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Capítulo 1 



1.1: ( ) ( ) ( ) ( ) km 61.1cm 10km 1.incm54.2ftin. 12mift5280mi 1 5 =××××  

Although rounded to three figures, this conversion is exact because the given conversion 
from inches to centimeters defines the inch. 
 

1.2:  .in9.28
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1.3: The time required for light to travel any distance in a vacuum is the distance 
divided by the speed of light; 

ns.103.33s1033.3
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m 10 36
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×=×=
×

−
 

 

1.4:  .
m
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1.5: ( ) ( ) ( ) L. 36.5cm 1000L 1incm54.2in 327 33 3 =××  

 

 

1.6: .
.oz16
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bottles2112bottles9.2111 ≈=  

 
The daily consumption must then be 

  .
da

bottles
78.5

da24.365

yr1

yr

bottles
1011.2 3 =
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
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


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1.7: ( ) ( ) .hrkm 2330mikm 61.1hrmi 1450 =×  

( ) ( ) s.m 648s 3600hr 1kmm 10hrkm2330 3 =××  

 

 

1.8:  .
h

mi
67

h24
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day14

fortnight1
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fortnight

furlongs
000,180 =
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1.9: .
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1.10:  a) 
s
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b) 
22 s
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c)
3

3

3
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1.11: The density is mass per unit volume, so the volume is mass divided by density. 

( ) ( ) 333 cm 3077cmg5.19g1060 =×=V   

Use the formula for the volume of a sphere, ,
3

4 3rV π=  

to calculate ( ) cm0.943:
3/1 == πVrr  

 

 

 

1.12:  %58.0100)s10(3.16s)10πs1016.3( 777 =×××−×  

 

 

1.13: a) %.101.1
m 10890

m 10 3

3

−×=
×

 

 

b) Since the distance was given as 890 km, the total distance should be 890,000 
meters. 

To report the total distance as 890,010 meters, the distance should be given as 
890.01 km. 

 

 

1.14: a) ( ) ( ) 2mm 72mm 98.5mm 12 =×  (two significant figures). 

 b) mm 12
mm 98.5  = 0.50 (also two significant figures). 

c) 36 mm (to the nearest millimeter). 
d) 6 mm. 
e) 2.0. 

 

 

 



1.15: a) If a meter stick can measure to the nearest millimeter, the error will be about 
%.13.0 b) If the chemical balance can measure to the nearest milligram, the error will be 

about %.103.8 3−×  c) If a handheld stopwatch (as opposed to electric timing devices) can 

measure to the nearest tenth of a second, the error will be about %.108.2 2−×  

 

 

 

1.16: The area is 9.69 ± 0.07 cm2, where the extreme values in the piece’s length and 
width are used to find the uncertainty in the area.  The fractional uncertainty in the 

area is 2

2

cm 69.9

cm 07.0  = 0.72%, and the fractional uncertainties in the length and width are 

cm 5.10
cm 01.0  = 0.20% and 

cm 1.9
cm 0.01  = 0.53%. 

 

 

 
 
 
1.17: a) The average volume is  

( ) ( ) 3

2

cm 8.2cm 050.0
4

cm 50.8
=π   

(two significant figures) and the uncertainty in the volume, found from the extreme 

values of the diameter and thickness, is about 3cm 3.0 , and so the volume of a 

cookie is .cm 3.08.2 3±  (This method does not use the usual form for progation of errors, 
which is not addressed in the text.  The fractional uncertainty in the thickness is so much 
greater than the fractional uncertainty in the diameter that the fractional uncertainty in the 

volume is %10 , reflected in the above answer.) 
 

b) .20170
05.
50.8 ±=  

 
1.18: (Number of cars ×  miles/car.day)/mi/gal = gallons/day 
(2 ×108 cars ×  10000 mi/yr/car ×  1 yr/365 days)/(20 mi/gal) = 2.75 ×  108 gal/day 

 

 
1.19: Ten thousand;  if it were to contain ten million, each sheet would be on the order 
of a millionth of an inch thick.  

 

 
1.20: If it takes about four kernels to fill 1 cm3, a 2-L bottle will hold about 8000 
kernels. 

 

 



1.21: Assuming the two-volume edition, there are approximately a thousand pages, and 
each page has between 500 and a thousand words (counting captions and the smaller 
print, such as the end-of-chapter exercise and problems), so an estimate for the number of 

words is about 610 . 

 

 
1.22: Assuming about 10 breaths per minutes, 6024×  minutes per day, 365 days per 
year, and a lifespan of fourscore (80) years, the total volume of air breathed in a lifetime 

is about 35 m102× . This is the volume of a room m20m100m100 ×× , which is kind of 

tight for a major-league baseball game, but it’s the same order of magnitude as the 
volume of the Astrodome. 

 

 

1.23:  This will vary from person to person, but should be of the order of 5101× . 

 

 
1.24: With a pulse rate of a bit more than one beat per second, a heart will beat 105 
times per day.  With 365 days in a year and the above lifespan of 80 years, the number of 

beats in a lifetime is about 9103× . With 
20

1  L (50 cm3) per beat, and about 
4

1  gallon per 

liter, this comes to about 7104×  gallons. 
 
 
1.25: The shape of the pile is not given, but gold coins stacked in a pile might well be in 
the shape of a pyramid, say with a height of m 2  and a base m 3m 3 × .  The volume of 

such a pile is 3m 6 , and the calculations of Example 1-4 indicate that the value of this 

volume is .106$ 8×   

 

 

1.26: The surface area of the earth is about 2142 m1054 ×=πR , where R is the radius of 

the earth, about m106 6× , so the surface area of all the oceans is about 214 m104× . An 

average depth of about 10 km gives a volume of 324318 cm104m104 ×=× . Characterizing 

the size of a “drop” is a personal matter, but 25 3cmdrops  is reasonable, giving a total of 
2610  drops of water in the oceans. 

 

 
1.27: This will of course depend on the size of the school and who is considered a 
"student''.  A school of thousand students, each of whom averages ten pizzas a year 
(perhaps an underestimate) will total 104 pizzas, as will a school of 250 students 
averaging 40 pizzas a year each. 

 

 



1.28: The moon is about mm104m104 118 ×=×  away.  Depending on age, dollar 

bills can be stacked with about 2-3 per millimeter, so the number of bills in a stack 
to the moon would be about 1012.  The value of these bills would be $1 trillion (1 
terabuck). 
 

 

 

1.29: ( ) ( ) .bills ofnumber  billArea USAof Area =  

( ) ( )
.inhabitantmillion $3.6  sinhabitant 10  5.2bills 109

bills 109cm 10m 1cm 6.7cm 6.15kmm 10km 571,372,9

814

142422262

=×

×=×××
 

 

 

1.30:   

 
   
 
1.31: 

 
                              

east ofnorth   38 km, 8.7 o
 



1.32:  

 
 

 

a) 11.1 m @ o6.77  

b) 28.5 m @ o202  

c) 11.1 m @ o258  

d) 28.5 m @ 
o22  

 
 
1.33: 

 
 

 

 west.ofsouth  41 m, 144 o
 

 

 



1.34: 

 
 

 

 

1.35: ( ) ( ) m. 6.937.0 cos m 0.12 m, 2.737.0 sinm 0.12; ==== oo
r

yx AAA  

( ) ( )
( ) ( ) m. 2.560.0sin  m 0.6 m, 0.360.0 cosm 0.6;

m. 6.940.0sin  m 0.15 m, 5.1140.0 cosm 0.15;

−=−=−=−=
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r

r
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1.37: Take the +x-direction to be forward and the +y-direction to be upward.  Then the 

second force has components N4334.32cos22 == o
FF x and N.2754.32sin22 == o

FF y   

The first force has components .0 and N725 11 == yx FF  

N115821 =+= xxx FFF  and N27521 =+= yyy FFF  

 

The resultant force is 1190 N in the direction o13.4 above the forward direction. 

 

 
1.38: (The figure is given with the solution to Exercise 1.31). 
 
 The net northward displacement is (2.6 km) + (3.1 km) sin 45o = 4.8 km, and the 

net eastward displacement is (4.0 km) + (3.1 km) cos 45o = 6.2 km.  The 

magnitude of the resultant displacement is 
22 )km2.6()km8.4( +  = 7.8 km, and 

the direction is arctan ( )
2.6
8.4  = 38o north of east. 

 
    

 



1.39: Using components as a check for any graphical method, the components of B
r
are 

m 4.14=xB and m, 8.10=yB A
r
has one component, m 12−=xA . 

a) The -x  and -y components of the sum are 2.4 m and 10.8 m, for a magnitude 

of ( ) ( ) m, 1.11m 8.10m 2.4
22 =+ , and an angle of .6.77

2.4

10.8 o=







 

b) The magnitude and direction of A + B are the same as B + A. 
c) The x- and y-components of the vector difference are – 26.4 m and 

m, 8.10− for a magnitude of m 28.5 and a direction arctan ( ) .202
4.26
8.10 o=−

−  Note that 
o180 must be added to ( ) ( ) o22arctanarctan

4.26
8.10

4.26
8.10 ==−

−  in order to give an angle in the 

third quadrant. 
 

d) .ˆm 8.10ˆm 4.26ˆm 0.12ˆm 8.10ˆm 4.14 jiijiAB +=++=−
rr

 

( ) ( ) .2.22
26.4

10.8
arctan of angle andat  m 5.28m 8.10m 26.4  Magnitude

22 o=






=+=  

 

 
1.40: Using Equations (1.8) and (1.9), the magnitude and direction of each of the given 

vectors is: 
 

 a) 22 )cm20.5()cm6.8( +−  = 10.0 cm, arctan ( )
60.8
20.5

−  = 148.8o (which is 

180o – 31.2o). 
 

 b) 
22 )m45.2()m7.9( −+− = 10.0 m, arctan ( )

7.9
45.2

−
−  = 14o + 180o = 194o. 

 

 c) 22 )km70.2()km75.7( −+ = 8.21 km, arctan ( )
75.7
7.2−  = 340.8o (which is 

360o – 19.2o). 
 

 



1.41: 

 
 

 

The total northward displacement is km, 75.1km 50.1km 3.25 =− , and the total 

westward displacement is km 4.75 . The magnitude of the net displacement is 

( ) ( ) km. 06.5km 75.4km 1.75
22 =+  The south and west displacements are the same, so 

The direction of the net displacement is o69.80 West of North.  
 
 
1.42: a)  The x- and y-components of the sum are 1.30 cm + 4.10 cm = 5.40 cm,  

2.25 cm + (–3.75 cm) = –1.50 cm. 
 

b) Using Equations (1-8) and (1-9), 
 

22 )cm50.1()cm04.5( − = 5.60 cm, arctan ( )
40.5
50.1

+
−  = 344.5o ccw. 

 

c) Similarly, 4.10 cm – (1.30 cm) = 2.80 cm, –3.75 cm – (2.25 cm) = –6.00 cm. 
 

d)  22 )cm0.6()cm80.2( −+  = 6.62 cm, arctan ( )
80.2
00.6−  = 295o (which is 360o – 65

 

 



1.43: a) The magnitude of BA
rr

+  is 

( ) ( )( )
( ) ( )( )

cm 48.2
60.0sin  cm 90.10.60sin cm 2.80    

60.0 cos cm 90.160.0 cos cm 80.2

2

2

=














−+

+
oo

oo

 

and the angle is  

( ) ( )
( ) ( )

o

oo

oo

18
0.60coscm 90.160.0 cos cm 2.80

0.60sincm 90.160.0sin  cm 2.80
arctan =









+
−

 

 

 b) The magnitude of BA
rr

− is 

( ) ( )( )
( ) ( )( )

cm 10.4
60.0sin  cm 90.10.60sin cm 2.80    

60.0 cos cm 90.160.0 cos cm 80.2

2

2

=














++

−
oo

oo

 

and the angle is  

( ) ( )
( ) ( )

o

oo

oo

84
0.60coscm 90.160.0 cos cm 2.80

0.60sincm 90.160.0sin  cm 2.80
arctan =









−
+

 

 c)  ( ) .26418084 is angle  theand cm 4.10 is magnitude  the; ooo
rrrr

=+−−=− BAAB  

 

 
 

 

1.44: 
→

A  = (–12.0 m) î .  More precisely, 

 

( )( ) ( )( ) .180 sinm 012180 cosm 012 jiA
rrr

oo .. +=  

 

( )( ) ( )( ) ( ) ( ) jijiB ˆm 8.10ˆm 4.14ˆ37 sinm 018ˆ37 cosm 018 +=+= oo
r

..  

 

 

1.45: ( ) ( ) ( ) ( ) jijiA ˆm 6.9ˆm 2.7ˆ37.0 cos m 0.12ˆ37.0 sinm 0.12 +=+= oo
r

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) jijiC

jijiB

ˆm 2.5ˆm 0.3ˆ60.0sin  m 0.6ˆ60.0 cosm 0.6

ˆm 6.9ˆm 5.11ˆ40.0sin  m 0.15ˆ40.0 cosm 0.15

−−=−−=

−=−=
oo

oo

r

r

 

 

 



1.46:  a) ( ) ( ) ( ) ( ) jijiA ˆm 38.3ˆm 23.1ˆ0.70sinm 60.3ˆ0.70cosm 60.3 +=+= oo
r

 

      ( ) ( ) ( ) ( ) jijiB ˆm 20.1ˆm 08.2ˆ30.0sin  m 40.2ˆ30.0 cos m 40.2 −+−=−−= oo
r

 

b)  

( ) ( )BAC
rrr

00.4 00.3 −=  

    
( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ji

jiji

ˆ94.14ˆm 01.12

ˆm 20.100.4ˆm 08.200.4ˆm 38.300.3ˆm 23.100.3

+=

−−−−+=
 

 

  (Note that in adding components, the fourth figure becomes significant.) 
c) From Equations (1.8) and (1.9), 

( ) ( ) o2.51
m 12.01

m 14.94
arctan  m, 17.19m 94.14m 01.12

22 =






=+=C  

 
 

1.47: a) ( ) ( ) ( ) ( ) 39.500.200.5  ,00.500.300.4
2222 =+==+= BA  

 

b) ( ) ( )( ) ( ) ( ) jijiBA ˆ00.5ˆ00.1ˆ00.200.5ˆ00.300.4 +−=−−+−=−
rr

 

c)  ( ) ( ) o3.101
1.00-

5.00
arctan    ,10.500.51.00

22 =






=+  

 
d) 

 
  

 

 



1.48: a) 13111ˆˆˆ 222 ≠=++=++ kji  so it is not a unit vector 

 

b)   
222

zyx AAA ++=A
r

 

 

If any component is greater than + 1 or less than –1, 1≥A
r

, so it cannot be a unit 

vector. A
r
can have negative components since the minus sign goes away when the 

component is squared. 

 

 

c)  

( ) ( )

125

1 0.40.3

1

2

2222

=

=+

=

a

aa

A
r

 

 

   20.0
0.5

1
±=±=a  

 

 

1.49: a) Let ,ˆˆ jiA yx AA +=
r

  .ˆˆ jiB yx BB +=
r

 

( ) ( )
( ) ( )jiAB

jiBA

ˆˆ

ˆˆ

yyxx

yyxx

ABAB

BABA

+++=+

+++=+
rr

rr

 

 

Scalar addition is commutative, so ABBA
rrrr

+=+  

 

yyxx

yyxx

ABAB

BABA

+=⋅

+=⋅

AB

BA
rr

rr

 

 

Scalar multiplication is commutative, so ABBA
rrrr

⋅=⋅  

 

b) ( ) ( ) ( )kjiBA ˆ ˆˆ xyyxzxxzyzzy BABABABABABA −+−+−=×
rr

 

( ) ( ) ( )  ˆ ˆˆ kjiAB xyyxzxxzyzzy ABABABABABAB −+−+−=×
rr

 

Comparison of each component in each vector product shows that one is the 
negative of the other. 
 

 



1.50: Method 1: ( )θ cos magnitudes ofoduct Pr ×  

 

( )
( )
( ) 2

2

2

m 5.71187 cos m 6m 12 cos AC

m 6.1580 cos m 6m 15 cos BC

m 4.993 cos m 15m 12 cos AB

−=×=

=×=

−=×=

o

o

o

θ

θ

θ

 

 

 Method 2:  (Sum of products of components) 

 

( )

2

2

2

m 5.71)20.5(9.58)()0.3()22.7(

m 6.15)20.59.64)(()0.311.49)((

m 4.99.64)(9.58)((11.49) 22.7

−=−+−=⋅

=−−+−=⋅

−=−+=⋅

CA

CB

BA

 

 

 

 
1.51: a) From Eq.(1.21), 

 

( )( ) ( )( ) .00.1400.200.300.500.4 =−+=⋅BA
rr

 

 

b) ( ) ( )[ ] ( ) .7.58.5195arccos 39.500.500.14 arccos  so , cos AB o==×==⋅ θθBA  

 

 
1.52: For all of these pairs of vectors, the angle is found from combining Equations 

(1.18) and (1.21), to give the angleφ  as 

 

   .arccosarccos 






 +
=







 ⋅
=

AB

BABA

AB

yyxxBA
rr

φ  

 

 In the intermediate calculations given here, the significant figures in the dot 
products and in the magnitudes of the vectors are suppressed. 

 

 a) ,13,40,22 ==−=⋅ BABA
rr

and so 

 

    o165
1340

22
arccos =







 −
=φ . 

 

 b) ,136,34,60 ===⋅ BABA
rr

 
o28

13634

60
arccos =








=φ . 

 

 c) .90,0 ==⋅ φBA
rr

 

 

 



1.53: Use of the right-hand rule to find cross products gives (a) out of the page and b) 
into the page. 

 

 
1.54: a) From Eq. (1.22), the magnitude of the cross product is 
 

    ( )( ) ( ) 2m13037180sinm0.18m0.12 =− oo  

 
The right-hand rule gives the direction as being into the page, or the – z-direction. Using  

Eq. (1.27), the only non-vanishing component of the cross product is 
 

    ( ) ( )( ) 2m13037sinm0.18m12 −=−== o

yxz BAC  

 
b) The same method used in part (a) can be used, but the relation given in Eq. 

(1.23) gives the result directly:  same magnitude (130 m2), but the opposite 
direction (+z-direction). 

 

 

 
1.55: In Eq. (1.27), the only non-vanishing component of the cross product is 
 

( )( ) ( )( ) ,00.2300.500.300.200.4 −=−−=−= xyyxz BABAC   

so ( ) ,ˆ00.23 kBA −=×
rr

 and the magnitude of the vector product is 23.00. 

 

 

 



1.56:    a) From the right-hand rule, the direction of BA
rr

× is into the page (the – 

z-direction). The magnitude of the vector product is, from Eq. (1.22), 
 

( )( ) .cm61.4120sincm90.1cm80.2sin 2== oφAB  

Or, using Eq. (1.27) and noting that the only non-vanishing component is 
 

  
( ) ( )
( ) ( )

2cm61.4

0.60coscm90.10.60sincm80.2

60sincm90.10.60coscm80.2

−=

−

−=

−=

oo

oo

xyyxz BABAC

 

    
gives the same result. 
 

b) Rather than repeat the calculations, Eq. (1-23) may be used to see that 

AB
rr

×  has magnitude 4.61 cm2 and is in the +z-direction (out of the page). 

 

 
 
 

1.57: a) The area of one acre is ,mi mi mi 2

640
1

80
1

8
1 =× so there are 640 acres to a square 

mile. 
 

b)   ( ) 2

22

ft 560,43
mi 1

ft 5280

acre 640

mi 1
acre 1 =







×







×  

 
(all of the above conversions are exact). 
 

c)  (1 acre-foot) ( ) gal, 1026.3
ft 1

gal 477.7
ft 560,43 5

3

3 ×=






×=  

which is rounded to three significant figures. 
 

 

1.58: a) ( ) .m12$mft7710)ft43560acre1(acres)102000,950,4($ 2222 =×× .  

b) .in008$.)cm100m1(in)cm54.2()m12$( 2222 =××  

c) parcel. sized stamp postagefor 007$.)in87in1(in008$. 2 =××  

 

 

 



1.59: a) To three significant figures, the time for one cycle is 
 

s. 1004.7
Hz 10420.1

1 10

9

−×=
×

 

 

   b) 
h

cycles 
1011.5

h 1

s 3600

s

cycles 
101.420 129 ×=







×






 ×  

 
   c) Using the conversion from years to seconds given in Appendix F, 

( ) ( ) .1006.2y 10600.4
y 1

s 10156.3
Hz 101.42 269

7
9 ×=××







 ×
××    

  

   d) ( )( ) s. 104.60by  off be dclock woul  theso ,y 1000.1104.60y 104.600 4549 ×××=×  

 
 
1.60: Assume a 70-kg person, and the human body is mostly water.  Use Appendix D to 
find the mass of one H2O molecule:  18.015 u ×  1.661 ×  10

–27 kg/u = 2.992 ×  10–26 
kg/molecule.  (70 kg/2.992 ×  10–26 kg/molecule) = 2.34 ×  1027 molecules.  (Assuming 
carbon to be the most common atom gives 3 ×  1027 molecules. 
 

 
1.61: a) Estimate the volume as that of a sphere of diameter 10 cm: 

343 m102.5
3

4 −×== rV π  

Mass is density times volume, and the density of water is 3mkg 1000 , so 

( )( )( ) kg 5.0m102.5mkg 100098.0 343 =×= −m  

 
b) Approximate as a sphere of radius m25.0 µr =  (probably an over estimate) 

3203 m105.6
3

4 −×== rV π  

( )( )( ) g106kg106m105.6mkg 100098.0 -14173203 ×=×=×= −−m  

 
c) Estimate the volume as that of a cylinder of length 1 cm and 
radius 3 mm: 

( )( )( ) g3.0kg103m108.2mkg 100098.0

m108.2

4373

372

=×=×=

×==
−−

−

m

lrV π
 

 

 



1.62: a)  
ρ

M
V

V

M
ρ ==  so,  

  

cm 2.94m1094.2

m1054.2
kg/m 1086.7

kg 200.0
 

2

35

33

3

=×=

×=
×

=

−

−

x

x
 

 

b)  

cm 1.82m1082.1

m1054.2
3

4
 

2

353

=×=

×=

−

−

R

Rπ
 

 

 
1.63: Assume each person sees the dentist twice a year for checkups, for 2 hours. Assume 
2 more hours for restorative work. Assuming most dentists work less than 2000 hours per 

year, this gives dentist.per  patients 500 patient per  hours  4hours 2000 = Assuming only 

half of the people who should go to a dentist do, there should be about 1 dentist per 1000 
inhabitants. Note: A dental assistant in an office with more than one treatment room 
could increase the number of patients seen in a single dental office. 
 

 

1.64: a) atoms.106.2
1014

100.6
)kg100.6( 50

mole

kg3

mole
atoms23

24 ×=








×

×
××

−  

 
b) The number of neutrons is the mass of the neutron star divided by the 

mass of a neutron: 
 

neutrons.104.2
)neutronkg107.1(

)kg100.2()2( 57

27

30

×=
×

×
−

 

c) The average mass of a particle is essentially 
3
2  the mass of either the proton or 

the neutron, 27107.1 −×  kg.  The total number of particles is the total mass divided by this 
average, and the total mass is the volume times the average density.  Denoting the density 

by ρ (the notation introduced in Chapter 14). 
 

.102.1
)kg107.1(

)mkg10()m105.1()2(

3

2
3

4

79

27

318311

p

3

ave

×=
×

×π
=

ρπ
=

−

m

R

m

M

 
Note the conversion from g/cm3 to kg/m3. 

 
 

 



1.65: Let D
r
 be the fourth force. 

 

( )

N90.310.53sin   N,07.240.53cos

N28.690.30cos  N,00.400.30sin

N00.500.30cos    N,6.860.30cos

  so,0

−=−=−=+=

+=+=−=−=

+=+=+=+=

++−==+++

oo

oo

oo

rrrrrrrr

CCCC

BBBB

AAAA

yx

yx

yx

CBADDCBA

 

Then N34.87        N,53.22 −=−= yx DD  

N; 2.9022 =+= yx DDD  

 

53.22/34.87/tan == xy DDα  

o54.75=α  

axis- from ckwisecounterclo ,256180 xαφ +=+= oo  

 

1.66: 

 

 
  

 

( ) ( )

344.0
km 311.5

km 2.107
tan

km 330km 2.107km 5.311

km 2.10748sin  km) 230(68 cos km) 170(

km 5.31148 cos km) 230(68sin  km) 170(

2222

===

=−+=+=

−=−=+=

=+=+=

x

y

R

yx

yyy

xxx

R

R
θ

RRR

BAR

BAR

oo

oo

 

 

east ofsouth  19o=Rθ  

 

 



1.67: a)  

 
 

 

b)  Algebraically, are  of components  theso and , ABCA
rrrr

−=  

 
( ) ( )
( ) ( ) cm. 10.863.0sin  cm 40.622.0sin  cm 40.6

cm 03.363.0 cos cm 40.622.0 cos cm 40.6

=+=−=

=−=−=
oo

oo

yyy

xxx

BCA

BCA
 

 

( ) ( ) o5.69
cm 3.03

cm 8.10
arctan   cm, 65.8cm 10.8cm 03.3     c)

22 =






=+=A  

 

 



1.68:a) xxxx CBAR ++=

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
m. 3.5

60180sinm 0.640sinm 00.153790 sinm 0.12

and  m, 7.15

60180cosm 0.640cosm 00.153790 cosm 0.12

−=

++−+−=

++=

=

++−+−=

ooooo

ooooo

yyyy CBAR  

    

 The magnitude of the resultant is  m 6.1622 =+= yx RRR , and the direction from 

the positive x-axis is arctan ( ) o6.18
7.15
3.5 −=− . Keeping extra significant figures in the 

intermediate calculations gives an angle of ,49.18 °−  which when considered as a 

positive counterclockwise angle from the positive x-axis and rounded to the 

nearest degree is o342 . 
 
 

        
 

b) ( ) m; 14.5m 58.9m 64.9m 20.5

m; 71.21m 49.11m 22.7m 00.3

−=−−−−=

−=−−−=

y

x

S

S
 

   
o3.13

)71.21(

)14.5(
arctan =









−
−

=θ  

m 3.22)m14.5()m71.21( 22 =−+−=S  

 

 

     
 

 

 

 



1.69: 

 
 

Take the east direction to be the -x direction and the north direction to be the 

-y direction. The x- and y-components of the resultant displacement of the 

first three displacements are then 
  

( ) ( ) ( )
( ) ( ) m, 0.9430 cos m 28045 cos m 210

m, 10830sin  m 28045sin  m 210m 180

+=+−

=++−
oo

oo

 

 
keeping an extra significant figure.  The magnitude and direction of this net displacement 
are 

( ) ( ) .9.40
m 108

m 94
arctan    m, 144m 0.94m 108

22 o=






=+  

The fourth displacement must then be 144 m in a direction o9.40 south of west. 

 

 

 

 

 

 

 



1.70: 

 
    

 

 The third leg must have taken the sailor east a distance 
 

( ) ( ) ( ) km 33.1km 00.245 cos km 50.3km 80.5 =−− o  

 
 and a distance north 
 

( ) ( )km 47.245sinkm 5.3 =o  

 The magnitude of the displacement is 
 

km 81.2)km47.2()km33.1( 22 =+  

 

 and the direction is arctan ( )
33.1
47.2 = °62  north of east, which is °=°−° 286290 east 

of north.  A more precise answer will require retaining extra significant figures in 
the intermediate calculations. 

 
 
 
1.71: a) 

        
 

b) The net east displacement is 

( ) ( ) ( ) km, 37.122 cos km 30.330 cos km 40.745sin  km 80.2 =−+− ooo  and the net north 

displacement is ( ) ( ) ( ) km, 48.022.0sin  km 30.330sin  km 40.745 cos km 80.2 =−+− ooo  

and so the distance traveled is ( ) ( ) km. 45.1km 48.0km 1.37
22 =+   

 
 



1.72: The eastward displacement of Manhattan from Lincoln is 
 

 ( ) ( ) ( ) km 3.34235sinkm 166167sin  km 10685sinkm 147 =++ ooo  

 and the northward displacement is 
 

  ( ) ( ) ( ) km 7.185235coskm 166167 cos km 10685coskm 147 −=++ ooo   

 
 (A negative northward displacement is a southward displacement, as indicated in 

Fig. (1.33).  Extra figures have been  kept in the intermediate calculations.) 
 

 a)  km 189)km7.185()km3.34( 22 =+  

 
b) The direction from Lincoln to Manhattan, relative to the north, is 

 

arctan o5.169
km7.185

km3.34
=









−
 

  

 and so the direction to fly in order to return to Lincoln is ooo 5.3491805.169 ++ . 

 

      
 

 



1.73: a) Angle of first line is ( ) .42tan
10210
202001 o== −

−−θ  Angle of 

second line is .723042 ooo =+  Therefore 

8772 cos 25010 =+= oX  

25872sin  25020 =+= oY  
 
for a final point of (87,258). 
b) The computer screen now looks something like this: 
 

 
 
 

The length of the bottom line is ( ) ( ) 13625820087210
22 =−+−  and its direction is 

( ) o25tan
87210
2002581 =−

−− below straight left. 

 
 



1.74: a) 

 
  

 

b) To use the method of components, let the east direction be the x-direction 
and the north direction be the y-direction.  Then, the explorer’s net x-
displacement is, in units of his step size, 

 

( ) ( ) 7.1160 cos8045cos40 −=− oo
 

 

 and the y-displacement is 
 

    ( ) ( ) .6.475060 sin8045sin40 =−+ oo   

 
 The magnitude and direction of the displacement are 
 

    ,49)6.47()7.11( 22 =+−   arctan 
o104

7.11

6.47
=








−

. 

(More precision in the angle is not warranted, as the given measurements are to 
the nearest degree.)  To return to the hut, the explorer must take 49 steps in a 

direction ooo 1490104 =−  east of south. 

 

 



1.75: Let +x be east and +y be north.  Let A
r
be the displacement 285 km at o0.40  north 

of west and let B
r
be the unknown displacement. 

 

km. 380

km. 2.183 km, 333.3Then 

0 km, 115

km 2.18340.0sin   km, 3.2180.40cos

 

east  km, 115  where,

22

,

=+=

−==

==

+=+=−=−=

−=−=

−=

==+

yx

yx

yx

yx

yyyxxx

BBB

BB

RR

AAAA

ARBARB

oo

rrr

rrrr

ARB

RRBA

 

 

   
( ) ( )
east ofsouth  ,8.28

km 3.333km2.183tan

o=

==

α

BBα xy
 

 

 
1.76:  

 

N 960
0.35 sin

N550

sin
                    

sin                 c)(

cos                 b)(

sin                  (a)

0

par

par

perp

par

==
α

=

α=

α=

α=

ω
ω

ωω

ωω

ωω

 

 

 



1.77:  

  exerts. biceps  theforce  theis B
r

 

 

N;160

N2.37N,2.158Then 

N5.132 ,0

N7.16943 cos  N, 2.15843sin

    ,

upward. is and N 5.132  where,

exerts. elbow  theforce  theis 

22 =+=

−=+=

+==

+=+=−=−=

−=−=

==+

yx

yx

yx

yx

yyyxxx

EEE

EE

RR

BBBB

BREBRE

R

oo

rrr

r

RBE

E

 

 

   
horizontal below ,13

2.1582.37tan

o=

==

α

EEα xy
 

 

 

 



1.78: (a) Take the beginning of the journey as the origin, with north being the y-
direction, east the x-direction, and the z-axis vertical. The first displacement is then 

,ˆ30k−  the second is ĵ15− , the third is m) 200  km 2.0( ˆ200 =i , and the fourth is ĵ100 . 

Adding the four:  
 

kjijijk ˆ30ˆ85ˆ200ˆ100ˆ200ˆ15ˆ30 −+=++−−  

 
 (b) The total distance traveled is the sum of the distances of the individual segments: 30 
+ 15 + 200 + 100 = 345 m. The magnitude of the total displacement is:  
 

( ) m2193085200
222222 =−++=++= zyx DDDD  

 

 

1.79: Let the displacement from your camp to the store be .A
r
 

 

062sin  48sin  32sin   so  ,0

062 cos 48 cos 32 cos  so  ,0

 

north be  andeast  be Let 

 westofsouth  62 is  and west ofsouth  32 is 

east ofsouth  32 m, 240

=−+−=++

=−−=++

=++

++

=

ooo

ooo

oo

o

rrr

rr

CBACBA

CBACBA

yx

A

yyy

xxx

0CBA

CB

 

A is known so we have two equations in the two unknowns B and C.  Solving gives 
B = 255 m and C = 70 m. 
 
 
1.80: Take your tent's position as the origin. The displacement vector for Joe's tent is 

( ) ( ) .ˆ205.8ˆ33.19ˆ23sin  21ˆ23 cos 21 jiji −=− oo  The displacement vector for Karl's tent is 

( ) ( ) jiji ˆ26.19ˆ56.25ˆ37sin  32ˆ37 cos 32 +=+ oo . The difference between the two 

displacements is: 
 

( ) ( ) jiji ˆ46.27ˆ23.6ˆ25.19205.8ˆ56.2533.19 −−=−−+− . 

 
The magnitude of this vector is the distance between the two tents:  
 

( ) ( ) m 2.2846.2723.6
22 =−+−=D  

 

 



1.81: a) becomes (1.22) Eq.,0With == zz BA  

( )( ) ( )( )
( )

( )
φ cos 

cos

sinsincoscos

sin sin cos Bcos 

AB

θθAB

θθθθAB

θBθAθθABABA

BA

BABA

BABAyyxx

=

−=

+=

+=+

 

 

where the expression for the cosine of the difference between two angles has been used 
(see Appendix B). 
 

b) With zzzz CCCBA ====  and ˆ   ,0 kC
r

. From Eq. (1.27), 

( )( ) ( )( )

( )
φsin

sin

cossinsincos

 cos sin   cos  cos 

AB

θθAB

θθθθAB

θBθAθBθA

BABAC

AB

BABA

AABA

xyxx

=

−=

−=

−=

−=

 

 

       

1.82: a) The angle between the vectors is ,14070210 ooo =−  and so Eq. (1.18) gives 

( )( ) 2m 62.6140 cos m 40.2m 60.3 −==⋅ o
rr
BA  Or, Eq. (1.21) gives 

  ( ) ( ) ( ) ( )
2m 62.6

210sin  m 4.270 sinm 6.3210 cosm 4.270cosm 60.3

−=

+=

+=⋅
oooo

rr

yyxx BABABA

 

 
b) From Eq. (1.22), the magnitude of the cross product is 

 

( )( ) 2m 55.5140sin  m 40.2m 60.3 =o , 

  
 and the direction, from the right-hand rule, is out of the page (the  

+z-direction).  From Eq. (1-30), with the z-components of BA
rr

and  

vanishing, the z-component of the cross product is 
 

( ) ( )
( ) ( )

2m 55.5

210 cosm 40.270sinm 60.3                       

210sinm 40.270 cosm 60.3

=

−

=−
oo

oo

xyyx BABA

 

 

 



1.83: a) ABC  triangleof area 2  area ramParallelog ×=  

      
( )( ) ( )( )

θBA

θ

sin  area mParellogra

sin A B21heightbase21 area Triangle

=

==
 

  b) o90  

 

 
1.84: With the +x-axis to the right, +y-axis toward the top of the page, and +z-axis out 

of the page, ( ) ( ) ( ) .0,cm9.68,cm8.87 22 =×=×=×
zyx

BABABA
rrrrrr

 

 
 
 

1.85: a) ( ) ( ) ( ) .39.500.400.300.2
222 =++=A  

( ) ( ) ( ) .36.400.300.100.3
222 =++=B  

 

   b)  
( ) ( ) ( )
( ) ( ) ( )kji

kjiBA

ˆ00.7ˆ00.2ˆ00.5

ˆˆˆ

++−=

−+−+−=− zzyyxx BABABA
rr

 

 

( ) ( ) ( ) ,83.800.700.25.00   c)
222 =++  

 

and this will be the magnitude of AB
rr

− as well. 
 
 

1.86: The direction vectors each have magnitude 3 , and their dot product is (1) (1) + 

(1) (–1) + (1) (–1) = –1, so from Eq. (1-18) the angle between the bonds is arccos 

= ( )
33

1− = arccos ( ) o109
3
1 =− . 

 

 

 



1.87: The best way to show these results is to use the result of part (a) of  Problem 1-65, 
a restatement of the law of cosines.  We know that 
 

,cos 2222 φABBAC ++=  

where φ  is the angle between A
r
 and B

r
. 

 

a) If ,0 cos ,222 =+= φBAC and the angle between A
r
and B

r
is o90 (the vectors are 

perpendicular). 
 

b) If ,0cos ,222 <+< φBAC  and the angle between A
r
and B

r
is greater than o90 . 

c) If ,0cos ,222 >+> φBAC and the angle between A
r
and B

r
is less than o90 . 

 
 



1.88:  a) This is a statement of the law of cosines, and there are many ways to 
derive it.  The most straightforward way, using vector algebra, is to assume the linearity 
of the dot product (a point used, but not explicitly mentioned in the text) to show that 

the square of the magnitude of the sum BA
rr

+ is 

 

   

( ) ( )

φcos2

2

2

22

22

ABBA

BA

++=

⋅++=

⋅+⋅+⋅=

⋅+⋅+⋅+⋅=+⋅+

BA

BABBAA

BBABBAAABABA

rr

rrrrrr

rrrrrrrrrrrr

 

    

Using components, if the vectors make angles θA and θB with the x-axis, the components 

of the vector sum are A cos θA + B cos θB and A sin θA + B sin θB, and the square of the 
magnitude is 
  

( ) ( )22
sinsin  cos cos BABA θBθAθBθA +++

( ) ( )
( )

( )
φ

θ

 cos 2

cos 2

sinsincoscos2                                      

sincos sincos                                   

22

22

222222

ABBA

θABBA

θθθθAB

θθBθθA

BA

BABA

BBAA

++=

−++=

++

+++=

 

    

where φ = θA – θB is the angle between the vectors. 
 

b) A geometric consideration shows that the vectors BA
rr

,  and the sum BA
rr

+

must be the sides of an equilateral triangle.  The angle between BA
rr

and,  is 

120o, since one vector must shift to add head-to-tail.  Using the result of part 

(a), with ,BA =  the condition is that φ cos2 2222 AAAA ++= , which solves 

for 1 = 2 + 2 cos φ, cos φ = ,
2
1−  and φ = 120o. 

c) Either method of derivation will have the angle φ   replaced by 180o – φ, so 

the cosine will change sign, and the result is .cos222 φABBA −+  

d) Similar to what is done in part (b), when the vector difference has the same 

magnitude, the angle between the vectors is 60o.  Algebraically,φ  is obtained 

from 1 = 2 – 2 cos φ, so cos φ = 
2
1  and φ = 60o. 

 
 

 



1.89:  Take the length of a side of the cube to be L, and denote the vectors from a to b, a 

to c and a to d as DCB
rrr
 and ,, . In terms of unit vectors, 

  ,k̂B L=
r

      ( ),ˆˆ kjC += L
r

  ( ).ˆˆˆ kjiD ++= L
r

 

 

 

 

 

Using Eq. (1.18), 

( ) ( ) ,7.54
3 

 arccos arccos
2

o

rr

=







=







 ⋅

LL

L

BD

DB
 

 ( )( ) .3.35
3 2

2
 arccos arccos

2
o

rr

=







=







 ⋅

LL

L

CD

DC
 

 

 
1.90: From Eq. (1.27),  the cross product is 
 

 .ˆ
00.13

00.11ˆ
00.13

00.6ˆ)00.1(13ˆ)00.11(ˆ)00.6(ˆ)00.13( 







−







+−=−++− kjikji  

 

The magnitude of the vector in square brackets is ,93.1  and so a unit vector in this 

direction (which is necessarily perpendicular to both )and BA
rr
 is 

 

    






 −+−

93.1

ˆ)1300.11(ˆ)00.1300.6(ˆ)00.1( kji
. 

 

 The negative of this vector, 
 

    






 +−

93.1

ˆ)1300.11(ˆ)00.1300.6(ˆ)00.1( kji
, 

 

 is also a unit vector perpendicular to BA
rr

and . 

 
 

 



1.91: A
r
and C

r
are perpendicular, so 0,   .0 =+=⋅ yyxx CACACA

rr
, which gives 

.05.65.0 =− yx CC  

 0.150.75.3so ,0.15 =+−=⋅ yx CCCB
rr

 

We have two equations in two unknowns xC  and yC . Solving gives 

.1.6 and 0.8 == yx CC  

 

 

1.92:  θAB sin  =× BA
rr

 

( ) ( )
( )( )

5984.0
00.300.3

00.200.5
sin 

22

=
+−

=
×

=
AB

θ
BA
rr

 

( ) o8.365984.0sin 1 == −θ  

 

 
1.93: a) Using Equations (1.21) and (1.27), and recognizing that the vectors 

CBA
rrr
 and,, do not have the same meanings as they do in those equations,  

  

( ) ( ) ( ) ( )( )
.

ˆˆˆ

zxyzyxyzxyxzxyzxzy

xyyxzxxzyzzy

CBACBACBACBACBACBA

BABABABABABA

−+−+−=

⋅−+−+−=⋅× CkjiCBA
rrrr

 

A similar calculation shows that 
 

( ) xyzyxzzxyxzyyzxzyx CBACBACBACBACBACBA −+−+−=×⋅ CBA
rrr

 

and a comparison of the expressions shows that they are the same. 
 

b) Although the above expression could be used, the form given allows for ready 

compuation of BA
rr

×   the magnitude is ( ) o37.0sin  20.00sin  =φAB and the direction 

is, from the right-hand rule, in the +z-direction, and so 
 

( ) ( ) ( ) .2.7200.637.0sin  20.00 +=+=⋅× o
rrr
CBA  

 
 



1.94: a) The maximum and minimum areas are 
 
  (L + l) (W + w) = LW + lW + Lw,   (L – l) (W – w) = LW – lW – Lw, 
 
 where the common terms wl have been omitted.  The area and its 

uncertainty are then WL ± (lW + Lw), so the uncertainty in the area is  
a = lW  + Lw. 

 
   b)  The fractional uncertainty in the area is 

 

,W

w

L

l

WL

WllW

A

a
+=

+
=  

 the sum of the fractional uncertainties in the length and width. 
 
   c)  The similar calculation to find the uncertainty v in the volume will involve 
neglecting the terms lwH, lWh and Lwh as well as lwh; the uncertainty in the volume is v 
= lWH + LwH + LWh, and the fractional uncertainty in the volume is 

 

,
H

h

W

w

L

l

HLW

LWhLwHlWH

V

v
++=

++
=  

 

the sum of the fractional uncertainties in the length, width and height. 

 

 
 
 
 
1.95: The receiver's position is 
 

( ) ( ) ( ) ( ) .ˆ0.28ˆ0.16ˆ0.180.40.110.5ˆ0.120.60.90.1 jiji +=+++−++−++  

 
The vector from the quarterback to the receiver is the receiver's position minus the 

quarterback's position, or ( ) ( ) ji ˆ0.35ˆ0.16 + , a vector with magnitude 

( ) ( ) ,5.380.350.16
22 =+ given as being in yards.  The angle is ( ) o6.24arctan

0.35
0.16 = to the 

right of downfield. 

 

 



1.96: a)  

   

 
 

b)  i)   In AU, 
22 )9329.0()3182.0( +  = 0.9857. 

ii) In AU, 
222 )0414.()4423.()3087.1( −+−+  = 1.3820 

iii) In AU, 
 

222 )0414.0())4423.(9329.0())3087.1(3182.0( +−−+−  = 1.695. 

 

c) The angle between the directions from the Earth to the Sun and to 
Mars is obtained from the dot product.  Combining Equations (1-18) 
and (1.21), 

 

)695.1)(9857.0(

)9329.04423.0)(9329.0()3182.03087.1)(3182.0(
arccos 



 +−−−+−−
=φ

 

    d)  Mars could not have been visible at midnight, because the Sun-Mars angle is less 
than 90o. 
 



1.97: a)  

  
 

The law of cosines (see Problem 1.88) gives the distance as  
 

( ) ( ) ( )( ) ly, 2.764.154cosly 77ly 1382ly 77ly 138
22 =++ o  

 

where the supplement of o6.25 has been used for the angle between the direction 
vectors. 
b) Although the law of cosines could be used again, it's far more convenient to use the 
law of sines (Appendix B), and the angle is given by 
 

,1295.51180,5.51ly 138
ly 76.2

25.6sin 
arcsin oooo

o

=−=







  

where the appropriate angle in the second quadrant is used. 
 
 

1.98:  Define kjiS ˆˆˆ CBA ++=
r

 

 

    
CzByAx

CBAzyx

++=

++⋅++=⋅ )ˆˆˆ()ˆˆˆ( kjikjiSr
rr

 

      

 If the points satisfy Ax + By + Cz = 0, then 0=⋅ Sr
rr

 and all points r
r
 are 

perpendicular to S
r
. 

 

       



Capítulo 2 



2.1:  a) During the later 4.75-s interval, the rocket moves a distance 

m63m1000.1 3 −× , and so the magnitude of the average velocity is 

.sm197
s754

m63m1000.1 3

=
−×

.
 

       b)  sm 169
s 5.90
m 1000.1 3

=×  

 
 

2.2: a) The magnitude of the average velocity on the return flight is 

 

    .sm42.4
)das400,86()da5.13(

)m105150( 3

=
×

 

 

The direction has been defined to be the –x-direction ).ˆ( i−  

 

      b)  Because the bird ends up at the starting point, the average velocity for the round 

trip is 0. 

 

 

2.3: Although the distance could be found, the intermediate calculation can be avoided 

by considering that the time will be inversely proportional to the speed, and the extra time 

will be  

min.701
hrkm70

hrkm105
min)140( =








−  

 

2.4:    The eastward run takes )sm5.0m200(  = 40.0 s and the westward run takes 

)sm4.0m280(  = 70.0 s. a) (200 m + 280 m)/(40.0 s + 70.0 s) = sm4.4  to two 

significant figures. b) The net displacement is 80 m west, so the average velocity is 

)s 110.0m80(  = sm73.0  in the –x-direction ).ˆ( i−  

 

 

2.5: In time t the fast runner has traveled 200 m farther than the slow runner: 

s286 so ,s)m(6.20m200s)m50.5( ==+ ttt .  

Fast runner has run m.1770)sm20.6( =t   

Slow runner has run m.1570)sm50.5( =t  

 

 



2.6: The s-waves travel slower, so they arrive 33 s after the p-waves. 

 

km250

s33
5.65.3

s33

s33

s
km

s
km

ps

ps

=

+=

+=

=→=

+=

d

dd

v

d

v

d

v

d
tvtd

tt

 

 

 

2.7: a) The van will travel 480 m for the first 60 s and 1200 m for the next 60 s, for a 

total distance of 1680 m in 120 s and an average speed of .sm0.14   b) The first stage of 

the journey takes s30
sm 8.0

m 240 =  and the second stage of the journey takes 

,s12s)m20m240( =  so the time for the 480-m trip is 42 s, for an average speed of 

.sm11.4  c) The first case (part (a));  the average speed will be the numerical average 

only if the time intervals are the same. 

 

 

2.8: From the expression for x(t), x(0) = 0, x(2.00 s) = 5.60 m and x(4.00 s) = 20.8 m. a)  

sm80.2
s 2.00

0m 60.5 =−
 b)  sm2.5

s4.00
0m 8.20 =−   c)  sm6.7

s2.00

m5.60m8.20 =−
 

 

 

2.9:  a) At 0  ,0 11 == xt , so Eq (2.2) gives 

.sm0.12
s)0.10(

s)0.10)(sm120.0(s)0.10)(sm4.2( 3322

2

2
av =

−
==

t

x
v  

 

     b) From Eq. (2.3), the instantaneous velocity as a function of time is 

 

,)sm360.0()sm80.4(32 2322 ttctbtvx −=−=  

 

so i)  ,0)0( =xv  

    ii) ,sm0.15s)0.5)(sm360.0()s0.5)(sm80.4()s0.5( 232 =−=xv  

and iii) .sm0.12s)0.10)(sm360.0()s0.10)(sm80.4()s0.10(
232 =−=xv  

     c) The car is at rest when 0=xv . Therefore 0)sm360.0()sm80.4( 232 =− tt . The 

only time after 0=t  when the car is at rest is s3.133

2

sm 360.0

sm80.4 ==t  

 

 



2.10: a) IV:  The curve is horizontal; this corresponds to the time when she stops. b)  I:  
This is the time when the curve is most nearly straight and tilted upward (indicating 

postive velocity). c) V:  Here the curve is plainly straight, tilted downward (negative 

velocity). d) II:  The curve has a postive slope that is increasing. e) III:  The curve is still 

tilted upward (positive slope and positive velocity), but becoming less so. 

 

 

2.11: Time (s)   0 2 4 6 8 10 12 14

 16 

Acceleration (m/s
2
)      0      1          2          2          3          1.5  1.5       0 

 

      a) The acceleration is not constant, but is approximately constant between the times 

s4=t  and s.8=t  

 

 

 

2.12: The cruising speed of the car is 60 hrkm  = 16.7 sm . a) 
2

s 10

sm 7.16
sm7.1=  (to 

two significant figures). b) 
2

s 10

sm 7.160
sm7.1−=− c) No change in speed, so the acceleration 

is zero. d) The final speed is the same as the initial speed, so the average acceleration is 

zero. 

 

 

2.13: a) The plot of the velocity seems to be the most curved upward near t = 5 s. 

b) The only negative acceleration (downward-sloping part of the plot) is between t = 30 s 

and t = 40 s.  c) At t = 20 s, the plot is level, and in Exercise 2.12 the car is said to be 

cruising at constant speed, and so the acceleration is zero.  d) The plot is very nearly a 

straight line, and the acceleration is that found in part (b) of Exercise 2.12, .sm7.1 2−  

e) 

 
 

 

 



2.14: (a) The displacement vector is: 

 

( )kjir ˆ )sm0.3()sm0.7(ˆ)sm0.10(ˆ)sm0.5()( 22
ttttt −++−=

r
 

 

The velocity vector is the time derivative of the displacement vector: 

 

kji
r ˆ ))sm0.3(2sm0.7(ˆ)sm0.10(ˆ)sm0.5(

)( 2 t
dt

td
−++−=

r

 

 

and the acceleration vector is the time derivative of the velocity vector: 

 

k
r ˆsm0.6

)( 2

2

2

−=
dt

td
r

 

 
At t = 5.0 s: 

 
 

 
 

( )kjir ˆ )s0.25)(sm0.3()s0.5)(sm0.7(ˆ)s0.5)(sm0.10(ˆs)05)(sm0.5()( 22−−++−= .t
r

      

             kji ˆ)m0.40(ˆ)m0.50(ˆ)m0.25( −+−=  

  

kji

kji
r

ˆ )sm0.23(ˆ)sm0.10(ˆ)sm0.5(

ˆ ))s0.5)(sm0.6(sm0.7((ˆ)sm0.10(ˆ)sm0.5(
)( 2

−+−=

−++−=
dt

td
r

 

 k
r ˆsm0.6

)( 2

2

2

−=
dt

td
r

 

 

(b) The velocity in both the x- and the y-directions is constant and nonzero; thus 

the overall velocity can never be zero. 

(c) The object's acceleration is constant, since t does not appear in the acceleration 

vector. 

 

 



2.15: t
dt

dx
vx )scm125.0(scm00.2 2−==  

2scm 125.0−==
dt

dv
a x
x  

     a) .scm125.0 ,scm00.2 cm,0.50,0At 2−==== xx avxt  

     b) s.0.16 :for  solve and 0Set == ttvx  

     c) Set  x = 50.0 cm and solve for t.  This gives s.0.32  and 0 == tt  The turtle returns 

to the starting point after 32.0 s.   

     d) Turtle is 10.0 cm from starting point when x = 60.0 cm or x = 40.0 cm. 

s.8.25 and s20.6:for  solve and cm0.60Set === tttx  

.scm23.1 s,8.25At 

.scm23.1 s,20.6At 

−==

+==

x

x

vt

vt
 

Set cm0.40=x  and solve for s4.36 : =tt (other root to the quadratic equation is negative 

and hence nonphysical). 

.scm55.2  s,4.36At −== xvt  

e)  

 
 

 

2.16: Use of Eq. (2.5), with ∆t = 10 s in all cases, 

a) ( ) ( )( ) ( ) 2m/s0.1s10/m/s0.15m/s0.5 −=−  

b) ( ) ( )( ) ( ) 2m/s0.1s10/m/s0.5m/s0.15 −=−−−  

c) ( ) ( )( ) ( ) 2m/s0.3s10/m/s0.15m/s0.15 −=−−− . 

 

In all cases, the negative acceleration indicates an acceleration to the left. 

 

 

2.17: a) Assuming the car comes to rest from 65 mph (29 m/s) in 4 seconds, 

.sm25.7)s4()0sm29( 2=−=xa  

      b) Since the car is coming to a stop, the acceleration is in the direction opposite  to the 

velocity. If the velocity is in the positive direction, the acceleration is  negative; if the 

velocity is in the negative direction, the acceleration is positive. 

 

 



2.18: a) The velocity at t = 0 is 

 

   (3.00 sm ) + (0.100 3sm ) (0) = 3.00 sm , 

 

and the velocity at t = 5.00 s is 

 

   (3.00 sm ) + (0.100 
3sm ) (5.00 s)

2
 = 5.50 sm , 

 

so Eq. (2.4) gives the average acceleration as  

    
2
sm50.  

)s00.5(

)sm00.3()sm50.5(
=

−
. 

 

b) The instantaneous acceleration is obtained by using Eq. (2.5), 
 

.)sm2.0(2
3
tt

dt

dv
ax === β  

 

Then, i) at t = 0, ax = (0.2 
3
sm ) (0) = 0, and 

         ii) at t = 5.00 s, ax = (0.2 
3
sm ) (5.00 s) = 1.0 

2
sm . 

 
 

 
 



2.19: a) 

 

 

 

 

 

 

   b) 

 
 

 

 



2.20: a)  The bumper’s velocity and acceleration are given as functions of time by 

   
562

)sm600.0()sm60.9( tt
dt

dx
vx −==  

   .)sm000.3()sm60.9( 462
t

dt

dv
a x −==  

 

There are two times at which v = 0 (three if negative times are considered), given by   t = 

0 and t4 = 16 s4.  At t = 0, x = 2.17 m and ax = 9.60 sm  2.  When t4 = 16 s4, 

 x = (2.17 m) + (4.80 sm  2
) )s16( 4

– (0.100) 
6
sm )(16 s

4
)
3/2
 = 14.97 m, 

  ax = (9.60 sm  2
) – (3.000 

6
sm )(16 s

4
) = –38.4 sm  2

. 

    b) 

 
 

 

 
2.21: a) Equating Equations (2.9) and (2.10) and solving for v0, 

.sm00.5sm0.15
s007

m)70(2)(2 0
0 =−=−

−
=

.
v

t

xx
v xx  

   b) The above result for v0x may be used to find 

,sm43.1
s00.7

sm00.5sm0.15 20 =
−

=
−

=
t

vv
a xx
x  

or the intermediate calculation can be avoided by combining Eqs. (2.8) and (2.12) to 

eliminate v0x and solving for ax, 

.sm43.1
s)007(

m0.70

s00.7

sm0.15
22

2

22

0 =







−=







 −
−=

.t

xx

t

v
a x
x  

 

 



2.22: a) The acceleration is found from Eq. (2.13), which xv0 = 0; 

 

( )( )
( )( ) ,sm0.32
)ft307(2

)hrmi173(

)(2

2

ft 3.281
m 1

2

hrmi 1

sm 4470.0

0

2

==
−

=
xx

v
a x
x  

 

where the conversions are from Appendix E. 

 

   b)  The time can be found from the above acceleration, 

 

( )
.s42.2

sm0.32

)hrmi173(

2

hrmi 1

sm 4470.0

===
x

x

a

v
t  

 

The intermediate calculation may be avoided by using Eq. (2.14), again with v0x = 0, 

 

( )( )
( ) .s42.2

)hrmi173(

ft307(2)(2

hrmi 1

sm 4470.0

ft 3.281
m 1

0 ==
−

=
xv

xx
t  

 

 

2.23:   From Eq. (2.13), with ( ) ,0  Taking . ,0 0max2 0

2
0 =<== − xaav
xx

v

xx  

 

m.70.1
)sm250(2

))hrkms)(3.6mhr)(1km105((

2 2

2

max

2

0 ==>
a

v
x x

 

 

 

 

2.24: In Eq. (2.14), with x – x0 being the length of the runway, and v0x = 0 (the plane  

starts from rest),  .sm0.7022
s 8
m 2800 === −

t

xx

xv  

 

 

2.25:   a) From Eq. (2.13), with ,00 =xv  

.sm67.1
m)120(2

)sm20(

)(2

2
2

0

2

==
−

=
xx

v
a x
x  

 

   b) Using Eq. (2.14), s.12)sm20(m)120(2)(2 0 ==−= vxxt  

   c) m.240)sm20)(s12( =  

 



2.26: a) x0  < 0, v0x < 0, ax < 0 

 

 
 

b) x0 > 0, v0x < 0, ax > 0 

 

 
 

c) x0 > 0, v0x > 0, ax < 0 

 



2.27:   a) speeding up: 

 

? s,9.19 ,0 ft,1320 00 ====− xx atvxx  
22

2
1

00 sft67.6 gives =+=− xxx atatvxx  

 

slowing down: 

 

 ? ,0 ,sft0.88 ft,146 00 ====− xxx avvxx  

.sft5.26gives )(2 2

0

2

0

2 −=−+= xxxx axxavv  

 

b) ?  ,sft676 ,0 ft,1320
2

00 ====− xxx v.avxx  

.mph5.90sft133 gives )(2 0

2

0

2 ==−+= xxxx vxxavv  

constant. benot must xa  

 

c) ? ,0 ,sft5.26  s,ft0.88 2

0 ==−== tvav xxx  

 s.32.3 gives 0 =+= ttavv xxx  

 

 



2.28: a) Interpolating from the graph: 

 

left)  the(toscm3.1 ,s0.7At 

right)  the(toscm72 s,0.4At 

−=

+=

v

.v
 

b) 
2

s0.6

s/cm0.8
scm 3.1graph - of slope −=−== tva which is constant 

c) =∆x area under v-t graph 

 
 

First 4.5 s: 

TriangleRectangle AAx +=∆  

( ) ( ) cm 5.22
s

cm
6s 5.4

2

1

s

cm
2s 5.4 =







+






=  

 

From 0 to 7.5 s: 

 
 

The distance is the sum of the magnitudes of the areas. 

( ) ( ) cm 5.25
s

cm
2s 5.1

2

1

s

cm
8s6

2

1
=







+






=d  

 

 

d) 

 
 

 

 

 



2.29: a)  

 

 

 

 

   b) 

 
 

 
2.30: a)  

 
  



2.31: a) At t = 3 s the graph is horizontal and the acceleration is 0.  From t = 5 s to    t = 

9 s, the acceleration is constant (from the graph) and equal to 
2

s4

sm20sm 45
sm3.6=−
. From 

t = 9 s to t = 13 s the acceleration is constant and equal to  

.sm2.11
2

s4

sm 450 −=−
 

    b) In the first five seconds, the area under the graph is the area of the rectangle, (20 
m)(5 s) = 100 m.  Between t = 5 s and t = 9 s, the area under the trapezoid is (1/2)(45 m/s 

+ 20 m/s)(4 s) = 130 m (compare to Eq. (2.14)), and so the total distance in the first 9 s is 
230 m.  Between  t = 9 s and t = 13 s, the area under the triangle is 

m90s)4)(sm45)(21( = , and so the total distance in the first 13 s is 320 m. 

 
 

2.32:  
 

 
 

 

 

2.33:  a) The maximum speed will be that after the first 10 min (or 600 s), at which time 

the speed will be 

 

.skm18sm101.8s)900)(sm0.20( 42 =×=  

 

   b) During the first 15 minutes (and also during the last 15 minutes), the ship will travel 

km8100s)900)(skm18)(21( = , so the distance traveled at non-constant speed is 16,200 

km and the fraction of the distance traveled at constant speed is 

,958.0
km384,000

km200,16
1 =−  

keeping an extra significant figure. 

   c) The time spent at constant speed is s1004.2 4

skm 18

km 200,16km 000,384 ×=−
 and the time spent 

during both the period of acceleration and deceleration is 900 s, so the total time required 

for the trip is s102.22 4× , about 6.2 hr. 

 



2.34: After the initial acceleration, the train has traveled 

 

m8.156)s0.14)(sm60.1(
2

1 22 =  

 

(from Eq. (2.12), with x0 = 0, v0x = 0), and has attained a speed of 

 

  .sm4.22)s0.14)(sm60.1(
2 =  

 

During the 70-second period when the train moves with constant speed, the train travels 

( ) ( ) m. 1568s 70 sm 4.22 =  The distance traveled during deceleration is given by Eq. 

(2.13), with sm 4.22,0 0 == xx vv  and 
2sm 50.3−=xa , so the train moves a distance 

.m68.71
)m/s3.502(

)s/m4.22(

0 2

2

==−
−

−
xx  The total distance covered in then 156.8 m + 1568 m + 71.7 m 

= 1.8 km. 

 

In terms of the initial acceleration a1, the initial acceleration time t1, the time t2 during 

which the train moves at constant speed and the magnitude a2 of the final acceleration, 

the total distance  xT  is given by 

which yields the same result. 

 

 

,
||

2
2||

)(

2

1
)(

2

1

2

11
21

11

2

2

11
211

2

11T 




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
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2.35: a)  

 

 

 

   b) From the graph (Fig. (2.35)), the curves for A and B intersect at t = 1 s and t = 3 s. 

 

   c)  

 
 

   d) From Fig. (2.35), the graphs have the same slope at t = 2 s .  e) Car A passes car B 

when they have the same position and the slope of curve A is greater than that of  curve B 

in Fig. (2.30);  this is at t = 3 s.  f) Car B passes car A when they have the same position 

and the slope of curve B is greater than that of curve A; this is at t = 1 s. 

 

 



2.36:  a) The truck’s position as a function of time is given by xT = vTt, with vT being the 

truck’s constant speed, and the car’s position is given by xC = (1/2) aCt
2
.  Equating the 

two expressions and dividing by a factor of t (this reflects the fact that the car and the 

truck are at the same place at t = 0) and solving for t yields 

s5.12
sm20.3

)sm0.20(22
2

C

T ===
a

v
t  

and at this time  

xT = xC = 250 m. 

 

    b) aCt = (3.20 m/s
2)(12.5 s) = 40.0 m/s (See Exercise 2.37 for a discussion of why the 

car’s speed at this time is twice the truck’s speed.) 

   c) 

 
 

   d) 

 
 

 

 



2.37: a) 

 
 

The car and the motorcycle have gone the same distance during the same time, so their 

average speeds are the same.  The car's average speed is its constant speed vC, and for 

constant acceleration from rest, the motorcycle's speed is always twice its 

average, or 2vC.  b) From the above, the motorcyle's speed will be vC after half the time 

needed to catch the car.  For motion from rest with constant acceleration, the distance 

traveled is proportional to the square of the time, so for half the time 

one-fourth of the total distance has been covered, or .4d  

 

2.38:    a) An initial height of 200 m gives a speed of 60 sm  when rounded to one 

significant figure.  This is approximately 200 km/hr or approximately 150 hrmi .  

(Different values of the approximate height will give different answers; the above may be 

interpreted as slightly better than order of magnitude answers.) b) Personal experience 

will vary, but speeds on the order of one or two meters per second are reasonable. c) Air 

resistance may certainly not be neglected. 

 

 

2.39: a) From Eq. (2.13), with 0=yv and ga y −= , 

  ,sm94.2m)440.0)(sm80.9(2)(2
2

00 ==−= yygv y  

which is probably too precise for the speed of a flea;  rounding down, the speed is about 

sm9.2 . 

   b) The time the flea is rising is the above speed divided by g, and the total time is twice 

this; symbolically, 

 

  s,599.0
)m/s(9.80

)m440.0(2
2

)(2
2

)(2
2

2

00 ==
−

=
−

=
g

yy

g

yyg
t  

or about 0.60 s. 

 

 

2.40:  Using Eq. (2.13), with downward velocities and accelerations being positive,
2

yv  = 

(0.8 sm )
2
 + 2(1.6 

2
sm )(5.0 m) = 16.64 

22
sm  (keeping extra significant figures), so vy 

= 4.1 sm . 

 

 



2.41: a) If the meter stick is in free fall, the distance d is related to the reaction time t by 
2)21( gtd = , so .2 gdt =  If d is measured in centimeters, the reaction time is 

  .cm)1(s)1052.4(
scm980

22 2

2
ddd

g
t −×===  

 

    b) Using the above result, s.190.017.6s)1052.4( 2 =× −  

 

2.42: a)  m.6.30s)5.2)(sm80.9)(21()21( 222 ==gt  

b)  sm.5.24s)5.2)(sm80.9( 2 ==gt . 

c) 

 
 

 

 



2.43: a) Using the method of Example 2.8, the time the ring is in the air is 

)sm80.9(

)m0.12()sm80.9(2s)m00.5(s)m00.5(

)(2

2

22

0

2

00

−−+
=

−−+
=

g

yygvv
t

yy

 

  s,156.2=  

keeping an extra significant figure.  The average velocity is then sm57.5
s 2.156
m 0.12 = , down. 

As an alternative to using the quadratic formula, the speed of the ring when it hits the 

ground may be obtained from )(2 0

2

0

2 yygvv yy −−= , and the average velocity found 

from 
2

0 yy vv +
;  this is algebraically identical to the result obtained by the quadratic formula. 

   b) While the ring is in free fall, the average acceleration is the constant acceleration due 

to gravity, 
2s/m80.9 down. 

 

   c)    
2

00
2

1
gttvyy y −+=   

   
22 )sm8.9(

2

1
)sm(5.00m0.120 tt −+=  

Solve this quadratic as in part a) to obtain t = 2.156 s. 

 

  d)  )m0.12)(sm8.9(2)sm(5.00)(2
22

0

2

0

2 −−=−−= yygvv yy  

       sm1.16=yv  

 

  e)  

 
 

 



2.44: a) Using ay = –g, v0y = 5.00 sm  and y0 = 40.0 m in Eqs. (2.8) and (2.12) gives  

i)  at  t = 0.250 s, 

 y = (40.0 m) + (5.00 sm )(0.250 s) – (1/2)(9.80 
2
sm )(0.250 s)2 = 40.9 m,  

vy = (5.00 sm ) – (9.80 
2
sm )(0.250 s) = 2.55 sm   

 

and ii) at t = 1.00 s,  

 

y = (40.0 m) + (5.00 m/s)(1.00 s) – (1/2)(9.80 m/s
2
)(1.00 s)

2
 = 40.1 m, 

 vy = (5.00 sm ) – (9.80 
2
sm )(1.00 s) = – 4.80 sm . 

 

b) Using the result derived in Example 2.8, the time is 

 

t = 
)sm80.9(

)m0.400)(sm80.9(2)sm00.5()sm00.5(
2

22 −−+
= 3.41 s. 

