kinetic energy can be
taken as constant, so the work done by the force is the increase in potential energy,

AU =mgasin 0 ++k(a)® .



7.69: With U, =0, K, =0, K, =+mv; =U, =Lk’ + mgh , and solving for v,

e /(1900 N/m)(0.045 m)? ) ~
v, _\/ -+ 2g) _\/ 0150 ke) +2(9.80 m/s*)(1.20 m) =7.01 m/s

7.70: a) In this problem, use of algebra avoids the intermediate calculation of the spring
constant k. If the original height is /# and the maximum compression of the spring is d,

then mg(h+d)=-1kd’. The speed needed is when the spring is compressed <, and from
conservation of energy, mg(h +d/2) —Lk(d/2)* =L mv* . Substituting for k in terms of

h+d,
2 4 2

which simplifies to
) 3 1
v = Zg(zh +Zdj.
Insertion of numerical values gives v =6.14 m/s. b) If the spring is compressed a
distance x, 1 kx* = mgx, or x =22% _ Using the expression from part (a) that gives k in
terms of 4 and d,
d’ d’

= =0.0210 m.
2mg(h+d) h+d

x=(12mg)

7.71:  The first condition, that the maximum height above the release point is 4, is
expressed as 1 kx” = mgh . The magnitude of the acceleration is largest when the spring is
compressed to a distance x; at this point the net upward force is kx —mg =ma , so the
second condition is expressed as x = (m/k)(g +a) . a) Substituting the second expression
into the first gives

1 (mY m(g +a)’
—k(—j (¢ +a)’ =mgh, or k="28T4
2k 2gh

2gh
g+a *

b) Substituting this into the expression for x gives x =




7.72: Following the hint, the force constant £ is found from w=mg =kd , or k ==¢.
When the fish falls from rest, its gravitational potential energy decreases by mgy; this
becomes the potential energy of the spring, which is 1 ky* = 1% 3*  Equating these,

lEyz =mgy, or y=2d.

2.d

9.73: a) Aa,, =o’r— o = (0" —w))r

=[o-w][o+o,]r

2[03—;90} [(0+w,)t]r
=[a][2(0-6,)r.

b) From the above,

2 2
_Ad,, _(85.0m/s’ —25.0m/s’) _ 2.00m/s".
2A0 2(15.0 rad)

ar

c¢) Similar to the derivation of part (a),

AK = %wzl - %wﬁ = %[a][ZAQ]] = JaA®.

d) Using the result of part (c),

AK (45.07-20.07)

I: = P :0208 kg~m2.
aA®  ((2.00 m/s*)/(0.250 m)X15.0 rad)




7.74: a) From either energy or force considerations, the speed before the block hits the
spring is
V= \/2gL(sint9 — M, cos )

= /2(9.80 m/s>)(4.00 m)(sin 53.1° - (0.20) cos 53.1°)

=7.30 m/s.
b) This does require energy considerations; the combined work done by gravity and
friction is mg(L +d)(sin 6 — g, cos ), and the potential energy of the spring is 1 kd >,

where d is the maximum compression of the spring. This is a quadratic in d, which can be
written as
d’ k
2mg(sin@ — p, cos )

-d-L=0.

1

The factor multiplying d” is 4.504 m~
d =1.06 m. c) The easy thing to do here is to recognize that the presence of the spring
determines d, but at the end of the motion the spring has no potential energy, and the
distance below the starting point is determined solely by how much energy has been lost
to friction. If the block ends up a distance y below the starting point, then the block has
moved a distance L +d down the incline and L +d — y up the incline. The magnitude of

, and use of the quadratic formula gives

the friction force is the same in both directions, £, mg cos@, and so the work done by
friction is — 4 (2L + 2d — y)mg cos 6 . This must be equal to the change in gravitational
potential energy, which is —mgy sin 8. Equating these and solving for y gives
2u,cos L+d) 2u,

y=(L+d)— = :
sin@ + y, cos@ tan @ + y,

Using the value of d found in part (b) and the given values for x4, and 8 gives
y=132m.

7.75: a) K, =W, —U, =(20.0 N)(0.25 m) — (1/2)(40.0 N/m)(.25 m)* =3.75 J,

SO Vg =4 ﬁf;ff;; =3.87 m/s, or 3.9 m/s to two figures. b) At this point (point C),

K.=0,andso U, =W_,  and x, =—,/ jg;“ﬁ/{; =-0.50 m (the minus sign denotes a

other

displacement to the left in Fig. (7.65)), which is 0.10 m from the wall.



7.76: The kinetic energy K’ after moving up the ramp the distance s will be the energy
initially stored in the spring, plus the (negative) work done by gravity and friction, or

K'= %l’cx2 —mg(sina + u, cosa)s.

Minimizing the speed is equivalent to minimizing K', and differentiating the above
expression with respect to « and setting 4~ =0 gives

0 =-mgs(cosa — p, sina),

or tana = /%k , A= arctan(i} . Pushing the box straight up (& =90°) maximizes the
Hy

vertical displacement A, but not s = A/sin« .

7.77: Let x, =0.18 m, x, =0.71 m. The spring constants (assumed identical) are then
known in terms of the unknown weight w, 4kx, = w. The speed of the brother at a given
height 4 above the point of maximum compression is then found from

%(4k)x22 = %(Kj V' +mgh,
g

or
2
Vi = _(4k)g xi —-2gh= g(x—z - 2hj,

w X,

S0 V= \/(9.80 m/s?) ((0.71 m)*/(0.18 m) —2(0.90 m)) =3.13 m/s, or 3.1 m/s to two
figures. b) Setting v =0 and solving for 4,

2kx; X,
mg 2%,

h:

=1.40 m,

or 1.4 m to two figures. c) No; the distance x; will be different, and the ratio

2 . . .
g = (woxﬂ =X, (1 + 23 m) will be different. Note that on a small planet, with lower g,

X 1 X

x, will be smaller and 4 will be larger.



7.78: a) a, =d’x/dt’ =-dfx, F,=ma, =-mx
a,=d’y/d" =-afy=-dy, F,=ma,=-mdjy

b) U = —Udex+ijdy]=mag[[xdx+jydy]=%mag(x2 +3%)

c)
v, =dx/dt = —x,q sin gyt = —x, @4 (y/ ;)

v, = dy/dt = +y,a cos ayt = +y, @ (x/x,)
(1) When x=x;, and y=0,v =0 and v, = y,q
K:%m(viJrvi):%mygag,U=%a§mx§ andE:K+U=%ma§(x02+yoz)
(i) When x =0 and y = y,, v, =—x,@ and v, =0
K:%wgmxg,uzémagyg andE:K+U=%mag(X§+J’§)

Note that the total energy is the same.

7.79: a) The mechanical energy increase of the car is
K, - K, =1(1500 kg)(37 m/s)* =1.027x10° J.
Let o be the number of gallons of gasoline consumed.
a(1.3x10% 1)(0.15) =1.027x10° J

a =0.053 gallons

b) (1.00 gallons)/a =19 accelerations



7.80: (a) Stored energy = mgh = (pV)gh = pA(l m)gh
= (1000 kg/m*)(3.0x10° m*)(1 m)(9.82)(150 m)
=4.4x10" 7.

(b) 90% of the stored energy is converted to electrical energy, so

(0.90) (mgh) =1000 kW h
(0.90)pV gh =1000 kW h
b (1000 kW h) (35
(0.90)(1000 kg/m*) (150 m) (9.8 m/s?)
=27%x10° m’

Change in level of the lake:
AAR =V,

water

_K_ 2.7x10° m’

== =90x10"m
A 3.0x10° m

Ah

7.81: The potential energy of a horizontal layer of thickness dy, area 4, and height y is
dU =(dm)gy. Let p be the density of water.

dm = pdV = pAdy, so dU = pAgy dy.
The total potential energy U is

U={'dU = pag| ydy=1 pah’
o o 2 )
A=3.0x10° m? and A =150 m, so U =3.3x10" J=9.2x10" kWh.

7.82: a) Yes; rather than considering arbitrary paths, consider that
3
2 R S |
oy 3

b) No; consider the same path as in Example 7.13 (the field is not the same). For this
force, F =0 along Leg 1, F dl =0 along legs 2 and 4, but F-dl 20 along Leg 3.




7.83: a) Along this line, x =y, so F.dl = —ay’dy , and
V2 a
L, F.dy= —Z(y; —yH=-50.6 1.

b) Along the first leg, dy =0 and so F-dl =0. Along the second leg, x =3.00 m,
so F, =—(7.50 N/m%)y’, and

Ly F.dy=—~(7.5/3 N/m*)(y3 - ») =675 I.

c¢) The work done depends on the path, and the force is not conservative.

7.84: a)

Y

-
-

b) (1): x =0 along this leg, so F =0 and W =0. (2): Along this leg, y =1.50 m, so
F -dl =(3.00 N/m)xdx, and W = (1.50 N/m)((1.50 m)>* —0)=3.38 ] (3) F-dl =0, so
W=0@4)y=0,so F =0 and W =0. The work done in moving around the closed path

is 3.38 J. ¢) The work done in moving around a closed path is not zero, and the force is
not conservative.



7.85: a) For the given proposed potential U(x), —<% = —kx + F', so this is a possible

potential function. For this potential, U(0) = —F” / 2k , not zero. Setting the zero of

potential is equivalent to adding a constant to the potential; any additive constant will not
change the derivative, and will correspond to the same force. b) At equilibrium, the force

is zero; solving —kx+ F =0 for x gives x, = F/k. U(x,) = —F*/k, and this is a
minimum of U, and hence a stable point.

c)

15 \

10 \

"
5
L /
—4 -2 0 2 4

d) No; F,,, =0 at only one point, and this is a stable point. e) The extreme values of x

correspond to zero velocity, hence zero kinetic energy, so U(x,) = E, where x, are the
extreme points of the motion. Rather than solve a quadratic, note that
Lk(x—F/k)* = F*/k,so U(x,) = E becomes

2 2
lk(x+_£j =l
Tk k

2
X, —£:i2£,
Tk k
x+=3£ x7=—£.
k k

f) The maximum kinetic energy occurs when U(x) is a minimum, the point x, = F/k
found in part (b). At this point K = E —U = (F2/k)— (- F*/k)=2F*/k , so

v:2F/m.



7.86: a) The slope of the U vs. x curve is negative at point 4, so F_ is positive (Eq.

(7.17)). b) The slope of the curve at point B is positive, so the force is negative. c¢) The
kinetic energy is a maximum when the potential energy is a minimum, and that figures to
be at around 0.75 m. d) The curve at point C looks pretty close to flat, so the force is
zero. ¢) The object had zero kinetic energy at point 4, and in order to reach a point with
more potential energy than U(A), the kinetic energy would need to be negative. Kinetic
energy is never negative, so the object can never be at any point where the potential
energy is larger than U(A4). On the graph, that looks to be at about 2.2 m. f) The point of
minimum potential (found in part (c)) is a stable point, as is the relative minimum near
1.9 m. g) The only potential maximum, and hence the only point of unstable equilibrium,
is at point C.



7.87: a) Eliminating # in favor of « and x,(8 = a/x,),

a f ax, a alfx P (x
U(x):_z__:_z_g__:_z{[_OJ _[_Oj:l'
XTx x; x0T xgx x,|\x X

U(xy) =4%(1-1)=0. U(x) is positive for x <x, and negative for x > x, (« and S

must be taken as positive).

0.5 /
0.4

0.1

O \/(nf:} ((%j_[%n |

The proton moves in the positive x-direction, speeding up until it reaches a maximum
speed (see part (c)), and then slows down, although it never stops. The minus sign in the
square root in the expression for v(x) indicates that the particle will be found only in the

b)

region where U <0, that is, x > x,.

¢) The maximum speed corresponds to the maximum kinetic energy, and hence the
minimum potential energy. This minimum occurs when 4% =0, or

3 2
v _a, {_2@} +(x_j }:o,
dx  x, X X
which has the solution x =2x,. U(2x,) =—-%,s0 v=_[/-%;. d) The maximum speed

4x; 2mxg '

occurs at a point where <2 = 0, and from Eq. (7.15), the force at this point is zero. )
. ———
X =3x,, and UGx,) = ~3:v(0) = Z 0 (0) ~U() = |37 2] (] —= )=

\/ 2e ((ﬁ)— (x_;)z -2/ 9). The particle is confined to the region where U(x) <U(x,). The

mxy \\ X




Capitulo 8



8.1: a) (10,000 kg)(12.0m/s) =1.20x10° kg - m/s.
b) (i) Five times the speed, 60.0m/s. (i) +/5 (12.0 m/s) = 26.8 m/s.

8.2: See Exercise 8.3 (a); the iceboats have the same kinetic energy, so the boat with the
larger mass has the larger magnitude of momentum by a factor of +/(2m)/(m) = V2.

1 1 2.2 1 2
8.3: a) K=—m? ="V P
2 2 m 2 m
pi _Ds
b) From the result of part (a), for the same kinetic energy, £ = ~2 , so the larger mass
mm

baseball has the greater momentum; (p,,, / po. ) = 4/0.040/0.145 = 0.525. From the result
of part (b), for the same momentum K, m, = K,m,, so K,w, = K,w,; the woman, with the
/K oman ) = 450/700 = 0.643.

man

smaller weight, has the larger kinetic energy. (K

woman

8.4: From Eq. (8.2),

p, =mv, =(0.420kg)(4.50 m/s)cos 20.0° = 1.78 kg m/s
p, =mv, =(0.420kg)(4.50 m/s)sin 20.0° = 0.646 kg m/s.

8.5: The y-component of the total momentum is
(0.145kg)(1.30 m/s)+(0.0570 kg) (- 7.80 m/s) = —0.256 kg - m/s.
This quantity is negative, so the total momentum of the system is in the — y -direction.

8.6: FromEq. (8.2), p, = —(0.145kg)(7.00 m/s)=-1.015kg - m/s, and
p, =(0.045kg)(9.00 m/s) = 0.405 kg -m/s, so the total momentum has magnitude

p= pr +pl = \/(— 0.405kg-m/s)’ +(-1.015kg-m/s)’ =1.09kg-m/s,

—1.015

and is at an angle arctan (W): —68°, using the value of the arctangent function in the

fourth quadrant (px >0,p, < 0)



8.7: L= W =563 N. The weight of the ball is less than half a newton, so the

weight is not significant while the ball and club are in contact.

8.8: a) The magnitude of the velocity has changed by
(45.0m/s)—(~55.0m/s)=100.0 m/s,

and so the magnitude of the change of momentum

is (0.145 kg) (100.0 m/s) =14.500 kg m/s, to three figures. This is also the magnitude of
the impulse. b) From Eq. (8.8), the magnitude of the average applied force is

14. SOOkgm/s _7 25 % 103 N

2.00x103s

8.9: a) Considering the +x-components,
p, = p, +J =(0.16 kg)(3.00 m/s) + (25.0 N) x (0.05 s) =1.73 kg - m/s, and the velocity is
10.8 m/s in the +x-direction. b) p, =0.48 kg-m/s+ (-12.0 N)(0.05 s) = -0.12

kg-m/s, and the velocity is +0.75 m/s in the —x-direction.

8.10: a) F t=(1.04 x10° kg-m/s)j. b) (1.04x10° kg-m/s) ;.
o)L (()3; 1(;)00kfg;y> j=(1.10m/s)j. d) The initial velocity of the shuttle is not known; the

change in the square of the speed is not the square of the change of the speed.



8.11: a) With ¢, =0,
J = jo F. dt=(0.80x107 N/s)t2 —(2.00x10° N/s?)¢2,
which is 18.8kg-m/s, and so the impulse delivered between =0 and

t, =2.50x107sis (18.8kg-m/s)i. b)
J, =—(0.145kg) (9.80 m/s”)(2.50x107s), and the impulse is

A J :
(-3.55x10" kg-m/s)j  c¢) t" =7.52x10°N, so the average force is

2

(7.52x10°N)i.

d) p,=p +J
= —(0.145kg)(40.0i + 5.0 )m/s + (18.8i —3.55x107* )
=(13.0kg.m/s)i — (0.73 kg.m/s) j.

The velocity is the momentum divided by the mass, or (89.7 m/s)
i—(5.0m/s)j.

8.12: The change in the ball’s momentum in the x-direction (taken to be
positive to the right) is

(0.145 kg) (—(65.0m/s) cos 30° —50.0m/s) = —15.41 kg - m/s, so the x-
component of the average force is

—15.41kg-m/s

1.75x107’s
and the y-component of the force is

- -8.81x10°N,

(0.145kg)(65.0 m/s) sin 30°

- =2.7x10°N.
(1.75%107%s)
. _ [ _ _ B i
8.13: a) J = j Fdt = A(t, =1,)+ (6 =),
or J= A, +(B/3ift, =0. b v=P2-L_-A4,  Bg
m m m 3m



8.14: The impluse imparted to the player is opposite in direction but of

the same magnitude as that imparted to the puck, so the player’s speed is

(0.16kg) (20.0m/s)

5ok = 4-27cm/s, in the direction opposite to the puck’s.

8.15: a) You and the snowball now share the momentum of the snowball

. (0.400kg) (10.0m/s) .
when thrown so your speed is 55020019 = 2-08 cm/s. b) The change in

the snowball’s momentum is (0.400kg) (18.0 m/s) = 7.20kg - m/s), so
your speed is XM — 103 cm/s.

70.0kg

8.16: a) The final momentum is

(0.250 kg)(~0.120 m/s) + (0.350)(0.650 m/s) = 0.1975 kg - m/s,

taking positive directions to the right. a) Before the collision, puck B was
at rest, so all of the momentum is due to puck 4’s motion, and

p _0.1975kg-m/s
m, 0.250kg

Va =

=0.790 m/s.

1 1 1
b) AK=K2—K1=5mAvj2+5va§2—5mAvjl

= %(0.250 kg) (-0.120 m/s)* + % (0.350kg)(0.650 m/s)*

—%(0.250 kg)(-0.7900m/s)’

=-0.0023J



8.17: The change in velocity is the negative of the change in Gretzky’s
momentum, divided by the defender’s mass, or

m
Vg =V =2 (V= V)
mg

756 N
=-5.00 m/s———(1.50m/s—13.0m/s
fs= ooy (-50m/s=13.0m/s)

=4.66 m/s.

Positive velocities are in Gretzky’s original direction of motion, so the
defender has changed direction.

1 1
b) K, - K, =EmA(v/212 _le)"‘EmB(Vtzaz _Vtzn)

_ 1 (756 N)(1.50m/s)* —(13.0m/s)*)
2(9.80m/s?) + (900 N)((4.66 m/s) — (=5.00 m/s)?)
=-6.58kJ.

8.18: Take the direction of the bullet’s motion to be the positive direction. The total
momentum of the bullet, rifle, and gas must be zero, so

(0.00720 kg)(601 m/s —1.85 m/s) + (2.80 kg)(~1.85 m/s) + p,,, =0,

and p, = 0.866 kg- m/s. Note that the speed of the bullet is found by subtracting
the speed of the rifle from the speed of the bullet relative to the rifle.

8.19: a) See Exercise 8.21; v, = (3'°°kg )(0.800 m/s) =3.60 m/s.

1.00 kg

b) (1/2) (1.00kg) (3.60 m/s)’ + (1/2)(3.00 kg)(1.200 m/s)> = 8.64 J.

8.20: In the absence of friction, the horizontal component of the hat-plus-adversary
system is conserved, and the recoil speed is

(4.50kg)(22.0m/s) cos 36.9°
(120 kg)

=0.66 m/s.



8.21: a) Taking v, and v, to be magnitudes, conservation of momentum is

mA
expressed as m,v, =myv,, S0 Vv, =—=V .
B
K, {1/2ymy? m v m
b) 4 _ 4V4 _ 44 _Mp
K

s (U2myi  my((m,/mywv,)? m,

(This result may be obtained using the result of Exercise 8.3.)
8.22:
*“Po decay: *'*Po »>*a+’"'X

Setv, :KE, =%m v

oo

-12
=\/2(1'23XI0 D o 1.92%10" ms

6.65x107" kg

Momentum conservation:

O=m,v,—my,

m(xvot moﬁv(x

(6.65x107" kg)(1.92x10" m/s)
T (210)(1.67x10 7 kg)
=3.65x10° m/s

X




8.23: Let the +x-direction be horizontal, along the direction the rock is thrown.
There is no net horizontal force, so P_ is constant. Let object 4 be you and object B

be the rock.
O0=-m,v, +myv, cos35.0°

v, = myV, ;0535.0 2 11ms
A

8.24: Let Rebecca’s original direction of motion be the x-direction. a) From
conservation of the x-component of momentum,

(45.0kg)(13.0 m/s) = (45.0kg)(8.0m/s)cos 53.1° + (65.0 kg)v_,

So v, =5.67 m/s. If Rebecca’s final motion is taken to have a positive
y -component, then

, :_(45.0kg)(8.0m/s)sm53.1 _ 443ms.
y (65.0kg)

Daniel’s final speed is

\/Vf +v) = \/(5.67 m/s)? + (—4.43m/s)* =7.20 m/s,

and his direction is arctan (%) =—38° from the x -axis, which is 91.1° from the

direction of Rebecca’s final motion.

b) AK = %(45.0 kg) (8.0 m/s)> +%(65.0 kg) (7.195 m/s)? —%(45.0) (13.0m/s)
=—6801.

Note that an extra figure was kept in the intermediate calculation.



8.25: (my,, + my.,)(3.00 m/s) = my, (4.00 m/s) + my_ (2.25m/s), so

my,. (3.00m/s)—(2.25m/s) 0
me, (4.00m/s)—(3.00m/s)

750,

and Kim weighs (0.750)(700 N) =525 N.
8.26: The original momentum is (24,000 kg)(4.00 m/s) =9.60x10" kg-m/s, the
final mass is 24,000 kg +3000 kg = 27,000 kg, and so the final speed is

9.60x10* kg-m/s
2.70x10* kg

=3.56m/s.

8.27: Denote the final speeds as v, and v, and the initial speed of puck 4 as v,, and
omit the common mass. Then, the condition for conservation of momentum is

v, =V, €0s30.0°+v, cos 45.0°
0=v,sin30.0°-v, sin 45.0".

The 45.0° angle simplifies the algebra, in that sin 45.0° = cos 45.0°, and so the
v, terms cancel when the equations are added, giving

v, = Yo
1 £0s30.0° +sin 30.0°

=29.3m/s

From the second equation, v, = % =20.7 m/s. b) Again neglecting the common mass,

K, (/2] +vp) _ (293m/s)* +(20.7m/s)’
K~ 2w (40.0 m/s)?

=0.804,

so 19.6% of the original energy is dissipated.



mvy+myv,

8.28: a) Frommv, + m,v, = myv+m,v = (m, + m,)v,v = . Taking positive

my +m2

velocities to the right, v, =-3.00.m/s and v, =1.20m/s, so v=-1.60m/s.

b) AK = %(0.500 kg +0.250 kg)(—1.60m/s)?

—%(0.500 kg)(-3.00 m/s)* — %(0.250 kg)(1.20m/s)’
=-1.471.

8.29: For the truck, M = 6320kg, and ¥ =10 m/s, for the car, m =1050kg and
v=-15m/s (the negative sign indicates a westbound direction).

a) Conservation of momentum requires (M +m)v' = MV + mv , or

(6320 kg)10m/s) + (1050kg)(—15m/s)

= 6.4 m/s eastbound.
(6320 kg + 1050 kg)

by V= —my _ —(1050kg)(-15 m/s)

=2.5m/s.
M 6320 kg

c) AKE =-281KkJ for part (a) and AKE =—-138kJ for part (b).

8.30: Take north to be the x-direction and east to be the y-direction (these choices are
arbitrary). Then, the final momentum is the same as the intial momentum (for a
sufficiently muddy field), and the velocity components are

b (110kg)(8.8m/s)

: =5.0m/s
(195 kg)

b - (85kg)(7.2m/s) _ 3 1ms,
y (195 kg)

The magnitude of the velocity is then \/(5.0 m/s)® +(3.1m/s)* =5.9m/s, at an angle or

arctan (1)=32° east of north.



8.31: Use conservation of the horizontal component of momentum to find the velocity of
the combined object after the collision. Let +x be south.

P _ is constant gives

X

(0.250 kg)(0.200 m/s) — (0.150 kg)(0.600s) = (0.400 kg)v,
v,, =—10.0cm/s (v, =10.0 cm/s, north)

K, = 1(0.250 kg)(0.2005)" +1(0.150 kg)(0.6005)* = 0.0320 J
K, =1(0.400kg)(0.1005)* =0.0020 ]

AK =K, - K, =—0.0300]

Kinetic energy is converted to thermal energy due to work done by
nonconservative forces during the collision.

8.32: (a) Momentum conservation tells us that both cars have the same change in
momentum, but the smaller car has a greater velocity change because it has a smaller
mass.

MAV =mAv
M
Av (small car) =— AV (large car)
m

3000 kg

= AV =2.5AV (large car)
1200 kg

(b) The occupants of the small car experience 2.5 times the velocity change of
those in the large car, so they also experience 2.5 times the acceleration. Therefore they
feel 2.5 times the force, which causes whiplash and other serious injuries.

8.33: Take east to be the x-direction and north to be the y-direction (again, these choices
are arbitrary). The components of the common velocity after the collision are

, _ (1400kg) (-35.0 km/h) _

’ ~11.67 km/h
(4200 kg)

- (2800kg) (=50.0km/h) _ o, o0, h
(4200 kg)

The velocity has magnitude \/(—1 1.67 km/h)2 +(-33.33 km/h)2 =35.3 km/hand is at a

-33.33

direction arctan (W) =70.7° south of west.