 

   c) Either using the above time in Eq. (2.8) or avoiding the intermediate calculation by 

using Eq. (2.13), 

,sm809)m0.40)(sm80.9(2)sm00.5()(2
2222

0

2

0

2 =−−=−−= yygvv yy  

vy = 28.4 sm . 

 

    d)   Using vy = 0 in Eq. (2.13) gives 

 

.m 2.41m 0.40
)sm80.9(2

)sm00.5(

2
2

2

0

2

0 =+=+= y
g

v
y  

 

   e) 

 
  

 



2.45:  a) ,sm6.25s)00.2)(sm80.9()sm00.6(
2

0 −=−−=−= gtvv yy  so the speed is 

sm6.25 . 

   b) m,6.31s)00.2)(sm80.9(
2

1
s)00.2)(sm00.6(

2

1 222

0 −=−−=−= gttvy y with the 

minus sign indicating that the balloon has indeed fallen. 

   c) 

m2.15so,sm232m)0.10)(sm80.9(2s)m00.6()(2 2222

0

2

0

2 ==−−=−−= yyy vyygvv

 

2.46: a) The vertical distance from the initial position is given by  

 

;
2

1 2

0 gttvy y −=  

   

solving for v0y, 

 

 .sm5.14)s00.5)(sm80.9(
2

1

)s00.5(

)m0.50(

2

1 2

0 =+
−

=+= gt
t

y
v y  

 

    b)  The above result could be used in ( ),2 0

2

0

2 yygvv yy −−=  with v = 0, to solve for y 

– y0  = 10.7 m (this requires retention of two extra significant figures in the calculation 

for v0y).  c) 0  d) 9.8 
2
sm , down. 

 

   e) Assume the top of the building is 50 m above the ground for purposes of graphing: 

 

 
  

 



2.47: a) .sm249s)9.0()sm224( 2=   b) .4.252

2

sm 9.80

sm 249 =   c) The most direct way to 

find the distance is m.101s)9.0)(2)sm224((ave ==tv     

   d) 
22
sm39240butsm202)s40.1()sm283( == g , so the figures are not consistent. 

 

 

2.48: a) From Eq. (2.8), solving for t gives (40.0 sm  – 20.0 sm )/9.80 
2
sm  = 2.04 s. 

    b) Again from Eq. (2.8), 

 

.s12.6
sm80.9

)sm0.20(sm0.40
2

=
−−

 

    

    c) The displacement will be zero when the ball has returned to its original vertical 

position, with velocity opposite to the original velocity.  From Eq. (2.8), 

 

.s16.8
sm80.9

)sm40(sm40
2

=
−−

 

 

(This ignores the t = 0 solution.) 

    d) Again from Eq. (2.8), (40 sm )/(9.80 
2
sm ) = 4.08 s.  This is, of course, half the 

time found in part (c). 

    e) 9.80 
2
sm , down, in all cases. 

    f)  

 
 

 



2.49: a) For a given initial upward speed, the height would be inversely proportional to 

the magnitude of g, and with g one-tenth as large, the height would be ten times higher, 

or 7.5 m.  b) Similarly, if the ball is thrown with the same upward speed, it would go ten 

times as high, or 180 m.  c) The maximum height is determined by the speed when hitting 

the ground; if this speed is to be the same, the maximum height would be ten times as 

large, or 20 m. 

 

 

 

 

 

 

 

 



2.50: a) From Eq. (2.15), the velocity v2 at time t 

 

         ∫+=
t

t
dtαtvv

1
12   

 

    )(
2

2

1

2

1 ttv −+=
α

 

   22

11
22
ttv

αα
+−=  

   = (5.0 sm ) – (0.6 
3
sm )(1.0 s)

2
 + (0.6 

3
sm ) t

2
 

   = (4.40 sm ) + (0.6 
3
sm ) t

2
. 

 

At t2 = 2.0 s, the velocity is v2 = (4.40 sm ) + (0.6 
3
sm )(2.0 s)

2
 = 6.80 m/s, or 6.8 sm  

to two significant figures. 

    b) From Eq. (2.16), the position x2 as a function of time is 

 

      dtvxx x

t

t112 ∫+=  

 dttt

t ))s/m6.0()s/m40.4(()m0.6( 23

1
+∫+=  

 ).(
3

)sm6.0(
))(sm40.4()m0.6( 3

1

3

3

1 tttt −+−+=  

At t = 2.0 s, and with t1 = 1.0 s, 

 

x = (6.0 m) + (4.40 sm )((2.0 s) – (1.0 s)) + (0.20 
3
sm )((2.0 s)

3 
– (1.0 s)

3
)  

   = 11.8 m. 

 

  c) 

 
  

 



2.51: a) From Eqs. (2.17) and (2.18), with v0=0 and x0=0, 

 

343322

0

2 )sm040.0()sm75.0(
32

)( ttt
B

t
A

dtBtAtv
t

x −=−=−= ∫  

.)sm010.0()sm25.0(
12632

443343

0

32 ttt
B

t
A

dtt
B

t
A

x
t

−=−=






 −= ∫  

  

 

      b) For the velocity to be a maximum, the acceleration must be zero; this occurs at t=0 

and s5.12==
B
At . At t=0 the velocity is a minimum, and at t=12.5 s the velocity is 

 

s.m1.39s)5.12)(sm040.0(s)5.12)(sm75.0( 3423 =−=xv  

 

 



2.52:  a) ms3.1for  0Slope ≥== ta  

      b)  graphunder Areamax tvh −=  

                  RectangleTriangle AA +≈  

      )scm133)(ms3.1ms5.2(
s

cm
133)ms3.1(

2

1
−+







≈  

      cm25.0≈  

 

 
      c) a = slope of v– t graph 

 

25 scm100.1
ms3.1

scm133
)ms0.1()ms5.0( ×=≈≈ aa  

zero. is slope  thebecause0)ms5.1( =a  

 

      d) h = area under v– t graph 

 

cm100.5)scm100)(ms0.1(
2

1
)ms0.1(

cm103.8
s
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33)ms5.0(

2

1
)ms5.0(

2
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×==≈
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=≈
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cm 0.11                                               

)33.1)(ms 2.0(
s

cm
133)ms 3.1(

2

1
)ms 5.1( RectangleTriangle

=

+






=+≈ AAh
 

 

 



2.53: a) The change in speed is the area under the ax versus t curve between 

vertical lines at s5.2=t  and s.5.7=t   This area is 

scm0.30)s52s5.7)(scm00.8scm00.4(
22

2
1 =−+ .  

This acceleration is positive so the change in velocity is positive. 

 

b) Slope of vx versus t is positive and increasing with t. 

 

 
 

 

2.54: a) To average 4 hrmi , the total time for the twenty-mile ride must be five  

hours, so the second ten miles must be covered in 3.75 hours, for an average of 2.7 

.hrmi  b) To average 12 hrmi , the second ten miles must be covered in 25 minutes and 

the average speed must be 24 .hrmi  c) After the first hour, only ten of the twenty miles 

have been covered, and 16 hrmi  is not possible as the average speed. 

 

 



2.55: a)  

 

 

The velocity and acceleration of the particle as functions of time are 

 

).sm00.20()sm0.18()(

)sm00.9()sm00.20()sm00.9()(

23

223

−=

+−=

tta

tttv

x

x
 

 

b) The particle is at rest when the velocity is zero; setting v = 0 in the above expression 

and using the quadratic formula to solve for the time t, 

 

)sm0.9(2

s)m0.9)(sm0.9(4)sm0.20()sm0.20(
3

3233 −±
=t  

 
and the times are 0.63 s and 1.60 s.  c) The acceleration is negative at the earlier time and 

positive at the later time.  d) The velocity is instantaneously not changing when the 

acceleration is zero; solving the above expression for 0)( =tax  gives 

s.11.1
sm00.18

sm00.20
3

2

=  

Note that this time is the numerical average of the times found in part (c).  e) The greatest 

distance is the position of the particle when the velocity is zero and the acceleration is 
negative; this occurs at 0.63 s, and at that time the particle is at  

 

m.45.2)s630s)(m00.9(s)63.0)(sm0.10(s)63.0)(sm00.3( 2233 =+− .  

 

(In this case, retaining extra significant figures in evaluating the roots of the quadratic 
equation does not change the answer in the third place.) f) The acceleration is negative at 

t = 0 and is increasing, so the particle is speeding up at the greatest rate at  t = 2.00 s and 

slowing down at the greatest rate at t = 0.  This is a situation where the extreme values of 

a function (in the case the acceleration) occur not at times when 0=
dt

da
but  at the 

endpoints of the given range. 



2.56: a) .sm25.1
s 20.0

m 0.25 =  

 b) .sm67.1
s 15

m 25 =  

 

 

c)  Her net displacement is zero, so the average velocity has zero magnitude. 

 d) .sm43.1
s 35.0

m 0.50 =  Note that the answer to part (d) is the harmonic mean, not the 

arithmetic mean, of the answers to parts (a) and (b).  (See Exercise 2.5). 

  

 

2.57:  Denote the times, speeds and lengths of the two parts of the trip as t1 and t2, v1 and 

v2, and l1 and l2. 
 

      a) The average speed for the whole trip is 

 

( ) ( ) h,km82
)km34(km)76(

)()(
hkm 72

km 34

hkm 88

km 76

2211

21

21

21 =
+

+
=

+

+
=

+

+

vlvl

ll

tt

ll
 

 

or 82.3 km/h, keeping an extra significant figure. 

 

b) Assuming nearly straight-line motion (a common feature of Nebraska 

highways), the total distance traveled is l1–l2 and 

 

( ) ( ) .hkm31
)km34(km)76(

hkm 72
km 34

hkm 88
km 76

21

21
ave =

+
−

=
+

−
=

tt

ll
v  

 

( hrkm4.31 to three significant figures.) 

 

 
2.58: a) The space per vehicle is the speed divided by the frequency with which the cars 

pass a given point; 

.vehiclem40
hvehicles2400

hkm96
=  

      

An average vehicle is given to be 4.5 m long, so the average spacing is 40.0 m – 4.6 m  

= 35.4 m. 

 

b) An average spacing of 9.2 m gives a space per vehicle of 13.8 m, and the traffic 

flow rate is  

.hvehicle6960
vehiclem8.13

hm96000
=  

 

 



2.59: (a) Denote the time for the acceleration (4.0 s) as t1 and the time spent running at 

constant speed (5.1 s) as t2. The constant speed is then at1, where a is the unknown 

acceleration. The total l is then given in terms of a, t1 and t2 by 

 

,
2

1
21

2

1 tatatl +=  

 

and solving for a gives 

 

.sm5.3
s)s)(5.10.4()s0.4)(21(

m) 100(

)21(

2

2

21

2

1

=
+

=
+

=
ttt

l
a  

 

(b) During the 5.1 s interval, the runner is not accelerating, so a = 0. 

 

(c) .sm54.1)s1.9(]s)4)(sm5.3[( 22 ==∆∆ tv  

 

(d) The runner was moving at constant velocity for the last 5.1 s. 

 

 

2.60: a) Simple subtraction and division gives average speeds during the 2-second  

intervals as 5.6, 7.2 and 8.8 sm . 

b) The average speed increased by 1.6 sm  during each 2-second interval, so the 

acceleration is 0.8 
2
sm . 

c) From Eq. (2.13), with v0 = 0, .sm8.4)m4.14)(sm8.0(2
2 ==v  Or, 

recognizing that for constant acceleration the average speed of 5.6 m/s is the speed one 

second after passing the 14.4-m mark, 5.6 sm  – (0.8 
2
sm )(1.0 s) = 4.8 sm . 

d) With both the acceleration and the speed at the 14.4-m known, either Eq. (2.8) 

or Eq. (2.12) gives the time as 6.0 s. 

e) From Eq. (2.12), x – x0 = (4.8 sm )(1.0 s) + 
2
1 (0.8 

2
sm )(1.0 s)

2
 = 5.2 m. This 

is also the average velocity (1/2)(5.6 sm  + 4.8 sm ) times the time interval of  

1.0 s. 

 

 
2.61: If the driver steps on the gas, the car will travel 

m.4.70s)0.3)(sm)(2.321(s)03s)(m (20 22 =+.  

If the brake is applied, the car will travel 

m,9.42s)0.3)(sm3.8)(21(s)03s)(m (20 22 =−+.  

so the driver should apply the brake. 

 

 



2.62: a)  







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


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
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s3600
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h24
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d365
)y1)(

s

m
100.3( 4

1
8ctd  

                               m105.9 15×=  

 

 b)   m30.0)s10)(
s

m
100.3( 98 =×== −ctd  

 c)   min 338s500
sm103.0

m105.1
8

11

.
c

d
t ==

×
×

==  

 d)   s6.2
sm103.0

m)1084.3(2
8

8

=
×
×

==
c

d
t  

 e)   h54s100,16
smi000,186

mi103 9

.
c

d
t ==

×
==  

 

2.63: a) sm4642 E == tRv π  

      b) orbit) searth'  theof radius  theis ( sm1099.22 4 rtrv ×== π  

      c) Let c be the speed of light, then in one second light travels a distance ).s00.1(c  The 

number of times around the earth to which this corresponds is 48.72)s00.1( E =πRc  

 

 



2.64: Taking the start of the race as the origin, runner A's speed at the end of 30 m can 

be found from: 

 

sm80.9sm96

sm96)m30)(sm6.1(20)(2

22

A

222

0A

2

0A

2

A

==

=+=−+=

v

xxavv
 

 

A’s time to cover the first 30 m is thus: 

 

s13.6
sm6.1

sm80.9
2

A

0AA ==
−

=
a

vv
t  

and A’s total time for the race is: 

s8.38
sm80.9

m)30350(
s136 =

−
+.  

B’s speed at the end of 30 m is found from: 

 

sm95.10sm120

sm120)m30)(sm0.2(20)(2

22

B

222

0B

2

0B

2

B

==

=+=−+=

v

xxavv
 

B’s time for the first 30 m is thus 

s48.5
sm0.2

sm95.10
2

B

0BB ==
−

=
a

vv
t  

and B's total time for the race is: 

s7.34
sm95.10

m)30350(
s485 =

−
+.  

 

B can thus nap for s 1.47.348.38 =− and still finish at the same time as A. 

 

 

2.65: For the first 5.0 s of the motion, s.0.5 ,00 == tv x   

tavv xxx += 0  gives s).0.5(xx av =  

This is the initial speed for the second 5.0 s of the motion.  For the second 5.0 s: 

m.150  s,0.5 ),s0.5( 00 =−== xxtav xx  
2222

2
1

00 sm0.4and)s5.12()s25(m150gives =+=+=− xxxxx aaatatvxx  

 

Use this ax and consider the first 5.0 s of the motion: 

m.0.50s)0.5)(sm0.4(0 22

2
12

2
1

00 =+=+=− tatvxx xx  

 

 



2.66: a) The simplest way to do this is to go to a frame in which the freight train (which 

moves with constant velocity) is stationary.  Then, the passenger train has  

an initial relative velocity of vrel,0 = 10 sm .  This relative speed would be decreased to 

zero after the relative separation had decreased to .m500
rel

2
rel

2

0, +=
a

v
 Since this is larger in 

magnitude than the original relative separation of 200 m, there will be a collision.  b) The 

time at which the relative separation goes to zero (i.e., the collision time) is found by 

solving a quadratic (see Problems 2.35 & 2.36 or Example 2.8).  The time is given by  

( )0,rel

2

0,rel0,rel 2
1

axvv
a

t +−=  

  )sm40sm100sm10)(ms10(
22222 −−=  

  ( )6.01()s100( −= . 

 

Substitution of this time into Eq. (2.12), with x0 = 0, yields 538 m as the distance the 

passenger train moves before the collision. 

 

 

2.67: The total distance you cover is m10.2m90.0m20.1 =+ and the time available is 

s80.0
sm 1.50

m 20.1 = . Solving Eq. (2.12) for ax, 

2

22

00 sm56.4
s)800(

s)80.0)(sm80.0(m)10.2(
2

)(
2 =

−
=

−−
=

.t

tvxx
a x
x . 

 

 



2.68: One convenient way to do the problem is to do part (b) first; the time spent 

accelerating from rest to the maximum speed is .s802sm 2.5

sm 20 =    

At this time, the officer is 

   .m0.80
)sm5.2(2

)sm20(

2 2

22

1
1 ===

a

v
x  

 

This could also be found from ,)2/1( 2

11ta  where t1 is the time found for the acceleration.  

At this time the car has moved (15 sm )(8.0 s) = 120 m, so the officer is 40 m behind the 

car. 

 

a) The remaining distance to be covered is 300 m – x1 and the average speed is 

(1/2)(v1 + v2) = 17.5 sm , so the time needed to slow down is 

 

,s0.16
sm5.17

m80m360
=

−
 

and the total time is 24.0 s. 

 

    c) The officer slows from 20 sm  to 15 sm  in 16.0 s (the time found in part (a)), so 

the acceleration is –0.31 
2
sm . 

 

d), e)  

 

 
 

 



2.69: a) m0.40 with and,)21( T

2

TT == xtax , solving for the time gives 

s17.6
s)m(2.10

m)0.40(2 ==t  

      b) The car has moved a distance  

m,864m0.40
sm2.10

sm40.3

2

1
2

2

1

T

C2

C .x
a

a
ta ===  

 

and so the truck was initially 24.8 m in front of the car. 

 

c) The speeds are .sm21 and sm13 CT == tata  

 

d)  

 
 

 



2.70: The position of the cars as functions of time (taking x1 = 0 at t = 0) are 

 

   .,
2

1
02

2

1 tvDxatx −==  

 

The cars collide when x1 = x2; setting the expressions equal yields a quadratic in t, 

 

   ,0
2

1
0

2 =−+ Dtvat  

 

the solutions to which are 

 

   ( ) ( ). 2
1

, 2
1

0

2

00
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0 vaDv
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tvaDv
a

t −+−=−+=  

 

The second of these times is negative and does not represent the physical situation. 

 

b) ( )
0

2

01 2 vaDvatv −+==  

 

c) 

 
 

 

 



2.71: a) Travelling at sm20 , Juan is m21)s80.0)(sm20(m371 =−=x  from the 

spreader when the brakes are applied, and the magnitude of the acceleration will be 

1

2
1

2x

v
a = . Travelling at sm25 , Juan is m17)s80.0)(sm25(m372 =−=x  from the 

spreader, and the speed of the car (and Juan) at the collision is obtained from 
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and so sm4.17=xv . 

 

    b) The time is the reaction time plus the magnitude of the change in speed )( 0 vv −  

divided by the magnitude of the acceleration, or 

s.1.60m)21(
)sm20(

sm4.17sm25
2)s80.0(2

212

0

0

reactionflash =
−

+=
−

+= x
v

vv
tt  

 
2.72: a) There are many ways to find the result using extensive algebra, but the most  

straightforward way is to note that between the time the truck first passes the police car 

and the time the police car catches up to the truck, both the truck and the car have 

travelled the same distance in the same time, and hence have the same average velocity 

over that time.  Since the truck had initial speed p2
3 v  and the average speed is vp, the 

truck’s final speed must be .p2
1 v  

 

2.73: a) The most direct way to find the time is to consider that the truck and the car are 

initially moving at the same speed, and the time of the acceleration must be that which 

gives a difference between the truck's position and the car's position as 

s.9.15)sm (0.600m)5.75(2or ,m5.75m5.4m26m21m24 2 ===+++ t  

      b) m.394)s9.15)(sm600.0)(21(s)915s)(m0.20()21( 222

0 =+=+ .tatv xx  

      c) s.m5.29)s9.15)(sm600.0(s)m0.20( 2

0 =+=+ tav xx  

 

 



2.74: a) From Eq. (2.17), x(t) = αt – 3

3
t

β
 = (4.00  sm )t – (0.667 

3
sm )t

3
.  From Eq. 

(2.5), the acceleration is a(t) = –2βt = (– 4.00 3
sm )t.  

   b) The velocity is zero at 
β
αt ±=  (a = 0 at t = 0, but this is an inflection point, not an 

extreme). The extreme values of x are then  

 

.
3

2

3

3

3

3

β
α

β
αβ

β
α

α ±=













−±=x  

The positive value is then 

 .m77.3m32
3

2

sm00.2

)sm00.4(

3

2 2
2

1

3

3

==







=x  

 

 

2.75: a) The particle's velocity and position as functions of time are 

 

,
2

sm00.3
)sm00.2(

))sm00.3()sm00.2(()(

2

3
2

0

0

32

0

ttv

dttvtv

x

t

xx











+−=

+−+= ∫
 

3322

0
0

)sm50.0()sm00.1()()( tttvdttvtx x

t

x +−== ∫  

 

        ),)sm50.0()sm00.1(( 232

0 ttvt x +−=  

 

where x0 has been set to 0.  Then, x(0) = 0, and to have x(4 s) = 0, 

 

,0s)00.4)(sm50.0()s00.4)(sm00.1( 232

0 =+−xv  

 

which is solved for s.m0.40 −=xv  b) s.m0.12)s4( =xv   

 

 
2.76: The time needed for the egg to fall is 

 

   ,s00.3
)sm80.9(

)m80.1m0.46(2

9

2
2

=
−

=
∆

=
h

t  

 

and so the professor should be a distance vyt = (1.20 sm )(3.00 s) = 3.60 m. 

 

 

 

 



2.77: Let t1 be the fall for the watermelon, and t2 be the travel time for the sound to 

return. The total time is s5.221 =+= ttT . Let y be the height of the building, then, 

.2s

2

12
1 and tvygty ==  There are three equations and three unknowns. Eliminate t2, solve 

for t1, and use the result to find y. A quadratic results: .0s1s

2

12
1 =−+ Tvtvgt  If  

.then ,0
2

4  2 2

a

acbbtcbtat −±−==++

 m850s)52)(sm340(and,sm340,sm9.421, Here, ss

2

1 −=−=−====== .Tvcvbgatt  

 

Then upon substituting these values into the quadratic formula,  

 

)sm9.4(2

m)850)(sm9.4(4)sm(340)sm340(
2

22

1

−−±−
=t  

 
( ) ( )

( ) s42.22m/s 9.42

sm 7.363sm 340

1 == ±−
t . The other solution, –71.8 s has no real physical meaning. 

Then, .m6.28)s 42.2)(sm8.9( 22

2
12

12
1 === gty  Check: s,08.)sm(340m)6.28( =  the 

time for the sound to return. 

 

 
2.78: The elevators to the observation deck of the Sears Tower in Chicago move from 
the ground floor to the 103rd floor observation deck in about 70 s.  Estimating a single 

floor to be about 3.5 m (11.5 ft), the average speed of the elevator is 
( )( )

.sm15.5
s 70

m 5.3103 =  

Estimating that the elevator must come to rest in the space of one floor, the acceleration 

is about 
( )
( ) .sm80.3

2

m 5.32

sm 15.50
22

−=−
 

 

 

2.79: a) ;sm4.20m)3.21)(sm80.9(22 2 === ghv  the announcer is mistaken. 

 

  b) The required speed would be  

 

s,m4.14m)3.21)(sm80.9(2s)m25()(2 22

0

2

0 =−+=−+= yygvv  

 

which is not possible for a leaping diver. 

 

 



2.80: If the speed of the flowerpot at the top of the window is v0, height h of the  

window is 

 

   .)21(or,)21( 0

2

0ave gt
t

h
vgttvtvh −=+==  

 

The distance l from the roof to the top of the window is then 

  .m310.0
)sm80.9(2

))s420.0)(sm80.9)(21()s420.0/()m90.1((

2
2

222

0 =
−

==
g

v
l  

 

An alternative but more complicated algebraic method is to note that t is the difference 

between the times taken to fall the heights l + h and h, so that 

 

   .2,
2)(2 2 hllgt
g

l

g

hl
t +=+−

+
=  

 

Squaring the second expression allows cancelation of the l terms, 

 

 ,22)21( 22 hlgtgt =+  

 

which is solved for 

 

   ,)21(
2

1
2








 −= gt
t

h

g
l  

which is the same as the previous expression. 

 

 

 

2.81: a) The football will go an additional 
( )
( ) m27.12

22

sm 80.92

sm 00.5

2
==

g
v  above the window, so 

the greatest height is 13.27 m or 13.3 m to the given precision. 

 

      b) The time needed to reach this height is s.65.1)sm(9.80m)3.13(2 2 =  

 

 



2.82: a) 

 
 

       
2.83: a) From Eq. (2.14), with v0=0,  

 

s.m59.7m)640.0)(sm0.45(2)(2 2

0 ==−= yyav yy  

 

 

      b) The height above the release point is also found from Eq. (2.14), with 

, and0s,m59.70 gavv yyy −===  

m94.2
)sm80.9(2

)sm59.7(

2 2

22

0 ===
g

v
h

y
 

 

(Note that this is also (64.0 cm) ( )
g

2sm 45
.The height above the ground is then 5.14 m.  

      c) See Problems 2.46 & 2.48 or Example 2.8: The shot moves a total distance  2.20 m 

–1.83 m = 0.37 m, and the time is 

 

s.60.1
)sm80.9(

m)37.0()sm80.9(2)sm59.7()sm59.7(
2

22

=
++

 

 

 

 



2.84: a) In 3.0 seconds the teacher falls a distance 

 

m1.44)s0.9)(sm8.9(
2

1

2

1 222 === gty  

To reach her ears after 3.0 s, the sound must therefore have traveled a total distance of 

m1.442m)1.44( −=−+ hhh ,where h is the height of the cliff. Given 340 m/s for the 

speed of sound: m1020s)03)(sm(340m1.442 ==− .h , which gives 

m530or  m532=h to the given precision. 

      b) We can use )(2 0

2

0

2 yygvv yy −+=  to find the teacher's final velocity. This gives 

2222 sm10427m)532)(sm8.9(2 ==yv  and sm102=yv . 

 

 

2.85: a) Let +y be upward. 

At ceiling, 
2

0 sm80.9m,0.3,0 −==−= yy ayyv . Solve for v0y. 

.sm7.7gives)(2 00

2

0

2 =−+= yyyy vyyavv  

     b) tavv yyy += 0  with the information from part (a) gives s78.0=t . 

     c) Let the first ball travel downward a distance d in time t.  It starts from its maximum 

height, so .00 =yv  

222

2
1

00 )sm9.4(gives tdtatvyy yy =+=−  

The second ball has sm5.1s)m7.7(
3
1

0 ==yv .  In time t it must travel upward 

d−m0.3 to be at the same place as the first ball. 

.)sm9.4()sm1.5(m0.3gives 222

2
1

00 ttdtatvyy yy −=−+=−  

We have two equations in two unknowns, d and t.  Solving gives s59.0=t and 

m.7.1=d  

     d) m3.1m0.3 =− d  

 

 



2.86: a) The helicopter accelerates from rest for 10.0 s at a constant 2sm5.0 . It thus 

reaches an upward velocity of  

sm50.0s)0.10)(sm0.5( 2

0 ==+= tavv yyy  

and a height of m250s)0.10)(sm0.5( 22

2
12

2
1 === tay y at the moment the engine is shut 

off. To find the helicopter's maximum height use 

 )(2 0

2

0

2 yyavv yyy −+=  

Taking m250
0
=y , where the engine shut off, and since 02 =yv  at the maximum height: 

 

m378
)sm8.9(2

s)m0.50(
m250

2

2

2

max

2

0

0max

=
−

−=

−
=−

y

g

v
yy

y

 

or 380 m to the given precision. 
 

      b)  The time for the helicopter to crash from the height of 250 m where Powers 
stepped out and the engine shut off can be found from:  

0)sm8.9(s)m0.50(m250
2

1 22

2
12

00 =−++=++= tttatvyy yy  

 where we now take the ground as 0=y . The quadratic formula gives solutions of 

s67.3=t and 13.88 s, of which the first is physically impossible in this situation. Powers' 

position 7.0 seconds after the engine shutoff is given by:  

 

m9.359)s0.49)(sm8.9(
2

1
s)0.7)(sm0.50(m250 22 =−++=y  

at which time his velocity is 

sm6.18)s0.7)(sm80.9(sm0.50
2

0 −=−+=+= gtvv yy  

Powers thus has s88.60.788.13 =−  more time to fall before the helicopter crashes, at his 

constant downward acceleration of 2sm2.0 . His position at crash time is thus: 

2

00
2

1
tatvyy yy ++=  

       
22 )s88.6)(sm0.2(

2

1
s)88.6)(sm6.18(m9.359 −+−+=  

   m6.184=  

 

or 180 m to the given precision. 
 

 



2.87: Take +y to be downward. 
Last 1.0 s of fall: 

22

0

2

2
1

00 s)0.1)(sm(4.9s)0.1(4gives +=+=− yyy vhtatvyy  

v0y is his speed at the start of this time interval. 

Motion from roof to :430 hyy =−  

?,00 == yy vv  

sm834.3)43)(sm80.9(2gives)(2 2

0

2

0

2 hhvyyavv yyyy ==−+=  

This is vy for the last 1.0 s of fall.  Using this in the equation for the first 1.0 s gives 

9.4834.34 += hh  

m.270Then   .5.16:for  solve andLet 22 ==== uhuuuh  

 

 

2.88:  a)  s0.10return soundfall =+ tt   

   s0.10sf =+ tt        (1) 

 

        
ss

2

f

SoundRock

2

1
tvgt

dd

=

=
 

  s

2

f

2 s)m330()sm8.9(
2

1
tt =      (2) 

 

Combine (1) and (2): s16.1s,84.8 sf == tt  

 m383)s16.1)(
s

m
330(ss === tvh  

      b) You would think that the rock fell for 10 s, not 8.84 s, so you would have  thought 

it fell farther. Therefore your answer would be an overestimate of the cliff's height. 

 

 
2.89: a) Let +y be upward. 

?,sm80.9 s,25.3 m,0.15 0

2

0 =−==−=− yy vatyy  

sm31.11gives 0

2

2
1

00 =+=− yyy vtatvyy  

Use this v0y in sm5.20:for  solve  to0 −=+= yyyyy vvtavv  

 

      b) Find the maximum height of the can, above the point where it falls from the 
scaffolding: 

? ,sm80.9 ,sm31.11 ,0 0

2

0 =−−=+== yyavv yyy  

m53.6 gives )(2 00

2

0

2 =−−+= yyyyavv yyy  

The can will pass the location of the other painter.  Yes, he gets a chance. 

 

 



2.90: a) Suppose that Superman falls for a time t, and that the student has been  

falling for a time t0 before Superman’s leap (in this case, t0 = 5 s).  Then, the height h of 

the building is related to t and t0 in two different ways: 

    
2

0
2

1
gttvh y −=−  

          ( ) ,
2

1 2

0ttg +−=  

 

where v0y is Superman’s initial velocity.  Solving the second t gives .0
2 tt
g
h −=   

Solving the first for v0y gives v0y  = ,
2
t

g

t

h
+−  and substitution of numerical values gives 

t = 1.06 s and v0y = –165 sm , with the minus sign indicating a downward initial velocity. 

 

 b)  

 
 

     c)  If the skyscraper is so short that the student is already on the ground, then 

.m123
2

1 2

0 == gth  

 

 



2.91: a) The final speed of the first part of the fall (free fall) is the same as the initial 

speed of the second part of the fall (with the Rocketeer supplying the upward 

acceleration), and assuming the student is a rest both at the top of the tower and at the 

ground, the distances fallen during the first and second parts of the fall are 
g

v

g

v

10
 and

2

2

1

2

1 , 

where v1 is the student's speed when the Rocketeer catches him.  The distance fallen in 

free fall is then five times the distance from the ground when caught, and so the distance 

above the ground when caught is one-sixth of the height of the tower, or 92.2 m.  b) The 

student falls a distance 65H  in time ,35 gHt =  and the Rocketeer falls the same 

distance in time t–t0, where t0=5.00 s (assigning three significant figures to t0 is more or 

less arbitrary).  Then, 

 

 

).(
2

1

)(

65

or,)(
2

1
)(

6

5

0

0

0

2

000

ttg
tt

H
v

ttgttv
H

−−
−

=

−+−=

 

At this point, there is no great advantage in expressing t in terms of H and g algebraically;  

s6984s00.5sm29.40m)553(5 2

0 .tt =−=− , from which .sm1.750 =v  

 

c) 

 
 
2.92: a) The time is the initial separation divided by the initial relative speed, H/v0.   

More precisely, if the positions of the balls are described by  

    ,)21(,)21( 2

2

2

01 gtHygttvy −=−=  

setting y1 = y2 gives H = v0t.  b) The first ball will be at the highest point of its motion if 

at the collision time t found in part (a) its velocity has been reduced from v0 to 0, or gt = 

gH/v0 = v0, or ./2

0 gvH =  

 

 



2.93: The velocities are 232and2 ttvtv BA δγβα −=+= a) Since vB is zero at t = 0, car 

A takes the early lead.  b) The cars are both at the origin at t = 0.  The non-trivial solution 

is found by setting xA = xB, cancelling the common factor of t, and solving the quadratic 

for 

 

[ ].4)()(
2

1 2 αδγβγβ
δ

−−±−=t  

 

Substitution of numerical values gives 2.27 s, 5.73 s.  The use of the term “starting point” 

can be taken to mean that negative times are to be neglected.  c) Setting vA = vB leads to a 

different quadratic, the positive solution to which is 

 

[ ].12)22()22(
6

1 2 αδγβγβ
δ

−−−−−=t  

 

Substitution of numerical results gives 1.00 s and 4.33 s. 

 

      d) Taking the second derivative of xA and xB and setting them equal, yields, 

tδγβ 622 −= . Solving, s67.2=t . 

 

 
2.94: a) The speed of any object falling a distance H – h in free fall is  

).(2 hHg − b) The acceleration needed to bring an object from speed v to rest over a  

distance h is .1
2

)(2

2

2








 −=
−

=
h

H
g

h

hHg

h

v
 



2.95: For convenience, let the student's (constant) speed be v0 and the bus's initial 

position be x0. Note that these quantities are for separate objects, the student and the bus.  

The initial position of the student is taken to be zero, and the initial velocity of the bus is 

taken to be zero.  The positions of the student x1 and the bus x2 as functions of time are 

then  

  ,01 tvx =  .)21( 2

02 atxx +=  

 

      a) Setting 21 xx = and solving for the times t gives  

 

( )0

2

00 2
1

axvv
a

t −±=  

  ( ))m0.40)(sm170.0(2)sm0.5()sm0.5(
)sm170.0(

1 22

2
−±=  

  s.349s,55.9 .=  

 

The student will be likely to hop on the bus the first time she passes it (see part (d) for a 

discussion of the later time).  During this time, the student has run a distance 

m.847s)55.9)(sm5(0 .tv ==  

 

     b) The speed of the bus is .sm1.62s)55.9)(sm170.0(
2 =  

 

     c) The results can be verified by noting that the x lines for the student and the bus 

intersect at two points: 

 

 
 

 

 

 

 

 

 

 

     d) At the later time, the student has passed the bus, maintaining her constant speed, 

but the accelerating bus then catches up to her. At this later time the bus's velocity is 

( )( ) .sm38.8s 3.49sm 170.0 2 =  



2.96: The time spent above ymax/2 is 
2

1 the total time spent in the air, as the time is 

proportional to the square root of the change in height.  Therefore the ratio is 

    .4.2
12

1

2/11

2/1
=

−
=

−
 

 

 



2.97: For the purpose of doing all four parts with the least repetition of algebra, 

quantities will be denoted symbolically.  That is, 

let ( ) .
2

1
,

2

1 2

02

2

01 ttghygttvhy −−=−+=  In this case, s 00.10 =t .  Setting 

,021 == yy expanding the binomial ( )20tt − and eliminating the common term 

, yields 2

02
1

00

2

2
1 gttgttvgt −= which can be solved for t; 

.
1

1

2
0

0

0

00

2

02
1

gt

v

t

vgt

gt
t

−
=

−
=  

Substitution of this into the expression for 1y  and setting 01 =y and solving for h as a 

function of v0 yields, after some algebra, 

( )
.

2

1

2

1
2

00

2

00
2

0
vgt

vgt

gth
−








 −
=  

 

     a) Using the given value ,sm 80.9 and s 00.1 2

0 == gt  

 

  ( ) .

2

sm 8.9

sm 9.4
m 4.9m 0.20

0

0










−
−

==
v

v
h  

 

This has two  solutions, one of which is unphysical (the first ball is still going up when 

the second is released; see part (c)).  The physical solution involves taking the negative 

square root before solving for 0v , and yields s.m 2.8  

 

 
     b) The above expression gives for i), 0.411 m and for ii) 1.15 km.  c) As v0 approaches 

sm 8.9 , the height h becomes infinite,  corresponding to a relative velocity at the time 

the second ball is thrown that approaches zero.  If ,sm 8.90 >v  the first ball can never 

catch the second ball.  d) As v0 approaches 4.9 m/s, the height approaches zero.  This 

corresponds to the first ball being closer and closer (on its way down) to the top of the 

roof when the second ball is released.  If ,sm 9.40 >v  the first ball will already have 

passed the roof on the way down before the second ball is released, and the second ball 

can never catch up. 

 

 



2.98: a) Let the height be h and denote the 1.30-s interval as ∆ t; the simultaneous 

equations h = 2

2
1

3
22

2
1 )(, ttghgt ∆−=  can be solved for t. Eliminating h and taking the 

square root, ,and,
3212

3

−
∆

∆− == t
tt

t t  and substitution into 
2

2
1 gth = gives h = 246 m.  

This method avoids use of the quadratic formula; the quadratic formula is  a 

generalization of the method of “completing the square”, and in the  above form,  

,)( 2

2
1

3
2 ttgh ∆−=  the square is already completed. 

 

      b)  The above method assumed that t >0 when the square root was taken. The 

negative root (with ∆t = 0) gives an answer of 2.51 m, clearly not a “cliff”. This would 
correspond to an object that was initially near the bottom of this “cliff” being thrown 

upward and taking 1.30 s to rise to the top and fall to the bottom. Although physically 

possible, the conditions of the problem preclude this answer. 
 



Capítulo 3 



3.1:   a)  

,sm4.1
)s0.3(

)m1.1()m3.5(
ave, =

−
=xv  

         .sm3.1
)s0.3(

)m4.3()m5.0(
ave, −=

−−
=yv  

  

b) sm9.1or  ,sm91.1)sm3.1()sm(1.4 22

ave =−+=v  to two significant figures, 

( ) °−== − 43arctan
1.4

1.3θ . 

 

 

3.2:   a) 

andm6.45)s0.12)(sm8.3(∆)( ave, −=−== tvx x  

         m.8.58)s0.12)(sm9.4(∆)( ave, === tvy y  

 

b) m.4.74)m8.58()m6.45( 2222 =+−=+= yxr  

 

 

3.3:   The position is given by jir ˆ)scm0.5(ˆ])scm5.2(cm0.4[ 22 tt ++=
r

. 

(a) î]cm0.4[)0( =r , and 

jiji ˆ)cm0.10(ˆ)cm0.14(ˆs)2)(scm0.5(ˆ]s)2)(scm(2.5cm0.4[)s2( 22 +=++=rrrr . Then 

using the definition of average velocity, .jiv
ji ˆ)scm5(ˆ)scm5(

s 2

ˆ)0cm 10(ˆ)cm 4cm 14(

ave +== −+−r
 

scm1.7ave =v  at an angle of °45 . 

b) jijiv ˆ)scm5(ˆ)scm5(ˆ)scm5(ˆ)scm5.2)(2( +=+== tt
dt
rd
rr

. Substituting for 

s1,0=t , and 2 s, gives: 

jivjv ˆ)scm5(ˆ)scm5(s)1(,ˆ)scm5()0( +==
rr

, and jiv ˆ)scm5(ˆ)scm10(s)2( +=
r

. 

The magnitude and direction of v
r
 at each time therefore are: scm0.5:0=t  at °90 ; 

scm1.7:05.1=t  at scm11:05.2 ;45 =° t  at °27 . 

c) 

 
 

 



3.4: jiv ˆ3ˆ2 2
ctbt +=

v
. This vector will make a °45 -angle with both axes when the x- and 

y-components are equal; in terms of the parameters, this time is cb 32 . 

 

3.5: a)  

 

 

 

b)  ,sm7.8
)s0.30(

)sm90()sm170( 2

ave, −=
−−

=xa  

.sm3.2
)s0.30(

)sm110()sm40( 2

ave, −=
−

=ya  

 

c) ( ) .1951808.14arctan   ,sm0.9)sm32()sm7.8(
7.8
3.222222 °=°+°==−+− −

−.  

 

 

3.6: a) 
2222
sm23.00.31sin)sm45.0( ,sm39.00.31cos)sm45.0( =°==°= yx aa , 

so sm5.6)s0.10)(sm39.0(sm6.2
2 =+=xv  and 

     sm52.0)s0.10)(sm23.0(sm8.1
2 =+−=yv . 

b) sm48.6)sm52.0()sm5.6( 22 =+=v , at an angle of ( ) °= 6.4arctan
5.6

52.0  above the 

horizontal. 

c) 

 
 

 



3.7: a) 

 
 

b) 

.ˆ)sm4.2(ˆ2

ˆ])sm4.2[(ˆ)sm4.2(ˆ2ˆ

2

2

jja

jijiv

−=−=

−=−=

β

βα
r

r
tt

 

c) At s0.2=t , the velocity is jiv ˆ)sm8.4(ˆ)sm4.2( −=
r

; the magnitude is 

sm4.5)sm8.4()sm4.2( 22 =−+ , and the direction is ( ) °−=− 63arctan
4.2

8.4 . The 

acceleration is constant, with magnitude 2sm4.2  in the y− -direction. d) The velocity 

vector has a component parallel to the acceleration, so the bird is speeding up. The bird is 

turning toward the y−  -direction, which would be to the bird’s right (taking the z+ -

direction to be vertical). 

 

3.8:  

 
 

 



3.9: a) Solving Eq. (3.18) with 0=y , 00 =yv  and s350.0=t  gives m60000 .y = . 

     b) m385.0=tvx  c) °=−=−=== 2.72,sm60.3,sm43.3s,m10.10 vgtvvv yxx  

below the horizontal. 

 
 

3.10: a) The time t is given by s82.72 ==
g
ht . 

    b) The bomb’s constant horizontal velocity will be that of the plane, so the bomb 

travels a horizontal distance m470)s82.7)(sm60( === tvx x . 

    c) The bomb’s horizontal component of velocity is 60 m/s, and its vertical component 

is sm7.76−=− gt . 

d)  

 
 

e) Because the airplane and the bomb always have the same x-component of velocity and 

position, the plane will be 300 m above the bomb at impact. 

 

 



3.11: Take y+  to be upward. 

Use Chirpy’s motion to find the height of the cliff. 

s50.3 , ,sm80.9 ,0 0

2

0 =−=−−== thyyav yy  

m0.60gives2

2
1

00 =+=− htatvyy yy  

Milada: Use vertical motion to find time in the air. 

?,sm80.9m,0.60,0.32sin
2

000 =−=−=−°= tayyvv yy  

s55.3gives2

2
1

00 =+=− ttatvyy yy  

Then s55.3,0,0.32cos00 ==°= tavv xx  gives m86.20 =− xx . 

 

 

3.12: Time to fall 9.00 m from rest: 

2

2

1
gty =  

        
22 )sm8.9(

2

1
m00.9 t=  

      s36.1=t  

 

Speed to travel 1.75 m horizontally: 

tvx 0=  

                                                                      )s36.1(m75.1 0v=  

     sm3.10 =v  

 

3.13: Take +y to be upward. 

Use the vertical motion to find the time in the air: 

? ,m5.19m)8.1m3.21(,sm80.9,0 0

2

0 =−=−−=−−== tyyav yy  

s995.1 gives 2
2
1

00 =+=− ttatvyy yy  

Then ?,s995.1 ,0 m,0.61 00 ====− xx vtaxx  

s.m6.30 gives 0

2

2
1

00 =+=− xxx vtatvxx  

   b) sm6.30=xv  since 0=xa  

sm6.190 −=+= tavv yyy  

sm3.3622 =+= yx vvv  

 

 



3.14: To make this prediction, the student needs the ball’s horizontal velocity at the 

moment it leaves the tabletop and the time it will take for the ball to reach the floor (or 

rather, the rim of the cup). The latter can be determined simply by measuring the height 

of the tabletop above the rim of the cup and using 2

2
1 gty =  to calculate the falling time. 

The horizontal velocity can be determined (although with significant uncertainty) by 

timing the ball’s roll for a measured distance before it leaves the table, assuming that its 

speed doesn’t change much on the hard tabletop. The horizontal distance traveled while 

the ball is in flight will simply be horizontal velocity ×  falling time. The cup should be 

placed at this distance (or a slightly shorter distance, to allow for the slowing of the ball 

on the tabletop and to make sure it clears the rim of the cup) from a point vertically below 

the edge of the table. 

 

 



3.15: a) Solving Eq. (3.17) for 0=yv , with °= 0.45sin)sm0.15(0 yv , 

 

s.08.1
sm80.9

45sin)sm0.15(
2

=
°

=T  

   b) Using Equations (3.20) and (3.21) gives at m)52.4,m18.6(),( ,1 =yxt : 

)m52.4,m8.16(,:)m74.5,m5.11(, 32 tt . 

    

   c) Using Equations (3.22) and (3.23) gives at 

),sm9.4,sm6.10(:)0,sm6.10( ,:)sm9.4,sm6.10(),( , 321 −= ttvvt yx  for 

velocities, respectively, of sm7.11  @ 24.8°, sm6.10  @ 0° and sm7.11  @ −24.8°. 

Note that xv  is the same for all times, and that the y-component of velocity at 3t  is 

negative that at 1t . 

    

   d) The parallel and perpendicular components of the acceleration are obtained from 

 

.,,
)(

||||2|| aaa
va

a
vva

a
vvv

rv
v

rrv
v

−=
⋅

=
⋅

= ⊥
vv

 

For projectile motion, ygvg −=⋅−= vaja
rvv

so,ˆ , and the components of acceleration 

parallel and perpendicular to the velocity are 
22

1 sm9.8,sm1.4: −t . 
2

2 sm8.9,0:t . 
22

3 sm9.8,sm1.4:t . 

e)  

 
f) At t1, the projectile is moving upward but slowing down; at t2 the motion is 

instantaneously horizontal, but the vertical component of velocity is decreasing; at t3, the 

projectile is falling down and its speed is increasing. The horizontal component of 
velocity is constant. 
 



3.16: a) Solving Eq. (3.18) with m75.0,0 0 == yy  gives s391.0=t . 

b) Assuming a horizontal tabletop, 00 =yv , and from Eq. (3.16), 

sm58.3/)( 00 =−= txxv x . 

    c) On striking the floor, sm83.32 0 −=−=−= gygtv y , and so the ball has a velocity 

of magnitude sm24.5 , directed °9.46  below the horizontal. 

    

   d) 

 
 

Although not asked for in the problem, this y vs. x graph shows the trajectory of the 

tennis ball as viewed from the side. 

 
 

3.17: The range of a projectile is given in Example 3.11, gvR 0

2

0 2sin α= . 

a) km38.1)sm80.9(110sin)sm120(
22 =° .b) km4.8)sm6.1(110sin)sm120(

22 =° . 



3.18: a) The time t is s63.12

0

sm80.9

sm0.16 ==
g

vy . 

   b) m1.13
202

12

2
1

2
0 ===
g

v

y

ytvgt . 

   c) Regardless of how the algebra is done, the time will be twice that found in part (a), 

or 3.27 s   d) xv is constant at sm0.20 , so m365s)27.3)(sm0.20( .= . 

e) 

 
 

 

3.19: a) sm0.189.36sin)sm0.30(0 =°=yv ; solving Eq. (3.18) for t with 00 =y  and 

m0.10=y  gives 

 s992s,68.0
sm80.9

)m0.10)(sm80.9(2)sm0.18()sm0.18(
2

22

.t =
−±

=  

   b) The x-component of velocity will be sm0.249.36cos)sm0.30( =°  at all times. 

The y-component, obtained from Eq. (3.17), is sm3.11  at the earlier time and 

sm3.11−  at the later. 

   c) The magnitude is the same, sm0.30 , but the direction is now °9.36  below the 

horizontal. 

 

 



3.20: a) If air resistance is to be ignored, the components of acceleration are 0 

horizontally and 
2
sm80.9−=− g  vertically. 

   b) The x-component of velocity is constant at sm55.70.51cos)sm0.12( =°=xv . The 

y-component is sm32.90.51sin)sm0.12(0 =°=yv  at release and 

sm06.11)s08.2)(sm80.9()sm57.10(
2

0 −=−=− gtv y  when the shot hits. 

   c) m715s)08.2)(sm55.7(0 .tv x == . 

   d) The initial and final heights are not the same. 

   e) With 0=y  and v0y as found above, solving Eq. (3.18) for m81.10 =y . 

  

 

   f)  

 
 
3.21: a) The time the quarter is in the air is the horizontal distance divided by the 

horizontal component of velocity. Using this time in Eq. (3.18), 

rounded.m53.1
60cos)sm4.6(2

m)1.2)(sm80.9(
m)1.2(60tan

cos2
tan

2

22

22

0

22

0

2

0

2

0

2

0

00

=
°

−°=

−=

−=−

α
α

v

gx
x

v

gx

v

x
vyy

xx

y

 

 

   b) Using the same expression for the time in terms of the horizontal distance in 

Eq. (3.17), 

.sm89.0
60cos)sm4.6(

)m1.2)(sm80.9(
60sin)sm4.6(

cos
sin

2

00

00 −=
°

−°=−=
α

α
v

gx
vv y  

 

 



3.22: Substituting for t in terms of d in the expression for darty  gives 

.
cos2

tan
0

22

0

0dart 







−=

α
α

v

gd
dy  

 

Using the given values for d and 0α  to express this as a function of 0v , 

.
sm62.26

90.0)m00.3(
2

0

22









−=

v
y  

Then, a) m14.2=y , b) m45.1=y , c) m29.2−=y . In the last case, the dart was fired 

with so slow a speed that it hit the ground before traveling the 3-meter horizontal 

distance. 

3.23: a) With 0=yv  in Eq. (3.17), solving for t and substituting into Eq. (3.18) gives 

m6.13
)m/s80.9(2

0.33sin)m/s0.30(

2

sin

2
)(

2

22

0

22

0

2

0

0 =
°

===−
g

v

g

v
yy

y α
 

 

   b) Rather than solving a quadratic, the above height may be used to find the time the 

rock takes to fall from its greatest height to the ground, and hence the vertical component 

of velocity, m/s7.23)m/sm)(9.806.28(22 2 === ygv y , and so the speed of the 

rock is m/s6.34 ))33.0m/s)(cos0.30((m/s)7.23( 22 =°+ . 

   c) The time the rock is in the air is given by the change in the vertical component of 

velocity divided by the acceleration  –g; the distance is the constant horizontal 

component of velocity multiplied by this time, or 

m.103
)m/s80.9(

))0m/s)sin33.((30.0m/s23.7(
0m/s)cos33.0.30(

2
=

−

°−−
°=x  

   d) 

 
  



3.24:   a) 

m0.45cos0 =tv α  

  

 600.0
s)00.3m/s)(0.25(

m0.45
cos ==α  

 

        °= 1.53α  

    

 

   b)  

m/s0.1553.1cosm/s)0.25( =°=xv  

        0=yv  

         m/s0.15=v  

         downwardm/s80.9 2=a  

 

   c) Find y when 3 00st = .  

                        
2

0
2

1
sin gttvy −= α  

                            22 s)00.3)(m/s80.9(
2

1
)(3.00s).1m/s)(sin530.25( −°=  

                            m9.15=  

                        constantm/s0.15 ==xv  

        41.9s)00.3)(m/s80.9()53.1m/s)(sin0.25(sin  2

0 −=−°=−= gtvv y α  

                         m/s7.17m/s41.9()m/s0.15( 2222 =−+=+= yx vvv  

  

 



3.25:   Take y+  to be downward. 

   a) Use the vertical motion of the rock to find the initial height. 

?,m/s80.9s,0.20s,00.6 0

2

0 =−+=+== yyavt yy  

m296gives 0

2

2
1

00 =−+=− yytatvyy yy  

 

    b) In 6.00 s the balloon travels downward a distance m120s)s)(6.000.20(0 ==− yy . 

So, its height above ground when the rock hits is m176m120m296 =− . 

 

    c) The horizontal distance the rock travels in 6.00 s is 90.0 m. The vertical component 

of the distance between the rock and the basket is 176 m, so the rock is 

m198m)90(m)176( 22 =+  from the basket when it hits the ground. 

 

    d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 

m/s relative to the basket. 

Just before the rock hits the ground, its vertical component of velocity is 

m/s78.8s)00.6)(m/s(9.80s0.20
2

0 =+=+= tavv yyy , downward, relative to the ground. 

The basket is moving downward at 20.0 m/s, so relative to the basket the rock has 

downward component of velocity 58.8 m/s. 

   e) horizontal: 15.0 m/s; vertical: 78.8 m/s 

 

 

3.26: a) horizontal motion: 
tx ttvxx
)43cos(v

m0.60

00 0
  so  °==−   

vertical motion (take y+  to be upward): 
22

2
1

0

2

2
1

00 )m/s80.9()43.0sin  (m25.0  gives  ttvtatvyy yy −+°=+=−  

Solving these two simultaneous equations for 0v  and t gives m/s26.30 =v  and s51.2=t . 

b) yv  when shell reaches cliff: 

  m/s 4.2s) )(2.51m/s 80.9(43.0sin  m/s) 6.32(
2

0 −=−°=+= tavv yyy  

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of 

the cliff. 

 

 

3.27: Take y+   to be upward. 

Use the vertical motion to find the time it takes the suitcase to reach the ground: 

? m, 114 ,m/s80.9  ,23sin  0

2

00 =−=−−=°= tyyavv yy  

s60.9  gives 2
2
1

00 =+=− ttatvyy yy  

  

The distance the suitcase travels horizontally is m 795)23.0 cos ( 000 =°==− tvvxx x  

 

 



3.28: For any item in the washer, the centripetal acceleration will be proportional to the 
square of the frequency, and hence inversely proportional to the square of the rotational 

period; tripling the centripetal acceleration involves decreasing the period by a factor of 

3 , so that the new period T ′  is given in terms of the previous period T by 3/TT =′ . 

 

 

3.29: Using the given values in Eq. (3.30), 

 

.104.3m/s  034.0
s/h)) h)(3600 24((

m) 1038.6(4 32

2

62

rad ga −×==
×

=
π

 

(Using the time for the siderial day instead of the solar day will give an answer that 

differs in the third place.)    b) Solving Eq. (3.30) for the period T with ga =rad , 

 

h. 1.4 ~ s 5070
m/s 9.80

m)1038.6(4
2

62

=
×

=
π

T  

  

 

3.30: rev/s 9.17 rev/min  550 = , corresponding to a period of 0.109 s. a) From Eq. (3.29), 

m/s 1962 ==
T
Rv π . b) From either Eq. (3.30) or Eq. (3.31), 

g 1015.1m/s 1013.1 324

rad ×=×=a . 

 

3.31: Solving Eq. (3.30) for T in terms of R and rada , 

   a) s 07.3)m/s .80m)/(3.0)(9 0.7(4 22 =π .    b) 1.68 s. 

 

 

3.32: a) Using Eq. (3.31), m/s 1097.2
42 ×=

T
Rπ .   b) Either Eq. (3.30) or Eq. (3.31) gives 

23

rad m/s 1091.5 −×=a .    c) m/s 1078.4 4×=v , and 22 m/s 1097.3 −×=a . 

 

 

3.33: a) From Eq. (3.31), 22 m/s 3.50m) 0.15/(m/s) 00.7( ==a . The acceleration at the 

bottom of the circle is toward the center, up. 

   b) 2m/s 50.3=a , the same as part (a), but is directed down, and still towards the center. 

c) From Eq. (3.29),  s 12.6m/s) m)/(7.00 0.15(2/2 === ππ vRT . 

 

 



3.34: a) 
22

rad m/s .6430m) 14/(m/s) 3( ==a , and 
2

tan m/s 5.0=a . So, 

°=+= 37.9 ,m/s 814.0))m/s 5.0()m/s 643.0(( 22/12222a  to the right of vertical. 

   b) 

 
 

 

3.35: b) No. Only in a circle would rada  point to the center (See planetary motion in 

Chapter 12). 

   c) Where the car is farthest from the center of the ellipse. 

 

3.36: Repeated use of Eq. (3.33) gives a) m/s 0.5 =  to the right, b) 16.0 m/s to the left, 

and c) m/s 0.13 =  to the left. 

 

3.37: a) The speed relative to the ground is m/s 2.5m/s 1.0m/s 5.1 =+ , and the time is 

s. 14.0m/s m/2.5 0.35 =  b) The speed relative to the ground is 0.5 m/s, and the time is  

70  s. 

 

3.38: The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a 

time of three fourths of an hour (45.0 min). The boat’s speed relative to the shore is 6.8 

km/h downstream and 1.2 km/h upstream, so the total time the rower takes is 

 min. 88hr 47.1
km/h 1.2

km 5.1

km/h 6.8

km 5.1
==+  

 

3.39: The velocity components are 

    south,2m/s)/ (0.40  andeast  2m/s)/ (0.40m/s 50.0 +−  

for a velocity relative to the earth of 0.36 m/s, °5.52  south of west. 

 



3.40: a) The plane’s northward component of velocity relative to the air must be 80.0 

km/h, so the heading must be °=14arcsin 
320
80.8  north of west. b) Using the angle found in 

part (a), km/h 310 14 cos km/h)320( =° . Equivalently, 

km/h 310km/h) 0.80(km/h) 320( 22 =− . 

 

 
 

 

3.41: a) °==+ 5.25arctan  m/s, 7.4m/s) 2.4(m/s) 0.2(
4.2
2.022

, south of east. 

   b) s 190m/s m/4.2 800 = . 

   c) m 381s 190m/s 0.2 =× . 

 

 

3.42: a) The speed relative to the water is still 4.2 m/s; the necessary heading of the boat 

is °= 28arcsin 
4.2
2.0  north of east. b) m/s 7.3m/s) 0.2(m/s) 2.4( 22 =− , east. d) 

s 217m/s m/3.7 800 = , rounded to three significant figures. 

 

 

3.43: a) 

 
 

     b)  m/s 1.4245m/s)sin  (10m/s) 35(: m/s. 7.145 cos m/s) 10(: −=°−−=−=°− yx . 

     c)  80arctan  m/s, 7.42m/s) 1.42(m/s) 1.7(
1.7
1.4222 °==−+− −

− , south of west. 

 

 

3.44: a) Using generalizations of Equations 2.17 and 2.18, 
2

20

3

30  , ttvvtvv yyxx

γα β −+=+= , and 3

6

2

20

4

120  , tttvyttvx yx

γβα −+=+= .  b) Setting 

0=yv  yields a quadratic in 
2

200 , ttvt y

γβ −+= , which has as the positive solution 

 [ ] s, 59.132
1

0

2 =++= γββ
γ

vt  

keeping an extra place in the intermediate calculation. Using this time in the expression 

for y(t) gives a maximum height of 341 m. 



3.45: a) The 0=xa  and βay 2−= , so the velocity and the acceleration will be 

perpendicular only when 0=yv , which occurs at 0=t . 

   b) The speed is 0/ ,)4( 2/1222 =+α= dtdvtβv  at 0=t . (See part d below.) 

   c) r and v are perpendicular when their dot product is 0: 

02m) 0.30()2()m 0.15())(( 3222 =+−α=−×−+αα tββttβtβtt . Solve this for t: 

s 208.522

22

)m/s 500.0(2

m/s) 2.1()m/s m)(0.500 0.30( +=±= −
t , and 0 s, at which times the student is at (6.25 m, 

1.44 m) and (0 m, 15.0 m), respectively. 

   d) At s 208.5=t , the student is 6.41 m from the origin, at an angle of °13  from the x-

axis. A plot of 
2/122 ))()(()( tytxtd +=  shows the minimum distance of 6.41 m at 5.208 

s: 

 

 
    e) In the x - y plane the student’s path is: 

 

 
 

3.46:  a) Integrating, jtitt ˆ)(ˆ)(
2

2

3

3

γβα +−=r
r

. Differentiating, jia ˆˆ)2( γβ +−=
r

. 

 

b) The positive time at which 0=x  is given by βαt 32 = . At this time, the y-coordinate 

is 

 m 0.9
)m/s 6.1(2

)m/s m/s)(4.0 4.2(3

2

3

2 3

2
2 ====

β
αγγ

ty  

. 

 



3.47:   a) The acceleration is 

 
22

22

m/s 1m/s 996.0
)m 300(2

km/h)) m/s)/(3.6 km/h)(1 88((

2
≈===

x

v
a  

    b) ( ) °=− 4.5arctan
m 300m 460

m 15 .  c) The vertical component of the velocity is 

( ) m/s 3.2km/h) 88(
m 160
m 15

km/h 3.6
m/s 1 = . d) The average speed for the first 300 m is 44 km/h, so 

the elapsed time is 

 s, 1.31
km/h) /(3.65.4m/s)cos km/h)(1 (88

m 160

km/h) m/s)(3.6 km/h)(1 (44

m 300
=

°
+  

or 31 s to two places. 

 



3.48:  
 

    a) 

 
 

The equations of motions are: 

 

αvv

gtαvv

tαvx

gttαvhy

x

y

 cos 

sin  

) cos (

2

1
)sin  (

0

0

0

2

0

=

−=

=

−+=

 

    Note that the angle of 36 9. o  results in 3/536.9 sin =°  and 4/536.9 cos =° . 

    b) At the top of the trajectory, 0=yv . Solve this for t and use in the equation for y to 

find the maximum height: 
g

αv
t

sin  0= . Then, ( ) ( )2sin  

2
1sin  

0
00)sin  (
g

αv

g

αv
gαvhy −+= , which 

reduces to 
2g

 sin 
22

0 αv
hy += . Using 8/250 ghv = , and 5/3 sin =α , this becomes 

hhhy
g

gh

16
9

2

)5/3)(8/25( 2

+=+= , or hy
16

25= . Note: This answer assumes that hy =0 . Taking 

00 =y  will give a result of hy
16
9=  (above the roof). 

    c) The total time of flight can be found from the y equation by setting 0=y , assuming 

hy =0 , solving the quadratic for t and inserting the total flight time in the x equation to 

find the range. The quadratic is 005
32

2
1 =−− hvgt . Using the quadratic formula gives 

)(2

))((4))5/3(()5/3(

2

1

2

12
00

g

hgvv
t

−−−±
= . Substituting 8/250 ghv =  gives 

g

gh
ghgh

t 8

16

8

25

25

98/25)5/3( +•±
= . 

Collecting terms gives t: ( ) ( )
g
h

g
h

g
h

g
ht

222
1

2
25

2
9

2
1 53 ±=±= . Only the positive root is 

meaningful and so 
g
ht
2

4= . Then, using ( )( ) hxtαvx
g
hgh

44 ,) cos (
25

4
8

25

0 === . 

 

 
3.49: The range for a projectile that lands at the same height from which it was launched 

is 
g

αv
R

2sin  
2
0= . Assuming °= 45α , and m/s 22 m, 50 0 === gRvR . 

 

 



3.50: The bird’s tangential velocity can be found from 

 m/s 05.10
s 5.00

m 27.50

s 00.5

)m00.8(2

rotation of time

ncecircumfere
====

π
xv  

Thus its velocity consists of the components m/s 05.10=xv  and m/s 00.3=yv . The speed 

relative to the ground is then 

 m/s 10.5or  m/s 49.10002.3052.1022 =+=+= yx vvv  

   (b) The bird’s speed is constant, so its acceleration is strictly centripetal–entirely in the 

horizontal direction, toward the center of its spiral path–and has magnitude 

 
22

22

c m/s12.6or        m/s 63.12
m 00.8

m/s) 05.10(
===

r

v
a x  

   (c) Using the vertical and horizontal velocity components: 

 °== − 6.16
m/s 10.05

m/s 00.3
tan 1θ  

 

3.51: Take y+  to be downward. 

Use the vertical motion to find the time in the air: 

? m, 25,m/s 80.9 ,0 0

2

0 ==−== tyyav yy  

s 259.2 gives 
2

2
1

00 =+=− ttatvyy yy  

During this time the dart must travel 90 m horizontally, so the horizontal component of 

its velocity must be 

m/s 40
s 25.2

m 900
0 ==

−
=

t

xx
v x  

 



3.52: a) Setting hy −=  in Eq. (3.27) (h being the stuntwoman’s initial height above the 

ground) and rearranging gives 

 ,0
2 cos sin  2 2

000

2

02 =−− h
g

v
x

g

ααv
x x  

The easier thing to do here is to recognize that this can be put in the form 

 ,0
2 2 2

0002 =−− h
g

v
x

g

vv
x xyx

 

the solution to which is 

 [ ] (south). m 5.5522

00
0 =++= ghvv
g

v
x yy

x  

     b) The graph of )(tvx  is a horizontal line. 

 
 

 
3.53: The distance is the horizontal speed times the time of free fall, 

 m. 274
)m/s (9.80

m) 2(90
m/s) 0.64(

2
2

==
g

y
vx  

 

3.54: In terms of the range R and the time t that the balloon is in the air, the car’s original 

distance is tvRd car+= . The time t can be expressed in terms of the range and the 

horizontal component of velocity, ( )
00

car

00  cos  cos 
1  so  ,

αv

v

αv
R Rdt +== . Using 

gαvR /2sin   0

2

0=  and the given values yields m 5.29=d . 

 

 



3.55: a) With °= 450α , Eq. (3.27) is solved for 
yx

gx
v −=

2
2

0 . In this case, m 9.0−=y  is the 

change in height. Substitution of numerical values gives m/s 8.420 =v .  b) Using the 

above algebraic expression for 0v  in Eq. (3.27) gives 

 m) 9.188(
m188

2









−=

x
xy  

Using m 116=x  gives m 1.44=y  above the initial height, or 45.0 m above the ground, 

which is 42.0 m above the fence. 

 

 

3.56: The equations of motions are 2

0 2/1)sin  ( gttαvy −=  and tαvx ) cos ( 0= , assuming 

the match starts out at 0=x  and 0=y . When the match goes in the wastebasket for the 

minimum velocity, Dy 2=  and Dx 6= . When the match goes in the wastebasket for the 

maximum velocity, Dy 2=  and Dx 7= . In both cases, .2/2 cos  sin == αα . 

    To reach the minimum distance: tvD 02

26 = , and 2

2
1

02

22 gttvD −= . Solving the first 

equation for t gives 
0

26

v

Dt = . Substituting this into the second equation gives 

( )226

2
1

0
62

v

DgDD −= . Solving this for 0v  gives gDv 30 = . 

    To reach the maximum distance: tvD 02

27 = , and 
2

2
1

02

22 gttvD −= . Solving the first 

equation for t gives 
0

27

v

Dt = . Substituting this into the second equation 

gives ( )227

2
1

0
72

v

DgDD −= . Solving this for 0v  gives gDgDv 13.35/490 == , which, 

as expected, is larger than the previous result. 

 

 

3.57: The range for a projectile that lands at the same height from which it was launched 

is 
g

αv
R

2sin  20= , and the maximum height that it reaches is 
g

αv
H

2

 sin 22
0= . We must find R 

when DH =  and gDv 60 = . Solving the height equation for 
g

αgD
D

2

sin 6 2

 ,sin =α , or 

2/1)3/1(sin =α . Then, 
g

gD
R

)sin(70.72 6 °= , or DDR 246569.5 == . 