8.34: The initial momentum of the car must be the x-component of the final momentum
as the truck had no intial x-component of momentum, so

px — (mcar + mtruck )V COs e

vCa.r =
mCar mCar
_ 2850kg
16.0m/s ) cos (90° — 24°
950 ke ( /s ) cos ( )
=19.5m/s.
Similarly, v, = fgég (16.0 m/s) sin 66° = 21.9 m/s.

8.35: The speed of the block immediately after being struck by the bullet may be found
from either force or energy considerations. Either way, the distance s is related to the

speed v, by v* =2u.gs. The speed of the bullet is then

m +m
_ block bullet
Voullet = V24,88

Myiet

1.205 kg
=——— > /2(0.20)(9.80m/s°)(0.230 m
soomk\/( )(9.80 m/s%)( )

=229 m/s,

or 2.3x10° m/s to two places.

8.36: a) The final speed of the bullet-block combination is

_12.0x107 kg
~ 6.012kg
Energy is conserved after the collision, so (m +M)gy =+(m+ M W?, and
_1V?1(0.758m/s)?
2g 2(980ms’)

(380 m/s)=0.758 m/s.

=0.0293m =2.93cm.

b) K, =Limv’ =1(12.0x107 kg)(380m/s)’ =866 J.
c) Fromparta), K, =$(6.012kg)(0. 758m/s) =1.731.



8.37: Let +y be north and +x be south. Let vy, and v,; be the speeds of Sam and of
Abigail before the collision. mg =80.0kg, m, =50.0kg, v, =6.00m/s,v,, =9.00 m/s.

P_ is constant gives

mxsvs1 =mgVy, €08 37.0°+m v, cos 23.0°
vg, =9.67 m/s (Sam)

P is constant gives

m,v, =mgVg,sin37.0°-m,v,, sin 23.0°
v, =2.26 m/s (Abigail)

b) K, =1mgv;, +1m v =4101]

K, =1imgvi, +1m i, =3465]

AK =K, -K, =-640]

8.38: (a) At maximum compression of the spring, v, =v,, = V. Momentum conservation
gives (2.00kg)(2.00 m/s) = (12.0 kg)V’
V' =0.333m/s

.1 1
Energy conservation :5 m,v; = 5 (m, +m V> + U

%(2.00 kg)(2.00 m/s)* = %(12.0 kg)(0.333m/s)’ +U,,
U,, =3.33]

(b) The collision is elastic and Egs. (8.24) and (8.25) may be used:

v, ==1.33m/s, v, =+0.67 m/s

8.39: In the notation of Example 8.10, with the smaller glider denoted as A, conservation
of momentum gives (1.50)v,, +(3.00)v,, =—5.40 m/s. The relative velocity has

switched direction, so v ,, —v,, ==3.00 m/s. Multiplying the second of these relations
by (3.00) and adding to the first gives (4.50)v,, =—14.4m/s,orv, =-3.20 m/s, with

the minus sign indicating a velocity to the left. This may be substituted into either relation
to obtain v,, =—0.20m/s; or, multiplying the second relation by (1.50) and subtracting

from the first gives (4.50)v,, =—0.90 m/s, which is the same result.



8.40: a) In the notation of Example 8.10, with the large marble (originally moving to the
right) denoted as 4,(3.00)v,, +(1.00)v,, = 0.200 m/s. The relative velocity has switched

direction, so v, —v,, =—0.600 m/s. Adding these eliminates v,, to give

(4.00)v,, =—-0.400 m/s, or v,, =—0.100 m/s, with the minus sign indicating a final
velocity to the left. This may be substituted into either of the two relations to obtain
v, =0.500 m/s; or, the second of the above relations may be multiplied by 3.00 and

subtracted from the first to give (4.00)v,, =2.00 m/s, the same result.
b) AP, =—-0.009 kg - m/s, AP, =0.009 kg - m/s
C)AK , =—-4.5x10"*,AK, =4.5x107",

Because the collision is elastic, the numbers have the same magnitude.

8.41: Algebraically, v,, = V20 m/s. This substitution and the cancellation of common
factors and units allow the equations in & and f to be reduced to

2=cosa++/1.8cos f
0=sina—+/1.8 sin .

Solving for cosa and sin «, squaring and adding gives

(Z—Jﬁcos ,8)2 +(\/Ksin ,B)2 =1.

Minor algebra leads to cos S = %, or f =26.57°. Substitution of this result into the first

of the above relations gives cos o = %,and o = 36.87°.

8.42: a) Using Eq. (8.24),2+ =142 = 1 D) The kinetic energy is proportional to the

~ lu+2u

square of the speed, so % =4 ¢) The magnitude of the speed is reduced by a factor of

1
3

N, consider

after each collision, so after N collisions, the speed is (%)N of'its original value. To find

N 1
—| = or
3 59,000

3" =59,000
N1In(3) =1In(59,000)
N = In(59,000) _
In(3)
to the nearest integer. Of course, using the logarithm in any base gives the same result.




8.43: a) In Eq. (8.24), let m, =mand m; = M. Solving for M gives

v—v
M=m 4

v+y,

In this case, v=1.50x10’ m/s, andv, =-1.20x10" m/s, with the minus sign indicating
arebound. Then, M = m3 51205 = 9m. Either Eq. (8.25) may be used to find

v, =+=3.00x10° m/s, or Eq. (8.23), which gives

v, =(1.50x10” m/s) + (=1.20x 10" m/s), the same result.

8.44: From Eq. (8.28),

~ (0.30kg)(0.20 m) + (0.40 kg)(0.10 m) + (0.20 kg)(—0.30 m)
- (0.90 kg) -
~(0.30kg)(0.30 m) + (0.40 kg)(~0.40 m) + (0.20 kg)(0.60 m)
- (0.90kg)

cm

+0.044 m,

=0.056 m.

cm

8.45: Measured from the center of the sun,

(1.99 %10 kg)(0) + (1.90x10*" kg)(7.78 10" m)

. . =7.42x10° m.
1.99x10% kg +1.90x10%" kg

The center of mass of the system lies outside the sun.

8.46: a) Measured from the rear car, the position of the center of mass is, from Eq. (8.28),
(1800 kg)(40.0 m)

(1200 kg + 1800 kg)
b) (1200 kg)(12.0 m/s) + (1800 kg)(20.0 m/s) = 5.04 x 10* kg - m/s.
c¢) From Eq.(8.30),

(1200 kg)(12.0 m/s) + (1800 kg)(20.0 m/s)
o (1200 kg + 1800 kg)
d) (1200 kg + 1800 kg)(16.8 m/s) = 5.04 x 10* kg - m/s.

=24.0m, which is 16.0 m behind the leading car.

=16.8m/s.



8.47: a) With x, =0 in Eq. (8.28),

m, = m,((x,/x,.)—1) = (0.10kg)((8.0 m)/(2.0m) — 1) = 0.30 kg.

b) P=Mva = (040kg)(5.0m/s)i = (2.0kg - m/s)i. ¢) In Eq. (8.32),
v ,=0,50% ,= P/(0.30kg) = (6.7m/s)i.

8.48: As in Example 8.15, the center of mass remains at rest, so there is zero net
momentum, and the magnitudes of the speeds are related by m,v, = m,v,, or

v, =(m,/m,)v, =(60.0kg/90.0 kg)(0.70 m/s) = 0.47 m/s.

8.49: See Exercise 8.47(a); with y, =0, Eq. (8.28) gives m;, =m,((y,/y.,,)—1) =
(0.50kg)((6.0m)/(2.4m) —1) = 0.75 kg, so the total mass of the system is 1.25 kg.

b) a, =4v, =(1.50m/s’)z.
¢) F=mad, =(1.25kg)(1.50m/s*)(3.05)i =(5.63 N)i.
8.50: p =0,s0F,=0. The x -component of force is

dp
F =—==(-1.50N/s)t.
4 ( /s)

X

F =P

; =0.25N
dt

8.51: a) From Eq. (8.38), F = (1600 m/s)(0.0500 kg/s) = 80.0 N. b) The absence of
atmosphere would not prevent the rocket from operating. The rocket could be steered by
ejecting the fuel in a direction with a component perpendicular to the rocket’s velocity,
and braked by ejecting in a direction parallel (as opposed to antiparallel) to the rocket’s
velocity.



8.52: It turns out to be more convenient to do part (b) first; the thrust is the force that
accelerates the astronaut and MMU, F =ma = (70kg +110kg)(0.029 m/s*) =5.22 N.

a) Solving Eq. (8.38) for |dm

b

_Fdi _(522N)(5.05) _

dm 53gm
g Vo, 490 m/s s
8.53: Solving for the magnitude of dm in Eq. (8.39),
2
|dm | =" a1 = (6000 kg)(25.0m/s*) (1s) = 75.0 ke.

v (2000 m/s)

ex

8.54: Solving Eq. (8.34) for v, and taking the magnitude to find the exhaust speed,
Ve =g = (15.0 m/sz) (160 s)= 2.4km/s. In this form, the quantity s

approximated by /7~ = At =160 s.

Am/At

8.55: a) The average thrust is the impulse divided by the time, so the ratio of the average

. . 10.0N-
thrust to the maximum thrust is ﬁ

(8.38), v, =L4 =1008s 800 m/s. c¢) Using the result of part (b) in Eq. (8.40),

T Jdm] T 0.0125kg

v=(800m/s) In(0.0258/0.0133) = 530m/s.

=0.442. b) Using the average force in Eq.

8.56: Solving Eq. (8.4) for the ratio =, with v, =0,

Mo exp| ] = exp| 3:00KM/S | _ys
m v 2.10 km /s

€X

8.57: Solving Eq. (8.40) for .-, the fraction of the original rocket mass that is not fuel,

m \%
— =CXp|——"
mO vex

a) For v=1.00x107¢ =3.00x10° m/s,exp(— (3.00 x 10° m/s/(2000m/s)) = 7.2x 107,
b) Forv =3000m/s, exp(—(3000 m/s)/(2000 m/s)) = 0.22.



8.58: a) The speed of the ball before and after the collision with the plate are found
from the heights. The impulse is the mass times the sum of the speeds,

J =m(v, +v,) = m(\2gy, ++/2gy, ) = (0.040kg)/2(9.80m/s (\/Z.OOm +J1.60m)=0.4'.

b)L =(0.47 N -s/2.00x107s) =237 N.

8.59: p=[Fdt=(af’[3)j+(Bt+y/2)j=@833N/s’t')i +(30.0Nt +2.5N/st")
After 0.500's, p=(1.04kg-m/s)i +(15.63kg-m/s) ], and the velocity is
v = p/m=(0.52m/s)i +(7.82m/s)3].

8.60: a) J,=Ft=(-380N)(3.00x107s) =—1.14 N-s.

J,=F,t=(110N)(3.00x107s) = 0.33 N s,

~1.14N.
b) vy, = v, +J /m=(20.0m/s)+ C 56(() ST 8;)m Ee 0.05m/s
vy, =V, +Jy/m=(—4.0m/s)+ (033N.5) =1.78m/s.

((0.560 N)/(9.80m/s%))

8.61: The total momentum of the final combination is the same as the initial momentum;
for the speed to be one-fifth of the original speed, the mass must be five times the original
mass, or 15 cars.

8.62: The momentum of the convertible must be the south component of the total
momentum, SO

_ (800kg - m/s)cos 60.0°

Veon =2.67 m/s.
(1500 kg)
Similarly, the speed of the station wagon is
_ (800kg - m/s) sin 60.0 _346mps.

A%
w (2000 kg)



8.63: The total momentum must be zero, and the velocity vectors must be three vectors of
the same magnitude that sum to zero, and hence must form the sides of an equilateral
triangle. One puck will move 60° north of east and the other will move 60° south of east.

8.64: aym v, +myv, +m.v. =m,yv,_,therefore

tot " x

_ (0.100kg)(0.50 m/s) —(0.020 kg)(—1.50 m/s) — (0.030 kg)(—0.50m/s)cos60°

« 0.050kg
v, =1.75m/s
Similarly,
_ (0.100kg)(0m/s) — (0.020kg)(0 m/s) — (0.030 kg)(~0.50m/s)sin 60°
@ 0.050 kg
Ve, =0.26m/s
b)

AK =1(0.100 kg)(0.5m/s)* - 1(0.020 kg)(1.50 m/s)* — 1 (0.030 kg)(~0.50m/s)’
~1(0.050 kg) x[(1.75 m/s)* + (0.26 m/s)*] = —0.092 J

8.65: a) To throw the mass sideways, a sideways force must be exerted on the mass, and
hence a sideways force is exerted on the car. The car is given to remain on track, so some
other force (the tracks on the car) act to give a net horizontal force of zero on the car,
which continues at 5.00 m/s east.

b) If the mass is thrown with backward with a speed of 5.00 m/s relative to the initial
motion of the car, the mass is at rest relative to the ground, and has zero momentum. The

speed of the car is then (5.00 m/s)%gg—kkg% =5.71m/s, and the car is still moving east.

¢) The combined momentum of the mass and car must be same before and after the

mass hits the car, so the speed is Z2kel5.00 m/(sz);(fg;) ke)600mis) — 3 78 m/s, with the car still

moving east.



8.66: The total mass of the car is changing, but the speed of the sand as it leaves the car
is the same as the speed of the car, so there is no change in the velocity of either the car

or the sand (the sand acquires a downward velocity after it leaves the car, and is stopped
on the tracks affer it leaves the car). Another way of regarding the situation is that v_ in

Equations (8.37), (8.38) and (8.39) is zero, and the car does not accelerate. In any event,
the speed of the car remains constant at 15.0 m/s. In Exercise 8.24, the rain is given as
falling vertically, so its velocity relative to the car as it hits the car is not zero.

8.67: a) The ratio of the kinetic energy of the Nash to that of the Packard is

2 2
TN (i?oigg))(é?;))z =1.68. b) The ratio of the momentum of the Nash to that of the
mpvp
Packard is X* = ((114200%;)((9;12) =0.933, therefore the Packard has the greater magnitude

of momentum. c¢) The force necessary to stop an object with momentum P in time ¢ is
F =-P/t. Since the Packard has the greater momentum, it will require the greater force
to stop it. The ratio is the same since the time is the same, therefore F,, /F, = 0.933. d)

By the work-kinetic energy theorem, F' = 4t . Therefore, since the Nash has the greater

kinetic energy, it will require the greater force to stop it in a given distance. Since the
distance is the same, the ratio of the forces is the same as that of the kinetic energies,
F,/F,= 1.68.

8.68: The recoil force is the momentum delivered to each bullet times the rate at which
the bullets are fired,

1000 bullets/min
60 s/ min

F. .= (7.45x107° kg) (293 m/s)( j =364 N.



8.69: (This problem involves solving a quadratic. The method presented here formulates
the answer in terms of the parameters, and avoids intermediate calculations, including
that of the spring constant.)

Let the mass of the frame be M and the mass putty be m. Denote the distance that the
frame streteches the spring by xo, the height above the frame from which the putty is
dropped as % , and the maximum distance the frame moves from its initial position (with
the frame attached) as d.

The collision between the putty and the frame is completely inelastic, and the

common speed after the collision is v, =+/2gh ——. After the collision, energy is

conserved, so that

%(m+M)v§ +(m+M)gd =%k((d+x0)2 —x,, or

1w’ 1 mg , 2
29+ (m+M)gd =——=((d + x,)" — x; ,
2erM(g) ( )g 2xo(( ) =X

where the above expression forv, , and k = mg/x, have been used. In this form, it is seen

that a factor of g cancels from all terms. After performing the algebra, the quadratic for d
becomes

d> - d(2x0 ﬁj — 2hx, =0,
M
which has as its positive root

e (z} J(m) +21(m_2j |
M M X, \M(m+ M)

For this situation, m = 4/3 M and h/xo= 6, so

d=0.232m.



8.70: a) After impact, the block-bullet combination has a total mass of 1.00 kg, and the

speed ¥ of the block is found fromi M V> =L1kX? orV = \/%X . The spring constant k

is determined from the calibration; k = —2%—=300N/m. Combining,

y= P2ONM G5 6102 m)=2.60 m/s.
1.00 kg

b) Although this is not a pendulum, the analysis of the inelastic collision is the same;

M - 1.00Kg

V= =
m 8.0x107° Kg

(2.60m/s)=325m/s.

8.71: a) Take the original direction of the bullet’s motion to be the x-direction,

and the direction of recoil to be the y-direction. The components of the stone’s velocity
after impact are then

-3
v, = 6.00x10 " Kg (350 m/s)=21.0m/s,
0.100Kg

Vy

-3
_ (600107 K Yos ) 15 0mys,
0.100Kg

and the stone’s speed is \/(21.0 m/s)’ +(15.0m/s)* = 25.8m/s, at an angle of arctan

15.0

150)=355° b) K, =1(6.00x107 kg)(350 m/s)* =368 J
21.0 2

K, =1(6.00x107 kg)250 m/s)* +1(0.100 kg)(25.8 m? /s> ) = 2211, s0 the collision is
not perfectly elastic.



8.72: a) The stuntman’s speed before the collision is vy, =+/2gy =9.9m/s. The speed
after the collision is

m _ 80.0kg

S

Vos =
m,+m, 0.100 kg

V=

(9.9m/s)=5.3m/s.

b) Momentum is not conserved during the slide. From the work-energy theorem, the
distance x is found from Lm, v = y,m,,gx, or

2 2
. Voo (5.28m/s) 57m.

“2u,  2(025f9.80m/s’)

Note that an extra figure was needed for V' in part (b) to avoid roundoff error.

8.73: Let v be the speed of the mass released at the rim just before it strikes the second
mass. Let each object have mass m.

Conservation of energy says 2mv’ =mgR; v = \/ﬁ

This is speed v, for the collision. Let v, be the speed of the combined object just after
the collision. Conservation of momentum applied to the collision
givesmv, =2mv, so v, = v1/2 =,/ gR/2

Apply conservation of energy to the motion of the combined object after the collision.
Let y, be the final height above the bottom of the bowl.

%(Zm)vzz = (Zm)gy3

2
y3:v_z:L[ﬂj:R/4
2g 2g\ 2

Mechanical energy is lost in the collision, so the final gravitational potential energy is
less than the initial gravitational potential energy.



8.74: Collision: Momentum conservation gives

mvy, =mvy, +(3m)v,

1
Vo =V, +3v, M
Energy Conservation:
lmvé = lmvl2 + l(?am)v32
2 2 2 2)

22 2
vy =V, +3v;

Solve (1) and (2) for v, : v, =2.50 m/s
Energy conservation after collision:

%(sm)v; — (3m)gh = (3m)gi(1 - cosf)

Solve for 8 :6 = 68.8°

8.75: First consider the motion after the collision. The combined object has mass
m,, =25.0 kg. Apply SF =md to the object at the top of the circular loop, where the
object has speed v, .
2
v
T+mg=m—=
& R
The minimum speed v, for the object not to fall out of the circle is given by setting

T =0. This gives v, =/ Rg, where R =3.50m.

Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at
the top of the loop. Take y =0 at the point 2. Only gravity does work, so

K,+U,=K;+U,
%mtotvj = %mtotvg + mtotg(zR)
Usev, =+/Rg and solve forv, :v, =,/5gR =13.1m/s

Now apply conservation of momentum to the collision between the dart and the
sphere. Letv, be the speed of the dart before the collision.

(5.00kg), = (25.0kg)(13.1m/s)
v,=65.5m/s



8.76: Just after the collision: ZF =ma
T

mgg
2
Vg
T —mgg =my E

2
Vs

1600N — (8.00 kg)(9.80m/s?)=(8.00 k)t
. m

v, =16.0m/s

Energy and momentum are conserved during the elastic collision.

m,v, =m,v, + mgVvg
(2.00kg)v, = (2.00kg)v, +(8.00 kg)16.0 m/s)

v, =V, +64.0m/s (1)
1 1
Emzvg = Emzvj +Em8v82
(2.00kg)ve = (2.00kg)v: +(8.00kg)16.0m/s)’
vZ =v? +1024m?/s’ ()

Solve (1) and (2) for v, :v, =40.0m/s

8.77: a) The coefficient of friction, from either force or energy consideration, is

w =V’ /2gs, where v is the speed of the block after the bullet passes through. The speed
of the block is determined from the momentum lost by the bullet,

(4.00 x107 kgx280 m/ s) =1.12kg- m/s,and so the coefficient of kinetic friction is

_ ((L12kg -mys)/(0.80kg))
b os0m/s Joasm)

b) %(4.00 x107° ng(4OO rn/s)2 - (120 m/s)2 )z 291 J. c) From the calculation of the

2 .m/s 2
momentum in part (a), the block’s initial kinetic energy was <—= % =0.7841.

2m



8.78: The speed of the block after the bullet has passed through (but before the block has
begun to rise; this assumes a large force applied over a short time, a situation
characteristic of bullets) is

V =2y =/2(9.80 m/s*)(0.45x10* m) = 0.297 m/s.

The final speed v of the bullet is then

M
v = ya — va—V =V, —MV
m m m
— 450 m/s —Lk_g}(o.zw m/s) = 390.6 m/s,
5.00x107" kg

or 390 m/s to two figures.

8.79: a) Using the notation of Eq. ( 8.24),

1 1
K,-K, :Emv2 —Emvj

1 2[ (m—Mﬂ
=—mv'|1-
2 m+M
:K{(nH—M)z—(m—M)z]
(m+M)>

(m+M)>

b) Of the many ways to do this calculation, the most direct way is to differentiate the
expression of part (a) with respect to M and set equal to zero;

d M
0=(4mK ,
(4 O)dM((m+M)2j°r
1 2M
0= -
(m+M)* (m+M)°
O=(m+M)-2M
m=M.

c¢) From Eq.(8.24), with m, =m, =m, v, =0; the neutron has lost all of its kinetic
energy.



8.80: a) From the derivation in Sec. 8.4 of the text we have

M, -M 2M
:MVO and VB - " A
M, +M, M, +M,

A

The ratio of the kinetic energies of the two particles after the collision is

2 2
;MAV:_%(Q] :MA(MA_MB] :(MA_MB)2

IME T Mg\ V) Mg\ 2M, AM M,
2
or KE, = KE, (M, =My)”
4M M,

b) i) For M, =M,,KE, =0; i.e., the two objects simply exchange kinetic energies.

1) ForM, =5M,
KE,  (4M})° _4
KE, 4(SMy)My) 5

Le., M, gets 4/9 or 44% of the total.

¢) We want

KE, | _(M,~M,)* _M:-2M,M,+M;
KE, 4M M, 4M M,

which reduces to
M;-6M,M,+M; =0,

from which, using the quadratic formula, we get the two possibilities M, =5.83 M, and

M, =0172M,



8.81: a) Apply conservation of energy to the motion of the package from point 1 as it
leaves the chute to point 2 just before it lands in the cart. Take y = 0 at point 2, so y; =
4.00 m. Only gravity does work, so

K +U =K,+U,

1 2 _1 2
Smy; +mgy, =5 mv,
v, =i +2gy, =9.35m/s

b) In the collision between the package and the cart momentum is conserved in the
horizontal direction. (But not in the vertical direction, due to the vertical force the floor
exerts on the cart.) Take +x to be to the right. Let A4 be the package and B be the cart.

P, is constant gives
My, +mgvg =(m, +Mpy)v,,
Ve, =—5.00m/s

V. =(3.00m/s) cos 37.0° ( The horizontal velocity of the package is constant during
its free-fall.)

Solving for v, gives v, =-3.29m/s. The cart is moving to the left at 3.29 m/s after
the package lands in it.

8.82: Even though one of the masses is not known, the analysis of Section (8.4) leading
to Eq. (8.26) is still valid, and v, =0.200m/s +0.050 m/s =0.250 m/s. b) The mass
m,_, may be found from either energy or momentum considerations. From momentum

conservation,
~(0.040 kg)(0.200 m/s — 0.050 m/s)

(0.250 m/s)

=0.024 kg.

red

As a check, note that

K, =1(0.040kg)(0.200 m/s)* =8.0x10™* J,and
K, =1(0.040 kg)(0.050 m/s)* +1(0.024 kg)(0.250 m/s)* =8.0x107* J,

so K, = K,, as it must for a perfectly elastic collision.



8.83: a) In terms of the primed coordinates,

2 ed ] = =/ =
vi=0i+v )V, +Vv,)
— VB 425
_vA vA cm vcm A cm

12 2 = =
=V, v, +2v, v,

with a similar expression for v;. The total kinetic energy is then

1
K= EmAvj +Em3v§

1 2 2 ~ = 1 2 2 ~ =
ZEmA(vL1 +v,, +2v;-vcm)+5m3(vj3 +v,, +2v;-vcm)

1 o .
= E(mA +my )chm + E(’”AVA2 + vaBz)

U P
+ Z[mAvA V., +mgy, -ch]-

The last term in brackets can be expressed as
., e
2(WlAvA + mB vB) ’ vcm’
and the term
== e nd nd e
MV + mpVy=m;v,+mpvy—(m,+my)v,

=0,

and so the term in square brackets in the expression for the kinetic energy vanishes,
showing the desired result. b) In any collision for which other forces may be neglected
the velocity of the center of mass does not change, and the LMV’ in the kinetic energy
will not change. The other terms can be zero (for a perfectly inelastic collision, which is
not likely), but never negative, so the minimum possible kinetic energy is %vam.

8.84: a) The relative speed of approach before the collision is the relative speed at which
the balls separate after the collision. Before the collision, they are approaching with
relative speed 2 v, and so after the collision they are receding with speed 2v . In the limit
that the larger ball has the much larger mass, its speed after the collision will be
unchanged (the limit as m, >> m in Eq. (8.24)), and so the small ball will move upward

with speed 3v. b) With three times the speed, the ball will rebound to a height time
times greater than the initial height.



8.85: a) If the crate had final speed v, J&J have speed 4.00 m/s — v relative to the ice,
and so (15.0kg)v = (120.0 kg)(4.00 m/s —v). Solving forv,y = 2N _ 3 561/,

(135.0kg)
b) After Jack jumps, the speed of the crate is ((17355'%';% (4.00m/s) =2.222m/s, and the
momentum of Jill and the crate is 133.3kg-m/s . After Jill jumps, the crate has a speed v
and Jill has speed 4.00 m/s —v, and so
133.3kg-m/s = (15.0 kg)v — (45.0 kg)(4.00 m/s —v), and solving for v gives
v=5.22m/s. c) Repeating the calculation for part (b) with Jill jumping first gives a final
speed of 4.67 m/s.




8.86: (a) For momentum to be conserved, the two fragments must depart in opposite
directions. We can thus write
MV, =-MyV

Since M, =M — M, we have
(M —My)V, =-MpVy

Voo —Ms
Ve M-M,
Then for the ratio of the kinetic energies
KE, MV M, M, M,

KEB %MBVBZ MB (M_MB)2 _MA

The ratio of the KE’s is simply the inverse ratio of the masses.
From the two equations

KE, = AAjB KE, and KE, + KE, =Q

A

We can solve for KE; to find

M
KE,=0-KE,=0Q| 1-——2—
o= 0=, =1 M

KEB: QM — QMA
1+5° My+M,
(b) If M, =4M , ,then M, will get 4 times as much KE as M, or 80% of Q for
M , and 20% for M.




8.87: Let the proton be moving in the + x -direction with speed v, after the decay. The

initial momentum of the neutron is zero, so to conserve momentum the electron must be
moving in the — x -direction after the collision; let its speed be v,.
P_is constant gives 0= —m,v, + m,v,.
v, =(m,[m,)v - p
The total kinetic energy after decay is K, = $m,v; ++m,v’ . Using the
=tmyv: (1+ m,/m,).

momentum equation to replace v, gives K,

K, 1 1 .
Thus = = =5.44x10" =0.0544 %
I+m,/m, 1836

tot

8.88: The ratios that appear in Eq. ( 8.42) are 247¢ and -, so the kinetic energies are

a) 20076 (6,54 x107°J)=1.13x10™* Jand b) == (6.54 x107°J) = 6.43x 107" J.

1.0176 1.0176

Note that the energies do not add to 6.54x107"J exactly, due to roundoff.

8.89: The “missing momentum” is
5.60x10 kg-m/s —(3.50x10kg)(1.14x10°> m/s) =1.61x10" kg -m/s .

Since the electron has momentum to the right, the neutrino’s momentum must be to the
left.



8.90: a) For the x-and y - directions, respectively, and m as the common mass of a
proton,

my ,, = my,, cosa +my, cos f3

0= mv,,sina— mvy,sin f
or

V, =V, CoSa+Vy, cos f

0=v,sina—v,,sinp.

b) After minor algebra,

Vv =V, + V2, +2v,,v,,(cos @ cos B —sin a sin )

=V, + Vi, + 2V ,V,, cos(a + B).
c¢) For a perfectly elastic collision,

1 1
2 _ 2 2 2 _ .2 2
—mvy, —Evaz +EmvB2 Or Vi, =V, +Vp,.

2

Substitution into the above result gives cos(a +3) =0.d) The only positive angle with
zero cosine is 5(90°).

8.91: See Problem 8.90. Puck B moves at an angle 65.0°(i.e. 90° —25° = 65°) from the
original direction of puck 4’s motion, and from conservation of momentum in the
y-direction, v,, =0.466v ,,. Substituting this into the expression for conservation of

momentum in the x —direction, v,, = v, /(c0s25.0° + 0.466c0s65°) =13.6 m/s , and so
vy, = 6.34 m/s.

As an alternative, a coordinate system may be used with axes along the final directions
of motion (from Problem 8.90, these directions are known to be perpendicular). The
initial direction of the puck’s motion is 25.0° from the final direction, so
V,, =V, c0s25.0°%ndv,, =v, c0s65.0, giving the same results.



8.92: Since mass is proportional to weight, the given weights may be used in determining
velocities from conservation of momentum. Taking the positive direction to the left,

e (800 N)(5.00 m/s) cos 30.0° — (600 N)(7.00 m/s) cos 36.9°
1000 N

=0.105m/s

8.93: a) From symmetry, the center of mass is on the vertical axis, a distance
(L/2)cos(a/2) from the apex. b) The center of mass is on the (vertical) axis of
symmetry, a distance 2(L/2)/3 = L/3 from the center of the bottom of the |_| c¢) Using
the wire frame as a coordinate system, the coordinates of the center of mass are equal,
and each is equal to (L/2)/2 = L/4. The distance of this point from the corner is

(1/ V8 )L =(0.353)L. This may also be found from consideration of the situation of part
(a), with a =45° d) By symmetry, the center of mass is in the center of the equilateral

triangle, a distance (L/2)(tan60°) = L/ V12 = (0.289)L above the center of the base.

8.94: The trick here is to notice that the final configuration is the same as if the canoe
(assumed symmetrical ) has been rotated about its center of mass. Intially, the center of

(45.0kg) (1.5m)

G5k = 0-643 m from the center of the canoe, so in rotating about

mass is a distance

this point the center of the canoe would move 2x0.643 m=1.29 m.

8.95: Neglecting friction, the total momentum is zero, and your speed will be one-fifth of
the slab’s speed, or 0.40 m/s.



8.96: The trick here is to realize that the center of mass will continue to move in the
original parabolic trajectory, “landing” at the position of the original range of the
projectile. Since the explosion takes place at the highest point of the trajectory, and one
fragment is given to have zero speed after the explosion, neither fragment has a vertical
component of velocity immediately after the explosion, and the second fragment has
twice the velocity the projectile had before the explosion. a) The fragments land at
positions symmetric about the original target point. Since one lands at £ R, the other
lands at

3. 3y . ~ 3 (80m/s)’

—R=——"sin20, = >—sin120° = 848 m.

2 2 g 2 (9.80m/s”)
b) In terms of the mass m of the original fragment and the speed v before the explosion,
K, =1 mand K, =12(2v)’ =mv’,s0 AK =mv’ —2mv’ =Lmv?. The speed v is related
to v, by v=v,cosa,,so

AK = %mvé cos’ oy = %(20.0 kg)(80 m/s)cos 60.0°)> =1.60x10"]J.



8.97: Apply conservation of energy to the explosion. Just before the explosion the sheel
is at its maximum height and has zero kinetic energy. Let 4 be the piece with mass 1.40

kg and B be the piece with mass 0.28 kg. Let v, and v, be the speeds of the two pieces
immediately after the collision.

1 2 1 2 _
Smv, +5myvy =860J

Since the two fragments reach the ground at the same time, their velocitues just
after the explosion must be horizontal. The initial momentum of the shell before the
explosion is zero, so after the explosion the pieces must be moving in opposite horizontal

directions and have equal magnitude of momentum: m v, = m,v,.

Use this to eliminate v, in the first equation and solve for v, :
Lmyve(1+my/m,)=860Jandv, =71.6 m/s.

Thenv, = (my/m,)v, =14.3 m/s.

b) Use the vertical motion from the maximum height to the ground to find the time it
takes the pieces to fall to the ground after the explosion. Take +y downward.

vy, =0,a, =+9.80 m/s’, y -y, =80.0m,7="?

Y=Yo =Vt +%ayt2 givest =4.04s.

During this time the horizontal distance each piece moves is
x,=v,t=57.8mand x, =v,t=289.1m.

They move in opposite directions, so they are x, + x, =347 m apart when they land.



8.98: The two fragments are 3.00 kg and 9.00 kg. Time to reach maximum height = tim
to fall back to the ground.

Ikge22 o 3kg

Vo =V, sin0 — gt
0= (150 m/s)sin55.0° —9.8 m/s’ ¢
t=12.5s.

The heavier fragment travels back to its starting point, so it reversed its velocity.
v, =v,c0s 0= (150 m/s) cos 55° =86.0 m/s to the left after the explosion; this is v,.No

get v, using momentum conversation.
My, = my; + myv,
(12kg)(86.0m/s)=(3.00 kg v, +(9.00kg - 86.0m/s)
v, =602m/s

x = (86.0 m/s)(12.5s) + (602m/s)(12.5)

3 = *Before explosion T ¥ After explosion
x; = 8600m from where it was launched
Energy released = Energy after explosion — Energy before explosion

1 1
:Em3v32 +Em9"§ _E(m3 +m9)V§

= %(3.00 kg)(602 m/s)’ +%(9.00 kg)(86.0 m/s)’

_%(12.0 kg)(86.0 m/s)’

=5.33x10° ]



8.99: The information is not sufficient to use conservation of energy. Denote the emitted
neutron that moves in the + y - direction by the subscript 1 and the emitted neutron that

moves in the —y-direction by the subscript 2. Using conservation of momentum in the x-
and y-directions, neglecting the common factor of the mass of neutron,

ve = (2v,/3)cos10° + v, cos 45° + v,cos 30°
0= (2v,/3)sin 10°+ v, sin 45° —v, sin 30°.

With sin 45° = cos 45°, these two relations may be subtracted to eliminatev, and

rearrangement gives

v,(1—(2/3) cos 10° + (2/3)sin 10°) = v, (cos 30° + sin 30°),

from which v, =1.01x10’ m/sor1.0x10° m/s to two figures. Substitution of this into
either of the momentum relations gives v, =221 m/s. All that is known is that there is no
z - component of momentum, and so only the ratio of the speeds can be determined. The
ratio is the inverse of the ratio of the masses, so v, = (1.5)vy, .

8.100: a) With block B initially at rest, v, =—=—v,, . b) Since there is no net external

my +mb,
force, the center of mass moves with constant velocity, and so a frame that moves with
the center of mass is an inertial reference frame. c) The velocities have only x -
components, and the x -components are

— — m4 — —
Vol =V =——"—u, . Then, P, =mu, +myu, =0.

cm my+mpg 27 cm

— —_ B
Upn =V = Vem = o, vm,
d) Since there is zero momentum in the center-of-mass frame before the collision, there
can be no momentum after the collision; the momentum of each block after the collision

must be reversed in direction. The only way to conserve kinetic energy is if the

momentum of each has the same magnitude so in the center-of-mass frame, the blocks
change direction but have the same speeds. Symbolically, v, =—u ,u,, =—u,, . €) The

velocities all have only x —components; these components are
= 22006 00 m/s =2.00m/s,u, =—32%6.00m/s =—4.00m/s,u ,, =—2.00m/s,u,, = 4.

Ug1 = 0600 0.600
and v, =+2.00 m/s,v,, =8.00 m/s. and Equation (8.24) predicts v,, =+1v,, and Eq.

(8.25) predicts v,, =4u,, , which are in agreement with the above.



8.101: a) If the objects stick together, their relative speed is zero and €=0. b) From Eq.
(8.27), the relative speeds are the same, and e=1. c) Neglecting air resistance, the

speeds before and after the collision are 4/2gh and ,/2gH, , and €= Vj%‘ = JH,/h.d)

From part (c), H, =€’ h=(0.85f (1.2m)=0.87m. ¢) H ,,,=H, €, and by induction
H,=" h. 1) (1.2m)(0.85)"° =8.9cm.

8.102: a) The decrease in potential energy (— A< 0) means that the kinetic energy
increases. In the center of mass frame of two hydrogen atoms, the net momentum is
necessarily zero and after the atoms combine and have a common velocity, that velocity
must have zero magnitude, a situation precluded by the necessarily positive kinetic
energy. b) The initial momentum is zero before the collision, and must be zero after the
collision. Denote the common initial speed as v, , the final speed of the hydrogen atom as
v, the final speed of the hydrogen molecule as V', the common mass of the hydrogen
atoms as m and the mass of the hydrogen molecules as 2m . After the collision, the two
particles must be moving in opposite directions, and so to conserve momentum, v=2V".
From conservation of energy,

l(2m)V2 AL =31lmv,
2 2

mV?—A+2mV?=2mv,
V2 =ﬁ +A
2 3m’
from which 7' =1.203x10* m/s, or 1.20 x 10* m/s to two figures and the hydrogen atom

speed is v=2.41x10" m/s.

8.103: a) The wagon, after coming down the hill, will have speed /2gLsina = 10 m/s.
After the “collision”, the speed is (i‘;‘; l;i )(10 m/s)=6.9 m/s,and in the 5.0 s, the wagon

will not reach the edge. b) The “collision” is completely inelastic, and kinetic energy is
not conserved. The change in kinetic energy is

1(435kg)6.9m/s)’ —1(300kg )10 m/s)* =—4769J, so about 4800 J is lost.




8.104: a) Including the extra force, Eq. (8.37) becomes

where the positive direction is taken upwards (usually a sign of good planning). b) Diving
by a factor of the mass m,

_dv vy dm

a=
dt m dt

¢) 20 m/s> —9.80 m/s> =10.2m/s*. d) 3327 m/s —(9.80 m/s*) (90 )=2.45km/s, which
is about three-fourths the speed found in Example 8.17.

8.105: a) From Eq. (8.40), v = v, In(2%% )
b) v, In(13,000/4,000)=(1.18)v,,.
¢) (1.18)v,, +v,In(1000/300)=(2.38)v,,. d) Setting the result of part (c) equal to

7.00 kn/s and solving for v, gives v, =2.94 km/s.

(1.37),,.

8.106: a) There are two contribution to
F..,F.=v, |dm/dt|—v|dm/dt|,or F,

net’~ net

b) F

net

L=, - vldm/dt|.
/| dm/dt|= (1300 N)/(150kg/s) = 8.66 m/s= 31 km/h. This equal to

v, — V.

€X



8.107: a) For 7 <0 the rocket is at rest. For 0 <z < 90 s, Eq. (8.40) is valid, and
v(t)= (2400 m/s)In(1/(1-(£/120s))). At £ =90s, this speed is 3.33 km/s, and this is also
the speed for ¢ > 90s.

4000

3000 o /

2000 4
1000 ya

0 -
0 20 40 60 80 100 120

b) The acceleration is zero for t <0Oand ¢ > 90 s. For 0<7 <90 s, Eq. (8.39) gives,

with %” = —m0/120 S,a = (1_2((;7;/2555)) :

100

80

60

40

20

0 0 20 40 60 80 100 120

t
¢) The maximum acceleration occurs at the latest time of firing, # =90 s, at which time

the acceleration is, from the result of part (a), ?%5 =80m/s”, and so the astronaut is

subject to a force of 6.0 kN, about eight times her weight on earth.



8.108: The impulse applied to the cake is J = u,,mgt = mv, where m is the mass of the
cake and v is its speed after the impulse is applied. The distance d that the cake moves
during this time is then d = 1, gt*. While sliding on the table, the cake must lose its

kinetic energy to friction, or ,ukzmg(r —-d ) = %mvz. Simplification and substitution for v

2
gives r—d =7 g}%t2 , substituting for d in terms of ¢* gives

1 2 1
r :Egtz(,um +&] :Egﬂ&(ﬂkl +1uk2)’

k2 k2

which gives t = 0.59 s.

8.109: a) Noting than dm =2Ldx avoids the intermediate variable p . Then,

=erﬂdx=£.
M L 2

cm

b) In this case, the mass M may be found in terms of p and L, specifically by using
dm = pAdx = aAdx to find that M = A | xdx = adI?/2 . Then,

2

2 L' 2L
'xcm = —2 =5
oAl

adl’ 3 3

IOL odx’dx =

8.110: By symmetry, x,, = 0. Using plane polar coordinates leads to an easier

integration, and using the Theorem of Pappus (2nycm (”"22 ): %ncf ) is easiest of all, but the
method of Problem 8.109 involves Cartesian coordinates.

For the x-coordinate, dm = ptva® — x*dx , which is an even function of x, so
Ix dx = 0. For the y-coordinate, dm = pt2+/a’ — y*dy , and the range of integration is

from O to a, so
2pt e 5 5
ycm=ﬁjoy az_yzady'

Making the substitutions M = %pnazt, u=a’-y*, du=-2y, and

2 b a2 4a
=—| . u’du= u?| =—.
Fem na’ < 3na2{ lz 3n




8.111: a) The tension in the rope at the point where it is suspended from the table is

T = (ﬂx)g , where x is the length of rope over the edge, hanging vertically. In raising the
rope a distance — dx, the work done is (Ag) x (~ dx)(dx is negative). The total work done
is then

0 _ x2 1/4_ﬂ/g12
—_[,/4(/1g)de—(/1g)7‘o =3

b) The center of mass of the hanging piece is initially a distance /8 below the top of the
table, and the hanging weight is (ig)(l / 4) , so the work required to raise the rope is

(Ag)(1/4)(1/8)= Agl’® /32, as before.

8.112: a) For constant acceleration a, the downward velocity is v =at and the distance x
that the drop has fallen is x = %atz. Substitution into the differential equation gives

2.2

1 2 1 2 2 3
—at =—at a+\at) =—a’t 5
2 & 2 ( ) 2

the non-zero solution of which is a = %.

2
b 1o 1(9.80m/s

20 2l 3
¢) kx=(2.00g/m)(14.7m)=29.4g.

3.00s)’ =14.7 m.
(3.005)



Capitulo 9



9.1: a) L30m _ ) 60 rad = 34.4°
2.50m
b) 14.0em) __ _¢o7em.
(128°)(xrad/180°)
c) (1.50 m)(0.70 rad) = 1.05 m.

min rev Os
b) (35°x 7 rad/180°)/(199 rad/s) = 3.07 x 107" s.

9.2: a) (1900 v j x (2” radj (16“““) =199 rad/s.

do,

93: a) a,= 0 =(12.0rad/s*)t,s0att = 3.55s, a = 42 rad/s’. The angular acceleration

is proportional to the time, so the average angular acceleration between any two times is
the arithmetic average of the angular accelerations. b) w_ =(6.0 rad/ s’)t?, so at
t=3.5s,w_ =73.5rad/s. The angular velocity is not linear function of time, so the

average angular velocity is not the arithmetic average or the angular velocity at the
midpoint of the interval.

9.4: a) o (t) == = 2t = (~1.60 rad/s*)z.

b) .(3.0s) =(-1.60 rad/s*)(3.0 5) = —4.80 rad/s’.
o = ®(3.08) —w(0) _—2.20 rad/s —5.00 rad/s _ 240 rad/s,
3.0s 3.0s

which is half as large (in magnitude) as the acceleration at t =3.0s.

9.5: a) w, =y +3pt* =(0.400 rad/s) + (0.036 rad/s*)r* b)Att=0,0, =y =
0.400rad/s. ¢c)Atz=5.00s,w. =1.3 rad/s,0 =3.50 rad,so w,, . =222 = (). 70rad/s.

av—z 5.00s

The acceleration is not constant, but increasing, so the angular velocity is larger than the
average angular velocity.



9.6: . =(250rad/s)— (40.0 rad/s*)t — (4.50 rad/s*)r*, &, = —(40.0 rad/s?) —

(9.00 rad/ s*)t. a) Setting @_ = 0 results in a quadratic in ¢; the only positive time at which
w,=01st=4.23s.b)Att =4.235s,a. =—78.1rad/s.

C)At t=4.23s,0 =586 rad =93.3 rev.

d)At t=0,w_ =250rad/s. e)w,, _ =824 =138 rad/s.

4.23s
9.7: a) w, =% =2bt —3ct’ and @, = 2= = 2b— 6¢t. b) Setting @, = 0,¢ = L.
9.8: (a) The angular acceleration is positive, since the angular velocity increases steadily
from a negative value to a positive value.

(b) The angular acceleration is

w—w, 8.00rad/s—(-6.00rad/s)
t 7.00s

o= =2.00rad/s’

Thus it takes 3.00 seconds for the wheel to stop (e, = 0). During this time its speed is
decreasing. For the next 4.00 s its speed is increasing from 0 rad/s to +8.00 rad/s .
(c) We have
0=0,+w,+Lar’
=0+ (-6.00rad/s) (7.00s) + 1 (2.00 rad/s”) (7.00s)*

=—-42.0rad +49.0 rad =+ 7.00 rad.
Alternatively, the average angular velocity is

—6.00rad/s +8.00 rad/s

2
Which leads to displacement of 7.00 rad after 7.00 s.

=1.00rad/s

9.9: a)w -6, =200rev,w, =500 rev/min =8.333rev/s, t =30.0s,0 ="?

0-6,= (a)();ra)) t gives w = 5.00 rev/s = 300 rpm
b) Use the information in part (a) to find o :
w = w, + at gives a =—0.1111rev/s
Then =0, =—0.1111rev/s?, w, =8.333 rev/s,t =2

®=w,+at givest =75.0 and

0-6, z[w‘);wjtgivese—eo =312rev



9.10: a) . = w,. +a.t =1.50 rad/s+ (0.300 rad/s*)(2.50 s) = 2.25 rad/s.
b) 0 = ot +1/2 0.t* = (1.50 rad/s)(2.50 s) + £ (0.300 rad/s*)(2.50's)* = 4.69 rad.

(200 rev/min — 500 rev/min) x (1mn ) sV

(4.005) st
The number of revolutions is the average angular velocity, 350 rev/min, times the time
interval of 0.067 min, or 23.33 rev. b) The angular velocity will decrease by another

s . 200 rev/min 1 _
200 rev/min in a time ~g 7= oy = 2.67s.

9.11: a)

w; ~ W

9.12: a) Solving Eq. (9.7) for ¢ gives ¢ =

a,

Rewriting Eq. (9.11) as 6 — 6, = t(w,, ++a.t) and substituting for ¢ gives

0-6,= (COZ — o J(wOZ +l(wz _woz)j
a, 2
1

which when rearranged gives Eq. (9.12).

b) a. = (1/2)1/A0)w? — 2. )= (1/2)(1/(7.00 rad)) ((16.0 rad/s )’ - (12.0 rad/s)’ )=
8rad/s’.

9.13: a) FromEq. (9.7), with @,, =0, =2 =202 _ 24 05,

o, 1.50rad/s2

b) From Eq. (9.12), with @, =0, 8 — 6, = -2229" _ 43 rad = 68.8 rev.

2(1.50 rad)/s>

9.14: a) The average angular velocity is 1224 = 40.5rad/s, and so the initial angular

velocity is2w,, . —w,. = w,.,®»,, =—27 rad/s.
b - Aw_  108rad/s —(-27rad/s)
.Y 4.00s

=33.8rad/s’.



9.15: From Eq. (9.11),

2
0, = 0-6, ot _60.0rad _ (2.25rad/s")(4.00s) ~10.5rad]s.

: t 2 4.00s 2

9.16: From Eq. (9.7), with w,, =0, a, =% =224 _ 23 33rad/s’. The angle is most

t

easily found from 0 = w,, ¢ =(70rad/s)(6.00s) = 420rad.

9.17: From Eq. (9.12), with @, =0, the number of revolutions is proportional to the

square of the initial angular velocity, so tripling the initial angular velocity increases the
number of revolutions by 9, to 9.0 rev.



9.18: The following table gives the revolutions and the angle 6 through which the wheel

has rotated for each instant in time and each of the three situations:

_ (a) (®) (c)
t rev's 0 rev's 0 rev's 0
0.05 0.50 180 0.03 113 044 158
0.10 1.00 360 0.13 45 0.75 270
0.15 1.50 540 0.28 101 0.94 338
0.20 2.00 720 0.50 180 1.00 360
The 6 and w, graphs are as follows:
a)
l().(}SA
B(rev) %(&R‘,) 10
OO 0.05 E 0.1 0.15 0.2 9‘95() 0.05 0.1 0.15 0.2
b)
06 o
04 / 4 y /
Brev) /// (12 S
0.2 / 2
0 0.05 0.1 ' 0.15 02 00 0.05 0.1 0.:15 0.2

i3




9.19: a) Before the circuit breaker trips, the angle through which the wheel turned was
(24.0rad/s) (2.00s) + (30.0 rad/s*) (2.00s)* /2 = 108 rad, so the total angle is

108 rad + 432 rad = 540 rad. b) The angular velocity when the circuit breaker trips is
(24.0rad/s)+ (30.0 rad/s’ X2.00 s)=84rad/s, so the average angular velocity while the
wheel is slowing is 42.0rad/s, and the time to slow to a stop is 5y =10.3s, so the

time when the wheel stops is 12.3s . ¢) Of the many ways to find the angular
acceleration, the most direct is to use the intermediate calculation of part (b) to find that

while slowing down Aw, = —84rad/s so o, = %j‘:/s =—8.17 rad/s”.

9.20: a) Equation (9.7) is solved for w,. = w_ —a_t, which gives o, ,  =w, —%t, or

Z—ave

0-0,=wi—tar. b) 2% -2)=-0.125rad/s’. ) w, —ar=5.5rad/s.

9.21: The horizontal component of velocity is 7@, so the magnitude of the velocity is

a)47.1 m/s

n  rad/s

b) \/((5.0 m)(90 rev/min) [—

2
: +(4.0m/s)> =47.3 m/s.
30 rev/min

9.22: a) —="_ —50.0 rad/s, L™ =21.55 rad/s, or 21.6 rad/s to three figures.

25.0x107 m 58.0x107°

b) (1.25 m/s) (74.0 min) (60 s/min)=5.55 km.