 



3.58: Equation 3.27 relates the vertical and horizontal components of position for a given 

set of initial values. 

   a) Solving for 0v  gives 

 .
 tan 

 cos 2/

0

0

22
2

0
yx

gx
v

−
=

α
α

 

Insertion of numerical values gives m/s 6.160 =v . 

    b) Eliminating t between Equations 3.20 and 3.23 gives yv  as a function of x , 

 .
 cos 

sin  
00

00 α
α

v

gx
vvy −=  

Using the given values yields m/s,  98.6 m/s,  28.8 cos 00 −=== yx vvv α  so 

m/s,  8.10)m/s  98.6()m/s 28.8( 22 =−+=v  at an angle of ( ) °−=− 1.40arctan 
24.8

98.6 , with 

the negative sign indicating a direction below the horizontal. 

   c) The graph of )(tvx  is a horizontal line. 

 
 



3.59: a) In Eq. (3.27), the change in height is hy −= . This gives a quadratic equation in 

x, the solution to which is 

 

[ ].2 sin sin  
 cos 

  cos 

2
tan

  cos 

0

22

000
00

0

2

0

0

20

2

0

ghvv
g

v

v

gh

g

v
x

++=









+=

αα
α

α
α

α

 

    If 0=h , the square root reduces to 00 sin  αv , and Rx = . b) The expression for x  

becomes ]98.0 sin  sin[ cos m) 2.10( 0

2

0

2

0 +++= αααx  

    The angle °= 900α  corresponds to the projectile being launched straight up, and there 

is no horizontal motion. If 00 =α , the projectile moves horizontally until it has fallen the 

distance h. 

 
    c) The maximum range occurs for an angle less than °45 , and in this case the angle is 

about °36 . 

 

 



3.60: a) This may be done by a direct application of the result of Problem 3.59; with 

°−= 400α , substitution into the expression for x gives 6.93 m. 

   b)  

 
    c) Using m)  91m  014( .. −  instead of h in the above calculation gives m  36.x = , so the 

man will not be hit. 

 

3.61: a) The expression for the range, as derived in Example 3.10, involves the sine of 

twice the launch angle, and 

 ,2 sin2sin  180 cos2 cos 180 sin)2180( sin))90(2( sin 00000 αααα =°−°=−°=−° α

and so the range is the same. As an alternative, using αα cos)90sin( 0 =−°  and 

00 sin)90cos( αα =−°  in the expression for the range that involves the product of the sine 

and cosine of 0α  gives the same result. 

    b) The range equation is 
g

v
R

α2 sin
2
0= . In this case, m/s  2.20 =v  and m  25.0=R . 

Hence ),m/s.22m)/(25.0)(m/s8.9(2 sin 22=α  or 5062.02 sin =α ; and °= 2.15α  or 

°8.74 . 

 

 



3.62: a) Using the same algebra as in Problem 3.58(a), m/s  8130 .v = . 

    b) Again, the algebra is the same as that used in Problem 3.58; m/s  48.v = , at an angle 

of °1.9 , this time above the horizontal. 

    c) The graph of )(tvx  is a horizontal line. 

 
A graph of )(ty  vs. )(tx  shows the trajectory of Mary Belle as viewed from the side: 

 
 

    d) In this situation it’s convenient to use Eq. (3.27), which becomes 
21)m  071115.0()327.1( xxy −−= . Use of the quadratic formula gives m  8.23=x . 

 

 
3.63: a) The algebra is the same as that for Problem 3.58, 

 . 
)tan(cos2 00

2

2
2

0
yx

gx
v

−
=

αα
 

In this case, the value for y is m  015.− , the change in height. Substitution of numerical 

values gives 17.8 m/s.   b) 28.4 m from the near bank (i.e., in the water!). 

 

 



3.64: Combining equations 3.25, 3.22 and 3.23 gives 

 

,2

)
2

1
sin(2

)(sin2)cos(sin

)sin(cos

2

0

2

00

2

0

2

000

2

0

22

0

2

000

22

0

2

gyv

gttvgv

gtgtvv

gtvvv

−=

−−=

+−+=

−+=

α

ααα

αα

 

  

where Eq. (3.21) has been used to eliminate t in favor of y. This result, which will be seen 

in the chapter dealing with conservation of energy (Chapter 7), is valid for any y, 

positive, negative or zero, as long as 02 >v . For the case of a rock thrown from the roof 

of a building of height h, the speed at the ground is found by substituting hy −=  into the 

above expression, yielding ghvv 22

0 += , which is independent of 0α . 

 

 



3.65:   Take y+  to be upward. The vertical motion of the rocket is unaffected by its 

horizontal velocity. 

    a) 0=yv  (at maximum height), ?  ,m/s80.9  m/s,0.40 0

2

0 =−−=+= yyav yy  

)(2 0

2

0

2 yyavv yyy −+=  gives m6.810 =− yy  

    b) Both the cart and the rocket have the same constant horizontal velocity, so both 

travel the same horizontal distance while the rocket is in the air and the rocket lands in 

the cart. 

    c) Use the vertical motion of the rocket to find the time it is in the air. 

? m/s,40,m/s80.9 m/s,40 2

0 =−=−== tvav yyy  

s164.8  gives  0 =+= ttavv yyy  

Then m.245s)m/s)(8.1640.30(00 ===− tvxx x  

   d) Relative to the ground the rocket has initial velocity components m/s0.300 =xv  and 

m/s0.400 =yv , so it is traveling at °153.  above the horizontal. 

   e) (i) 

 
  

Relative to the cart, the rocket travels straight up and then straight down 

(ii) 

 
  

Relative to the ground the rocket travels in a parabola. 

 

 



3.66: (a)  

 (ball)runner)( xx vv =  

       θ. cos)m/s0.20(m/s006 =  

300.0cos =θ  

      °= 5.72θ  

 

Time the ball is in the air: 

 

 
2

2
1

0 sin gtθtvy −=  

   
22 )m/s80.9(

2

1
)572m/s)(sin0.20(m0.45 tt. −°=−  

 

Solve for t: s549.5=t . 

 s))(5.549.5m/s)(cos720.20(cos0 °== θtvx  

          m33.4=  

 

(b) 

 
 

 

 



3.67: Take y+  to be downward. 

   a) Use the vertical motion of the boulder to find the time it takes it to fall 20 m to the 

level of the surface of the water. 

?m,20 ,m/s80.9 ,0 0

2

0 ==−== tyyav yy  

s02.2 gives 
2

2
1

00 =+=− ttatvyy yy  

The rock must travel 100 m horizontally during this time, so 

m/s.49
s2.20

m1000

0 ==
−

=
t

xx
v x  

    b) The rock travels downward 45 m in going from the cliff to the plain. Use this 

vertical motion to find the time: 

? m,45 ,m/s80.9 ,0 0

2

0 ==−== tyyav yy  

s03.3 gives 
2

2
1

00 =+=− ttatvyy yy  

During this time the rock travels horizontally 

m150s)m/s)(3.0349(00 ===− tvxx x  

The rock lands 50 m past the foot of the dam. 

 

 
3.68: (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time 

for the bagels to fall 43.9 m from rest. Get the time to fall: 

 
2

2

1
gty =  

 
22 )m/s80.9(

2

1
m9.43 t=  

           s99.2=t  

 

So she has been jogging for s12.0s99.2s00.9 =+ . During this time she has gone 

m36.6s)m/s)(12.005.3( === vtx . Bruce must throw the bagels so they travel 36.6 m 

horizontally in 2.99 s 
 vtx =  

    s)992(m6.36 .v=  

 m/s2.12=v  

 

    (b) 36.6 m from the building. 

 

 



3.69:   Take y+  to be upward. 

    a) The vertical motion of the shell is unaffected by the horizontal motion of the tank. 

Use the vertical motion of the shell to find the time the shell is in the air: 

? height) initial  to(returns  0 ,m/s80.9 m/s,4.43sin 0

2

00 ==−−=== t,yyaαvv yy  

s86.8 gives 
2

2
1

00 =+=− ttatvyy yy  

    Relative to tank #1 the shell has a constant horizontal velocity m/s2.246cos0 =αv . 

Relative to the ground the horizontal velocity component is 

m/s261.2m/s15.0m/s2.246 =+ . Relative to tank #2 the shell has horizontal velocity 

component m/s226.2m/s0.35m/s2.261 =− . The distance between the tanks when the 

shell was fired is the m2000s)86.8(m/s)2.226( =  that the shell travels relative to tank 

#2 during the 8.86 s that the shell is in the air. 

    b) The tanks are initially 2000 m apart. In 8.86 s tank #1 travels 133 m and tank #2 

travels 310 m, in the same direction. Therefore, their separation increases by 

m177m183m310 =− . So, the separation becomes 2180 m (rounding to 3 significant 

figures). 

 

 

3.70: The firecracker’s falling time can be found from the usual 

 
g

h
t

2
=  

The firecracker’s horizontal position at any time t (taking the student’s position as 0=x ) 

is 02

2
1 =−= atvtx  when cracker hits the ground, from which we can find that avt /2= . 

Combining this with the expression for the falling time: 

 
g

h

a

v 22
=  

   so 

 
2

22

a

gv
h =  

 



3.71: a) The height above the player’s hand will be m40.0
2

sin

2
0

22
0

2
0 ==

g

v

g

v y α
, so the 

maximum height above the floor is 2.23 m.   b) Use of the result of Problem 3.59 gives 

3.84 m.   c) The algebra is the same as that for Problems 3.58 and 3.62. The distance y is 

m1.22m83.1m05.3 =− , and 

 m/s.65.8
m)22.135tanm)21.4((35cos2

m)21.4()m/s80.9(
2

22

0 =
−°°

=v  

    d) As in part (a), but with the larger speed, 

 m.09.3)m/s80.9(2/35sinm/s)(8.65m83.1 222 =°+  

The distance from the basket is the distance from the foul line to the basket, minus half 

the range, or 

 m.62.0)m/s80.9(2/70sin)m/s655.8(m21.4 22 =°−  

Note that an extra figure in the intermediate calculation was kept to avoid roundoff error. 

 

3.72: The initial y-component of the velocity is gyv y 20 = , and the time the pebble is in 

flight is gyt /2= . The initial x-component is ygxtxv x 2// 2

0 == . The magnitude of 

the initial velocity is then 

 ,
y

x
gy

y

gx
gyv

22

0
2

12
2

2 







+=+=  

and the angle is ( ) )/2(arctanarctan
0

0 xy
x

y

v

v
= . 

 

 



3.73: a) The acceleration is given as g at an angle of °1.53  to the horizontal. This is a 3-

4-5 triangle, and thus, gaga yx )5/4( and )5/3( ==  during the "boost" phase of the flight. 

Hence this portion of the flight is a straight line at an angle of °1.53  to the horizontal. 

After time T, the rocket is in free flight, the acceleration is 0=xa  and gay = , and the 

familiar equations of projectile motion apply. During this coasting phase of the flight, the 

trajectory is the familiar parabola. 

 
 

      b) During the boost phase, the velocities are: gtvx )5/3(=  and gtvy )5/4(= , both 

straight lines. After Tt = , the velocities are gTvx )5/3(= , a horizontal line, and 

)()5/4( TtggTvy −−= , a negatively sloping line which crosses the axis at the time of 

the maximum height. 

 

 
 

 

    c) To find the maximum height of the rocket, set 0=yv , and solve for t, where 0=t  

when the engines are cut off, use this time in the familiar equation for y. Thus, using 

Tt )5/4(=  and 

 ,)()( ,
25
82

25
162

5
2

max

2

5
4

2
1

5
4

5
42

5
2

max

2

2
1

00max gTgTgTyTgTgTgTygttvyy y −+=−+=−+=

Combining terms, 
2

25
18

max gTy = . 

   d) To find the total horizontal distance, break the problem into three parts: The boost 

phase, the rise to maximum, and the fall back to earth. The fall time back to earth can be 

found from the answer to part (c), 
22 )2/1()25/18( gtgT = , or Tt )5/6(= . Then, 

multiplying these times and the velocity, ))(())((
5
6

5
3

5
4

5
32

10
3 TgTTgTgTx ++= , or 

2

25

182

25
122

10

3 gTgTgTx ++= . Combining terms gives 
2

2

3 gTx = . 

 

 



3.74: In the frame of the hero, the range of the object must be the initial separation plus 

the amount the enemy has pulled away in that time. Symbolically, 

xv
RvxtvxR
0

E/H0E/H0 +=+= , where E/Hv  is the velocity of the enemy relative to the hero, t 

is the time of flight, 0xv  is the (constant) x-component of the grenade’s velocity, as 

measured by the hero, and R is the range of the grenade, also as measured by the hero. 

Using Eq. (3-29) for R, with 12sin 0 =α  and 2/00 vv x = , 

 .0)2(or        ,2 00E/H

2

0
0

E/H0

2

0 =−−+= gxvvv
g

v
vx

g

v
 

This quadratic is solved for 

 km/h,1.61)422(
2

1
0

2

E/HE/H0 =++= gxvvv  

where the units for g and 0x  have been properly converted. Relative to the earth, the x-

component of velocity is km/h133.245coskm/h)(61.1km/h0.90 =°+ , the y-component, 

the same in both frames, is km/h43.245sinkm/h)1.61( =° , and the magnitude of the 

velocity is then 140 km/h. 

 

 

3.75: a)   22222222 )sin(cos)sin()cos( RttRωtRωtRyx =+=+=+ ωω , 

so the radius is R. 

 

    b)                                   ,cos  ,sin tRvtRv yx ωωωω =−=  

and so the dot product 

 

.0

)cossinsincos(

)cos)(sin()sin)(cos(

=

+−=

+−=

+=⋅

ttttR

tRtRtRtR

yvxv yx

ωωωωω
ωωωωωω

vr
rr

 

 

   c) y,tRax,tRa yx

2222 sin    cos ωωωωωω −==−=−=  

and so .  and  22 Ra ωω =−= ra
rr

 

 

   d) 22222222222 )cos(sin)cos()sin( RttRtRtRvvv yx ωωωωωωωω =+=+−=+= , and so 

Rv ω= . 

   e)     
( )

.
22

2

R

v

R

R
Ra ===

ω
ω  

 



3.76: a) 

 

.

)()2/1(

22

22

22

22

yx

yyxx

yx

yxdt
d

yx

vv

avav

vv

vv

vv
dt

d

dt

dv

+

+
=

+

+
=

+=

 

   b) Using the numbers from Example 3.1 and 3.2, 

 m/s.54.0
m/s)31m/s)0.1(

)m/s300m/s31)m/s500m/s)(0.1(

22

22

=
+−

+−−
=

.(

.)(.(.

dt

dv
 

The acceleration is due to changing both the magnitude and direction of the velocity. If 

the direction of the velocity is changing, the magnitude of the acceleration is larger than 

the rate of change of speed.   c) 
22  yxyyxx vvv,avav +=+=⋅av

vv
, and so the above form 

for 
dt

dv  is seen to be ./ vav
vv

⋅  

 

 
3.77: a) The path is a cycloid. 

 
 

    b) To find the velocity components, take the derivative of x and y with respect to time: 

),cos1( ωtRvx −= ω  and .sinωtRv y ω=  To find the acceleration components, take the 

derivative of xv  and yv  with respect to time: t,Rax ωω sin2=  and  t.Ray ωω cos2=  

   c) The particle is at rest )0( == xy vv  every period, namely at ..../4 /2 0 ω,πω,π,t =  At 

that time, ;...4 2 0 πR,πR,,x =  and .0=y  The acceleration is 
2ωRa =  in the 

-y+ direction. 

   d) No, since ( ) ( )[ ] .cossin 2
2/12222 ωωωωω RtRtRa =+=  

 

 
3.78: A direct way to find the angle is to consider the velocity relative to the air and the 

velocity relative to the ground as forming two sides of an isosceles triangle. The wind 

direction relative to north is half of the included angle, or ,°= 53.11)50/10arcsin(  east of 

north. 

 

 



3.79: Finding the infinite series consisting of the times between meeting with the brothers 
is possible, and even entertaining, but hardly necessary. The relative speed of the brothers 

is 70 km/h, and as they are initially 42 km apart, they will reach each other in six-tenths 

of an hour, during which time the pigeon flies 30 km. 

 

 

3.80: a) The drops are given as falling vertically, so their horizontal component of 

velocity with respect to the earth is zero. With respect to the train, their horizontal 

component of velocity is 12.0 m/s, west (as the train is moving eastward).    b) The 

vertical component, in either frame, is ,.()( m/s820)30tan/m/s0.12 =°  and this is the 

magnitude of the velocity in the frame of the earth. The magnitude of the velocity in the 

frame of the train is m/s.24)m/s820)m/s0.12( 22 =+ .(  This is, of course, the same as 

.30sin/)m/s0.12( °  

 

3.81: a) With no wind, the plane would be 110 km west of the starting point; the wind has 
blown the plane 10 km west and 20 km south in half an hour, so the wind velocity is 

km/h7.44)km/h40()km/h20( 22 =+  at a direction of °= 63)20/40arctan(  south of 

west.    b) °= 5.10)220/40arcsin(  north of west. 

 

3.82: a) vD /2  b) )/(2 22 wvDv −  c) 22/2 wvD −  d) 1.50 h, 1.60 h, 1.55 h. 

 

3.83: a) The position of the bolt is ,tt 22)m/s80.9(2/1)m/s50.2(m00.3 −+  and the 

position of the floor is (2.50 m/s)t. Equating the two, .)m/s90.4(m00.3 22 t=  Therefore 

s.782.0=t    b) The velocity of the bolt is m/s5.17s)782.0)(m/s80.9(m/s50.2 2 −=−  

relative to Earth, therefore, relative to an observer in the elevator 

m/s.67.7m/s50.2m/s17.5 −=−−=v     c) As calculated in part (b), the speed relative to 

Earth is 5.17 m/s. d) Relative to Earth, the distance the bolt travelled is 

m04.1)s782.0)(m/s90.4s782.0)(m/s50.2()m/s80.9(2/1)m/s50.2( 2222 −=−=− ()tt  

 

 

3.84: km/h5.804plane of speedAir 
h60.6

km5310 ==  

With wind from A to B: 

 h70.6BAAB =+ tt  

Same distance both ways: 

 km2655
2

km5310
)km/h5.804( ABw ==+ tv  

 km2655km/h5.804( BAw =+ )tv  

Solve (1), (2), and (3) to obtain wind speed :wv  

 km/h1.98w =v  

 



3.85: The three relative velocities are: 

J/G,v
r

 Juan relative to the ground. This velocity is due north and has magnitude 

m/s.00.8J/G =v  

,B/Gv
r

 the ball relative to the ground. This vector is °0.37  east of north and has magnitude 

m/s.0.12B/G =v  

,B/Jv
r

 the ball relative to Juan. We are asked to find the magnitude and direction of this 

vector. 

The relative velocity addition equation is ,J/GB/JB/G vvv
rrr

+=  so .J/GB/GB/J vvv
rrr

−=  

Take y+  to be north and x+  to be east. 

m/s222.70.37sinB/GB/J =°+= vv x  

m/s584.10.37cos /B/GB/J =−°+= GJy vvv  

These two components give m/s39.7=B/Jv  at °4.12  north of east. 

 

3.86: a) m/s.80.9)m90.4)(m/s80.9(22 2

0 === ghv y    b) .s00.1/0 =gv y    c) The 

speed relative to the man is ,) m/s54.4)m/s80.9(m/s8.10( 22 =−  and the speed relative 

to the hoop is 13.6 m/s (rounding to three figures), and so the man must be 13.6 m in 

front of the hoop at release.   d) Relative to the flat car, the ball is projected at an angle 

( ) .65tan
m/s54.4

m/s80.91 °== −θ  Relative to the ground the angle is ( ) °== +
− 7.35tan

m/s9.10m/s54.4

m/s80.91θ  

 

3.87: a) m.80m/s80.9/2sin)m/s150( 22 =°  

    b) .106.11000 3

m)80(

m)1010(

2

22 −× ×=×
−

π

π
 

    c) The slower rise will tend to reduce the time in the air and hence reduce the radius. 

The  slower horizontal velocity will also reduce the radius. The lower speed would tend 

to increase the time of descent, hence increasing the radius. As the bullets fall, the friction 

effect is smaller than when they were rising, and the overall effect is to decrease the 

radius. 

 

 

3.88: Write an expression for the square of the distance )( 2D  from the origin to the 

particle, expressed as a function of time. Then take the derivative of 
2D  with respect to t, 

and solve for the value of t when this derivative is zero. If the discriminant is zero or 

negative, the distance D will never decrease. Following this process, .5.709/8sin 1 °=−  

 

 



3.89: a) The trajectory of the projectile is given by Eq. (3.27), with φ,θ +=α0  and the 

equation describing the incline is .tanθxy =  Setting these equal and factoring out the 

0=x  root (where the projectile is on the incline) gives a value for ;0x  the range 

measured along the incline is 

 . 
cos

)(cos
]tan)[tan(

2
cos/

22

0







 +
θ−+








=

θ

φθ
φθ

g

v
θx  

    b) Of the many ways to approach this problem, a convenient way is to use the same 

sort of "trick", involving double angles, as was used to derive the expression for the range 

along a horizontal incline. Specifically, write the above in terms of φ,θ +=α  as 

 . ]sincoscoscos[sin
cos

2 2

2

2

0 θαθαα
θ

−







=
g

v
R  

The dependence on α  and hence φ  is in the second term. Using the identities 

),2cos1)(2/1(cos  and  2sin)2/1(cossin 2 ααααα +==  this term becomes 

 . ]sin)2)[sin(2/1(]sin2cossin2sin)[cos2/1( θθθθθ −−α=−α−α  

This will be a maximum when )2sin( θ−α  is a maximum, at ,θφθ °=+=−α 9022  or 

.2/45 θφ −°=  Note that this reduces to the expected forms when 0=θ  (a flat incline, 

°= 45φ  and when °−= 90θ  (a vertical cliff), when a horizontal launch gives the greatest 

distance). 

 

 



3.90: As in the previous problem, the horizontal distance x in terms of the angles is 

 . 
)(cos

1

2
)tan(tan

22

0 φθ
φθθ

+







−+=

v

gx
 

Denote the dimensionless quantity 
2

02/ vgx  by ;β  in this case 

 .2486.0
)m/s0.32(2

30.0m)cos0.60)(m/s80.9(
2

2

=
°

=β  

The above relation can then be written, on multiplying both sides by the product 

,)cos(cos φθθ +  

 ,
)cos(

cos
cos)sin()cos(sin

φθ
θβ

θφθφθθ
+

−+=+  

and so 

 . 
)cos(

cos
sin)cos(cos)sin(

φθ
θβ

θφθθφθ
+

=+−+  

 

The term on the left is ,φθφθ sin))sin(( =−+  so the result of this combination is 

 

 .cos)cos(sin θβφθφ =+  

 

Although this can be done numerically (by iteration, trial-and-error, or other methods), 

the expansion ))sin()(sin(cossin
2
1 bababa −++=  allows the angle φ  to be isolated; 

specifically, then 

 ,cos))sin()2(sin(
2

1
θβθθφ =−++  

with the net result that 

 .sincos2)2sin( θθβθφ +=+  

    a) For ,°= 30θ  and β  as found above, °= 3.19φ  and the angle above the horizontal is 

.3.49 °=+φθ  For level ground, using ,2871.0=β  gives .5.17 °=φ  b) For ,°−= 30θ  the 

same β  as with °= 30θ  may be used ,))30cos(30(cos °−=°  giving °= 0.13φ  and 

.0.17 °−=+θφ  

 

 



3.91: In a time t,∆  the velocity vector has moved through an angle (in radians) 
R

tv∆=∆φ  

(see Figure 3.23). By considering the isosceles triangle formed by the two velocity 

vectors, the magnitude v
r

∆  is seen to be ,v )2/sin(2 φ  so that 

 t)s/0.1sin(
t

m/s10

2
sin2ave ∆⋅

∆
=







 ∆
∆

=
R

tv

t

v
a
v

 

Using the given values gives magnitudes of 22 m/s98.9m/s59.9 ,  and .m/s0.10 2  The 

instantaneous acceleration magnitude, 222 m/s010m50.2/(m/s)00.5(/ .)Rv ==  is indeed 

approached in the limit at .0→∆t  The changes in direction of the velocity vectors are 

given by 
R

tv∆=∆θ  and are, respectively, 1.0 rad, 0.2 rad, and 0.1 rad. Therefore, the angle 

of the average acceleration vector with the original velocity vector is 

,)7.95(rad 1.02/,)6.118(rad 2/12/
2

°+°+=∆+ ππθπ  and ).(92.9rad 05.02/ °+π  

 



3.92: 

 

  

The x-position of the plane is t)m/s236(  and the x-position of the rocket is 

.)(30cos)m/s80.9)(00.3(2/1)m/s236( 22 Ttt −°+  The graphs of these two have the form, 

 
If  we take 0=y  to be the altitude of the airliner, then 

222 ))(30(sin)m/s80.9)(00.3(2/1)(2/1)( TtTtgTgTty −°+−−−=  for the rocket. This 

graph looks like 

 
By setting 0=y  for the rocket, we can solve for t in terms of 

.))(m/s35.7()()m/s80.9()m/s90.4(0 , 22222 TtTtTTT −+−−−=  Using the quadratic 

formula for the variable T,tx −=  we find 

)m/s35.7(2

)9.4)(m/s35.7)(4()m/s80.9()m/s80.9(

2

22222
TTT

Ttx
++=−=  or . 72.2 Tt =  Now, using 

the condition that ,xx m1000planerocket =−  we find 

m,1000)m/s236()(m/s7.12(m/s)236( 22 =−−×+ tTt)t  or .s6.78)72.1( 22 =T  

Therefore s.15.5=T  

 

 
3.93:   a) Taking all units to be in km and h, we have three equations. We know that 

heading upstream 2// =− Gwwc vv  where wcv /  is the speed of the curve relative to water 

and w Gv /  is the speed of the water relative to the ground. We know that heading 

downstream for a time .5)( , // =+ tvvt Gwwc  We also know that for the bottle 

.3)1(/ =+tv Gw  Solving these three equations for x,vxv wcGw +== 2 , //  therefore 

5)2( =++ txx  or .5)22( =+ tx  Also ,xt 1/3 −=  so 5)1)(22( 3 =−+
x

x  or 

.062 2 =−+ xx  The positive solution is km/h.5.1/ == Gwvx  

b) .km/h5.3km/h2/ =+= w/Gwc vv  
 



Capítulo 4 



 

4.1: a) For the magnitude of the sum to be the sum of the magnitudes, the forces must 

be parallel, and the angle between them is zero. b) The forces form the sides of a right 

isosceles triangle, and the angle between them is °90 . Alternatively, the law of cosines 

may be used as 

 ( ) , cos22 2
2

22 θFFFF −=+  

from which cos 0θ = , and the forces are perpendicular. c) For the sum to have 0 

magnitude, the forces must be antiparallel, and the angle between them is °180 . 

 

 

4.2:  In the new coordinates, the 120-N force acts at an angle of °53  from the x− -axis, 

or °233  from the x+ -axis, and the 50-N force acts at an angle of °323  from the x+ -

axis. 

 

      a) The components of the net force are 

N32323 cos)N50(233 cos)N120( −=°+°=xR  

.N124323 sin)N50(233 sin)N120()N250( =°+°+=yR  

       b) ,N12822 =+= yx RRR  ( ) °=− 104arctan
32

124 . The results have the same magnitude, 

and the angle has been changed by the amount )37( °  that the coordinates have been 

rotated. 

 

 

4.3: The horizontal component of the force is N1.745cos)N10( =°  to the right and the 

vertical component is N1.745sin)N10( =°  down. 

 

 

4.4: a) ,cos θFFx =  where θ  is the angle that the rope makes with the ramp ( °= 30θ  in 

this problem), so .N3.69
30cos

N0.60

 cos
==== °θ

xFF F
r

 

    b) N.6.34tansin === θFθFF xy  

 

 



4.5: Of the many ways to do this problem, two are presented here. 

    Geometric: From the law of cosines, the magnitude of the resultant is 

 .N49460cos)N300)(N270(2)N300()N270( 22 =°++=R  

The angle between the resultant and dog A’s rope (the angle opposite the side 

corresponding to the 250-N force in a vector diagram) is then 

 
( )

.7.31
N494

)N300(120sin
arcsin °=







 °
 

    Components: Taking the x+ -direction to be along dog A’s rope, the components of the 

resultant are 

 N42060cos)N300()N270( =°+=xR  

,N8.25960sin)N300( =°=yR  

so ( ) .7.31arctan,N494)N8.259()N420(
420

8.25922 °===+= θR  

 

4.6: a) N10.8)9.126(cos)N00.6(120cos)N00.9(21 −=°−+°=+ xx FF  

N.00.3)9.126(sin)N00.6(120sin)N00.9(21 +=°−+°=+ yy FF  

b) N.8.64N)(3.00N)10.8( 2222 =+=+= yx RRR  

 

4.7: 2s/m2.2kg)(60N)132(/ === /mFa  (to two places). 

 

 

4.8: .N189)m/skg)(1.40135( 2 === maF  

 

 

4.9: kg.16.00)m/sN)/(3.000.48(/ 2 === aFm  

 

 

4.10: a) The acceleration is 2

s) (5.00

)m0.11(22 s/m88.022 ===
t

xa . The mass is then 

kg.9.902m/s 0.88

N 0.80 ===
a
Fm  

    b) The speed at the end of the first 5.00 seconds is m/s4.4=at , and the block on the 

frictionless surface will continue to move at this speed, so it will move another 

m0.22=vt  in the next 5.00 s. 

 

 



4.11: a) During the first 2.00 s, the acceleration of the puck is 2m/s563.1/ =mF  

(keeping an extra figure). At s00.2=t , the speed is m/s13.3=at  and the position is 

m13.32/2/2 == vtat . b) The acceleration during this period is also 2m/s563.1 , and the 

speed at 7.00 s is m/s6.26s)00.2)(m/s(1.563m/s13.3 2 =+ . The position at s00.5=t  is 

m125s)2.00sm/s)(5.00(3.13m13.3 =−+=x , and at s00.7=t  is 

m,21.89s))(2.00m/s3(1/2)(1.56s)m/s)(2.00(3.13m12.5 22 =++  

or 21.9 m to three places. 

 

 

4.12: a) .m/s31.4kg5.32/N140/ 2=== mFax  

    b) With m215,0
2

2
1

0 === atxv x . 

    c) With m/s0.43/2,00 ==== txtavv xxx . 

 

 

4.13: a) 0=∑F
r

 

    b), c), d)  

 
 

4.14: a) With 00 =xv , 

 .m/s1050.2
)m1080.1(2

)m/s1000.3(

2

214

2

262

×=
×
×

== −x

v
a x
x  

    b) s1020.1 8

s/m1050.2

s/m1000.3

214

6 −

×

× ×===
x

x

a

v
t . Note that this time is also the distance divided by 

the average speed. 

    c) N.1028.2)m/s1050.2)(kg1011.9( 1621431 −− ×=××== maF  

 

 

4.15: .N1094.2)m/s80.9)(m/s12)(N2400()/( 322 ×==== gawmaF  

 

 

4.16:   .m/s0.22)m/s80.9(
2.71

160

/

22 =






==== g
w

F

gw

F

m

F
a  

 

 

4.17: a) kg49.4)m/s80.9/()N0.44(/ 2 === gwm  b) The mass is the same, 4.49 kg, and 

the weight is .N13.8)m/s81.1)(kg49.4( 2 =  

 

 



4.18: a) From Eq. (4.9), kg.327.0)s/m80.9/()N20.3(/
2 === gwm  

    b) N.137)s/m80.9)(kg0.14( 2 === mgw  

 

 

4.19: N.825)s/m15)(kg55( 2 === maF  The net forward force on the sprinter is 

exerted by the blocks. (The sprinter exerts a backward force on the blocks.) 

 

 

4.20: a) the earth (gravity) b) 4 N, the book c) no d) 4 N, the earth, the book, up e) 4 N, 

the hand, the book, down f) second g) third h) no i) no j) yes k) yes l) one (gravity) m) no 

 

 

4.21: a) When air resistance is not neglected, the net force on the bottle is the weight of 

the bottle plus the force of air resistance. b) The bottle exerts an upward force on the 

earth, and a downward force on the air. 

 

 

4.22: The reaction to the upward normal force on the passenger is the downward normal 

force, also of magnitude 620 N, that the passenger exerts on the floor. The reaction to the 

passenger’s weight is the gravitational force that the passenger exerts on the earth, 

upward and also of magnitude 650 N. .m/s452.0 2

m/s/9.80N650

N650N620
2 −==∑ −

m

F
 The passenger’s 

acceleration is
2s/m452.0 , downward. 

 

 

4.23: .s/m104.7
)kg100.6(

)s/m80.9)(kg45( 223

24

2

EE

E

−×=
×

===
m

mg

m

F
a  

 



4.24: (a) Each crate can be considered a single particle: 

 

ABF  (the force on Am  due to Bm ) and BAF  (the force on Bm  due to Am ) form an 

action-reaction pair. 
(b) Since there is no horizontal force opposing F, any value of F, no matter how 

small, will cause the crates to accelerate to the right. The weight of the two crates acts at 

a right angle to the horizontal, and is in any case balanced by the upward force of the 
surface on them. 

 

 
4.25: The ball must accelerate eastward with the same acceleration as the train. There 
must be an eastward component of the tension to provide this acceleration, so the ball 

hangs at an angle relative to the vertical. The net force on the ball is not zero. 

 

 



4.26: The box can be considered a single particle. 

 
    For the truck: 

 
    The box’s friction force on the truck bed and the truck bed’s friction force on the box 

form an action-reaction pair. There would also be some small air-resistance force action 

to the left, presumably negligible at this speed. 

 

 



4.27: a)  
 

 

 
 

b) For the chair, 0=ya  so yy maF =∑  gives 

037sin =°−− Fmgn  

 N142=n  

 

 
4.28: a) 

 

 
 

b) 

                                         θsinmgT =  

 N2790.26sin)s/m80.9)(kg0.65( 2 =°=  

 

 



4.29: tricycle and Frank 

 
 

    T is the force exerted by the rope and gf  is the force the ground exerts on the tricycle. 

    spot and the wagon 

  
    T ′  is the force exerted by the rope. T and T ′  form a third-law action-reaction pair,  
     .TT ′−=

rr
 

 

 

4.30: a) The stopping time is .s1043.7 4

s/m350

)m130.0(2

)2/( 0

−×===
v
x

v
x

ave
  

b) .N848)kg1080.1(
s)10(7.43

)s/m350(3
4- =×==

×

−maF  (Using xva 2/2

0=  gives the same 

result.) 

 

 

4.31: Take the x+ -direction to be along 1F
r
  and the y+ -direction to be along R

r
. Then 

N13002 −=xF  and N13002 =yF , so N18382 =F , at an angle of °135  from 1F
r
. 

 

 

4.32: Get g on X: 

2

2

1
gty =  

    2)s2.2(
2

1
m0.10 g=  

                             
2s/m13.4=g  

                      N41.0)s/m03.4)(kg100.0( 2

XX === mgw  

 

 



4.33: a) The resultant must have no y-component, and so the child must push with a force 

with y-component N.6.1660sinN)100(30sin)N140( −=°−°  For the child to exert the 

smallest possible force, that force will have no x-component, so the smallest possible 

force has magnitude 16.6 N and is at an angle of °270 , or °90  clockwise from the  

x+ -direction.  

 

b) .N840)s/m80.9)(kg6.85(.kg6.85 2

s/m0.2

30cosN14060cosN100
2 =====∑= °+°

mgwm
a

F
. 

 

 

4.34: The ship would go a distance 

 m,25.506
)N100.8(2

)s/m5.1)(kg106.3(

2)/(22 4

272

0

2

0

2

0 =
×

×
===

F

mv

mF

v

a

v
 

so the ship would hit the reef. The speed when the tanker hits the reef is also found from 

 m/s,17.0
)kg106.3(

)m500)(N100.8(2
m/s)5.1()/2(

7

4
22

0 =
×

×
−=−= mFxvv  

so the oil should be safe. 

 

 

4.35: a) Motion after he leaves the floor: ).(2 0

2

0

2
yyavv yyy −+=  

0=yv  at the maximum height, 
2

0 m/s80.9,m2.1 −==− yayy , so 

m/s.85.40 =yv  

    b) .m/s2.16)s300.0/()s/m85.4(/ 2

av ==∆∆= tva  

    c) 

             
             avav mawF =−  

 )s/m2.16)(s/m80.9/N890(N890 22

avav +=+= mawF  

   N1036.2 3

av ×=F  

 

 

4.36: 

 N.107.3
)m108.1(2

)s/m5.12(
kg)850(

2

6

2

22

0 ×=
×

===
−x

v
mmaF  

 

 

 

 



4.37: a) 

                              
 (upward)net mgFF −=  

 

    b) When the upward force has its maximum magnitude maxF  (the breaking strength), 

the net upward force will be maxF mg−  and the upward acceleration will be 

 .s/m83.5s/m80.9
kg80.4

N0.75 22maxmax =−=−=
−

= g
m

F

m

mgF
a  

 

4.38: a) N539== mgw  

    b) 

          
   Downward velocity is decreasing so a

r
 is upward and the net force should be upward. 

mgF >air , so the net force is upward. 

    

 

 

 c) Taking the upward direction as positive, the acceleration is 

    .s/m47.1s/m80.9
kg0.55

N620
s/m80.9 222airair =−=−=

−
==

m

F

m

mgF

m

F
a  

 



4.39: a) Both crates moves together, so 2s/m50.2=a   

    b) 

          N0.10)s/m50.2)(kg00.4( 2

1 === amT  

    c)  

      TF >  and the net force is to the right, in the direction of 
r
a . 

    d) amTF 2=−  

        N0.25)s/m50.2)(kg00.6(N0.10 2

2 =+=+= amTF  

 

 
4.40: a) The force the astronaut exerts on the rope and the force that the rope exerts on 
the astronaut are an action-reaction pair, so the rope exerts a force of 80.0 N on the 

astronaut.    b) The cable is under tension. c) 
2

kg105.0

N0.80
s/m762.0===

m
Fa . d) There is no 

net force on the massless rope, so the force that the shuttle exerts on the rope must be 
80.0 N (this is not an action-reaction pair). Thus, the force that the rope exerts on the 

shuttle must be 80.0 N. e) 24

kg109.05

N0.80
s/m1084.84

−

×
×===

m
Fa . 

 

4.41: a) m.4.4)s025.0)(s/m100.8()s025.0)(s/m100.9()s025.0( 334223 =×−×=x  

    b) Differentiating, the velocity as a function of time is 

so,)s/m1040.2()s/m1080.1()( 23524 tttv ×−×=  

  23524 )s025.0)(s/m1040.2()s025.0)(s/m1080.1()s025.0( ×−×=v  

                               s./m100.3 2×=  

 

    c) The acceleration as a function of time is 

,)s/m1080.4(s/m1080.1)( 3524 tta ×−×=  

 

so (i) at ,s/m108.1,0 24×== at  and (ii) ,s/m106.0s)025.0( 23×=a  and the forces are 

(i) N107.2 4×=ma and (ii) N.100.9 3×=ma  

 

 



4.42: a) The velocity of the spacecraft is downward. When it is slowing down, the 

acceleration is upward. When it is speeding up, the acceleration is downward. 

    

 

 

 b)  

 speeding up: Fw >  and the net force is downward 

                slowing down: Fw <  and the net force is upward 

    c) Denote the y-component of the acceleration when the thrust is 1F  by 1a  and the y-

component of the acceleration when the thrust is 2F  by 2a . The forces and accelerations 

are then related by 

 ., 2211 mawFmawF =−=−  

Dividing the first of these by the second to eliminate the mass gives 

 ,
2

1

2

1

a

a

wF

wF
=

−
−

 

and solving for the weight w gives 

 .
21

1221

aa

FaFa
w

−
−

=  

In this form, it does not matter which thrust and acceleration are denoted by 1 and which 

by 2, and the acceleration due to gravity at the surface of Mercury need not be found. 

Substituting the given numbers, with y+  upward, gives 

 

N.100.16
)s/m80.0(s/m20.1

)N100.25)(s/m80.0()N100.10)(s/m20.1( 3

22

3232

×=
−−

×−−×
=w  

  

In the above, note that the upward direction is taken to be positive, so that 2a  is negative. 

Also note that although 2a  is known to two places, the sums in both numerator and 

denominator are known to three places. 

 

 



4.43: 

 

    

 
    a) The engine is pulling four cars, and so the force that the engine exerts on the first car 

is a
r

m4 . b), c), d): Similarly, the forces the cars exert on the car behind are 

aa
rr

mm 2,3  and a
r

m− . e) The direction of the acceleration, and hence the direction of 

the forces, would change but the magnitudes would not; the answers are the same. 

 

 

4.44: a) If the gymnast climbs at a constant rate, there is no net force on the gymnast, so 

the tension must equal the weight; mgT = . 

    b) No motion is no acceleration, so the tension is again the gymnast’s weight. 

    c) a
r

mmamgTwT ==−=−  (the acceleration is upward, the same direction as the 

tension), so )( a
r

+= gmT . 

    d) a
r

mmamgTwT −==−=−  (the acceleration is downward, the same opposite as 

the tension), so )( a
r

−= gmT . 

 

 

4.45: a)  

 
    The maximum acceleration would occur when the tension in the cables is a maximum, 

  

.s/m93.2s/m80.9
kg2200

N000,28 22net =−=−=
−

== g
m

T

m

mgT

m

F
a  

 

    b)     .s/m1.11s/m62.1
kg2200

N000,28 22 =−  

 

 



4.46: a) His speed as he touches the ground is 

  

 s./m80.7)m10.3)(s/m80.9(22 2 === ghv  

    

 b) The acceleration while the knees are bending is 

 .s/m6.50
)m60.0(2

)s/m80.7(

2

2
22

===
y

v
a  

 

 

    c)  

 
 

    The net force that the feet exert on the ground is the force that the ground exerts on the 

feet (an action-reaction pair). This force is related to the weight and acceleration by 

,mamgFwF =−=−  so N4532)s/m80.9s/m6.50)(kg0.75()( 22 =+=+= gamF . As 

a fraction of his weight, this force is ( ) 16.61 =+=
g
a

mg
F  (keeping an extra figure in the 

intermediate calculation of a). Note that this result is the same algebraically as ( )1
m0.60

m10.3 + . 

 

 

4.47: a)  

 
 

    b) The acceleration of the hammer head will be the same as the nail, 
2322

0 s/m10138.1)cm45.0(2/)s/m2.3(2/ ×=== xva . The mass of the hammer head is 

its weight divided by kg50.0s/m80.9/N9.4, 2 =g , and so the net force on the hammer 

head is N.570)s/m10138.1)(kg50.0( 23 =×  This is the sum of the forces on the hammer 

head; the upward force that the nail exerts, the downward weight and the downward 15-N 

force. The force that the nail exerts is then 590 N, and this must be the magnitude of the 
force that the hammer head exerts on the nail. c) The distance the nail moves is .12 m, so 

the acceleration will be 2s/m4267 , and the net force on the hammer head will be 2133 

N. The magnitude of the force that the nail exerts on the hammer head, and hence the 
magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 

N. 

 

 



4.48:  

 

    a) The net force on a point of the cable at the top is zero; the tension in the cable must 
be equal to the weight w. 

    b) The net force on the cable must be zero; the difference between the tensions at the 
top and bottom must be equal to the weight w, and with the result of part (a), there is no 

tension at the bottom. 
    c) The net force on the bottom half of the cable must be zero, and so the tension in the 

cable at the middle must be half the weight, 2/w . Equivalently, the net force on the 

upper half of the cable must be zero. From part (a) the tension at the top is w, the weight 

of the top half is 2/w  and so the tension in the cable at the middle must be 

2/2/ www =− . 

    d) A graph of T vs. distance will be a negatively sloped line. 

 

 

 

 

 

4.49:   a)  

 
    b) The net force on the system is N0.53)s/m80.9)(kg00.15(N200 2 =−  (keeping 

three figures), and so the acceleration is ,s/m53.3)kg0.15/()N0.53( 2= up. c) The net 

force on the 6-kg block is N2.21)s/m53.3)(kg00.6( 2 = , so the tension is found from 

N2.21=−− mgTF , or N120N2.21)s/m80.9)(kg00.6()N200( 2 =−−=T . 

Equivalently, the tension at the top of the rope causes the upward acceleration of the rope 

and the bottom block, so agT )kg00.9()kg00.9( =− , which also gives N120=T . d) 

The same analysis of part (c) is applicable, but using kg00.2kg00.6 +  instead of the 

mass of the top block, or 7.00 kg instead of the mass of the bottom block. Either way 

gives N3.93=T . 

 

 



4.50: a)  

 
 

    b) The athlete’s weight is N882)s/m80.9)(kg0.90( 2 ==mg . The acceleration of the 

barbell is found from s/m375.0s6.1/m60.0av ==v . Its final velocity is thus 

(2)(0 375m s) 0 750m s. / = . / , and its acceleration is 

 
20 s/m469.0

65.1

s/m750.0
==

−
=

t

vv
a  

The force needed to lift the barbell is given by: 

 mawFF =−= barbellliftnet  

The barbell’s mass is 2(490N) (9 80m s ) 50 0kg/ . / = . , so 

 
N513N23N490

)s/m469.0)(kg0.50(N490 2

barbelllift

=+=

+=+= mawF
 

The athlete is not accelerating, so: 

                                    0athleteliftfloornet =−−= wFFF  

N1395N882N513athleteliftfloor =+=+= wFF  



4.51:  a)  

   
L is the lift force 

 

 

    b) yy maF =∑   

   
3/2

)3/(

MgL

gMLMg

=

=−
 

 

    c) )2/(gmmgL =− , where m is the mass remaining. 

    3/2MgL = , so 9/4Mm = . Mass 9/5M  must be dropped overboard. 

 

 



4.52:  a) =m  mass of one link 

    

 

 

 
 

 

    The downward forces of magnitude 2ma and ma for the top and middle links are the 

reaction forces to the upward force needed to accelerate the links below. 

    b)  (i) The weight of each link is N94.2)s/m80.9)(kg300.0( 2 ==mg . Using the free-

body diagram for the whole chain: 

 22net s/m5.3ors/m53.3
kg900.0

N18.3

kg900.0

)N94.2(3N12

3
==

−
==

m

F
a  

    (ii) The second link also accelerates at 2s/m53.3 , so: 

  

                                           mamgmaFF =−−= 2topnet  

                       )N94.2(2)s/m53.3)(kg300.0(222 2

top +=+= mgmaF  

   N0.8N88.5N12.2 =+=  

 

 

 

 

 
4.53: Differentiating twice, the acceleration of the helicopter as a function of time is 

 ,ˆ)s/m12.0(ˆ)s/m120.0( 23
kia −= t

r
 

and at 5 0st = . , the acceleration is 

 .ˆ)s/m12.0(ˆ)s/m60.0( 22
kia −=

r
 

The force is then 

  

 [ ]kiaa ˆ)s/m12.0(ˆ)s/m60.0(
)s/m80.9(

N)1075.2( 22

2

5

−
×

===
rr

g

w
mF  

        .ˆ)N104.3(ˆN)107.1( 34
ki ×−×=  

 

 

 



4.54: The velocity as a function of time is 23)( BtAtv −=  and the acceleration as a 

function of time is Btta 6)( −= , and so the Force as a function of time is 

mBttmatF 6)()( −== . 

 

 

4.55: 

 ∫ 







+==

t

t
k

tk
m

dt
m

t
0

4
2

1
ˆ

4
ˆ11

)( jiav
rr

. 

 

 



4.56: a) The equation of motion, 
dt
dvmCv =− 2
 cannot be integrated with respect to time, 

as the unknown function )(tv  is part of the integrand. The equation must be separated 

before integration; that is, 

 

,
11

0

2

vvm

Ct

v

dv
dt

m

C

+−=−

=−

 

where 0v  is the constant of integration that gives 0v v=  at 0t = . Note that this form 

shows that if 0 0v = , there is no motion. This expression may be rewritten as 

 ,
1

1

0

−









+==
m

Ct

vdt

dx
v  

which may be integrated to obtain 

 .1ln 0
0 




 +=−
m

Ctv

C

m
xx  

To obtain x as a function of v, the time t must be eliminated in favor of v; from the 

expression obtained after the first integration, 100 −=
v

v

m

Ctv
, so 

 .ln 0
0 







=−
v

v

C

m
xx  

    b) By the chain rule, 

 ,v
dx

dv

dt

dv

dx

dv

dt

dv
==  

and using the given expression for the net force, 

  
 

   m
dx

dv
vCv 







=− 2
 

           
v

dv
dx

m

C
=−  

                           







=−−

0

0 ln)(
v

v
xx

m

C
 

                                     .ln 0
0 








=−

v

v

C

m
xx  

 

 



4.57: In this situation, the x-component of force depends explicitly on the y-component of 

position. As the y-component of force is given as an explicit function of time, yv  and y 

can be found as functions of time. Specifically, tmkay )/( 3= , so 
2

3 )2/( tmkvy =  and 

3

3 )6/( tmky = , where the initial conditions 0,0 00 == yv y  have been used. Then, the 

expressions for xx va ,  and x are obtained as functions of time: 

 

.
1202

24

6

5

2

3221

4

2

321

3

2

321

t
m

kk
t

m

k
x

t
m

kk
t

m

k
v

t
m

kk

m

k
a

x

x

+=

+=

+=

 

In vector form, 

 

.ˆ
2

ˆ
24

ˆ
6

ˆ
1202

234

2

321

335

2

3221

jiv

jir









+








+=









+








+=

t
m

k
t

m

kk
t

m

k

t
m

k
t

m

kk
t

m

k

r

r

 

 



Capítulo 5 



5.1:  a) The tension in the rope must be equal to each suspended weight, 25.0 N. b) If the 
mass of the light pulley may be neglected, the net force on the pulley is the vector sum of 

the tension in the chain and the tensions in the two parts of the rope; for the pulley to be 

in equilibrium, the tension in the chain is twice the tension in the rope, or 50.0 N. 

 

 

5.2:  In all cases, each string is supporting a weight w against gravity, and the tension in 

each string is w. Two forces act on each mass: w down and )( wT =  up. 

 

 

5.3:  a) The two sides of the rope each exert a force with vertical component T θsin , and 

the sum of these components is the hero’s weight. Solving for the tension T, 

. N  1054.2
0.01sin  2

)sm (9.80 kg) 0.90(

sin  2

3
2

×=
°

=
θ

=
w

T  

    b) When the tension is at its maximum value, solving the above equation for the angle 

θ  gives 

.01.1
N)  1050.2(2

sm (9.80 kg) (90.0
arcsin

2
arcsin 

4

2

°=








×
=







=
T

w
θ  

 

 

5.4:  The vertical component of the force due to the tension in each wire must be half of 

the weight, and this in turn is the tension multiplied by the cosine of the angle each wire 

makes with the vertical, so if the weight is .48arccos  and  cos ,
3
2

4

3

2
°=== θθw ww  

 

 

5.5:  With the positive y-direction up and the positive x-direction to the right, the free-

body diagram of Fig. 5.4(b) will have the forces labeled n and T resolved into x- and y-

components, and setting the net force equal to zero, 

.0sin cos

0sin cos 

=−+=

=−=

wTnF

nTF

y

x

αα

αα
 

Solving the first for αTn cot  =  and substituting into the second gives 

w
T

TTT ==







+=+

αα
α

α
α

α
α
α

sinsin

sin

sin

cos
sin

sin

cos 222

 

  

and so ,coscot  sincot  α=αα=α= wwTn  as in Example 5.4. 

 

 

5.6:   N.  104.1017.5sin  )sm (9.80 kg) 1390( sin  sin  32 ×=°== αmgαw  

 

 



5.7: a) N.  1023.5 cosor , cos 4

40 cos

)sm kg)(9.8 4090(
2

×==== °θWTWθT BB  

      b) N.  1036.340sin  N) 1023.5(sin 44 ×=°×== θTT BA  

 

 

5.8: a) .045cos30cos and ,45sin30sin  , =°−°==°+°= BACBAC TTwTTTwT  Since 

,45cos45sin °=°  adding the last two equations gives ,)30sin30(cos wTA =°+°  and so 

.732.0
366.1

wT w
A ==  Then, .897.0

45 cos

30cos wTT AB == °
°  

      b) Similar to part (a), ,45sin60cos , wTTwT BAC =°+°−=  and 

.045cos60sin =°−° BA TT  Again adding the last two,  ,73.2
)60cos60(sin

wT w
A == °−°  and  

.35.3
45cos

60sin wTT BB == °
°  

 

 

5.9: The resistive force is N.  523m) 6000m 200)(sm kg)(9.80 1600(sin 2 ==αw . 

 

 

5.10: The magnitude of the force must be equal to the component of the weight along the 

incline, or N.  3370.11sin)sm kg)(9.80 180(sin 2 =°=θW   

 

 

5.11:   a) ,sinN, 60 WθTW ==  so ,sin45N) 60( °=T  or N.  85=T  

    b) N.  6045 cos N 85, cos 2121 =°==== FFθTFF  

 

 

5.12:   If the rope makes an angle θ  with the vertical, then 0 110
1 51

sin 0 073θ .
.= = .  (the 

denominator is the sum of the length of the rope and the radius of the ball). The weight is 

then the tension times the cosine of this angle, or 

N.  65.2
998.0

)sm80.9kg)( 270.0(

))073(.cos(arcsincos

2

====
mg

θ

w
T  

The force of the pole on the ball is the tension times θsin , or N.  193.0)073.0( =T  

 

 

5.13:   a) In the absence of friction, the force that the rope between the blocks exerts on 

block B will be the component of the weight along the direction of the incline, 

αwT sin= . b) The tension in the upper rope will be the sum of the tension in the lower 

rope and the component of block A’s weight along the incline, 

.sin2sinsin α=α+α www  c) In each case, the normal force is . cos αw  d) When 

,,0 wn ==α  when .0 ,90 =°=α n  

 



5.14:   a) In level flight, the thrust and drag are horizontal, and the lift and weight are 

vertical. At constant speed, the net force is zero, and so fF = and .Lw =  b) When the 

plane attains the new constant speed, it is again in equilibrium and so the new values of 

the thrust and drag, F ′  and f ′ , are related by fF ′=′ ; if .2 ,2 ffFF =′=′  c) In order to 

increase the magnitude of the drag force by a factor of 2, the speed must increase by a 

factor of 2 . 

 

5.15: a) 

 
The tension is related to the masses and accelerations by 

.222

111

amgmT

amgmT

=−

=−
 

    b) For the bricks accelerating upward, let aaa =−= 21  (the counterweight will 

accelerate down). Then, subtracting the two equations to eliminate the tension gives 

.sm 96.2
kg0.15kg 0.28

kg 0.15kg 0.28
 sm 80.9

or  ,)()(

22

12

12

2112

=








+
−

=
+

−
=

+=−

mm

mm
ga

ammgmm

 

      c) The result of part (b) may be substituted into either of the above expressions to find 

the tension N. 191=T  As an alternative, the expressions may be manipulated to 

eliminate a algebraically by multiplying the first by 2m and the second by 1m and adding 

(with 12 aa −= ) to give 

N. 191
kg) 0.28kg 0.15(

)sm (9.80 kg) (28.0 kg) 0.15(22

or   ,02)(

2

21

21

2121

=
+

=
+

=

=−+

mm

gmm
T

gmmmmT

 

In terms of the weights, the tension is 

.
22

21

1
2

21

2
1

mm

m
w

mm

m
wT

+
=

+
=  

If, as in this case, 21212 2 , mmmmm +>> and ,2 211 mmm +<  so the tension is greater 

than 1w and less than ;2w this must be the case, since the load of bricks rises and the 

counterweight drops. 

 

 



5.16:    Use Second Law and kinematics: ,2 ,sin  2vaxθga ==  solve for θ . 

or  ,2sin 2 xvθg =   

( ) .3.12 m)]], 5.1)(sm 8.9)(2[()sm 5arcsin[(2. 2arcsin 222 °=== θgxvθ  

 

 

5.17:  a) 

 
 

      b) In the absence of friction, the net force on the 4.00-kg block is the tension, and so 

the acceleration will be .sm2.50kg) 00.4(N)  0.10( 2=   c) The net upward force on the 

suspended block is ,mamgT =−  or ).( agTm +=  The block is accelerating downward, 

so ,sm 50.2 2−=a  and so .kg 37.1)sm 50.2sm (9.80N)  0.10( 22 =−=m                      

d) ,mgmaT +=  so ,mgT <  because .0<a  

5.18:  The maximum net force on the glider combination is 

 N,  7000N  25002N  000,12 =×−  

so the maximum acceleration is .sm0.5
2

kg 1400
N 7000

max ==a  

   a) In terms of the runway length L and takoff speed ,, max2

2

aav
L

v <=  so 

 m. 160    
)sm 0.5(2

)sm 40(
    

2
    

2

2

max

2

==>
a

v
L  

   b) If the gliders are accelerating at ,maxa  from  

N.  6000N  2500)sm kg)(5.0 700( , 2

dragdrag =+=+==− FmaTmaFT  Note that this is 

exactly half of the maximum tension in the towrope between the plane and the first 

glider. 

 

 

5.19:  Denote the scale reading as F, and take positive directions to be upward. Then, 

 .1or    , 






 −===−
w

F
gaa

g

w
mawF  

    a) 
22 sm 78.1)1N)550(N) 450()(sm 80.9( −=−=a , down. 

    b) ,sm 14.2)1N)  (550N) 670()(sm 80.9( 22 =−=a  up. c) If gaF −==  ,0  and the 

student, scale, and elevator are in free fall. The student should worry. 

 

 



5.20:   Similar to Exercise 5.16, the angle is ),arcsin( 2

2

gt

L , but here the time is found in 

terms of velocity along the table, xt
v
x ,
0

=  being the length of the table and 0v  the 

velocity component along the table. Then, 

( )

( ) .38.1
m) 75.1(sm 80.9

s)m m)(3.801050.2(2
arcsin

2
arcsin

2
arcsin

22

22

2

2

0

2

0

°=






 ×
=









=









−

gx

Lv

vxg

L

 

 

 

5.21:  

 

 

5.22:  

 

 

 

5.23:    a) For the net force to be zero, the applied force is 

 N.  0.22)sm (9.80 kg) 2.11( )20.0( 2

kkk ===== mgµnµfF  

      b) The acceleration is ,kgµ and ,2 2vax =  so ,2 k

2 gvx µ=  or m. 13.3=x  

 

 



5.24:   a) If there is no applied horizontal force, no friction force is needed to keep the 
box in equilibrium.  b) The maximum static friction force is, from Eq. (5.6), 

N,  16.0N)  0.40( )40.0(ss === wµnµ  so the box will not move and the friction force 

balances the applied force of 6.0 N.  c) The maximum friction force found in part (b),     

16.0 N.  d) From Eq. (5.5), N 8.0N) 0.40)(20.0(k ==nµ   e) The applied force is enough 

to either start the box moving or to keep it moving. The answer to part (d), from  

Eq. (5.5), is independent of speed (as long as the box is moving), so the friction force is  

8.0 N. The acceleration is .sm 45.2)( 2

k =− mfF  

 

 

5.25:  a) At constant speed, the net force is zero, and the magnitude of the applied force 

must equal the magnitude of the kinetic friction force, 

N.  7)sm (9.80 kg) 00.6( )12.0(  2

kkk ===== mgµnµfF

r
 

      b)  ,  mafk =−F

r
so 

N.  8)sm 80.9)12.0(sm kg)(0.180 00.6(

)(  

22

kkk

=+=

+===+= gammgµmafma µF

r

 

      c) Replacing 2sm 80.9=g  with 2sm 62.1  gives 1.2 N and 2.2  N. 

 

 

5.26:  The coefficient of kinetic friction is the ratio 
n

f k , and the normal force has 

magnitude N.  110N 25N 85 =+  The friction force, from 
g
a

k wmafF ==−H  is 

N  28
sm 80.9

sm 9.0
 N 85N 20

2

2

Hk =






 −
−=−=

g

a
wFf  

(note that the acceleration is negative), and so .25.0
N 110

N 28
k ==µ  

 

 

5.27: As in Example 5.17, the friction force is αµµ coskk wn =  and the component of the 

weight down the skids is .sin  αw  In this case, the angle α is .7.5)0.2000.2arcsin( °=  

The ratio of the forces is ,1
10.0

25.0

tan sin 

 cos kk >== α
µ

α
αµ

 so the friction force holds the safe back, 

and another force is needed to move the safe down the skids. 

      b) The difference between the downward component of gravity and the kinetic 

friction force is 

N.  381)5.7 cos )25.0(5.7 (sin )sm  (9.80 kg) (260) cos (sin 2

k −=°−°=− αµw α  

 

 



5.28: a) The stopping distance is 

m.  53
)sm 80.9( )80.0(2

)sm 7.28(

22 2

2

k

22

==
µ

=
g

v

a

v
 

    b) The stopping distance is inversely proportional to the coefficient of friction and 

proportional to the square of the speed, so to stop in the same distance the initial speed 

should not exceed 

.sm  16
80.0

25.0
)sm 7.28(

dryk,

 wetk, ===
µ
µ

v  

 

 

5.29:   For a given initial speed, the distance traveled is inversely proportional to the 

coefficient of kinetic friction. From Table 5.1, the ratio of the distances is then .11
04.0

44.0 =  

 

 

5.30:    (a) If the block descends at constant speed, the tension in the connecting string 

must be equal to the hanging block’s weight, .Bw  Therefore, the friction force Awkµ  on 

block A must be equal to ,Bw  and .k AB ww µ=  

   (b) With the cat on board, ).2()2( k ABAB wwwwga +µ−=  

 

 

5.31:  

 
 

a) For the blocks to have no acceleration, each is subject to zero net force. Considering 

the horizontal components, 

.  

or ,  ,

BA

BA

ff

fTfT

+=

+==

F

F

r

r

 

Using AA gmf kµ=  and BB gmf kµ=  gives )(  k BA mmg +µ=F

r
. 

      b) .k AA gmfT µ==  

 



5.32: 

,
8

3

22

2

0

2

04
12

0

22

0
r

Lg

v

Lg

vv

Lg

vv

g

a
=

−
=

−
==µ  

where L is the distance covered before the wheel’s speed is reduced to half its original 

speed. Low pressure, .0259.0 m; 1.18
)sm m)(9.80 (18.1

s)m 50.3(

8
3

2

2

==L  High pressure, 

.00505.0 m; 9.92
)smm)(9.809.92(

)sm 50.3(

8
3

2

2

==L  

 

 

5.33: Without the dolly: mgn = and 0k =− nF µ  ( 0=xa  since speed is constant). 

kg 74.34
)sm (9.80 (0.47)

N 160
2

k

===
gµ

F
m  

With the dolly: the total mass is kg 40.04kg 3.5kg 7.34 =+  and friction now is rolling 

friction, .rr mgf µ=   

2r

r

sm 82.3=
−

=

=−

m

mgF
a

mamgF

µ

µ
 

 

 
5.34: Since the speed is constant and we are neglecting air resistance, we can ignore the 

2.4 m/s, and netF in the horizontal direction must be zero. Therefore == nf rr µ  

N 200horiz == F before the weight and pressure changes are made. After the changes, 

,)42.1( )81.0( horizFn =  because the speed is still constant and 0net =F . We can simply 

divide the two equations: 

N 230N) 200( )42.1( )81.0(

)42.1)(81.0(

horiz

N. 200

r

r horiz

==

=

F

nµ

n Fµ
 

 

 



5.35:   First, determine the acceleration from the freebody diagrams. 
 

 
 

There are two equations and two unknowns, a and T: 

amTgm

amTgm

BB

AA

=−

=+− kµ
 

Add and solve for 2

k sm 79.0 ),()(: =+µ−= ammmmgaa ABAB . 

      (a) s.m 22.0)2( 21 == axv  

      (b) Solving either equation for the tension gives N.  7.11=T  

 

 
5.36:   a) The normal force will be θw  cos  and the component of the gravitational force 

along the ramp is θw sin  . The box begins to slip when ,cossin s θwθw µ>  or 

,35.0 tan s => µθ  so slipping occurs at °== 3.19)35.0arctan(θ , or °19  to two figures.  

   b) When moving, the friction force along the ramp is θwcoskµ , the component of the 

gravitational force along the ramp is θwsin , so the acceleration is 

.sm 92.0)cos(sin)cos)sin( 2

kk =−=− θθgmθwθw µµ  

(c) 
22 vax = , so 

21)2( axv = , or m. 3m)] 5)(sm92.0)(2[( 212 ==v  

 

 

5.37: a) The magnitude of the normal force is .sin  θmg F

r
+  The horizontal component 

of θcos  , FF

rr
 must balance the frictional force, so 

);sin  (cos  k θmgµ FF

rr
+=θ  

solving for  F 
r

 gives 

θµθ

mgµ

sincos
  

k

k

−
=F

r
 

      b) If the crate remains at rest, the above expression, with sµ  instead of kµ , gives the 

force that must be applied in order to start the crate moving. If ,cot sµ<θ  the needed 

force is infinite, and so the critical value is .cots θ=µ  

 

 



5.38:   a) There is no net force in the vertical direction, so ,0sin =−θ+ wFn  or 

.sinsin θFmgθFwn −=−=  The friction force is ).sin(kkk θFmgnf −== µµ  The net 

horizontal force is )sin(coscos kk θFmgθFfθF −µ−=− , and so at constant speed, 

θθ

mg
F

sincos k

k

µ
µ
+

=  

      b) Using the given values, 

N,  293
)25sin)35.0(25(cos

)smkg)(9.80 90)(35.0( 2

=
°+°

=F  

or 290 N to two figures. 

 

 

5.39: a)  

 
 

      b) The blocks move with constant speed, so there is no net force on block A; the 

tension in the rope connecting A and B must be equal to the frictional force on block A, 

N.  9N) 0.25( )35.0(k ==µ   c) The weight of block C will be the tension in the rope 

connecting B and C; this is found by considering the forces on block B. The components 

of force along the ramp are the tension in the first rope (9 N, from part (a)), the 

component of the weight along the ramp, the friction on block B and the tension in the 

second rope. Thus, the weight of block C is 

N, 31.0)36.9 (0.35)cos36.9N)(sin  (25.0N 9

)9.36cos9.36(sinN 9 k

=°+°+=

°+°+= µBC ww
 

or 31 N to two figures. The intermediate calculation of the first tension may be avoided to 

obtain the answer in terms of the common weight w of blocks A and B, 

)),cos(sin( kk θθµwwC µ++=  

giving the same result. 

 

      (d) Applying Newton’s Second Law to the remaining masses (B and C) gives: 

( ) .sm54.1)sincos( 2

k =+θ−µ−= cBBBc wwwθwwga  

 

 



5.40:  Differentiating Eq. (5.10) with respect to time gives the acceleration 

( ) ( ) ,t

tmktmk gee
m

k
va −− =







=  

where Eq. (5.9), kmgv =t  has been used. 