__ 50.0rad/s—21.55rad/s __ -3 2
0) @, = T = 6.41x107 rad/s’.

9.23: a) w’r = (6.00rad/s)* (0.500m) =18 m/s’.

b) v=wr = (6.00ad/s) (0.500m) =3.00m/s, and == S%m — 1gm/s?,



9.24: From a,, = o’r,

e fa_ \/400,000><9.80 m/s’

=1.25x10" rad/s,

r 2.50x107 m
which is (1.25x10* rad/s) ("=225¢) — 1 20 10° rev/min.

9.25: a) a,, =0, a,, =ar=(0.600rad/s?)(0.300m)=0.180m/s> andso a=0.180m/s’.

> tan

b)d =Zrad,so a,, =w’r= 2(0.600 rad/s’ )(7[/3 rad)(0.300 m)=0.377 m/s’.

The tangential acceleration is still 0.180 m/s?, and so on

a=+(0.180m/s*} +(0.377 m/s* ) =0.418 m/s".

=0.754m/s*,and @ =0.775m/s?, since a,, is

¢) Foranangleof 120°, a
still 0.180 m/s”

rad

9.26: a) . = w,, +a. 1 =0.250 rev/s +(0.900 rev/s* )(0.2005) = 0.430 rev/s
(note that since w,, and a_ are given in terms of revolutions, it’s not necessary to
convert to radians). b) w,, At =(0.340rev/s) (0.2s) = 0.068 rev . c¢) Here, the conversion

to radians must be made to use Eq. (9.13), and

v=ro= (0'750 mj (0.430rev/sx 2z rad/rev)=1.01m/s.

d) Combining equations (9.14) and (9.15),

a=~\a w+a’ o =+ (0°r) +(ar)’

=[((0.430 rev/s x 2z rad/rev)*(0.375 m))* +((0.900 rev/s” x 2z rad/rev)(0.375 m))’ ]
=3.46m/s*.

2
9.27: p= e (3000)0-80 m/s,af/s =107 em,
© ((5000 rev/ min) (5 rey/min ))Z

so the diameter is more than 12.7 cm, contrary to the claim.



9.28: a) Combining Equations (9.13) and (9.15),

_ 2.2 V|
w SOT=0" | — =0
(0]

b) From the result of part (a), @ === (2_50000;;/5 > =0.250rad/s.

a

9.29: a) wr = (1250 rev/min) (& -2 )(122:00"m ) 0 831 m/s.

30 rev/min

b) ¥ (0.831m/s)? =109m/sz.

T (12.7x107 m)/2

9.30: a) o= =100 __ 50 0rad/s’ b) At ¢=3.00s,v=>50.0m/sand

0.200 m

w=+=29" _>50rad/s and at £=0, v=>50.0m/s+(~10.0 m/s?)

0.200

(0-3.005)=80.0m/s,so w=400rad/s. ¢) w, t=(325rad/s)(3.005s)
=975rad=155rev. d) v=4ja - = \/(9.80 m/sz)(O.ZOO m) =1.40 m/s. This speed will

m/s—1.40m/s
10.0 m/s

be reached at time %2 =4.86safter=3.00s,oratz=7.86s. (There are many

equivalent ways to do this calculation.)

9.31: (a) For a given radius and mass, the force is proportional to the square of the

640 rev/min
423 rev/min

angular velocity; ( )Z =2.29 (note that conversion to rad/s is not necessary for this

part). b) For a given radius, the tangential speed is proportional to the angular velocity;

#0=1.51 (again conversion of the units of angular speed is not necessary).

¢) (640 rev/min) (& 24 )(e10m) =15 75 m/s, or 15.7 m/s to three figures, and

30 rev/min

a4 =¥ (15.75m/s)> ~1.06x10° m/52 =108 g.

rad — 5 T (0470m/2)

9.32: (a) vi =Rw
2.00cm/s =R (7.5 'revj (1 minj (2% rad]
min 60s lrev
R=2.55cm
D=2R=5.09cm
b) a, =Ra

_a; _0.400m/s’

=15.7 rad/s’
R 0.0255m



v, 5.00m/s

9.33: The angular velocity of the rear wheel is @, =—+
r 0.330m

The angular velocity of the front wheel is @, = 0.600 rev/s =3.77 rad/s

=15.15rad/s.

Points on the chain all move at the same speed, so r.o, =r.w;
r=r(w/o)=299cm

9.34: The distances of the masses from the axis are £,% and3£, and so from Eq. (9.16),
2 2 2
]:m£ +m£ +m£ zﬂmLz.
4 4 4) 16
12

9.35: The moment of inertia of the cylinder is M f—z and that of each cap is m“-, so the

the moment of inertia is

moment of inertia of the combination is (% + %)Lz.

9.36: Since the rod is 500 times as long as it is wide, it can be considered slender.
a) From Table (9.2(a)),

1= éMLZ = 5(0.042 kg)(1.50m) =7.88x10 kg - m’.

b) From Table (9.2(b)),

I =%ML2 =%(0.o42 kg)(1.50m) =3.15x107* kg - m”.

c) For this slender rod, the moment of inertia about the axis is obtained by considering it
as a solid cylinder, and from Table (9.2(f)),

I :%MRz :%(0.042 kg) (1.5x107° m)* =4.73x10" kg -m”.



9.37: a) For each mass, the square of the distance from the axis is
2(0.200 m)* =8.00x 10> m?, and the moment of inertia is

4(0.200kg) (0.800x107° m*) = 6.40x107> kg-m*. b) Each sphere is 0.200 m from the

axis, so the moment of inertia is 4(0.200 kg)(0.200m) =3.20x107 kg - m’.
a) The two masses through which the axis passes do not contribute to the moment of

inertia. 1 =2(02kg)(0.2v2 mJ =0.032kg - m”.

2
9°38: (a) ] = ]bar + [balls = éj‘4barl‘2 + 2mballs(§j

= é(4-00 kg)(2.00m)’ +2(0.500 kg)(1.00 m)* = 2.33kg - m’

1
(b) I = Embarl‘z + mballl‘2

= %(4.00 kg)(2.00m)* +(0.500kg)(2.00m)* =7.33kg - m’

¢) I =0 because all masses are on the axis

(d) I = Wlbard2 + 2Wlballd2 = M"l'otald2
= (5.00kg)(0.500 m)* =1.25kg - m’

9.39: [=1,+1 (d=disk,r=ring)
disk : m, = (3.00 g/cm’)ar? = 23.56 kg

I, = %mdrd2 =2.945kg-m’
ring: m, =(2.00 g/em’) 7 (; —r7)=15.08kg (1, =50.0cm,7, =70.0 cm)
I = %mr(rl2 +7;)=5.580kg - m’

I=1,+1 =8.52kg-m’



9.40: a) In the expression of Eq. (9.16), each term will have the mass multiplied by
/? and the distance multiplied by £, and so the moment of inertia is multiplied by

()= f°. b) (2.5)(48) =6.37x10".

9.41: Each of the eight spokes may be treated as a slender rod about an axis through an
end, so the moment of inertia of the combination is

[=m,R>+8 [—mg“ ] R’

rim

= [(1 40kg) + % (0.20 kg)} (0.300 m)’

=0.193kg-m’

9.42: a) From Eq. (9.17), with [ from Table (9.2(a)),
K=t Lot = L (117kg)2.08 )y 2400 T 27 Tad TV
212 24 min  60s/min

b) From mgy = K,

Y =1.3x10°J.

K (13x10°))

y=—"= 5 =1.16x10° m =1.16 km.
mg  (117kg)(9.80 m/s?)

9.43: a) The units of moment of inertia are [kg][m’] and the units of « are equivalent

to [s™'] and so the product %Ia)2 has units equivalent to [kg-m-s~]=[kg-(m/s)’],

which are the units of Joules. A radian is a ratio of distances and is therefore unitless.
b) K = 7°Iw* /1800 , when is in rev/min.

9.44: Solving Eq. (9.17) for [,
_2K _ 2(0.0257)

®®  (45rev/min x 22595 )2

60 rev/min

=225%x10" kg-m”’.




9.45: From Eq. (9.17), K, — K =1 1(»; — /), and solving for I,

I=2 (Kz — Kl)
(@) — )
. (=5001)
((520 rev/min)* — (650 rev/ min)z)(y’g r;ffﬁn)z
=0.600kg-m”.

9.46: The work done on the cylinder is PL, where L is the length of the rope. Combining
Equations (9.17), (9.13) and the expression for / from Table (9.2(g)),

2 2
PL:lgvz, or P:lgv__ (40.0 N)(6.00 m/s)

= - =14.7N.
2g 2g L 2(9.80m/s*)(5.00 m)

9.47: Expressing o in terms of o, ®" = = Combining with 7 = %MRZ, Eq. (9.17)

2
becomes K = %%MRamd _ (70.0kg)(1.20m)B500m/S)” _ 5 3514 .

4

9.48: a) With I = MR?, with expression for v is

2gh
v= :
1+M/m

b) This expression is smaller than that for the solid cylinder; more of the cylinder’s
mass is concentrated at its edge, so for a given speed, the kinetic energy of the cylinder is
larger. A larger fraction of the potential energy is converted to the kinetic energy of the
cylinder, and so less is available for the falling mass.




9.49: a) w =22, s0 Eq. (9.17) becomes K =27’ I/Tz.
b) Differentiating the expression found in part (a) with respect to 7,

(AT
dt ( / )d[

c) 27* (8.0kg-m? )/(1.5 s)? =70.2J, or 70 to two figures.

d) (47> (8.0kg-m?)/(1.5 5)*)(0.0060) = —0.56 W.

9.50: The center of mass has fallen half of the length of the rope, so the change in
gravitational potential energy is

- %mgL = —%(3.00 kg)(9.80 m/s*)(10.0 m) = —147 J.

9.51: (120 kg)(9.80 m/s*)(0.700 m) = 823 J.
9.52: In Eq; (9.19), I, = MR* andd = R’, so I, = 2MR’.

2 2 4 .
9.53: EMRZ = gMR2 +Md?, so d* = ERZ, and the axis comes nearest to the center of

the sphere at a distance d = (2/\/E)R =(0.516)R.

9.54: Using the parallel-axis theorem to find the moment of inertia of a thin rod about an
axis through its end and perpendicular to the rod,

2
I =]Cm+Md2:ML2+M Ly _Mp
’ 12 2 3

9.55: Ip=1, + md’sol==:M(a*+b*) + M((2)* +(2)?), which gives

I= éM(az +b2)+iM(a2 +b*)or 1= %M(az +5)



9.56: a)l=1Ma® b)I=LMb’

9.57: InEq. (9.19), I, =%1*andd =(L/2-h), so
B 2
Ip=M Lyl
12 2
_1 2 1 2 2
=M|\—=L+-L—-Lh+h
12 4
1

=M ELZ —Lh+h2},

which is the same as found in Example 9.12.

9.58: The analysis is identical to that of Example 9.13, with the lower limit in the integral
being zero and the upper limit being R, and the mass M = wLpR’. The result is

[ =1MR?, as given in Table (9.2(f))

9.59: With dm =*Ldx



9.60: For this case, dm =y dx.

L ¥2 L yL2
a) M=|dm =|pxdx=y— ==—
) J {y > =
L X L )
b) I:Ixz(yx)dx=y— = =M
0 4 0

This is larger than the moment of inertia of a uniform rod of the same mass and length,
since the mass density is greater further away from the axis than nearer the axis.

c) I[= _L[(L — x)” yxdx

L

= yj (I’x —2Lx* +x7)dx
0

L

2 3 4
=y sz__zLx_+x_
2 3 4

0
M

=—1I.
6

This is a third of the result of part (b), reflecting the fact that more of the mass is
concentrated at the right end.

9.61: a) For a clockwise rotation, @ will be out of the page. b ) The upward direction
crossed into the radial direction is, by the right-hand rule, counterclockwise. @ and 7 are
perpendicular, so the magnitude of @ x 7 is wr =v. c) Geometrically, @ is

perpendicular to v, and so @ x v has magnitude wv=a,, and from the right-hand

rule, the upward direction crossed into the counterclockwise direction is inward, the
direction of a,,,. Algebraically,

i, =6 xv=0x(@xF)

—ao(@ - F)-7F(6 &)

= -o0’r,

where the fact that @ and r are perpendicular has been used to eliminate their dot
product.



9.62:

For planetary alignment, earth must go through 60° more than Mars:

0, =0, +60°
Wit = oyt + 60°
60°
f=——
Wg — Wy
360° 360°
Wy = and wy, =
lyr 1.9yr
liyr - 1.9yr lyr

9.63: a) v=60mph=26.82 m/s
r=12in.=0.3048m

w="2=88.0rad/s = 14.0 rev/s = 840rpm
r

b) same w as in part (a) since speedometer reads same
r=15in.=0.381m
v=rw=(0.381m)(88.0rad/s) =33.5m/s = 75 mph
¢)v=50mph =22.35m/s
r=10in.=0.254 m

v

o =— = 88.0 rad/s; . this is the same as for 60 mph with correct tires, so
r

speedometer read 60 mph.

9.64: a) For constant angular acceleration 6 = %, and so a,, = o’r = 200r.
b) Denoting the angle that the acceleration vector makes with the radial direction as S,
and using Equations (9.14) and (9.15),

a
tan f = =
a

er __ar _ 1
o'y 2a0r 20°

rad

so 0= =0.666rad.

1 _ 1
2tan B~ 2tan36.9°



9.65: 2) w, = % =2yt — 31> = (6.40 rad/s* )t — (1.50 rad/s* )¢*.

b a = d;:z =2y 6Bt =(6.40rad/s>) — (3.00 rad/s*)z.

¢) An extreme of angular velocity occurs when « . =0, which occurs at

2 . .
t=§=%=2.13 s, and at this time

(3.20 rad/s*)?

- =6.83rad/s.
3(0.500 rad/s™)

o, =29)(y/38) - BP)y/3B) =y* 138 =

9.66: a) By successively integrating Equations (9.5) and (9.3),
©, =yt— grz = (1.80rad/s*)t — (0.125 rad/s*)¢?,
0= %zz - éﬁ = (0.90 rad/s®)¢> — (0.042 rad/s*)e’.

b) The maximum positive angular velocity occurs when a_ =0, ¢ = %, the angular

velocity at this time is

2 ) 232
o = L|- B[ 2| 2Ly LA80radS) e s,
B 2\ B 2 B 2 (0.25rad/s”)

. . : 2 .
The maximum angular displacement occurs when w_=0, at time ¢ = =r (t=01san
inflection point, and #(0) is not a maximum) and the angular displacement at this time is

2 3 3 243
g=" 2v| _Bl2v =EY—2:EM=62.2rad
2B ) T6\B) T3 3(025rads)

9.67: a) The scale factor is 20.0, so the actual speed of the car would be 35km/h =9.72 i
b) (1/2)mv* =8.511. ¢) o=/ =652 rad/s.



9.68: a) o = % = 2075 _ 0 050 rad/s”. b) at = (0.05 rad/s>)(6.00s) = 0.300 rads.

r 60.0m

¢) a,, = o’r = (0.300 rad/s)’ (60.0 m) = 5.40 m/s.

d)

\

S~ -

tan

¢) a=+/a"ui + @ =1/(540 m/s>)’ +(3.00 m/s>)’ =6.18 m/s,
and the magnitude of the force is ' =ma = (1240 kg)(6.18 m/sz) =7.66 kN.

f) arctan (Z[—d)z arctan(34) = 60.9°.

9.69: a) Expressing angular frequencies in units of revolutions per minute may be
accomodated by changing the units of the dynamic quantities; specifically,

W, = a)12+T

= (300 rev/min)* + 2(-4000J) ) /( m rad/s ?
16.0kg-m’ 30 rev/min

=211rev/min.

b) At the initial speed, the 4000 J will be recovered; if this is to be done is 5.00 s, the

40001 __
power must be 2531 =800 W.



9.70: a) The angular acceleration will be zero when the speed is a maximum, which is at
the bottom of the circle. The speed, from energy considerations, is

V= \/ 2gh = \/ 2gR(1-cospf), where S is the angle from the vertical at release, and

== 1/2—g(l —cospf) = \/w(l —¢0836.9°) =1.25rad/s.
R R (2.50m)
b) a will again be 0 when the meatball again passes through the lowest point.
¢) a,, is directed toward the center, and a_, = w’R, a,,, = (1.25rad/s”) (2.50 m) = 3.93
d) a,, =oR=(2g/R)(1-cos )R = (2g)(1 - cos f), independent of R.

9.71: a) (60.0 rev/s)(2x rad/rev)(0.45x 107 m) =1.696 m/s.
b) w=2=-1m _g48 rad/s.

r200x1072 m

9.72: The second pulley, with half the diameter of the first, must have twice the angular
velocity, and this is the angular velocity of the saw blade.

a) (2(3450rev/min)) (% rerj/drﬁnj (0'2(;8 m) =75.1m/s.

2
b) @, = o =| 23450 rev/min)| = _124/S (0'208 m) _5.43x10° m/s?,
30 rev/min 2

so the force holding sawdust on the blade would have to be about 5500 times as strong as
gravity.



9.73: a) Aa, =01 —wpr = (0" —o))r

=[o-o, ][0+ o,]r

={®_tw°}[(m+m0)t]r

=[a][2(0-6,)r.

b) From the above,

2 2
oy = Mg _ (850 m/s’ —25.0m/s*) _ 2.00m/s".
200 2(15.0rad)

c¢) Similar to the derivation of part (a),

AK = %wzl - %%21 = %[a][2A¢9]I = JaA®.

d) Using the result of part (c),

_AK (425.01—20.01) 0208 kg
aA®  ((2.00 m/s*)/(0.250 m)X15.0 rad)

974: I=1,,+1.,

= %mez +3mLR2

4
m,=pV, = Pw§”R3

_ _ 2
m =0 A =0 4t R

2 4 3 2, 2 2\ p2
[=— —7R |R“+—(c,47 R)R

= §7Z' R4(pWR + O-L]
3 5

_ 87”(0.20 m)“{(800 ke/ “;3)(0'20 m) 4 20 kg/mz}

=0.70 kgm’



9.75: I approximate my body as a vertical cylinder with mass 80 kg, length 1.7 m, and
diameter 0.30 m (radius 0.15 m)

IzémR2 2%(80kg) (0.15m)* =0.9kg-m®

9.76: Treat the V like two thin 0.160 kg bars, each 25 cm long.

I= 2@ msz = 2@) (0.160 kg)(0.250 m)?

=6.67x10" kg-m’

9.77: a) ®=90.0rpm=9.425rad/s

6
K=L10? so 1=2K 200000 Y 5 555 10° kg m?
2 - (9425 rad/ s)
m=pV = prR*t(p = 7800 kg/m3 is the density of iron and 7/=0.100 m is the

thickness of the flywheel)
1

I==—mR>= lme4

2 2
R =21/ pnt)"* = 3.68 m; diameter = 7.36 m
b)a, = Rw® =327m/s

9.78: Quantitatively, from Table (9.2), I, =1mR*, I, =mR* and I. = 2mR” - a) Object 4
has the smallest moment of inertia because, of the three objects, its mass is the most
concentrated near its axis. b) Conversely, object B’s mass is concentrated and farthest
from its axis. c) Because / =2/5mR*, the sphere would replace the disk as having the

sphere

smallest moment of inertia.



9.79: a) See Exercise 9.50.

27’1 27°(0.3308)(5.97 x 10 kg)(6.38 x10°m)’

K=" : =2.14x10"J.
T (86,164 s)
2 2 24 11 2
b) lM(anJ _272°(5.97x10 kg)(17.502><10 M e6x107 1.
2 T (3.156x10 s)

c) Since the Earth’s moment on inertia is less than that of a uniform sphere, more of
the Earth’s mass must be concentrated near its center.

9.80: Using energy considerations, the system gains as kinetic energy the lost potential
energy, mgR. The kinetic energy is
K= lIa)2 +lmv2 = l[a)2 +lm(a)R)2 = l(I +mR*) o” -
2 2 2 2 2
Using / =1mR? and solving for o,

2
w =

W |

W |
>U_|0Q

5, and o=
R



9.81: a)

Consider a small strip of width dy and a distance y below the top of the triangle. The
length of the strip is x = (y/h)b.

. o1 .
The strip has area x dy and the area of the sign is Ebh, so the mass of the strip is

(2232
iy h \ bh h

2
dl =X (dm)x’ =%y3 dy
3h
h 2Mb* ¢h 2Mb* (1 ) 1.,
I={'dI= o [[vdy= e (Zy o = Mb
b) I =1 Mb* =2.304kg-m®

]

O rev/s = 4.00x rad/s

I=4
w=2.
K=1lw*=182]



9.82: (a) The kinetic energy of the falling mass after 2.00 m is
KE =1mv* =1(8.00kg)(5.00 m/s)* =100 J. The change in its potential energy while
falling is mgh = (8.00 kg)(9.8 m/s*)(2.00m)=156.8]

The wheel must have the “missing” 56.8 J in the form of rotational KE. Since its
outer rim is moving at the same speed as the falling mass, 5.00 m/s:

V=rw
_ v _2:00m/s sy adss
r 0.370m

KE = %I @ ; therefore

1= 2K2E = 2(56.8J) - =0.6224kg-m’ or 0.622 kg - m’
o’ (13.51rad/s)

(b) The wheel’s mass is 280 N/9.8 m/s? = 28.6 kg. The wheel with the largest possible

moment of inertia would have all this mass concentrated in its rim. Its moment of inertia
would be

I =MR* =(28.6kg)0.370m)’ =3.92kg - m’
The boss’s wheel is physically impossible.

9.83: a) (0.160 kg)(~0.500 m)(9.80 m/s* )= ~0.784 J. b) The kinetic energy of the stick
is 0.784 J, and so the angular velocity is

% [ 2k 2(0.7847)
_ |2k _ = 5.42 rad/s.
VT \/ ME/[3 \/ (0.160kg)(1.00m)’/3 rad/s

This result may also be found by using the algebraic form for the kinetic energy,
K = MgL/2, from which @ = \/3g/L, giving the same result. Note thatw is independent
of the mass.

¢) v=wL =(5.42rad/s)(1.00m)=5.42 m/s

d)+/2gL =4.43 m/s; This is 4/2/3 of the result of part (c).



9.84: Taking the zero of gravitational potential energy to be at the axle, the initial
potential energy is zero (the rope is wrapped in a circle with center on the axle). When
the rope has unwound, its center of mass is a distance 7zR below the axle, since the length
of the rope is 27R and half this distance is the position of the center of the mass. Initially,
every part of the rope is moving with speed @, R, and when the rope has unwound, and
the cylinder has angular speed w, the speed of the rope is @R (the upper end of the rope
has the same tangential speed at the edge of the cylinder). From conservation of energy,
using 1 = (1/2)MR? for a uniform cylinder,

[M + ﬂj R'o, = (M + ﬁj R*®w’ —mgr R.

4 2 4 2

Solving for @ gives

s (47tmg/R)

and the speed of any part of the rope is v = @R.

9.85: In descending a distance d, gravity has done work m,gd and friction has done
work — . m ,gd, and so the total kinetic energy of the system is gd (m 5 — MM, ) In
terms of the speed v of the blocks, the kinetic energy is

K=y nemy i 107 =y 41 R

where w = v/R, and condition that the rope not slip, have been used. Setting the kinetic
energy equal to the work done and solving for the speed v,
_ ng(mB —Hmy )

(m, +m, +1/R?)

9.86: The gravitational potential energy which has become kinetic energy is
K =(4.00kg —2.00 kg)(9.80 m/sz)(S.OO m)=98.0J. In terms of the common speed v of
the blocks, the kinetic energy of the system is

K—l(m +m )v2+ll(1j2
20 2R
(0.480kg-m?)

=l 4.00kg +2.00kg + :
2 (0.160m)

j: v?(12.4kg).

Solving for v givesv = ,/% =2.81m/s.



9.87: The moment of inertia of the hoop about the nail is 2MR * (see Exercise 9.52), and
the initial potential energy with respect to the center of the loop when its center is directly
below the nail is gR (1—cos /). From the work-energy theorem,

K = %[a)Z = Mw’R* = MgR(1 - cosp),

from which o = /(g/R)(1 - cos p).

9.88:a) K zéla)2

2
G(1000kg)(0.90m)zj[.%ooorev/minxz rad/s J

1
2 60 rev/min

=2.00x10"7J.

K 2.00x10"J
P,. 186x10°W

ave

b) =1075 s,

which is about 18 min.

9.89: a) %MlRf + %Msz = %((0.80 kg)(2.50x107°m)’ + (1.60kg)(5.00 x 107> m)*)

=2.25%x10" kg-m>.

b)  See Example 9.9. In this case, @ = v/R,,and so the expression for v becomes

2gh
b | 28h
1+ (I/mR*)

_ 2(9.80m/s*)(2.00m) _3.40m/s
(1+((2.25x107 kg - m?)/(1.50kg)(0.025m)?)) '

¢) The same calculation, with R, instead of R, gives v =4.95m/s. This does make

sense, because for a given total energy, the disk combination will have a larger fraction of
the kinetic energy with the string of the larger radius, and with this larger fraction, the
disk combination must be moving faster.



9.90: a) In the case that no energy is lost, the rebound height /4" is related to the speed
vby ' = %, and with the form for / given in Example 9.9, /4" = 117.-. b) Considering
the system as a whole, some of the initial potential energy of the mass went into the
kinetic energy of the cylinder. Considering the mass alone, the tension in the string did

work on the mass, so its total energy is not conserved.

9.91: We can use K(cylinder)=250J to find @ for the cylinder and v for the mass.
I=1MR*=1(10.0kg)(0.150 m)* = 0.1125kg - m’

K=1Io" so o= \/m =66.67 rad/s

v =Rw =10.0m/s

Use conservation of energy K, +U, = K, +U,. Take y =0 at lowest point of the
mass, so y, =0and y, =h, the distance the mass descends. K, =U, =0 so U, =K,.

mgh=1mv’ +1lw*, wherem =12.0 kg

For the cylinder, / =L MR* and w =v/R, so 11w® =1 M*.

mgh=1mv? +1 M’

2
h =V—(1+£j —723m
2g 2m



9.92: Energy conservation: Loss of PE of box equals gain in KE of system.

1 » 1 2
mboxgh = _mbovaox + _I @

ulle ulle
2 2 pulley ~~pulley
1
2
+ 51 cylinderwcylinder

v, v,

— _Box — _Box
wpulley - and wcylinder -

I p cylinder

(3.00 kg)(9.80 m/s?)(1.50 m)
1.50 kg + 1 (7.00 kg)

=3.68m/s

9.93: a) The initial moment of inertia is /, =3 MR*. The piece punched has a mass of

4 and a moment of inertia with respect to the axis of the original disk of

2 2
MI(R LR ZLMRZ,
16| 2\ 4 2 512

The moment of inertia of the remaining piece is then

r=imrr -2 ppr =27
2 512 512

MR?.

b)I =1 MR’ + M (R/2)* =L (M /16)(R/4)* == MR’

512



9.94: a) From the parallel-axis theorem, the moment of inertia is

I, =(2/5)MR* + MI?, and

(G

If R = (0.05)L, the difference is (2/5)(0.05)> =0.001. b)(/

rod/MLz) = (mrod/3M), which
is 0.33% when m_, = (0.01)M.

9.95: a) With respect to O, each element rl.2 in Eq. (9.17) is xl.2 + yiz, and so
I, = Zmiriz = Zmi(‘xiz +yi2) = Zmi'xiz +Zmiyi2 =1, +Iy'

b) Two perpendicular axes, both perpendicular to the washer’s axis, will have the
same moment of inertia about those axes, and the perpendicular-axis theorem predicts

that they will sum to the moment of inertia about the washer axis, which is %(Rl2 +R,),

andso [, =1, =Y (R +R,).

c) From Table (9.2), I =Lm(L *+L*) =1 mL’.
Since [, =1, +1 ,and I =1 ,both/ and/ mustbe mL’.

9.96: Each side has length ¢ and mass %", and the moment of inertia of each side about

an axis perpendicular to the side and through its center is L% a* = ]‘ﬁ—‘; The moment of

inertia of each side about the axis through the center of the square is, from the

perpendicular axis theorem, 44~ + %(%)2 =M The total moment of inertia is the sum of

the contributions from the four sides, or 4 x 44 = Mo



9.97: Introduce the auxiliary variable L, the length of the cylinder, and consider thin
cylindrical shells of thickness dr and radius 7; the cross-sectional area of such a shell is

27 rdr, and the mass of shell is dm =2z rLp dr = 2m o Lr*dr. The total mass of the

cylinder is then
3

R R
M = jdm =2 LOLI ridr = 2w La—

0 3

and the moment of inertia is
5
1=[rdm=2x Lo rdr =22 Lo’ =2 uR®.
0 5 5

b) This is less than the moment of inertia if all the mass were concentrated at the edge, as
with a thin shell with 7 = MR*, and is greater than that for a uniform cylinder with

I =1MR?, as expected.

4z*l dT .
T3 dt 2

9.98: a) From Exercise 9.49, the rate of energy loss is solving for the moment of

inertia / in terms of the power P,

P 1 (5x10° W)(0.0331s)’ Is

- =1.09x10* kg-m’.
4r dT/di e 422x10 " s s

38 2
b) R = > = >(1.08x10 kg}om ) =9.9x10’ m, about 10 km.
oM\ 2(1.4)(1.99x10% kg)
3
c) 27R _ 2109 x10m) _y g, 10¢ mfs =63x107 c.
T (0.03315)
d) M=L3= 6.9x10"7 kg/m’,
vV (4n/3)R

which is much higher than the density of ordinary rock by 14 orders of magnitude, and is
comparable to nuclear mass densities.



9.99: a) Following the hint, the moment of inertia of a uniform sphere in terms of the
mass density is / = %MR2 =3z pR’, and so the difference in the moments of inertia of

two spheres with the same density p but different radii
R,and R is I = p(87/15)(R; - R).

b) A rather tedious calculation, summing the product of the densities times the
difference in the cubes of the radii that bound the regions and multiplying by

4r/3,gives M =5.97x10** kg. c) A similar calculation, summing the product of the
densities times the difference in the fifth powers of the radii that bound the regions and
multiplying by 8n/15, gives I =8.02x10% kg-m* = 0.334MR>,

9.100: Following the procedure used in Example 9.14 (and using z as the coordinate
along the vertical axis) r(z)=z%,dm= np—z *dz and dI = ”—”R—Az“ dz. Then,

I= jdz_”’”zjo 71[/(;;4[ 5] —7rR4h

The volume of a right circular cone is ¥ =1 zR*h, the massis<zR*hand so

_3 PR’ h iMRz.
10 3 10




9.101: a) ds = d6 = r,d0 + O dO,s0 5(0) = 1,0 + £ 6°.b) Setting s = vt = 1,0 + £ 0°
gives a quadratic in €. The positive solution is

0(t) = % = [\/roz +2,th—r0} .

(The negative solution would be going backwards, to values of r smaller thanz, .)

c) Differentiating,
do v

w,(t)=—=—F———,
dt \[r}+2pvt
_do____ P~

o = A — ey Pl
z 2
dt (o =2pn)
The angular acceleration «, is not constant. d) », = 25.0 mm; It is crucial that 6 is

measured in radians, so 4 = (1.55 um/rev)(I rev/2x rad) = 0.247 um/rad. The total angle
turned in 74.0 min = 4440 s is

) 1 2(2.47x10" m/rad)(1.25 m/s) (44405s)
© 2.47x107 m/rad| |+ (25.0x10m) —25.0x10” m
=1.337x10° rad

which is 2.13 x 10* rev.

e)
50 : 0
| R

40 : —0.005

30 S 4 —001

w, (B \\ ();‘.(%) /

20 ~0.015 /
10 -0.02

0 :
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
«s) #s)



Capitulo 10



10.1: Equation (10.2) or Eq. (10.3) is used for all parts.
a) (4.00m)(10.0N)sin 90°=40.00 N - m, out of the page.

b) (4.00m)(10.0N)sin 120°=34.6 N-m, out of the page.
¢) (4.00m)(10.0N)sin30°=20.0 N-m, out of the page.
d) (2.00m)(10.00 N)sin 60°=17.3 N -m, into the page.

e) The force is applied at the origin, so 7 =0.
f) (4.00m)(10.0 N)sin180°=0.

10.2: 7, =—(8.00 N)(5.00m) = —40.0 N - m,
7, =(12.0 N)(2.00m)sin 30°=12.0N - m,

where positive torques are taken counterclockwise, so the net torque is —28.0 N - m, with
the minus sign indicating a clockwise torque, or a torque into the page.

10.3: Taking positive torques to be counterclockwise (out of the page),
7, =—(0.090m)x (180.0 N) =-1.62N-m, 7, = (0.09 m)(26.0 N) =2.34 N - m,

7, =(v2)0.090 m) (14.0N) =178 N - m, so the net torque is 2.50 N - m, with the

direction counterclockwise (out of the page). Note that for 7, the applied force is
perpendicular to the lever arm.

10.4: t,+17,=—FR+F,R=(F,- F)R
= (530N —7.50 N)(0.330m) =—0.726 N - m.

10.5: a)

!

=

0
b) Into the plane of the page.

¢) 7 x F =[(=0.450 m) i + (0.150 m) j]x[(—5.00 n)i + (4.00 N)i ]
= (=0.450 m) (4.00 N) — (0.150 m)(—5.00 N)k
=(-1.05N-m)k



10.6: (a) 7, = (50 N)(sin 60°)(0.2 m) =8.7 N-m, CCW
75 =0
7. = (50 N)(sin 30°)(0.2 m) =5 N-m,CW
7, =(50N)(0.2m)=10N -m,CW

(b) X27=87N-m-5N-m—-10N-m
=-63N-m,CW

10.7: 1=2MR’>+2mR?, where M =8.40kg, m = 2.00 kg
I1=0.600kg-m®
w, =75.0rpm =7.854rad/s; w =50.0 rpm =5.236rad/s; s =30.0s,a = ?
o = w, + ot gives a =—0.08726 rad/s’;
r=la, 1, =lo= —0.0524 N-m

400 rev/min x 2% 95
10.8: a) r=1a=1ﬂ=(2.50kg-m2)( Jminx § “’V/m‘“)=13.lN-m.
At (8.005)
2m  rad/s

b) %Ioa2 =%(2.50 kg-m?) (400 rev/min x ——

2
— | =2.19x10°J.
60 rev/min

10.9: v=+2as = \/2(0.36 m/sz)(2.0 m) =1.2 m/s, the same as that found in
Example 9-8.

t FR (40.0N)0.250m)

10.10: o=—=—= =2.00rad/s’.
11 (5.0kg-m?) /

10.11: a) n=Mg+T=g| M+—"" | = g| ME3m

1+ 2m/M 1+2m/M

b) This is less than the total weight; the suspended mass is accelerating down, so the
tension is less than mg. c) As long as the cable remains taut, the velocity of the mass
does not affect the acceleration, and the tension and normal force are unchanged.



10.12:  a) The cylinder does not move, so the net force must be zero. The cable exerts
a horizontal force to the right, and gravity exerts a downward force, so the normal force
must exert a force up and to the left, as shown in Fig. (10.9).

b) n= \/(9.0 N)2 + ((50 kg)(9.80 m/sz))z 490 N, at an angle of arctan (%) =1.1° from the
vertical (the weight is much larger than the applied force F).

MR
10.13: 4, :izr/_Rzl_az (0, /1)
n n Rn 2n

_ (50.0kg) (0260 m) 850 e/ min) (5 )
- 2(7.505) (160 N) T

10.14: (a) Falling stone: g =1at’
12.6m=14(3.00s)
a=2.80 m/s2
Stone :X F =ma:mg —T =ma(l)
Pulley:¥ 7 = la: TR =L MR?a = L MR* (%)
T =1Ma(2)

Solve (1) and (2):

M _M([ a _(I0.0kgj 2.80 m/s’
2 g-a 2 9.80 m/s*> —2.80 m/s’

M =2.00kg

(b)From (2):

T = %Ma - %(10.0 ke)(2.80 m/s?)

T'=140N



10.15:  7=1mR* =1(8.25kg)0.0750 m)’ = 0.02320 kg - m’
®, =220rpm=23.04rad/s; 0w =0;0 -6, =5.25rev=33.0rad,a =?
w® = w; +2a(0 - 0,) gives o = —8.046 rad/s”

21=1a
Xt=1,=—fR=—pnR
R =Iason=—2—747N
R

10.16: This is the same situtation as in Example 10.3. a) T =mg/(1+2m/M)=42.0N.

b) v=42 gh/(1+M/2m =11.8 m/s.  c) There are many ways to find the time of fall.
Rather than make the intermediate calculation of the acceleration, the time is the distance
divided by the average speed, or A/ (v/ 2) =1.69s.  d) The normal force in Fig.

(10.10(b)) is the sum of the tension found in part (a) and the weight of the windlass, a
total 159.6 N (keeping extra figures in part ( a)).

10.17: See Example 10.4. In this case, the moment of inertia / is unknown, so
a, = (myg)/(m, +m, +(I/R*)) a) a,=2(1.20m)/(0.80s) =3.75 m/s?,
soT, ma, =7.50 Nand T, = m,(g —a,)=18.2 N.
b) The torque on the pulley is (T2 -1 )R =0.803 N - m, and the angular acceleration is
a=a,/R=>50rad/s’,s01 =1/a=0.016kg-m’.

FI _3F

CiMP ML

10.18: a=

~ |2

10.19: The acceleration of the mass is related to the tension by Ma_, = Mg—T, and the
angular acceleration is related to the torque by

lo=t=TR,ora,, =T/M, wherea =a,,/RStand I = MR® have been used.

a) Solving these for 7 givesT = Mg /2 =0.882 N. b) Substituting the expression for 7
into either of the above relations gives a_, = g/2, from which

t=+2ha,, =+4h/g =0.553s. c)w=v,,/R=a,t/R=339rads.

10.20: See Example 10.6 and Exercise 10.21. In this case,
K, =Mv} andv, =./gh,o=v, /R=33.9 rad/s.



10.21: From Eq. (10.11), the fraction of the total kinetic energy that is rotational is

(1/2)1,, 0 B 1 1
1/2)Mmv2 +(1/2), 0> 1+(M/1, )V, 0* 1+

IL

cm

where v, = Ro for an object that is rolling without slipping has been used.
a) [, = (1/ 2)MR?,so the above ratio is 1/ 3.b)I= (2/ 5)MR?, so the above ratio is
2/7. ¢)I =2/3MR?, so the ratio is 2/5. d)I =5/8MR?, so the ratio is 5/13.

10.22:  a) The acceleration down the slope is a = gsinf — 'ﬁf, the torque about the

center of the shell is

z:Rf=1a=1%=§ R2%:§MRa,

s0-L-=2a. Solving these relations a for f and simultaneously gives $a = gsin®,or

a %gsine = %(9.80m/s2)sin38.00 =3.62m/s?,

f= %Ma = %(2.00kg)(3.62m/sz) =483 N.

The normal force is Mg cos 6, and since f < u.n,

,uzi— iMa 2 a _z%gsinﬁzg

= == = tan 6 =0.313.
n Mgcos@ 3 gcosf 3 gcosf 5

b) a = 3.62m/s? since it does not depend on the mass. The frictional force, however,
is twice as large, 9.65 N, since it does depend on the mass. The minimum value of i, also
does not change.



10.23:

mg sin{)

mg costl

N =mgcos o
mgsin  — umg cos 0 = ma
g(sin@ — p cos ) =a(eq.l)

n and mg act at the center of the ball and provide no torque.

2t=1, = umgcosoRr;l =2mR’?

Y1 = Il gives u.mgcos 8 = 2mR’a
g lus g 5

No slipping means a =a/R, so ugcosd=2a (eq.2)

We have two equations in the two unknowns a and . Solving gives
a=3gsinfand u, =2 tanf =2 tan65.0°=0.613

b) Repeat the calculation of part (a), but now I =2mR>.
a=2gsinfand y, =2 tanf = 2 tan65.0° = 0.858

The value of y, calculated in part (a) is not large enough to prevent slipping for the

hollow ball.

¢) There is no slipping at the point of contact.



10.24:

} h
Smooth _ R f l .
V., = R for no slipping

Rough
(no slipping)

a) Get v at bottom:
mgh = L +%Ia) ?

2
mgh = LI +l(ng2j (1)
2 2\5 R

Now use energy conservation. Rotational KE does not change
1 2 ’
—mv” + KE, , =mgh'+ KE, ,
W= v _Seh s h
2¢ 2g 7
(b) mgh =mgh' — h' = h With friction on both halves, all the PE gets converted
back to PE. With one smooth side, some of the PE remains as rotational KFE.

10.25: wh—W, =K, =(1/2)[ ,wo +Lmv’em

Solving for & with v, = Rw
)[(0.800)(0.600 m)?(25.0rad/s)” +(0.600 m)* (25.0 rad/s)*]

;( w
2 \9.80 m/s>
w

h=
35007J

——=11.7m.

302N



10.26: a)

4
The angular speed of the ball must decrease, and so the torque is provided by a friction
force that acts up the hill.

b) The friction force results in an angular acceleration, related by /a = fR. The
equation of motion is mg sin f — f =ma,_, and the acceleration and angular acceleration
are related by a_, = Ra (note that positive acceleration is taken to be down the incline,
and relation between a_, and « is correct for a friction force directed uphill).
Combining,

;] = ma(7/3),

mg sinf} = ma(l +
m

from whicha_ = (5/ 7)g sinf. c¢) From either of the above relations between if f'and

a

f= %macm = %mg sinf < un=pumgcos f,
from which g, > (2/7)tan §.

10.27:  a) o = aAt = (FR/T)A¢ = ((18.0N)2.40 m)/(2100 kg - m? )(15.05) = 0.3086 radss,
or 0.309 rad/s to three figures.

b) W =K, = (1/2)lo” = (1/2)x (2.00kg-m>)0.3086 rad/s)* =100 .

¢) Fromeither P = tw, or P=W/At,P=6.67 W.

1028: a) r=L-= (175 hp)(746W/h121)/ =519N-m.
@ (2400 rev/min r m S j
30 rev/min

b) W =1A0 = (519N -m)(27)=32611.



1029: a) r=la=122

At
(0/2)1.50 ke)(0.100 mY? Xlzoo rev/min) rad/ s
= 30 rev/min
2.5s

=0377N -m.

b) 0, At = (600 rev/mlr'l)(2.5 5)25.0 ey = 157 rad.
60 s/min
©) A0 =59.21.
d) K= lIa)2
2

= %((1 /2)(1.5kg)(0.100 m)? )((1200 rev/min)(i rad/s D

30 rev/min
=592 1],

the same as in part (c).

10.30: From Eq. (10.26), the power output is

P=t0=(430N- m)(4800 rev/min x 2n_rad/s

60 rev/min

j =2161W,
which is 2.9 hp.

10.31: a) With no load, the only torque to be overcome is friction in the bearings
(neglecting air friction), and the bearing radius is small compared to the blade radius, so
any frictional torque could be neglected.

b F:%: P]/ea) _ (1.9 hp)(746 \://hp) 656N
(2400 rev/min)(n radis J(0.086 m)
0 rev/min



10.32: 7=1ml’=1(117kg)(2.08 m)’ =42.2kg - m’

a=S= —1950N-m2 =46.2 rad/s’.
I 422kg-m

b) @ =~2a6 =/2(46.2rad/s*)(5.0 rev x 27 rev) = 53.9 rad/s.

a)

c) Fromeither W =K = %af or Eq.(10.24),

W =10 = (1950 N.m)(5.00 rev x 27 rad/rev) = 6.13x10* J.

d), e) The time may be found from the angular acceleration and the total angle, but the
instantaneous power is also found from P =tw =105kW(141hp). The average power is

half of this, or 52.6 kW.

10.33: a) c=Plav=(150x10° W)/ | (400 rev/minm)| =25 || =358 N-m.
30 rev/min

b) If the tension in the rope is F,F =w andsow=1/R =1.79x10° N.

c¢) Assuming ideal efficiency, the rate at which the weight gains potential energy is the
power output of the motor, or wv = P,sov = P/w=283.8 m/s. Equivalently, v = wR.

10.34: As a point, the woman’s moment of inertia with respect to the disk axis is mR>,
and so the total angular momentum is

L = Ldisk + Lwoman = (Idisk + [woman)w = (%M + m]sz

= (%1 10 kg +50.0 kgj(4.00 m)’(0.500 rev/s x 2z rad/rev)

=5.28x10’kg-m’/s.
10.35: a) mvrsing =115kg-m’ /s, with a direction from the right hand rule of into the
page.

b) dL/dt = = (2kg)(9.8 N/kg)- (8 m)-sin(90° —36.9°) =125 N -m =125 kg - m?/s’,
out of the page.



10.36: For both parts, L = Iw. Also, @ =v/r, soL =1(v/r).

a) L= (mr’)(v/r)=mvr
L=(5.97x10* kg)(2.98x10* m/s)(1.50x 10" m) = 2.67x10* kg-m?/s
b) L =(2/5mr*)(w)
L=(2/5)(5.97x10* kg)(6.38x10° m)*(2x rad/(24.0 hr x 3600 s/hr))
=7.07x10" kg-m?*/s

10.37: The period of a second hand is one minute, so the angular momentum is

-3
- M (15.0x107> m)22_7'c: 471x10°° kg'mz/S-
3 60s

10.38: The moment of inertia is proportional to the square of the radius, and so the
angular velocity will be proportional to the inverse of the square of the radius, and the
final angular velocity is

2 2

R : ’

o, =w|—"L| = 27 rad 7.0>10” km =4.6x10° rad/s.
R, (30d)(86,400s/d )| 16km

10.39: a) The net force is due to the tension in the rope, which always acts in the radial
direction, so the angular momentum with respect to the hole is constant.

b) L = mcolrzl,L2 = ma)zrzz,and with L =L, 0, = w1(’”1/”2)2 =7.00rad/s.
¢) AK = (1/2)m((w,r,)* —(wr;)*) =1.03x1072 1.

d) No other force does work, so 1.03x107 J of work were done in pulling the cord.



10.40: The skater’s initial moment of inertia is

I,=(0.400kg-m’) + %(8.00 kg)(1.80m)* =2.56 kg - m’,
and her final moment of inertia is

I, =(0.400 kg-m*) +(8.00 kg)(25x107> m) = 0.9 kg - m’.
Then from Eq. (10.33),

2
», = o, f—l — (040 rov/s) 220 ke M

—=1.14rev/s.
) 0.9kg-m

Note that conversion from rev/s to rad/s is not necessary.

10.41: If she had tucked, she would have made (2)(3.6kg-m?)/18kg-m?)=0.40 rev in
the last 1.0 s, so she would have made (0.40 rev)(1.5/1.0) = 0.60 rev in the total 1.5 s.

10.42: Let
I, =1, =1200kg - m?,

I, = I, + mR* =1200kg - m’ + (40.0kg)(2.00 m)> = 1360kg - m’.

Then, from Eq. (10.33),

2
Il _ (2” radj 1200kg.m” _ 0.924rad/s.

0y = 7h=| s 2
5 .00s /1360 kg.m



10.43:  a) From conservation of angular momentum,

I, (1/2)MR? 1
W, =0, 7 =W 2 7 =0
I, +mR (1/2)MR* + mR 1+2m/M
= _30rad/s =1.385rad/s
1+2(70)/120

or 1.39 rad/s to three figures

b) K, =(1/2)(1/2)120 kg)(2.00 m)*(3.00 rad/s )’ =1.80kJ, and
K, =(1/ 2)(1 , +(70kg)(2.00 m)z)a)f =499 J. In changing the parachutist’s horizontal
component of velocity and slowing down the turntable, friction does negative work.

10.44: Let the width of the door be /;

mw(1/2)
(1/3)M1* + m(l/2)
(0.500 kg )(12.0 m/s)(0.500 m)

- =0.223 rad/s.
(1/3)(40.0 kg)1.00 m)* +(0.500 kg)(0.500 m)’ rads

_L_
I

Ignoring the mass of the mud in the denominator of the above expression gives
®=0.225rad/s, so the mass of the mud in the moment of inertia does affect the third

significant figure.

10.45: Apply conservation of angular momentum L, with the axis at the nail. Let object
A be the bug and object B be the bar.
Initially, all objects are at rest and L, =0.
Just after the bug jumps, it has angular momentum in one direction of rotation and the
bar is rotating with angular velocity w, in the opposite direction.
L,=myv,r—I,w, wherer =1.00mand I, = Lm,»’
L =L, givesmyv,r=mr’w,
_3myy,

w, =—44 =0.120 rad/s

mgr



10.46:

Pivot After:
d
L
Yo my v
m, i |
w

(a) Conservation of angular momentum:

- _ 1 2
myyd =—-myvd +5m,L"w

(3.00kg)(10.0 m/s)(1.50 m) = —(3.00 kg)(6.00 m/s)(1.50 m) +1(&sz (2.00m)’w
3(9.80m/s

w=588rad/s

(b) There are no unbalanced torques about the pivot, so angular momentum is
conserved. But the pivot exerts an unbalanced horizontal external force on the system, so

the linear momentum is not conserved.

10.47:




10.48: a) Since the gyroscope is precessing in a horizontal plane, there can be no net
vertical force on the gyroscope, so the force that the pivot exerts must be equal in
magnitude to the weight of the gyroscope,
F=w=mg= (0.165 kg)(9.80 m/s2)= 1.617N, 1.62 N to three figures.
b) Solving Eq. (10.36) for w,
@R ___ (L617N)(4.00x10” m)

Q (1.20x107 kg-m?)(27)rad/2.20s
which is 1.80x10° rev/min. Note that in this and similar situations, since Q appears in
the denominator of the expression for @, the conversion from rev/s and back to

=188.7 rad/s,

rev/min must be made.

¢)

Rotor
I3

10.49: a) %: (1/2)(1/2)MR*)w*

P
~(1/2)((1/2)(60,000 kg)(2.00 m)? (500 rev/min)( 5 -0’
7.46x10* W
=221x10s,
or 36.8 min.
b) 7z = IQw

= (1/2)(60,000 kg)(2.00 m)>(500 rev/mm)(i rad/s j(l.ooo /S)(Zn radj
30 rev/min 360°

=1.10x10° N -m.

10.50: Using Eq. (10.36) for all parts, a) halved b) doubled (assuming that the
added weight is distributed in such a way that » and 7 are not changed) c) halved
(assuming that w and r are not changed) d) doubled e) unchanged.



10.51: a) Solving Eq. (10.36) for 7,7 = Io Q= (2/5)MR’w Q. Using » =222 and

86,4005
— 2n
(26,000y)(3.175x107 s/y)

T~54x10% N-m.

and the mass and radius of the earth from Appendix F,

10.52: a) The net torque must be

120 rev/min x E rad/s

60 rev/min
(9.005)
This torque must be the sum of the applied force FR and the opposing frictional torques
7, at the axle and fr = u, nr due to the knife. Combining,

j:2.60N-m.