Integrating Eq. (5.10) with respect to time with 00 =y  gives 

( ) . 1
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5.41:   a) Solving for D in terms of tv , 

.mkg 44.0
)sm 42(

)sm (9.80 kg) 80(
2

2

2
===

tv

mg
D  

      b)     .sm 42
m)kg 25.0(

)sm kg)(9.80 45( 2

t ===
D

mg
v  

 

5.42: At half the terminal speed, the magnitude of the frictional force is one-fourth the 

weight.   a) If the ball is moving up, the frictional force is down, so the magnitude of the 

net force is (5/4)w and the acceleration is (5/4)g, down.   b) While moving down, the 

frictional force is up, and the magnitude of the net force is (3/4)w and the acceleration is 

(3/4)g, down. 

 

 

5.43:  Setting netF  equal to the maximum tension in Eq. (5.17) and solving for the speed v 

gives 

,sm 0.26
kg) (0.80

m) N)(0.90 600(net ===
m

RF
v  

or 26 m/s to two figures. 

 

 

5.44:   This is the same situation as Example 5.23. Solving for sµ  yields 

.290.0
)sm m)(9.80 (220

s)m 0.25(
2

22

s ===
Rg

v
µ  

 

 



5.45: a) The magnitude of the force F is given to be equal to 3.8w. “Level flight” means 

that the net vertical force is zero, so ,cos )8.3( cos wwβF == β , and 

°== 75)8.31arccos(β . 

      (b) The angle does not depend on speed. 

 

 

5.46: a) The analysis of Example 5.22 may be used to obtain ),(tan 2 gRv=β  but the 

subsequent algebra expressing R in terms of L is not valid. Denoting the length of the 

horizontal arm as r and the length of the cable as .sin, βlrRl +=  The relation 
T

Rv π= 2  is 

still valid, so .tan 2

2

2

2 )sin(44

gT

lr

gT

R βππβ +==  Solving for the period T, 

s. 19.6
30 tan )sm (9.80

)30m)sin  (5.00m 00.3(4

tan

)sin(4
2

22

=
°

°+π
=

β
β+π

=
g

lr
T  

Note that in the analysis of Example 5.22, β  is the angle that the support (string or cable) 

makes with the vertical (see Figure 5.30(b)).   b) To the extent that the cable can be 
considered massless, the angle will be independent of the rider’s weight. The tension in 
the cable will depend on the rider’s mass. 

 

 

5.47:  This is the same situation as Example 5.22, with the lift force replacing the tension 

in the string. As in that example, the angle β  is related to the speed and the turning 

radius by .tan
2

gR
v=β  Solving for β , 

( )( )
.7.20

m 1200 sm 9.80

h)))km 6.3(s)m(1(hkm 240(
arctanarctan

2

22

°=






 ×
=








=

gR

v
β  

 

 
5.48:  a) This situation is equivalent to that of Example 5.23 and Problem 5.44, so 

Rg

v
2

s =µ . Expressing v in terms of the period T, ,2

T

Rv π=  so .2

2
4

S gT

Rπµ =  A platform speed 

of 40.0 rev/min corresponds to a period of 1.50 s, so 

.269.0
)sm 80.9(s) (1.50

m) 150.0(4
22

2

s ==
π

µ  

      b) For the same coefficient of static friction, the maximum radius is proportional to 

the square of the period (longer periods mean slower speeds, so the button may be moved 

further out) and so is inversely proportional to the square of the speed. Thus, at the higher 

speed, the maximum radius is (0.150 m) ( )240 0
60 0

0 067m.
. = . . 

 

 



5.49: a) Setting rada g=  in Eq. (5.16) and solving for the period T gives 

s, 1.40
sm 9.80

m 400
22

2
=== π

g

R
πT  

so the number of revolutions per minute is minrev 1.5s) 1.40(min)s 60( = . 

      b) The lower acceleration corresponds to a longer period, and hence a lower rotation 

rate, by a factor of the square root of the ratio of the accelerations, 

min.rev 92.09.83.70min)rev 5.1( =×=′T . 

 

 

5.50: a) .sm 5.24s) (60.0m) 0.50(22 =π=π TR    b) The magnitude of the radial force 

is N 49)4(4 22222 === gTRwTRmRmv ππ  (to the nearest Newton), so the apparent 

weight at the top is N, 833N 49N 882 =−  and at the bottom is N 931N 49N 882 =+ .  

c) For apparent weightlessness, the radial acceleration at the top is equal to g in 

magnitude. Using this in Eq. (5.16) and solving for T gives 

.s 14
sm 9.80

m 0.50
22

2
=π=π=

g

R
T  

      d) At the bottom, the apparent weight is twice the weight, or 1760 N. 

 

 

5.51:  a) If the pilot feels weightless, he is in free fall, and Rvga 2== , so 

sm 3.38)sm m)(9.80 150( 2 === Rgv , or hkm 138 .   b) The apparent weight is 

the sum of the net inward (upward) force and the pilot’s weight, or 

( )

N, 3581

m) 150)(sm 80.9())sm(h)km((3.6

h)km 280(
1 N 700

1 

22

2

=









+=









+=+

g

a
wmaw

 

or 3580 N to three places. 

 

 

5.52:  a) Solving Eq. (5.14) for R, 

m. 230)sm 80.94(s)m 0.95(4 2222 =×=== gvavR  

      b) The apparent weight will be five times the actual weight, 

N  2450)sm (9.80 kg) 0.50( 5 5 2 ==mg  

to three figures. 

 



5.53:  For no water to spill, the magnitude of the downward (radial) acceleration must be 

at least that of gravity; from Eq. (5.14), .sm 42.2m) 600.0)(sm 80.9( 2 ==> gRv  

 

 

5.54: a) The inward (upward, radial) acceleration will be .sm 64.4
2

m) (3.80

s)m 2.4( 22

==
R
v  At the 

bottom of the circle, the inward direction is upward. 

      b) The forces on the ball are tension and gravity, so ,mamgT =−  

N.  1051
sm 80.9

sm 4.64
N)  2.71(1 )(

2

2

=

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5.55:  a) 

 
         1T  is more vertical so supports more  

       of the weight and is larger. 

     You can also see this from :xx maF =∑  

      
221

12

532.1
60 cos

40 cos

060cos40cos

TTT

TT

=







°
°

=

=°−°

 

    b) 1T  is larger so set N. 50001 =T  Then N  5.3263532.112 == TT , 

        

N 6400

40sin60sin 21

=

=°+°

=∑

w

wTT

maF yy

 

 

 



5.56: 

 
 

 

    The tension in the lower chain balances the weight and so is equal to w. The lower 

pulley must have no net force on it, so twice the tension in the rope must be equal to w, 

and so the tension in the rope is 2w . Then, the downward force on the upper pulley due 

to the rope is also w, and so the upper chain exerts a force w on the upper pulley, and the 

tension in the upper chain is also w. 

 

 

5.57:  In the absence of friction, the only forces along the ramp are the component of the 

weight along the ramp, αsinw , and the component of F
r
 along the ramp, 

α=α coscos  FF

r
. These forces must sum to zero, so αtanwF = . 

    Considering horizontal and vertical components, the normal force must have horizontal 

component equal to αsinn , which must be equal to F; the vertical component must 

balance the weight, wn =αcos . Eliminating n gives the same result. 

 

 

5.58: The hooks exert forces on the ends of the rope. At each hook, the force that the 

hook exerts and the force due to the tension in the rope are an action-reaction pair.  

The vertical forces that the hooks exert must balance the weight of the rope, so each hook 

exerts an upward vertical force of 2w  on the rope. Therefore, the downward force that 

the rope exerts at each end is 2sinend wθT = , so ).sin2()sin2(end θMgθwT ==   

b) Each half of the rope is itself in equilibrium, so the tension in the middle must balance 

the horizontal force that each hook exerts, which is the same as the horizontal component 

of the force due to the tension at the end; ,cos middleend TθT =  so 

.)tan 2()sin2(cosmiddle θMgθθMgT ==   

(c) Mathematically speaking, 0θ ≠  because this would cause a division by zero in the 

equation for endT  or middleT . Physically speaking, we would need an infinite tension to 

keep a non-massless rope perfectly straight. 

 

 



5.59: Consider a point a distance x from the top of the rope. The forces acting in this 

point are T up and ( )gM
L

xLm
 

)( −+  downwards. Newton’s Second Law becomes 

( ) ( ) .  
)()(

aMgMT
L

xLm

L

xLm −− +=+−  Since ( )( ). ,
)()(

mM
F

L

xLm

mM

gmMF
MTa +

−
+
+− +== . At 

FTx == ,0 , and at )(, gaMTLx
mM

MF +=== +  as expected. 

 

 

5.60: a) The tension in the cord must be 2m g  in order that the hanging block move at 

constant speed. This tension must overcome friction and the component of the 

gravitational force along the incline, so ( )α+α= cossin 112 gmµgmgm k  and 

)cos(sin12 αα kµmm += . 

      b) In this case, the friction force acts in the same direction as the tension on the block 

of mass 1m , so )cossin( 1k12 αgmµαgmgm −= , or )cosα(sin k12 αµmm −= . 

      c) Similar to the analysis of parts (a) and (b), the largest 2m  could be is 

1 s(sin cos )m α µ α+  and the smallest 2m  could be is 1 s(sin cos )m α µ α− . 

 

 

5.61:  For an angle of °0.45 , the tensions in the horizontal and vertical wires will be the 

same. a) The tension in the vertical wire will be equal to the weight N 0.12=w ; this must 

be the tension in the horizontal wire, and hence the friction force on block A is also 12.0 

N . b) The maximum frictional force is N  15N) 0.60)(25.0(s ==Awµ ; this will be the 

tension in both the horizontal and vertical parts of the wire, so the maximum weight is 15 

N. 

 

 

5.62: a) The most direct way to do part (a) is to consider the blocks as a unit, with total 

weight 4.80 N. Then the normal force between block B and the lower surface is 4.80 N, 

and the friction force that must be overcome by the force F is 

N,  1.44or  N,  1.440N)  80.4)(30.0(k ==nµ  to three figures. b) The normal force 

between block B and the lower surface is still 4.80 N, but since block A is moving 

relative to block B, there is a friction force between the blocks, of magnitude 

N, 0.360N)  20.1)(30.0( =  so the total friction force that the force F must overcome is 

N  1.80N 0.360N 440.1 =+ . (An extra figure was kept in these calculations for clarity.) 

 

 



5.63: (Denote   F
r

 by F.) a) The force normal to the surface is θFn  cos = ; the vertical 

component of the applied force must be equal to the weight of the brush plus the friction 

force, so that θFµwθF  cos sin k+= , and 

N,  9.16
1.53cos)51.0(53.1sin 

N  00.12

cos sin k

=
°−°

=
−

=
θµθ

w
F  

keeping an extra figure. b) N  2.1053.1 N)cos  91.16(cos =°=θF . 

 

 

5.64: a) 

N  101.3dynes 13

)scm 980)(g10210)(5.62(

5.62)5.62(

4

26

−

−

×==

×=

===∑ mggmmaF

 

This force is 62.5 times the flea’s weight. 

      b) 

 
N  102.9  dynes 29

140)140(

4

maxmax

−×==

=== mggmmaF
 

Occurs at approximately 1.2 ms. 

      c) ==−=−=∆ vvvvv 00  area under a-t graph. Approximate area as shown: 

 
 

sm2.1scm 120

g) ms)(14005.0(
2

1
     

g)ms)(62.5 (1.2g) ms)(77.52.1(
2

1

)3()2()1(

==
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+=

++= AAAA

 

 

 



5.65: a) The instrument has mass kg 531.1== gwm . Forces on the instrument: 

 

 

2sm 07.13=
−

=

=−

=∑

m

mgT
a

mamgT

maF yy

 

      
s 25.3gives 

? ,sm  07.13 ,sm  330 ,0

0

2

0

=+=

====

 ttavv

tavv

yyy

yyy
 

        Consider forces on the rocket; rocket has the same ya . Let F be the thrust of the 

rocket engines. 

N1072.5)sm 07.13sm  (9.80 kg) 000,25()( 522 ×=+=+=

=−

agmF

mamgF
 

    b) m. 4170 gives 0

2

2
1

00 =−+=− yytatvyy yy  

 

 
5.66: The elevator’s acceleration is: 

tt
dt

tdv
a )sm 40.0(sm 0.3)sm 20.0(2sm 0.3

)( 3232 +=+==  

At 232 sm  4.6s) 0.4)(sm 40.0(sm 3.0s, 0.4 =+== at . From Newton’s Second Law, 

the net force on you is 

N  1040or  N  8.1036

)sm kg)(4.6 72()sm  8.9)(kg 72( weight apparent  22

scale

scalenet

=

+=+==

=−=

mawF

mawFF

 

 

 



5.67: Consider the forces on the person: 

 

 

2

 

sm 88.560.0 so 6.1 ===

=−
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 gamgn

mamgn

maF yy

 

       
sm 0.5  gives )(2

?,0  ,sm 88.5  m, 0.3

0
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====−
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5.68: (a) Choosing upslope as the positive direction: 

mamgmgfmgF =°−°−=−°−= 37cos 37sin 37sin kknet µ  

and 
22 sm25.8))799.0)(30.0(602.0()sm 8.9( −=+−=a  

Since we know the length of the slope, we can use )(2 0

2

0

2
xxavv −+=  with 00 =x  and 

0=v  at the top. 

sm11or  sm 5.11sm 132

sm 132m) 0.8)(sm 25.8(22

22

0

2222

0

==

=−−=−=

v

axv
 

(b) For the trip back down the slope, gravity and the friction force operate in opposite 

directions: 

22

knet

sm 55.3))799.0)(30.0()602.0)((sm 8.9()37cos 30.037sin(

  37 cos37sin

−=+−=°+°−=

=°+°−=

ga

mamgµmgF
 

Now 

sm 7.5or  sm 54.7sm 8.56

sm 8.56

m) 0.8)(sm 55.3(20)(2

and ,0m, 0.8,0

22

22

2
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2
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2
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−−+=−+=

=−==
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xxavv

xxv

 

 



5.69: Forces on the hammer: 

 
 

maTmaF

mgTmgTmaF

xx

yy

−°=∑

=°=−°=∑

74cos gives 

74sin so 074sin gives 
 

Divide the second equation by the first: 

2sm 8.2 and 
74tan

1
=

°
= a

g

a
 

 

 



5.70: 

 
 

It’s interesting to look at the string’s angle measured from the perpendicular to the top of 

the crate. This angle is of course °90 —angle measured from the top of the crate. The 

free-body diagram for the washer then leads to the following equations, using Newton’s 

Second Law and taking the upslope direction as positive: 

 

slopewstring

slopewstring

stringslopew

wstringslopew

coscos

)sin (sin

0coscos

sinsin

θgmT

θgamθT

θTθgm

amθTθgm

=

+=

=+−

=+−

θ

 

Dividing the two equations: 

 
slope

slope

string
0cos

sin
tan

g

θga
θ

+
=  

    For the crate, the component of the weight along the slope is c slopesinm g θ−  and the 

normal force is .cos slopec θgm  Using Newton’s Second Law again: 

 

slope

slope

k

cslopeckslopec

cos

sin

cos sin

θg

θga

amθgmθgm

+
=

=+−

µ

µ

 

which leads to the interesting observation that the string will hang at an angle whose 

tangent is equal to the coefficient of kinetic friction: 

 40.022 tan)6890tan(tan stringk =°=°−°== θµ  

 



5.71: a) Forces on you: 

 

 

 

2

k

k

sm 094.3) cos (sin

sin

cos   gives 
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      Find your stopping distance 

      ?s,m 20,sm 094.3,0 00

2 =−=−== xxvav xxx  

       m, 64.6 gives )(2 00

2

0

2 =−−+= xxxxavv xxx which is greater than 40 m. You don’t 

stop before you reach the hole, so you fall into it. 

      b) ?,0m, 40,sm 094.3 00

2 ===−−= xxx vvxxa  

      .sm 16 gives )(2 00

2

0

2 =−+= xxxx vxxavv  

 

 



5.72: The key idea in solving this problem is to recognize that if the system is 

accelerating, the tension that block A exerts on the rope is different from the tension that 

block B exerts on the rope. (Otherwise the net force on the rope would be zero, and the 

rope couldn’t accelerate.) Also, treat the rope as if it is just another object. Taking the 

“clockwise” direction to be positive, the Second Law equations for the three different 

parts of the system are: 

Block A (The only horizontal forces on A are tension to the right, and friction to the left):  

        .k amTgm AAA =+− µ  

Block B (The only vertical forces on B are gravity down, and tension up):  

         .amTgm BBB =−  

Rope (The forces on the rope along the direction of its motion are the tensions at either 

end and the weight of the portion of the rope that hangs vertically):  

        ( ) .amTTgm RABL
d

R =−+  

To solve for a and eliminate the tensions, add the left hand sides and right hand sides of 

the three equations: ( ) .or  ,)(
)(k

k

RBA

AL

d
RB

mmm

mmm

RBAL
d

RBA gaammmgmgmgm ++

−+
=++=++−

µ
µ   

    (a) When 
( )

.,0
)(k

RBA

L
d

RB

mmm

mm
ga ++

+
==µ  As the system moves, d will increase, approaching 

L as a limit, and thus the acceleration will approach a maximum value of 

.
)( RBA

RB

mmm

mm
ga ++

+=  

    (b) For the blocks to just begin moving, ,0>a  so solve ( ) ][0 AsL

d
RB mmm µ−+=  for d. 

Note that we must use static friction to find d for when the block will begin to move. 

Solving for d, ),( BAsm
L mmd
R

−= µ  or m. .63kg) 4.kg) 2(25(.
kg .160
m 0.1 =−=d . 

    (c) When m. 2.50kg) 4.kg) 2(25(.kg, 04.
kg .04
m 0.1 =−== dmR  This is not a physically 

possible situation since .Ld >  The blocks won’t move, no matter what portion of the 

rope hangs over the edge. 

 

 
5.73: For a rope of length L, and weight w, assume that a length rL is on the table, so that 

a length Lr)1( −  is hanging. The tension in the rope at the edge of the table is then 

,)1( wr−  and the friction force on the part of the rope on the table is .ss rwf µ=  This must 

be the same as the tension in the rope at the edge of the table, so 

).1(1 and )1( ss µµ +=−= rwrrw   Note that this result is independent of L and w for a 

uniform rope. The fraction that hangs over the edge is )1(1 ss µµ +=− r ; note that if 

.01 and 1,0s =−== rrµ  

 

 



5.74: a) The normal force will be cos sinmg Fα α+ , and the net force along (up) the 

ramp is 

).cos(sin)sin(cos)sin   cos (sin cos sss αµααµααµαα +−−=+−− mgFFαmgmgF  

In order to move the box, this net force must be greater than zero. Solving for F, 

 .
sin   cos

 cos  sin

s

s

αµα
αµα

−
+

> mgF  

Since F is the magnitude of a force, F must be positive, and so the denominator of this 

expression must be positive, or ,sincos s αµα >  and . cots αµ <  b) Replacing ks with µµ  

with in the above expression, and making the inequality an equality, 

 .
sin cos

cos sin

k

k

αµα
αµα

−
+

= mgF  

 

 

5.75: a) The product 
2

s sm 94.2=gµ is greater than the magnitude of the acceleration of 

the truck, so static friction can supply sufficient force to keep the case stationary relative 

to the truck; the crate accelerates north at 
2sm 20.2 , due to the friction force of 

N. 0.66=ma  b) In this situation, the static friction force is insufficient to maintain the 

case at rest relative to the truck, and so the friction force is the kinetic friction force, 

N. 59kk == mgn µµ  

 

 

5.76: To answer the question, 0v  must be found and compared with hr).km (72 sm 20  

The kinematics relationship 2

02 vax −=  is useful, but we also need a. The acceleration 

must be large enough to cause the box to begin sliding, and so we must use the force of 

static friction in Newton’s Second Law: .or  , ss gamamg µµ −=≤−  Then, 

,)(2 2

0s vxgµ −=−  or .m) 47)(sm 8.9)(30(.22 2

s0 == gxv µ  Hence, 

,hkm 60sm 6.160 ==v  which is less than 72 km/h, so do you not go to jail. 

 

 



5.77: See Exercise 5.40. a) The maximum tension and the weight are related by 

),sin( cos maxkmax βTwβT −= µ  

and solving for the weight w gives 

.  sin
 cos

k

max 







+= β

µ

β
Tw  

This will be a maximum when the quantity in parentheses is a maximum. Differentiating 

with respect to β , 

,0cos
 sin

 sin
 cos

kk

=+−=







+ β

µ
β

β
µ
β

βd
d

 

or ktan µθ = , where θ  is the value of β  that maximizes the weight. Substituting for kµ  

in terms of θ , 

.
sin 

 sin

 sincos

sin
 cos sin

 cos

max

22

max

max

θ

T

θ

θθ
T

θ
θθ

θ
Tw

=








 +
=









+=

 

    b) In the absence of friction, any non-zero horizontal component of force will be 

enough to accelerate the crate, but slowly. 

 

 
5.78: a) Taking components along the direction of the plane’s descent, 

.cos and sin αα wLwf ==   b) Dividing one of these relations by the other cancels the 

weight, so . tan Lf=α  c) The distance will be the initial altitude divided by the tangent 

of α . , cos  and  tan αα wLLf ==  therefore gwfα
N 900,12
N  1300sin ==  and so .78.5 °=α  

This makes the horizontal distance km. 7.24)tan(5.78m) 2500( =°  d) If the drag is 

reduced, the angle α  is reduced, and the plane goes further. 

 

 

5.79: If the plane is flying at a constant speed of s,m 1.36  then ,0=∑F  or 

.0sin =−− fwT α  The rate of climb and the speed give the angle 

.7.9636.1)5arcsin( , °==αα  Then, 

N.  3087N 13007.96sin  N)  900,12(  .sin  =+°=+α= TfwT  Note that in level flight 

),0( =α  the thrust only needs to overcome the drag force to maintain the constant speed 

of .sm 1.36  

 

 



5.80: If the block were to remain at rest relative to the truck, the friction force would 

need to cause an acceleration of ;sm 20.2 2  however, the maximum acceleration possible 

due to static friction is ,sm 86.1)sm 80.9)(19.0( 22 =  and so the block will move relative 

to the truck; the acceleration of the box would be .sm 47.1)sm 80.9)(15.0( 22

k ==gµ  

The difference between the distance the truck moves and the distance the box moves (i.e., 

the distance the box moves relative to the truck) will be 1.80 m after a time 

 

s. 22.2
)sm 47.1sm (2.20

m) 80.1(22
22

boxtruck

=
−

=
−
∆

=
aa

x
t  

 

In this time, the truck moves m. 43.5s) 221.2( )sm20.2(
22

2
12

truck2
1 ==ta  Note that an 

extra figure was kept in the intermediate calculation to avoid roundoff error. 

 

 

5.81: The friction force on block A is N, 0.420N) 40.1)(30.0(k ==Awµ  as in Problem 5-

68. This is the magnitude of the friction force that block A exerts on block B, as well as 

the tension in the string. The force F must then have magnitude 

 

N.  2.52N)) 3(1.40N 20.4)(30.0(

)3()( kkk

=+=

+=+++= ABAAB wwTwwwF µµµ
 

 

Note that the normal force exerted on block B by the table is the sum of the weights of 

the blocks. 

 

 



5.82: We take the upward direction as positive. The explorer’s vertical acceleration is 
2sm 7.3−  for the first 20 s. Thus at the end of that time her vertical velocity will be 

s.m 74s) 20)(sm 7.3(
2 −=−== atvy  She will have fallen a distance 

m 740s) 20(
2

sm 74
av −=







 −== tvd  

 

and will thus be m 4607401200 =− above the surface. Her vertical velocity must reach 

zero as she touches the ground; therefore, taking the ignition point of the PAPS as 

,00 =y  

)(2 0

2

0

2 yyavvy −+=  

 

22
2

0

2

0

2

sm 6.0or  sm 95.5
460

s)m 74(0

)(2
=

−
−−

=
−

−
=

yy

vv
a

y
 

 

which is the vertical acceleration that must be provided by the PAPS. The time it takes to 

reach the ground is given by 

 

s4.12
sm 95.5

)sm 74(0
2

0 =
−−

=
−

=
a

vv
t  

 

Using Newton’s Second Law for the vertical direction 

 

N  1400or  N 5.1447

sm ))7.3(kg)(5.95150()( 2

PAPSv

PAPSv

=

−−=+=−=

=+

gammgmaF

mamgF

 

 

which is the vertical component of the PAPS force. The vehicle must also be brought to a 

stop horizontally in 12.4 seconds; the acceleration needed to do this is 

2
2

0 sm 66.2
s4.12

sm 330
=

−
=

−
=

t

vv
a  

and the force needed is N  399)sm kg)(2.66 150( 2

PAPSh === maF  or 400 N, since there 

are no other horizontal forces. 

 

 



5.83: Let the tension in the cord attached to block A be AT  and the tension in the cord 

attached to block C be CT . The equations of motion are then 

 

.

k

amTgm

amTgmT

amgmT

CCC

BABC

AAA

=−

=−−

=−

µ  

     a) Adding these three equations to eliminate the tensions gives 

 

),()( k BACCBA mmmgmmma µ−−=++  

solving for Cm  gives 

,
)()( k

ag

gamgam
m BA

C −
+++

=
µ

 

and substitution of numerical values gives kg. 9.12=Cm  

      b) N.  101)( N,  2.47)( =−==+= agmTagmT CCAA  

 

 

5.84: Considering positive accelerations to be to the right (up and to the right for the left-

hand block, down and to the right for the right-hand block), the forces along the inclines 

and the accelerations are related by 

,kg) 50(53sinkg) (50,kg) 100(30sinkg) 100( aTgagT =−°=°−  where T is the tension 

in the cord and a the mutual magnitude of acceleration. Adding these relations, 

. 067.0or  ,kg) 100kg 50()30sin  kg 10053sin  kg 50( gaag −=+=°−°  a) Since a comes 

out negative, the blocks will slide to the left; the 100-kg block will slide down. Of course, 

if coordinates had been chosen so that positive accelerations were to the left, a would be 

. 067.0 g+   b) .sm 658.0)sm 80.9(067.0
22 =  

    c) Substituting the value of a (including the proper sign, depending on choice of 

coordinates) into either of the above relations involving T yields 424 N. 

 

 



5.85: Denote the magnitude of the acceleration of the block with mass 1m as a; the block 

of mass 2m  will descend with acceleration .2a  If the tension in the rope is T, the 

equations of motion are then 

 

.22 22

1

amTgm

amT

=−

=
 

 

Multiplying the first of these by 2 and adding to eliminate T, and then solving for a gives 

 

.
4

2

22 21

2

21

2

mm

m
g

mm

gm
a

+
=

+
=  

 

The acceleration of the block of mass 2m  is half of this, or ).4( 212 mmmg +  

 

 
5.86: Denote the common magnitude of the maximum acceleration as a. For block A to 

remain at rest with respect to block B, .sga µ<  The tension in the cord is then 

).)(()()( kk gammmmgammT BABABA µµ ++=+++=  This tension is related to the mass 

Cm  by ).( agmT C −=  Solving for a yields 

 

.
)(

s
k g

mmm

mmm
ga

CBA

BAC µ
µ

<
++
+−

=  

 

Solving the inequality for Cm  yields 

 

.
1

))((

s

ks

µ
µµ

−
++

< BA
C

mm
m  

 

 

 

5.87: See Exercise 5.15 (Atwood’s machine). The 2.00-kg block will accelerate upward 

at ,73
kg 2.00kg 5.00

kg 00.2kg 00.5
gg =+

−
 and the 5.00-kg block will accelerate downward at .73g  Let the 

initial height above the ground be 0h ; when the large block hits the ground, the small 

block will be at a height 02h , and moving upward with a speed given by 

.762 00

2

0 ghahv ==  The small block will continue to rise a distance ,732 0

2

0 hgv =  and 

so the maximum height reached will be m 46.1717732 000 ==+ hhh , which is 0.860 m 

above its initial height. 

 

 



5.88: The floor exerts an upward force n on the box, obtained from ,mamgn =−  or 

).( gamn +=  The friction force that needs to be balanced is 

 

N. 105)sm 80.9sm  kg)(1.90 0.28((0.32) )(
22

kk =++= gamn µµ  

 

 

5.89: The upward friction force must be ,ss gmnf A== µ  and the normal force, which is 

the only horizontal force on block A, must be ,amn A=  and so .sµga =  An observer on 

the cart would “feel” a backwards force, and would say that a similar force acts on the 

block, thereby creating the need for a normal force. 

 

 

5.90: Since the larger block (the trailing block) has the larger coefficient of friction, it 

will need to be pulled down the plane; i.e., the larger block will not move faster than the 

smaller block, and the blocks will have the same acceleration. For the smaller block, 

,kg) 00.4(N  11.11or  ,kg) 00.4()30 cos)25.0((sin30kg) 00.4( aTaTg =−=−°−°  and 

similarly for the larger, ,kg) 00.8(N 44.15 aT =+   a) Adding these two relations, 
2sm 21.2,kg) (12.00N 55.26 == aa  (note that an extra figure was kept in the 

intermediate calculation to avoid roundoff error).  b) Substitution into either of the above 

relations gives N.  27.2=T  Equivalently, dividing the second relation by 2 and 

subtracting from the first gives ,N 11.11
2

N 44.15

2

3 −=T  giving the same result.  c) The 

string will be slack. The 4.00-kg block will have 
2sm 78.2=a  and the 8.00-kg block 

will have ,sm 93.1 2=a  until the 4.00-kg block overtakes the 8.00-kg block and collides 

with it. 

 

 

5.91: a) Let Bn  be the normal force between the plank and the block and An  be the 

normal force between the block and the incline. Then, θwnB cos=  and 

.cos4cos3 θwθwnn BA =+=  The net frictional force on the block is 

θµµ cos5)( kk wnn BA =+ . To move at constant speed, this must balance the component 

of the block’s weight along the incline, so ,cos5sin3 k θwθw µ=  and 

.452.037tantan
5

3

5

3
k =°==µ θ  

 

 



5.92: (a) There is a contact force n between the man (mass M) and the platform (mass m). 

The equation of motion for the man is ,MaMgnT =−+  where T is the tension in the 

rope, and for the platform, T n mg ma− − = . Adding to eliminate n, and rearranging, 

).)((
2
1 gamMT ++=  This result could be found directly by considering the man-

platform combination as a unit, with mass ,Mm +  being pulled upward with a force 2T 

due to the two ropes on the combination. The tension T in the rope is the same as the 

force that the man applies to the rope. Numerically, 

N. 551)sm80.9sm kg)(1.80 25.0kg 0.70(
2

1 22 =++=T  

    (b) The end of the rope moves downward 2 m when the platform moves up 1 m, so 

.2 platformrope aa −=  Relative to the man, the acceleration of the rope is ,sm 40.53 2=a  

downward. 

 

 

5.93: a) The only horizontal force on the two-block combination is the horizontal 

component of .cos, αFF

r
 The blocks will accelerate with ).(cos 21 mmFa += α  b) The 

normal force between the blocks is ,sin1 αFgm +  for the blocks to move together, the 

product of this force and sµ  must be greater than the horizontal force that the lower block 

exerts on the upper block. That horizontal force is one of an action-reaction pair; the 

reaction to this force accelerates the lower block. Thus, for the blocks to stay together, 

).sin( 1s2 αµ Fgmam +≤  Using the result of part (a), 

).sin(
m

cos
1s

21

2 αµ
α

Fgm
m

F
m +≤

+
 

Solving the inequality for F gives the desired result. 

 

 



5.94: The banked angle of the track has the same form as that found in Example 5.24, 

 ,tan
2
0

gR

v
β =  where 0v  is the ideal speed, sm 20  in this case. For speeds larger than 0v , a 

frictional force is needed to keep the car from skidding. In this case, the inward force will 

consist of a part due to the normal force n and the friction force 

. cossin   ; radmaβfβnf =+  The normal and friction forces both have vertical 

components; since there is no vertical acceleration, .sin   cos mgβfβn =−  Using 

nf sµ=  and ,tan 25.2
2

0
2 )5.1(

rad βga
R

v

R
v ===  these two relations become 

.sincos

,tan 25.2cossin

s

s

mgβnβn

βmgβnβn

=−

=+

µ

µ
 

Dividing to cancel n gives 

. tan 25.2
sincos

cos sin

s

s β
µ
µ

=
−
+

ββ

ββ
 

Solving for sµ  and simplifying yields 

.
 sin25.11

 cos sin 25.1
2s β

µ
+

=
ββ

 

Using ( ) °== 79.18arctan
m) 120)(sm 80.9(

s)m 20(
2

2

β  gives .34.0s =µ  

 

 

5.95: a) The same analysis as in Problem 5.90 applies, but with the speed v an unknown. 

The equations of motion become 

.sincos

,cossin

s

2

s

mgnn

Rmvnn

=−

=+

βµβ

βµβ
 

Dividing to cancel n gives 

.
sin cos

cos sin 2

s

s

Rg

v
=

−
+

βµβ
βµβ

 

Solving for v and substituting numerical values gives sm 9.20=v  (note that the value 

for the coefficient of static friction must be used). 

    b) The same analysis applies, but the friction force must be directed up the bank; this 

has the same algebraic effect as replacing f  with f− , or replacing sµ  with sµ−  

(although coefficients of friction may certainly never be negative). The result is 

,
sin cos

 cos sin
)(

s

s2

ββ

ββ
gRv

µ
µ
+
−

=  

and substitution of numerical values gives s.m 5.8=v  

 

 



5.96: (a) hmi 80  is sm 7.35  in SI units. The centripetal force needed to keep the car on 

the road is provided by friction; thus 

m 170or m 171
)sm (0.76)(9.8

s)m 7.35(
2

2

s

2

s

2

===

=

g

v
r

mg
r

mv

µ

µ
 

(b) If :20.0s =µ  

hmi 41about or  sm 3.18

sm 2.335)sm (9.8 (0.20) m) 171( 222

s

2

=

===

v

grµv
 

(c) If :37.0s =µ  

hmi 56about or  sm 9.24

sm 620)sm (9.8 (0.37) m) 171( 2222

=

==

v

v
 

The speed limit is evidently designed for these conditions. 

 

 
5.97: a) The static friction force between the tires and the road must provide the 

centripetal acceleration for motion in the circle. 

    
r

v
mmgs

2

=µ  

    m, g, and r are constant so ,
2

2

1

1

ss

vv

µµ
=  where 1 refers to dry road and 2 to wet 

road. 

    sm 192)sm 27( so, 21s2
1

2s === vµµ  

    b) Calculate the time it takes you to reach the curve 

    
s 7.34 gives  

2

? m, 800 s,m 19 ,sm 27

0
0

00

=






 +
=−

==−==

tt
vv

xx

txxvv

xx

xx

 

    During this time the other car will travel m. 1250(34.7s) s)m 36(00 ===− tvxx x  The 

other car will be 50 m behind you as you enter the curve, and will be traveling at nearly 

twice your speed, so it is likely it will skid into you. 

 

 
5.98: The analysis of this problem is the same as that of Example 5.22; solving for v in 

terms of β  and s,m 8.1630.0 tan )0.50( )sm 80.9( tan , 2 =°== βgRvR  about 

h.km 6.60  

 

 



5.99:   The point to this problem is that the monkey and the bananas have the same 

weight, and the tension in the string is the same at the point where the bananas are 

suspended and where the monkey is pulling; in all cases, the monkey and bananas will 

have the same net force and hence the same acceleration, direction and magnitude. a) The 

bananas move up. b) The monkey and bananas always move at the same velocity, so the 

distance between them stays the same. c) Both the monkey and bananas are in free fall, 

and as they have the same initial velocity, the distance bewteen them doesn’t change. d) 

The bananas will slow down at the same rate as the monkey; if the monkey comes to a 

stop, so will the bananas. 

 

 

5.100:   The separated equation of motion has a lower limit of t3v  instead of 0; 

specifically, 

. 
2

1
2

or  ,
2

1

2
ln

2
ln

)(

t

3 tt

t

t
t






 +=

−=




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
−=

−

−
=

−

−

∫

tmk

v

v

evv

t
m

k

v

v

v

vv
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Note that the speed is always greater than tv . 

 

 



5.101: a) The rock is released from rest, and so there is initially no resistive force and 

.sm 6.00kg) (3.00N) 0.18( 2

0 ==a  

      b) .sm 3.80kg) 00.3(s))m (3.00 )msN 20.2(N 0.18( 2=⋅−  c) The net force must be 

1.80 N, so N  2.16=kv  and .sm 63.7)msN (2.20N)  2.16( =⋅=v  d) When the net 

force is equal to zero, and hence the acceleration is zero, N  0.18t =kv  and 

s.m 8.18m)sN (2.20N)  0.18(t =⋅=v    e) From Eq. (5.12), 

m. 78.7

)1(
msN 2.20

kg 00.3
s) (2.00)sm 18.8( s)  kg))(2.00  00.3(m)s N 20.2((

+=









−

⋅
−= ⋅−ey

 

From Eq. (5.10), 

s.m 29.6

]s)[1m 18.8( s) kg))(2.00 00.3()ms N 2.2((

=

−= ⋅−ev
 

From Eq. (5.11), but with 0a  instead of g, 

.sm 38.1)sm 00.6( 2s) kg))(2.00 00.3(m)sN 20.2((2 == ⋅−ea  

. 

    f) 

s. 14.3)10( ln

so  ,1.01 )(

t

==

==− −
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m
t

e
v

v tmk

 

 

 



5.102: (a) The retarding force of the surface is the only horizontal force acting. Thus 

m

kt
v

dt
m

k

v

dv

dt
m

k

v

dv

dt

dv

m
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which gives 

2

2221

0
0

4m

tk

m

ktv
vv +−=  

For the rock’s position: 

2

2221

0
0

2

2221

0
0

4

4

m

dttk

m

ktdtv
dtvdx

m

tk

m

ktv
v

dt

dx

+−=

+−=
 

and integrating gives 

2

32221

0
0

122 m

tk

m

ktv
tvx +−=  

(b) 

2

2221

0
0

2
0

m

tk

m

ktv
vv +−==  

This is a quadratic equation in t; from the quadratic formula we can find the single 

solution: 

k

mv
t

21

02
=  

(c) Substituting the expression for t into the equation for x: 

k

mv

k

vm

m

k

k

vm

m

kv

k

mv
vx

3

2

8

12

4

2

2
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0

3
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2

2

0
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0
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5.103:  Without buoyancy, .
s 36.0

 so ,
t

t

mg

v

mg
kmgkv ===  

     With buoyancy included there is the additional upward buoyancy force B, so 

mgkvB =− t  

3
sm 0.36

sm 24.0
1t mgmgkvmgB =








−=−=  

 

 

5.104:  Recognizing the geometry of a 3-4-5 right triangle simplifies the calculation. For 

instance, the radius of the circle of the mass’ motion is 0.75 m. 

      a) Balancing the vertical force, ,
5
4

L5
4

U wTT =−  so 

N. 0.31)sm (9.80 kg) 00.4(
4

5
N 0.80

4

5 2

UL =−=−= wTT  

      b) The net inward force is N.  6.66L5

3
U5

3 =+= TTF  Solving 2

2
4

rad T

RmmaF π==  for 

the period T, 

s, 334.1
N) (66.6

m) (0.75 kg) 00.4(
22 === π

F

mR
πT  

or 0.02223 min, so the system makes 45.0 rev/min. c) When the lower string becomes 

slack, the system is the same as the conical pendulum considered in Example 5.22. With 

,800.0cos =β  the period is s, 007.2)sm (9.80(0.800) m) 25.1(2 2 == πT  which is the 

same as min.rev 9.29  d) The system will still be the same as a conical pendulum, but 

the block will drop to a smaller angle. 

 

 



5.105:   a) Newton’s 2nd law gives 

    ,y

y
kvmg

dt

dv
m −=  where tv

k

mg
=  

    ∫ ∫−=
−

yv

v

t

ty

y
dt

m

k

vv

dv

0 0

 

     This is the same expression used in the derivation of Eq. (5.10), except the lower limit 

in the velocity integral is the initial speed 0v  instead of zero. 

     Evaluating the integrals and rearranging gives 

     )1(t0

mktmkt evevv −− −+=  

     Note that at 0t =  this expression says 0vvy =  and at α→t  it says .tvvy →  

     b) The downward gravity force is larger than the upward fluid resistance force so the 

acceleration is downward, until the fluid resistance force equals gravity when the 

terminal speed is reached. The object speeds up until tvvy = . Take y+  to be downward. 

 

 

 

 

 

 

 

 

 
 

     c) The upward resistance force is larger than the downward gravity force so the 

acceleration is upward and the object slows down, until the fluid resistance force equals 

gravity when the terminal speed is reached. Take y+  to be downward. 



5.106: (a) To find find the maximum height and time to the top without fluid resistance: 

s 61.0
sm 8.9

sm 0.60

m 1.8or  m 84.1
)sm 8.92(

s)m 0.6(0

2

)(2

2

0

2

22

0

2

0

0

2

0

2

=
−
−

=
−

=

=
−
−

=
−

=−

−+=

a

vv
t

a

vv
yy

yyavv

yy

yy

 

(b) Starting from Newton’s Second Law for this situation 

kvmg
dt

dv
m −=  

we rearrange and integrate, taking downward as positive as in the text and noting that the 

velocity at the top of the rock’s “flight” is zero: 

386.1)25.0ln(
sm 0.2sm 0.6

sm 0.2
lnln)ln(

 

t

t0

t

0

t

−==
−−

−
=

−
−

=−

−=
−∫

vv

v
vv

t
m

k

vv

dv

v

v  

From Eq. 5.9, ,s 204.0)sm 8.9()sm 0.2( 22

t === gvkm  and 

s 0.283(1.386) s) 204.0()386.1( ==−−=
k

mt  to the top. Equation 5.10 in the text gives us 

m 26.0

)1s)(e 204.0( )sm (2.0s) (0.283 s)m 0.2(

)1(

)1(

387.1

m)k(t
t

0 0 0

m)k(

tt

)mk(

tt

)mk(

t

=

−+=

−+=

−=

−=−=

−

−

−

−−

∫ ∫ ∫

t

x t t

t

tt

e
k

mv
tv

dtevdtvdx

evvev
dt

dx

 

 

 



5.107:  a) The forces on the car are the air drag force 2

D Dvf =  and the rolling friction 

force .rmgµ  Take the velocity to be in the x+ -direction. The forces are opposite in 

direction to the velocity. xx maF =∑  gives 

mamgDv =−− r

2 µ  

We can write this equation twice, once with sm 32=v  and 
2sm 42.0 −=a  and once 

with sm 24=v  and .m/s 30.0 2−=a  Solving these two simultaneous equations in the 

unknowns D and rµ  gives 015.0r =µ  and .msN  36.0 22⋅=D  

      b) βmgn cos=  and the component of gravity parallel to the incline is ,sin βmg  

where .2.2 °=β  

      For constant speed, .02.2 cos 2.2sin  2

r =−°−° Dvmgmg µ  

      Solving for v  gives .sm 29=v  

      c) For angle 0 cos sin, 2

r =−− Dvmgmg βµββ   

      and 
D

ββmg
v

) cos  (sin rµ−=  

       The terminal speed for a falling object is derived from ,02

t =−mgDv  so 

.t Dmgv =  

       ββvv  cos sin rt µ−=  

       And since ββvvµ  cos )015.0( sin,015.0 tr −==  

 

 
5.108:  (a) One way of looking at this is that the apparent weight, which is the same as 

the upward force on the person, is the actual weight of the person minus the centripetal 

force needed to keep him moving in its circular path: 

N  434

m 40

s)m 12(
)sm (9.8 kg) 70(

2
2

2

app

=









−=−=

R

mv
mgw

 

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when 

the road no longer has to exert any upward force on it: 

sm 20or  sm 8.19

sm 392)sm (9.8 m) 40(

0

2222

2

=

===

=−

v

Rgv

R

mv
mg

 

The answer doesn’t depend on the cart’s mass, because the centripetal force needed to 

hold it on the road is proportional to its mass and so is its weight, which provides the 

centripetal force in this situation. 

 

 



5.109: a) For the same rotation rate, the magnitude of the radial acceleration is 
proportional to the radius, and for twins of the same mass, the needed force is 

proportional to the radius; Jackie is twice as far away from the center, and so must hold 

on with twice as much force as Jena, or 120 N. 

      b) .2

Jackie rmvF =∑  

                    s.m 8.3
kg 30

m) (3.6 N) 120( ==v  

 

 

5.110: The passenger’s velocity is s.m 80.82 == tRπv  The vertical component of the 

seat’s force must balance the passenger’s weight and the horizontal component must 

provide the centripetal force. Therefore: 

N 188 cos

N 833 sin

2

seat

seat

==

==

R

mv
θF

mgθF

 

Therefore °=== 3.774.43;N 188N 833 tan θθ  above the horizontal. The magnitude of 

the net force exerted by the seat (note that this is not the net force on the passenger) is 

N 854

N) 188(N) 833()( 22

2
2

2

seat

=

+=







+=

R

mv
mgF

 

(b) The magnitude of the force is the same, but the horizontal component is reversed. 

 

5.111: a) 

 
 

      b) The upward friction force must be equal to the weight, so 

mgTRπmn ≥= )4( 22

ss µµ  and 

.28.0
m) 5.2(4π

rev) 0.601s( )sm 80.9(

4 2

22

2

2

s ==>
Rπ

gT
µ  

    c) No; both the weight and the required normal force are proportional to the rider’s 

mass. 

 

 



5.112:  a) For the tires not to lose contact, there must be a downward force on the tires. 
Thus, the (downward) acceleration at the top of the sphere must exceed mg, so 

,
2

mgm
R

v >  and .sm 3.11m) (13.0 )sm 80.9( 2 ==> gRv  

    b) The (upward) acceleration will then be 4g, so the upward normal force must be 

N.  5390)sm (9.80 kg) 5(110 5 2 ==mg  

 

 

5.113: a) What really happens (according to a nosy observer on the ground) is that you 

slide closer to the passenger by turning to the right.   b) The analysis is the same as that of 

Example 5.23. In this case, the friction force should be insufficient to provide the inward 

radial acceleration, and so ,2

s Rmvmgµ <  or 

m 120
)sm (9.80 (0.35)

s)m 20(
2

2

s

2

==<
gµ

v
R  

to two places. Why the passenger is not wearing a seat belt is another question. 

 

 
5.114:  The tension F in the string must be the same as the weight of the hanging block, 

and must also provide the resultant force necessary to keep the block on the table in 

uniform circular motion; ,
2

r

vmFMg ==  so .mMgrv =  

 

5.115:  a) The analysis is the same as that for the conical pendulum of Example 5.22, and 

so 

.0.81
m) 100.0(4

s) 00.41)(sm 80.9(
arccos

4
 arccos

2

22

2

2

°=







=








=

πLπ

gT
β  

b) For the bead to be at the same elevation as the center of the hoop, °= 90β  and 

,0 cos =β  which would mean ,0=T  the speed of the bead would be infinite, and this is 

not possible.   c) The expression for β cos  gives ,48.2 cos =β  which is not possible. In 

deriving the expression for ,cos β  a factor of β sin  was canceled, precluding the 

possibility that .0=β  For this situation, 0=β  is the only physical possibility. 

 

 



5.116:  a) Differentiating twice, βtax 6−=  and ,2δay −=  so 

N. 40.4)sm 00.2( kg) 20.2(

N/s) 58.1(s)N 72.0( kg) 20.2(

2 −=−==

−=−==

yy

xx

maF

ttmaF
 

b) 

 
 

c) At N, 40.4 and N 75.4 s, 00.3 −=−== yx FFt  so 

N,  48.6N)  40.4(N) 75.4( 22 =−+−=F  

at an angle of ( ) .223 arctan
75.4
40.4 °=−

−  

 

 

5.117:  

 

 

 

5.118:  See Example 5.25. 

       a) ( ) ( ) N. 8.61sm9.80kg) 60.1(
m 00.5

)sm 0.12(2
22

=+=+=
R
v

A gmF  

       b) ( ) ( ) N. 4.30sm9.80kg) 60.1(
m 00.5

)sm 0.12(2
22

−=−=−=
R
v

B gmF , where the minus sign 

indicates that the track pushes down on the car. The magnitude of this force is 30.4 N. 

 

 



5.119:  The analysis is the same as for Problem 5.95; in the case of the cone, the speed is 

related to the period by ,tan22 TβπhTRπv ==  or .tan2 vβπhT =  The maximum and 

minimum speeds are the same as those found in Problem 5.95, 

.
cossin

sin cos
 tan 

cossin

sin cos
 tan 

s

s
min

s

s
max

βµβ

βµβ
βghv

βµβ

βµβ
βghv

+
−

=

−
+

=

 

The minimum and maximum values of the period T are then 

.
sincos

cossintan
2

sincos

cossintan
2

s

s
max

s

s
min

βµβ

βµββ

g

h
πT

βµβ

βµββ

g

h
πT

−
+

=

+
−

=

 

 

 



5.120:  a) There are many ways to do these sorts of problems; the method presented is 

fairly straightforward in terms of application of Newton’s laws, but involves a good deal 

of algebra. For both parts, take the x-direction to be horizontal and positive to the right, 

and the y-direction to be vertical and positive upward. The normal force between the 

block and the wedge is n; the normal force between the wedge and the horizontal surface 

will not enter, as the wedge is presumed to have zero vertical acceleration. The horizontal 

acceleration of the wedge is A, and the components of acceleration of the block are xa  

and ya . The equations of motion are then 

.cos 

sin 

sin 

mgnma

nma

nMA

y

x

−α=

α=

α−=

 

Note that the normal force gives the wedge a negative acceleration; the wedge is expected 

to move to the left. These are three equations in four unknowns, A, yx aa  ,  and n. Solution 

is possible with the imposition of the relation between A, xa  and ya . 

      An observer on the wedge is not in an inertial frame, and should not apply Newton’s 

laws, but the kinematic relation between the components of acceleration are not so 

restricted. To such an observer, the vertical acceleration of the block is ,ya  but the 

horizontal acceleration of the block is .Aax −  To this observer, the block descends at an 

angle ,α  so the relation needed is 

. tan α
Aa

a

x

y −=
−

 

At this point, algebra is unavoidable. Symbolic-manipulation programs may save some 

solution time. A possible approach is to eliminate xa  by noting that Aa
m
M

x −=  (a result 

that anticipates conservation of momentum), using this in the kinematic constraint to 

eliminate ya  and then eliminating n. The results are: 

 
) tan( tan )(

 tan m)(

) tan( tan )(

) tan( tan )(

αMαmM

αMg
a

αMαmM

gM
a

αMαmM

gm
A

y

x

++
+−

=

++
=

++
−

=

 

      (b) When ,0, →>> AmM  as expected (the large block won’t move). Also, 

,cossin
1tan

 tan
)tan1( tan 2 ααgga

g

x ==→
++ α
α

αα which is the acceleration of the block 

( αg sin  in this case), with the factor of α cos  giving the horizontal component. Similarly, 

.sin2 αgay −→  

     (c) The trajectory is a spiral. 

 

 



5.121:  If the block is not to move vertically, the acceleration must be horizontal. The 

common acceleration is , tan θga =  so the applied force must be 

. tan )()( θgmMamM +=+  

 

 

5.122: The normal force that the ramp exerts on the box will be .sin   cos θTαwn −=  

The rope provides a force of θT  cos  up the ramp, and the component of the weight down 

the ramp is .sin  αw  Thus, the net force up the ramp is 

). cos  (sin)sin   (cos

)sin   cos ( sin cos 

kk

k

αµαwθµθT

θTαwµαwθTF

+−+=

−−−=
 

The acceleration will be the greatest when the first term in parantheses is greatest; as in 

Problems 5.77 and 5.123, this occurs when . tan kµ=θ  

 

 

5.123:   a) See Exercise 5.38; ).sin   (cos kk θθwF µµ +=  

       b)  

 
 

       c) The expression for F is a minimum when the denominator is a maximum; the 

calculus is identical to that of Problem 5.77 (maximizing w for a given F gives the same 

result as minimizing F for a given w), and so F is minimized at . tan kµ=θ  For 

,0.14,25.0k °== θµ  keeping an extra figure. 

 

 



5.124:  For convenience, take the positive direction to be down, so that for the baseball 

released from rest, the acceleration and velocity will be positive, and the speed of the 

baseball is the same as its positive component of velocity. Then the resisting force, 

directed against the velocity, is upward and hence negative. 

      a)  

 
 

      b) Newton’s Second Law is then .2Dvmgma −=  Initially, when ,0=v  the 

acceleration is g, and the speed increases. As the speed increases, the resistive force 

increases and hence the acceleration decreases. This continues as the speed approaches 

the terminal speed.    c) At terminal velocity, ,0=a  so ,t D

mg
v =  in agreement with  

Eq. (5.13).    d) The equation of motion may be rewritten as ).( 22
2
t

vvtv

g

dt
dv −=  This is a 

separable equation and may be expressed as 

,arctanh 
1

or,

t
2

tt

2

t

22

t

v

gt

v

v

v

dt
v

g

vv

dv

=








=
−∫ ∫

 

so ( ). tanh tt vgtvv =  

Note: If inverse hyperbolic functions are unknown or undesirable, the integral can be 

done by partial fractions, in that 

,
11

2

11

ttt

22

t










+
+

−
=

− vvvvvvv
 

and the resulting logarithms in the integrals can be solved for )(tv  in terms of 

exponentials. 

 

 



5.125:   Take all accelerations to be positive downward. The equations of motion are 

straightforward, but the kinematic relations between the accelerations, and the resultant 

algebra, are not immediately obvious. If the acceleration of pulley B is ,Ba  then 

,3aaB −=  and Ba  is the average of the accelerations of masses 1 and 2, or 

.22 321 aaaa B −==+  There can be no net force on the massless pulley B, so .2 AC TT =  

The five equations to be solved are then 

.02

02 321

333

222

111

=−

=++

=−

=−

=−

CA

C

A

A

TT

aaa

amTgm

amTgm

amTgm

 

These are five equations in five unknowns, and may be solved by standard means. A 

symbolic-manipulation program is of great use here. 

      a) The accelerations 1a  and 2a  may be eliminated by using 

))).1()1((2()(2 21213 mmTgaaa A +−−=+−=  

The tension AT  may be eliminated by using 

).()21()21( 33 agmTT CA −==  

Combining and solving for 3a  gives 

.
4

4

313221

313221
3

mmmmmm

mmmmmm
ga

++
++−

=  

      b) The acceleration of the pulley B has the same magnitude as 3a  and is in the 

opposite direction. 

      c)    ).(
22

3

1

3

11

1 ag
m

m
g

m

T
g

m

T
ga CA −−=−=−=  

Substituting the above expression for 3a  gives 

.
4

34

313221

313221
1

mmmmmm

mmmmmm
ga

++
+−

=  

      d) A similar analysis (or, interchanging the labels 1 and 2) gives 

.
4

34

313221

323121
2

mmmmmm

mmmmmm
ga

++
+−

=  

      e) & f) Once the accelerations are known, the tensions may be found by substitution 

into the appropriate equation of motion, giving 

.
4

8
T ,

4

4

313221

321

C

313221

321

mmmmmm

mmm
g

mmmmmm

mmm
gTA ++

=
++

=  

      g) If mmm == 21  and ,23 mm =  all of the accelerations are zero, mgTC 2=  and 

.mgTA =  All masses and pulleys are in equilibrium, and the tensions are equal to the 

weights they support, which is what is expected. 

 

 



5.126: In all cases, the tension in the string will be half of F. 

      a) N, 622 =F  which is insufficient to raise either block; .021 == aa  

      b) N. 622 =F  The larger block (of weight 196 N) will not move, so ,01 =a  but the 

smaller block, of weight 98 N, has a net upward force of 49 N applied to it, and so will 

accelerate upwards with .sm 9.4
2

kg 10.0
N 49

2 ==a  

      c) N, 2122 =F  so the net upward force on block A is 16 N and that on block B is 

114 N, so 
2

kg 20.0
N 16

1 sm 8.0==a  and .sm 4.11
2

kg 10.0
N 114

2 ==a  

 

 

5.127:   Before the horizontal string is cut, the ball is in equilibrium, and the vertical 

component of the tension force must balance the weight, so , cos wβTA =  or 

. cos βwTA =  At point B, the ball is not in equilibrium; its speed is instantaneously 0, so 

there is no radial acceleration, and the tension force must balance the radial component of 

the weight, so , cos βwTB =  and the ratio . cos)( 2 βTT AB =   



Capítulo 6 



6.1:    a) J60.3)m5.1( )N40.2( =  b) J900.0)m50.1)(N600.0( −=−  

    c) J70.2J720.0J60.3 =− . 

 

 

6.2:  a) “Pulling slowly” can be taken to mean that the bucket rises at constant speed, so 

the tension in the rope may be taken to be the bucket’s weight. In pulling a given length 

of rope, from Eq. (6.1), 

 J.6.264)m00.4)(s/m80.9( )kg75.6( 2 ==== mgsFsW  

    b) Gravity is directed opposite to the direction of the bucket’s motion, so Eq. (6.2) 

gives the negative of the result of part (a), or J265− . c) The net work done on the bucket 

is zero. 

 

 

6.3: J300)m0.12)(N0.25( = . 

 

 

6.4: a) The friction force to be overcome is 

 

 ,N5.73)s/m80.9)(kg0.30)(25.0( 2

kk ==== mgnf µµ  

 

or 74 N to two figures. 

     

   b) From Eq. (6.1), J331)m5.4)(N5.73( ==Fs . The work is positive, since the worker 

is pushing in the same direction as the crate’s motion. 

    

   c) Since f and s are oppositely directed, Eq. (6.2) gives 

 

 J.331)m5.4)(N5.73( −=−=− fs  

   

  d) Both the normal force and gravity act perpendicular to the direction of motion, so 

neither force does work. e) The net work done is zero. 

 

 



6.5: a) See Exercise 5.37. The needed force is 

 

 N,2.99
30sin)25.0(30cos

)s/m80.9)(kg30)(25.0(

sincos

2

k

k =
°−°

=
−

=
φµφ

µ mg
F  

 

keeping extra figures. b) J5.38630cos)m50.4)(N2.99(cos =°=φFs , again keeping an 

extra figure. c) The normal force is φsinFmg + , and so the work done by friction is 

J5.386)30sin)N2.99()s/m80.9)(kg30)((25.0)(m50.4( 2 −=°+− . d) Both the normal 

force and gravity act perpendicular to the direction of motion, so neither force does work. 

e) The net work done is zero. 

 

 

 

 
6.6: From Eq. (6.2), 

 

 J.1022.50.15cos)m300)(N180(cos 4×=°=φFs  

 

 

6.7: ,J1062.214cos)m1075.0)(N1080.1(2cos2 936 ×=°××=φFs or J102.6 9×   to 

two places. 

 

 

6.8: The work you do is: 

 

 )ˆ)m0.3(ˆ)m0.9(()ˆ)N40(ˆ)N30(( jijisF −−⋅−=⋅
rr

 

           )m0.3)(N40()m0.9)(N30( −−+−=  

               J150mN120mN270 −=⋅+⋅−=  

 

 

6.9: a) (i) Tension force is always perpendicular to the displacement and does no work. 

       (ii) Work done by gravity is ).( 12 yymg −−  When 21 yy = , 0=mgW . 

       b) (i) Tension does no work. 

       (ii) Let l be the length of the string. J1.25)2()( 12 −=−=−−= lmgyymgWmg  

    The displacement is upward and the gravity force is downward, so it does negative 

work. 

 

 



6.10: a) From Eq. (6.6), 

 J.1054.1
h/km

s/m

6.3

1
)km/h0.50()kg1600(

2

1 5

2

×=














=K  

b) Equation (6.5) gives the explicit dependence of kinetic energy on speed; doubling the 

speed of any object increases the kinetic energy by a factor of four. 

 

 

6.11: For the T-Rex, J1032.4))hr/km4)((kg7000( 32

km/hr6.3

s/m1

2
1 ×==K . The person’s 

velocity would be m/s111kgJ)/701032.4(2 3 .v =×= , or about 40 km/h. 

 

 

6.12: (a) Estimate: 1m sv ≈ /  (walking) 

     2m sv ≈ /  (running) 

     70kgm ≈  

     Walking: J35)s/m1)(kg70( 2

2
12

2
1 === mvKE  

      Running: J140)s/m2)(kg70( 2

2
1 ==KE  

      (b) Estimate: s/m30s/ft88mph60 ≈=≈v  

                           kg2000≈m  

      J109)s/m30)(kg2000( 52

2
1 ×==KE  

      (c) mghWKE == gravity  Estimate m2≈h  

     J20)m2)(s/m8.9)(kg1( 2 ≈=KE  

 

 

6.13: Let point 1 be at the bottom of the incline and let point 2 be at the skier. 

      12tot KKW −=   

      0,
2

1
2

2

01 == KmvK  

      Work is done by gravity and friction, so fmg WWW +=tot . 

      mghyymgWmg −=−−= )( 12   

      αµααµ tan/)sin/)(cos( kk mghhmgfsW f −=−=−=  

      Substituting these expressions into the work-energy theorem and solving for 0v  gives               

      )tan/1(2 k0 αµ+= ghv  

 

 



6.14:    (a)  

 

)m0.15)(s/m80.9(2)s/m0.25(

2

2

1

2

1

22

2

f0

2

0

2

f

+=

+=

−=−

∆=

ghvv

mvmvmgh

KEW

 

 s/m3.30=  

 

(b)  

 

)s/ms80.9(2

0)s/m3.30(

g2

2

1

2

1

2

222

f

2

0

2

0

2

f

−
=

−
=

−=−

∆=

vv
h

mvmvmgh

KEW

 

           m8.46=  

 

 

6.15: a) parallel to incline: force component sinmg α= , down incline; displacement 

sinh α= / , down incline 

          mghhmgW == )sin/)(sin(|| αα  perpendicular to incline: no displacement in this 

direction, so 0=⊥W . 

         mghWWWmg =+= ⊥|| , same as falling height h. 

         b) tot 2 1W K K= −  gives 21
2

mgh mv=  and ghv 2= , same as if had been dropped 

from height h. The work done by gravity depends only on the vertical displacement of the 

object. 

         When the slope angle is small, there is a small force component in the direction of 

the displacement but a large displacement in this direction. When the slope angle is large, 

the force component in the direction of the displacement along the incline is larger but 

the displacement in this direction is smaller. 

       c) m0.15=h , so s1.172 == ghv  

 

6.16: Doubling the speed increases the kinetic energy, and hence the magnitude of the 

work done by friction, by a factor of four. With the stopping force given as being 

independent of speed, the distance must also increase by a factor of four. 

 

 

6.17: Barring a balk, the initial kinetic energy of the ball is zero, and so 

 J.74.2m/s)kg)(32.0145.0)(2/1()2/1( 22 === mvW  

 

 



6.18: As the example explains, the boats have the same kinetic energy K at the finish line, 

so 22 )2/1()2/1( BBAA vmvm = , or, with 22 2,2 BAAB vvmm == .   a) Solving for the ratio of the 

speeds, 2/ =BA vv .   b) The boats are said to start from rest, so the elapsed time is the 

distance divided by the average speed. The ratio of the average speeds is the same as the 

ratio of the final speeds, so the ratio of the elapsed times is 2// == BAAB vvtt . 

 

 

6.19: a) From Eq. (6.5), 16/12 KK = , and from Eq. (6.6), 1)16/15( KW −= . b) No; 

kinetic energies depend on the magnitudes of velocities only. 

 

 

6.20: From Equations (6.1), (6.5) and (6.6), and solving for F, 
 

N.0.32
)m50.2(

))s/m00.4()s/m00.6)((kg00.8()( 22

2
12

1

2

22
1

=
−

=
−

=
∆

=
s

vvm

s

K
F  

 

 

6.21:   cm8.16
)N0.40(

))s/m00.2()s/m00.6)((kg420.0( 22

2
1

=
−

=
∆

=
F

K
s  

 

 

6.22: a) If there is no work done by friction, the final kinetic energy is the work done by 

the applied force, and solving for the speed, 

 .s/m48.4
)kg30.4(

)m20.1)(N0.36(222
====

m

Fs

m

W
v  

b) The net work is smgFsfFs )( kk µ−=− , so 

 

)kg30.4(

)m20.1))(s/m80.9)(kg30.4)(30.0(N0.36(2

)(2

2

k

−
=

−
=

m

smgF
v

µ

 

  s./m61.3=  

(Note that even though the coefficient of friction is known to only two places, the 

difference of the forces is still known to three places.) 

 



6.23: a) On the way up, gravity is opposed to the direction of motion, and so 

J4.28)m0.20)(s/m 80.9)(kg145.0( 2 −=−=−= mgsW . 

    b)   s/m26.15
)kg145.0(

)J4.28(2
)s/m0.25(2 22

12 =
−

+=+=
m

W
vv . 

    c) No; in the absence of air resistance, the ball will have the same speed on the way 

down as on the way up. On the way down, gravity will have done both negative and 

positive work on the ball, but the net work will be the same. 

 

 

6.24: a) Gravity acts in the same direction as the watermelon’s motion, so Eq. (6.1) gives 

 

 J.1176)m0.25)(s/m80.9)(kg80.4( 2 ==== mgsFsW  

      

 b) Since the melon is released from rest, 01 =K , and Eq. (6.6) gives 

 

 J.11762 === WKK  

 

 

6.25: a) Combining Equations (6.5) and (6.6) and solving for 2v  algebraically, 

 

 .s/m96.4
)kg00.7(

)m0.3)(N0.10(2
)s/m00.4(2 2tot2

12 =+=+=
m

W
vv  

 

Keeping extra figures in the intermediate calculations, the acceleration is 

.s/m 429.1)kg 00.7/()s/mkg 0.10( 22 =⋅=a  From Eq. (2.13), with appropriate change in 

notation, 

 ),m0.3)(s/m429.1(2)s/m00.4(2 222

1

2

2 +=+= asvv  

giving the same result. 

 

 

6.26: The normal force does no work. The work-energy theorem, along with Eq. (6.5), 

gives 

 ,sin22
22

θgLgh
m

W

m

K
v ====  

 

where sinh L θ=  is the vertical distance the block has dropped, and θ  is the angle the 

plane makes with the horizontal. Using the given numbers, 

 

 s./m97.29.36sin)m75.0)(s/m80.9(2 2 =°=v  

 

 



6.27: a) The friction force is mgkµ , which is directed against the car’s motion, so the net 

work done is mgskµ− . The change in kinetic energy is 2

01 )2/1( mvKK −=−=∆ , and so 

gvs k

2

0 2/ µ= .   b) From the result of part (a), the stopping distance is proportional to the 

square of the initial speed, and so for an initial speed of 60 km/h, 

m3.51)0.80/0.60)(m2.91( 2 ==s . (This method avoids the intermediate calculation of 

kµ , which in this case is about 0.279.) 

 

 
6.28: The intermediate calculation of the spring constant may be avoided by using Eq. 

(6.9) to see that the work is proportional to the square of the extension; the work needed 

to compress the spring 4.00 cm is ( ) J3.21)J0.12(
2

cm00.3

cm00.4 = . 

 

 

6.29: a) The magnitude of the force is proportional to the magnitude of the extension or 

compression; 

 N.64)m050.0/m020.0)(N160(,N48)m050.0/m015.0)(N160( ==  

       b) There are many equivalent ways to do the necessary algebra. One way is to note 

that to stretch the spring the original 0.050 m requires J4)m050.0(
m0.050

N169 2

2
1 ==








, 

so that stretching 0.015 m requires J360.0)050.0/015.0)(J4( 2 =  and compressing 0.020 

m requires J64.0)050.0/020.0)(J4( 2 = . Another is to find the spring constant 

m/N1020.3)m050.0()N160( 3×=÷=k , from which 23 )m015.0)(m/N1020.3)(2/1( ×  

J360.0= and J64.0)m020.0)(m/N1020.3)(2/1(
23 =× . 