Aw 2(
=Jo=]—=(1.86kg-m
T v ( g-m°)

1
F=—(t+7.+unr
R( ¢+ nr)

1
©0.500m
=68.1N.

((2.60N-m) + (6.50 N -m) + (0.60)(160 N)(0.260m))

b) To maintain a constant angular velocity, the net torque 7 is zero, and the force F'is
F'=—1—(6.50N-m+24.96 N-m)=629N. c¢) The time ¢ needed to come to a stop is

~ 0.500m
found by taking the magnitudes in Eq. (10.27), with 7 = z; constant;

L _ ol _(120rev/minx 2 s )(1.86 kg m’)

t=— 60 rev/min — 36 S.
T, T (6.50 N- m)
Note that this time can also be found as ¢ = (9.00 5 )26Nm
10.53: a) 1212%: (5.0N~m)(2.0S)d/ :0.955kg~m2.
* 29 (100 rev/min)(n racs j
30 rev/min

b) Rather than use the result of part (a), the magnitude of the torque is proportional to
a and hence inversely proportional to | At | ; equivalently, the magnitude of the change in

angular momentum is the same and so the magnitude of the torque is again proportional

to 1/| At |. Either way, t, = (5.0N~m)1§55 —0.080N-m.
S

¢) w,, At =(50.0 rev/min)(1255)(1 min/60s)=104.2 rev.



10.54: a) The moment of inertia is not given, so the angular acceleration must be found
from kinematics;

2025 A500m) _gay g6
t (0.30m)(2.005s)

b) at = (8.33rad/s?)(2.00s) = 16.67 radss.

c¢) The work done by the rope on the flywheel will be the final kinetic energy;
K =W = Fs=(40.0N)(5.0m)=2007J.

rt

d) ]:2_152&”2:1,441%.1112_
o®  (16.67 rad/s)

1
b) From the result of part (a), the power is (500 W) (%)2 =4.50kW.
c) P=tw= /200 = r\/2(r/])0 =7"2J20/1.
d) From the result of part (c), the power is (500 W 6'—00)3/2 =2.6kW. e) No; the

20.00
power is proportional to the time ¢ or proportional to the square root of the angle.

10.55: a)P=tw=r1at = r(?]t = r2(£}

10.56: a) From the right-hand rule, the direction of the torque is i % } =k, the +z
direction.

b), ¢)
1 0.25
“ 2 \
08 / N
r 0.6 T 0.15 / | \\
I 0.4 " 0.1 / \
0.2 .05 / \
0 0

0 02 04 06 08 1 0 02 04 06 08 1
X

.

t

d) The magnitude of the torque is F,(x — x’ / 1), which has it maximum at //2. The
torque atx =//2is F, [/4.



10.57: po20_ 20 201
N a (/) 1

The angle in radiants is /2, the moment of inertia is
(1/3)((750 N)/(9.80 m /s*)(1.25 m))* = 39.9 kg - m*

and the torque is (220 N)(1.25m) =275 N -m. Using these in the above expression gives
t* =0.455s%, so t=0.675s.

10.58: a) From geometric consideration, the lever arm and the sine of the angle
between F and 7 are both maximum if the string is attached at the end of the rod. b) In
terms of the distance x where the string is attached, the magnitude of the torque is
Fxh/ Vx? +h*. This function attains its maximum at the boundary, where x = #, so the

string should be attached at the right end of the rod.  ¢) As a function of x, / and 4, the
torque has magnitude
xh

Ja—1/2) +h*

This form shows that there are two aspects to increasing the torque; maximizing the lever
arm / and maximizing sin ¢. Differentiating 7 with respect to x and setting equal to zero

gives x_. =(/ / 2)(1+(2 h/ [)?). This will be the point at which to attach the string unless
2h > 1, in which case the string should be attached at the furthest point to the right, x = 1.

r=F

10.59: a) A distance L/4 from the end with the clay.
b) In this case / = (4/ 3)ML’ and the gravitational torque is
(BL/4)(2Mg)sin€ = (3Mg L/2)sinf, so a =(9g/8L)sinH.
c¢) In this case 1 = (1/ 3)ML* and the gravitational torque is
(L/4)(2Mg)sin @ = (Mg L/2)sin 8,s0 a = (3 g/2L)sin §. This is greater than in part (b).
d) The greater the angular acceleration of the upper end of the cue, the faster you would
have to react to overcome deviations from the vertical.



10.60: In Fig. (10.22) and Eq. (10.22), with the angle & measured from the vertical,
sin @ =cosf in Eq. (10.2). The torque is then 7 = FRcos®6.

a) W:Lﬁ/zFRcosedezFR
b) In Eq. (6.14), d/ is the horizontal distance the point moves, and so W = F I dl = FR,

the same as part (a). c¢) From K, =W = (MR2/4)w2,a) =,4F/MR. d)The
torque, and hence the angular acceleration, is greatest when @ = 0, at which point
a=(z/I)=2F/MR, and so the maximum tangential acceleration is 2F/M. e)
Using the value for @ found inpart (c), a,, =w’R=4F/M.

10.61: The tension in the rope must be m(g + a) =530 N. The angular acceleration of

the cylinder is a/ R =3.2rad/s’, and so the net torque on the cylinder must be 9.28

N-m. Thus, the torque supplied by the crank is
(530 N)(0.25m)+ (9.28 N-m) =141.8 N - m, and the force applied to the crank handle is

141.8 N-m

vt =1.2kN to two figures.

10.62: At the point of contact, the wall exerts a friction force f directed downward and a
normal force n directed to the right. This is a situation where the net force on the roll is
zero, but the net torque is not zero, so balancing torques would not be correct. Balancing
vertical forces, F , cos@ = f +w+ F, and balacing horizontal forces

TO!

F _,sinf =n.With f = u, n, these equations become

rod

F cos0=pun+F+w,

F_ sin@ =n.

rod

(a) Eliminating n and solving for F_, gives

o+ F  (16.0kg)(9.80 m/s’) +(40.0 N)

= . - =266N.
cosf — u, sinf c0s30°—(0.25)sin30°

rod

b) With respect to the center of the roll, the rod and the normal force exert zero
torque. The magnitude of the net torque is (/' — f)R,and f = u,n may be found
insertion of the value found for F, ; into either of the above relations; i.e.,

f=uF sin0=332N. Then,

T (40.0N-31.54 N)(18.0x107* m)

; =4.71rad/s>.
(0260 kg -m’)

~



10.63: The net torque on the pulley is 7R, where T is the tension in the string, and
a = TR/I . The net force on the block down the ramp is mg(sin  — y, cos ) — T = ma.

The acceleration of the block and the angular acceleration of the pulley are related by
o =oaR.

a) Multiplying the first of these relations by /R and eliminating ¢« in terms of ¢, and
then adding to the second to eliminate 7 gives
(sin 8 — gycos B) _ glsin - cos )

WA R T (14 1/mR)

2

and substitution of numerical values given 1.12 m/s*. b) Substitution of this result into
either of the above expressions involving the tension gives 7= 14.0 N.

10.64: For a tension 7 in the string, mg —T = ma and TR = lo. = [ . Eliminating 7" and
solving for a gives

m _ g
SmAI/RT 1+1/mR*

where m is the mass of the hanging weight, / is the moment of inertia of the disk
combination (1 =2.25x107 kg-m?* from Problem 9.89) and R is the radius of the disk to
which the string is attached.
a) Withm = 1.50 kg, R=2.50x10"m, a = 2.88 m/s".
b) Withm =1.50 kg, R=5.00x10"m, a = 6.13 m/s”.
The acceleration is larger in case (b); with the string attached to the larger disk, the
tension in the string is capable of applying a larger torque.

10.65: Taking the torque about the center of the roller, the net torque is fR = al,
I = MR’ for a hollow cylinder, and with & = a/ R, f = Ma (note that this is a relation

-

between magnitudes; the vectors f and a are in opposite directions). The net force is
F — f = Ma, from which F =2Maandsoa=F/2M and f = F/2.



10.66: The accelerations of blocks 4 and B will have the same magnitude a. Since the
cord does not slip, the angular acceleration of the pulley will be & = 4. Denoting the

tensions in the cord as 7, and 7, the equations of motion are
m,g—T,=m,a
Ty —myg =mua
1
TA _TB ZFG,

where the last equation is obtained by dividing 7 = /e by R and substituting for & in
terms of a.

Adding the three equations eliminates both tensions, with the result that
m, —mg
m,+m,+1/R’

a=g

Then,

a m, —m,
a=—=g :
R ~“~mR+my;R+I/R

The tensions are then found from

2m, my +m, I/ R
m, +mB+I/R2

T,=m,(g-a)=g

2mym , +m, I/ R
m,+mg +I/R*

Ty=my(g+a)=g

As a check, it can be shown that (7, —T)R = Ic.



10.67: For the disk, K = (3/4)Mv? (see ExamplelO.6). From the work-energy theorem,
K, = MgL sinf, from which

3 3(2.50m/s)

L=—" = — =0.957 m.
4gsin B 4(9.80 m/s*)sin 30.0°

This same result may be obtained by an extension of the result of Exercise 10.26; for the
disk, the acceleration is (2/3)g sin S, leading to the same result.

b) Both the translational and rotational kinetic energy depend on the mass which
cancels the mass dependence of the gravitational potential energy. Also, the moment of
inertia is proportional to the square of the radius, which cancels the inverse dependence
of the angular speed on the radius.

10.68: The tension is related to the acceleration of the yo-yo by (2m)g —T = (2m)a, and
to the angular acceleration by 7b = I = I 4. Dividing the second equation by b and
adding to the first to eliminate 7 yields

gm0
Eom+10") S2v @by “ TS+ R

where [ = 2%mR2 =mR* has been used for the moment of inertia of the yo-yo. The
tension is found by substitution into either of the two equations; e.g.,

_2mg (R/b)? __ 2mg
2+ (R/b)? 2+(R/b)*  (2(b/R)* +1)

T'=(2m)(g—a)=(2mg) [l -



10.69: a) The distance the marble has fallenis y=h—(2R—-r)=h+r—2R. The
radius of the path of the center of mass of the marble is R —r, so the condition that the
ball stay on the track is v’ = g(R —r). The speed is determined from the work-energy
theorem, mgy = (1/ ymv* + (1/ 2)Iw*. At this point, it is crucial to know that even for the
curved track, @ = v/r; this may be seen by considering the time 7' to move around the
circle of radius R —r at constant speed V' is obtained from 27 (R —r) =V, during which
time the marble rotates by an angle 27 (% - 1) =T, from which @ =V/r. The work-

energy theorem then states mgy = (7/ 10)mv*, and combining, canceling the factors of m
and g leads to (7/10)(R —r) = h+r —2R, and solving for & gives
h=(27/10)R - (17/10)r. b) In the absence of friction, mgy = (I/2)mv?*, and substitution

of the expressions for y and v* in terms of the other parameters gives
(1/2)(R—r)=h—r—2R, which is solved for & = (5/2)R - (3/2)r.

N
10.70: In the first case, F and the friction force act in opposite directions, and the
friction force causes a larger torque to tend to rotate the yo-yo to the right. The net force
to the right is the difference F' — f, so the net force is to the right while the net torque

causes a clockwise rotation. For the second case, both the torque and the friction force
tend to turn the yo-yo clockwise, and the yo-yo moves to the right. In the third case,
friction tends to move the yo-yo to the right, and since the applied force is vertical, the
yo-yo moves to the right.

n n n
A 4
; F § f
f f
Y Y
W w w

10.71: a) Because there is no vertical motion, the tension is just the weight of the hoop:
T = Mg =(0.180kg)(9.8 N/kg)=1.76 N b) Use 7 = I« to find a. The torque is

RT,soa=RT/I=RT/MR* =T /MR = Mg/MR,
soa = g/R=(9.8m/s*)/(0.08 m)=122.5 rad/s’

¢) a=Ra =9.8m/s’

d) 7 would be unchanged because the mass M is the same, « and a would be twice as
great because / is now L MR’



10.72: (a)Xr=/laanda; = Ra

PR = %MRza = lMRZ(G—TJ

2 R
ar :Ez 200N :501'1'1/52
M 4.00kg

Distance the cable moves: x =3 at?
50m = %(50 m/s>) -t =14ls.

v=y, +at=0+(50m/sz)(1.4ls)= 70.5m/s

(b) For a hoop, I = MR’, which is twice as large as before, so « and a, would be
half as large. Therefore the time would be longer. For the speed, v’ = v; + 2ax, in which
x is the same, so v would be smaller since a is smaller

10.73: Find the speed v the marble needs at the edge of the pit to make it to the level

ground on the other side. The marble must travel 36 m horizontally while falling
vertically 20 m.

Use the vertical motion to find the time. Take + y to be downward.
v, =0,a, =9.80m/52,y—y0 =20m, t=7?

Y=Yy =Vt + %ayt2 givest =2.02s

Then x —x, = v, t givesv, =17.82 m/s.

Use conservation of energy, where point 1 is at the starting point and point 2 is at the
edge of the pit, where v =17.82 m/s. Take y =0 at point 2, so y, =0and y, = h.
K, +U, =K, +U,
mgh=1mv’ +1lw®
Rolling without slipping means @ =v/r. I =2mr?, sol o’ =1m/’
mgh =L mv’
v 7(17.82m/s)
T10g  109.80m/s?)

b) 1/w* =1mv?, Independent of r.

c) All is the same, except there is no rotational kinetic energy termin K : K = %mv2
mgh =1+mv’

2
h= ;— =16 m, 0.7 times smaller than the answer in part ( a).
g



10.74: Break into 2 parts, the rough and smooth sections.
Rough : mgh, =+mv, +1 10

2
mgh, L LY (= 5
2 2\5 R

, 10
v =—gh
7g1

Smooth: Rotational KE does not change.

Rot

110 1
h, +—| —gh |=—V2
8n, 2(7g1j 5B

Vg = ],%ghl +2gh,

= \/g (9.80 m/s*)(25 m)+2(9.80 m/s*)(25 m)

1 1
mgh, + Emv2 +KE, = Emvéomm +KE,,,

=29.0m/s



10.75:  a) Use conservation of energy to find the speed v, of the ball just before it
leaves the top of the cliff. Let point 1 be at the bottom of the hill and point 2 be at the top
of the hill. Take y =0 at the bottom of the hill, so y, =0andy, =28.0m.

K, +U, =K, +U,

Iyl +11w! =mgy, +1mv; +1lw;

Rolling without slipping means @ =v/r and: [w® = %(% mrz)(v/r)2 =Llm?

7 2 _ 7 2
10 MV, =mgy, +15mv,

v, =4V —L gy, =1526 m/s

Consider the projectile motion of the ball, from just after it leaves the top of the cliff
until just before it lands. Take + y to be downward.

Use the vertical motion to find the time in the air:
vy, =0,a,=9.80 m/s’, y—y,=28.0 m, t=?

Y= Yo =Vo,t +3a,t’ givest=2.39s
During this time the ball travels horizontally x —x, = v, = (1 5.26 m/ s) (2.39 s) =36.5m
Just before it lands, v, =v,, +a t=23.4sandv, =v, =153sv= Vo + vi =28.0 m/s

b) At the bottom of the hill, @ =v/r = (25 .0m/ s)r. The rotation rate doesn't change
while the ball is in the air, after it leaves the top of the cliff, so just before it lands
o = (15.3s)r. The total kinetic energy is the same at the bottom of the hill and just before
it lands, but just before it lands less of this energy is rotational kinetic energy, so the
translational kinetic energy is greater.



10.76: (a)mgh = %mv2 +%1a)2(1)

I=1,,+1_,.=MR + 6@mSR2j

spokes

Uniform density means: m, = A2zR and m_= AR. No slipping means that o =v/R.

Also, m=m_+m, =2nRA+6RAL = 2R/1(7t + 3) substituting into (1) gives

2RMz +3)gh= %(ZR/I) (z+3)Row) + %[ZnR/IRZ + 6@ nRRzﬂwz

_ [@+3)gh _ |(x+3)9.80m/s?|58.0m)
©= Rz(n+g2)_\/ (0210 m) (7 +2) = 124radfs

andv=Rw=26.0m/s

(b) Doubling the density would have no effect because it does not appear in the answer.
o a +, so doubling the diameter would double the radius which would reduce

o by half, but v = Rw would be unchanged.

10.77: a) The front wheel is turning at @ =1.00 rev/s = 27 rad/s.
v=rw=(0.330m)(2n rad/s) =2.07 s
b) @ =v/r=(2.07m/s)/(0.655 m=3.16rrad/s = 0.503 rev/s
¢) w=v/r=(2.07m/s)/(0.220 m) =9.41rad/s =1.50 rev/s

10.78: a) The kinetic energy of the ball when it leaves the tract (when it is still rolling
without slipping) is (7/10)mv> and this must be the work done by gravity, W = mgh, so

v=4/10gh/7. The ball is in the air for a time t=,/2y/g, sox =vt=4/20hy/7.

b) The answer does not depend on g, so the result should be the same on the moon.
c¢) The presence of rolling friction would decrease the distance.

d) For the dollar coin, modeled as a uniform disc, K = (3/4)mv*, and so x = 1/8hy/3.



1079 a) v= /1705 _ \/(10)(0.800)(1/2)(400N/m)(O.lSm)2 —934m/s.

7(0.0590 kg)

b) Twice the speed found in part (a), 18.7 m/s.  c) If the ball is rolling without

slipping, the speed of a point at the bottom of the ball is zero. d) Rather than use the
intermediate calculation of the speed, the fraction of the initial energy that was converted

to gravitational potential energy is (0.800) (0.900), N (0.720) (1/ 2)kx* = mgh and solving
for A gives 5.60 m.

10.80: a)

2 ;
: 05|/ [
0 \/ ; i \
0 5 10 15
X

b) R is the radius of the wheel (y varies from 0 to 2R) and T is the period of the
wheel’s rotation.
c) Differentiating,

27R 2wt 2\ . [ 2mt
v, =——|l—cos| — a,=|—| Rsin| —

T T T T

2zR . (2wt 2 ? 2wt
Vv, =——sIin| — a =|— | Rcos| — |.
’ T T 7 T T

2
d) v, =v, =0when (ij = 2 or any multiple of 27, so the times are integer

multiples of the period 7. The acceleration components at these times are
47°R
T2

2 2
e) al+al = £l R |cos’ 2 +sin’ 2 =4E2R,
! T T T T

independent of time. This is the magnitude of the radial acceleration for a point moving
on a circle of radius R with constant angular velocity 2=. For motion that consists of this

a,=0,a, =

circular motion superimposed on motion with constant velocity (@ = 0), the acceleration
due to the circular motion will be the total acceleration.



10.81: For rolling without slipping, the kinetic energy is (1/ 2) (m +1I/R? )v2 = (5/ 6)mv2;
initially, this is 32.0 J and at the return to the bottom it is 8.0 J. Friction has done —24.0J
of work, —12.0J each going up and down. The potential energy at the highest point was
20.0 J, so the height above the ground was W&oﬁ) =3.40m.

10.82: Differentiating , and obtaining the answer to part (b),

2/3
»= % =3bt* = 31{%) =3b"%9%3,
1/3
o= —‘;—‘t" = 6bt = 6b(%) —6b%39"3,

a) W =[1,ad0=6b"1,[0"d0 = %Icmb2/394/3.
c) The kinetic energy is
K = llcma)Z — 210mb2/394/3,
2 2

in agreement with Eq. (10.25); the total work done is the change in kinetic energy.

10.83: Doing this problem using kinematics involves four unknowns (six, counting the
two angular accelerations), while using energy considerations simplifies the calculations
greatly. If the block and the cylinder both have speed v, the pulley has angular velocity
v/R and the cylinder has angular velocity v/2R, the total kinetic energy is

2
(v/2R)? +%(V/R)2 +Mv2} = %Mvz.

This kinetic energy must be the work done by gravity; if the hanging mass descends a
distance y, K = Mgy, or v* =(2/3)gy. For constant acceleration, v’ = 2ay, and

1

2
K:E[MV2 L MQR)®

comparison of the two expressions gives a = g/3.



10.84: (a)

=0.92 rad/s’
2 8.00 m

( gj (9.80 m/s*) cos 60°

(b) As the bridge lowers, 8 changes, so « is not constant. Therefore Eq. (9.17) is
not valid.

(c) Conservation of energy:

PE, = KE, — mgh = %[@2

1(1
mgLsin®=—| —ml? |
g7 2(3 )

- [3g sind
L

~ \/3(9.8 m/s?)sin 60°
8.00m

=1.78rad/s

10.85: The speed of the ball just before it hits the bar is v=4/2gy =15.34m/s.

Use conservation of angular momentum to find the angular velocity @ of the bar just
after the collision. Take the axis at the center of the bar.

L, =mvr=(5.00kg)(15.34m/s)(2.00m)=153.4 kg - m
Immediately after the collsion the bar and both balls are rotating together.

L,=1,w

1

I, = EMIZ +2mr? = %(8.00 kg)(4.00m)* +2(5.00kg)(2.00 m)* =50.67 kg - m”

tot
L, =L =1534kg-m’
w=L,/I, =3.027 rad/s

tot
Just after the collision the second ball has linear speed
v=rw=(2.00m)(3.027rad/s) = 6.055m/s and is moving upward.

%mv2 = mgy gives y = 1.87 m for the height the second ball goes.



10.86: a) The rings and the rod exert forces on each other, but there is no net force or
torque on the system, and so the angular momentum will be constant. As the rings slide
toward the ends, the moment of inertia changes, and the final angular velocity is given by
Eq.(10.33),

I, LML +2mi? 500x10*kg-m* o,

a)2=a)1]—=601 WY 2 | T 3 27 40
5 5 + 2mr, 200x107 kg-m~ 4

ans so @, = 7.5 rev/min. Note that conversion from rev/min to rad/s is not necessary.

b) The forces and torques that the rings and the rod exert on each other will vanish, but
the common angular velocity will be the same, 7.5 rev/min.

10.87: The intial angular momentum of the bullet is (m/4)(v)(L/2), and the final moment
of intertia of the rod and bullet is (n2/3)L* + (m/4)L/2) = (19/48)mI?. Setting the initial
angular moment equal to @/ and solving forw gives @ = % = %v/ L.

(/21w _(19/48)m*((6/19)(v/L)) _ 3

(1/2)(m/4p> (m/4)? 19

b)

10.88: Assuming the blow to be concentrated at a point (or using a suitably chosen
“average” point) at a distance r from the hinge, X7z, . =7F,  and AL =rF, At =rJ.

The angular velocity o is then
AL _rF At (I/2)F, At 3 F Al

w=—-= ave a\;e — ave

1 1 tml 2 ml

Where / is the width of the door. Substitution of the given numeral values gives
@ =0.514rad/s.

b

10.89: a) The initial angular momentum is Z = mv({/2) and the final moment of inertia
is I=1,+m(l/2), so
mv(l/2)

= (LY +m(i2) =5.46rad/s.

b) (M +m)gh = (1/2)w’I, and after solving for / and substitution of numerical values,
h=3.16x107> m. c) Rather than recalculate the needed value of @, note that @ will be
proportional to v and hence / will be proportional to v*; for the board to swing all the

way over, & =0.250 m.and so v = (360 m/s),/ 22 — 1012 m/s.

0.0316 m




10.90: Angular momentum is conserved, so /,@, = I,w,, or, using the fact that for a
common mass the moment of inertia is proportional to the square of the radius,

Rlw, = Rlo,,or Rlw, =(R,+AR) (0, + Aw)~ Rlw, + 2R,ARw, + R} Aw,

where the terms in ARA®w and Aw’ have been omitted. Canceling the R;w, term gives
£y Ao

2 w,

AR =—- =-1.1cm.

10.91: The initial angular momentum is L, = w,/, and the initial kinetic energy is

K, = 1,0} /2. The final total moment of inertia is4/ ,, so the final angular velocity

is (1/4)o, and the final kinetic energy is (I/2)47 ,(c,/4) = (1/4)K,.(This result may be
obtained more directly from K = I*/I.Thus, AK =—(3/4)K, and K, = —(4/3)(~24001)
=32001J.

10.92: The tension is related to the block’s mass and speed, and the radius of the circle,
2

byT = m>—. The block’s angular momentum with respect to the hole is L = mvr, so in
r

terms of the angular momentum,

2.2 2 2 2
21 mvTr (mvr) L
T=myv —= 3= 5= 5
romr mr mr

The radius at which the string breaks can be related to the initial angular momentum by
s 2 (mvr)  ((0.250kg)(4.00 m/s)(0.800 m))’

r: = =

mT, mT, (0.250kg)(30.0N)

max max

from which » = 0.440 m.

b

10.93: The train’s speed relative to the earth is 0.600 m/s + w (0.475m), so the total
angular momentum is

((0.600 m/s)+ (0.475 m))(1.20 kg )(0.475 m) + e(1/2)(7.00 kg)(%j2 =0,

from which @ = —0.298rad/s ,with the minus sign indicating that the turntable moves
clockwise, as expected.