 

 
6.30: The work can be found by finding the area under the graph, being careful of the 

sign of the force. The area under each triangle is 1/2 base height× . 

      a) J40)N10)(m8(2/1 = . 

      b) J20)N10)(m4(2/1 += . 

      c) J60)N10)(m12(2/1 = . 

 

 

6.31: Use the Work-Energy Theorem and the results of Problem 6.30. 

     a) s/m83.2
kg10

)J40)(2(
==v  

b) At m12=x , the 40 Joules of kinetic energy will have been increased by 20 J, so  

s/m46.3
kg10

)J60)(2(
==v . 

 

 



6.32: The work you do with your changing force is 

 xdxdxdxxF
m

N
0.3)N0.20()(

9.6

0

9.6

0

9.6

0 ∫∫∫ −−=  

           
9.6

0

29.6

0 |)2/)(
m

N
0.3(|)N0.20( xx −−=  

           J209orJ4.209mN4.71mN138 −−=⋅−⋅−=  

 

The work is negative because the cow continues to advance as you vainly attempt to push 

her backward. 

 

6.33: 12tot KKW −=  

       0,
2

1
2

2

01 == KmvK  

      Work is done by the spring force. 
2

2
1

tot kxW −= , where x is the amount the spring is 

compressed. 

 cm5.8/and
2

1

2

1
0

2

0

2 ==−=− kmvxmvkx  

 

6.34:  a) The average force is N400)m200.0/()J0.80( = , and the force needed to hold 

the platform in place is twice this, or 800 N. b) From Eq. (6.9), doubling the distance 

quadruples the work so an extra 240 J of work must be done. The maximum force is 

quadrupled, 1600 N. 

     Both parts may of course be done by solving for the spring constant 

N/m10004m)2000(J)0.80(2 32 ×=÷= ..k , giving the same results. 

 

 



6.35: a) The static friction force would need to be equal in magnitude to the spring force, 

kdmg =µs  or 76.1
)s/m80.9)(kg100.0(

)m086.0)(m/N0.20(

s 2 ==µ , which is quite large. (Keeping extra figures in 

the intermediate calculation for d gives a different answer.)    b) In Example 6.6, the 

relation 

 
2

1

2

k
2

1

2

1
mvkdmgd =+µ  

 

was obtained, and d was found in terms of the known initial speed 1v . In this case, the 

condition on d is that the static friction force at maximum extension just balances the 

spring force, or mgkd sµ= . Solving for 
2

1v  and substituting, 

 

)),47.0)(60.0(2)60.0((
)m/N0.20(

)s/m80.9)(kg10.0(

)2(

2

2

2
22

ks

2

s

2

s
k

2

s

k

22

1

+







=

+=









+








=

+=

µµµ

µ
µ

µ

µ

k

mg

k

mg
g

k

mg

m

k

dgdd
m

k
v

 

from which s/m67.01 =v . 

 

 
6.36:  a) The spring is pushing on the block in its direction of motion, so the work is 

positive, and equal to the work done in compressing the spring. From either Eq. (6.9) or 

Eq. (6.10), J06.0)m025.0)(m/N200( 2

2
12

2
1 === kxW . 

      b) The work-energy theorem gives 

 s./m18.0
)kg0.4(

)J06.0(22
===

m

W
v  

 

6.37:  The work done in any interval is the area under the curve, easily calculated when 

the areas are unions of triangles and rectangles.   a) The area under the trapezoid is 

J0.4mN0.4 =⋅ .   b) No force is applied in this interval, so the work done is zero.   c) 

The area of the triangle is J0.1mN0.1 =⋅ , and since the curve is below the axis 

)0( <xF , the work is negative, or J0.1− .   d) The net work is the sum of the results of 

parts (a), (b) and (c), 3.0 J. (e) J0.1J02J0.1 −=−+ . . 

 

 



6.38:  a) J0.4=K , so s/m00.2)kg0.2()J0.4(22 === mKv .   b) No work is 

done between m0.3=x  and m0.4=x , so the speed is the same, 2.00 m/s.   c) 

J0.3=K , so s/m73.1)kg0.2/()J0.3(2/2 === mKv . 

 

 

6.39:  a) The spring does positive work on the sled and rider; 22 )2/1()2/1( mvkx = , or 

s/m83.2)kg70/()m/N4000()m375.0(/ === mkxv .   b) The net work done by 

the spring is )()2/1( 2

2

2

1 xxk − , so the final speed is 

 s./m40.2))m200.0()m375.0((
)kg70(

m/N4000(
)( 222

2

2

1 =−=−= xx
m

k
v  

 

 

6.40:  a) From Eq. (6.14), with φRddl = , 

 .sin2cos2cos 0
0

02

1

θφφφ
θ

wRdwRdlFW
P

P
=== ∫∫  

In an equivalent geometric treatment, when F
r
 is horizontal, Fdxd =⋅ lF

rr
, and the total 

work is wF 2=  times the horizontal distance, in this case (see Fig. 6.20(a)) 0sinθR , 

giving the same result.   b) The ratio of the forces is 0tan
2 cot2

0
θ

w
w =θ . 

 

      c) .
2

cot2
)cos1(

sin
2

)cos1(

sin2 0

0

0

0

0 θθ

wR

θwR
=

θ−
=

θ−
 

 

 

6.41: a) The initial and final (at the maximum distance) kinetic energy is zero, so the 

positive work done by the spring, 2)2/1( kx , must be the opposite of the negative work 

done by gravity, θmgLsin− , or 

 cm.7.5
)m/N 640(

0.40sin)m 80.1)(s/m 80.9)(kg 0900.0(2sin2
2

=
°

==
k

θmgL
x  

At this point the glider is no longer in contact with the spring.   b) The intermediate 

calculation of the initial compression can be avoided by considering that between the 

point 0.80 m from the launch to the maximum distance, gravity does a negative amount 

of work given by J567.00.40sin)m80.0m80.1)(s/m80.9)(kg0900.0( 2 −=°−− , and so 

the kinetic energy of the glider at this point is 0.567 J. At this point the glider is no longer 

in contact with the spring. 

 



6.42: The initial and final kinetic energies of the brick are both zero, so the net work done 

on the brick by the spring and gravity is zero, so 0)21( 2 =−mghkd , or 

m.53.0)m/N450/()m6.3)(s/m80.9)(kg80.1(2/2 2 === kmghd  The spring will 

provide an upward force while the spring and the brick are in contact. When this force 

goes to zero, the spring is at its uncompressed length. 

 

 

6.43: J106.3)s3600)(W100()time)(power(Energy 5×===   

 kg.70fors1002so
2

1 2 ==== mK/mvmvK  

 

6.44:  Set time to stop: 

 mamgmaF ==Σ k: µ  

   22

k s/m 96.1)s/m80.9)(200.0( === gµa  

   atvv += 0  

   t)s/m 96.1(s/m 00.80 2−=  

    s 08.4=t  

   
t

mv

t

KE
P

2

2
1

==  

       W157
s08.4

)s/m00.8)(kg0.20( 2

2
1

==  

 

 

6.45:  The total power is W10485.1)s/m00.9)(N165( 3×= , so the power per rider is 

742.5 W, or about 1.0 hp (which is a very large output, and cannot be sustained for long 

periods). 

 

 

6.46:  a)    W.102.3
yr)/s1016.3(

)yr/J100.1( 11

7

19

×=
×

×
 

      b)     .kW/person2.1
folks106.2

W102.3
8

11

=
×

×
 

      c)     .km800m100.8
m/W100.1)40.0(

W102.3 228

23

11

=×=
×

×
 

 

 



6.47: The power is vFP ⋅= . F is the weight, mg, so 

kW. 15.17s)m (2.5 )sm (9.8 kg) 700( 2 ==P  So, 0.23,kW. 75kW 15.17 =  or about 

23% of the engine power is used in climbing. 

 

 

6.48:  a) The number per minute would be the average power divided by the work (mgh) 

required to lift one box, 

 s, 41.1
m) (0.90 )sm (9.80 kg) 30(

hp)W (746 hp) 50.0(
2

=  

or min. 6.84    b) Similarly, 

s, 378.0
m) (0.90 )sm (9.80 kg) (30

 W)100(
2

=  

or min. 7.22  

 

 

6.49:  The total mass that can be raised is 

kg, 2436
m) (20.0 )sm (9.80

s) hp)(16.0W (746 hp) 0.40(
2

=  

so the maximum number of passengers is .28
kg 65.0

kg 1836 =  

 

 

6.50:  From any of Equations (6.15), (6.16), (6.18) or (6.19), 

hp. 3.57 W1066.2
s) (4.00

m) (2.80 N) 3800( 3 =×===
t

Wh
P  

 

 

6.51:  N. 101.8
s))m 6.3(h)km 1(( h)km 65(

hp)W hp)(746 (280,000 )70.0( )70.0( 6ave ×===
v

P
F  

 

 

6.52:  Here, Eq. (6.19) is the most direct. Gravity is doing negative work, so the rope 

must do positive work to lift the skiers. The force F
r
 is gravity, and , mgF =  where   

is the number of skiers on the rope. The power is then 

 

 W.1096.2

)0.15(90.0 cos 
hkm 6.3

sm 1
 h)km (12.0 )sm (9.80 kg) (70 )50(

 cos )( )(

4

2

×=

°−°







=

= φv mgP

 

Note that Eq. (1.18) uses φ  as the angle between the force and velocity vectors; in this 

case, the force is vertical, but the angle °0.15  is measured from the horizontal, so 

°−°= 0.150.90φ  is used. 

 



6.53:  a) In terms of the acceleration a and the time t since the force was applied, the 

speed is atv =  and the force is ma, so the power is .)( )( 2tmaatmaFvP ===  b) The 

power at a given time is proportional to the square of the acceleration, tripling the 

acceleration would mean increasing the power by a factor of nine. c) If the magnitude of 

the net force is the same, the acceleration will be the same, and the needed power is 

proportional to the time. At s 0.15=t , the needed power is three times that at 5.0 s, or 

108 W. 

 

6.54: 

.

2

1 2

PFv

mavmva

dt

dv
mv

mv
dt

d

dt

dK

==

==

=








=

 

 

6.55:  Work done in each stroke is FsW =  and tFstWP 100av ==  

mgFt 2 s, 00.1 == and m. 010.0=s   W.20.0av =P  

 



6.56: 

   
      

Let mass  total=M  and revolution onefor   time=T  
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vdmKE

L
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
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



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














=

=

=

=

∫

∫

∫

 

 

5 revolutions in 3 seconds s 53 =→T  

J. 877s) 53(m) (2.00 kg) 0.12(
3

2 222 == πKE  

 

6.57: a) J 532m) (3.80 N) 140( =  b) J 315)25 sin( m) (3.80 )sm (9.80 kg) 0.20( 2 −=°−   

c) The normal force does no work. 
   d) 

J 20325 cos m) (3.80 )sm (9.80 kg) (20.0 )30.0(

 cos 

2

kkk

−=°−=

−=−=−= θmgsµnsµsfW f
 

    e) J 15J 203J 315J 532 =−−  (14.7 J to three figures). 

    f) The result of part (e) is the kinetic energy at the top of the ramp, so the speed is 

.sm 21.1kg) (20.0J) 7.14(22 === mKv  

 



6.58:  The work per unit mass is .)( ghmW =  

     a) The man does work, kg.J 3.92m) (0.4 kg)N 8.9( =  

     b) 5.6%.100kg)J 70(kg)J 92.3( =×  

     c) The child does work, kg.J 1.96m) (0.2 kg)N 8.9( =  

2.8%.100kg)J 70(kg)J 96.1( =×  

     d) If both the man and the child can do work at the rate of kg,J 07  and if the child 

only needs to use kgJ 96.1  instead of kg,J 92.3  the child should be able to do more pull 

ups. 

 

6.59: a) Moving a distance L along the ramp, ,sin  , outin αLsLs ==  so .
 sin
1
α

IMA =  

      b) If )()( , outininout ssFFIMAAMA ==  and so )( )()( )( ininoutout sFsF = , or .inout WW =  

     c)  

 
     d) 

.
))((

))((

outin

inout

inin

outout

in

out

IMA

AMA

ss

FF

sF

sF

W

W
E ====  

 

6.60: a) kg. 7.41
m) (18.0 )sm (9.80

J) 1035.7(
2

3
g =

×
=

−
==

g

sW

g

w
m  

       b) N. 458
m 0.18

J 1025.8
  

3

n =
×

==
s

W
n  

      c) The weight is N, 408
g ==
s

W
mg  so the acceleration is the net force divided by the   

mass, .sm 2.1
kg 41.7

N 408N 458 2=
−

 

 

6.61:  a) 

J. 1059.2 
)mins (60 min) 1.90(

m) 1066.6(2
 kg) 400,86(

2

12

2

1

2

1 12

2
62

2 ×=






 ×
=







=
π

T

πR
mmv  

                  b) J. 1080.4s)) (3.00m) (1.00( kg) (86,400 )21( )21( 322 ×==mv  

 



6.62: a) 

J 3.22m) (1.5012.0 cos )sm (9.80 kg) (5.00 )31.0(

 cos 

2

kk

−=°−=

−=−= θsmgµsfW f
 

(keeping an extra figure)  b) J.  15.3m) (1.50 12.0sin  )sm (9.80 kg) 00.5( 2 =°  

 c)  The normal force does no work. d) J.  0.7J 3.22J 3.15 −=−   

 e) J, 5.1J 0.7s)m (2.2 kg) (5.00 )21( 2

12 =−=+= WKK  and so 

s/m4.1)kg00.5/()J1.5(22 ==v . 

 

6.63:  See Problem 6.62: The work done is negative, and is proportional to the distance s 

that the package slides along the ramp, sθµθmgW )cos(sin k−= . Setting this equal to 

the (negative) change in kinetic energy and solving for s gives  

)cos(sin2)cos(sin

)2/1(

k

2

1

k

2

1

θµθg

v

θµθmg

mv
s

−
=

−
−=  

m.6.2
)12cos)31.0(12)(sins/m80.9(2

m/s)2.2(
2

2

=
°−°

=  

As a check of the result of Problem 6.62, s/m4.1)m6.2/()m5.1(1)s/m2.2( =− . 

 

6.64:  a) From Eq. (6.7), 

 ∫∫ 







−=




−−=−==
2

1

2

1

2

1

.
111

12

2

x

x

x

x

x

x
x

xx
k

x
k

x

dx
kdxFW  

The force is given to be attractive, so 0<xF  , and k must be positive. If 
12

11
12 ,

xx
xx <> , 

and 0<W .  b) Taking “slowly” to be constant speed, the net force on the object is zero, 

so the force applied by the hand is opposite xF , and the work done is negative of that 

found in part (a), or ( )
21

11
xx

k −  , which is positive if 12 xx > .  c) The answers have the same 

magnitude but opposite signs; this is to be expected, in that the net work done is zero. 

 

6.65:  2

E )/( rRmgF =  

    ∫ ∫ =−−=







−=−= ∞∞

2

1
E

R2

E2

2

E )|)/1((
r

E
E

mgRrmgRdr
mgR

FdsW
R

   

   0, 112tot =−= KKKW     

      This gives J1025.1 12

E2 ×== mgRK  

      2

22
1

2 mvK =  so s/m000,11/2 22 == mKv  

 



6.66:  Let x be the distance past P. 

Ax+= 100.0kµ  

when m5.12=x , 600.0k =µ  

 m04000m5.12/500.0 /.A ==  

 

(a) 

2
2

f
f

2

2

i

2

f
f

2

i
0

2

ik

iff

)s/m50.4(
2

1

2
m)/0400.0()100.0()s/m80.9(

2

1

2
)100.0(

2

1
)1000(

2

1
0

:

f

=







+

=







+

=+

−=−

−=∆=

∫

∫

x
x

v
x

Axg

vdxAx.g

mvmgdxµ

KEKEWKEW

x

 

Solve for m11.5: ff =xx   

     (b) 0.304m)115m)(/0400.0(100.0k =+= .µ  

     (c) iff KEKEW −=  

         2

1k
2

1
0 mvmgxµ −=−  

       m3.10
)s/m80.9)(100.0(2

s)/m50.4(
2/

2

2

k

2

i === gµvx  

 

 

 

6.67:   a) .N00.4)m00.1)(mN00.4( 333 ==α ax  

       b) .N0.32)m00.2)(mN00.4( 333 ==α bx  c) Equation 6.7 gives the work needed to 

move an object against the force; the work done by the force is the negative of this, 

 ∫ −
α

−=α−
2

1

).(
4

4

1

4

2

3
x

x
xxdxx  

With m00.11 == axx  and m00.22 == bxx , J0.15−=W , this work is negative. 

 



6.68: From Eq. (6.7), with 01 =x , 

4

2

33

2

22

2

0 0

4

2

3

2

2

2

32

)m/N 3000()m/N 233()m/N 0.50(

432
)(

2 2

xxx

x
c

x
b

x
k

dxcxbxkxFdxW
x x

+−=

+−=+−== ∫ ∫  

  

 a) When m050.02 =x , J115.0=W , or 0.12 J to two figures. b) When 

m,050.02 −=x J173.0=W , or 0.17 J to two figures. c) It’s easier to stretch the spring; 

the quadratic 
2bx−  term is always in the x− -direction, and so the needed force, and 

hence the needed work, will be less when 02 >x . 

 

6.69:  a) N147.0kg)120.0(
m)400(

m/s)(0.70

rad

22

====
.R

vmmaT , or 0.15 N to two figures. b) At 

the later radius and speed, the tension is N41.9kg)120.0(
m)100(

m/s)(2.80 2

=
.

, or 9.4 N to two 

figures. c) The surface is frictionless and horizontal, so the net work is the work done by 

the cord. For a massless and frictionless cord, this is the same as the work done by the 

person, and is equal to the change in the block’s kinetic energy, 

J441.0))s/m70.0()s/m80.2)((kg120.0)(2/1()()2/1( 222

1

2

212 =−=−=− vvmKK . Note 

that in this case, the tension cannot be perpendicular to the block’s velocity at all times; 

the cord is in the radial direction, and for the radius to change, the block must have some 

non-zero component of velocity in the radial direction. 

 

6.70:  a) This is similar to Problem 6.64, but here 0>α  (the force is repulsive), and 

12 xx < , so the work done is again negative; 

 

J.1065.2

))m1025.1()m200.0((mN1012.2(
11

17

191226

21

−

−−−

×−=

×−⋅×=







−=
xx

W α
 

    Note that 1x  is so large compared to 
2x  that the term 

1

1
x
 is negligible. Then, using Eq. 

(6.13)) and solving for 2v , 

 .s/m1041.2
kg)1067.1(

J)1065.2(2
s)/m1000.3(

2 5

27

17
252

12 ×=
×

×−
+×=+= −

−

m

W
vv  

b) With 12 ,0 KWK −== . Using 
2x

W α−= , 

 .m1082.2
)s/m1000.3)(kg1067.1(

)mN1012.2(22 10

2527

226

2

11

2

−
−

−

×=
××
⋅×

=
α

=
α

=
mvK

x  

c) The repulsive force has done no net work, so the kinetic energy and hence the speed of 

the proton have their original values, and the speed is s/m1000.3 5× . 

 

 



6.71: The velocity and acceleration as functions of time are 

 ttatt
dt

dx
tv βαβα 62)(,32)( 2 +=+==  

a) s./m56.2)s00.4)(s/m02.0(3)s00.4)(s/m20.0(2)s00.4( 232 =+==tv  

b) .N28.5)s00.4)(s/m02.0(6)s/m20.0(2)(kg00.6( 32 =+=ma  

    c) .J7.19s)/m256)(kg00.6)(2/1( 2

212 ===−= KKKW  

 

 

6.72: In Eq. (6.14), dxdl =  and °= 0.31φ  is constant, and so 

 

.J39.30.31cos)m/N00.5(

coscos

m50.1

m00.1

22

2

1

2

1

∫

∫ ∫
=°=

==

dxx

dxFdlFW
P

P

x

x
φφ

 

The final speed of the object is then 

 s./m57.6
)kg250.0(

)J39.3(2
)s/m00.4(

2 22

12 =+=+=
m

W
vv  

 

6.73:   a) )()2/1( 2

1

2

212 vvmKK −=−  

 J.910))s/m00.5()s/m50.1)((kg0.80)(2/1( 22 −=−=  

    b) The work done by gravity is 2 3(80 0kg)(9 80m s )(5 20m) 4 08 10 Jmgh− = − . . / . = − . × , 

so the work done by the rider is 3 3910J ( 4 08 10 J) 3 17 10 J− − − . × = . × . 

 

6.74:  a)  .
)1())1( 1

0

1
0

0

−

∞
∞

− −
=

−−
== ∫ nx

x

nn xn

b

xn

b
dx

x

b
W  

Note that for this part, for 0,1 1 →> −nxn  as ∞→x . b) When 10 << n , the improper 

integral must be used, 

 ,)(
)1(

lim 1

0

1

2
2









−

−
= −−

∞→

nn

x
xx

n

b
W  

and because the exponent on the 1

2

−nx   is positive, the limit does not exist, and the integral 

diverges. This is interpreted as the force F doing an infinite amount of work, even though 

0→F  as .2 ∞→x  

 

 

6.75:  Setting the (negative) work done by the spring to the needed (negative) change in 

kinetic energy, 
2

02
12

2
1 mvkx = , and solving for the spring constant, 

 m./N1003.1
)m070.0(

)s/m65.0)(kg1200( 5

2

2

2

2

0 ×===
x

mv
k  

 

 



6.76:  a) Equating the work done by the spring to the gain in kinetic energy, 
2

2
12

02
1 mvkx = , so 

 .s/m93.6)m060.0(
kg0300.0

m/N400
0 === x

m

k
v  

b) totW  must now include friction, so 0

2

02
1

tot

2

2
1 fxkxWmv −== , where f is the magnitude 

of the friction force. Then, 

 

.s/m90.4)m06.0(
kg)0300.0(

N)00.6(2
)m06.0(

kg0300.0

m/N400

2

2

0

2

0

=−=

−= x
m

x
m

k
v

f

 

c) The greatest speed occurs when the acceleration (and the net force) are zero, or 

m0150.0,
m/N400

N00.6 ====
k

f
xfkx . To find the speed, the net work is 

)()( 0

22

02
1

tot xxfxxkW −−−= , so the maximum speed is 

 

m/s, 5.20

m)0.0150m060.0(
kg)0300.0(

)N00.6(2
))m0150.0()m060.0((

)kg0300.0(

m/N400

)(
2

)(

22

0

22

0max

=

−−−=

−−−= xx
m

f
xx

m

k
v

which is larger than the result of part (b) but smaller than the result of part (a). 

 

6.77:  Denote the initial compression of the spring by x and the distance from the initial 

position by L. Then, the work done by the spring is 2

2
1 kx  and the work done by friction is 

)(k Lxmg +− µ ; this form takes into account the fact that while the spring is compressed, 

the frictional force is still present (see Problem 6.76). The initial and final kinetic 

energies are both zero, so the net work done is zero, and 21
k2

( )kx mg x Lµ= + . Solving for 

L, 

 ,m813.0)m250.0(
)s/m80.9)(kg50.2)(30.0(

)m250.0)(m/N250)(2/1()2/1(
2

2

k

2

=−=−= x
mg

kx
L

µ
 

or 0.81 m to two figures. Thus the book moves m06.1m25.m81. =+ , or about 1.1 m. 

 

6.78:  The work done by gravity is θmgLW sing −=  (negative since the cat is moving 

up), and the work done by the applied force is FL, where F is the magnitude of the 

applied force. The total work is 

 .J4.13130sin)m00.2)(s/m80.9)(kg00.7()m00.2)(N100( 2

tot =°−=W  

The cat’s initial kinetic energy is J2.20)s/m40.2)(kg00.7( 2

2
12

12
1 ==mv , and 

 .s/m58.6
)kg00.7(

)J4.131J2.20(2)(2 1
2 =

+
=

+
=

m

WK
v  

 



6.79:  In terms of the bumper compression x and the initial speed 0v , the necessary 

relations are 

 .5,
2

1

2

1 2

0

2 mgkxmvkx <=  

Combining to eliminate k and then x, the two inequalties are 

 .25and
5 2

22

v

mg
k

g

v
x <>  

    a) Using the given numbers, 

 ,m16.8
)s/m80.9(5

)s/m0.20(
2

2

=>x  

 .m/N1002.1
)s/m0.20(

)s/m80.9)(kg1700(
25 4

2

22

×=<k  

     b) A distance of 8 m is not commonly available as space in which to stop a car. 

 

 

6.80:  The students do positive work, and the force that they exert makes an angle of 

°0.30  with the direction of motion. Gravity does negative work, and is at an angle of 

°0.60  with the chair’s motion, so the total work done is 

J8.257)m50.2)(0.60cos)s/m80.9)(kg0.85(0.30cos)N600(( 2

tot =°−°=W , and so the 

speed at the top of the ramp is 

 .s/m17.3
)kg0.85(

)J8.257(2
s)/m 00.2(

2 2tot2

12 =+=+=
m

W
vv  

Note that extra figures were kept in the intermediate calculation to avoid roundoff error. 

 

 

6.81: a) At maximum compression, the spring (and hence the block) is not moving, so the 

block has no kinetic energy. Therefore, the work done by the block is equal to its initial 

kinetic energy, and the maximum compression is found from ,2
2
12

2
1 mvkX =  or 

 m. 600.0s)m 00.6(
mN 500

kg 00.5
=== v

k

m
X  

b) Solving for v in terms of a known X, 

 s.m 1.50m) 150.0(
kg 00.5

mN 500
=== X

m

k
v  

 



6.82:  The total work done is the sum of that done by gravity (on the hanging block) and 

that done by friction (on the block on the table). The work done by gravity is (6.00 kg) gh 

and the work done by friction is  , kg) 00.8(k ghµ−  so 

 

 J. 58.8m) (1.50 )sm (9.80 kg) 00.8)(25.0(kg 00.6( 2

tot =−=W  

 

This work increases the kinetic energy of both blocks; 

 ,)(
2

1 2

21tot vmmW +=  

so 

 s.m 90.2
kg) (14.00

J) 8.58(2
==v  

 

6.83: See Problem 6.82. Gravity does positive work, while friction does negative work. 

Setting the net (negative) work equal to the (negative) change in kinetic energy, 

 ,)(
2

1
)( 2

212k1 vmmghmµm +−=−  

and solving for kµ  gives 

 

0.79.

kg) 00.8(

m)) (2.00 )sm 80.9((s)m (0.900 kg) (14.00 )21(kg) 00.6(

)( )21(

22

2

2

211
k

=

+
=

++
=

m

ghvmmm
µ

 

 

 

6.84:  The arrow will acquire the energy that was used in drawing the bow (i.e., the work 

done by the archer), which will be the area under the curve that represents the force as a 

function of distance. One possible way of estimating this work is to approximate the F vs. 

x curve as a parabola which goes to zero at 0=x  and ,0xx =  and has a maximum of 0F  

at ,
2
0xx =  so that ).()( 0

4

2
0

0 xxxxF
x

F −=  This may seem like a crude approximation to the 

figure, but it has the ultimate advantage of being easy to integrate; 

 .
3

2
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4
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4
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0

2

0
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0

0

0 0
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F
dxxxx
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F
Fdx

x x

∫ ∫ =







−=−=  

With N 2000 =F  and J. 100 m, 75.00 == Wx  The speed of the arrow is then 

.sm 89
kg) (0.025

J) 100(22 ==
m
W  Other ways of finding the area under the curve in Fig. (6.28) 

should give similar results. 

 

 



6.85:  ,) 25.0( so  25.0 totk smgWWmgf f −===  where s is the length of the rough patch. 

      12tot KKW −=        

     ( )2

02
12

02
12

22
1

2

2

02
1

1 2025.0)45.0(  , mvvmmvKmvK ====  

     The work-energy relation gives 
2

02
1)12025.0()25.0( mvsmg −=−  

     The mass divides out and solving gives m. 5.1=s  

 

 

6.86: Your friend’s average acceleration is 

20 m/s 00.2
s3.00

m/s00.6
==

−
=

t

vv
a  

Since there are no other horizontal forces acting, the force you exert on her is given by 

 

N 130)m/skg)(2.000.65( 2

net === maF  

 

Her average velocity during your pull is 3.00 m/s, and the distance she travels is thus 9.00 

m. The work you do is J1170m)N)(9.00130( ==Fx , and the average power is 

therefore  W.390sJ/3.001170 =  The work can also be calculated as the change in the 

kinetic energy. 

 

6.87: a) figures.  three toJ101.10or  J,101.098m)0.14)(m/skg)(9.80800( 552 ××=  

     b)    J.1030.1)m/skg)(18.0800)(2/1( 52 ×=  

     c)    kW.99.3
s60

J101.30J1010.1 55

=
×+×

 

 

 

6.88:  

.)N/s043.0()N/s43.0(N/s)96.0(

)18184(

)32)(62(

3322

3222

2

ttt

tββttm

βttβtm

mavFvP

++=

++=

++=

==

αα

αα
 

 

At s, 400=t  the power output is 13.5 W. 

 

 

6.89:  Let t equal the number of seconds she walks every day. Then, 

J.101.1)sJ/s)(86400100(J/s)280( 7×=−+ tt Solving for t, hours.3.6s111,13 ==t  

 

 



6.90:        a) The hummingbird produces energy at a rate of J/s7.0 to J/s.75.1  At          

10 beats/s, the bird must expend between 0.07 J/beat and 0.175 J/beat. 

      b) The steady output of the athlete is W/kg,7kgW/70500 = which is below the        

10 W/kg necessary to stay aloft. Though the athlete can expend 

W/kg02kgW/704001 =  for short periods of time, no human-powered aircraft could 

stay aloft for very long. Movies of early attempts at human-powered flight bear out this 

observation. 

 

 

6.91:  From the chain rule, ,)( ghmghWP
dt

dm

dt

d

dt

d ===  for ideal efficiency. Expressing 

the mass rate in terms of the volume rate and solving gives 
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W)102000( 3
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6.92:  a) The power P is related to the speed by ,
2

2
1 mvKPt ==  so .2

m
Ptv =  

      b)   .
22

1222
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P
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dt

d
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P
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dtvxx ====− ∫∫  

 

 

6.93:  a) J.101.26m)63.1)(m/s80.9)(kg/m1005.1)(kg107500( 523333 ×=×× −  

    b) W.1.46s)J)/(86,4001026.1( 5 =×  

 



6.94:  a) The number of cars is the total power available divided by the power needed per 

car, 

 ,177
m/s)N)(27108.2(

W104.13
3

6

=
×

×
 

 

rounding down to the nearest integer. 

      b)  To accelerate a total mass M at an acceleration a and speed v, the extra power 

needed is Mav. To climb a hill of angle α , the extra power needed is .sin vMg α  These 

will be nearly the same if ;sin~ αga  if ,m/s10.0~tan~sin 2αα gg  the power is 

about the same as that needed to accelerate at .m/s10.0 2   

      c) MW.2.9m/s)27)(010.0)(m/skg)(9.801010.1( 26 =×  d) The power per car needed 

is that used in part (a), plus that found in part (c) with M  being the mass of a single car. 

The total number of cars is then 

 ,36
m/s)27))(010.0)(m/skg)(9.8010(8.2N108.2(

W109.2W104.13
243

66

=
×+×

×−×
 

rounding to the nearest integer. 

 

 

6.95: a) MW.2.4m/s)N)(451053( 3

0 =×== FvP  

      b) MW.16m/s))(45m/s5.1(kg)101.9( 25

1 =×== mavP  

      c) Approximating ,sinα  by ,tanα  and using the component of gravity down the 

incline as ,sinαmg   

MW.6.0m/s)5)(0.015)(4m/s80.9(kg)101.9()sin( 25

2 =×== vmgP α  

 

 

6.96:  a) Along this path, y is constant, and the displacement is parallel to the force, so 

J.0.15m)00.3)(N/m50.2(
2

m)(2.002
2

=== ∫ xdxαyW  

    b) Since the force has no y-component, no work is done moving in the y-direction. 

    c) Along this path, y varies with position along the path, given by ,5.1 xy =  so 

,5.1)5.1( 2xxxFx αα ==  and 

J.0.10
3

m)200(
)N/m50.2(5.15.1

3
22 ==== ∫ ∫ dxxdxFW x α  

 

 



6.97: a) 

W.513

m/s)0.12)(m/s)0.12)(kg/m2.1(m463.0)(00.1)(2/1(   

)m/skg)(9.800.62)(0045.0((

)(

232

2

airroll

=

)+

=

+== vFFFvP

 

  
        

6.98: a)         N.1068.1
km/h))m/s)/(3.6km/h)((10.60(

W100.28 3
3

×=
×

==
v

P
F  

  

b) The speed is lowered by a factor of one-half, and the resisting force is lowered by a 

factor of ),4/35.065.0( +  and so the power at the lower speed is 

 

 hp.13.8kW10.30.35/4)0.65kW)(0.50)(0.28( ==+  

  

c) Similarly, at the higher speed, 

 

hp.154kW114.84)0.35.65kW)(2.0)(00.28( ==×+  

  

 



6.99:   a)               N.358
km/h))m/s)/(3.6km/h)((10.60(

W/hp)hp)(74600.8(
=  

  

b) The extra power needed is 

 

hp,2.39kW3.29))10/1(sin(arctan
3.6

km/h6.60
)m/skg)(9.801800(

m/s
km/h

2

|| ===mgv  

 

so the total power is 47.2 hp. (Note: If the sine of the angle is approximated by the 

tangent, the third place will be different.)     c) Similarly, 

 

hp,94.3kW94.2))010.0(sin(arctan
3.6

km/h0.60
)m/skg)(9.801800(

m/s
km/h

2

|| ===mgv  

  

This is the rate at which work is done on the car by gravity. The engine must do work on 

the car at a rate of 4.06 hp.  d) In this case, approximating the sine of the slope by the 

tangent is appropriate, and the grade is 

,0203.0
km/h))m/s)/(3.6km/h)((10.60)(m/skg)(9.801800(

W/hp)hp)(74600.8(
2

=  

  

very close to a 2% grade. 

 

 



6.100:  Use the Work–Energy Theorem, ,KEW ∆=  and integrate to find the work. 

∫ −−=−=∆
x

dxµWmvKE
0

2

0 .)cosmgsinmg( and
2

1
0 αα  

 

Then, 

∫ 







+−=+−=

x
x

xWdxxW
0

2

.cos
2

A
sinmg ,)cosAsin(mg αααα  

  

Set .KEW ∆=  

.cos
2

A
sinmg

2

1 2
2

0 







+−=− αα

x
xmv  

  

To eliminate x, note that the box comes to a rest when the force of static friction balances 

the component of the weight directed down the plane. So, ;cosmg Asinmg α=α x  solve 

this for x and substitute into the previous equation. 

 .
cosA

sin

α
α

=x  

Then, 

 

,cos
2

cosA

sin
A

cosA

sin
sin

2

1

2

2

0





























++= α
α

α

α
α

αgv  

  

and upon canceling factors and collecting terms, .
cosA

sin3 2
2

0 α
αg

v =  Or the box will remain 

stationary whenever .
cosA

sin3 2
2

0 α
αg

v ≥  

 

 



6.101:  a) Denote the position of a piece of the spring by l; 0=l  is the fixed point and 

Ll =  is the moving end of the spring. Then the velocity of the point corresponding to l, 

denoted u, is 
L

vlu 1)( =  (when the spring is moving, l will be a function of time, and so u 

is an implicit function of time). The mass of a piece of length dl is ,dldm
L
M=  and so 

 ,
2

1

2

1 2

3

2
2 dll

L

Mv
dmudK ==  

and 

 ∫ ∫ ===
L

Mv
dll

L

Mv
dKK

0

2
2

3

2

.
62

 

b) ,2
2
12

2
1 mvkx =  so s.m 6.1m) 1050.2(kg) 053.0(m)N 3200()(

2 =×== −
xmkv . 

c) With the mass of the spring included, the work that the spring does goes into the 

kinetic energies of both the ball and the spring, so .2
6
12

2
12

2
1 Mvmvkx +=   Solving for v, 

 s.m 3.9m)1050.2(
3kg) (0.243kg) 053.0(

m)N 3200(

3

2 =×
+

=
+

= −x
Mm

k
v  

d) Algebraically, 

 J 40.0
)31(

)21(

2

1 2
2 =

+
=

mM

kx
mv  and 

 J. 60.0
)31(

)21(

6

1 2
2 =

+
=

Mm

kx
Mv  

 



6.102:  In both cases, a given amount of fuel represents a given amount of work 0W  that 

the engine does in moving the plane forward against the resisting force. In terms of the 

range R and the (presumed) constant speed v, 

 .
2

2

0 






 +==
v

vRRFW
β

α  

In terms of the time of flight ,, vtRT =  so 

 .3

0 






 +==
v

β
vTvTFW α  

a) Rather than solve for R as a function of v, differentiate the first of these relations with 

respect to v, setting 00 =
dv

dW
 to obtain .0=+

dv

dF

dv

dR RF  For the maximum range, ,0=
dv

dR  so 

.0=
dv

dF  Performing the differentiation, ,022 3 =−= vβv
dv
dF α  which is solved for  

 h.km 118sm 9.32
msN 30.0

smN 105.3
41

22

22541

==








⋅
⋅×

=






=
α
β

v  

     b) Similarly, the maximum time is found by setting ;0)( =Fv
dv

d  performing the 

differentiation, ,03 22 =− vβvα  which is solved for 

 h.km 90sm 25
msN 30.0(3

smN 105.3

3

41

22

22541

==








⋅
⋅×

=






=
α
β

v  

 
6.103:  a) The walk will take one-fifth of an hour, 12 min. From the graph, the oxygen 

consumption rate appears to be about min,kgcm 12 3 ⋅  and so the total energy is 

 

 J. 100.2)cmJ(20 min) (12 kg) (70 min)kgcm 12( 533 ×=⋅  

 

b) The run will take 6 min. Using an estimation of the rate from the graph of about 

minkgcm 33 3 ⋅  gives an energy consumption of about J. 108.2 5×  c) The run takes 4 

min, and with an estimated rate of about min,kgcm 50 3 ⋅  the energy used is about 

J. 10 8.2 5×  d) Walking is the most efficient way to go. In general, the point where the 

slope of the line from the origin to the point on the graph is the smallest is the most 

efficient speed; about 5 h.km  

 



6.104: From yyxx maFmaFm === ,,aF
rr

 and .zz maF =  The generalization of Eq. (6.11) 

is then 

 .  , ,
dz

dv
va

dy

dv
va

dx

dv
va z

zz

y

yy
x

xx ===  

The total work is then 

 

.
2

1

2

1

(
2

1

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

2

),,(

),,(
tot

2

2

2

1

2

1

2

1

2

1

2

1

222

111

mvmv

vvvvvvm

dvvdvvdvvm

dz
dz

dv
vdy

dy

dv
vdx

dx

dv
vm

dzFdyFdxFW

zzyyxx

v

v
zz

v

v
yy

v

v
xx

x

x

z

z

z
z

y
y

y
y

x
x

zyx

zyx
zyx

z

z

y

y

x

x

−=

−+−+−=







 ++=









++=

++=

∫∫∫

∫ ∫∫

∫

 

 



Capítulo 7 



7.1:   From Eq. (7.2), 
 

.MJ  3.45J 103.45m) (440 )sm (9.80 kg) 800( 62 =×==mgy  

 

 
7.2:   a) For constant speed, the net force is zero, so the required force is the sack’s 

weight, N. 49)sm kg)(9.80 00.5( 2 =   b) The lifting force acts in the same direction as the 

sack’s motion, so the work is equal to the weight times the distance, 

J; 735m)(15.0 N) 00.49( =  this work becomes potential energy. Note that the result is 

independent of the speed, and that an extra figure was kept in part (b) to avoid roundoff 
error. 
 

 

7.3:   In Eq. (7.7), taking 01 =K  (as in Example 6.4) and .,0 other122 WUKU +==  

Friction does negative work ,fy−  so ;2 fymgyK −=  solving for the speed ,2v  

 

.sm 55.7
kg) 200(

m) (3.00 N) 60)sm (9.80 kg) 200((2)(2 2

2 =
−

=
−

=
m

yfmg
v  

 

 

7.4:   a) The rope makes an angle of ( ) °= 30arcsin
m 6.0
m 0.3  with the vertical. The needed 

horizontal force is then N, 67930 tan )sm (9.80 kg) 120( tan 2 =°=θw  or N 108.6 2× to 

two figures.  b) In moving the bag, the rope does no work, so the worker does an amount 
of work equal to the change in potential energy, 

J.  10 0.95)30 cos(1 m) (6.0 )sm (9.80 kg) 120( 32 ×=°−  Note that this is not the product 

of the result of part (a) and the horizontal displacement; the force needed to keep the bag 
in equilibrium varies as the angle is changed. 

 

 

7.5:   a) In the absence of air resistance, Eq. (7.5) is applicable. With m, 0.2221 =− yy  

solving for 2v  gives 

s.m 0.24m) 0.22)(sm 80.9(2s)m 0.12()(2 22

12

2

12 =+=−+= yygvv  

   b) The result of part (a), and any application of Eq. (7.5), depends only on the 

magnitude of the velocities, not the directions, so the speed is again s.m 0.24   c) The 

ball thrown upward would be in the air for a longer time and would be slowed more by 
air resistance. 

 

 



7.6:    a) (Denote the top of the ramp as point 2.) In Eq. (7.7), 

J,  5.87m) (2.5N) 35( ,0 other2 −=×−== WK  and taking 01 =U  and 

s,m 25.6 J, 147)30sin  m (2.5 )sm (9.80 kg) 12(
kg 12

J) 5.87J 147(2

1

2

22 ===°== +
vmgyU  or 

sm 3.6  to two figures. Or, the work done by friction and the change in potential energy 

are both proportional to the distance the crate moves up the ramp, and so the initial speed 

is proportional to the square root of the distance up the ramp; .sm 25.6 s)m 0.5(
m 1.6
m 2.5 =  

       b) In part a), we calculated otherW  and 2U . Using Eq. (7.7), 

J  491.5J  147J  5.87s)m (11.0 kg) 12( 2

2
1

2 =−−=K  

.sm 05.9
kg) 12(

J)  5.491(22

2
2 ===
m

K
v  

 

 

7.7:    As in Example 7.7, J,  94 ,0 22 == UK  and .03 =U  The work done by friction is  

 

J,  56m) (1.6 N) 35( −=−  and so J, 383 =K  and .sm 5.2
Kg 12

J) 38(2

3 ==v  

 

 
7.8:    The speed is v and the kinetic energy is 4K. The work done by friction is 
proportional to the normal force, and hence the mass, and so each term in Eq. (7.7) is 
proportional to the total mass of the crate, and the speed at the bottom is the same for any 
mass. The kinetic energy is proportional to the mass, and for the same speed but four 
times the mass, the kinetic energy is quadrupled. 
 

 

7.9:    In Eq. (7.7), other1  ,0 WK =  is given as J, 22.0−  and taking 

J,  22.0,0 22 −== mgRKU  so 

m/s. 8.2
kg 0.20

J 22.0
m) (0.50 )sm 80.9(2 2

2 =







−=v  

 

 



7.10:    (a) The flea leaves the ground with an upward velocity of 1.3 m/s and then is in 

free-fall with acceleration 2sm 8.9  downward. The maximum height it reaches is 

therefore cm. 0.9)(2)( 2

0

2 =−− gvv yy  The distance it travels in the first 1.25 ms can be 

ignored. 
     (b)  

J  10 1.8ergs 8.1

s)cm (130 g) 10210(
2

1

2

1

7

26

2

−

−

×==

×=

== mvKEW

 

 

 
7.11:    Take 0=y  at point A. Let point 1 be A and point 2 be B. 

J.  5400 giveshen relation tenergy - workThe

J 3840J, 500,37
2

1

 J, 224,28)2(,0

122

2

22
1

2

2

11

other21

22other11

−=−+=

====

====

+=++

KUKW

mvKmvK

WWRmgUU

UKWUK

f

f

 

 

7.12:    Tarzan is lower than his original height by a distance ),45cos30 (cos −l  so his 

speed is 

,sm 9.7)45cos30(cos2 =°−°= glv  

a bit quick for conversation. 

 

 



7.13:    a) The force is applied parallel to the ramp, and hence parallel to the oven’s 

motion, and so J.  880m) (8.0 N) 110( === FsW  b) Because the applied force F
r
 is 

parallel to the ramp, the normal force is just that needed to balance the component of the 
weight perpendicular to the ramp, , cosαwn =  and so the friction force is 

αµ  coskk mgf =  and the work done by friction is 

J,  157m) 0.8(37 cos )sm (9.80 kg) (10.0 )25.0( cos 2

kf −=°−=−= smgW αµ  

keeping an extra figure.  c) J47237sin)m0.8)(sm80.9)(kg0.10(sin 2 =°=αmgs , 

again keeping an extra figure.  d) J. 251J 157J 472J 880 =−−   e) In the direction up the 
ramp, the net force is 

N, 31.46                     

)37 cos )25.0(37 )(sinsm kg)(9.80 0.10(N 110                     

 cossin  

2

k

=

°+°−=

−− αµα mgmgF

 

so the acceleration is .sm 3.15kg) 10.0N) 46.31( 2=  The speed after moving up the 

ramp is ,sm 09.7m) (8.0)sm 15.3(22 2 === asv  and the kinetic energy is 

J. 252)21( 2 =mv  (In the above, numerical results of specific parts may differ in the third 

place if extra figures are not kept in the intermediate calculations.) 
 

 
7.14:    a) At the top of the swing, when the kinetic energy is zero, the potential energy 
(with respect to the bottom of the circular arc) is ), cos1( θmgl −  where l is the length of 

the string and θ  is the angle the string makes with the vertical. At the bottom of the 

swing, this potential energy has become kinetic energy, so ,)cos1( 2

2
1mvθmgl =−  or 

sm 1.2)45 cos1( m)800( )sm 809(2)cos1(2 2 =°−=−=  ..θglv .  b) At °45  from the 

vertical, the speed is zero, and there is no radial acceleration; the tension is equal to the 

radial component of the weight, or N. 83.045 cos )sm (9.80 kg) 12.0( cos 2 =°=θmg   c) 

At the bottom of the circle, the tension is the sum of the weight and the radial 
acceleration, 

N, 1.86))45 cos1(21(2

2 =°−+=+ mglmvmg  

or 1.9 N to two figures. Note that this method does not use the intermediate calculation of 
v. 
 

 
7.15:    Of the many ways to find energy in a spring in terms of the force and the 
distance, one way (which avoids the intermediate calculation of the spring constant) is to 
note that the energy is the product of the average force and the distance compressed or 

extended. a) J.  80.0m) N)(0.200 800)(21( =  b) The potential energy is proportional to 

the square of the compression or extension; J. 0.5)m 0.200m 0.050( J) 0.80( 2 =  



7.16:    ,2
2
1 kyU =  where y is the vertical distance the spring is stretched when the weight 

mgw =  is suspended. ,
k

mg
y =  and ,

x
Fk =  where x and F are the quantities that 

“calibrate” the spring. Combining, 

J  0.36
m) 0.150N 720(

))sm (9.80 kg) 0.60((

2

1)(

2

1 222

===
xF

mg
U  

 

 

7.17:    a) Solving Eq. (7.9) for m. 063.0,
m)N 1600(

J) 20.3(22 ===
k
Uxx  

      b) Denote the initial height of the book as h and the maximum compression of the 
spring by x. The final and initial kinetic energies are zero, and the book is initially a 

height hx +  above the point where the spring is maximally compressed. Equating initial 

and final potential energies, ).(2

2
1 hxmgkx +=  This is a quadratic in x, the solution to 

which is 

 

m. 101.0 m, 116.0

)sm(9.80 kg) (1.20

m) (0.80 m)N 1600(2
11

m)N 1600(

)sm kg)(9.80 20.1(

2
11

2

2

−=









+±=









+±=
mg

kh

k

mg
x

 

The second (negative) root is not unphysical, but represents an extension rather than a 
compression of the spring. To two figures, the compression is 0.12 m. 

 

 
7.18:    a) In going from rest in the slingshot’s pocket to rest at the maximum height, the 
potential energy stored in the rubber band is converted to gravitational potential energy; 

J. 2.16m) (22.0 )sm kg)(9.80 1010( 23 =×== −mgyU  

       b) Because gravitational potential energy is proportional to mass, the larger pebble 
rises only 8.8 m. 
       c) The lack of air resistance and no deformation of the rubber band are two possible 
assumptions. 
 
 
7.19:    The initial kinetic energy and the kinetic energy of the brick at its greatest height 

are both zero. Equating initial and final potential energies, ,2

2
1 mghkx =  where h  is the 

greatest height. Solving for h, 

 m. 7.1
)sm (9.80 kg) 20.1(2

m) (0.15 m)N 1800(

2 2

22

===
mg

kx
h  

 

 



7.20:    As in Example 7.8, 1 0K =  and J. 0250.01 =U  For s,m20.02 =v  

J,0040.02 =K  so ,J 0210.0 2

2
1

2 kxU ==  so m.092.0
mN5.00

J)0210.0(2 ±=±=x  In the absence 

of friction, the glider will go through the equilibrium position and pass through 
m 092.0−=x  with the same speed, on the opposite side of the equilibrium position. 

 

 

7.21:    a) In this situation, 02 =U  when ,0=x  so J 0250.02 =K  and 

s.m 500.0
kg 0.200

J) 0250.0(2

2 ==v  b) If s,m 50.22 =v  

 ,J  625.0s)m kg)(2.50 (0.200 )21( 1

2

2 UK ===  so m. 500.0
mN 5.00

J) 625.0(2

1 ==x  Or, 

because the speed is 5 times that of part (a), the kinetic energy is 25 times that of part (a), 
and the initial extension is m. 0.500m 100.05 =×  
 
 
7.22:    a) The work done by friction is 

J, 00196.0m) (0.020 )sm (9.80 kg) (0.200 )05.0( 2

kother −=−=∆−= xmgµW  

so J 00704.02 =K  and .sm 27.0
kg 0.200

J) 00704.0(2

2 ==v  b) In this case J, 0098.0other −=W  so 

J, 0.0152J 0098.0J 0250.02 =−=K  and s.m 39.0kg 0.200

J) 0152.0(2

2 ==v  

   c) In this case, ,02 =K  ,02 =U  so 

.13.0or  m), 100.0()sm (9.80 kg) 200.0(J 0250.00
k

2

kother1 =×−==+ µµWU  

 

 

7.23:    a) In this case,  J 000,6251 =K  as before, J 000,17other −=W  and 

J. 900,50

)00.1( )sm (9.80 kg) 2000(m) 00.1( m)N 1041.1)(21(

)21(

225

2

2

22

=

−+−×=

+= mgykyU

 

The kinetic energy is then J 557,100 J 000,17J 900,50J 000,6252 =−−=K , 

corresponding to a speed s.m 6.232 =v  b) The elevator is moving down, so the friction 

force is up (tending to stop the elevator, which is the idea). The net upward force is then 

kxfmg 400,138)m00.1()mN1041.1(N000,17)sm80.9)(kg2000( 52 =−×−+−=−+−

 for an upward acceleration of .sm2.69
2
 

 

 



7.24:    From ,mvkx
2

2
12

2
1 =  the relations between m, v, k and x are 

 .522 mgkx,mvkx ==  

Dividing the first by the second gives ,x
g
v
5

2

=  and substituting this into the second gives 

,k
v

mg
2

2

25=  so a) & b), 

 

.mN1046.4
)sm50.2(

)sm80.9)(kg1160(
25

,m128.0
)sm5(9.80

)sm50.2(

5

2

22

2

2

×==

==

k

x

 

 

 

7.25:    a) Gravity does negative work, J.118)m16)(sm80.9)(kg75.0(
2 −=−   b) 

Gravity does 118 J of positive work.  c) Zero  d) Conservative; gravity does no net work 
on any complete round trip. 
 
 

7.26:     a) & b) J.5.2)m0.5)(smkg)(9.80050.0(
2 −=−  

 

 
 

    c) Gravity is conservative, as the work done to go from one point to another is path-
independent. 
 
 

7.27:    a) The displacement is in the y-direction, and since F
r
 has no y-component, the 

work is zero. 
    b) 

 J.104.0)(
3

N/m12
12 3

1

3

2

2
22

1

2

1

−=−−=−=⋅ ∫∫ xxdxxd
x

x

P

P
lF
rr

 

c) The negative of the answer to part (b), 3m104.0  d) The work is independent of 

path, and the force is conservative. The corresponding potential energy is 

.)mN4( 32

3

)mN12( 32

xU
x ==  

 
 



7.28:    a) From (0, 0) to (0, L), 0=x  and so ,0=F
r

, and the work is zero. From (0, L) to 

(L, L), F
r
 and l

r
d  are perpendicular, so .0=⋅ lF

rr
d  and the net work along this path is 

zero.  b) From (0, 0) to (L, 0), .0=⋅ lF
rr
d  From (L, 0) to (L, L), the work is that found in 

the example, ,CLW 2

2 =  so the total work along the path is .2CL   c) Along the diagonal 

path, y,x =  and so ; dyCyd =⋅ lF
rr

 integrating from 0 to L gives .
2

2CL  (It is not a 

coincidence that this is the average to the answers to parts (a) and (b).)  d) The work 
depends on path, and the field is not conservative. 
 
 
7.29:     a) When the book moves to the left, the friction force is to the right, and the work 
is J.6.3)m0.3)(N2.1( −=−   b) The friction force is now to the left, and the work is again 

.J6.3−  c) .J2.7−   d) The net work done by friction for the round trip is not zero, and 

friction is not a conservative force. 
 
 

7.30:    The friction force has magnitude N.8.58)m/s80.9)(kg0.30)(20.0( 2

k ==mgµ  a) 

For each part of the move, friction does ,J623)m6.10)(N8.58( −=−  so the total work 

done by friction is .kN2.1−   b) .N882)m0.15)(N8.58( −=−  

7.31:    The magnitude of the friction force on the book is 

 N.68.3)sm80.9)(kg5.1)(25.0(
2

k ==mgµ  

a) The work done during each part of the motion is the same, and the total work done 
is J59)m0.8)(N68.3(2 −=−  (rounding to two places).   b) The magnitude of the 

displacement is ,)m0.8(2  so the work done by friction is 

.N42)N68.3)(m0.8(2 −=−  c) The work is the same both coming and going, 

and the total work done is the same as in part (a), .J59−  d) The work required to 

go from one point to another is not path independent, and the work required for a 
round trip is not zero, so friction is not a conservative force. 

 
 

7.32:    a) )( 2

2

2

12
1 xxk −   b) ).( 2

2

2

12
1 xxk −−  The total work is zero; the spring force is 

conservative  c) From 1x  to ,3x  ).( 2

1

2

32
1 xxkW −−=  From 3x  to ,x2  ).( 2

3

2

22
1 xxkW −=  

The net work is ).( 2

1

2

22
1 xxk −−  This is the same as the result of part (a). 

 
 
7.33:    From Eq. (7.17), the force is 

 .
61

7

6

66
x

C

xdx

d
C

dx

dU
Fx −=







=−=  

The minus sign means that the force is attractive. 
 
 
 



7.34:    From Eq. (7.15), ,xxF
dx
dU

x

343 )mJ8.4(4 −=−=−= α  and so 

.N46.2)m80.0)(mJ8.4()m800.0( 34 =−−=−xF  

 
 

7.35:    ,xkkyy,kkx
z
U

y
U

x
U 0  and  2  2 =′+=′+= ∂

∂
∂
∂

∂
∂  so from Eq. (7.19), 

.ˆ)2(ˆ)2( jiF xkkyykkx ′+−′+−=
r

 

 

 

7.36:    From Eq. (7.19), ,
y
U

x
U jiF ˆˆ

∂
∂

∂
∂ −−=

r
 since U has no z-dependence. 

so    and  33

22 ,
yy

U

xx
U αα −

∂
∂−

∂
∂ ==  

 . ˆ2ˆ2
33 







 −
+

−
−= jiF

yx
α

r
 

 

 



7.37:    a) .612 713 r

b

r

a

r

U
rF −=−= ∂

∂  

 

 
 

     b) Setting 0=rF  and solving for r gives .)2( 6/1

min bar =  This is the minimum of 

potential energy, so the equilibrium is stable. 
     c) 

 

.
424

))/2(())/2((

)(

22

2

2

66/1126/1

6

min

12

min

min

a

b

a

b

a

ab

ba

b

ba

a

r

b

r

a
rU

−=−=

−=

−=

 

To separate the particles means to remove them to zero potential energy, and requires the 

negative of this, or .42

0 abE =   d) The expressions for 0E  and minr  in terms of a and b 

are 

 .
2

4

6

min

2

0
b

a
r

a

b
E ==  

Multiplying the first by the second and solving for b gives 6

min02 rEb = , and substituting 

this into the first and solving for a gives 12

min0rEa = . Using the given numbers, 

.mJ1041.6)m1013.1)(J1054.1(2

mJ1068.6)m1013.1)(J1054.1(

67861018

12138121018

⋅×=××=

⋅×=××=
−−−

−−−

b

a
 

(Note: the numerical value for a might not be within the range of standard calculators, 
and the powers of ten may have to be handled seperately.) 
 
 

7.38:    a) Considering only forces in the x-direction, ,F
dx
dU

x −=  and so the force is zero 

when the slope of the U vs x graph is zero, at points b and d.  b) Point b is at a potential 
minimum; to move it away from b would require an input of energy, so this point is 
stable. c) Moving away from point d involves a decrease of potential energy, hence an 
increase in kinetic energy, and the marble tends to move further away, and so d is an 
unstable point. 
 
 



7.39:     a) At constant speed, the upward force of the three ropes must balance the force, 
so the tension in each is one-third of the man’s weight. The tension in the rope is the 

force he exerts, or .N2293)sm80.9)(kg0.70(
2 =   b) The man has risen 1.20 m, and so 

the increase in his potential energy is .J823)m20.1)(sm80.9)(kg0.70(
2 =  In moving up 

a given distance, the total length of the rope between the pulleys and the platform 
changes by three times this distance, so the length of rope that passes through the man’s 
hands is ,m60.3m20.13 =×  and .J824)m6.3)(N229( =  

 
 
7.40:    First find the acceleration: 

 
2

2

0

2

0

2

sm75.3
)m2(1.20

)sm00.3(

)(2
==

−
−

=
xx

vv
a  

Then, choosing motion in the direction of the more massive block as positive: 

 

m 24.2

24.2
sm)75.380.9(

sm)75.380.9(

)()(

)(

2

2

net

=

=
−

+
=

−
+

=

+=−

+=+=−=

M

ag

ag

m

M

agmagM

maMaamMmgMgF

 

  

kg 410kg 4.63kg 015

kg 63.4

kg 0.1524.2

:kg 0.15 Since

..M

m

mm

mM

=−=

=

=+

=+

 

 

 

7.41:     a) 22other11 UKWUK +=++  

    0221 === KUU  

    m85.3ft280  with  kother ==−== smgs,WW f µ  

    The work-energy expression gives 0k

2

12
1 =− mgsmv µ  

    ;mph50sm4.222 k1 === gsv µ  the driver was speeding. 

a) 15 mph over speed limit so $150 ticket. 
 

 



7.42:     a) Equating the potential energy stored in the spring to the block's kinetic energy, 

,mvkx
2

2
12

2
1 =  or 

 .sm11.3)m220.0(
kg00.2

mN400
=== x

m

k
v  

     b) Using energy methods directly, the initial potential energy of the spring is the final 

gravitational potential energy, ,sin2

2
1 θmgLkx =  or 

 m.821.0
0.37sin)sm80.9)(kg00.2(

)m220.0)(mN400(

sin 2

2

2
12

2
1

=
°

==
θmg

kx
L  

 

 
7.43:    The initial and final kinetic energies are both zero, so the work done by the spring 

is the negative of the work done by friction, or mgl,µkx k

2

2
1 =  where l is the distance the 

block moves. Solving for ,µk  

 .41.0
)m00.1)(sm80.9)(kg50.0(

)m20.0)(mN100)(2/1()2/1(
2

22

k ===
mgl

kx
µ  

 

 
7.44:    Work done by friction against the crate brings it to a halt: 

 
N 29.64

m 5.60

J 360

spring compressed ofenergy  potential

k

k

==

=

f

xf

 

The friction force working over a 2.00-m distance does work 

.J6.128)m00.2)(N29.64(k −=−=xf  The kinetic energy of the crate at this point is thus 

,J4.231J6.128J360 =−  and its speed is found from 

 

sm 04.3

sm 256.9
kg 050

J) 4.231(2

J 4.231
2

222

2

=

==

=

v

.
v

mv

 

 

 

7.45:     a) J9.15)m50.2)(sm80.9)(kg650.0(
2 ==mgh  

     b) The second height is ,m875.1)m50.2(75.0 =  so second ; J9.11=mgh  loses 

J4.0J11.9J9.15 =−  on first bounce. This energy is converted to thermal energy. 

a) The third height is ,m40.1)m875.1(75.0 = , so third ; J9.8=mgh  loses 

J3.0J8.9J9.11 =−  on second bounce. 

 
 



7.46:     a) .)2( 2

2
1

ABA mvRhmgUU =−=−  From previous considerations, the speed at the 

top must be at least .gR  Thus, 

 .
2

5
or      

2

1
)2( RhmgR,Rhmg >>−  

     b) ,KRmgUU CCA ==− )50.2(  so 

 .sm3.31)m0.20)(sm80.9)(00.5()00.5(
2 === gRvC  

The radial acceleration is .sm0.49
2

rad

2

==
R

vCa  The tangential direction is down, the 

normal force at point C is horizontal, there is no friction, so the only downward force is 

gravity, and .sm80.9
2

tan == ga  

 
 
7.47:     a) Use work-energy relation to find the kinetic energy of the wood as it enters the 

rough bottom: 21 KU =  gives J.4.7812 == mgyK  

      Now apply work-energy relation to the motion along the rough bottom: 

     
J 478  ; 0  , 1212kother

22other11

.KUUKmgsWW

UKWUK

f ====−==

+=++

µ
 

      ; 0J4.78 k =− mgsµ  solving for s gives m.0.20=s  

      The wood stops after traveling 20.0 m along the rough bottom. 
       b) Friction does J4.78−  of work. 

 
 



7.48:     (a) 

 

m 3.9

)sm 8.9(
40sin

40cos
)sm 8.9)(20.0()sm 15(

2

1

sin
cos

2

1

sin

cos
2

1

222

k

2

0

k

2

0

TopfBottom

=

=
°
°

−

=−

=

=−

=+

h

hh

gh
h

gv

hd

mghdθmgmv

PEWKE

θ
θµ

θ

µ

 

(b) Compare maximum static friction force to the weight component down the plane. 

 

s

2

2

ss

N 176)40)(sinsm kg)(9.8 28(sin

N 158

40cos)sm kg)(9.8 28)(75.0(cos

fmg

mgf

>=°=

=

°==

θ

θµ

 

so the rock will slide down. 

    (c) Use same procedure as (a), with m3.9=h  

 

sm11.8 sincos22

2

1

sin
cos

kB

2

Bk

BottomfTop

=−=

=−

=+

θθµ
θ

θµ

ghghv

mv
h

mgmgh

KEWPE

 

 

 



7.49:     a) 22other11 UKWUK +=++  

      Let point 1 be point A and point 2 be point B. Take 0=y  at point B. 

      ,mvmvmgy 2

22
12

12
1

1 =+  with m0.20=h  and sm0.101 =v  

      sm2.2222

12 =+= ghvv  

      b) Use ,UKWUK 22other11 +=++  with point 1 at B and point 2 where the spring has    

its maximum compression x. 

      sm2.22  with   ; 0 1

2

12
1

1221 ===== vmvKKUU  

      ,kxmgsWWW f

2

2
1

kelother −−=+= µ  with xs += m100  

      The work-energy relation gives .0other1 =+WK  

      02

2
1

k

2

12
1 =−− kxmgsmv µ  

       Putting in the numerical values gives .07504.292 =−+ xx  The positive root to this 

equation is .m4.16=x  

      b) When the spring is compressed m4.16=x  the force it exerts on the stone is 

N.8.32el == kxF  The maximum possible static friction force is 

 N.118)sm80.9)(kg0.15)(80.0(max
2

ss === mgf µ  

The spring force is less than the maximum possible static friction force so the stone 
remains at rest. 
 
 
7.50:    First get speed at the top of the hill for the block to clear the pit. 

 

sm 20
s 20

m 40
m 40

s 0.2

)sm 8.9(
2

1
m 20

2

1

TopTop

22

2

==→=

=

=

=

vtv

t

t

gty

 

Energy conservation: 

 

sm 42

m) 70()sm 8.9(2)sm 20(

2

2

1

2

1

22

2

TB

2

T

2

B

TopTopBottom

=

+=

+=

+=

+=

ghvv

mvmghmv

KEPEKE

 

 

 



7.51:    22other11 UKWUK +=++  

      Point 1 is where he steps off the platform and point 2 is where he is stopped by the 

cord. Let 0=y  at point 2. ,kxWy 2

2
1

other1   m.0.41 −==  where m0.11=x  is the amount 

the cord is stretched at point 2.The cord does negative work. 

     ,UKK 0221 ===  so 02

2
1

1 =− kxmgy  and .N/m631=k  

      Now apply kxF =  to the test pulls: 

     kxF =  so .m602.0== kFx  

 

 

7.52:    For the skier to be moving at no more than sm0.30 ; his kinetic energy at the 

bottom of the ramp can be no bigger than 

 J250,38
2

)sm0.30)(kg0.85(

2

22

==
mv

 

      Friction does J4000−  of work on him during his run, which means his combined PE 

and KE at the top of the ramp must be no more than J.42,250J4000J250,38 =+  His KE 

at the top is 

 J170
2

)sm0.2)(kg0.85(

2

22

==
mv

 

His PE at the top should thus be no more than ,J42,080J170J250,42 =−  which gives a 

height above the bottom of the ramp of 

 .m5.50
)sm80.9)(kg0.85(

J080,42J080,42
2

===
mg

h  

 

 
7.53:    The net work done during the trip down the barrel is the sum of the energy stored 
in the spring, the (negative) work done by friction and the (negative) work done by 

gravity. Using ,kFkx )( 2

2
12

2
1 =  the performer’s kinetic energy at the top of the barrel is 

 

J,107.17m)5.2)(smkg)(9.80(60m)N)(4.040(
mN1100

N)4400(

2

1 32
2

×=−−=K  

  

and his speed is .sm5.15
kg60

)J1017.7(2 3

=×
 

 

 



7.54:    To be at equilibrium at the bottom, with the spring compressed a distance ,x0  the 

spring force must balance the component of the weight down the ramp plus the largest 

value of the static friction, or .sin0 fθwkx +=  The work-energy theorem requires that 

the energy stored in the spring is equal to the sum of the work done by friction, the work 
done by gravity and the initial kinetic energy, or 

 ,mvLfwkx 22

0
2

1
)sin(

2

1
+−= θ  

where L is the total length traveled down the ramp and v is the speed at the top of the 

ramp. With the given parameters, J2482

02
1 =kx  and N.1010.1 3

0 ×=kx  Solving for k 

gives .mN2440=k  

 

 
7.55:    The potential energy has decreased by 

J.8.156)m00.2)(sm(9.80kg)(4.0m)00.2)(smkg)(9.800.12(
22 =×−  The kinetic 

energy of the masses is then ,vvmm J8.156)kg0.8()(
2

1 22

21 ==+  so the common speed is 

,v sm43.4
kg0.8

J)8.156( ==  or sm4.4  to two figures. 