10.94: a), g)

v, into page

out of page

b) Using the vector product form for the angular momentum, v, = —v, and , = —F,, so

mr, X v, = mr, Xv,,
so the angular momenta are the same. c) Let @ = co}'. Then,
v, =0OX7, :co(zf—xle),and
L =miF xv, = mw((— xR)i + (x2 + yz)}' +(xR) A)

With x* + y2 =R?, the magnitude of Lis 2mwR*, and Zl -@=mo*R*,and so

cosf = #% =7,and @ = Z. This is true for Z2 as well, so the total angular

momentum makes an angle of £ with the +y-axis. d) From the intermediate
calculation of part (¢), L,, = mwR* = mvR, so the total y-component of angular
momentum is L, =2mvR.e) L, is constant, so the net y-component of torque is zero. f)

Each particle moves in a circle of radius R with speed v, and so is subject to an inward
force of magnitude mv* / R. The lever arm of this force is R, so the torque on each has
magnitude mv’. These forces are directed in opposite directions for the two particles,
and the position vectors are opposite each other, so the torques have the same
magnitude and direction, and the net torque has magnitude 2mv*.



10.95: a) The initial angular momentum with respect to the pivot is mvr, and the
final total moment of inertia is 7 +mr’, so the final angular velocity is

W= mvr/(mr2 + 1)

b) The kinetic energy after the collision is

K =%w2(mr2 +I)=(M+m)gh, or

2(M +m)gh
mr® +1)

o)

¢) Substitution of I = Mr*into either of the result of part (a) gives ® = ( N
m

and into the result of part (b), @ =+/2gh(1/r), which are consistent with the forms for v.

10.96: The initial angular momentum is /o, —mRv,, with the minus sign indicating that
runner’s motion is opposite the motion of the part of the turntable under his feet. The
final angular momentum is @, (I + mR?), s0
I, — mRy,

[ +mR’®

W,

_ (80kg-m?)(0.200 rad/s) — (55.0 kg)(3.00 m)(2.8 m/s)
- (80 kg - m?) + (55.0kg)(3.00 m)>
=-0.776rad/s,

where the minus sign indicates that the turntable has reversed its direction of motion (i.e.,
the man had the larger magnitude of angular momentum initially).

10.97: From Eq. (10.36),

_or _ (50.0kg)(9.80 m/s*)(0.040 m)

=12.7 rad/s,
(0.085kg-m*)((6.0m/s)/(0.33 m))

o

or 13 rad/s to two figures, which is quite large.



10.98: The velocity of the center of mass will change by Av, =<, and the angular

velocity will change by Aw = @ - The change is velocity of the end of the bat will

then be Av, , =Av, Awx, = L % - Setting
m

Av,,, = 0 allows cancellation of J, and gives / = (x — x_, )x,,,/m, which when solved for x
1s

1 by = (5.30x10°kg - m?)
x,m  (0.600m)(0.800 kg)

cm

+(0.600 m) =0.710 m.

X =

10.99: In Fig. (10.34(a)), if the vector
r, and hence the vector L are not horizontal but make an angle § with the horizontal, the

torque will still be horizontal (the torque must be perpendicular to the vertical weight).
The magnitude of the torque will be w 7 cos £, and this torque will change the direction

of the horizontal component of the angular momentum, which has magnitude L cos £ .

Thus, the situation of Fig. (10.36) is reproduced, but with Lior, instead of L . Then, the
expression found in Eq. (10.36) becomes

o d¢ _ ‘di‘ /‘Zhoriz
dt dt

T mgrcosf  or
Lhoriz L COSﬂ Iﬁ)




10.100: a)

A

The distance from the center of the ball to the midpoint of the line joining the

points where the ball is in contact with the rails is 4/ R* —(d/ 2)2, sov, =R —d*/4.
when d =0, this reduces to v, = @R, the same as rolling on a flat surface. When

d = 2R, the rolling radius approaches zero, and v, — 0 for any w.

b) K=lmv2+lloa2
2 2

2
1 2 5 %
=—|mv’. +(2/5)mR —ﬁm_)
2 cm (/) ( Rz_d2/4]

vl sy 2
10 (1-a*/4r?)|
Setting this equal to mgh and solving for v_ gives the desired result. c¢) The

denominator in the square root in the expression for v_ is larger than for the case

c)

d =0,s0v_, is smaller. For a given speed, @ is large than the d =0 case, so a larger
fraction of the kinetic energy is rotational, and the translational kinetic energy, and hence
V.., 1s smaller. d) Setting the expression in part (b) equal to 0.95 of that of the d =0

case and solving for the ratio d/R gives d/R =1.05. Setting the ratio equal to 0.995 gives
d/R=037.



10.101: a)

a
[
f

The friction force is f = u.n =, Mg, so a = u,g. The magnitude of the angular

SR mMgR 2 g

= b) Setting v =at = wR = (a)0 - a)t)R and solving for ¢

acceleration is

T (1)2)MR? R
gives
. Ro, _ Rwy, _ Ro, ,
a+Ra mg+2mg 3ug
and

2 2 2
d=Lar :i(ﬂkg{ Rwo] _Ray
2 2 3wg) 18ug

c¢) The final kinetic energy is (3/ 4)Mv2 = (3/ 4)M (at)2 , so the change in kinetic energy
is

2
Sul g B2 | L yree = Lureer,
4 3u.g 4 6



10.102: Denoting the upward forces that the hands exert as F, and F, the conditions that
F, and F, must satisfy are
F,+F,=w
lw

F,—F,=Q=,
»

where the second equation is 7 = QL, divided by r. These two equations can be solved
for the forces by first adding and then subtracting, yielding

F, = l(a) +Q[—a)j
2 r

F,= l(a) —Ql—a)j.
2 r

Using the values @ = mg = (8.00 kg)(9.80 m/sz) =78.4Nand

Io _ (8.00kg)(0.325 m)*(5.00 rev/s x 27 rad/rev)

=132.7kg-m/s
, (0.200 m)

gives
F, =392N+Q(66.4N-s), [, =392 N-Q(66.4N -s).
a) Q=0,F, = F, =392 N,
b) Q=0.05rev/s=0.314rad/s, F, =60.0N, F, =18.4 N.
¢) Q=03rev/s=1.89rad/s, F, =165N, F, =—86.2 N,
with the minus sign indicating a downward force.
d) F, =0 gives Q=228 =(.575rad/s, which is 0.0916 rev/s.

664 N-s

10.103: a) See Problem 10.92; T =mvr’/r*. b) T and dF are always antiparallel, so

2
W:—I IZT dr:mvfrlz.[ dr zmr{i—i}

3 1
2y 2 oo

> N
¢) v, =v(1/1,),50

2 2
AK =L mv2 —v2) =L\ L] s
2 2 |\n

which is the same as the work found in part (b).



Capitulo 11



11.1:  Take the origin to be at the center of the small ball; then,
_ (1.00kg)(0)+(2.00kg)(0.580m) 0387 m

o 3.00kg
from the center of the small ball.

11.2:  The calculation of Exercise 11.1 becomes
~ (1.00kg)(0) + (1.50kg)(0.280 m) + (2.00 kg)(0.580 m)

o 4.50kg
This result is smaller than the one obtained in Exercise 11.1.

=0.351m

11.3:  In the notation of Example 11.1, take the origin to be the point S, and let the

child’s distance from this point be x. Then,
__MEDR)emx o MD s
M+m 2m

which is (L/2 — D/2)/2, halfway between the point S and the end of the plank.

11.4:  a) The force is applied at the center of mass, so the applied force must have the
same magnitude as the weight of the door, or 300 N. In this case, the hinge exerts no
force.

b) With respect to the hinge, the moment arm of the applied force is twice the
distance to the center of mass, so the force has half the magnitude of the weight, or
150 N . The hinge supplies an upward force of 300 N —-150 N =150 N.

11.5: F(8.0m)sin 40° = (2800 N)(10.0 m), so F' = 5.45 kN, keeping an extra figure.

11.6:  The other person lifts with a force of 160 N —60 N =100 N. Taking torques
about the point where the 60 - N force is applied,
160 N

(100N)x = (160 N)(1.50 m), or x = (1.50 m)(m

] =2.40m.

11.7:  Ifthe board is taken to be massless, the weight of the motor is the sum of the

applied forces, 1000 N. The motor is a distance% =1.200 m from the end where

the 400-N force is applied.



11.8:  The weight of the motor is 400 N + 600 N —200 N = 800 N. Of the myriad ways

to do this problem, a sneaky way is to say that the lifters each exert 100 N to the lift the

board, leaving 500 N and 300 N to the lift the motor. Then, the distance of the motor

from the end where the 600-N force is applied is % =0.75 m .The center of

gravity is located at *=2m S CE R — 0.80 m from the end where the 600 N force

is applied.

11.9:  The torque due to 7, is — 7,4 =—~*cotf h,and the torque due to 7, is 7, D = Lw.

The sum of these torques is Lw(1 -4 cot#). From Figure (11.9(b)), & = Dtan#, so the net
torque due to the tension in the tendon is zero.

11.10:  a) Since the wall is frictionless, the only vertical forces are the weights of the
man and the ladder, and the normal force. For the vertical forces to balance,

n, =w, +w, =160 N+740 N =900 N, and the maximum frictional forces is

un, =(0.40)(900 N) =360 N (see Figure 11.7(b)). b) Note that the ladder makes contact

with the wall at a height of 4.0 m above the ground. Balancing torques about the point of
contact with the ground,

(4.0m)n, = (1.5m)(160 N) + (1.0 m)(3/5))(740 N) = 684 N - m,

so n, =171.0 N, keeping extra figures. This horizontal force about must be balanced by
the frictional force, which must then be 170 N to two figures. c¢) Setting the frictional
force, and hence n,, equal to the maximum of 360 N and solving for the distance x along
the ladder,

(4.0m)(360 N) = (1.50 m)(160 N) + x(3/5)(740 N),

so x =2.70 m, or 2.7 m to two figures.

11.11:  Take torques about the left end of the board in Figure (11.21). a) The force F at
the support point is found from
F(1.00m) =+(280 N)(1.50 m) + (500 N)(3.00 m), or /' =1920 N.b) The net force must be

zero, so the force at the left end is (1920 N) — (500 N) — (280 N) =1140 N, downward.



11.12: a)

800

1000 : ;
Fgx) ! /
900 H = — = Fin »

N
700

BOQ i

500

400

b) x = 6.25m when F, = 0, which is 1.25 m beyond point B. c¢) Take torques about
the right end. When the beam is just balanced, /', = 0,so /', =900 N. The distance that

point B must be from the right end is then % =1.50m.

11.13:  In both cases, the tension in the vertical cable is the weight w. a) Denote the
length of the horizontal part of the cable by L. Taking torques about the pivot point,

TL tan30.0° = wL + w(L/2), from which T = 2.60w. The pivot exerts an upward vertical
force of 2w and a horizontal force of 2.60w, so the magnitude of this force is 3.28w,
directed 37.6° from the horizontal. b) Denote the length of the strut by L, and note that
the angle between the diagonal part of the cable and the strut is 15.0°. Taking torques
about the pivot point, 7L sin 15.0° = wL sin 45.0° + (w/2)L sin 45°,s0 T = 4.10w. The
horizontal force exerted by the pivot on the strut is then 7" cos 30.0° =3.55@ and the
vertical force is (2w) + T sin 30° = 4.05w, for a magnitude of 5.38w, directed 48.8°.

11.14:  a) Taking torques about the pivot, and using the 3-4-5 geometry,

(4.00 m)(3/5)T = (4.00 m)(300 N) +(2.00 m)(150 N),

so T =625 N. b) The horizontal force must balance the horizontal component of the
force exerted by the rope, or 7(4/5) =500 N. The vertical force is

300N +150 N = T(3/5) =75 N, upwards.



11.15:  To find the horizontal force that one hinge exerts, take the torques about the
other hinge; then, the vertical forces that the hinges exert have no torque. The horizontal
force is found from £;;(1.00 m) = (280 N)(0.50 m), from which F;; =140 N. The top hinge

exerts a force away from the door, and the bottom hinge exerts a force toward the door.
Note that the magnitudes of the forces must be the same, since they are the only

horizontal forces.

11.16: (a) Free body diagram of wheelbarrow:

Wioad

"
0.70m F
450N SON ground
- W,
Y
20m
22—wheel = 0
— (450 N)(2.0 m) + (80 N)(0.70 m) + #,(0.70 m) =0
W, =1200 N

(b) From the ground.

11.17: Consider the forces on Clea.

< 095m ——=>

axis

n. =8N, n, =157N
n +n.= wsow=246N



11.18:  a) Denote the length of the boom by L, and take torques about the pivot point.
The tension in the guy wire is found from

TL sin 60° = (5000 N)) L cos 60.0° + (2600 N)(0.35 L) cos 60.0°,

so T =3.14kN. The vertical force exerted on the boom by the pivot is the sum of the

F
weights, 7.06 kN and the horizontal force is the tension, 3.14 kN. b) No; tan (FV J;ﬁ 0.

H

11.19:  To find the tension 7; in the left rope, take torques about the point where the

rope at the right is connected to the bar. Then,
T, (3.00m)sin150° = (240 N)(1.50m) + (90 N)(0.50m),so 7; =270 N. The vertical

component of the force that the rope at the end exerts must be
(330N)— (270 N) sin 150° =195 N, and the horizontal component of the force is

— (270 N) cos 150°, so the tension is the rope at the right is 7, =304 N. and 6 =39.9°.

11.20:  The cable is given as perpendicular to the beam, so the tension is found by
taking torques about the pivot point;
T7(3.00m) = (1.00 kN)(2.00 m) cos 25.0° + (5.00 kN)(4.50 m) cos 25.0°,or T = 7.40 kN.

The vertical component of the force exerted on the beam by the pivot is the net weight
minus the upward component of 7', 6.00 kN — 7" cos 25.0° = 0.17 kN. The horizontal force

is T sin 25.0°=3.13kN.

11.21: a) F(3.00m)-F,(3.00m+/7)=(8.00 N)(=/). Thisisgiven tohavea
magnitude of 6.40 N.m,so/=0.80m. b) The net torque is clockwise, either by
considering the figure or noting the torque found in part (a) was negative. ¢) About the
point of contact of F,the torque due to Fiis— Fl, and setting the magnitude of this
torque to 6.40 N -m gives/ =0.80 m, and the direction is again clockwise.

11.22:  From Eq. (11.10),
y=rl _p 0200m) ___ _ p1333m),
AlA (3.0x107" m)(50.0x10™" m~)
Then, F =25.0 N corresponds to a Young’s modulus of 3.3x10* Pa,and F = 500 N

corresponds to a Young’s modulus of 6.7 x10° Pa.




11.23: a=Fh____ (B00NX2.00m)
YAl (20x10" Pa)(0.25x107* m)

and so d =+/4A4/m =1.43x10~° m, or 1.4 mm to two figures.

=1.60x10"° m?,

11.24:  a) The strain, from Eq. (11.12), is ?—01 =% .For steel, using Y from Table (11.1)

and A=74=1.77x10" m’,
Al (4000 N)

4
= m ———-=1.1x107".
[, (2.0x10" Pa)(1.77x107" m~)

Similarly, the strain for copper (Y =1.10x10"'Pa) is2.1x107".b) Steel:
(1.1x107™*)x (0.750m) = 8.3x 10 m . Copper: (2.1x107)(0.750m) =1.6x10"*m-

11.25:  From Eq. (11.10),
(5000 N)(4.00 m)

= - - =2.0x10" Pa.
(0.50x10™*m?)(0.20x107> m)
11.26: From Eq. (11.10),
2
y _ (65.0kg)(9.80 m/s?)(45.0m) — 6.8x10° Pa.

(7(3.5x107 m)*)(1.10 m)

11.27:  a) The top wire is subject to a tension of (16.0kg)(9.80 m/s*) =157 N and

hence a tensile strain of TN —314%107,0r3.1x107 to two figures. The
(20x10°" Pa)(2.5x10" " m~)

bottom wire is subject to a tension of 98.0 N, and a tensile strain of 1.96x10~, or
2.0x107 to two figures. b) (3.14x107)(0.500 m)=1.57 mm,

(1.96x107)(0.500 m) = 0.98 mm.

(8000 kg)(9.80 /3)

11.28: a) =
m(12.5x107° m)
¢) (0.8x107°)x(2.50m)=2x10" m.

=1.6x10°Pa. b) L&10P — () 85107,

2.0x10"° Pa

11.29:  (2.8—1)(1.013x10° Pa)(50.0m?) = 9.1x10° N.



11.30: a) The volume would increase slightly. b) The volume change would be twice
as great. ¢) The volume is inversely proportional to the bulk modulus for a given pressure
change, so the volume change of the lead ingot would be four times that of the gold.

11.31:  a) —29% - =333x10°Pa. b) (3.33x10° Pa)(2)(200x10™* m*) =133 kN.

0.75x10™ m?

11.32: a) Solving Eq. (11.14) for the volume change,
AV =—kVAP

=—(45.8x107" Pa™")(1.00 m’)(1.16 x10° Pa —1.0x 10’ Pa)
=-0.0531m’.

b) The mass of this amount of water not changed, but its volume has decreased to
1.000m® —0.053m* =0.947 m’, and the density is now “22% 1 09x10* kg/m’.

0.947 m*

_ (600cm’)(3.6x10° Pa)
(0.45cm’)

11.33: B =4.8x10’Pa, k=%:2.1><1010 Pa”'.
11.34:  a) Using Equation (11.17),

F 5
Shear strain = —L = Ox10"N) m =24x107%
A4S [(10m)(.005m)][7.5x 10" Pa]

b) Using Equation (11.16), x = Shear stain - 7 =(.024)(.1m) =2.4x10" m.

11.35:  The area 4 in Eq.(11.17) has increased by a factor of 9, so the shear strain for
the larger object would be 1/9 that of the smaller.

11.36:  Each rivet bears one-quarter of the force, so

F 1 4
B2 w200 N) o8 pa,

A (.125%x107> m)?

Shear stress =



11.37:  £=—19%8 _ _341x10" Pa, or 3.4x10’ Pa to two figures.

4 7(0.92x107 m)?

11.38:  a) (1.6x107)(20x10" Pa)(5x10° m*) =1.60x10° N. b) If this were the case,
the wire would stretch 6.4 mm.

¢) (6.5x107)(20x10" Pa)(5x10° m*) = 6.5x10° N.

1139: g Fo _ (2.40x10° Pa)(3.00x 10~ m*)/3

m (1200 kg)

—-9.80 m/s* =10.2 m/s’.

11.40: A= _=-745%x10"7 m’,s0d =+/44/ 7=0.97 mm.

T 47x10% Pa

11.41: a) Take torques about the rear wheel, so that fod = wx

e OT X, = fd .
b) (0.53)(2.46 m) =1.30m to three figures.

11.42: If Lancelot were at the end of the bridge, the tension in the cable would be
(from taking torques about the hinge of the bridge) obtained from

T(12.0 N) = (600 kg)(9.80 m/s*)(12.0 m) + (200 kg)(9.80 m/s?)(6.0 m),

so T = 6860 N. This exceeds the maximum tension that the cable can have, so Lancelot is
going into the drink. To find the distance x Lancelot can ride, replace the 12.0 m
multiplying Lancelot’s weight by x and the tension 7 by T, =5.80x10° N and solve
for x;

. (5:80x10°N)(12.0m) - (200 kg)(9.80 m/s*)(6.0 m)

. =9.84m.
(600kg)(9.80 m/s*)




11.43:  For the airplane to remain in level flight, both 2> F =0and > 7=0.

F,

wing

3m

3.66 m

YE

tail

w
Taking the clockwise direction as positive, and taking torques about the center of mass,

Forces:— F_.. - W +F._. =0

tail wing —

Torques: —(3.66 m)F,

tail

+(3m)F, =0

wing —

A shortcut method is to write a second torque equation for torques about the tail, and
solve for the £, : =(3.66 m)(6700 N) + (3.36 m)F,, = 0. This gives

wing
F,,, = 7300 N(up),and F,; = 6700 N = 7300 N = ~600 N(down).

ail

Note that the rear stabilizer provides a downward force, does not hold up the tail of the
aircraft, but serves to counter the torque produced by the wing. Thus balance, along with
weight, is a crucial factor in airplane loading.

11.44: The simplest way to do this is to consider the changes in the forces due to the
extra weight of the box. Taking torques about the rear axle, the force on the front wheels

is decreased by 3600 N+X™ — 1200 N, so the net force on the front wheels

3.00 m
is10,780 N —1200 N = 9.58 x10° N to three figures. The weight added to the rear wheels
is then 3600 N +1200 N = 4800 N, so the net force on the rear wheels is
8820 N + 4800 N =1.36x10* N, again to three figures.
b) Now we want a shift of 10,780 N away from the front axle. Therefore,

wilm _ 10,780 N and so w=32,340 N.

3.00 m

11.45: Take torques about the pivot point, which is 2.20 m from Karen and 1.65 m
from Elwood. Then wy,,,(1.65m) = (420 N)(2.20 m) + (240 N)(0.20 m), so Elwood

weighs 589 N. b) Equilibrium is neutral.



11.46: a) Denote the weight per unit length
asa,sow, =a(10.0cm), w, = a(8.0 cm), and w; = al.

The center of gravity is a distance x_, to the right of point O where

~ w/(5.0cm) +w,(9.5cm) + w,(10.0cm —1/2)

cm

W+ W, + W,

~ (10.0cm)(5.0cm) +(8.0cm)(9.5cm) +/(10.0 cm — 7/2)
- (10.0 cm) + (8.0 cm) +/ '

Setting x_, =0 gives a quadratic in /, which has as its positive root / = 28.8 cm.

b) Changing the material from steel to copper would have no effect on the length /
since the weight of each piece would change by the same amount.

11.47:  Let F'=F — R ;where R is the vector from the point O to the point P.

The torque for each force with respect to point P is then 7/ =r'x E , and so the net torque

1S

In the last expression, the first term is the sum of the torques about point O, and the
second term is given to be zero, so the net torques are the same.

11.48:  From the figure (and from common sense), the force F, is directed along the
length of the nail, and so has a moment arm of (0.0800 m) sin 60°. The moment arm of

F2 1s 0.300 m, so

F,=F (0.0800 m) sin 60
(0.300 m)

=(500N)(0.231) =116 N.



11.49:  The horizontal component of the force exerted on the bar by the hinge must
balance the applied force F , and so has magnitude 120.0 N and is to the left. Taking
torques about point 4, (120.0 N)(4.00 m) + F,(3.00 m), so the vertical component is
—160 N, with the minus sign indicating a downward component, exerting a torque in a

direction opposite that of the horizontal component. The force exerted by the bar on the
hinge is equal in magnitude and opposite in direction to the force exerted by the hinge on
the bar.

11.50:  a) The tension in the string is w, =50 N, and the horizontal force on the bar

must balance the horizontal component of the force that the string exerts on the bar, and
is equal to (50 N)sin 37°=30 N, to the left in the figure. The vertical force must be

(50N)cos37°+10N =50 N, up.b) arctan [;g E) =59°.¢) J(30 N)* + (50 N)* =58 N.
d) Taking torques about (and measuring the distance from) the left end,
(50 N)x =(40 N)(5.0 m), so x =4.0 m, where only the vertical components of the

forces exert torques.

11.51:  a) Take torques about her hind feet. Her fore feet are 0.72 m from her hind feet,

190 N) (0.28
and so her fore feet together exert a force of w

force of 36.9 N, keeping an extra figure. Each hind foot then exerts a force of 58.1 N.
b) Again taking torques about the hind feet, the force exerted by the fore feet is

(1% N (0.28 o 7); fnzs O™ —105.1N, so each fore foot exerts a force of 52.6 N and each hind

foot exerts a force of 54.9 N.

=73.9N, so each foot exerts a

11.52:  a) Finding torques about the hinge, and using L as the length of the bridge and
wy and wy for the weights of the truck and the raised section of the bridge,

TL sin 70° = wy (3 L) cos 30° + wy, (L) cos 30°, so

(3 m; +1m, }9.80 m/s)cos 30°
sin 70°

T= =2.57x10° N.

b) Horizontal: 7 cos(70° —30°)=197 x10° N. Vertical: w; + wj, — T sin 40°
=2.46x10° N.



11.53:  a) Take the torque exerted by F, to be positive; the net torque is then
— F(x)sin ¢+ F,(x +1)sin ¢ = Flsin g, where F is the common magnitude of the forces.
b) 1, =—(14.0N)(3.0m)sin 37° =-25.3 N -m, keeping an extra figure, and

T, =(14.0N)(4.5m)sin 37°=37.9 N -m, and the net torque is 12.6 N-m. About point
P, 1, =(14.0N)(3.0m)(sin37°) =25.3 N -m, and

7, =(=14.0N)(1.5m)(sin37°) = —12.6 N - m, and the net torque is 12.6 N-m. The
result of part (a) predicts (14.0 N)(1.5m)sin 37°, the same result.

11.54: a) Take torques about the pivot. The force that the ground exerts on the ladder is
given to be vertical, and F, (6.0 m)sind = (250 N)(4.0 m)sin &

+(750N)(1.50m)sin 8, so F,, =354 N. b) There are no other horizontal forces on the

ladder, so the horizontal pivot force is zero. The vertical force that the pivot exerts on the
ladder must be (750 N) + (250 N) — (354 N) = 646 N, up, so the ladder exerts a downward

force of 646 N on the pivot. ¢) The results in parts (a) and (b) are independent of 6.

11.55: a) V=mg+w and H =T.To find the tension, take torques about the pivot
point. Then, denoting the length of the strut by L,

T gL sinf) = W(ELJ cosd + mg[éj cosd, or
3 3 6

T = (w+%} cotd.

b) Solving the above for w, and using the maximum tension for 7,

w=T tan —% = (700 N)tan 55.0° — (5.0 kg)(9.80 m/s’) =951N.

¢) Solving the expression obtained in part (a) for tan € and letting
w—0,tand =25 =0.700, so & = 4.00°.

AT T



11.56: (a) and (b)

Lower rod:
T
4.0cm T 8.0cm
P
\ \
6.0 A
27,=0:(6.0N)(4.0cm) = 4(8.0cm)
A=30N
2F=0:T;,=60N+4=60N+3.0N=90N
Middle rod:
T,
3.0cm 5.0cm
P
B
T3:9.0N
X7,=0:B(3.0cm)=(9.0N)(5.0cm)
B=15N
XF=0:T,=B+T,=15N+9.0N=24N
Upper rod.
T
2.0cm I 6.0cm
P
T=24N C

21, =0:(24 N)(2.0 cm) = C(6.0 cm)
C=8.0N
YF=0:T,=T,+C=24N+80N=32N



11.57:

axis Hy

Y1 =0, axis at hinge
T(6.0m)(sin40°) — w(3.75m)(c0s30°) =0

T=760N
11.58: (a)
45,000N
Y
Z:Tl-linge = 0
T(3.5 m)sin 37° = (45,000 N)(7.0 m)cos 37°
T =120,000 N

(b) XF,=0:H=T=120,000N
YF =0:7V=45000 N

The resultant force exerted by the hinge has magnitude 1.28x10° N and direction
20.6° above the horizontal.



11.59:

T
7

1 axis

mg
a) X7 =0, axis at lower end of beam
Let the length of the beam be L.

T(sin 20°)L = —mg(éj cos40°=0

1 40°
- M ~ 2700 N
sin 20°

b) Take +y upward.

2F,=0givesn—w+Tsin60°=0son=73.6N

2 F =0gives f, =T cos60°=1372 N

£ 1372N
= n, =<5 — :19
S = =N

The floor must be very rough for the beam not to slip.

11.60:  a) The center of mass of the beam is 1.0 m from the suspension point. Taking
torques about the suspension point,

w(4.00 m) + (140.0 N)(1.00 m) = (100 N)(2.00 m)
(note that the common factor of sin 30° has been factored out), from which w=15.0 N.

b) In this case, a common factor of sin 45° would be factored out, and the result
would be the same.



11.61: a) Taking torques about the hinged end of the pole
(200 N)(2.50 m) + (600 N) % (5.00 m) —T7',(5.00 m) = 0. Therefore the y-component of

the tension is 7, = 700 N . The x-component of the tension is then

T = \/(1 000 N)* — (700 N)* =714 N . The height above the pole that the wire must be

attached is (5.00 m)Z2% =4.90 m. b) The y-component of the tension remains 700 N and

the x-component becomes (714 N)33= = 795N, leading to a total tension of

J(795N)? + (700 N)* =1059 N, an increase of 59 N.

11.62: A and B are straightforward, the tensions being the weights suspended;
T, =(0.0360kg)(9.80 m/s?) = 0.353 N, T,, = (0.0240 kg + 0.0360 kg)(9.80 m/s?) = 0.588 1
To find 7. and 7}, a trick making use of the right angle where the strings join is available;

use a coordinate system with axes parallel to the strings. Then,
1.=T,c0s36.9°=0470N,T,, =T, cos53.1°=0.353 N, To find 7,, take torques about

the point where string F is attached;
T,(1.000 m) =7}, sin 36.9°(0.800 m) + 7. sin 53.1°(0.200 m)

+(0.120 kg)(9.80 m/s?)(0.500 m)
=0.833 N-m,
so T, =0.833 N.7,, may be found similarly, or from the fact that 7, + 7, must be the

total weight of the ornament. (0.180kg)(9.80 m/sz) =1.76 N, from which 7,, = 0.931 N.

11.63:  a) The force will be vertical, and must support the weight of the sign, and is 300
N. Similarly, the torque must be that which balances the torque due to the sign’s weight
about the pivot, (300N)(0.75 m) =225 N-m. b) The torque due to the wire must balance

the torque due to the weight, again taking torques about the pivot. The minimum tension
occurs when the wire is perpendicular to the lever arm, from one corner of the sign to the

other. Thus, T\/(I.SO m)” +(0.80 m)* =225 N-m, or 7 =132 N. The angle that the wire
makes with the horizontal is 90° —arctan ($37) = 62.0°. Thus, the vertical component of

the force that the pivot exerts is (300 N) —(132 N) sin 62.0° =183 N and the horizontal
force is (132 N)co0s62.0°=62 N , for a magnitude of 193 N and an angle of 71° above

the horizontal.




11.64: a) Aw=—c (Al/l)w, =—(0.23)(9.0x 104‘)\/4(0.30 x10™ m?)/n =1.3 um.

b)
FL=AYAI=AYlM
[ o w
11 -2 )2 -3
_ Q10 P (@ 20107 m)") 010x10 m 3y 106
0.42 2.0x107" m

where the Young’s modulus for nickel has been used.

11.65: a) The tension in the horizontal part of the wire will be 240 N. Taking torques
about the center of the disk, (240 N)(0.250 m)— w(1.00m)) =0, or w = 60 N.

b) Balancing torques about the center of the disk in this case,
(240 N) (0.250m) — ((60 N)(1.00m) + (20 N)(2.00m)) cos @ =0, so 8 =53.1°.

11.66: a) Taking torques about the right end of the stick, the friction force is half the
weight of the stick, /=% - Taking torques about the point where the cord is attached to

the wall (the tension in the cord and the friction force exert no torque about this
point),and noting that the moment arm of the normal force is

[tan @ ntan &= - Then, % = tan 6<0.40, so < arctan (0.40) = 22°.

b) Taking torques as in part (a), and denoting the length of the meter stick as /,
fl= wé+w(l—x)andnltan0 = wé+wx.

In terms of the coefficient of friction s,

1z — _

n T+x [+ 2x

Solving for x,
> I 3tan6 — u,
2 u +tan6

=30.2cm.

¢) In the above expression, setting x =10 cm and solving for z, gives
. (3-20/I)tan®

—0.625.
A2 00



11.67: Consider torques around the point where the person on the bottom is lifting. The
center of mass is displaced horizontally by a distance (0.625m —0.25m)sin 45° and the
horizontal distance to the point where the upper person is lifting is (1.25m)sin 45°, and
so the upper lifts with a force of w3 — (0.300)w = 588 N. The person on the

bottom lifts with a force that is the difference between this force and the weight, 1.37 kN.
The person above is lifting less.



11.68:
(2)

3.80
cm

~— 15.0 —

cm

Fg w(15.0N)

Fg 80.0N

cm
Fg w (15.0N)
- 33.0cm  ------- >
21, =0

LT, =0
F,(3.80 cm) = (15.0 N)(15.0 cm)
F,=592N

F,(3.80 cm) = (15.0 N)(15.0 cm) + (80.0 N)(33.0 cm)

F, =754N



11.69: a) The force diagram is given in Fig. 11.9.

>t =0, axis at elbow
wL —(T'sin @)D =0

sin 0 =Lsow=Th—D
\Vh? + D? LNh + D’
w -7 "D
max max L\/m
b) UL = T (1 — D j; the derivativeis positive
dD Jh? + D? h’ + D?

c) The result of part (b) shows that w___increases when D increases.

11.70:
i 1500N
B D
0.50m
A C | , |
1.8m \ 1.8m ‘
2A 90.0N 2C

By symmetry, 4=B and C=D. Redraw the table as viewed from the AC side.
Yt (about rightend) =0:

2A4(3.6 m)=(90.0 N)(1.8 m) + (1500 N')(0.50 m)
A=130N=RB

2F=0:4+B+C+D=1590N
UseA=B=130Nand C=D

C=D=670N
By Newton’s third law of motion, the forces 4, B, C, and D on the table are the
same as the forces the table exerts on the floor.



11.71:  a) Consider the forces on the roof
axis

v VT
37 -~
H w2 wi2 H

Vand H are the vertical and horizontal forces each wall exerts on the roof.
w= 20,000 N is the total weight of the roof.

2V =w soV =w/2

Apply 27=0to one half of the roof, with the axis along the line where the two
halves join. Let each half have length L.

(w/2)(L/2)(cos 35.0°) + HL sin35.0° — VL c0s35.0° = 0

L divides out, and use V = w/2

Hsin 35.0° =4 wcos 35.0°

w

4tan35.0°

By Newton’s 3rd law, the roof exerts a horizontal, outward force on the

wall. For torque about an axis at the lower end of the wall, at the ground, this
force has a larger moment arm and hence larger torque the taller the walls.

b)

=7140N

Consider the torques
on one of the walls.



11.72:  a) Take torques about the upper corner of the curb. The force Factsata
perpendicular distance R —/ and the weight acts at a perpendicular distance

\/ R* - (R - h)2 = \/ 2Rh—h*. Setting the torques equal for the minimum necessary force,
N2Rh— I’

R-h
b) The torque due to gravity is the same, but the force F acts at a perpendicular

distance 2R — h,so the minimum force is (mg)/2Rh —hv /2R—h. c) Less force is
required when the force is applied at the top of the wheel.

F=mg

11.73:  a) There are several ways to find the tension. Taking torques about point B (the
force of the hinge at A4 is given as being vertical, and exerts no torque about B), the

tension acts at distance » = \/ (4.00m)*> +(2.00m)” =4.47 m and at an angle of

¢ =30° + arctan [&J =56.6°. Setting
4.00

Trsin ¢ = (500N)(2.00 m) and solving for 7" gives T =268 N. b) The hinge at 4 is given
as exerting no horizontal force, so taking torques about point D, the lever arm for the
vertical force at point Bis (2.00m) + (4.00 m)tan 30.0° =4.31m, so the horizontal force
(500N)(2.00 m)

431m
however, (268 N)cos 30.0° =232 N In fact, finding the horizontal force at B first
simplifies the calculation of the tension slightly. ¢) (500 N) — (268 N)sin30.0° =366 N.
Equivalently, the result of part (b) could be used, taking torques about point C, to get the
same result.

at Bis =232 N. Using the result of part (a),



11.74:  a) The center of gravity of top block can be as far out as the edge of the lower
block. The center of gravity of this combination is then 3L/4 from the right edge of the

upper block, so the overhang is 3L/4.

b) Take the two-block combination from part (a), and place it on the third block
such that the overhang of 3L/4 is from the right edge of the third block; that is, the center
of gravity of the first two blocks is above the right edge of the third block. The center of
mass of the three-block combination, measured from the right end of the bottom block, is
— L/6 and so the largest possible overhang is (3L/4)+ (L/6)=11L/12.

Similarly, placing this three-block combination with its center of gravity over the right
edge of the fourth block allows an extra overhang of L/8, for a total of 25L/24. ¢) As
the result of part (b) shows, with only four blocks, the overhang can be larger than the

length of a single block.
11.75:  a)

F,=2w=147N

sinf = R/2R s0 6 =30°
t=0, axis at P
F.(2Rcos0)-wR =0

F.=—"5 _0424N
2cos30°

F,=F.=0424N
b) Consider the forces on the bottom marble. The horizontal forces must sum to
Zero, so

F,=nsinf
n= _FA =0.848 N
sin 30°

Could use instead that the vertical forces sum to zero
Fy—mg—ncos@=0

n= Fy—mg =0.848 N, which checks.
cos30°



11.76: (a) Writing an equation for the torque on the right-hand beam, using the hinge
as an axis and taking counterclockwise rotation as positive:

FwireLsinQ —Fc£cosg - wésin— =0
2 22 2 2

where @ is the angle between the beams, £ is the force exerted by the cross bar, and wis

the weight of one beam. The length drops out, and all other quantities except F, are

known, so
F- F.sin%—1wsin? _QF. —wan’
1cos?
Therefore
53°
F =260 tan > =130N

b) The cross bar is under compression, as can be seen by imagining the behavior of
the two beams if the cross bar were removed. It is the cross bar that holds them apart.

¢) The upward pull of the wire on each beam is balanced by the downward pull of
gravity, due to the symmentry of the arrangement. The hinge therefore exerts no vertical
force. It must, however, balance the outward push of the cross bar: 130 N horizontally to
the left for the right-hand beam and 130 N to the right for the left-hand beam. Again, it’s
instructive to visualize what the beams would do if the hinge were removed.

11.77:  a) The angle at which the bale would slip is that for which
f=uN=puwcos f=wsin f,or f = arctan(,us) =31.0°. The angle at which the bale

would tip is that for which the center of gravity is over the lower contact point, or

0.25m)
0.50m)

arctan ( =26.6° or 27° to two figures. The bale tips before it slips. b) The angle for

tipping is unchanged, but the angle for slipping is arctan(0.40) =21.8° or 22°to two
figures. The bale now slips before it tips.

11.78: a)F = f = N = pmg=(0.35)(30.0kg)(9.80 m/s?) =103 N
b) With respect to the forward edge of the bale, the lever arm of the weight is

0.250 m

>— =0.125m and the lever arm % of the applied force is then &
=(0.125m) %% = (0.125 m) L = 272 = 0.36 m.

0.35




11.79: a) Take torques about the point where wheel B is in contact with the track. With
respect to this point, the weight exerts a counterclockwise torque and the applied force
and the force of wheel A4 both exert clockwise torques. Balancing torques,

F,(2.00m) + (F)(1.60m) = (950 N)(1.00 m). Using

F=puw=494N, F, =80N,and F, =w—F, =870 N. b) Again taking torques about the
point where wheel B is in contact with the tract, and using

F =494 N asin part (a), (494 N) 2= (950 N)(1.00N),s0 2 =1.92 m.

11.80: a) The torque exerted by the cable about the left end is 7Lsiné . For any angle
6 sin(180° — #) =sin @, so the tension 7 will be the same for either angle. The horizontal
component of the force that the pivot exerts on the boom will be

T cos6 or Tcos (180° — @ = —T cosf . b) From the result of part (a), 7 o=, and this

sinf

becomes infinite as & — 0 or — 180°. Also, c), the tension is a minimum when sin @ is a
maximum, or & =90°, a vertical string. d) There are no other horizontal forces, so for the

boom to be in equilibrium, the pivot exerts zero horizontal force on the boom.

11.81: a) Taking torques about the contact point on the ground,
T(7.0 m)sin€ = w(4.5 m)sinf,so T = (0.64)w =3664 N. The ground exerts a vertical

force on the pole, of magnitude w—T7 = 2052 N. b) The factor of sin fappears in both
terms of the equation representing the balancing of torques, and cancels.

11.82:  a) Identifying x with A/ in Eq. (11.10), k =Y A4/I,.
b) (1/2)kx* =Y Ax*/21,.

11.83: a) At the bottom of the path the wire exerts a force equal in magnitude to the
centripetal acceleration plus the weight,

F =m(((2.00 rev/s)(2x rad/rev))2 (0.50 m)+9.80 m/sz) =1.07x10° N.
From Eq. (11.10), the elongation is
(1.07 x10° N)(0.50 m)

m ——— - =J.5mm.
(0.7x10" Pa)(0.014x10"" m")

b) Using the same equations, at the top the force is 830 N, and the elongation is
0.0042 m.



11.84: a)

RO [
70 / i el

65

60 ’[
55

50 "[
s [

F(N) 40
35
30 i
25
20l %
15
of-4

3.2 34 3.6 3.8 4 4.2 44
! (cm)

b) The ratio of the added force to the elongation, found from taking the slope of the
graph, doing a least-squares fit to the linear part of the data, or from a casual glance at the

data gives £ =2.00x10* N/m. From Eq. (11.10),
/ .
y=Lh _ 2.00%10% N/m)—C 50“}3 .
Al 4 (7(0.35x107" m)“)
c¢) The total force at the proportional limit is 20.0 N+ 60 N =80 N, and the stress at

. e . (80N) . 8
this limit is 350 = 2.1x10° Pa.

=1.8x10" Pa.

11.85: a) For the same stress, the tension in wire B must be two times in wire 4, and so
the weight must be suspended at a distance (2/3)(1.05m) = 0.70 m from wire A..

b) The product Y A4 for wire B is (4/3) that of wire B, so for the same strain, the

tension in wire B must be (4/3) that in wire 4, and the weight must be 0.45 m from wire
B.

11.86: a) Solving Eq. (11.10) for A/ and using the weight for F,

= Pl _ (119100N)(15.0m)74 _18x10m
YA (2.0x10" Pa)8.00x10* m?)

b) From Example 5.21, the force that each car exerts on the cable is
F =mo’l, = nglo, and so
_Fl, _wao’ly _ (1900 N)(0.84 rad/s)*(15.0 m)*
YA g¥A  (9.80m/s*)(2.0x10" Pa)(8.00x10~* m?)

Al =1.9%x10"* m.




11.87:  Use subscripts 1 to denote the copper and 2 to denote the steel. a) From Eq.
(11.10), with Al, = Al, and F| = F,,

AY. . 2 10

L, =L 22 |2 .40 my LO0em)@Ix10Pa) |y o5
A, (2.00cm”)(9x10" Pa)

b) For nickel, f] =4.00x10* Pa and for brass, ALZ =2.00x10® Pa. c) For nickel,

4.00x10° Pa -3 2.00x10® Pa -3
At =1.9x% At =2.2x107.
PP, 1.9x107 and for brass, 100 P 2.2x10

11.88: a) F = YA(?—ZJ =(1.4x10" Pa)(3.0x10™* m*)(0.010) = 4.2x10* N.

0

b) Neglect the mass of the shins (actually the lower legs and feet) compared to the
rest of the body. This allows the approximation that the compressive stress in the shin
bones is uniform. The maximum height will be that for which the force exerted on each
lower leg by the ground is £, found in part (a), minus the person’s weight. The impulse

that the ground exerts is
J =(4.2x10* N—(70kg)(9.80 m/sz))(0.0SO s)=1.2x10° kg-m/s. The speed at the

ground is+/2gh, so 2J = m4/2gh and solving for 4,

2

h= L(2—Jj =64m,
2g\ m

but this is not recommended.

11.89:  a) Two times as much, 0.36 mm, b) One-fourth (which is (1/2)*) as much,
0.045 mm.c) The Young’s modulus for copper is approximately one-half that for steel, so

the wire would stretch about twice as much. (0.18 mm)%fglf: =0.33 mm.

11.90:  Solving Eq. (11.14) for AV,
AV =—kV,AP = —kVO%

)(1420 kg)(9.80 m/s?)

=—(110x10" Pa™)(250L -
7(0.150 m)

=-0.0541L.

The minus sign indicates that this is the volume by which the original hooch has
shrunk, and is the extra volume that can be stored.



11.91: The normal component of the force is Fcosf and the area (the
intersection of the red plane and the bar in Figure (11.52)) is 4/cosé, so the

normal stress is (F/A)cos* @

b) The tangential component of the force is F'sind, so the shear stress is
(F/A)sin 6 cos 6.

¢) cos’fis a maximum when cos @ =1,0r § =0. d) The shear stress can be
expressed as (F/2A)sin (20), which is maximized when

sin (20) =1, or 0 = 9(2)

=45°. Differentiation of the original expression with respect

to @ and setting the derivative equal to zero gives the same result.

11.92: a) Taking torques about the pivot, the tension 7 in the cable is related to

the weight by Tsin6 [, =mgl /2, so T = 2n?g9' The horizontal component of the
sin

force that the cable exerts on the rod, and hence the horizontal component of the

force that the pivot exerts on the rod, is %cot@and the stress is %cot 0.

b)

L, F' mgl, cotd

AY 24y

c) In terms of the density and length, (m/A4)=pl,, so the stress is

Al =

(pl,g/2)cot @ and the change in length is (p/Zg/2Y)cotd. d) Using the numerical

values, the stress is 1.4x10° Pa and the change in length is 2.2x10° m. ¢) The
stress is proportional to the length and the change in length is proportional to the
square of the length, and so the quantities change by factors of 2 and 4.



11.93:  a) Taking torques about the left edge of the left leg, the bookcase would
tip when F = C0D0OXM _ 750N, and would slip when F = (1)(1500 N) =600 N, so

(1.80 m)

the bookcase slides before tipping. b) If Fis vertical, there will be no net
horizontal force and the bookcase could not slide. Again taking torques about the

left edge of the left leg, the force necessary to tip the case is % 22X ™ — |3 SKN,

(0.10 m)

¢) To slide, the friction force is f = (W + F cos 0), and setting this equal
to Fsin @ and solving for F' gives
o 1L
sin O — u, cos 6
To tip, the condition is that the normal force exerted by the right leg is zero, and
taking torques about the left edge of the left leg,
Fsin 6 (1.80 m) + F cos #(0.10 m) = w(0.90 m), and solving for F gives

F= w
(1/9)cos @ +2sin 6’
Setting the expression equal gives
1. ((1/9) cos O + 2 sin @) =sin — p, cos 0,

and solving for 6 gives
0 = arctan (Mj = 66°.
(1 - 2/"5)




11.94: a) Taking torques about the point where the rope is fastened to the
ground, the lever arm of the applied force is 4 and the lever arm of both the

weight and the normal force is /tan § and so F£ = (n— w)htan @ Taking torques
about the upper point (where the rope is attached to the post), f 4 =F£.Using
f <un and solving for F,

F <o~ R
M, tan 0.30 tan36.9°

b) The above relations between F,nand f become

—1 4
ej = 2(400 nN)( j =400 1N,

F%hz(n—w)htan@,fng,

and eliminating f and » and solving for F' gives

-1
peuf25 35
M tan@

and substitution of numerical values gives 750 N to two figures. c) If the force is
applied a distance y above the ground, the above relations become

Fy=(n-w)htan @ F(h—y)= fh,
which become, on eliminating nand f,

K

As the term in square brackets approaches zero, the necessary force becomes
unboundedly large. The limiting value of y is found by setting the term in square
brackets equal to zero. Solving for y gives

y  tand tan 36.9°

== = =0.71.
h u +tan@ 0.30+tan36.9°




11.95:  Assume that the center of gravity of the loaded girder is at /2, and that
the cable is attached a distance x to the right of the pivot. The sine of the angle
between the lever arm and the cable is then h/ \/ I’ +((L/2)-x)*, and the tension is
obtained from balancing torques about the pivot;

hx
T =wl/2,
[Jh%((L/z)—x)Z} wif

where wis the total load (the exact value of wand the position of the center of
gravity do not matter for the purposes of this problem). The minimum tension will
occur when the term in square brackets is a maximum; differentiating and setting
the derviative equal to zero gives a maximum, and hence a minimum tension, at

x_. =(h*/L)+(L/2). However, if x,_. > L, which occursif h > L/</2, the cable must
be attached at L, the furthest point to the right.

11.96: The geometry of the 3-4-5 right triangle simplifies some of the
intermediate algebra. Denote the forces on the ends of the ladders by

F, and F, (left and right). The contact forces at the ground will be vertical, since
the floor is assumed to be frictionless. a) Taking torques about the right end,
F,(5.00m) = (480 N)(3.40 m) + (360 N)(0.90 m), so F, =391 N. F, may be found in a
similar manner, or from F, =840 N —F, =449 N. b) The tension in the rope may be

found by finding the torque on each ladder, using the point 4 as the origin. The
lever arm of the rope is 1.50 m. For the left ladder,
T(1.50m) = F,(3.20m) — (480 N)(1.60m),so T'=322.1 N (322 N to three figures). As a

check, using the torques on the right ladder,
T(1.50m) = F,(1.80m) — (360 N)(0.90 m) gives the same result. ¢) The horizontal

component of the force at A must be equal to the tension found in part (b). The
vertical force must be equal in magnitude to the difference between the weight of
each ladder and the force on the bottom of each ladder, 480 N-391 N =449
N-360 N = 89 N. The magnitude of the force at 4 is then
J(322.1 N)* + (89 N)? =334N.

d) The easiest way to do this is to see that the added load will be distributed
at the floor in such a way that
F, =F, +(0.36)(800N) = 679N, and F, = F, + (0.64)(800 N) =961 N. Using these
forces in the form for the tension found in part (b) gives

7 F/(3:20m) ~ (480 N)(1.60m) _ F;(1.80m) — (360 N)(0.90 m)

(1.50 m) (1.50 m)

which is 937 N to three figures.

=936.53N,



11.97:  The change in the volume of the oil is = k,v,Ap and the change in the
volume of the sodium is = kv, Ap. Setting the total volume change equal to Ax (x is
positive) and using Ap = F/ 4,

Ax = (koVy + KV (F/ A),

2
k, = (ﬂ_koyoji.

and solving for k, gives

F V.

S

11.98:  a) For constant temperature (AT =0),

A(pV)=(Ap)V + p(AV)=0 and B :_%:

b) In this situation,

@ +plar)r =0, )l =0,

and
__(apy

AV

11.99:  a) From Eq.(11.10), Al=0000m00m _ ¢ 655107 m, or 0.66 mm

(20x10'° Pa)(5.00x1077 m?)

to two figures. b) (4.50kg)(9.80 m/s?)(0.0500x 1072 m) = 0.022J. ¢) The magnitude
F will be vary with distance; the average force is ¥ A4(0.0250 cm//,) =16.7 N,and so

the work done by the applied force is (16.7N)(0.0500x107 m) =8.35x107 J.d) The

wire is initially stretched a distance 6.62x10™* m ( the result of part (a)), and so the
average elongation during the additional stretching is 9.12x10™* m, and the
average force the wire exerts is 60.8 N. The work done is negative, and equal to
—(60.8 N)(0.0500x107 m) =-3.04x107 J. €) See problem 11.82. The change in
elastic potential energy is
(20x10' Pa)(5.00x 107" m?)
2(1.50m)
the negative of the result of part (d). (If more figures are kept in the intermediate
calculations, the agreement is exact.)

((11.62x107* m*) - (6.62x107* m)*) =3.04x107* J,