 

 



7.56:    a) The energy stored may be found directly from 

     J.1033.6)J000,58(J000,51J000,625
2

1 5

2other1

2

2 ×=−−−=−+= mgyWKky  

        b) Denote the upward distance from point 2 by h. The kinetic energy at point 2 and 
at the height h are both zero, so the energy found in part (a) is equal to the negative of the 
work done by gravity and friction, 

h,hhfmg )N600,36()N000,17)sm80.9)(kg2000(()(
2 =+−=+−  so 

m.3.17
J1066.3

J1033.6
4

5

==
×

×
h   c) The net work done on the elevator between the highest point of 

the rebound and the point where it next reaches the spring is 

J.1072.3)m00.3)(( 4×=−− hfmg  Note that on the way down, friction does negative 

work. The speed of the elevator is then .sm10.6
kg2000

)J1072.3(2 4

=×
  d) When the elevator 

next comes to rest, the total work done by the spring, friction, and gravity must be the 

negative of the kinetic energy 3K  found in part (c), or 

.)mN1003.7(N)600,2(
2

1
)(J1072.3 2

3

4

3

2

33

4

3 xxkxxfmgK ×+−=+−−=×=  

      
      (In this calculation, the value of k was recalculated to obtain better precision.) This is 

a quadratic in 3x , the positive solution to which is 

[ ]
m,746.0

)J1072.3)(mN1003.7(4N)10(2.60N1060.2

)mN1003.7(2

1

44233

43

=

××+×+××

×
=x

 

       

corresponding to a force of N1005.1 5×  and a stored energy of J1091.3 4× . It should be 

noted that different ways of rounding the numbers in the intermediate calculations may 
give different answers. 
 
 



7.57:    The two design conditions are expressed algebraically as 

N1066.3 4×=+= mgfky  (the condition that the elevator remains at rest when the 

spring is compressed a distance y; y will be taken as positive) and 
2

2
12

2
1 kxfymgymv =−+  (the condition that the change in energy is the work 

fyW −=other ). Eliminating y in favor of k by 
k

y
N1066.3 4×=  leads to 

 

kk

)N1066.3)(N1070.1()N1066.3(

2

1 4424 ××
+

×
 

  .
N)10N)(3.6610(1.96

J105.62
44

4

k

××
+×=  

     

This is actually not hard to solve for mN919=k , and the corresponding x is 39.8 m. 

This is a very weak spring constant, and would require a space below the operating range 
of the elevator about four floors deep, which is not reasonable.  b) At the lowest point, the 

spring exerts an upward force of magnitude mgf + . Just before the elevator stops, 

however, the friction force is also directed upward, so the net force is 

fmgfmgf 2)( =−++ , and the upward acceleration is 22
sm0.17=

m

f
. 

 

 
7.58:    One mass rises while the other falls, so the net loss of potential energy is 
 

.J176.1)m400.0)(sm80.9)(kg2000.0kg5000.0( 2 =−  

 
This is the sum of the kinetic energies of the animals. If the animals are equidistant from 

the center, they have the same speed, so the kinetic energy of the combination is 2

tot2
1 vm , 

and 

.sm83.1
)kg7000.0(

)J176.1(2
==v  

 

 
7.59:    a) The kinetic energy of the potato is the work done by gravity (or the potential 

energy lost), mglmv =2

2
1 , or sm00.7)m50.2)(sm80.9(22

2 === glv . 

      b) 

,2
2

mg
l

v
mmgT ==−  

 

so N.94.2)sm80.9)(kg100.0(33
2 === mgT  

 

 



7.60:    a) The change in total energy is the work done by the air, 

.J0.80

)m6.53)(sm80.9())sm0.40(

)sm0.30()sm6.18(()21(
)kg145.0(

)(
2

1
)()(

22

22

2

2

1

2

21122

−=












+−

−
=








 +−=+−+ gyvvmUKUK

 

 
      b) Similarly, 
 

.J3.31

)m6.53)(sm80.9())sm6.18(

)sm7.28()sm9.11)((21(
)kg145.0()()(

22

22

2233

−=












−−

−+
=+−+ UKUK

 

 
c) The ball is moving slower on the way down, and does not go as far (in the x-direction), 
and so the work done by the air is smaller in magnitude. 

 

 
7.61:    a) For a friction force f, the total work done sliding down the pole is fdmgd − . 

This is given as being equal to mgh, and solving for f gives 

.1
)(







 −=

−
=

d

h
mg

d

hd
mgf  

When 0, == fdh , as expected, and when mgfh == ,0 ; there is no net force on the 

fireman.  b) N441)1)(sm80.9)(kg75(
m5.2

m0.12 =− .  c) The net work done is 

))(( ydfmg −− , and this must be equal to 2

2
1mv . Using the above expression for f, 

 

,1

)(

))((
2

1 2








 −=

−





=

−−=

d

y
mgh

yd
d

h
mg

ydfmgmv

 

 

from which )1(2 dyghv −= . When 0=y  ghv 2= , which is the original condition. 

When dy = , 0=v ; the fireman is at the top of the pole. 

 
 



7.62:    a) The skier’s kinetic energy at the bottom can be found from the potential energy 
at the top minus the work done by friction, 

J,500.10)m0.65)(kgN8.9)(kg0.60(F1 −=−= WmghK  or 

J720,27J500,10J200,381 =−=K . Then sm4.30
kg60

)J207,27(22
1 ===

m
Kv . 

      b) ×−=+−=+−+ )N588)(2[(.J720,27),(J720,27)( 2airkAF12 KdfmgdWWKK µ  

)],m82)(N160()m82( +  , or J4957J763,22J720,272 =−=K . Then, 

 

.sm9.12sm85.12
kg60

)J4957(22
2 ≈===

m

K
v  

  

      c) Use the Work-Energy Theorem to find the force. ,KEW ∆=  

.N2000N1983)m5.2()J4957( ≈=== dKEF  

 

 
7.63:    The skier is subject to both gravity and a normal force; it is the normal force that 
causes her to go in a circle, and when she leaves the hill, the normal force vanishes. The 
vanishing of the normal force is the condition that determines when she will leave the 
hill. As the normal force approaches zero, the necessary (inward) radial force is the radial 

component of gravity, or ,cos2 αmgRmv =  where R is the radius of the snowball. The 

speed is found from conservation of energy; at an angle α , she has descended a vertical 

distance )cos1( α−R , so )cos1(2

2
1 α−= mgRmv , or )cos1(22 α−= gRv . Using this in 

the previous relation gives αα cos)cos1(2 =− , or °=






= 2.48
3

2
arccosα . This result 

does not depend on the skier’s mass, the radius of the snowball, or g. 
 
 
7.64:    If the speed of the rock at the top is vt, then conservation of energy gives the 

speed bv  from )2(2

t2
12

b2
1 Rmgmvmv += , R being the radius of the circle, and so 

gRvv 42

t

2

b += . The tension at the top and bottom are found from 
R

mv
mgT

2
t

t =+  and 

R

mv
mgT

2
b

b =− , so wmgmgvvTT
R
m 662)( 2

t

2

btb ==+−=− . 

 

 



7.65:    a) The magnitude of the work done by friction is the kinetic energy of the 

package at point B, or 2

2
1

k BmvmgL =µ , or 

.392.0
)m00.3)(sm80.9(

)sm80.4)(21()21(
2

22

k ===
gL

vBµ  

 
    b) 

.J832.0

)m60.1)(sm80.9)(kg200.0()sm80.4)(kg200.0(
22

2
1

other

−=

−=

−= AB UKW

 

 

Equivalently, since 0,0 =++== BCABABA WWUKK , or 

.J832.0))m00.3)(300.0()m60.1(( −=−−−=−−= mgWUW BCAAB  

 

 

7.66:    Denote the distance the truck moves up the ramp by x. 2

02
1

1 mvK = , 

αsin1 mgLU = , 02 =K , βsin2 mgxU =  and βµ cosrother mgxW −= . From 

)()( 1122other UKUKW +−+= , and solving for x, 

.
cossin

sin)2(

)cos(sin

sin

r

2

0

r

1

βµβ
α

βµβ
α

+
+

=
+

+
=

Lgv

mg

mgLK
x  

 
 
7.67: a) Taking 0)0( =U , 

.)mN00.6()mN0.30(
32

)( 32232

0
xxxxdxFxU

x

x +=+== ∫
βα

 

 
      b) 

,J75.27

))m50.0)(mN00.6()m50.0)(mN0.30((

))m00.1)(mN00.6()m00.1)(mN0.30((

322

322

212

=

+−

+=

−= UUK

 

and so sm85.7
kg900.0

)J75.27(2

2 ==v . 

 

 
7.68:    The force increases both the gravitational potential energy of the block and the 
potential energy of the spring. If the block is moved slowly, the kinetic energy can be 
taken as constant, so the work done by the force is the increase in potential energy, 

2

2
1 )(sin θθ akmgaU +=∆ . 

 

 



7.69:    With mghkxUmvKKU +===== 2

2
1

1

2

22
1

212 ,0,0 , and solving for 2v , 

sm01.7)m20.1)(sm80.9(2
)kg150.0(

)m045.0)(mN1900(
2

2
22

2 =+=+= gh
m

kx
v  

 

 
7.70:    a) In this problem, use of algebra avoids the intermediate calculation of the spring 
constant k. If the original height is h and the maximum compression of the spring is d, 

then 2

2
1)( kddhmg =+ . The speed needed is when the spring is compressed 2

d , and from 

conservation of energy, 2

2
12

2
1 )2()2( mvdkdhmg =−+ . Substituting for k in terms of 

dh + , 

,
2

1

4

)(

2

2mv
dhmgd

hmg =
+

−






 +  

which simplifies to 

.
4

1

4

3
22 







 += dhgv  

Insertion of numerical values gives sm14.6=v . b) If the spring is compressed a 

distance x, mgxkx =2

2
1 , or 

k

mgx 2= . Using the expression from part (a) that gives k in 

terms of h and d, 

m.0210.0
)(2

)2(
22

=
+

=
+

=
dh

d

dhmg

d
mgx  

 

 
7.71:    The first condition, that the maximum height above the release point is h, is 

expressed as mghkx =2

2
1 . The magnitude of the acceleration is largest when the spring is 

compressed to a distance x; at this point the net upward force is mamgkx =− , so the 

second condition is expressed as ))(( agkmx += .  a) Substituting the second expression 

into the first gives 

.
2

)(
or,)(

2

1 2
2

2

gh

agm
kmghag

k

m
k

+
==+








 

 

b) Substituting this into the expression for x gives 
ag

ghx += 2 . 

 

 



7.72:    Following the hint, the force constant k is found from kdmgw == , or d

mgk = . 

When the fish falls from rest, its gravitational potential energy decreases by mgy; this 

becomes the potential energy of the spring, which is 2

2
12

2
1 yky

d

mg= . Equating these, 

.2or,
2

1 2 dymgyy
d

mg
==  

 

 

9.73:  a)    rrra )( 2

0

22

0

2

rad ω−ω=ω−ω=∆  

[ ][ ]

[ ]

[ ] .)( [2 

 )( 

  

0

0
0

00

r

rt
t

r

θ−θα=

ω+ω




 ω−ω
=

ω+ωω−ω=

 

     b) From the above, 

 =
−

=
∆

∆
=

)rad 0.15(2

)sm 0.25sm 0.85(

2

22

rad

θ

a
αr .sm 00.2 2  

    c) Similar to the derivation of part (a), 

.]2][[
2

1

2

1

2

1 2

0

2 θ∆α=∆=−=∆ IIθαIωIωK  

    d) Using the result of part (c), 

.mkg 208.0
rad) (15.0m)) 250.0/()sm 00.2((

J) 0.20 J 0.45( 2

2
⋅=

−
=

θ∆α
∆

=
K

I  

 



7.74:    a) From either energy or force considerations, the speed before the block hits the 
spring is 

           

.sm30.7

)1.53cos)20.0(1.53)(sinm00.4)(sm80.9(2

)cos(sin2

2

k

=

°−°=

−= θµθgLv

 

       b) This does require energy considerations; the combined work done by gravity and 

friction is )cos)(sin( k θθdLmg µ−+ , and the potential energy of the spring is 2

2
1 kd , 

where d is the maximum compression of the spring. This is a quadratic in d, which can be 
written as 

.0
)cos(sin2 k

2 =−−
−

Ld
mg

k
d

θµθ
 

 

The factor multiplying 2d  is 1m504.4 − , and use of the quadratic formula gives 

m06.1=d .  c) The easy thing to do here is to recognize that the presence of the spring 

determines d, but at the end of the motion the spring has no potential energy, and the 
distance below the starting point is determined solely by how much energy has been lost 
to friction. If the block ends up a distance y below the starting point, then the block has 

moved a distance dL +  down the incline and ydL −+  up the incline. The magnitude of 

the friction force is the same in both directions, θmg coskµ , and so the work done by 

friction is θmgydL cos)22(k −+− µ . This must be equal to the change in gravitational 

potential energy, which is θmgy sin− . Equating these and solving for y gives 

.
tan

2
)(

cossin

cos2
)(

k

k

k

k

µθ
µ

θµθ
θµ

+
+=

+
+= dLdLy  

 

Using the value of d found in part (b) and the given values for kµ  and θ  gives 

m32.1=y . 

 

 

7.75:    a) ,J75.3)m25)(.mN0.40)(21()m25.0)(N0.20( 2

other =−=−= BB UWK  

so sm87.3
kg500.0

)J75.3(2 ==Bv , or sm9.3  to two figures.  b) At this point (point C), 

0=CK , and so otherWUC =  and m50.0
mN0.40

)J00.5(2 −=−=cx  (the minus sign denotes a 

displacement to the left in Fig. (7.65)), which is 0.10 m from the wall. 

 

 



7.76:    The kinetic energy K ′  after moving up the ramp the distance s will be the energy 
initially stored in the spring, plus the (negative) work done by gravity and friction, or 

.)cos(sin
2

1
k

2 smgkxK αµα +−=′  

 
Minimizing the speed is equivalent to minimizing K ′ , and differentiating the above 
expression with respect to α  and setting 0=′

αd
Kd  gives 

),sin(cos0 k αµα −−= mgs  

or 
k

1tan µα = , 







=

k

1
arctan

µ
α . Pushing the box straight up )90( °=α  maximizes the 

vertical displacement h, but not αsinhs = . 

 

 

7.77:    Let m18.01 =x , m71.02 =x . The spring constants (assumed identical) are then 

known in terms of the unknown weight w, wkx =14 . The speed of the brother at a given 

height h above the point of maximum compression is then found from 

,
2

1
)4(

2

1 22

2 mghv
g

w
xk +








=  

 
or 

,22
)4(

1

2

22

2

2









−=−= h

x

x
gghx

w

gk
v  

so sm13.3))m90.0(2)m18.0()m71.0(()sm80.9( 22 =−=v , or sm1.3  to two 

figures.  b) Setting 0=v  and solving for h, 

,m40.1
2

2

1

2

2

2

2 ===
x

x

mg

kx
h  

or 1.4 m to two figures.  c) No; the distance 1x  will be different, and the ratio 

( )2m53.0

1

)m53.0(

11

2
1

1

2
2 1

xx

x

x

x
x +== +

 will be different. Note that on a small planet, with lower g, 

1x  will be smaller and h will be larger. 

 

 



7.78:    a)   xmmaFxdtxda xxx

2

0

2

0

22 , ωω −==−==   

                  ymmaFyydtyda yyy

2

0

2

0

2

0

22 , ωωω −==−=−==  

 

        b) [ ] [ ] )(
2

1 222

0

2

0 yxmydyxdxmdyFdxFU yx +=+=+−= ∫ ∫∫ ∫ ωω  

        c) 

)(cos

)(sin

000000

000000

xxytydtdyv

yyxtxdtdxv

y

x

ωωω

ωωω

+=+==

−=−==
 

(i) When 0xx =  and 0,0 == xvy  and 00ωyvy =  

)(
2

1
and

2

1
,

2

1
)(

2

1 2

0

2

0

2

0

2

0

2

0

2

0

2

0

22 yxmUKEmxUmyvvmK yx +=+===+= ωωω  

(ii) When 0=x  and 000 , ωxvyy x −==  and 0=yv  

)(
2

1
and

2

1
,

2

1 2

0

2

0

2

0

2

0

2

0

2

0

2

0 yxmUKEymUmxK +=+=== ωωω  

Note that the total energy is the same. 

 

 
7.79:    a) The mechanical energy increase of the car is 

       .J10027.1)sm37)(kg1500( 62

2
1

12 ×==− KK  

        Let α  be the number of gallons of gasoline consumed. 

       
gallons053.0

J10027.1)15.0)(J103.1( 68

=

×=×

α
α

 

 

       b) onsaccelerati19)gallons00.1( =α  

 

 



7.80:    (a) ghAghVmgh )m1()(energyStored ρρ ===  

              
.J104.4

)m150)(8.9)(m1)(m100.3)(mkg1000(

12

s

m263
2

×=

×=
 

 
(b) 90% of the stored energy is converted to electrical energy, so 
 

33

23

h1

s3600

m1072

)sm8.9()m150()mkg1000)(90.0(

)()hkW1000(

hkW1000)90.0(

hkW1000)()90.0(

×=

=

=

=

.

V

ghV

mgh

ρ

 

 
Change in level of the lake: 

m100.9
m100.3

m107.2 4

26

33

water

−×=
×
×

==∆

=∆

A

V
h

VhA

 

 

 
7.81:    The potential energy of a horizontal layer of thickness dy, area A, and height y is 

gydmdU )(= . Let ρ  be the density of water. 

     .so, dyAgydUdyAdVdm ρρρ ===  

     The total potential energy U is 

     

.kWh102.9J103.3so,m150andm100.3

.

71426

2

2
1

00

×=×==×=

=== ∫∫
UhA

AhydyAgdUU
hh

ρρ
 

 

 
7.82:    a) Yes; rather than considering arbitrary paths, consider that 
 

.ˆ
3

3

jF 















−

∂
∂

−=
Cy

y

r
 

 
     b) No; consider the same path as in Example 7.13 (the field is not the same). For this 

force, 0=F
r

 along Leg 1, 0=⋅ lF
rr
d  along legs 2 and 4, but 0≠⋅ lF

rr
d  along Leg 3. 

 

 



7.83:    a) Along this line, yx = , so dyyd 3α−=⋅ lF
rr

, and 

.J6.50)(
4

4

1

4

2

2

1

−=−−=∫ yydyF
y

y
y

α
 

      b) Along the first leg, 0=dy  and so 0=⋅ lF
rr
d . Along the second leg, m00.3=x , 

so 22 )mN50.7( yFy −= , and 

.J5.67))(mN35.7( 3

1

3

2

22

1

−=−−=∫ yydyF
y

y
y  

      c) The work done depends on the path, and the force is not conservative. 
 

 
7.84:    a)  

 
 

b) (1): 0=x  along this leg, so 0=F
r

 and 0=W . (2): Along this leg, m50.1=y , so 

xdxd )mN00.3(=⋅ lF
rr

, and J38.3)0)m50.1)((mN50.1( 2 =−=W  (3) 0=⋅ lF
rr
d , so 

0=W  (4) 0=y , so 0=F
r

 and 0=W . The work done in moving around the closed path 

is 3.38 J.  c) The work done in moving around a closed path is not zero, and the force is 
not conservative. 
 

 



7.85:    a) For the given proposed potential FkxxU
dx
dU +−=−),( , so this is a possible 

potential function. For this potential, kFU 2)0( 2−= , not zero. Setting the zero of 

potential is equivalent to adding a constant to the potential; any additive constant will not 
change the derivative, and will correspond to the same force.  b) At equilibrium, the force 

is zero; solving 0=+− Fkx  for x gives kFx =0 . kFxU 2

0 )( −= , and this is a 

minimum of U, and hence a stable point. 
c)  

 
d) No; 0tot =F  at only one point, and this is a stable point.  e) The extreme values of x 

correspond to zero velocity, hence zero kinetic energy, so ExU =± )( , where ±x  are the 

extreme points of the motion. Rather than solve a quadratic, note that 

kFkFxk 22

2
1 )( −− , so ExU =± )(  becomes 

,2

2

1 22

k

F

k

F
x

k

F
kF

k

F
xk

±=−

=−






 −

±

±

 

.3
k

F
x

k

F
x −== −+  

 

f) The maximum kinetic energy occurs when )(xU  is a minimum, the point kFx =0  

found in part (b). At this point kFkFkFUEK 222 2)()( =−−=−= , so 

mkFv 2= . 

 

 



7.86:    a) The slope of the U vs. x curve is negative at point A, so xF  is positive (Eq. 

(7.17)).  b) The slope of the curve at point B is positive, so the force is negative.  c) The 
kinetic energy is a maximum when the potential energy is a minimum, and that figures to 
be at around 0.75 m.  d) The curve at point C looks pretty close to flat, so the force is 
zero.  e) The object had zero kinetic energy at point A, and in order to reach a point with 

more potential energy than  )(AU , the kinetic energy would need to be negative. Kinetic 

energy is never negative, so the object can never be at any point where the potential 

energy is larger than )(AU . On the graph, that looks to be at about 2.2 m.  f) The point of 

minimum potential (found in part (c)) is a stable point, as is the relative minimum near 
1.9 m.  g) The only potential maximum, and hence the only point of unstable equilibrium, 
is at point C. 
 



7.87:    a) Eliminating β  in favor of α  and )( 00 xβx α= , 

.)( 0

2

0

2

00

2

2

0

2

0

2



















−






=−=−=
x

x

x

x

xxxx

x

xxx
xU

αααβα
 

0)11()( 2
0

0 =−=
x

xU α . )(xU  is positive for 0xx <  and negative for 0xx >  (α  and β  

must be taken as positive). 
 

 
b) 

.
22

)(

2

00

2

0

















−















=−=

x

x

x

x

mx
U

m
xv

α
 

The proton moves in the positive x-direction, speeding up until it reaches a maximum 
speed (see part (c)), and then slows down, although it never stops. The minus sign in the 
square root in the expression for )(xv  indicates that the particle will be found only in the 

region where 0<U , that is, 0xx > . 

     c) The maximum speed corresponds to the maximum kinetic energy, and hence the 

minimum potential energy. This minimum occurs when 0=
dx
dU , or 

,023

2

0

3

0

0

=


















+






−=
x

x

x

x

xdx

dU α
 

which has the solution 02xx = . 2
040 )2(
x

xU α−= , so .2
02mx

v α=   d) The maximum speed 

occurs at a point where 0=
dx
dU , and from Eq. (7.15), the force at this point is zero.  e) 

01 3xx = , and ( ) ( )( )[ ] =−−=−=−= −
x

x

x

x

xxmmx
xUxUxvxU 00

2
0

2
0

2
0

2

9
22

1
2

9
2

0 ))()(()(;)3( ααα  

( ) ( )( )92
2

2 00
2
0

−−
x

x

x

x

mx

α . The particle is confined to the region where )()( 1xUxU < . The 
 



Capítulo 8 



8.1:  a) s.mkg 1020.1)sm kg)(12.0 000,10(
5 ⋅×=  

       b) (i) Five times the speed, s.m 0.60 (ii) 5 ( ) s.m 8.26sm 0.12 =  

 

 

8.2:  See Exercise 8.3 (a); the iceboats have the same kinetic energy, so the boat with the 

larger mass has the larger magnitude of momentum by a factor of .2)()2( =mm  

 

 

8.3:  a)    .
2

1

2

1
 

2

1 222
 2

m

p

m

vm
mvK ===  

 

b) From the result of part (a), for the same kinetic energy, 
2

2

2

1

2

1

m

p

m

p
= , so the larger mass 

baseball has the greater momentum; ( ) .525.0145.0040.0ballbird ==pp  From the result 

of part (b), for the same momentum 2211 mKmK = , so 2211 wKwK = ; the woman, with the 

smaller weight, has the larger kinetic energy. ( ) .643.0700450womanman ==KK  

 

 

8.4:  From Eq.  (8.2), 

 

( ) ( ) sm kg 1.7820.0 cos sm 50.4 kg 420.0 =°== xx mvp  

   ( ) ( ) s.m kg 0.64620.0sin  sm 50.4 kg 420.0 =°== yy mvp  

 

 

8.5:  The y-component of the total momentum is 
 

( ) ( ) ( )( ) s.mkg 256.0sm 80.7 kg0570.0sm 30.1 kg 145.0 ⋅−=−+  

 

This quantity is negative, so the total momentum of the system is in the y− -direction. 

 

 

8.6:  From Eq. (8.2), ( ) ( ) s,mkg 015.1sm 00.7 kg 145.0 ⋅−=−=yp  and 

( ) ( ) s,mkg 405.0sm 00.9 kg 045.0 ⋅==xp  so the total momentum has magnitude 

 

( ) ( ) s,mkg 09.1smkg 015.1smkg 405.0
2222 ⋅=⋅−+⋅−=+= yx ppp  

and is at an angle arctan ( ) °−=+
− 68

405.

015.1 , using the value of the arctangent function in the 

fourth quadrant ( ).0p ,0 y <>xp  

 

 



8.7:  
( )( )

N. 563
s1000.2

sm 0.25kg 0450.0
 3 == −×∆

∆
t

p
 The weight of the ball is less than half a newton, so the 

weight is not significant while the ball and club are in contact. 

 

 

8.8:  a) The magnitude of the velocity has changed by  

 

( ) ( ) s,m 0.100sm 0.55sm 0.45 =−−  

 

and so the magnitude of the change of momentum 

is s,m kg 14.500  )sm 0.100( kg) 145.0( = to three figures. This is also the magnitude of 

the impulse. b) From Eq. (8.8), the magnitude of the average applied force is 

s1000.2

kg.m/s 500.14
3−×

=7.25 N.103×  

 

 

8.9:  a) Considering the +x-components, 

,smkg 73.1  s) 05.0( N) 0.25(  s)m 00.3kg)( 16.0(12 ⋅=×+=+= Jpp and the velocity is 

10.8  sm in the +x-direction.  b) p 2 = 0.48 smkg ⋅ + (–12.0 N)(0.05 s) = –0.12 

smkg ⋅ , and the velocity is +0.75 sm  in the –x-direction. 

 

 

8.10:  a) F
r

 t=(1.04 j
)

)smkg 105 ⋅× .  b) (1.04 ĵ)smkg 105 ⋅× . 

c) .jj ˆ)sm10.1(ˆ
kg) 000,95(

) kg.1004.1( s
m5

=×
  d) The initial velocity of the shuttle is not known; the 

change in the square of the speed is not the square of the change of the speed. 

 



8.11:  a) With ,01 =t  

 

,)sN 10  00.2(  )sN 10  80.0(     3

2

292

2

7

0

2

ttdtFJ
t

xx ×−×== ∫  

 

which is 18.8 smkg ⋅ , and so the impulse delivered between t=0 and 

.î)smkg (18.8 is s1050.2
3

2 ⋅×= −
t    b) 

and s),1050.2( )sm (9.80 kg) 145.0( 32 −×−=yJ  the impulse is  

ĵ)smkg 10  55.3( 3 ⋅×− −      c)
2t

J x =7.52 N,103×  so the average force is 

(7.52 .îN)10
3×  

 

      d) jpp
rrr

+= 12   

                )ˆ1055.3ˆ(18.8m/s)ˆ0.5ˆkg)(40.0145.0( 3
jiji

−×−++−=  

                .ji ˆkg.m/s) 73.0(ˆkg.m/s) 0.13( −=  

 

The velocity is the momentum divided by the mass, or  (89.7 m/s) 

.ji ˆm/s)0.5(ˆ −  

 

 
8.12: The change in the ball’s momentum in the x-direction (taken to be 

positive to the right) is 

m/s,kg 15.41m/s)0.5030 cos s)m 0.65(( kg) 145.0( ⋅−=−− o so the x-

component of the average force is 

 

N,108.81
s1075.1

m/skg 41.15 3

3
×−=

×
⋅−
−  

and the y-component of the force is 

 

N.107.2
s)1075.1(

30sin  m/s) kg)(65.0145.0( 3

3
×=

×
°

−  

 

 

 

8.13:  a)  ∫ −+−==
2

1

),(
3

)( 3

1

3

212

t

t
tt

B
ttAFdtJ  

 

or .0 tif )3/( 1

3

22 =+= tBAtJ       b)  .
3

3

22 t
m

B
t

m

A

m

J

m

p
v +===  

 

 



8.14:  The impluse imparted to the player is opposite in direction but of 

the same magnitude as that imparted to the puck, so the player’s speed is 

 cm/s, 27.4
kg) 0.75(

)sm (20.0 kg) 16.0( = in  the  direction opposite to the puck’s. 

 

 

8.15:  a) You and the snowball now share the momentum of the snowball 

when thrown so your speed is s.cm 68.5
kg) 0.400kg (70.0

s)m (10.0 kg) 400.0( =+   b) The change in 

the snowball’s momentum is s),mkg 20.7)sm 0.18( )kg 400.0( ⋅= so 

your speed is cm/s. 3.10
kg 70.0

smkg 20.7 =⋅
 

 

8.16:  a)  The final momentum is 

 

s,mkg 1975.0)sm 650.0)(350.0()sm 120.0)(kg 250.0( ⋅=+−  

taking positive directions to the right. a) Before the collision, puck B was 

at rest, so all of the momentum is due to puck A’s motion, and 

 

                     m/s. 790.0
kg 250.0

m/skg 5197.0
1 =

⋅
==

A

A
m

p
v  

b) 
2

1

2

2

2

212
2

1

2

1

2

1
AABBAA vmvmvmKKK −+=−=∆  

 

       
2

22

)sm7900.0)(kg 250.0(
2

1
       

)sm 650.0)(kg 350.0(
2

1
)sm 0.120( )kg 250.0(

2

1

−−

+−=
 

 

       J 0023.0−=  

 

 



8.17:  The change in velocity is the negative of the change in Gretzky’s 

momentum, divided by the defender’s mass, or 

 

s.m 66.4

)sm 0.13sm50.1(
N 900

N 756
sm 00.5

)( 1212

=

−−−=

−−= AA

B

A
BB vv

m

m
vv

 

 

Positive velocities are in Gretzky’s original direction of motion, so the 

defender has changed direction. 

 

b) )(
2

1
)(

2

1 2

1

2

2

2

1

2

212 BBBAAA vvmvvmKK −+−=−  

  












−−+

−
=

)m/s) 5.00(m/s) N)((4.66 090(      

)m/s) 0.13(m/s) N)((1.50 675(

)m/s 08.9(2

1
22

22

2
 

  kJ. 85.6−=  

 

 
8.18:  Take the direction of the bullet’s motion to be the positive direction. The total 

momentum of the bullet, rifle, and gas must be zero, so 

                   ,0m/s) 1.85kg)( (2.80m/s) 1.85  m/s kg)(601 00072.0( gas =+−+− p  

 

and gasp = 0.866 .smkg ⋅ Note that the speed of the bullet is found by subtracting 

the speed of the rifle from the speed of the bullet relative to the rifle. 

 

 

8.19:  a) See Exercise 8.21; ( ) .sm 3.60)sm 080.0(
kg 00.1

kg 00.3 ==Av  

 

      b) J. 46.8m/s) kg)(1.200 00.3)(2/1(m/s) (3.60 kg) (1.00 2)1( 22 =+  

 

 

 

8.20:  In the absence of friction, the horizontal component of the hat-plus-adversary 

system is conserved, and the recoil speed is 

 

                              .sm 66.0
kg) 012(

36.9 cos )sm kg)(22.0 05.4(
=
°

 

 

 



8.21:  a) Taking Av  and Bv  to be magnitudes, conservation of momentum is 

expressed as BBAA vmvm = , so .A

B

A
B v

m

m
v =  

      b)  .
))/(()2/1(

)2/1(
2

2

2

2

A

B

ABAB

AA

BB

AA

B

A

m

m

vmmm

vm

vm

vm

K

K
===  

 

(This result may be obtained using the result of Exercise 8.3.) 

 

 

8.22: 

 

X Po: decay   Po 2104214214 +α→  

 

m/s 101.92  
kg 1065.6

J)102(1.23
 

2

2

1
 :

7

27

12

2

×=
×
×

=

=

=

−

−

α

α
α

αααα

m

KE
v

vmKESetv

 

 

                                                                  

Momentum conservation: 

                        

                                           

m/s 1065.3

kg)1067.1)(210(

m/s) 10kg)(1.92 1065.6(

210

0

5

27

727

p

xx

×=

×
××

=

==

−=

−

−

αααα

αα

m

vm

m

vm
v

vmvm

x

x

 

                                                        

 

 



8.23:    Let the +x-direction be horizontal, along the direction the rock is thrown. 

There is no net horizontal force, so xP  is constant. Let object A be you and object B 

be the rock.  

 

 °+−= 35.0 cos0 BBAA vmvm  

 

 m/s 11.2
0.35cos
=

°
=

A

BB
A

m

vm
v  

 

 

8.24:   Let Rebecca’s original direction of motion be the x-direction. a) From 

conservation of the x-component of momentum,  

 

 

,kg) 0.65(53.1 m/s)cos kg)(8.0 (45.0m/s) kg)(13.0 0.45( xv+°=  

 

So s.m 67.5=xv  If Rebecca’s final motion is taken to have a positive 

-y component, then 

 

s.m 43.4
kg) 0.65(

53.1sin  s)m kg)(8.0 0.45(
−=

°
−=yv  

 
Daniel’s final speed is 

 

=+ 22

yx vv s,m 20.7s)m 43.4(s)m 67.5( 22 =−+  

 

and his direction is arctan ( ) °−=− 38
67.5
42.4  from the -x axis, which is °1.91  from the 

direction of Rebecca’s final motion. 
 

b) 222 s)m (13.0 (45.0)
2

1
)sm (7.195 kg) 0.65(

2

1
s)m (8.0 kg) 0.45(

2

1
−+=∆K  

          J. 680−=  

 

Note that an extra figure was kept in the intermediate calculation. 
 

 



8.25:  s),m 25.2()sm 00.4()sm 00.3)(( KenKimKenKim mmmm +=+ so 

 

,750.0
s)m 00.3()sm 00.4(

s)m 25.2(s)m 00.3(

Ken

Kim =
−
−

=
m

m
 

 

and Kim weighs  N. 525N) 700)(750.0( =  

 

8.26: The original momentum is  s,mkg 1060.9)sm 00.4)(kg 000,24( 4 ⋅×=  the 

final mass is kg, 000,27kg 3000kg 000,24 =+  and so the final speed is 

 

s.m 56.3
kg 1070.2

smkg 1060.9
4

4

=
×

⋅×
 

 

 

8.27: Denote the final speeds as BA vv  and and the initial speed of puck A as ,0v  and 

omit the common mass. Then, the condition for conservation of momentum is 

 
o0.45 cos 0.30 cos 0 BA vvv +°=  

.0.45 sin 0.30 sin0 o

BA vv −°=  

 

The °0.45  angle simplifies the algebra, in that sin ,0.45 cos0.45 °=° and so the 

Bv terms cancel when the equations are added, giving  

 

sm3.29
0.30 sin0.30 cos

0 =
°+°

=
v

vA  

From the second equation, s.m 7.20
2
== Av

Bv  b) Again neglecting the common mass, 

 

,804.0
s)m 0.40(

s)m 20.7(s)m 3.29(

)21(

))(21(K
2

22

2

0

22

1

2 =
+

=
+

=
v

vv

K

BA  

 

so 19.6% of the original energy is dissipated. 
 

 



8.28: a) From . ,)(
21

2211

21212211 mm

vmvm
vvmmvmvmvmvm +

+=+=+=+  Taking positive 

velocities to the right, sm.3.001 −=v  and sm 1.202 =v , so sm 1.60−=v . 

 

   b) 
2)sm60.1)(kg 0.250 kg 0.500(

2

1
−+=∆K  

                  
22 )sm20.1)(kg 0.250(

2

1
)sm 3.00)(kg 0.500(

2

1
−−−  

              J. 1.47−=  

 

 

8.29: For the truck, kg, 6320=M and s,m 10=V  for the car,  kg 1050=m  and 

sm15−=v  (the negative sign indicates a westbound direction). 

 

a) Conservation of momentum requires mvMVvmM +=′+ )( , or 

 

eastbound. sm 4.6
kg) 1050kg 6320(

)sm15)(kg 1050()sm 10)(kg 6320(
=

+
−+

=′v  

 

b) .sm 5.2
kg 6320

)sm 15kg)( 1050(
=

−−
=

−
=

M

mv
V  

 c) kJ281−=∆KE for part (a) and  kJ 138−=∆KE  for part (b). 

 

 

s.m 1.3
)kg 195(

)sm 2.7)(kg 85(

sm 0.5
)kg 195(

)sm 8.8)(kg 110(

==

==

y

x

v

v

8.30: Take north to be the x-direction and east to be the y-direction (these choices are 

arbitrary). Then, the final momentum is the same as the intial momentum (for a 

sufficiently muddy field), and the velocity components are 

 

 

 

 

 

The magnitude of the velocity is then ,sm 9.5)sm 1.3()sm 0.5( 22 =+  at an angle or 

arctan ( ) °= 32
0.5
1.3  east of north. 

 

 



8.31: Use conservation of the horizontal component of momentum to find the velocity of 

the combined object after the collision. Let +x be south. 

             P x  is constant gives 

J 0300.0

J 0020.0)s 100.0)(kg 400.0(

J 0320.0)s 600.0)(kg 150.0()s 200.0)(kg 250.0(

north) ,scm 10.0( scm 0.10

)kg 400.0()s 600.0)(kg 150.0()sm 200.0)(kg 250.0(

12

2

2
1

2

2

2
12

2
1

1

22

2

−=−=∆

==

=+=

=−=

=−

KKK

K

K

vv

v

x

x

 

 

Kinetic energy is converted  to thermal energy due to work done by 

nonconservative forces during the collision. 

 

 

8.32:  (a)  Momentum conservation tells us that both cars have the same change in 

momentum, but the smaller car has a greater velocity change because it has a smaller 

mass. 

 

 

 (b) The occupants of the small car experience 2.5 times the velocity change of 

those in the large car, so they also experience 2.5 times  the acceleration. Therefore they 

feel 2.5 times the force, which causes whiplash and other serious injuries. 

 

 

car) (large V2.5  
kg 1200

kg 3000

car) (large   car) (small 

∆=∆=

∆=∆

∆=∆

V

V
m

M
v

vmVM

8.33:  Take east to be the x-direction and north to be the y-direction (again, these choices 

are arbitrary). The components of the common velocity after the collision are 

 

h.km 33.33
kg) 4200(

)hkm 0.50( kg) 2800(

hkm67.11
kg) 4200(

)hkm  35.0( kg) 1400(

y −=
−

=

−=
−

=

v

vx

 

The velocity  has magnitude hkm 3.35h)km 33.33(h)km 67.11( 22 =−+− and is at a 

direction arctan  ( ) °=−
− 7.70

67.11

33.33  south of west. 

 

 



8.34: The initial momentum of the car must be the x-component of the final momentum 

as the truck had no intial x-component of momentum, so 

 

car

truckcar

car

car

 cos )(

m

vmm

m

p
v x θ+

==  

   )2490( cos ) sm 0.16(
kg 950

kg 2850
°−°=  

      .m 5.19 s=  

 

Similarly, s.m 9.2166sin  s)m 0.16(
1900

2850
truck =°=v  

 

 

8.35: The speed of the block immediately after being struck by the bullet may be found 

from either force or energy considerations. Either way, the distance s is related to the 

speed  blockv by gs.2 k

2 µv =  The speed of the bullet is then 

s,m 229

m) 230.0)(m 80.9)(20.0(2
kg 1000.5

kg 205.1

gs2

2

3

k

bullet

bulletblock

bullet

=

×
=

+
=

−
s

m

mm
v µ

 

 

or  sm 103.2 2×  to two places. 

 

 

8.36: a) The final speed of the bullet-block combination is 

Energy is conserved after the collision, so 2

2
1 )()( VMmgyMm +=+ , and 

      cm. 2.93m 0293.0
)sm 80.9(

)sm 758.0(

2

1

2

1
2

22

====
g

V
y  

 

J. 73.1)sm kg)(0.758 012.6(  a),part  Fromc)

J. 866)sm kg)(380 100.12(b)

2

2
1

2

23

2
12

2
1

1

==

=×== −

K

mvK
 

 

 

s.m 758.0)sm  380(
kg 012.6

kg 100.12 3

=
×

=
−

V



8.37:  Let +y be north and +x be south. Let A11  vand Sv  be the speeds of  Sam and of 

Abigail before the collision. s.m 00.9 s,m 00.6 kg, 0.50 kg, 0.80 22 ==== ASAS vvmm  

xP  is constant gives 

J 640

J 3465

J 4101 b)

(Abigail) sm 26.2

0.23sin  0.37sin  

givesconstant  is 

(Sam) sm 67.9

0.23 cos 0.37 cos 

12

2

22
12

22
1

2

2

12
12

12
1

1

1

221

1

221

−=−=∆

=+=

=+=

=

°−°=

=

°+°=

KKK

vmvmK

vmvmK

v

vmvmvm

P

v

vmvmvm

AASS

AASS

A

AASSAA

y

S

AASSSS

 

 

 

8.38: (a) At maximum compression of the spring, .102 Vvv ==  Momentum conservation 

gives Vkg) 0.12(s)m  00.2kg)( 00.2( =  

 

sm 333.0=V  

spr

2

102

2

02 )(
2

1

2

1
 :onconservatiEnergy UVmmvm ++=  

           spr

22 )m 333.0)(kg 0.12(
2

1
s)m 00.2)(kg 00.2(

2

1
Us +=  

    J 33.3spr =U  

 

(b) The collision is elastic and Eqs. (8.24) and (8.25) may be used: 

 

 

 

sm 67.0  s,m 33.1 102 +=−= vv

8.39: In the notation of  Example 8.10, with the smaller glider denoted as A, conservation 

of momentum gives  s.m 40.5)00.3()50.1( 22 −=+ BA vv  The relative velocity has 

switched direction, so s.m 00.322 −=− BA vv  Multiplying the second of these relations 

by (3.00)  and adding  to the first  gives  ,sm 20.3or  s,m 4.14)50.4( 22 −=−= AA vv  with 

the minus sign indicating a velocity to the left. This may be substituted into either relation 

to obtain s;m 20.02 −=Bv   or, multiplying the second relation by (1.50) and subtracting 

from the first gives  s,m 90.0)50.4( 2 −=Bv which is the same result. 

 

 



8.40: a) In the notation of Example 8.10, with the large marble (originally moving to the 

right) denoted as s.m 200.0)00.1()00.3(, 22 =+ BA vvA  The relative velocity has switched 

direction, so .m 600.022 svv BA −=−  Adding these eliminates 2Bv  to give 

 s,m 100.0or  s,m 400.0)00.4( 22 −=−= AA vv with the minus sign indicating a final 

velocity to the left. This may be substituted into either of the two relations to obtain 

s;m 500.02 =Bv  or, the second of the above relations may be multiplied by 3.00 and 

subtracted from the first to give  s,m 00.2)00.4( 2 =Bv the same result. 

 
.105.4,105.4 c)

smkg 009.0 s,m kg 009.0 b)

44 −− ×=∆×−=∆

⋅=∆⋅−=∆

BA

BA

KK

PP
 

Because the collision is elastic, the numbers have the same magnitude. 

 

 

8.41:  Algebraically,  s.m 202 =Bv  This substitution and the cancellation of common 

factors and units allow the equations in α  and β  to be reduced to 

 

.sin   1.8sin 0

  cos 8.1 cos 2

β

β

−=

+=

α

α
 

 

Solving for cos  α and sin α , squaring and adding gives 

 

( ) ( ) .1sin . 8.1 cos 8.12
22

=+− ββ  

 

Minor algebra leads to cos .57.26or  ,
8.1

2.1 °== ββ  Substitution of this result into the first 

of the above relations gives .87.36 and , cos
5
4 °== αα   

 

8.42:  a) Using Eq. .),24.8(
3
1

u 2u 1
u 2u 1 == +

−
V

vA  b) The kinetic energy is proportional to the 

square of the speed, so  
9
1=

K

K A c) The magnitude of the speed is reduced by a factor of 

 
3
1 after each collision, so after �  collisions, the speed is ( )�

3
1 of its original value. To find 

�, consider 

.10
)3ln(

)000,59ln(

)000,59ln()3ln(

000,593

or  
000,59

1

3

1

==

=

=

=








�

�

�

�

 

to the nearest integer. Of course, using the logarithm in any base gives the same result. 

 



8.43: a) In Eq. (8.24), let . and  Mmmm BA ==  Solving for M gives 

A

A

vv

vv
mM

+
−

=  

In this case,   s,m 1020.1 and s,m 1050.1 77 ×−=×= Avv  with the minus sign indicating 

a rebound. Then, .9
)20.1) 1.50

1.20 50.1 mmM == −+
+  Either Eq.  (8.25) may be used to find 

 s,m 1000.3 6

5
×== v

Bv or Eq. (8.23), which gives 

 s),m 1020.1(s)m 1050.1( 77 ×−+×=Bv the same result. 

 

 

8.44: From Eq. (8.28), 

 

       

m. 056.0
)kg 90.0(

)m 60.0)(kg 20.0()m 40.0)(kg 40.0()m 30.0)(kg 30.0(

m, 044.0
)kg 90.0(

 )m 30.0)(kg 20.0()m 10.0)(kg 40.0()m 200kg) 30.0(

cm

cm

=
+−+

=

+=
−++

=

y

.(
x

 

 

 

8.45:  Measured from the center of the sun, 

 

m. 1042.7
kg 1090.1kg 1099.1

)m 1078.7)(kg 1090.1()0)(kg 1099.1( 8

2730

112730

×=
×+×

××+×
 

 

The center of mass of the system lies outside the sun. 

 

 

8.46: a) Measured from the rear car, the position of the center of mass is, from Eq. (8.28), 

 m, 0.24
kg) 1800kg 1200(

)m 0.40)(kg 1800(
=

+
which is 16.0 m behind the leading car.  

s.m 8.16
)kg 1800kg 1200(

)sm 0.20)(kg 1800()sm 0.12)(kg 1200(
             

(8.30), Eq. From c)

s.mkg 1004.5)sm 0.20)(kg 1800()sm 0.12)(kg 1200( b)

cm

4

=
+
+

=

⋅×=+

v

 

   s.mkg 1004.5)sm 8.16)(kg 1800kg 1200( d) 4 ⋅×=+  

 

 



8.47:  a) With 01 =x  in Eq. (8.28), 

 

kg. 30.0)1)m m)/(2.0 0.8)((kg 10.0()1)/(( cm221 =−=−= xxmm  

 

      .ˆ )smkg 0.2(ˆ )sm 0.5)(kg 400(   b) iivP ⋅=== .M cm c) In Eq. (8.32), 

.ˆ)sm 7.6()kg 30.0/(  so , 12 iPvv ===
rrr 0000  

 

 

8.48: As in Example 8.15, the center of mass remains at rest, so there is zero net 

momentum, and the magnitudes of the speeds are related by ,2211 vmvm =   or  

s.m 47.0)sm 70.0)(kg 0.90/kg 0.60()/( 1212 === vmmv  

 

 

8.49: See Exercise 8.47(a); with ,01 =y  Eq. (8.28) gives =−= )1)/(( cm221 yymm  

kg, 75.0)1)m 4.2/()m 0.6)((kg 50.0( =− so the total mass of the system is 1.25 kg. 

 

b)    .t
dt
d iva ˆ )sm1.50( 3

cmcm ==
rr

 

c)   .ˆ)N  63.5(ˆs) (3.0 )sm50.1( )kg 1.25( 3

cm iiaF ===
rr

m  

8.50: .0 so ,0 == zFzp  The x -component of force is  

 

 

.)sN 50.1( t
dt

dp
F x

x −==
 

N 25.0==
dt

dp
F

y

y  

 

 

8.51: a) From Eq. (8.38), N.  0.80)skg 0500.0)(sm 1600( ==F  b) The absence of 

atmosphere would not prevent the rocket from operating. The rocket could be steered by 

ejecting the fuel in a direction with a component perpendicular to the rocket’s velocity, 

and braked by ejecting in a direction parallel (as opposed to antiparallel) to the rocket’s 

velocity. 

 

 



8.52: It turns out to be more convenient to do part (b) first; the thrust is the force that 

accelerates the astronaut and MMU, N.  22.5)sm kg)(0.029 110kg 70( 2 =+== maF  

a) Solving Eq. (8.38) for dm , 

 

gm. 53
sm 490

s) N)(5.0 22.5( 

ex

===
v

dtF
dm  

 

 

8.53: Solving for the magnitude of dm in Eq. (8.39), 

 

kg. 75.0s) 1(
s)m 2000(

)sm kg)(25.0 6000( 2

ex

=== dt
v

ma
dm  

 

 

8.54: Solving Eq. (8.34) for exv and taking the magnitude to find the exhaust speed,  

==
dtdm

m
ex av ( )2sm 0.15  ( ) s.km4.2s 160 =  In this form, the quantity 

dtdm
m is 

approximated by =∆= ∆∆∆ t
m
m

tm
m 160 s. 

 

8.55: a) The average thrust is the impulse divided by the time, so the ratio of the average 

thrust to the maximum thrust is .442.0
s) (1.70 N) (13.3

s)N 0.10( =⋅
   b) Using the average force in Eq. 

(8.38), s.m 800
kg 0125.0
sN 0.10 

ex === ⋅
dm

dtFv    c) Using the result of part (b) in Eq. (8.40),   

sm530)0133.00258.0(ln )sm800( ==v . 

 

 

8.56: Solving Eq. (8.4) for the ratio 
m

m0 , with 00 =v , 

 

.1.45
skm10.2

skm00.8
expexp

ex

0 =







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


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v
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8.57: Solving Eq. (8.40) for 
om

m , the fraction of the original rocket mass that is not fuel,   

. exp
ex0








−=
v

v

m

m
 

a) For  .102.7s))m(2000sm1000.3(exp(,sm1000.31000.1 66553 −− ×=×−×=×= cv  

b) .22.0s))m 2000(s)m 3000(exp( ,sm 3000For =−=v  

 

 

 



8.58: a) The speed of the ball before and after the collision with the plate are found 

from the heights. The impulse is the mass times the sum of the speeds,  

( ) 47.0m 60.1m 00.2sm 2(9.80kg) 040.0()22()( 2

2121 =+=+=+= gygymvvmJ

b) N.  237s)10s/2.00N 47.0( 3

t
=×⋅= −

∆
J   

 

 

8.59: jijjFp ˆ)sN 2.5N 0.30(ˆ)tsN 33.8(ˆ)2(ˆ)3( 23223 ttγtβtαt dt ++=++== ∫
rr

 

 

After 0.500 s, ,ˆs)mkg63.15(ˆs)mkg04.1( jip ⋅+⋅=
r

and the velocity is 

 

.ˆs)m82.7(ˆs)m52.0( jipv +== m
rr

 

 

8.60: a)   s.N  1.14s)10(3.00 N) 380( 3 ⋅−=×−== −tFJ xx  

    s.N  33.0s)10(3.00 N) (110 3 ⋅=×== −tFJ yy  

b)  ( ) ( )
( )

sm05.0
)sm 80.9(N 560.0

N.s14.1
sm 20.0

212 =
−

+=+= mJvv xxx  

 

s.m78.1
))sm(9.80N) ((0.560

N.s) 33.0(
)sm0.4(

212 =+−=+= mJvv yyy  

 

 
8.61: The total momentum of the final combination is the same as the initial momentum; 
for the speed to be one-fifth of the original speed, the mass must be five times the original 

mass, or 15 cars. 

 

 

8.62: The momentum of the convertible must be the south component of the total 

momentum, so 

 

s.m 67.2
kg) (1500

60.0 s)cosm kg 800(
con =

°⋅
=v  

Similarly, the speed of the station wagon is 

 

s.m 46.3
kg) (2000

60.0sin  s)mkg800(
sw =

°⋅
=v  

 

 



8.63: The total momentum must be zero, and the velocity vectors must be three vectors of 

the same magnitude that sum to zero, and hence must form the sides of an equilateral 

triangle. One puck will move °60  north of east and the other will move °60 south of east. 

 

 

8.64: a) xtotCxCBxBAxA vmvmvmvm =++ , therefore 

 

kg050.0

s)cos60m50.0kg)( (0.030s)m 1.50kg)( 020.0(s)m kg)(0.50 100.0( °−−−−
=Cxv  

sm75.1=Cxv  

 

 

Similarly, 

 

kg 050.0

60s)sin m50.0kg)( 030.0(s)m kg)(0020.0(s)mkg)(0100.0( °−−−
=Cyv  

sm 26.0=Cyv  

 

     b) 

 
J 092.0]s)m 26.0(s)m 75.1[(kg) 050.0(      

s)m50.0kg)( 030.0(s)m kg)(1.50 020.0(s)m kg)(0.5 100.0(

22

2
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2

2
12

2
12

2
1

−=+×−

−−−=∆K
 

 

 
8.65: a) To throw the mass sideways, a sideways force must be exerted on the mass, and 

hence a sideways force is exerted on the car. The car is given to remain on track, so some 

other force (the tracks on the car) act to give a net horizontal force of zero on the car, 

which continues at sm 00.5 east. 

     b) If the mass is thrown with backward with a speed of sm 00.5  relative to the initial 

motion of the car, the mass is at rest relative to the ground, and has zero momentum. The 

speed of the car is then 
( )
( )  s,m 71.5)sm 00.5(

kg 175

kg 200 = and the car is still moving east. 

 

     c) The combined momentum of the mass and car must be same before and after the 

mass hits the car, so the speed is 
( )( ) ( )( )

( )kg 225

sm 00.6kg 0.25sm 00.5kg 200 −+
=  s,m 78.3 with the car still 

moving east. 

 



8.66:  The total mass of the car is changing, but the speed of the sand as it leaves the car 

is the same as the speed of the car, so there is no change in the velocity of either the car 

or the sand (the sand acquires a downward velocity after it leaves the car, and is stopped 

on the tracks after it leaves the car). Another way of regarding the situation is that exv in 

Equations (8.37), (8.38) and (8.39) is zero, and the car does not accelerate. In any event, 

the speed of the car remains constant at 15.0 m/s. In Exercise 8.24, the rain is given as 

falling vertically, so its velocity relative to the car as it hits the car is not zero. 

 

8.67:   a) The ratio of the kinetic energy of the Nash to that of the Packard is 
( )( )
( )( )

.68.12

2

2

2

sm 5kg 1620

sm 9kg 840 ==
PP

��

vm

vm
 b) The ratio of the momentum of the Nash to that of the 

Packard is 0.933,   
)m/s kg)(5 1620(

)m/s kg)(9 (840 ==
PP

��

vm

vm
 therefore the Packard has the greater magnitude 

of momentum. c) The force necessary to stop an object with momentum P  in time t is  

F  = /P− t. Since the Packard has the greater momentum, it will require the greater force 

to stop it. The ratio is the same since the time is the same, therefore   / =P� FF  0.933. d) 

By the work-kinetic energy theorem,   =F  
d

k∆ . Therefore, since the Nash has the greater 

kinetic energy, it will require the greater force to stop it in a given distance. Since the 

distance is the same, the ratio of the forces is the same as that of the kinetic energies, 

  / =P� FF  1.68. 

 

 
8.68:   The recoil force is the momentum delivered to each bullet times the rate at which 
the  bullets are fired, 

  ave =F N. 36.4  
mins/  60

nbullets/mi 1000
 m/s) (293 kg) 1045.7( 3 =







× −
 

 
 



8.69:   (This problem involves solving a quadratic. The method presented here formulates 

the answer in terms of the parameters, and avoids intermediate calculations, including 

that of the spring constant.) 

 

      Let the mass of the frame be M  and the mass putty be m.  Denote the distance that the 

frame streteches the spring by x0 , the height above the frame from which the putty is 

dropped as h , and the maximum distance the frame moves from its initial position (with 

the frame attached) as d. 

 

The collision between the putty and the frame is completely inelastic, and the 

common speed after the collision is  . 20 Mm

mghv += After the collision, energy is 

conserved, so that 

 

or  , )((
2

1
)()(

2

1 2

0

2

0

2

0 xxdkgdMmvMm −+=+++  

                          , )((
2

1
)()2(

2

1 2

0

2

0

0

2

xxd
x
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gdMmgh

Mm

m
−+=++
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where the above expression for 0v , and 0xmgk = have been used. In this form, it is seen 

that a factor of g cancels from all terms. After performing the algebra, the quadratic for d 

becomes 

 

which has as its positive  root 

For this situation, m = 4/3 M and h/x0 = 6, so 

 

 d = 0.232 m. 

 

 

,022
2

00

2 =
+

−






−
Mm

m
hx

M

m
xdd

.
)(

2  
2

0

2

0























+
+







+






=
MmM

m

x

h

M

m

M

m
xd



8.70: a) After impact, the block-bullet combination has a total mass of 1.00 kg, and the 

speed V of the block is found from .or  ,2

2
12

total2
1 XVkXVM

m
k== The spring constant k 

is determined from the calibration; m.N300
m 10502

N 75.0
3 == −× .

k  Combining, 

 

( ) s.m 60.2m100.15
kg 1.00

N/m300 2 =×= −V  

b) Although this is not a pendulum, the analysis of the inelastic collision is the same; 

 

( ) .sm 325sm 60.2
Kg 100.8

Kg 00.1
3

total =
×

==
−

V
m

M
v  

 

 

8.71: a) Take the original direction of the bullet’s motion to be the x-direction,  

and the direction of recoil to be the y-direction. The components of the stone’s velocity  

after impact are then 

   

( ) ,sm 0.21sm 350
Kg 0.100

Kg 1000.6 3

=






 ×
=

−

xv  

 

( ) ,sm 0.15sm 250
Kg 100.0

Kg 1000.6 3

=






 ×
−=

−

yv  

 

and the stone’s speed is ( ) ( ) ,sm 8.25sm 0.15sm 0.21
22 =+  at an angle of arctan 

( ) .5.35
0.21
0.15 °=  b) ( )( ) J  368m/s 350 kg 1000.6

23

2
1

1 =×= −K  

( )( )23

2
1

2 m/s 250kg 1000.6 −×=K ( )( ) ,J 221s/m 8.25kg 100.0 22

2
1 =+ so the collision is 

not perfectly elastic. 

 



8.72: a) The stuntman’s speed before the collision is .s/m 9.920s == gyv  The speed 

after the collision is  

 

( ) .m/s 3.5m/s 9.9
kg 100.0

kg 0.80
0

vs

s ==
+

= sv
mm

m
v  

 

b) Momentum is not conserved during the slide. From the work-energy theorem, the 

distance x is found from or ,totalk

2

total2
1 gxmµvm =  

 

( )
( )( ) .m 7.5

s/m 80.925.02

s/m 28.5

2 2

2

k

2

===
g

v
x

µ
 

 

Note that an extra figure was needed for V in part (b) to avoid roundoff error. 

 

 

8.73: Let v be the speed of the mass released at the rim just before it strikes the second 

mass. Let each object have mass m. 

       Conservation of energy says gRvmgRmv 2  ;2

2
1 ==  

      This is speed 1v for the collision. Let 2v be the speed of the combined object just after 

the collision. Conservation of momentum applied to the collision 

gives 2 2  so 2 1221 gRvvmvmv ===  

 

      Apply conservation of energy to the motion of the combined object after the collision. 

Let 3y be the final height above the bottom of the bowl. 

 

( ) ( ) 3

2

22
1 2 2 gymvm =  

 

4/
22

1

2

2

2
3 R

gR

gg

v
y =







==  

     Mechanical energy is lost in the collision, so the final gravitational potential energy is 

less than the initial gravitational potential energy. 

 

 



8.74: Collision: Momentum conservation gives 

 

310

310

3

)3(

vvv

vmmvmv

+=

+=
             (1) 

     Energy Conservation: 

 

( )
2

3

2

1

2

0

2

3

2

1

2

0

3

3
2

1

2

1

2

1

vvv

vmmvmv

+=

+=
          (2) 

 

Solve  (1) and (2) for sm50.2: 33 =vv  

    Energy conservation after collision: 

 

( ) ( ) ( ) ( )θglmghmvm cos1333
2

1 2

3 −==  

 

Solve for °= 68.8:θθ  

 

 
8.75: First consider the motion after the collision.  The combined object has mass 

=totm 25.0 kg. Apply aF
rr

m=Σ  to the object at the top of the circular loop, where the 

object has speed 3v . 

R

v
mmgT

2

3=+  

     The minimum speed 3v  for the object not to fall out of the circle is given by setting 

0=T . This gives ,3 Rgv = where m. 3.50=R  

 

     Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at 

the top of the loop. Take 0=y  at the point 2. Only gravity does work, so 

 

     3322 UKUK +=+  

     ( )Rgmvmvm 2tot

2

3tot2
12

2tot2
1 +=  

      Use Rgv =3  and solve for sm 13.15: 22 == gRvv  

      Now apply conservation of momentum to the collision between the dart and the 

sphere. Let 1v  be the speed of the dart before the collision. 

      ( ) ( )( )sm 1.13kg 0.25kg 00.5 1 =v  

      sm 5.651=v  

 

 



8.76: Just after the collision: ∑ = maF  

 

( )( ) ( )

sm0.16

m 35.1
kg 00.8sm80.9kg 00.8N1600

8

2

82

2

8
88

=

=−

=−

v

v

R

v
mgmT

 

 

 

Energy and momentum are conserved during the elastic collision. 

 

( ) ( ) ( )( )

( ) ( ) ( )( )
(2)                                  sm1024

sm0.16kg 00.8kg 00.2kg 00.2

2

1

2

1

2

1

(1)                                       sm0.64

sm 0.16kg 00.8kg 00.2kg 00.2

222

2

2

0

22

2

2

0

2

88

2

22

2

02

20

20

882202

+=

+=

+=

+=

+=

+=

vv

vv

vmvmvm

vv

vv

vmvmvm

 

Solve (1) and  (2) for sm0.40: 00 =vv  

 

 
8.77:  a) The coefficient of friction, from either force or energy consideration, is 

,22

k gsvµ = where v  is the speed of the block after the bullet passes through. The speed 

of the block is determined from the momentum lost by the bullet, 

( )( ) s,mkg 12.1sm280kg1000.4 3 ⋅=× − and so the coefficient of kinetic friction is 

 

( )( )
( )( )

.22.0
m45.0sm 80.92

)kg 80.0(sm kg 12.1
2

2

k =
⋅

=µ  

 

b) ( ) ( ) ( )( ) J.  291sm120sm 400kg1000.4
22 3

2
1 =−× −

  c) From the calculation of the 

momentum in part  (a), the block’s initial kinetic energy was .J 784.0
kg) 80.0(2

)smkg 12.1(

2

22

== ⋅
m

p
 

 

 



8.78: The speed of the block after the bullet has passed through (but before the block has 

begun to rise; this assumes a large force applied over a short time, a situation 

characteristic of bullets) is 
 

m/s. 297.0m) 10  45.0)(m/s 80.9(22 22 =×== −gyV  

 

The final speed v of the bullet is then 

 

m/s, 390.6m/s) 297.0(
kg10  5.00

kg 1.00
  m/s 450

 3

0

0

=
×

−=

−=
−

==

−

V
m

M
v

m

MVmv

m

p
v

 

or 390 m/s to two figures. 
 

 

8.79:   a)  Using the notation of Eq. ( 8.24 ),  
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b) Of the many ways to do this calculation, the most direct way is to differentiate the 

expression of part (a) with respect to M and set equal to zero; 

.

2)(0

)(

2

)(

1
0

or ,
)(

)K4(0

32

20

Mm

MMm

Mm

M

Mm

Mm

M

dM

d
m

=

−+=

+
−

+
=









+

=

 

 

c) From Eq.(8.24), with 0;   , === ABA vmmm  the neutron has lost all of its kinetic 

energy. 

 

 



8.80: a) From the derivation in Sec. 8.4 of the text we have 

 

BA

A
B0

BA 

BA
A

2
    and 
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M
VV

MM

MM
V

+
=

+

−
=  

 

The ratio of the kinetic energies of the two particles after the collision is 
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2

BA
BA
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2

BA

2

A
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B

A
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B

A

B

A

2

BB2
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      b)  i) For ;0, ABA == KEMM  i.e., the two objects simply exchange kinetic energies. 

 

ii)               ,5 For BA MM =  

5

4

))(5(4

)4(

BB

2

B

B

A ==
MM

M

KE

KE
 

i.e., AM gets 4/9 or 44% of the total. 

 

      c)  We want 

 

BA

2

BBA

2

A

BA

2

BA

B

A

4

2

4

)(
1

MM

MMMM

MM

MM

KE

KE +−
=

−
==  

 

which reduces to  

 

,06 2

BBA

2

A =+− MMMM  

 

from which, using the quadratic formula, we get the two possibilities  BA  83.5 MM = and 

 

B.A  172.0 MM =  

 



8.81: a) Apply conservation of energy to the motion of the package from point 1 as it 

leaves the chute to point 2 just before it lands in the cart. Take y = 0 at point 2, so y1 = 

4.00 m. Only gravity does work, so 

 

2

22
1

1

2

12
1

2211

mvmgymv

UKUK

=+

+=+
 

m/s 35.92 1

2

12 =+= gyvv  

 

     b) In the collision between the package and the cart momentum is conserved in the 

horizontal direction. (But not in the vertical direction, due to the vertical force the floor 

exerts on the cart.) Take +x  to be to the right. Let A be the package and B be the cart. 

 

     Px is constant gives 

     xBAxBBxAa vMmvmvm 211 )( +=+  

     m/s 00.51 −=xBv  

     ( 37.0 cos m/s) 00.3(1

ο=xAv The horizontal velocity of the package is constant during 

its free-fall.) 

      Solving for xv2  gives m/s. 29.32 −=xv The cart is moving to the left at 3.29 m/s after 

the package lands in it. 

 

 
8.82: Even though one of the masses is not known, the analysis of Section (8.4) leading 

to Eq. (8.26) is still valid, and  m/s. 0.250  m/s 0.050  m/s 200.0red =+=v   b) The mass 

redm  may be found from either energy or momentum considerations. From momentum 

conservation, 

kg. 024.0
m/s) (0.250

m/s) 050.0 m/s kg)(0.200 040.0(
red =

−
=m  

As a check, note that 

 

collision. elasticperfectly  afor must it  as , so

J,  10 0.8m/s) kg)(0.250 024.0(m/s) kg)(0.050 040.0(

and J,  10 0.8m/s) kg)(0.200 040.0(

21
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8.83: a) In terms of the primed coordinates, 
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with a similar expression for .2

Bv  The total kinetic energy is then 

( ) ( )
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[ ]. . . 2
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The last term in brackets can be expressed as 

,)  (2 cmvvv
rrr
⋅′+′ BBAA mm  

and the term 

cm)m  (    vvvvv
rrrrr

BABBAABBAA mmmmm +−′+′=′+′  

         ,0000=  

 

     and so the term in square brackets in the expression for the kinetic energy vanishes, 

showing the desired result.   b) In any collision for which other forces may be neglected 

the velocity of the center of mass does not change, and the 2

cm2
1 Mv  in the kinetic energy 

will not change. The other terms can be zero (for a perfectly inelastic collision, which is 

not likely), but never negative, so the minimum possible kinetic energy is .2

cm2
1 Mv  

 

 
8.84: a) The relative speed of approach before the collision is the relative speed at which 

the balls separate after the collision. Before the collision, they are approaching with 

relative speed 2 v , and so after the collision they are receding with speed 2v . In the limit 

that  the larger ball has the much larger mass, its speed after the collision will be 

unchanged (the limit as BA mm >> in Eq. (8.24)), and so the small ball will move upward 

with speed 3 v .  b) With three times the speed, the ball will rebound to a height time 

times greater than the initial height. 

 

 



8.85: a) If the crate had final speed v , J&J have speed 4.00 v−sm  relative to the ice, 

and so  ).m/skg)(4.00 20.01(kg) 0.15( vv −= Solving for .sm56.3,
kg) 0.135(

s)m (4.00 kg) 0.120( ==vv  

b) After Jack jumps, the speed of the crate is ,sm222.2)sm00.4(
kg) (135.0

kg) 0.75( =  and the 

momentum of Jill and the crate is smkg 3.133 ⋅ . After Jill jumps, the crate has a speed v  

and Jill has speed 4.00 ,sm v−  and so 

−=⋅ v)kg 0.15(smkg 3.133  ),sm 00.4kg)( 0.45( v− and solving for v  gives 

s.m 22.5=v   c) Repeating the calculation for part (b) with Jill jumping first gives a final 

speed of s.m 67.4  

 

 



8.86: (a) For momentum to be conserved, the two fragments must depart in opposite 

directions. We can thus write 

BBAA VMVM −=  

Since ,BA MMM −= we have 

B

B

B

A

BBAB)(

MM

M

V

V

VMVMM

−
−

=

−=−

 

 

 

Then for the ratio of the kinetic energies 
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The ratio of the KE’s is simply the inverse ratio of the masses. 

From the two equations 

QKEKEKE
M

M
KE =+= BAB

A

B
A   and  

We can solve for BKE to find 
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A
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     (b) If AAB then ,4 MMM =  will get 4 times as much KE as ,BM or 80% of Q for 

AM and 20% for .BM  

 

 



8.87:   Let the proton be moving in the + x -direction with speed pv  after the decay.  The 

initial momentum of the neutron is zero, so to conserve momentum the electron must be 

moving in the x− -direction after the collision; let its speed be .ev  

      xP  is  constant gives 0 = eevm−  +  .ppvm  

     ev  = ( ep mm )v  – p  

 The total kinetic energy after decay is totK  = 
2

2
1

eevm +
2

2
1

ppvm . Using the 

momentum equation to replace ev  gives totK  = 2

2
1

ppvm ( 1+ ).ep mm  

 

%  0544.010  5.44
1836

1

1

1
   Thus  4

ptot

=×==
+

= −

e

p

mmK

K

8.88: The ratios that appear in Eq. ( 8.42 ) are  ,and 
1.0176

1
0176.1
0176.0 so the kinetic energies are 

a) J.10  6.43  J)1054.6( b) and J10  1.13  J)1054.6( 1313

1.0176
1 1413

0176.1
0176.0 −−− ×=××=× -

 

Note that the energies do not add to J1054.6 13−× exactly, due to roundoff. 

 

8.89: The “missing momentum” is 

 

    smkg 10  5.60 22 ⋅× −  325 10 kg)(1.141050.3( ××− −  m/s smkg1061.1) 22 ⋅×= −  . 

 

Since the electron has momentum to the right, the neutrino’s momentum must be to the 

left. 

 

 



8.90:  a)  For the -y and -x directions, respectively, and m as the common mass of a 

proton, 

 

βmvmvmv AA coscos 221 += α  

           0 = −αsin2Amv βmvB sin2  

 

or 

 

1Av  = 2Av coscos 2Bv+α β  

    0 = −αsin2Av βvB sin2 . 

 

b ) After minor algebra, 

 

 

( )
).cos(2      

sin  sin   cos  cos2

22

2

2

2

2

22

2

2

2

2

2

1

βvvvv

βvvvvv

BABA

BABAA

+++=

−++=

α

βαα
 

 

c ) For a perfectly elastic collision, 

 

2

2

2

2

2

1
2

1

2

1

2

1
BAA mvmvmv +=  or .2

2

2

2

2

1 BAA vvv +=  

 

Substitution into the above result gives d) 0.)cos( =β+α  The only positive angle with 

zero cosine is ).90(
2

°π  

 

 

8.91: See Problem 8.90. Puck B moves at an angle 65.0 )652590 i.e.( °=°−°°  from the 

original direction of puck A’s motion, and from conservation of momentum in the 

-y direction, .466.0 22 AB vv =  Substituting this into the expression for conservation of 

momentum in the −x direction, sm 6.13)65cos466.00.25(cos12 =+= οο
AA vv , and so 

34.62 =Bv  m/s. 

     As an alternative, a coordinate system may be used with axes along the final directions 

of motion (from Problem 8.90, these directions are known to be perpendicular). The 

initial direction of the puck’s motion is  °0.25 from the final direction, so 

,0.65cos and0.25cos 1212 ABAA vvvv =°= giving the same results. 

 

 



8.92: Since mass is proportional to weight, the given weights may be used in determining 

velocities from conservation of momentum. Taking the positive direction to the left, 

sm 105.0
N 1000

36.9 cos m/s) N)(7.00 600(30.0 cos m/s) N)(5.00 800(
=

−
=

οο

v  

 

 

8.93: a)  From symmetry, the center of mass is on the vertical axis, a distance 

)2cos()2( αL from the apex.   b) The center of mass is on the (vertical) axis of 

symmetry, a distance 33/)2/(2 LL =  from the center of the bottom of the    . c) Using 

the wire frame as a coordinate system, the coordinates of the center of mass are equal, 

and each is equal to .42/)2( LL =  The distance of this point from the corner is 

( ) .)353.0(81 LL = This may also be found from consideration of the situation of part 

a),( with °=α 45  d ) By symmetry, the center of mass is in the center of the equilateral 

triangle, a distance LLL )289.0(12)60)(tan2( ==° above the center of the base. 

 

 

8.94: The trick here is to notice that the final configuration is the same as if the canoe 

( assumed symmetrical ) has been rotated about its center of mass. Intially, the center of 

mass is a distance m 643.0
kg) (105

m) (1.5 kg) 0.45( =  from the center of the canoe, so in rotating about 

this point the center of the canoe would move m. 1.29 m 643.02 =×  

 

 

8.95: Neglecting friction, the total momentum is zero, and your speed will be one-fifth of 

the slab’s speed, or 0.40  s./m  

 

 



8.96: The trick here is to realize that the center of mass will continue to move in the 

original parabolic trajectory, “landing” at the position of the original range of the 

projectile. Since the explosion takes place at the highest point of the trajectory, and one 

fragment is given to have zero speed after the explosion, neither fragment has a vertical 

component of velocity immediately after the explosion, and the second fragment has 

twice the velocity the projectile had before the explosion. a) The fragments land at 

positions symmetric about the original target point. Since one lands at ,
2
1 R  the other 

lands at  

m. 848120sin
)s/m 80.9(

)s/m 80(

2

3
2sin

2

3

2

3
2

2

0

2

0 ==α= ο

g

v
R  

 

b) In terms of the mass m  of the original fragment and the speed v  before the explosion, 

2
1

1 =K .  so,)2( and 2

2
12

2
1222

22
1

2

2 mvmvmvKmvvKmv m =−=∆==  The speed v  is related 

to ,cosby  000 α= vvv so 

 

J.1060.1)0.60cos)m/s80)(kg0.20(
2

1
cos

2

1  42

0

22

0 ×=°==∆ αmvK  

  

 



8.97: Apply conservation of energy to the explosion. Just before the explosion the sheel 

is at its maximum height and has zero kinetic energy. Let A  be the piece with mass 1.40 

kg and B be the piece with mass 0.28 kg. Let Av  and Bv  be the speeds of the two pieces 

immediately after the collision. 

 

 J 8602

2
12

2
1 =+ BBAA vmvm  

 

Since the two fragments reach the ground at the same time, their velocitues just 

after the explosion must be horizontal. The initial momentum of the shell before the 

explosion is zero, so after the explosion the pieces must be moving in opposite horizontal 

directions and have equal magnitude of momentum: .BBAA vmvm =  

 

     Use this to eliminate :for  solve andequation first  in the BA vv  

     
m/s.  3.14)(Then 

m/s.  6.71 and J 860)/1(2

2
1

==

==+

BABA

BABBB

vmmv

vmmvm
 

 

     b) Use the vertical motion from the maximum height to the ground to find the time it 

takes the pieces to fall to the ground after the explosion. Take + y  downward. 

     
s. 4.04 tgives 

?  m, 0.80 ,m/s  80.9,0

2

2
1

00

0

2

0

=+=−

==−+==

tatvyy

tyyav

yy

yy
 

     During this time the horizontal distance each piece moves is 

    m. 1.289 and m 8.57 ==== tvxtvx BBAA  

     They move in opposite directions, so they are m 347=+ BA xx apart when they land. 

 

 



8.98: The two fragments are 3.00 kg and 9.00 kg. Time to reach maximum height = time 

to fall back to the ground. 

 

s. 5.12

sm 8.90.55sin)sm 150(0

sin

2

09

=

−=

−θ=
ο

t

t

gtvv

 

    

     The heavier fragment travels back to its starting point, so it reversed its velocity. 

 86.0  55 cos )sm (150   cos0 ==θ= οvvx  sm to the left after the explosion; this is .9v Now 

get 3v  using momentum conversation. 

( )( ) ( ) ( )( )
sm602

sm0.86kg00.9kg 00.3sm0.86kg 12

3

3

99330

=

−+=

+=

v

v

vmvmMv

 

)5.12)(sm602()s 5.12)(sm 0.86(
explosionAfter explosion Before  3 +=+= xxx  

launched it was  wherefrom m86003 =x  

Energy released = Energy after explosion – Energy before explosion 

 

   

J 1033.5

)sm 0.86)(kg 0.12(
2

1
      

)sm 0.86)(kg 00.9(
2

1
)sm 602)(kg 00.3(

2

1

)(
2

1
m

2

1
m

2

1

5

2

22

2

993

2

99

2

33

×=

−

+=

+−+= vmmvv

 

 



8.99:   The information is not sufficient to use conservation of energy. Denote the emitted 

neutron that moves in the -y+ direction by the subscript 1 and the emitted neutron that 

moves in the –y-direction by the subscript 2. Using conservation of momentum in the x- 

and y-directions, neglecting the common factor of the mass of neutron, 

 

.30sin  45sin  10)sin 32(0

30 cos45 cos 10 cos)32(

210

2100

°−°+°=

°+°+°=

vvv

vvvv
 

 

With °=° 45 cos45 sin , these two relations may be subtracted to eliminate ,1v  and 

rearrangement gives  

 

),30sin 30 cos()10)sin 32( 10 cos )32(1( 20 °+°=°+°− vv  

 

from which 2v  sm101.0or  sm1001.1 33 ××= to two figures. Substitution of this into 

either of the momentum relations gives s.m 2211 =v  All that is known is that there is no 

-z component of momentum, and so only the ratio of the speeds can be determined. The 

ratio is the inverse of the ratio of the masses, so BaKr )5.1( vv = . 

 

 

8.100: a) With block B initially at rest, 1cm Amm

m
vv

BA

A

+= .  b) Since there is no net external 

force, the center of mass moves with constant velocity, and so a frame that moves with 

the center of mass is an inertial reference frame. c) The velocities have only x -

components, and the x -components are 

1cm11cm11 , Amm

m

BAmm

m

AA uvuvvvu
BA

A

BA

B

++ −=−==−= . Then, 011cm =+= BBAA umumP . 

d) Since there is zero momentum in the center-of-mass frame before the collision, there 

can be no momentum after the collision; the momentum of each block after the collision 

must be reversed in direction. The only way to conserve kinetic energy is if the 

momentum of each has the same magnitude so in the center-of-mass frame, the blocks 

change direction but have the same speeds.  Symbolically, 1212  , BBAA uuuu −=−= . e) The 

velocities all have only x –components; these components are 

.4 s,m00.2 s,m 4.00sm 00.6 s,m00.2sm 00.6 22600.0
400.0

1600.0
200.0

1 =−=−=−=== BABA uuuu

and s.m 00.8s,m 00.2 22 =+= BA vv  and  Equation (8.24) predicts 13
1

2 AA vv +=  and Eq. 

(8.25) predicts 13
4

2 AB uv = , which are in agreement with the above. 

 

 



8.101: a) If the objects stick together, their relative speed is zero and 0∈= .  b) From Eq. 

(8.27), the relative speeds are the same, and 1∈= .  c) Neglecting air resistance, the 

speeds before and after the collision are gh2  and 12gH , and 
gh

gH

2

2 1  =∈  = hH1 . d) 

From part (c), ( ) ( )  m. 0.87  m 1.2 0.85    
22

1 ==∈= hH e) 
2

 1    ∈=+ kk HH , and by induction 

.  2 hH n

n ∈=  f) ( ) ( ) cm. 8.9  85.0 m 2.1
16 =  

 

 

 

8.102: a) The decrease in potential energy ( )0  <∆−  means that the kinetic energy 

increases. In the center of mass frame of two hydrogen atoms, the net momentum is 

necessarily zero and after the atoms combine and have a common velocity, that velocity 

must have zero magnitude, a situation precluded by the necessarily positive kinetic 

energy. b) The initial momentum is zero before the collision, and must be zero after the 

collision. Denote the common initial speed as 0v , the final speed of the hydrogen atom as 

v , the final speed of the hydrogen molecule as V , the common mass of the hydrogen 

atoms as m  and the mass of the hydrogen molecules as 2m . After the collision, the two 

particles must be moving in opposite directions, and so to conserve momentum, Vv 2  = . 

From conservation of energy, 

 

( ) 2

02
122 3  

2

1
    2

2

1
mvmvVm =+∆−  

                               2

02

322   2    mvmVmV =+∆−  

 
m

v
V

3
  

2
  

2

02 ∆
+= , 

 

from which   m/s, 10  203.1  4×=V or 1.20 ×  410  m/s to two figures and the hydrogen atom 

speed is 410  2.41  ×=v  m/s. 

 

8.103: a) The wagon, after coming down the hill, will have speed αsin  2gL  = 10 m/s. 

After the “collision”, the speed is ( )( ) m/s, 6.9  m/s 10 
kg 435

kg 300 = and in the 5.0 s, the wagon 

will not reach the edge. b) The “collision” is completely inelastic, and kinetic energy is 

not conserved. The change in kinetic energy is 

( )( ) ( )( ) J, 4769  m/s 10kg 300m/s 6.9kg 435
2

2
12

2
1 −=−  so about 4800 J is lost. 

 

 



8.104: a) Including the extra force, Eq. ( )37.8  becomes 

 

,    ex mg
dt

dm
v

dt

dv
m −−=  

where the positive direction is taken upwards (usually a sign of good planning). b) Diving 

by a factor of the mass ,m  

 

.        ex g
dt

dm

m

v

dt

dv
a −−==  

 

c) 20 .sm 2.10  sm 80.9  sm 222 =−  d) 3327 sm  ( ) ,skm 2.45   90 )m/s(9.80 2 =−  which 

is about three-fourths the speed found in Example 8.17. 

 

 

8.105: a) From Eq. ( ) ( ) ( ) .37.1  ln   ,40.8 exkg 3,300

kg 13,000

ex vvv ==  

b) ( ) ( ) .1.18  000,4/000,13ln exex vv =  

c) ( ) ( ) ( ) .38.2300/1000In18.1 exexex vvv =+  d) Setting the result of part (c) equal to 

7.00 km/s and solving for exv  gives .km/s 94.2ex =v  

 

 

8.106: a)  There are two contribution to 

( ) .or |,|||, exnetexnetnet dtdmvvFdtdmvdtdmvFF −=−=  

b) ( ) sm 66.8s)kg 150(N 1300|/|/net ==dtdmF = 31 km/h. This equal to 

.ex vv −  

 

 



8.107: a)  For 0<t  the rocket is at rest. For ≤≤ t0  90 s, Eq. ( )40.8  is valid, and 

( ) ( ) ( )( )( ).s120/11lnsm 2400 ttv −=  At 90=t s, this speed is 3.33 km/s, and this is also 

the speed for .s 90>t  

 

 
 

    b) The acceleration is zero for 90 and 0 >< tt  s. For 900 ≤≤ t  s, Eq. (8.39) gives, 

with ( )( )s 120/1
m/s 20

0

2

 s, 120
tdt

dm am −=−= . 

 

 

 
    c) The maximum acceleration occurs at the latest time of firing, 90=t  s, at which time 

the acceleration is, from the result of part (a), ( )
2

120/901
m/s 20 m/s 80

2

=− , and so the astronaut is 

subject to a force of 6.0 kN, about eight times her weight on earth. 

 

 



8.108: The impulse applied to the cake is mvmgtµJ == k1 , where m is the mass of the 

cake and v is its speed after the impulse is applied. The distance d that the cake moves 

during this time is then .2

1k2
1 gtd µ=  While sliding on the table, the cake must lose its 

kinetic energy to friction, or ( ) .2

2
1

2k mvdrmg =−µ Simplification and substitution for v 

gives 
2

2
1

2k

2
1k tgdr

µ

µ=− , substituting for d in terms of 2t  gives 

 

( ),
2

1

2

1
2k1k

2k

1k2

2k

2

1k
1k

2 µµ
µ
µ

µ
µ

µ +=







+= gtgtr  

which gives t = 0.59 s. 

 

 

8.109: a) Noting than dxdm
L
M=  avoids the intermediate variable ρ . Then, 

 

2

1

0

L
dx

L

M
x

M
x

L

cm == ∫ . 

 

b) In this case, the mass M may be found in terms of ρ  and L, specifically by using  

AdxAdxdm αρ ==  to find that 2 2LAxdxAM αα =∫= . Then, 

 

.
3

2

3

22 3

20

2

2cm

LL

AL
dxAx

AL
x

L

=
α

=α
α

= ∫  

 

 

8.110: By symmetry, 0=cmx . Using plane polar coordinates leads to an easier 

integration, and using the Theorem of Pappus ( )( )3

3
4

2cm ππ2
2

ay a =π  is easiest of all, but the 

method of Problem 8.109 involves Cartesian coordinates. 

 

For the x-coordinate, dxxatdm 22 −= ρ , which is an even function of x, so 

∫ = .0 dxx  For the y-coordinate, dyyaρtdm 222 −= , and the range of integration is 

from 0 to a, so 

 

∫ −=
a

dyyay
M

ρt
y

0

22

cm .,
2

 

 

Making the substitutions ,2 , ,π 222

2
1 yduyautaρM −=−==  and 

π3

4

π3

4

π

2
0

2

3

2
2

1

2cm

2

2

a
u

a
duu

a
y

a

o

a
=







−
=

−
= ∫ . 

 

 



8.111: a) The tension in the rope at the point where it is suspended from the table is 

( )gxT λ= , where x is the length of rope over the edge, hanging vertically. In raising the 

rope a distance dx− , the work done is ( ) ( )( ).negative is dxdxxg −λ  The total work done 

is then 

 

( ) ( ) .
322

 
2

4/

0

2
0

4/

glx
gdxxg l

l

λ
λλ ==− ∫  

 

   b) The center of mass of the hanging piece is initially a distance l/8 below the top of the 

table, and the hanging weight is ( )( )4/lgλ , so the work required to raise the rope is 

( ) ( ) ( ) ,32/8/4/ 2glllg λλ =  as before. 

 

 

8.112: a) For constant acceleration a, the downward velocity is =v at and the distance x 

that the drop has fallen is .2

2
1 atx =  Substitution into the differential equation gives 

 

( ) 22222

2

3

2

1

2

1
taataatgat =+= , 

 

the non-zero solution of which is .
3

g
a =  

 

   b)  ( ) .m 7.14s 00.3
3

m/s 9.80

2

1

2

1 2
2

2 =







=at  

   c) ( ) ( ) .g 4.29m 7.14g/m 00.2 ==kx  

 



Capítulo 9 



9.1:  a)                    .34.4rad 60.0
m 502

m 50.1
°==

.
 

 

b) cm. 27.6
)180rad)((128

cm) 0.14(
=

°° π
 

     

c) m. 1.05rad) m)(0.70 50.1( =  

 

 

9.2: a)          s.rad 199
s 60

min 1
 

rev

rad 2
  

min

rev
 1900 =















×






 π
 

    b)  s. 10  3.07s)rad 199()180rad   (35 3−×=°×° π  

 

 

9.3:   a)  .srad 42   s, 3.5at  so , )srad (12.0    23 ==== αtt
dt

dω
α z
z The angular acceleration 

is proportional to the time, so the average angular acceleration between any two times is 

the arithmetic average of the angular accelerations.  b) ,)srad (6.0 23 tωz =  so at  

s.rad 73.5  s, 3.5  == zωt  The angular velocity is not linear function of time, so the 

average angular velocity is not the arithmetic average or the angular velocity at the 

midpoint of the interval. 

 

 

9.4:     a)  .)srad 60.1( 2t)(
3
tβtα

dt

dω

z
z −=−==  

 

    b)   .srad 4.80s) 0.3)(srad 60.1( s) 0.3( 23 −=−=zα  

 

,srad 40.2
s 0.3

srad 00.5 srad 20.2

s 0.3

)0(  s) 0.3( 2.

av −=
−−

=
−

=−

ωω
α z  

which is half as large (in magnitude) as the acceleration at s. 3.0=t   

 
 

9.5:  a) 232 )srad (0.036  s)rad 400.0(3   tβtγωz +=+=   b) === γωt z ,0At  

s.rad70.0 so rad,  3.50s,rad3.1 s, 5.00Atc)  s.rad400.0
s5.00
rad50.3

av ===== − zz ωθω t  

The acceleration is not constant, but increasing, so the angular velocity is larger than the 

average angular velocity. 

 

 



9.6:  −−=−−= )srad 0.40( ,)srad 50.4()srad 0.40(s)rad 250( 2

z

232 αttωz     

at which   timepositiveonly   the;in  quadratic ain  results 0 Setting a)  .)srad00.9( 3 tωt z =  

  rev. 93.3rad 586 s, 4.23At  )c

.srad 78.1 s, 4.23At b) s.4.23 is 0 2

===

−====

θt

αttω zz  

s.rad138 e)  s.rad250 0,At   d)
s 4.23

rad586
av ==== − zz ωωt  

 

9.7:  a) .,0 Setting b)  .62 and 32
3

2

c
b

zdt

dw

zdt
dθ

z tαctbαctbtω z ==−==−==  

 

 

9.8: (a) The angular acceleration is positive, since the angular velocity increases steadily 

from a negative value to a positive value. 

 

   (b) The angular acceleration is 

 

20 srad 00.2
s 00.7

s)rad 00.6(srad 00.8
=

−−
=

−
=

t

ωω
α  

 

   Thus it takes 3.00 seconds for the wheel to stop )0( =zω . During this time its speed is 

decreasing. For the next 4.00 s its speed is increasing from srad 8.00  tosrad 0 + . 

   (c) We have 

rad. 7.00  rad 49.0 rad 0.42

s) (7.00 )srad 00.2(s) (7.00 s)rad 00.6(0 22

2
1

2

2
1

00

+=+−=

+−+=

α+ω+θ= ttθ

 

Alternatively, the average angular velocity is 

 

srad 00.1
2

srad 00.8srad 00.6
=

+−
 

Which leads to displacement of 7.00 rad after 7.00 s. 

 

 

9.9:  a) ? s, 30.0  s,rev 8.333minrev 500 rev, 200 00 =====− ωtωθω  

          rpm 300srev 5.00 gives  
2

0
0 ==







 +
=− ωt

ωω
θθ  

b) Use the information in part (a) to find :α   

rev 312 gives  
2

and  75.0 gives 

? s,rev  333.8 ,srev 1111.0 0,Then 

srev 1111.0 gives 

0
0

0

0

0

2

2

0

=θ−θ






 +
=−

=+=

==−=α=

−=α+=

t
ωω

θθ

tαtωω

tωω

αtωω

 

 



9.10: a) s.rad  25.2)s 50.2)(srad 300.0(srad  50.1
2

0 =+=+= tαωω zzz  

    rad. 69.4)s 50.2)(srad 300.0()s 50.2)(srad 50.1( 21t b) 22

2
12

0 =+=+= tαωθ zz  

 

 

9.11: a) 
( )

.
s

rev
 25.1

)s 00.4(

)minrev 500minrev 200(
2

s 60
min 1

−=
×−

 

The number of revolutions is the average angular velocity, min,rev 350 times the time 

interval of 0.067 min, or 23.33 rev. b) The angular velocity will decrease by another 

minrev 200 in a time s. 67.22srev 25.1

1
mins 60

minrev 200 =⋅  

 

 

9.12:  a) Solving Eq. (9.7) for t gives .0

z

zz

α

ωω
t

−=  

Rewriting Eq. (9.11) as )(
2
1

00 tαωtθθ zz +=−  and substituting for t gives 

),(
2

1

2
)(

1

)(
2

1

0
22

0
0

00
0

0

zz

zz
zz

zzz

z

zz

ωω

ωω
ωω

ωωω
α

ωω
θθ

−=








 +
−=








 −+






 −
=−

α

α
 

which when rearranged gives Eq. (9.12). 

 

    b) ( )( )( ) ( ) ( ) ( ) ( )( )=−=−∆= 222

0

2 srad 0.12srad 0.16 rad) 00.7(1 21121 zzz ωωθα  

.srad8 2
 

 

 

9.13: a)  From Eq. ( ),7.9  with s. 0.24 ,0 2srad 50.1

srad 0.36

0 ==== α z

zω

z tω  

   b ) From Eq. ( ),12.9  with rev. 8.68rad 432,0 2

2

srad) 50.1(2

s)rad 0.36(

00 ===−= θ θω z  

 

 

9.14:  a) The average angular velocity is s,rad 5.40
s 4.00

rad 162 =  and so the initial angular 

velocity is s.rad 27 ,2 0z02av −==−− ωωωω zzz  

   b)  .srad8.33
s4.00

)srad27(srad108 2=
−−

=
∆
∆

=
t

ω
α z
z  

 

 



9.15:  From Eq. (9.11), 

s.rad5.10
2

s)00.4)(srad(2.25

s4.00

rad0.60

2

2

0
0 =−=−

−
=

tα

t

θθ
ω z

z  

 

 

9.16:  From Eq. (9.7), with  .==== 2

s00.6

srad140

0 srad33.23 ,0
t

ω

zz
zαω The angle is most 

easily found from rad.420s)s)(6.00rad70(
zav === − tωθ  

 

 

9.17:  From Eq. (9.12), with  ,0=zω the number of revolutions is proportional to the 

square of the initial  angular velocity, so tripling the initial angular velocity increases the 
number of revolutions by 9, to 9.0 rev. 

 

 



9.18: The following table gives the revolutions and the angle θ  through which the wheel 

has rotated for each instant in time and each of the three situations: 

 

 

 

θθ θt       srev'

)c(
      

        srev'

)b(
        

    srev'

)a(
          

 

0.05     0.50   180        0.03     11.3     0.44   158 

 

0.10     1.00   360        0.13     45        0.75   270 

 

0.15     1.50   540        0.28   101        0.94   338 

 

0.20     2.00   720         0.50  180        1.00   360 

–––––––––––––––––––––––––––––––––––––– 

 

The θ and zω graphs are as follows: 

 

   a)  

 
 

   b) 

 
 

   c) 



9.19: a) Before the circuit breaker trips, the angle through which the wheel turned was 

1082s) (2.00 )srad (30.0s) (2.00 )srad 0.24( 22 =+ rad, so the total angle is 

rad. 540rad 432rad 108 =+  b) The angular velocity when the circuit breaker trips is 

( ) ( )( ) s,rad 84s 00.2srad 0.30srad 0.24 2 =+ so the average angular velocity while the 

wheel is slowing is s,rad 0.42  and the time to slow to a stop is  s, 3.10
srad 42.0

rad 432 = so the 

time when the wheel stops is s 3.12 . c) Of the  many ways to find the angular 

acceleration, the most direct is to use the intermediate calculation of part (b) to find that 

while slowing down =∆ zω  srad 84− so .srad 17.8 2

s 3.10

srad 84 −==α −
z  

 

 

9.20: a) Equation (9.7) is solved for ,0 tαωω zzz −= which gives ,
2zave
tωω zα

z −=−  or 

.2
2
1

0 tαtωθθ zz −=−   b) ( ) .srad 125.02 2
2 −=− ∆
t

θ
t

ωz  c)  s.rad 5.5=− tαω zz  

 

 

9.21: The horizontal component of velocity is rω , so the magnitude of the velocity is 

     

    a) 47.1 m/s 

 

    b) m/s. 3.47)m/s 0.4(
rev/min

rad/s

30
 )min/rev 90m)( 0.5( 2

2

=+














 π
 

 

 

9.22: a) =−× m 10 0.25

sm 25.1

3 50.0 srad , 55.21
 10 58.0

m 25.1
3 =−×

srad , or 21.6 srad  to three figures. 

 

    b) (1.25 sm ) (74.0 min) (60 min)s = 5.55 km. 

 

    c) zα = =−
min)s (60 min) 0.74(

srad 55.21srad 0.50
 6.41 310−× .srad 2  

 

 

9.23: a) = 2rω 2)srad 00.6(  )m 500.0( = 18 .sm 2  

 

   b) == ωrv )srad 00.6( =)m 500.0( sm 00.3 , and  =
r
v2 =

)m 500.0(

)sm 00.3( 2

.sm 18 2  

 

 



9.24: From =rada ,
2
rω  

           ==
r

a
ω =

×

×
− m1050.2

sm 80.9000,400
 2

2

 1025.1 4× s,rad  

which is )srad 10  25.1( 4× ( ) ×= 20.1
s 60min 1

rad 2rev 1 π
min.rev 10  5   

  
 

9.25: a) ( )( )  sm 180.0  m 300.0 srad 600.0    ,0 22

tan rad ==== αraa  so and  .sm 180.0  2=a  

so rad, b)
3

πθ = ( )( ) ( ) .sm 377.0  m 0.300 rad 3 srad 600.02   222

 rad === πrωa  

 

 

The tangential acceleration is still  ,sm 180.0 2 and so on 

( ) ( ) .sm 418.0 sm 377.0 sm 180.0 222 22 =+=a  

   c) tan

22

 rad  since ,sm 775.0   and ,sm 754.0  ,120 of anglean For  aaa ==° is 

still 2m/s180.0  

 

 

9.26: ( )( ) srev 430.0  s 200.0 srev 900.0 srev 250.0       a) 2

0z =+=+= tαωω zz  

(note that since zω0  and zα  are given in terms of revolutions, it’s not necessary to 

convert to radians).  rev 0.068(0.2s) s)rev 340.0( b) zav ==∆− tω .  c) Here, the conversion 

to radians must be made to use Eq. (9.13), and 

( ) s.m 01.1revrad  2 rev/s 0.430 
2

m 750.0
=×







== πrωv  

 

   d) Combining equations (9.14) and (9.15), 

 

]
.sm 46.3

  m)) rev)(0.375rad2 srev 900.0(())m 375.0(rev)rad2 srev 430.0[((

)()(

2

2222

222
tan

2
rad

2

2
1

=

×+×=

+=+=

ππ

αrrωaaa

 

 

9.27:  ( )( )
cm, 7.10

 min)rev 5000(

)sm 80.9)(3000(
    

2

minrev

srad

30

2

2

rad ===
πω

a
r  

 

so the diameter is more than 12.7 cm, contrary to the claim. 

 

 



9.28: a) Combining Equations (9.13) and (9.15), 
 

.      22

 rad ωv
ω

v
ωrωa =







==  

b) From the result of part (a), .srad 250.0      
sm 00.2

sm 500.0rad ===
v

a
ω  

 

 

9.29: a) ( )( ) .sm 831.0     )minrev 1250(  
2

m107.12
minrev

srad

30

3

==
−×πωr  

    b) .sm 109    2

2)m 107.12(

)sm 831.0(

3

22

== −×r
v  

 

 

9.30: a) 
2

m 200.0

sm 0.10
srad 0.50      

2
tan −=== −
r

a
α   b) At   sm 0.50   s, 00.3  == vt and 

srad 250     
200.0

sm 0.50 ===
r

vω  and  at ,0 =t  )sm 0.10( sm 0.50  2−+=v  

,sm 80.0  s) 00.30( =− so .srad 400  =ω   c)  s) 00.3)(srad 325(  av =tω e  

rev. 155  rad 975 ==   d) .sm 40.1  m) 200.0)(sm (9.80     2

rad === rav  This speed will 

be reached at time s 86.7  at or  s, 00.3  after  s 86.4  
sm 0.10

sm 40.1sm 0.50 ===−
tt . (There are many 

equivalent ways to do this calculation.) 

 

 

9.31: (a) For a given radius and mass, the force is proportional to the square of the 

angular velocity; ( ) 29.2  
2

minrev 423

minrev 640 =  (note that conversion to srad  is not necessary for this 

part).  b) For a given radius, the tangential speed is proportional to the angular velocity; 

51.1  
423

640 =  (again conversion of the units of angular speed is not necessary).   

    c)  (640 ( )( ) sm 15.7or  s,m 75.15  )minrev
2

m 0.470
minrev

srad

30
=π  to three figures, and 

. 108sm 1006.1 23

)2m 470.0(

s)m 75.15(

rad

22

ga
r
v =×===  

 

 

9.32: (a)     Rωv   T =  

 cm 09.5  2  

cm 55.2  

rev 1

 2
 

s 60

min 1
 

min

 5.7
   scm 00.2

==

=
























=

RD

R

radπrev
R

 

     b)      Rαa   T =  

        
2

2

T srad 7.15  
m 0255.0

sm 400.0
===

R

a
α  

 

 



9.33:  The angular velocity of the rear wheel is s.rad 15.15
m 330.0

sm 00.5r
r ===

r

v
ω  

The angular velocity of the front wheel is srad 3.77srev 600.0f ==ω  

Points on the chain all move at the same speed, so ffrr ωrωr =  

( ) cm 99.2rfrr == ωωrr  

 

 

9.34: The distances of the masses from the axis are ,and ,
4

3

44

LLL  and so from Eq. ( ),16.9  

the moment of inertia is 

.
16

11

4

3

44

2

222

mL
L

m
L

m
L

mI =






+






+






=  

 

 

9.35: The moment of inertia of the cylinder is 
12

2
LM  and that of each cap is ,

4

2
Lm  so the 

moment of inertia of the combination is ( ) .2
212
LmM +  

 

 

9.36: Since the rod is 500 times as long as it is wide, it can be considered slender. 

a) From Table ( )( ),a2.9  

 

( ) ( ) .mkg1088.7m 50.1 kg 042.0
12

1

12

1 2322 ⋅×=== −MLI  

 

b) From Table ( )( ),b2.9  

 

( ) ( ) .mkg 1015.3m 50.1 kg 042.0
3

1

3

1 2222 ⋅×=== −MLI  

 

c) For this slender rod, the moment of inertia about the axis is obtained by considering it 

as a solid cylinder, and from Table ( )( ),f2.9  

 

.mkg 1073.4m) 105.1( kg) 042.0(
2

1

2

1 28232 ⋅×=×== −−MRI  

 

 



9.37: a) For each mass, the square of the distance from the axis is 

,m 1000.8m) 200.0(2 222 −×= and the moment of inertia is 

.mkg 1040.6)m 10800.0( kg) 200.0(4 2222 ⋅×=× −−   b) Each sphere is  m 200.0  from the 

axis, so the moment of inertia is ( ) ( ) .mkg 1020.3m 200.0 kg 200.04 222 ⋅×= −  

a) The two masses through which the axis passes do not contribute to the moment of 

inertia.  ( ) .mkg 032.0m 22.0kg) 2.0(2 2
2

⋅==I  

 
 

9.38: (a) 

2

balls

2

barballsbar
2

2
12

1







+=+=
L

mLMIII                

                  ( ) ( ) ( ) ( ) 222
mkg 33.2m 00.1 kg 500.02m 00.2 kg 00.4

12

1
⋅=+=  

 

        (b) 2

ball

2

bar
3

1
LmLmI +=  

 

                 ( ) ( ) ( )( ) 222
mkg 33.7m 00.2 kg 500.0m 00.2 kg 00.4

3

1
⋅=+=  

 

        c) 0=I  because all masses are on the axis 

 

        (d) 2

Total

2

ball

2

bar 2 dMdmdmI =+=  

                 22 mkg 25.1)m 500.0)(kg 00.5( ⋅==  

 

 

 

 

 

 

9.39:   )ringr disk,d( rd ==+= III  

 

2

rd

22

2

2

1rr

21

2

1

2

2

3

r

22

ddd

2

d

3

d

mkg 52.8            

mkg 580.5)(
2

1
           

) cm  70.0 cm, 50.0(     kg 15.08)(  )cmg 00.2(  :ring

mkg 945.2
2

1
           

kg 56.23)cmg 00.3(  :disk

⋅=+=

⋅=+=

===−=

⋅==

==

III

rrmI

rrrrπm

rmI

πrm

 

 
 



9.40:  a) In the expression of Eq. (9.16), each term will have the mass multiplied by 
3f and the distance multiplied by ,f  and so the moment of inertia is multiplied by 

 .)( 523 fff =  b) .1037.6(2.5)(48) 85 ×=  

 

 

9.41:  Each of the eight spokes may be treated as a slender rod about an axis through an 
end, so the moment of inertia of the combination is 

2

2

2spoke2

rim

mkg 193.0

m) (0.300 kg) (0.20 
3

8
)kg 40.1(

 
3

 8

⋅=






 +=









+= R

m
RmI

 

 

 
9.42:  a) From Eq. (9.17), with I from Table (9.2(a)), 

J. 103.1)
mins 60

revrad 2

min

rev
 2400()m 08.2)(kg 117(

24

1

12

1

2

1 2222 6×=×==
π

ωmLK  

   b) From ,Kmgy =  

( )
km. 1.16m 1016.1

)sm 80.9)(kg 117(

J103.1  3

2

6

=×=
×

==
mg

K
y  

 

 

9.43:  a) The units of moment of inertia are ][m [kg] 2  and the units of ω  are equivalent 

to ]s[ 1−  and so the product 
2

2
1 Iω  has units equivalent to ])sm(kg[ ]sm[kg 22 ⋅=⋅⋅ − , 

which are the units of Joules. A radian is a ratio of distances and is therefore unitless. 

    b) 180022IωπK = , when is in  min.rev  

 

 

9.44:  Solving Eq. (9.17) for I, 

.mkg 1025.2
)min rev (45

J)025.0(22 2 3

2

minrev

srad

60

22
⋅×=

×
== −

πω

K
I  

 

 

 

 



9.45: From Eq. (9.17), ),(
2

1

2

22
1

2 ωωIKK −=−  and solving for I, 

 

( )

( )
.mkg 600.0

))minrev 650()minrev 520((

)J 500(
2

)(
2

2

2

minrev

srad

30

22

2

1

2

2

12

⋅=

−

−
=

−
−

=

π

ωω

KK
I

 

 

 

 

9.46:  The work done on the cylinder is PL, where L is the length of the rope. Combining 

Equations (9.17), (9.13) and the expression for I from Table (9.2(g)), 

N. 7.14
)m 00.5)(sm 80.9(2

)sm 00.6)(N 0.40(

2

1
or    ,

2

1
2

22
2 ====

L

v

g

ω
Pv

g

ω
PL  

 

9.47:  Expressing ω in terms of . , rada2

rad R
ωα =  Combining with ,

2

1 2MRI =  Eq. (9.17) 

becomes  J. 1035.7
4

)sm 3500)(m 20.1)(kg 0.70(

2

1

2

1 4
2

rad ×=== MRaK  

 

9.48:  a)  With ,2MRI = with expression for v is 

.
1

2

mM

gh
v

+
=  

     b) This expression is smaller than that for the solid cylinder; more of the cylinder’s 

mass is concentrated at its edge, so for a given speed, the kinetic energy of the cylinder is 

larger. A larger fraction of the potential energy is converted to the kinetic energy of the 

cylinder, and so less is available for the falling mass. 

 



9.49:  a) 
T

ω π2= , so Eq. (9.17) becomes .2 22 TIK π=  

b) Differentiating the expression found in part (a) with respect to T,  

.)4( 32

dt
dTTI

dt

dK
π−=  

     c) figures.  two to70or  J, 2.70)s 5.1()mkg 0.8(2 222 =⋅π  

     d)  W.56.0)0060.0)(s)  5.1()mkg 0.8(4( 322 −=⋅− π  

 

9.50: The center of mass has fallen half of the length of the rope, so the change in 

gravitational potential energy is 

J. 147)m 0.10)(sm 80.9)(kg 00.3(
2

1

2

1 2 −=−=− mgL  

 

9.51: J. 823)m 700.0)(sm 80.9)(kg 120( 2 =  

 

9.52: In Eq; (9.19), .2 so  , and 222

cm MRIRdMRI P ===  

 

9.53:  ,
15

4
  so  ,

5

2

3

2 22222 RdMdMRMR =+= and the axis comes nearest to the center of 

the sphere at a distance .)516.0()152( RRd ==  

 

9.54: Using the parallel-axis theorem to find the moment of inertia of a thin rod about an 

axis through its end and perpendicular to the rod, 

.
3212

2

2

22

cm L
ML

ML
M

MdII p =






+=+=  

 

 

9.55:  ( ) ( )  gives which , )()(so 2

2

2

2

22

12
12

cm
b aΜ baΜ Ι, mdΙΙp +++=+=  

                   ( ) ( ) ( ).
3

1
or   ,

4

1

12

1 222222 baΜΙbabaΜΙ +=+Μ++=  

 

 



9.56:   a)
2

12
12

12
1 b)     Μb Ι ΜaΙ ==  

 

 

9.57:    ( ) ( ) so  2 199  EqIn 2

12
,hL and d LΙ, .. M

cm −==  

,hLhLΜ

hLhLLΜ

h
L

LΜΙp






 +−=






 +−+=



















 −+=

22

222

2

2

3

1

4

1

12

1

212

1

 

which is the same as found in Example 9.12. 

 

 

9.58: The analysis is identical to that of Example 9.13, with the lower limit in the integral 

being zero and the upper limit being R, and the mass .2πLρRΜ =  The result is 

,2
2
1 ΜRΙ =  as given in Table ( ).f)(2.9  

 

 

 

 

9.59:   With dxdm
L
M=  

.
33

0

2

L

0

3
2∫ ===

L

L
Mx

L

M
dx

L

M
xΙ  

 

 

 



9.60: For this case, . dxdm γ=  

    a) 
22

2

00

2 yLx
γγx dxdm Μ

LL

==== ∫ ∫  

    b)       ∫ ====
L

ΜγL

L

L
x

γdxγxxΙ
0

2

24

0

4
2 .

4
)(

4

 

This is larger than the moment of inertia of a uniform rod of the same mass and length, 
since the mass density is greater further away from the axis than nearer the axis. 

   c) ∫ −=
L

γxdxxLΙ
0

2)(  

  

.
6

12

43
2

2

)2(

2

4

0

432
2

0

322

L
M

L

xx
L

x
L

dxxLxxL

L

L

=

γ=









+−γ=

+−γ= ∫

 

   

This is a third of the result of part (b), reflecting the fact that more of the mass is 

concentrated at the right end. 

 

 

9.61: a) For a clockwise rotation, ω
r
 will be out of the page.  b ) The upward direction 

crossed into the radial direction is, by the right-hand rule, counterclockwise. ω
r
 and r

r
 are 

perpendicular, so the magnitude of rω
rr

× is .vωr =   c) Geometrically, ω
r
 is 

perpendicular to ,v
r
 and so vω

rr
×  has magnitude rad,aωv =  and from the right-hand 

rule, the upward direction crossed into the counterclockwise direction is inward, the 

direction of .rada
r

 Algebraically, 

( )
( ) ( )

,2

rad

r

ωωrrωω

rωωvωa

r

rrrrrr

rrrrrr

ω−=

⋅−⋅=

××=×=

 

where the fact that ω
r
 and r

r
are perpendicular has been used to eliminate their dot 

product. 

 

 



9.62:  

 

 

For planetary alignment, earth must go through °60  more than Mars: 

 

°+=

°+=

60

60

ME

ME

tωtw

θθ
 

                                                            

yr9.1

360
 and 

yr1

360

60

ME

ME

°
=

°
=

−
°

=

ww

ωω
t

 

                                             d 128
yr1

d365
352.0

60

yr9.1
360

yr1
360

=







=

−
°

=
°°

yrt  

 

9.63:  a) sm  26.82mph60 ==v  

rpm840srev14.0srad0.88

m3048.0.in12

====

==

r

v
ω

r

 

 

mph 75sm 33.5s)rad0.88)(m381.0(

m 0.381 in. 15

same readsr speedomete since (a)part in  as  same b)

====

==

rωv

r

ω

 

m 0.254 in. 10

sm22.35mph50 c)

==

==

r

v
 

. s;rad0.88==
r

v
ω this is the same as for 60 mph with correct tires, so 

speedometer read 60 mph. 

 

9.64: a) For constant angular acceleration ,
2

2

α

ωθ = and so .22

rad αθrrωa ==  

    b) Denoting the angle that the acceleration vector makes with the radial direction as β , 

and using Equations (9.14) and (9.15), 

,
2

1

  2

r r 
tan 

2

rad

tan

θrαθ

α

rω

α

a

a
β ====  

so  rad. 666.0
36.9 tan 2
1

 tan 2
1 ===θ °β

 

 

 



9.65: a) .)srad 50.1()srad 40.6(32 2322 ttβtγt
dt

d
ωz −=−=

θ
=  

b) .)rad/s 00.3( )rad/s 40.6( 6 2 32 ttβγ
dt

dw
α z
z −=−==   

 

c) An extreme of angular velocity occurs when 0,  =zα which occurs at  

13.23

2

rad/s 50.1

rad/s 20.3
3

===
β

γ
t  s, and at this time 

rad/s.83.6
)rad/s 500.0(3

)rad/s 20.3(
3/)3/)(3()3/)(2(

3

22
22

z ===−= βγβγββγγω  

 

 

9.66: a) By successively integrating Equations (9.5) and (9.3), 

                           

.)rad/s 042.0()rad/s 90.0(
62

,)rad/s 125.0()rad/s 80.1(
2

332232

2322

ttt
β

t
γ

θ

ttt
β

γtz

−=−=

−=−=ω
 

    b) The maximum positive angular velocity occurs when 0,  =zα ,
β

=
γ

t  the angular  

velocity at this time is 

==







−








=

β

γ

β

γβ

β

γ
γωz

22

2

1

2
48.6

)rad/s 25.0(

)rad/s 80.1(

2

1
3

22

=  rad/s. 

The maximum angular displacement occurs when 0,  =zω  at time 
β

γ
t

2
=  (t = 0 is an 

 inflection point, and )0(θ is not a maximum) and the angular displacement at this time is 

 

2

332

3

22

6

2

2 ββ

β
θ

γ
=







 γ
−








β
γγ

= = rad. 2.62
)rad/s 25.0(

)rad/s 80.1(

3

2
23

32

=  

 

 

9.67: a) The scale factor is 20.0, so the actual speed of the car would be 9.72hkm 35 = m

s.rad 652 c)   J. 51.8)21( b) 2K2 ==ω=
I

mv  

 



9.68: a) s.rad 300.0)00.6)(srad (0.05 b)  .srad 050.0 22

m 0.60

sm 00.3 2
tan ===== sαtα
r

a
 

 

     c) .sm 5.40m) (60.0 s)rad 300.0( 222

rad ==ω= ra  

 

     d)  

 
 

     e) ,sm 18.6)sm 00.3()sm 40.5( 22222
tan

2
rad

2 =+=+= aaa  

and the magnitude of the force is kN. 66.7)sm 18.6)(kg 1240( 2 === maF  

 

      f) arctan ( ) ( ) .9.60arctan
00.3
40.5

tan

rad °==
a

a
 

 

 
9.69:  a) Expressing angular frequencies in units of revolutions per minute may be 

accomodated by changing the units of the dynamic quantities; specifically, 

min.rev211

minrev

srad
 
 30mkg 16.0

) J 4000(2
  min)rev 300( 

2

2

2

2

2

12

=








 π








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b) At the initial speed, the 4000 J will be recovered; if this is to be done is 5.00 s, the 

power must be  W.800
s 5.00

J 4000 =  

 

 



9.70:  a) The angular acceleration will be zero when the speed is a maximum, which is at 

the bottom of the circle. The speed, from energy considerations, is 

ββ   where),cos1(22 −== gRghv is the angle from the vertical at release, and 

                   s.rad 25.1)36.9 cos1(
)m 50.2(
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    b) α  will again be 0 when the meatball again passes through the lowest point. 

    c) rada  is directed toward the center, and m 93.3)m 50.2( )srad 25.1( , 2

rad

2

rad === aRωa

    d) ), cos1)(2() cos1)(2(
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rad βgRβRgRa −=−=ω=  independent of R. 

 

 

9.71:  a) s.m 696.1)m 1045.0)(revrad 2)(srev 0.60( 2 =× −π  

b) s.rad  8.84
m 10  00.2
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9.72:  The second pulley, with half the diameter of the first, must have twice the angular 

velocity, and this is the angular velocity of the saw blade. 
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so the force holding sawdust on the blade would have to be about 5500 times as strong as 

gravity. 

 

 

 



9.73:  a)    rrra )( 2
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     b) From the above, 

 =
−

=
∆

∆
=

)rad 0.15(2

)sm 0.25sm 0.85(

2

22

rad

θ

a
αr .sm 00.2 2  

    c) Similar to the derivation of part (a), 

.]2][[
2

1

2

1

2

1 2

0

2 θ∆α=∆=−=∆ IIθαIωIωK  

    d) Using the result of part (c), 

.mkg 208.0
rad) (15.0m)) 250.0/()sm 00.2((

J) 0.20 J 0.45( 2

2
⋅=

−
=

θ∆α
∆

=
K

I  

     

9.74:  leadwood III +=  

           
3

wwww

2

L

2

w

 
3

4

3

2

5

2

πRρVρm

RmRm

==

+=
 

           
  )  4 (

3

2
   

3

4
 

5

2

 4  

22

L

23

w

2

LLLL

RRπRRπρI

RπσAσm

σ+






=

==
 

                






 += L
w4

5
 

3

8
σ

Rρ
Rπ  

                

2

2
3

4

kgm 70.0

mkg 20
5

)m 20.0)(mkg 800(
m) 20.0(

3

8

=









+=

π
 

  



9.75:  I approximate my body as a vertical cylinder with mass 80 kg, length 1.7 m, and 

diameter 0.30 m (radius 0.15 m) 
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9.76:  Treat the V like two thin 0.160  kg bars, each 25 cm long. 
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9.77:  a)  srad 425.9rpm 0.90 ==ω  
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 mkg 7800( 32 === ρtρπRρVm is the density of iron and t=0.100 m is the 

thickness of the flywheel) 
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9.78: Quantitatively, from Table (9.2), a) and  , 2

3
222

2
1 ⋅=== mRΙmRΙmRI CBA Object A 

has the smallest moment of inertia because, of the three objects, its mass is the most 

concentrated near its axis.  b) Conversely, object B’s mass is concentrated and farthest 

from its axis. c) Because 2

sphere 52 mRΙ = , the sphere would replace the disk as having the 

smallest moment of inertia. 

 

 



9.79:  a) See Exercise 9.50. 
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    c)  Since the Earth’s moment on inertia is less than that of a uniform sphere, more of 

the Earth’s mass must be concentrated near its center. 

 

 

9.80:  Using energy considerations, the system gains as kinetic energy the lost potential 

energy, mgR. The kinetic energy is 
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9.81: a) 

 
 

Consider a small strip of width dy and a distance y  below the top of the triangle. The 

length of the strip is ( ) .bhyx =  

        The strip has area x dy and the area of the sign is ,
2

1
bh  so the mass of the strip is 
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9.82: (a) The kinetic energy of the falling mass after 2.00 m is 

( )( ) .J 100m/s 00.5 kg 00.8
2

2
12

2
1 === mvKE  The change in its potential energy while 

falling is ( ) ( )( ) J 8.156m 00.2 m/s 8.9 kg 00.8 2 ==mgh  

The wheel must have the “missing” 56.8 J in the form of rotational KE. Since its 

outer rim is moving at the same speed as the falling mass, 5.00 sm : 
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(b) The wheel’s mass is 280 
2sm  8.9N = 28.6 kg. The wheel with the largest possible 

moment of inertia would have all this mass concentrated in its rim. Its moment of inertia 

would be 

 

( )( ) 222
m  kg 92.3m370.0kg6.28 ⋅=== MRI  

The boss’s wheel is physically impossible. 

 

 

 

 

 

9.83:  a) ( ) ( ) ( ) J. 784.0sm 80.9 m 500.0 kg 160.0 2 −=−  b) The kinetic energy of the stick 

is 0.784 J, and so the angular velocity is 
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This result may also be found by using the algebraic form for the kinetic energy, 

,2MgLK = from which ,3 Lg=ω  giving the same result. Note thatω is independent 

of the mass.   

   ( ) ( ) sm  5.42m 1.00 srad 42.5    c) === Lv ω   

   (c).part  ofresult   theof 32 is This ;sm 43.42g d) =L  

 

 



9.84:  Taking the zero of gravitational potential energy to be at the axle, the initial 

potential energy is zero   (the rope is wrapped in a circle with center on the axle).When 

the rope has unwound, its center of mass is a distance Rπ below the axle, since the length 

of the rope is Rπ2 and half this distance is the position of the center of the mass. Initially, 

every part of the rope is moving with speed ,0Rω  and when the rope has unwound, and 

the cylinder has angular speed ,ω the speed of the rope is Rω (the upper end of the rope 

has the same tangential speed at the edge of the cylinder). From conservation of energy, 

using 
2)21( MRI = for a uniform cylinder,  
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and the speed of any part of the rope is .Rv ω=  

 

 

9.85:  In descending a distance d, gravity has done work gdmB  and friction has done 

work ,K gdmAµ−  and so the total kinetic energy of the system is ( ).K AB mµmgd −  In 

terms of the speed v of the blocks, the kinetic energy is 
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where ,Rvω =  and condition that the rope not slip, have been used. Setting the kinetic 

energy equal to the work done and solving for the speed v, 
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9.86:  The gravitational potential energy which has become kinetic energy is  

( ) ( )( ) J. 0.98m 00.5 sm 80.9 kg 2.00kg 00.4 2 =−=K  In terms of the common speed v of  

the blocks, the kinetic energy of the system is 
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Solving for s.m81.2 gives 
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9.87:  The moment of inertia of the hoop about the nail is 2MR
2
(see Exercise 9.52), and 

the initial potential energy with respect to the center of the loop when its center is directly 

below the nail is gR  ( ).cos1 β−  From the work-energy theorem, 

                                       ), cos  1(g
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1 222 β−=== RMRMωIωK  

from which ). cos1)(( β−= Rgω  
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which is about 18 min. 
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         b)      See Example 9.9. In this case, becomesfor  expression  theso and,1 vRv=ω  
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c) The same calculation, with 2R  instead of 1R  gives s.m 95.4=v  This does make 

sense, because for a given total energy, the disk combination will have a larger fraction of 

the kinetic energy with the string of the larger radius, and with this larger fraction, the 

disk combination must be moving faster. 

 

 



9.90:   a) In the case that no energy is lost, the rebound height h′  is related to the speed 

v by ,
2

2

g
υh =′ and with the form for h given in Example 9.9, .

2 1 mM
hh +=′   b) Considering 

the system as a whole, some of the initial potential energy of the mass went into the 

kinetic energy of the cylinder. Considering the mass alone, the tension in the string did 

work on the mass, so its total energy is not conserved. 

 

 

9.91:  We can use J 250cylinder)( =Κ  to find ω  for the cylinder and v  for the mass. 
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9.92:   Energy conservation: Loss of PE of box equals gain in KE of system. 
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9.93:   a) The initial moment of inertia is .2
2
1

0 MRI =  The piece punched has a mass of 

16
M  and a moment of inertia with respect to the axis of the original disk of 
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The moment of inertia of the remaining piece is then 
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9.94:   a) From the parallel-axis theorem, the moment of inertia is 
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If R = (0.05)L, the difference is ),3()( b)   .001.0)05.0)(52( rod

2

rod

2 MmMLI ==  which 

is 0.33% when .)01.0(rod Mm =  

 

 

9.95:  a) With respect to O, each element 
2

ir  in Eq. (9.17) is ,
22

ii yx +  and so 

 

∑ ∑ ∑ ∑ +=+=+==
i i i i

yxiiiiiiiiiO IIymxmyxmrmI .)(
22222

 

      b) Two perpendicular axes, both perpendicular to the washer’s axis, will have the 

same moment of inertia about those axes, and the perpendicular-axis theorem predicts 

that they will sum to the moment of inertia about the washer axis, which is ),(
2

2
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RRM +  

and so xI yI= ).(
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9.96:  Each side has length a and mass ,
4
M  and the moment of inertia of each side about 

an axis perpendicular to the side and through its center is .
48

2

412
1

2MaM a =  The moment of 

inertia of each side about the axis through the center of the square is, from the 

perpendicular axis theorem, ( )
12

2

2448

22 MaaMMa =+ . The total moment of inertia is the sum of 

the contributions from the four sides, or .4
312

22 MaMa =×  

 

 



9.97:  Introduce the auxiliary variable L, the length of the cylinder, and consider thin 

cylindrical shells of thickness dr and radius r; the cross-sectional area of such a shell is 

,  2 drrπ  and the mass of shell is .  2  2 2drLrαπdrrLρπdm ==  The total mass of the 

cylinder is then 

∫ ∫ α=α==
R R

LπdrrLπdmM
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3
 2 2  

and the moment of inertia is 
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 2 2 2
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o
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b) This is less than the moment of inertia if all the mass were concentrated at the edge, as 

with a thin shell with ,2MRI =  and is greater than that for a uniform cylinder with 

,2
2
1 MRI =  as expected. 

 

9.98:  a) From Exercise 9.49, the rate of energy loss is 
dt

dΤ
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Ιπ
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24 ; solving for the moment of 

inertia ,power   theof in terms PI  
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which is much higher than the density of ordinary rock by 14 orders of magnitude, and is 

comparable to nuclear mass densities. 

 

 



9.99:  a) Following the hint, the moment of inertia of a uniform sphere in terms of the 

mass density is ,5
15
82

5
2 ρRΜRI π==  and so the difference in the moments of inertia of 

two spheres with the same density ρ  but different radii 

).)(158( is  and 
5
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           b) A rather tedious calculation, summing the product of the densities times the 

difference in the cubes of the radii that bound the regions and multiplying by 

kg.1097.5 gives ,34  24×=Mπ   c) A similar calculation, summing the product of the 

densities times the difference in the fifth powers of the radii that bound the regions and 

multiplying by .334.0mkg 1002.8 gives  ,158 22 22 MRI =⋅×=π  

 

 

9.100:  Following the procedure used in Example 9.14 (and using z as the coordinate 

along the vertical axis)  Then, .and 4
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The volume of a right circular cone is so and is mass   the, 2
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9.101: a) 
2

20

2

200  Setting b) .)( so ,  θθθθθθβθθθ ββ +==+=+== rvtsrsddrdrds  

gives a quadratic in θ . The positive solution is 
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(The negative solution would be going backwards, to values of r smaller than 0r  .) 

 

      c) Differentiating, 
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The angular acceleration zα  is not constant. d) mm; 0.250 =r  It is crucial that θ  is 

measured in radians, so ( ) ( ) .radm 247.0rad2rev 1 revm 55.1 µπ µβ ==  The total angle 

turned in 74.0 min = 4440 s is 

 

( )( ) ( )
( )

rad 101.337 

m 100.25 m100.25

s 4440 m/s 25.1 m/rad1047.22

m/rad1047.2

1

5

323

7

7

×=















×−×+

×

×
=

−−

−

−θ
 

 

which is 2.13 ×  rev. 104  

 

 

e)  

 
  



Capítulo 10 



10.1:  Equation (10.2) or Eq. (10.3) is used for all parts. 

a)  m,N 00.40 90sin  N) m)(10.0 00.4( ⋅=°  out of the page. 

b) m,N 6.34120sin  N) m)(10.0 00.4( ⋅=°  out of the page.  

c) m,N 0.2030sin  N) m)(10.0 00.4( ⋅=°  out of the page. 

d) m,N 3.1760sin  N) m)(10.00 00.2( ⋅=°  into the page.  

e) The force is applied at the origin, so 0.=τ  

f) .0180sin  N) m)(10.0 00.4( =°   

 

 

10.2:     m,N 40.0m) N)(5.00 00.8(1 ⋅−=−=τ  

             m,N 0.1230sin  m) N)(2.00 (12.0 2 ⋅=°=τ  

 

where positive torques are taken counterclockwise, so the net torque is m,N 0.28 ⋅− with 

the minus sign indicating a clockwise torque, or a torque into the page. 

 

 

10.3:  Taking positive torques to be counterclockwise (out of the page),  

 m,N 2.34N) m)(26.0 (0.09 m,N 1.62N) (180.0 m) 090.0( 21 ⋅==⋅−=×−= ττ  

( )  m,N78.1N) (14.0 m) 090.0(23 ⋅==τ so the net torque is m,N 50.2 ⋅ with the 

direction counterclockwise (out of the page). Note that for 3τ  the applied force is 

perpendicular to the lever arm. 

 

 

10.4:   RFFRFRFττ )( 122121 −=+−=+  

           m.N 726.0m) N)(0.330 7.50  N 30.5( ⋅−=−=  

 

 

10.5:     a)  

 
       b) Into the plane of the page. 

       c) ]ˆN) 00.4(ˆn) 00.5[(]ˆm) 150.0(ˆ m) 450.0[( iijiFr +−×+−=×
rr

                       

        
  ˆm)N 1.05(

ˆN) 00.5m)( 150.0( N) 00.4( m) 450.0(  

k

k

⋅−=

−−−=
 



10.6:  (a)           CCW m,N 8.7m) 2.0)(60N)(sin  50(A ⋅=°=τ  

              

CW m,N 10m) 2.0(N) 50(

CW m,N 5m) 2.0)(30N)(sin  50(

0

D

C

B

⋅==

⋅=°=

=

τ

τ

τ

 

 

        (b)  mN 10  mN 5 mN 8.7  ⋅−⋅−⋅=∑ τ  

                    CW m,N 3.6 ⋅−=  

 

10.7:  kg 00.2 kg, 40.8  where,2 
22

3
2 ==+= mMmRMRI  

            
2mkg 600.0 ⋅=I  

          

mN 0524.0  ,

;srad 0.08726 gives 

? s, 0.30 ;srad 5.236rpm 0.50 ;srad 7.854  rpm 75.0 

2

0

0

⋅−===Σ

−=+=

======

IατIατ

ααtωω

αtωω

f

 

 

10.8:   ( )( )
( )

m.N 1.13
s 00.8

minrev 400
m kg 50.2  a)

minrev

srad

60
2

2 ⋅=
×

⋅=
∆
ω∆

==τ
π

t
IIα  

  

       b) .J 102.19  
minrev

srad
 

60

2
 minrev 400 )mkg 50.2(

2

1
  

2

1 3

2

22 ×=







×⋅=ω

π
I  

 

 

10.9: ( )( ) in  found that as same  the,sm 2.1m 0.2 sm 36.022 2 === asv  

Example 9-8. 

 

 

10.10:     
( )( )

( ) .srad 00.2
mkg 0.5

m 250.0N 0.40 2

2
=

⋅
===

I

FR

I

τ
α  

 

 

10.11: a)                








+
+

=








+
+=+=

Mm

mM
g

Mm

m
MgTMgn

21

3
 

21
    

 

         b) This is less than the total weight; the suspended mass is accelerating down, so the 

tension is less than mg.   c) As long as the cable remains taut, the velocity of the mass 

does not affect the acceleration, and the tension and normal force are unchanged. 

 

 



10.12:      a) The cylinder does not move, so the net force must be zero. The cable exerts 

a horizontal force to the right, and gravity exerts a downward force, so the normal force 

must exert a force up and to the left, as shown in Fig. (10.9).   

 b)  ( ) ( )( ) N, 490sm 80.9kg) 50(N 0.9
222 +=n at an angle of arctan ( ) °= 1.1

490

0.9  from the 

vertical (the weight is much larger than the applied force F ). 

 

 

10.13:    
( )
n

tMR

Rn

I

n

R

n

f

2

0
k

ωατ
µ ====  

   

        
( ) ( ) ( ) ( )

( ) ( )
.482.0

N 160 s 50.72

 minrev 850 m 260.0 kg 0.50
minrev

srad

30 ==
π

 

 

 

10.14:    (a) Falling stone: 2

2
1 atg =  

                                                

( )

( )
)2(

:  :Pulley

)1(:  :Stone

sm 80.2

s 00.3m 6.12  

2
1

R

2

2
12

2
1

2

2

2
1

MaT

MRαMRTRIατ

maTmgmaF

a

a

a

=

===Σ

=−=Σ

=

=

 

                                                           

Solve (1) and (2): 

 

kg 00.2

m/s 80.2m/s 80.9

m/s 80.2
 

2

kg 0.10

2 22

2

=










−







=








−
=

M

ag

aM
M

 

 

(b)From (2): 

( ) ( )
N 0.14

m/s 80.2 kg 0.10
2

1

2

1 2

=

==

T

MaT
 

 
 



10.15:     ( )( ) 22

2
12

2
1 m  kg 02320.0m 0750.0kg 8.25 ⋅=== mRI  

      

( )

N 47.7 so 

      

 

rad/s 046.8 gives 2

? rad, 33.0  rev 25.5 ;0 rad/s; 23.04  rpm 220

k

k

kk

2

0

2

0

2

00

===−

−=−==∑

=∑

−=−+=

===−===

Rµ

Iα
nIαnRµ

nRµRfττ

Iατ

αθθαωω

αθθωω

f

 

 

10.16:   This is the same situtation as in Example 10.3.   a) N. 0.42)21( =+= MmmgT  

b)  s.m11.82(12 =+= mMghv     c) There are many ways to find the time of fall. 

Rather than make the intermediate calculation of the acceleration, the time is the distance 

divided by the average speed, or ( ) s. 69.12 =vh      d) The normal force in Fig. 

(10.10(b)) is the sum of the tension found in part (a) and the weight of the windlass, a 

total 159.6 N (keeping extra figures in part ( a)). 

 

 

10.17:  See Example 10.4. In this case, the moment of inertia I is unknown, so 

( ) ( )( ).2

2121 RImmgma ++=   a) ( ) ( )  ,m/s 75.3s 80.0m 20.12 22

1 ==a  

( ) N. 2.18 and N 50.7  so 122111 =−== agmTamT  

   b) The torque on the pulley is ( ) m, N 0.80312 ⋅=− RTT and the angular acceleration is 

.mkg 0.016 so ,rad/s 50 22

1 ⋅=ατ=== IRaα  

 

 

10.18:    .
3

2

3
1 Ml

F

Ml

Fl

I
===

τ
α  

 

 

10.19:   The acceleration of the mass is related to the tension by ,cm TMgMa −=  and the 

angular acceleration is related to the torque by 
2

cmcm  and /   where,/or  , MRIRStaαMTaTRτIα =====  have been used.        

a) Solving these for N. 882.02/ gives == MgTT     b) Substituting the expression for T 

into either of the above  relations gives  which   from ,2/cm ga =  

s. 553.042 cm === ghaht rad/s. 9.33 c) cmcm === RtaRvω  

 
10.20:  See Example 10.6 and Exercise 10.21. In this case,        

.srad 33.9 , and cmcm

2

cm2 ==== RvωghvMvK  

 

 



10.21:   From Eq. (10.11), the fraction of the total kinetic energy that is rotational is 

 

( )
( ) ( ) ( )

,
1

1

/1

1

2121

21

cm

222

cmcm

2

cm

2

cm

2

cm

I
MRvIMIMv

I

+
=

+
=

+ ωω
ω

 

where ω= Rvcm  for an object that is rolling without slipping has been used.  

      a) ,5)MR2(Ib) .31 is ratio above  theso,)21( 22

cm == MRI so the above ratio is 

,32c)  .72 2MRI =  so the ratio is ,MR85d)  .52 2=I  so the ratio is .135  

 

 

10.22:      a) The acceleration down the slope is ,sin
M

f
θga −= the torque about the 

center of the shell is 

                                       ,
3

2

3

2 2 MRa
R

a
MR

R

a
IIαRfτ =====  

. so
3
2 a

M

f =  Solving these relations a for f and simultaneously gives or,sin
3

5 θga =   

.N83.4)smkg)(3.6200.2(
3

2

3

2

,sm62.30.38sin)sm80.9(
5

3
sin

5

3

2

22

===

=°==

Maf

θga

 

The normal force is Mg cos θ , and since ,snµf ≤  

.313.0 tan 
5

2

cos

sin

3

2

 cos3

2

cos 

5
3

3
2

s =====≥ θ
θg

θg

θg

a

θMg

Ma

n

f
µ  

 

        b) 2sm62.3=a since it does not depend on the mass. The frictional force, however, 

is twice as large, 9.65 N, since it does depend on the mass. The minimum value of sµ  also 

does not change. 
 

 



10.23: 

 

       

)1eq.( ) cos (sin

 cos sin

 cos

s

s

aθµθg

maθmgµθmg

mgn

=−

=−

α=

 

n  and mg act at the center of the ball and provide no torque. 

αmRθmgµIατ

mRIθRmgµττ f

2

5
2

s

2

5
2

s

 cos gives 

;cos

==∑

===∑
 

No slipping means (eq.2)    cos   so  ,
5
2

s agµRaα =θ=  

We have two equations in the two unknowns a and .sµ  Solving gives 

613.00.65 tan tan and sin 
7
2

7
2

7
5 =°=== θµθga s  

   b) Repeat the calculation of part (a), but now .2
3
2 mRI =  

858.00.65 tan tan and sin 
5
2

5
2

s5

3 =°=== θµθga  

 

    The value of sµ  calculated in part (a) is not large enough to prevent slipping for the 

hollow ball. 
 

        c) There is no slipping at the point of contact. 



10.24:  

 

slipping nofor  cm ωRv =  

 

a) Get v at bottom: 

ghv

R

v
mRmvmgh

Iωmvmgh

 7

10

 
5

2

2

1

2

1

 
2

1

2

1

2

22

22

=
















+=

+=

 

 

Now use energy conservation. Rotational KE does not change 

 

h
g

gh

g

v
h

KEhmgKEmv

7

5

22

2

1

7

102

RotRot

2

===′

+′=+

 

 

         hhhmgmgh =′→′= (b)  With friction on both halves, all the PE gets converted 

back to PE. With one smooth side, some of the PE remains as rotational KE. 

 

 

10.25: cm
2

2
1

0
2

cm1 )2/1( mvwIKWwh f +==−  

Solving for h  with Rwv =cm  

 

( )

m. 7.11
N 392

J 3500
   

]s)rad 0.25(m) 600.0()rad 0.25(m) 600.0)(800.0([ 2222

sm 80.92
1

2

=−

+
=

w

s
h

w

 



10.26:    a) 

 

 
The angular speed of the ball must decrease, and so the torque is provided by a friction 

force that acts up the hill. 

 

   b) The friction force results in an angular acceleration, related by .fRI =α The 

equation of motion is cm,sin  mafβmg =−  and the acceleration and angular acceleration 

are related by Rαa =cm  (note that positive acceleration is taken to be down the incline, 

and relation between cma  and α  is correct for a friction force directed uphill). 

Combining, 

( ),571sin 
2

ma
mR

I
maβmg =







 +=  

( ) .sin 75 which from cm βga =     c) From either of the above relations between if f and 

,cma  

, cos sin 
7

2

5

2
sscm βmgµnµβmgmaf =≤==  

from which ( ) . tan72s β≥µ  

 

 

10.27:    a) ( ) ( )( ) ( )( )( ) rad/s, 3086.0s 0.15mkg 2100m 40.2N 0.18 2 =⋅=∆=∆= tIFRtαω  

or 0.309 rad/s to three figures. 

b) ( ) ( )  2121 2

2 ×=== IωKW ( )( ) J. 100srad 3086.0mkg 00.2
22 =⋅  

c)  W.67.6 ,or  either  From ave =∆== PtWPτωP  

 

10.28:    a) 
( )( )

( )
m.N 519

rev/min

rad/s

30
rev/min 2400

hp/ W746hp 175
⋅=









==

πω

P
τ  

 

b) ( )( ) J. 32612mN 519 =⋅=∆= πθτW  

 



10.29: a)      
t

ω
IIατ

∆
∆

==  

 

( )( )( )( )( )

m.N 377.0

s 5.2

minrev

srad

30
minrev 1200m 100.0kg 50.121

2

⋅=










=

π

 

 

b) 
( )( )

rad. 157rev 0.25
s/min 60

s 5.2rev/min 600
ave ==∆tω  

      c)   J. 2.59=∆θτ  

     d)  
2

2

1
 IωK =  

     
( )

J,  2.59

rev/min

rad/s

30
rev/min) 1200(m) kg)(0.100 5.1)(2/1(

2

1
2

2

=
















=
π

 

 

the same as in part (c). 

 

 
10.30:  From Eq. (10.26), the power output is 

 

 W,2161
rev/min

rad/s

60

2
rev/min  4800m)N 30.4( =







 π
×⋅== τωP  

which is 2.9 hp. 

 

 

10.31:     a) With no load, the only torque to be overcome is friction in the bearings 

(neglecting air friction), and the bearing radius is small compared to the blade radius, so 

any frictional torque could be neglected. 

 

   b)   N. 6.65

m) 086.0(
rev/min

rad/s

30
rev/min) (2400

 W/hp)hp)(746 9.1(/
=









===

πR

ωP

R

τ
F  

 

 



10.32:   
22

2
12

2
1 mkg 2.42m) kg)(2.08 117( ⋅=== mLI  

  

    a)                   .rad/s 2.46
mkg 42.2

mN 1950 2

2
=

⋅
⋅

==
I

τ
α  

    b)    rad/s. 9.53rev) 2 rev 0.5)(rad/s 2.46(22 2 =×== παθω  

    c)  From either (10.24), Eq.or  
2

1 2ω== KW  

J.  106.13rad/rev) 2  rev N.m)(5.00 1950( 4×=×=θ= πτW  

 
   d), e) The time may be found from the angular acceleration and the total angle, but the  

instantaneous power is also found from hp). kW(141 105== τωP  The average power is 

half of this, or kW. 6.52  

 

 

10.33:     a) m.N 358
rev/min

rad/s

30
rev/min) (400 W)10  150(/ 3 ⋅=















×==
π

ωPτ  

   b) If the tension in the rope is N.  1079.1/ so and  , 3×=== RτwwFF  

 
   c) Assuming ideal efficiency, the rate at which the weight gains potential energy is the 

power output of the motor, or m/s. 8.83 so , === wPvPwv Equivalently, .Rv ω=  

 

 

10.34:  As a point, the woman’s moment of inertia with respect to the disk axis is 2mR , 

and so the total angular momentum is 

s./mkg 10  28.5    

rad/rev) 2  rev/s 500.0(m) 00.4(kg 50.0  kg 110
2

1
    

2

1
)(

23

2

2

womandiskwomandisk

⋅×=

×






 +=








 +=+=+=

π

ωRmMωIILLL

 

 

 

10.35:    a) ,s/mkg 115sin 2⋅=φmvr  with a direction from the right hand rule of into the 

page. 

 

     b) ( )( ) ( ) ( ) ,smkg 125mN 12536.990sin m 8kgN 8.9kg 2
22⋅=⋅=°−°⋅⋅== τdtdL  

out of the page. 

 

 



10.36:  For both parts, .IωL =  Also, ,rv=ω  so ).( rvIL =  

 

   a) mvrrvmrL == ))(( 2  

       smkg 1067.2)m 1050.1(s)m 1098.2(kg) 1097.5( 24011424 ⋅×=×××=L   

   b) ))(52( 2 ωmrL =  

       
smkg 1007.7

hr))s 3600hr (24.0rad 2()m 1038.6)(kg 1097.5)(52(

233

2624

⋅×=

×π××=L
 

 

 

10.37:  The period of a second hand is one minute, so the angular momentum is 

 

s.mkg 1071.4
s 60

2
)m 100.15(

3

kg 100.6

2

3

2622
3

2

⋅×=
π

×






 ×
=

π
==

−−
−

T
l

M
IωL

 

 

 

10.38:  The moment of inertia is proportional to the square of the radius, and so the 

angular velocity will be proportional to the inverse of the square of the radius, and the 

final angular velocity is 

 

s.rad 106.4
km 16

km 100.7

ds 400,86(d) (30

rad 2 3

2
5

2

2

1
12 ×=







 ×








=








=

π
ωω

R

R
 

 

 

10.39:    a) The net force is due to the tension in the rope, which always acts in the radial 

direction, so the angular momentum with respect to the hole is constant.     

      b) ,,
2

2221
2

11 rmLrmL ωω == and  with   .rad 00.7)(, 2

211221 srrωωLL ===  

      c)   J. 1003.1))()(()21( 22

11

2

22

−×=−=∆ rωrωmK  

      d) No other force does work, so  J 1003.1 2−×  of work were done in pulling the cord. 

 

 



10.40: The skater’s initial moment of inertia is 

 

,mkg 56.2)m 80.1)(kg 00.8(
2

1
)mkg 400.0( 222

1 ⋅=+⋅=I  

and her final moment of inertia is 

 

.mkg 9.0)m 1025)(kg 00.8()mkg 400.0( 222

2 ⋅=×+⋅= −I  

 

Then from Eq. (10.33), 

 

s.rev 14.1
mkg 9.0

mkg 56.2
s)rev 40.0(

2

2

2

1
12 =

⋅
⋅

==
I

I
ωω  

 

Note that conversion from rev/s to srad  is not necessary. 

 

 

10.41: If she had tucked, she would have made 40.0)mkg 18)mkg 6.3()2( 22 =⋅⋅  rev in 

the last 1.0 s, so she would have made 60.0)0.15.1)(rev 40.0( =  rev in the total 1.5 s. 

 

 

10.42:    Let                    

                   
.mkg1360)m 00.2)(kg0.40(mkg1200

,mkg1200

2222

02

2

01

⋅=+⋅=+=

⋅==

mRII

II
 

 

 Then, from Eq. (10.33), 

 

                           s.rad924.0
kg.m 1360

kg.m 1200

s 6.00

rad 2
2

2

2

1
12 =







=ω=ω
π

I

I
 

 

 



10.43:      a) From conservation of angular momentum, 

( )
( )

( )
srad 385.1

1207021

srad 3.0
     

21

1

21

21
122

2

12

0

1
12

=
+

=

+
=

+
=

+
=

Mm
ω

mRMR

MR
ω

mRI

I
ωω

 

                 

or 1.39 srad  to three figures 

b) ( )( )( )( ) ( ) kJ, 80.1srad 00.3m 00.2kg 1202121
22

1 ==K  and 

( ) ( )( )( ) J. 499 m 00.2kg 7021 2

2

2

02 =+= ωIK  In changing the parachutist’s horizontal 

component of velocity and slowing down the turntable, friction does negative work. 

 

 
10.44:  Let the width of the door be l; 

 

( )
( ) ( )

( )( )( )
( )( )( ) ( )( )

s.rad 223.0
m 500.0kg 500.0m 00.1kg 0.4031

m 500.0sm 0.12kg 0.500
    

231

2

22

22

=
+

=

+
==

lmMl

lmv

I

L
ω

 

 

Ignoring the mass of the mud in the denominator of the above expression gives 

,srad 225.0=ω  so the mass of the mud in the moment of inertia does affect the third 

significant figure. 

 

 

10.45:  Apply conservation of angular momentum ,L
r
with the axis at the nail. Let object 

A be the bug and object B be the bar. 

      Initially, all objects are at rest and .01 =L  

      Just after the bug jumps, it has angular momentum in one direction of rotation and the 

bar is rotating with angular velocity Bω in the opposite direction. 

srad 120.0
3

 gives 

 and m 00.1  where

2

3
1

21

2

3
1

2

==

ω==

==−=

rm

vm
ω

rmrvmLL

rmIrωIrvmL

B

AA
B

BBAA

BBBBAA

 

 



10.46: 

 

 

(a)  Conservation of angular momentum: 

 

srad 885

)m 00.2( 
sm 9.80

N 0.90

3

1
)m 50.1)(sm 00.6)(kg 00.3()m (1.50s)m 0.10)(kg 00.3( 2

2

2

23
1

101

.ω

ω

ωLmvdmdvm

=









+−=

+−=

 

 

(b)  There are no unbalanced torques about the pivot, so angular momentum is 

conserved. But the pivot exerts an unbalanced horizontal external force on the system, so 

the linear momentum is not conserved. 

 

10.47: 

 
 

 



10.48:     a) Since the gyroscope is precessing in a horizontal plane, there can be no net 

vertical force on the gyroscope, so the force that the pivot exerts must be equal in 

magnitude to the weight of the gyroscope, 

( )( ) N, 617.1sm 80.9kg 165.0 2 ==== mgωF  1.62 N to three figures.  

         b) Solving Eq. (10.36) for ,ω  

                                 
( ) ( )

( )( )
,srad 7.188

s 20.2rad 2 mkg 1020.1

m 1000.4 N 617.1
24

2

=
⋅×

×
=

Ω
= −

−

πI

ωR
ω  

which is .minrev 1080.1 3×  Note that in this and similar situations, since Ω  appears in 

the denominator of the expression for ,ω  the conversion from srev  and back to 

minrev must be made. 

 

   c) 

 
 

 

10.49: a) 
P

MR

P

K 22 ))2/1)((2/1( ω
=  

                    

( ) ( )( )

s, 1021.2

 W1046.7

rev/min) (500m) kg)(2.00 000,60)(2/1()2/1(

3

4

2

rev/min

rad/s

30

2

×=
×

=
π

 

 

or 36.8 min. 

 

       

m.N 1010.1

360

rad 2
/s)00.1(

rev/min

rad/s

30
rev/min) 500(m) kg)(2.00 000,60)(2/1(

 b)

5

2

⋅×=









°

°






=

ωΩ=

ππ

Iτ

 

 

 
10.50:  Using Eq. (10.36) for all parts,     a) halved     b) doubled (assuming that the 

added weight is distributed in such a way that r  and I are not changed)     c) halved 

(assuming that w  and r  are not changed)     d)  doubled     e) unchanged. 

 

 



10.51:    a) Solving Eq. (10.36) for . )5/2( , 2 Ω=Ω= ωMRIωττ   Using 
s 86,400

rad 2 π=ω  and 

s/y) 10y)(3.175 000,26(

2
7×

π=Ω and the mass and radius of the earth from Appendix F, 

m.N 105.4~ 22 ⋅×τ  

 

 

10.52:     a) The net torque must be 

m.N 60.2
s) 00.9(

rev/min

rad/s

60

2
rev/min  120

)mkg 86.1( 2 ⋅=







 π
×

⋅=
∆
∆

==
t

ω
IIατ  

This torque must be the sum of the applied force FR  and the opposing frictional torques 

fτ  at the axle and nrµfr k= due to the knife. Combining, 

 

   ) (
1

kf nrµττ
R

F ++=  

     
( )

N. 1.68

m) N)(0.260  (0.60)(160m)N 50.6(m)N 60.2(
m 500.0

1

=

+⋅+⋅=
 

 

   b) To maintain a constant angular velocity, the net torque τ  is zero, and the force  is F ′  

N. 62.9m)N 24.96  mN 50.6(
m 500.0

1 =⋅+⋅=′F     c) The time t needed to come to a stop is 

found by taking the magnitudes in Eq. (10.27), with fττ =  constant; 

  

( )( )
( )

s. 6.3
mN 6.50

mkg 86.1 rev/min 120 2

rev/min

rad/s

60

2

ff

=
⋅

⋅×
===

π

τ

ωI

τ

L
t  

 

Note that this time can also be found as ( ) .s 00.9
m6.50N
mN60.2

⋅
⋅=t  

 

 

10.53:    a) 
( ) ( )

( )
.mkg 955.0

rev/min

rad/s

30
 rev/min 100

s 0.2 mN 0.5 2⋅=








⋅

=
∆
∆

==
πω

tτ

α

τ
I  

   b) Rather than use the result of part (a), the magnitude of the torque is proportional to 

α  and hence inversely proportional to || t∆ ; equivalently, the magnitude of the change in 

angular momentum is the same and so the magnitude of the torque is again proportional 

to .||/1 t∆  Either way, ( ) m. N 0.080
s 125

s 2
mN 0.5f ⋅=⋅=τ  

   c) ( )( ) ( ) rev. 2.104s min/60 1 s 125 rev/min 50.0ave ==∆tω  

 

 



10.54:    a) The moment of inertia is not given, so the angular acceleration must be found 

from kinematics; 

 

              
( )

( ) ( )
.s/rad  33.8

s 00.2 m 30.0

m 5.00222 2

222
====

rt

s

t

θ
α  

         b) ( )( ) rad/s. 67.16s 00.2 rad/s 33.8 2 ==αt  

         c) The work done by the rope on the flywheel will be the final kinetic energy;          

( ) ( ) J. 200m 0.5 N 0.40 ==== FsWK  

 

   d)   
( )

( )
.mkg 44.1

rad/s 67.16

J 20022 2

22
⋅===

ω
K

I  

 

 

10.55:    a) .2 






=






===
I

t
τt

I

τ
τταtτωP  

         b) From the result of part (a), the power is ( ) ( ) kW. 50.4  W500
2

0.20
0.60 =  

         c) ( ) ./2 /22τ 2/3 IθτθIτταθτωP ====  

        d) From the result of part (c), the power is ( )( ) kW. 6.2 W500
2/3

00.20
00.6 =     e) No; the 

power is  proportional to the time t or proportional to the square root of the angle. 

 

 

10.56:    a) From the right-hand rule, the direction of the torque is ,ˆˆˆ kji =×  the z+  

direction.         

 

   b),  c) 

 
        d) The magnitude of the torque is ),( 2

0 lxxF −  which has it maximum at .2l  The 

torque at .4 is 2 0 lFlx =  

 

 



10.57:     .
 2

)(

222

τ
=

τ
=

α
=

Iθ

I

θθ
t  

 

The angle in radiants is ,2π  the moment of inertia is 

 
232 mkg 9.39))m 25.1)(s m 80.9()N 750(()31( ⋅=  

 

and the torque is m.N 275)m 25.1(N) 220( ⋅=  Using these in the above expression gives 

,s 455.0 22 =t  so s. 675.0=t  

 

 

10.58:    a) From geometric consideration, the lever arm and the sine of the angle 

between rF
r
 and  are both maximum if the string is attached at the end of the rod.  b)  In 

terms of the distance x where the string is attached, the magnitude of the torque is 

.22 hxFxh +  This function attains its maximum at the boundary, where  ,hx =  so the 

string should be attached at the right end of the rod.     c) As a function of x, l and h, the 

torque has magnitude 

.
)2( 22 hlx

xh
F

+−
=τ  

 

This form shows that there are two aspects to increasing the torque; maximizing the lever 

arm l and maximizing sin .φ  Differentiating τ with respect to x and setting equal to zero 

gives maxx ).)2(1)(2( 2lhl +=  This will be the point at which to attach the string unless 

h2  > l, in which case the string should be attached at the furthest point to the right, .lx =  

 

 

10.59:    a) A distance 4L  from the end with the clay. 

   b) In this case 2)34( MLI =  and the gravitational torque is 

,sin )23(sin )2)(43( θθ LMgMgL =  so .sin  )89( θα Lg=  

   c) In this case 
2)31( MLI =  and the gravitational torque is 

.sin  )23( so ,sin  )2(sin  )2)(4( θαθθ LgLMgMgL ==  This is greater than in part (b). 

   d) The greater the angular acceleration of the upper end of the cue, the faster you would 

have to react to overcome deviations from the vertical. 

 

 



10.60:  In Fig. (10.22) and Eq. (10.22), with the angle θ  measured from the vertical, 

θθ cos sin =  in Eq. (10.2).  The torque is then  .cosθ= FRτ  

 

a)     ∫ ==
2

0
  cos

π
FRθdθFRW  

b) In Eq. (6.14), dl is the horizontal distance the point moves, and so ,FRdlFW == ∫  

the same as part (a).     c) From .4,)4( 22

2 MRFωωMRWK ===      d) The 

torque, and hence the angular acceleration, is greatest when 0,=θ at which point 

MRFIτα 2)( == , and so the maximum tangential acceleration is .2 MF     e) 

Using the value for ω  found in part   (c), .42

rad MFRωa ==  

 

 

10.61:   The tension in the rope must be N. 530)( =+ agm  The angular acceleration of 

the cylinder is ,rad/s 2.3 2=Ra  and so the net torque on the cylinder must be 9.28 

m.N ⋅  Thus, the torque supplied by the crank is 

m,N 141.8m)N (9.28  m) N)(0.25 530( ⋅=⋅+ and the force applied to the crank handle is 

kN 2.1
m 0.12
mN 8.141 =⋅  to two figures. 

 

 

10.62:  At the point of contact, the wall exerts a friction force f directed downward and a 

normal force n directed to the right. This is a situation where the net force on the roll is 

zero, but the net torque is not zero, so balancing torques would not be correct. Balancing 

vertical forces, ,cosrod FwfF ++=θ and balacing horizontal forces 

, With .sin krod nµfnθF ==  these equations become 

 

,cos krod wFnµθF ++=  

 .sinrod nθF =  

 

(a)  Eliminating n and solving for rodF  gives 

                            N. 266
30sin)25.0(30 cos

N) 0.40()m/s  (9.80 kg) 0.16(

sincos

2

k

rod =
°−°

+
=

−
+

=
θµθ

Fω
F  

 

               b) With respect to the center of the roll, the rod and the normal force exert zero 

torque. The magnitude of the net torque is nµfRfF k   and ,)( =−  may be found 

insertion of the value found for rodF  into either of the above relations; i.e., 

 N. 2.33sinrodk == θFµf Then, 

                                .rad/s 71.4
)mkg (0.260

m) 10N)(18.0 54.31N 0.40( 2

2

2

=
⋅

×−
==

−

I

τ
α  

 

 



10.63:  The net torque on the pulley is TR, where T is the tension in the string, and 

ITR α = . The net force on the block down the ramp is .)cos(sin k maTβµβmg =−−  

The acceleration of the block and the angular acceleration of the pulley are related by 

.αRα =  

 

   a) Multiplying the first of these relations by RI  and eliminating α  in terms of a, and 

then adding to the second to eliminate T gives 

 

( ) ( )
( ) ,

/1

 cossin 

/

 cossin 
2

k

2

k

mRI

βµβg

RIm

βµβ
mga

+
−

=
+
−

=  

 

and substitution of numerical values given 1.12 .m/s2   b) Substitution of this result into 

either of the above expressions involving the tension gives T = 14.0 N. 

 

 

10.64:  For a tension T in the string, . and 
R

aIIαTRmaTmg ===−  Eliminating T and 

solving for a gives 

,
/1/ 22 mRI

g

RIm

m
ga

+
=

+
=  

 

where m is the mass of the hanging weight, I is the moment of inertia of the disk 

combination ( )9.89 Problem from mkg 1025.2 23 ⋅×= −I  and R is the radius of the disk to 

which the string is attached. 

           a) With m = 1.50 kg, .m/s 88.2 m,1050.2 22 =×= − aR  

           b) With m = 1.50 kg, .m/s 13.6 m,1000.5 22 =×= − aR   

        The acceleration is larger in case  (b); with the string attached to the larger disk, the 

tension in the string is capable of applying a larger torque. 

 

 

10.65:  Taking the torque about the center of the roller, the net torque is ,αIfR =  
2 MRI = for a hollow cylinder, and with MafRa ==  ,/α (note that this is a relation 

between magnitudes; the vectors 
→→

af  and  are in opposite directions). The net force is 

,MafF =−  from which .FfMFaMaF 2 and 2 so and 2 ===  

 

 



10.66:  The accelerations of blocks A and B will have the same magnitude a. Since the 

cord does not slip, the angular acceleration of the pulley will be .
R
a=α  Denoting the 

tensions in the cord as , and BA TT  the equations of motion are 

 

,   
2
a

R

I
TT

amgmT

amTgm

BA

BBB

AAA

=−

=−

=−

 

 

where the last equation is obtained by dividing ατ I=  by R  and substituting for α  in 

terms of a. 

 

      Adding the three equations eliminates both tensions, with the result that 

2/ RImm

mm
ga

BA

BA

++

−
=  

Then, 

.
/

  
RIRmRm

mm
g

R

a

BA

BA

++

−
==α  

The tensions are then found from 

 

.
2

)(

2
)(

2

2

2

2

RImm

RImmm
gagmT

RImm

RImmm
gagmT

BA

BAB
BB

BA

ABA
AA

++

+
=+=

++

+
=−=

 

 

As a check, it can be shown that .)( αIRTT BA =−  

 

 



10.67:  For the disk, ( )10.6 Example see)43( 2MvK = . From the work-energy theorem, 

,sin 1 βMgLK =  from which 

 

m. 957.0
0.30sin  )sm 80.9(4

)sm 50.2(3

sin  4

3
2

22

=
°

==
βg

v
L  

 

This same result may be obtained by an extension of the result of Exercise 10.26; for the 

disk, the acceleration is ,sin  )32( βg  leading to the same result. 

         b) Both the translational and rotational kinetic energy depend on the mass which 

cancels the mass dependence of the gravitational potential energy. Also, the moment of 

inertia is proportional to the square of the radius, which cancels the inverse dependence 

of the angular speed on the radius. 

 

 

10.68:  The tension is related to the acceleration of the yo-yo by ,)2()2( amTgm =−  and 

to the angular acceleration by .
b
aIITb == α  Dividing the second equation by b and 

adding to the first to eliminate T yields 

 

,
2

2
   ,

)(2

2

)2(

2
222 bRb

gα
bR

g
bIm

m
ga

+
=

+
=

+
=  

 

where 22

2
12 mRmRI ==  has been used for the moment of inertia of the yo-yo. The 

tension is found by substitution into either of the two equations; e.g., 

 

.
)1)(2(

2

)(2

)(
2

)(2

2
1 )2())(2(

22

2

2 +
=

+
=









+
−=−=

Rb

mg

bR

bR
mg

bR
mgagmT  

 

 



10.69:     a) The distance the marble has fallen is .2)2( RrhrRhy −+=−−=  The 

radius of the path of the center of mass of the marble is ,rR −  so the condition that the 

ball stay on the track is ).(2 rRgv −=  The speed is determined from the work-energy 

theorem, .)21()21( 22 ωImvmgy +=  At this point, it is crucial to know that even for the 

curved track, ;rv=ω  this may be seen by considering the time T to move around the 

circle of radius rR −  at constant speed V is obtained from ,)( 2 VtrR =−π  during which 

time the marble rotates by an angle ( ) , 1 2 T
r
R ωπ =−  from which . rV=ω  The work-

energy theorem then states ,)107( 2mvmgy =  and combining, canceling the factors of m 

and g leads to ,2))(107( RrhrR −+=−  and solving for h gives 

.)1017()1027( rRh −=   b) In the absence of friction, ,)21( 2mvmgy =  and substitution 

of the expressions for y and 2v  in terms of the other parameters gives 

,2))(21( RrhrR −−=−  which is solved for .)23()25( rRh −=  

 

10.70: In the first case, 
→

F  and the friction force act in opposite directions, and the 

friction force causes a larger torque to tend to rotate the yo-yo to the right. The net force 

to the right is the difference ,fF −  so the net force is to the right while the net torque 

causes a clockwise rotation. For the second case, both the torque and the friction force 

tend to turn the yo-yo clockwise, and the yo-yo moves to the right. In the third case, 

friction tends to move the yo-yo to the right, and since the applied force is vertical, the 

yo-yo moves to the right. 

 

 
 

 
10.71:    a) Because there is no vertical motion, the tension is just the weight of the hoop: 

( ) ( ) N 76.1kgN 8.9 kg 180.0 === MgT   b) Use . find  to αατ I= The torque is 

 ,// so , 2 MRMgMRTMRRTIRTαRT ====      

( ) ( ) 22 rad/s 5.122m 08.0sm 8.9 so ===α Rg     

     c) 2sm 8.9== αRa  

     d) T would be unchanged because the mass M is the same, a and α would be twice as 

great because I is now .2
2
1 MR  

 

 



10.72:   (a) αα RaIτ ==Σ T and  

2

T

T22

m/s 50
kg 4.00

N 2002

2

1

2

1

===









==

M

P
a

R

a
MRMRPR α

 

Distance the cable moves: 2

2
1 atx =  

( )
( )( ) sm 5.70s 41.1 m/s 500

s. 41.1 m/s 50
2

1
m 50

2

0

22

=+=+=

=→=

atvv

tt
 

 

        (b)  For a hoop, ,2MRI = which is twice as large as before, so T and  aα  would be 

half as large. Therefore the time would be longer. For the speed, ,22

0

2 axvv += in which 

x is the same, so v  would be smaller since a is smaller  

 

 

10.73:   Find the speed v the marble needs at the edge of the pit to make it to the level 

ground on the other side. The marble must travel 36 m horizontally while falling 

vertically 20 m. 

        Use the vertical motion to find the time. Take y+ to be downward. 

        

m/s. 82.17 gives Then 

s 02.2 gives 

?  m, 20 ,m/s 80.9 ,0

000

2

2
1

00

0

2

0

==−

=+=−

==−==

xx

yy

yy

vtvxx

ttatvyy

tyyav

 

      Use conservation of energy,  where point 1 is at the starting point and point 2 is at the 

edge of the pit, where m/s. 82.17=v Take 0=y  at point 2, so . and 0 12 hyy ==  

     
2

2
12

2
1

2211

ωImvmgh

UKUK

+=

+=+
 

      Rolling without slipping means 2

5
12

2
12

5
2   so  ,  . mvImrIrvω =ω==  

      
m 23

)m/s 10(9.80

m/s) 82.17(7

10

7
2

2

2

10
7

===

=

g

v
h

mvmgh

 

       b) ,2
5
12

2
1 mvI =ω  Independent of r. 

       c) All is the same, except there is no rotational kinetic energy term in 2

2
1: mvKK =  

       2

2
1 mvmgh =  

       0.7 m, 16
2

2

==
g

v
h times smaller than the answer in part ( a). 

 

 



10.74:  Break into 2 parts, the rough and smooth sections. 

      2

2
1

22
1

1: ωImvmghRough +=  

1

2

2

22
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Smooth: Rotational KE does not change. 

 

m/s 29.0

m) 25)(m/s 80.9(2m)  25)(m/s 80.9(
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10.75:     a) Use conservation of energy to find the speed 2v  of the ball just before it 

leaves the top of the cliff. Let point 1 be at the bottom of the hill and point 2 be at the top 

of the hill. Take 0=y  at the bottom of the hill, so m. 0.28y and 0 21 ==y  

       
2

22
12

22
1

2

2

12
12

12
1

2211

ωω ImvmgyImv

UKUK

++=+

+=+
 

       Rolling without slipping means ( ) 2

5
122

5
2

2
12

2
1 )/(  and  mvrvmrIrv === ωω  

      
sm 26.1527

102

12

2

210
7

2

2

110
7

=−=

+=

gyvv

mvmgymv
 

       Consider the projectile motion of the ball, from just after it leaves the top of the cliff 

until just before it lands. Take y+  to be downward. 

   Use the vertical motion to find the time in the air: 

    
s 39.2 gives 

?  m,  0.28 ,sm  80.9 ,0

2

2
1

00

0

2

0

=+=−

==−==

ttatvyy

tyyav

yy

yy
 

    During this time the ball travels horizontally ( ) ( ) m. 5.36s 39.2 sm 26.1500 ===− tvxx x

    Just before it lands, s 3.15 and s 4.23 00 ===+= xxyyy vvtavv sm  0.2822 =+= yx vvv  

         b) At the bottom of the hill, ( )  .sm 0.25 rrvω == The rotation rate doesn't change 

while the ball is in the air, after it leaves the top of the cliff, so just before it lands 

.s) 3.15( r=ω  The total kinetic energy is the same at the bottom of the hill and just before 

it lands, but just before it lands less of this energy is rotational kinetic energy, so the 

translational kinetic energy is greater. 

 

 



10.76:  (a) )1(
2

1

2

1 22 ωImvmgh +=  

                     






+=+= 2

s

2

rspokesrim
3

1
6 RmRMIII  

Uniform density means:  . and 2 sr λRmπRλm ==  No slipping means that  .Rvω =  

Also, ( )3262sr +=+=+= πRλRλπRλmmm  substituting into (1) gives 

 

                

( ) ( ) ( )( )

( )
( )

( )( )( )
( ) ( )

sm 0.26 and

srad 124
2m 210.0

m 0.58sm 80.93

2

3
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1
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+++=+

Rωv

π

π

πR

ghπ
ω

ωπRRπRλRRωπRλghπRλ

 

 

(b) Doubling the density would have no effect because it does not appear in the answer. 

,  1
R

αω  so doubling the diameter would double the radius which would reduce 

but half,by  ω Rωv = would be unchanged. 

 

 

10.77:    a) The front wheel is turning at s.rad 2srev 00.1 πω ==  

              s 07.2)srad 2)(m 330.0( =π== rωυ  

         b) srev 503.0srad 16.3m 655.0()sm 07.2( ==== rvω  

         c) srev 50.1 srad 41.9)m 220.0()sm 07.2( ==== rvω  

 

 

10.78:    a) The kinetic energy of the ball when it leaves the tract (when it is still rolling 

without slipping) is  )107( 2mv and this must be the work done by gravity, W = mgh, so 

.710ghv = The ball is in the air for a time .720 so  ,2 hyvtxgyt ===  

   b) The answer does not depend on g, so the result should be the same on the moon. 

   c) The presence of rolling friction would decrease the distance.  

   d) For the dollar coin, modeled as a uniform disc, .38 so and ,)43( 2 hyxmvK ==  

 

 



10.79:    a) 
( )( )( ) ( ) ( )

( )
s.m34.9  

kg 0590.07

m 15.0 mN 400 21 800.010

7

10
2

===
m

K
v  

 

   b) Twice the speed found in part (a), s.m 7.18     c) If the ball is rolling without 

slipping, the speed of a point at the bottom of the ball is zero.    d) Rather than use the 

intermediate calculation of the speed, the fraction of the initial energy that was converted 

to gravitational potential energy is ( ) ( ) ( ) ( ) mghkx =221 0.720 so ,900.0 800.0  and solving 

for h gives 5.60 m. 

 

 

10.80:    a)  

 
         b)   R is the radius of the wheel (y varies from 0 to 2R) and T is the period of the 

wheel’s rotation. 

         c)   Differentiating, 
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        d)  π
π

2
2

 when 0 =






==
T

t
vv yx or any multiple of  ,2π  so the times are integer 

multiples of the period T. The acceleration components at these times are 

.
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R
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independent of time. This is the magnitude of the radial acceleration for a point moving 

on a circle of radius R with constant angular velocity .2
T
π  For motion that consists of this 

circular motion superimposed on motion with constant velocity ( ),0=a
r

 the acceleration 

due to the circular motion will be the total acceleration. 

 

 



10.81:  For rolling without slipping, the kinetic energy is ( ) ( ) ( ) ;65 21 222 mvvRIm =+  

initially, this is 32.0 J and at the return to the bottom it is 8.0 J. Friction has done J 0.24−  

of work, J 0.12− each going up and down. The potential energy at the highest point was 

20.0 J, so the height above the ground was ( )( ) m. 40.32sm 80.9kg 0.600

J 0.20 =  

 

 

10.82:  Differentiating , and obtaining the answer to part (b), 

 

,333 3231

32

2 θb
b

θ
bbt

dt

dθ
=





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===ω  

.666 3132
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θ
θω

α b
b
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d
=







==−=  

 

            a)                                ∫ ∫ ==θ= .
2

9
6 3432

cm

31

cm

32

cm θbIdθθIbdαIW  

                c)   The kinetic energy is 

,
2

9

2

1 3432

cm

2

cm θω bIIK ==  

in agreement with Eq. (10.25); the total work done is the change in kinetic energy. 

 

 
10.83:  Doing this problem using kinematics involves four unknowns (six, counting the 

two angular accelerations), while using energy considerations simplifies the calculations 

greatly. If the block and the cylinder both have speed v, the pulley has angular velocity 

v/R and the cylinder has angular velocity v/2R, the total kinetic energy is 

 

.
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3
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2
)2(

2
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1 222
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2 MvMvRv
MR

Rv
RM

MvK =
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
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


+++=  

This kinetic energy must be the work done by gravity; if the hanging mass descends a 

distance y, .)32(or    , 2 gyvMgyK ==  For constant acceleration, ,22 ayv =  and 

comparison of the two expressions gives .3ga =  

 

 



10.84: (a) 

2
2

2

srad 92.0
m 00.8

60cos)sm 80.9(

2

3

L

cos

2

3

3

1
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=
°
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         (b) As the bridge lowers,  is  so  changes, αθ not constant. Therefore Eq. (9.17) is 

not valid. 

 

         (c) Conservation of energy: 

srad 78.1
m 00.8

60sin)sm 8.9(3

sin 3
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10.85:  The speed of the ball just before it hits the bar is s.m34.15   2 == gyv  

      Use conservation of angular momentum to find the angular velocity ω of the bar just 

after the collision. Take the axis at the center of the bar. 

      ( ) ( ) ( ) 2

1 m kg 153.4 m 00.2 sm15.34 kg 5.00 ⋅=== mvrL  

Immediately after the collsion the bar and both balls are rotating together. 

      ωIL tot2 =  

     ( ) ( ) ( ) ( ) 22222

tot mkg 67.50m 00.2 kg 00.52m 00.4 kg 00.8
12

1
2

12

1
⋅=+=+= mrMlI  

    2

12 m kg 4.153   ⋅== LL  

      srad 027.3 tot2 == ILω  

Just after the collision the second ball has linear speed   

      ( ) ( ) sm055.6srad027.3 m 00.2 === rwv and is moving upward. 

  m 1.87y gives 
2

1 2 == mgymv for the height the second ball goes. 

 

 



10.86:    a) The rings and the rod exert forces on each other, but there is no net force or 

torque on the system, and so the angular momentum will be constant. As the rings slide 

toward the ends, the moment of inertia changes, and the final angular velocity is given by 

Eq. ( ),33.10  

        ,
4mkg 1000.2

mkg 1000.5
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23
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I
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⋅×
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+
+

== −
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 ans so min.rev 5.72 =ω Note that conversion from rev/min to rad/s is not necessary. 

   b) The forces and torques that the rings and the rod exert on each other will vanish, but 

the common angular velocity will be the same, 7.5 rev/min. 

 

 

10.87: The intial angular momentum of the bullet is ( ) ( )( ),2  4 Lvm and the final moment 

of intertia of the rod and bullet is ( ) ( )( ) ( ) .4819243 222 mLLmLm =+  Setting the initial 

angular moment equal to Iω and solving forω gives 
( )

.
19

6

4819

8
2

Lv
mL

mvL
==ω   

  b)     
( )

( ) ( )
( ) ( ) ( )( )

( )
.

19
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4

 1964819

4 21
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2

2

==
vm

LvmL
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10.88:   Assuming the blow to be concentrated at a point (or using a suitably chosen 

“average” point) at a distance r from the hinge, . and ave,aveave rJtrFLrF =∆=∆=Στ  

The angular velocity ω is then 

( )
,

2

32 ave

2

3
1

aveave

ml

tF

ml

tFl

I

trF

I

L
ω

∆
=

∆
=

∆
=

∆
=  

Where l  is the width of the door. Substitution of the given numeral values gives 

s.rad514.0=ω  

 

 

10.89:    a) The initial angular momentum is ( )2lmvL =  and the final moment of inertia 

is ( ) ,2
2

0 lmII +=  so 

 

( )
( ) ( )

s.rad 46.5
23

2
22

=
+

=
lmlM

lmv
ω  

 

    b) ( ) ( ) ,21 2IωghmM =+ and after solving for h  and substitution of numerical values, 

m. 1016.3 2−×=h  c) Rather than recalculate the needed value of ω , note that ω  will be 

proportional to v and hence hwill  be proportional to ;2v  for the board to swing all the 

way over, m. 250.0=h and so ( ) s.m 1012sm 360
m 0.0316
m 250.0 ==v  

 

 



10.90: Angular momentum is conserved, so ,2200 ωω II =  or, using the fact that for a 

common mass the moment of inertia is proportional to the square of the radius, 

,2
2

20

2

0 ω=ω RR or  ( ) ( ) ,2 ~ 2

0000

2

00

2

00

2

0 ωωωωωω ∆+∆+∆+∆+= RRRRRRR  

where the terms in ω∆∆R  and 2ω∆  have been omitted. Canceling the 0

2

0ωR  term gives 

cm. 1.1
2 0

0 −=
∆

−=∆
ω

ωR
R  

 

 

10.91: The initial angular momentum is AIωL 01 =  and the initial kinetic energy is 

.22

01 ωIK A=  The final total moment of inertia is AI4 , so the final angular velocity 

is ( ) 041 ω and the final kinetic energy is ( ) ( ) ( ) .414421 1

2

0 KωI
A

= (This result may be 

obtained more directly from .2 ILK = Thus, ( ) ( )( )J 2400 34K and 43 11 −−=−=∆ KK  

J. 3200=  

 

 

10.92:  The tension is related to the block’s mass and speed, and the radius of the circle, 

by .
2

r

v
mT =  The block’s angular momentum with respect to the hole is mvrL = , so in 

terms of the angular momentum, 

 

( )
.
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2

3

2
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r
mvT ====  

 

The radius at which the string breaks can be related to the initial angular momentum by 

( ) ( )( ) ( )( )
( ) ( )

,
N 0.30 kg 250.0

m 800.0 sm 00.4 kg 250.0
2

max

2

11

max

2
3 ===

mT

rmv

mT

L
r  

from which m. 440.0=r  

 

 

10.93: The train’s speed relative to the earth is ( )m 0.475 sm 600.0 ω+ , so the total 

angular momentum is  

( ) ( )( ) ( )( ) ( ) ( ) ,0
2

m 00.1
 kg 00.7 21m 475.0kg 20.1 m 475.0sm 600.0

2

=






++ ωω  

 

from which srad298.0−=ω ,with the minus sign indicating that the turntable moves 

clockwise, as expected. 

 

 



10.94:     a), g)   

 
 

   b) Using the vector product form for the angular momentum, so , and 2121 rrvv
rrrr

−=−=  

 

         ,1122 vrvr
rrrr

×=× mm  

so the angular momenta are the same.  c) Let .ĵω ω=
r

Then, 

    ( ) and ,ˆˆ
11 kiv xzr −ω=×ω=
rrr

 

                                     ( ) ( ) ( )( ).ˆˆˆ 22

111 kjivL xRyxxRmωrm +++−=×=
rrr

 

 

With ,222 Ryx =+  the magnitude of , and ,2 is 22

1

2 RmRm ωω =⋅ωLL
rrr

and so 

. and ,cos
62

1

))(2( 2

22 π
ωω

ω θθ ===
Rm

Rm  This is true for 2L
r
as well, so the total angular 

momentum makes an angle of 
6
π  with the +y-axis.    d) From the intermediate 

calculation of part (c), ,2

1 mvRRmLy == ω  so the total y-component of angular 

momentum is yy LmvRL  e) .2= is constant, so the net y-component of torque is zero. f) 

Each particle moves in a circle of radius R with speed v, and so is subject to an inward 

force of magnitude .2 Rmv  The lever arm of this force is R, so the torque on each has 

magnitude .2mv  These forces are directed in opposite directions for the two particles, 

and the position vectors are opposite each other, so the torques have the same 

magnitude and direction, and the net torque has magnitude 22mv . 

 

 



10.95:     a) The initial angular momentum with respect to the pivot is ,mvr and the 

final total moment of inertia is ,2mrI +  so the final angular velocity is 

( ).2 Imrmvrω +=  

b) The kinetic energy after the collision is 

( ) ( )

( )
( ) .

2
 

or  ,
2

1

2

22

Imr

ghmM
ω

ghmMImrωK

+
+

=

+=+=

 

 

  c) Substitution of 
2ΜrΙ = into either of the result of part (a) gives ( ),rv

Mm

m
ω 








+

=  

and into the result of part (b), ),1(2 rghω = which are consistent with the forms for v. 

 

 

10.96: The initial angular momentum is 11 mRvΙω − , with the minus sign indicating that 

runner’s motion is opposite the motion of the part of the turntable under his feet. The 

final angular momentum is so ),( 2

2 mR+Ιω   

          
2

11
2

mRΙ

mRvΙω
ω

+
−

=  

 

               
22

2

m) 00.3kg)( 0.55()mkg 80(

s)m 8.2m)( 00.3kg)( 0.55(s)rad 200.0)(mkg 80(

+⋅
−⋅

=  

               s,rad 776.0−=  

 

where the minus sign indicates that the turntable has reversed its direction of motion (i.e., 

the man had the larger magnitude of angular momentum initially). 

 

 
10.97:  From Eq. (10.36), 

 

       s,rad 7.12
m)) 33.0(s)m0.6()(mkg 085.0(

m) 040.0)(sm  kg)(9.80 0.50(
2

2

=
⋅

=
Ι

=Ω
ω

ωr
 

 

or 13 srad to two figures, which is quite large. 

 

 



10.98: The velocity of the center of mass will change by ,cm m

Jv =∆  and the angular 

velocity will change by ⋅=∆ −
I

xxJ
ω

)( cm The change is velocity of the end of the bat will 

then be ⋅
−

−=∆∆=∆
Ι

xxxJ

m

J
ωxvv cm cm

cmcmend

)(
_  Setting 

, ofon cancellati allows 0end Jv =∆  ,)( gives and cmcm mxxxΙ −= which when solved for x 

is 

m. 710.0m) 600.0(
kg) 800.0m)( 600.0(

)mkg1030.5( 22

cm

cm

=+
⋅×

=+=
−

x
mx

Ι
x  

 

 

10.99:  In Fig. (10.34(a)), if the vector 

are  vector  thehence and , Lr  βanglean  makebut  horizontalnot with the horizontal, the 

torque will still be horizontal (the torque must be perpendicular to the vertical weight). 

The magnitude of the torque will be βrω  cos  , and this torque will change the direction 

of the horizontal component of the angular momentum, which has magnitude βL  cos . 

Thus, the situation of Fig. (10.36) is reproduced, but with LL  of instead horiz . Then, the 

expression found in Eq. (10.36) becomes 
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10.100:    a)  

 
 

           The distance from the center of the ball to the midpoint of the line joining the 

points where the ball is in contact with the rails is ( ) ,2
22 dR −  .4 so 22

cm dRωv −=  

when ,0=d  this reduces to ,Rvcm ω=  the same as rolling on a flat surface. When 

,2Rd = the rolling radius approaches zero, and .any for  0 ω→cmv  

 

b) 
22
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1
ω+= ImvK  

c)     
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Setting this equal to mgh and solving for cmv gives the desired result.    c) The 

denominator in the square root in the expression for cmv  is larger than for the case 

cm so ,0 vd =  is smaller. For a given speed, 0   than thelarge is =dω  case, so a larger 

fraction of the kinetic energy is rotational, and the translational kinetic energy, and hence 

cmv , is smaller.    d) Setting the expression in part (b) equal to 0.95 of that of the 0=d  

case and solving for the ratio 1.05. gives =RdRd  Setting the ratio equal to 0.995 gives 

.37.0=Rd  

 

 



10.101:    a) 

 

 
           The friction force is .  so  , kkk gµaMgµnµf ===  The magnitude of the angular 

acceleration is ( ) .k

2

k 2

21 R

gµ

MR

MgRµ

I

fR ==   b) Setting ( )RtRatv ωωω −=== 0  and solving for t 

gives 
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    c) The final kinetic energy is ( ) ( ) ( ) ,at4343
22 MMv = so the change in kinetic energy 

is  
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10.102: Denoting the upward forces that the hands exert as , and RL FF the conditions that 

RL FF  and must satisfy are 

,
r

Iω
FF

wFF

RL

RL

Ω=−

=+
 

where the second equation is ,LΩ=τ  divided by r. These two equations can be solved 

for the forces by first adding and then subtracting, yielding 
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Using the values and N 4.78)sm 80.9)(kg 00.8( 2 === mgω  

smkg 7.132
)m 200.0(

)revrad 2srev 00.5()m 325.0)(kg 00.8( 2

⋅=
×

=
ω π

r

I
 

gives 

).sN 4.66(N 2.39  s),N (66.4N 2.39 ⋅Ω−=⋅Ω+= RL FF  

N. 4.18 N, 0.60 s,rad 314.0srev 0.05  b)      

N. 2.39,0  a)       

====Ω

===Ω

RL

RL

FF

FF
 

      

.srev 0.0916 is which ,srad 575.0  gives  0  d)

force. downward a indicatingsign  minus with the

 N, 2.86 N, 165 s,rad 89.1srev 0.3  c)

sN  66.4
N 39.2 ==Ω=

−====Ω
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F
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10.103:    a) See Problem 10.92;  .32
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which is the same as the work found in part  (b). 

  



Capítulo 11 



11.1:      Take the origin to be at the center of the small ball; then, 

m387.0
kg00.3

)m580.0)(kg00.2(kg)(0)00.1(
cm =

+
=x  

from the center of the small ball. 

 

 

11.2:      The calculation of Exercise 11.1 becomes 

m351.0
kg50.4

)m580.0)(kg00.2()m280.0)(kg50.1()0)(kg00.1(
cm =

++
=x  

This result is smaller than the one obtained in Exercise 11.1. 

 

 

11.3:      In the notation of Example 11.1, take the origin to be the point ,S  and let the 

child’s distance from this point be .x  Then, 

m,125.1
2

 ,0
)2(

cm ===
+

+−
=

m

MD
x

mM

mxDM
s  

which is ,2)22( DL − halfway between the point S and the end of the plank. 

 

 
11.4:      a) The force is applied at the center of mass, so the applied force must have the 

same magnitude as the weight of the door, or N. 300  In this case, the hinge exerts no 

force. 

       b) With respect to the hinge, the moment arm of the applied force is twice the 

distance to the center of mass, so the force has half the magnitude of the weight, or 

N 150 . The hinge supplies an upward force of N. 150N 150N 300 =−  

 

 

11.5:      kN,45.5 so ),m0.10)(N2800(40 sin)m0.8( ==° FF keeping an extra figure. 

 

 

11.6:      The other person lifts with a force of N.100N60N160 =−  Taking torques 

about the point where the N -60 force is applied, 

m.40.2
N100

N160
)m50.1( or ),m50.1)(N160()N100( =








== xx  

 

 

11.7:      If the board is taken to be massless, the weight of the motor is the sum of the 

applied forces, N. 1000  The motor is a distance m200.1
)N1000(

)N600)(m00.2( = from the end where 

the 400-N force is applied. 

 

 



11.8:      The weight of the motor is N.800N200N600N400 =−+  Of the myriad ways 

to do this problem, a sneaky way is to say that the lifters each exert N 100 to the lift the 

board, leaving N 500 and N 300 to the lift the motor. Then, the distance of the motor 

from the end where the 600-N force is applied is m75.0
)N800(

)N300)(m00.2( = .The center of 

gravity is located at m80.0
)N1000(

)m75.0)(N800()m0.1)(N200( =+
from the end where the N 600  force 

is applied. 

 

 

11.9:      The torque due to , cot is hθhTT
D

Lw
xx −=− and the torque due to LwDTT yy = is . 

The sum of these torques is ).cot1( θLw
D

h− From Figure (11.9(b)), ,tanθDh = so the net 

torque due to the tension in the tendon is zero. 

 

 

11.10:     a) Since the wall is frictionless, the only vertical forces are the weights of the 

man and the ladder, and the normal force. For the vertical forces to balance, 

N,900N740N160m12 =+=+= wwn  and the maximum frictional forces is 

N360)N900)(40.0(2s ==nµ (see Figure 11.7(b)). b) Note that the ladder makes contact 

with the wall at a height of 4.0 m above the ground. Balancing torques about the point of 

contact with the ground, 

 

m,N684)N740))(53)(m0.1()N160)(m5.1()m0.4( 1 ⋅=+=n  

 

so N,0.1711 =n  keeping extra figures. This horizontal force about must be balanced by 

the frictional force, which must then be 170 N to two figures. c) Setting the frictional 

force, and hence 1n , equal to the maximum of 360 N and solving for the distance x along 

the ladder, 

),N740)(53()N160)(m50.1()N360)(m0.4( x+=  

so x = 2.70 m, or 2.7 m to two figures. 

 

 

11.11:     Take torques about the left end of the board in Figure (11.21). a) The force F at 
the support point is found from 

N.1920or  ),m00.3)(N500()m50.1)(N280()m00.1( =++= FF b) The net force must be 

zero, so the force at the left end is N,1140)N280()N500()N1920( =−−  downward. 

 

 



11.12:     a)  

 
 

 

         b) ,0 when m 25.6 == AFx which is 1.25 m beyond point B. c) Take torques about 

the right end. When the beam is just balanced, N.900 so ,0 == BA FF The distance that 

point B must be from the right end is then m.50.1
)N900(

)m50.4)(N300( =  

 

 

11.13:     In both cases, the tension in the vertical cable is the weight .ω  a) Denote the 

length of the horizontal part of the cable by .L  Taking torques about the pivot point, 

),2(030tan LwwL.TL +=° from which .60.2 wT =  The pivot exerts an upward vertical 

force of w2  and a horizontal force of w60.2 , so the magnitude of this force is w28.3 , 

directed °6.37  from the horizontal. b) Denote the length of the strut by L , and note that 

the angle between the diagonal part of the cable and the strut is .0.15 °  Taking torques 
about the pivot point, .10.4 so ,45sin  )2(45.0sin  15.0sin  wTLwwLTL =°+°=°  The 

horizontal force exerted by the pivot on the strut is then ωT 55.330.0 cos =°  and the 

vertical force is ,05.430sin  )2( wTw =°+  for a magnitude of ,38.5 w  directed .8.48 °  
 

 
11.14:     a) Taking torques about the pivot, and using the 3-4-5 geometry, 

 

),N150)(m00.2()N300)(m00.4()53()m00.4( +=T  

 

so N. 625=T  b) The horizontal force must balance the horizontal component of the 

force exerted by the rope, or N. 500)54( =T  The vertical force is 

N,75)53(N150N300 =−+ T  upwards. 

 

 



11.15:     To find the horizontal force that one hinge exerts, take the torques about the 
other hinge; then, the vertical forces that the hinges exert have no torque. The horizontal 

force is found from N.140 which from ),m50.0)(N280()m00.1( HH == FF  The top hinge 

exerts a force away from the door, and the bottom hinge exerts a force toward the door. 

Note that the magnitudes of the forces must be the same, since they are the only 

horizontal forces. 

 

 

11.16:     (a) Free body diagram of wheelbarrow: 

 

 
 

N1200

0)m70.0()m70.0)(N80()m0.2)(N450(

0

L

wheel

=

=++−

=Σ

W

WL

τ

 

 

         (b) From the ground. 

 

 
11.17:     Consider the forces on Clea. 
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11.18:     a) Denote the length of the boom by L, and take torques about the pivot point. 

The tension in the guy wire is found from 

 

,0.60 cos )35.0N)(2600( 0.60 cos  N)5000( 60sin °+°=° LLTL  

 

so kN. 14.3=T  The vertical force exerted on the boom by the pivot is the sum of the 

weights, 7.06 kN and the horizontal force is the tension, 3.14 kN. b) No; .0 
F

F
tan 

H

v ≠







 

 

11.19:     To find the tension  LT in the left rope, take torques about the point where the 

rope at the right is connected to the bar. Then, 

N.270 so m),N)(0.5090( m)N)(1.50240( 150sin m)00.3( LL =+=° TT  The vertical 

component of the force that the rope at the end exerts must be 

N,195150sin  N)270( N)330( =°−  and the horizontal component of the force is 

,150 cos N)270( °− so the tension is the rope at the right is N.304R =T .9.39 and °=θ  

 

 

11.20:     The cable is given as perpendicular to the beam, so the tension is found by 
taking torques about the pivot point; 

kN.40.7or  ,0.25 cos  m)50.4kN)(00.5(0.25 cos m)00.2kN)(00.1(m)00.3( =°+°= TT  

The vertical component of the force exerted on the beam by the pivot is the net weight 

minus the upward component of kN.17.00.25 cos kN00.6 , =°−TT  The horizontal force 

is kN. 13.30.25sin  =°T  

 

 

11.21:    a)   ).N)(00.8()m 00.3(m)00.3( 21 llFF −=+−  a have given to is This  

 of magnitude m.80.0 so N.m,40.6 =l   b) The net torque is clockwise, either by 

considering the figure or noting the torque found in part (a) was negative. c) About the 

point of contact of ,2F the torque due to , is 11 lF−F  and setting the magnitude of this 

torque to m, 80.0 gives mN 40.6 =⋅ l  and the direction is again clockwise. 

 

 

11.22:     From Eq. (11.10), 

).m1333(
)m100.50m)(100.3(

m)200.0( 2

242

0 −
−−

=
××

=
∆

= FF
lΑ

l
FY  

Then, N 0.25=F  corresponds to a Young’s modulus of N 500 and Pa, 103.3 4 =× F  

corresponds to a Young’s modulus of Pa. 107.6 5×  

 



11.23:                ,m1060.1
)m1025.0)(Pa 1020(

)m00.2)(N400( 26

210

0 −
−

×=
××

=
∆

=
lY

Fl
A   

and so m, 1043.14
3−×== πAd or 1.4 mm to two figures. 

 

 

11.24:     a) The strain, from Eq. (11.12), is .
0 YA

F
l
l =∆ For steel, using Y from Table (11.1) 

and ,m 1077.1
24

4

2 −×== dA π  

.101.1
)m 1077.1)(Pa 100.2(

)N4000( 4

2411

0

−
−

×=
××

=
∆
l

l
 

 

Similarly, the strain for copper )Pa1010.1( 11×=Y  is .101.2 4−× b) Steel: 

m103.8)m750.0()101.1( 54 −− ×=×× . Copper: ⋅×=× −− m106.1)m750.0)(101.2( 44  

 

 

11.25:     From Eq. (11.10), 

Pa. 100.2
)m1020.0)(m1050.0(

)m00.4)(N5000( 11

224
×=

××
=

−−
Y  

 

 

11.26:     From Eq. (11.10), 

Pa. 108.6
)m10.1)()m 105.3((

)m0.45)(sm 80.9)(kg0.65( 8

23

2

×=
×

=
−π

Y  

 

 

11.27:     a) The top wire is subject to a tension of N157)sm80.9)(kg0.16( 2 = and 

hence a tensile strain of 33

)m 105.2)(Pa 1020(

)N157(
103.1or  ,1014.32710

−−

××
××=− to two figures. The 

bottom wire is subject to a tension of 98.0 N, and a tensile strain of 31096.1 −× , or 
3102.0 −×  to two figures.  b)  mm,1.57m))(0.50010(3.14 3 =× −

 

mm.0.98m))(0.50010(1.96 3 =× −
 

 

 

11.28:    a)  Pa. 106.1 6

)m 105.12(

) 80.9)(kg8000(

22

2s

m

×=−×π
  b) .108.0 5

Pa 102.0

Pa 101.6
10

6 −

×
× ×=  

c) m. 102)m 50.2()108.0( 55 −− ×=××  

 

 

11.29:     N. 101.9)m 0.50)(Pa 10013.1)(18.2( 625 ×=×−  

 

 



11.30:     a) The volume would increase slightly. b) The volume change would be twice 
as great. c) The volume is inversely proportional to the bulk modulus for a given pressure 

change, so the volume change of the lead ingot would be four times that of the gold. 

 

 

11.31:     a) Pa. 1033.3 6

m 100.75

N 250
24- ×=

×
   b) kN. 133)m 10Pa)(2)(200 10(3.33 246 =×× −  

 

 

11.32:     a) Solving Eq. (11.14) for the volume change, 

              

.m 0531.0

)Pa 101.0Pa 1016.1)(m 00.1)(Pa 108.45(

∆

3

583111

−=

×−××−=

∆−=
−−

PkVV

 

 

b) The mass of this amount of water not changed, but its volume has decreased to 

,m947.0m053.0m000.1 333 =−  and the density is now .mkg1009.1 33

m 947.0

kg1003.1
3

 3

×=×
 

 

 

11.33:  .Pa101.2
1

   ,Pa108.4
)cm45.0(

)Pa106.3)(cm600( 1109

3

63
−−×==×=

×
=

B
kB  

 
 

11.34:     a) Using Equation ),17.11(  

 

               Shear strain .104.2
]Pa105.7)][m005)(.m10[(.

)N109( 2

10

5
|| −×=

×
×

==
AS

F
 

 

         b) Using Equation =x ),16.11(  Shear stain .m104.2)m1)(.024(. 3−×==⋅ h  

 

 

11.35:     The area A in Eq. )17.11(  has increased by a factor of 9, so the shear strain for 

the larger object would be 91  that of the smaller. 

 

 

11.36:     Each rivet bears one-quarter of the force, so 
 

 Shear stress .Pa1011.6
)m10125(.

)N1020.1( 8

22

4

4
1

|| ×=
×
×

== −πA

F
 

 

 



11.37:     Pa104.3 or ,Pa1041.3 77

)m1092.0(

)N8.90(
23 ××== −×πA

F  to two figures. 

 

 

11.38:     a) N.1060.1)m105)(Pa1020)(106.1( 326103 ×=××× −−  b) If this were the case, 

the wire would stretch 6.4 mm.  

 

         c) N.105.6)m105)(Pa1020)(105.6( 326103 ×=××× −−  

 

 

 

11.39:     .sm 10.2sm80.9
)kg1200(

3)m1000.3()Pa1040.2( 22
248

tot =−
××

==
−

m

F
a  

 
 

11.40:     mm.97.04 so ,m1045.7 2 7

Pa 104.7

N 350

 8 ==×== −

×
πAdA  

 

 

11.41:     a) Take torques about the rear wheel, so that fdxωxfω == cmcm or  ,d . 

     b) m30.1)m46.2)(53.0( =  to three figures. 

 

 

11.42:     If Lancelot were at the end of the bridge, the tension in the cable would be 

(from taking torques about the hinge of the bridge) obtained from 

 

so N.6860=T  This exceeds the maximum tension that the cable can have, so Lancelot is 

going into the drink. To find the distance x Lancelot can ride, replace the 12.0 m 

multiplying Lancelot’s weight by x and the tension  N1080.5by  3

max ×=TT  and solve 

for x; 

 

                  m.84.9
)sm80.9)(kg600(

)m0.6)(sm80.9)(kg200()m0.12)(N1080.5(
2

23

=
−×

=x  

 

 

 

),m0.6)(sm80.9)(kg200()m0.12)(sm80.9)(kg600()N0.12( 22 +=T



11.43:     For the airplane to remain in level flight, both 0 and 0 =∑=∑ τF . 

 

           
 Taking the clockwise direction as positive, and taking torques about the center of mass, 

 

Forces: 0wingtail =+−− FWF  

 

Torques: 0)m3(.)m66.3( wingtail =+− FF  

 

A shortcut method is to write a second torque equation for torques about the tail, and 

solve for the .0)m36.3()N6700)(m66.3(: wingwing =+− FF  This gives 

.N(down)600N7300N6700 and ),up(N7300 tailwing −=−== FF   

 

Note that the rear stabilizer provides a downward force, does not hold up the tail of the 

aircraft, but serves to counter the torque produced by the wing. Thus balance, along with 

weight, is a crucial factor in airplane loading. 

 

 
11.44:     The simplest way to do this is to consider the changes in the forces due to the 

extra weight of the box. Taking torques about the rear axle, the force on the front wheels 

is decreased by N,1200N3600
m3.00

m1.00 =  so the net force on the front wheels 

is N109.58N1200N 10,780 3×=− to three figures. The weight added to the rear wheels 

is then N,4800N1200 N3600 =+  so the net force on the rear wheels is 

N,1036.1N4800N8820 4×=+  again to three figures. 

        b) Now we want a shift of N10,780  away from the front axle. Therefore, 

N780,10
m00.3

m00.1 =W  and so N.340,32=w  

 

 
11.45:     Take torques about the pivot point, which is 2.20 m from Karen and 1.65 m 

from Elwood. Then ),m20.0)(N240()m20.2)(N420()m65.1(Elwood +=w so Elwood 

weighs 589 N. b) Equilibrium is neutral. 

 

 



11.46:     a) Denote the weight per unit length 

as . and ),cm0.8(),cm0.10( so , 321 αlwαwαwα ===  

The center of gravity is a distance cmx to the right of point O where 

 

321

321
cm

)2cm0.10()cm5.9()cm0.5(

www

lwww
x

++
−++

=   

 

.
)cm0.8()cm0.10(

)2cm0.10()cm5.9)(cm0.8()cm0.5)(cm0.10(

l

ll

++
−++

=  

 

Setting  0cm =x  gives a quadratic in ,l  which has as its positive root cm.8.28=l  

         b) Changing the material from steel to copper would have no effect on the length l  

since the weight of each piece would change by the same amount.  

 

 

 

11.47:     Let Rrr
vrr

−=′ ii ,where R
r
 is the vector from the point O to the point P. 

The torque for each force with respect to point P is then iii Fr

rrr
×′=′τ , and so the net torque 

is 

 

( ) iiiτ FRr
rrrr

×−=∑∑   

        

∑∑
∑∑

×−×=

×−×=

. 

  

iii

ii

FRFr

FRFr
i

rrrr

rrrr

 

In the last expression, the first term is the sum of the torques about point O, and the 

second term is given to be zero, so the net torques are the same. 

 

 

11.48:     From the figure (and from common sense), the force 1F
r
 is directed along the 

length of the nail, and so has a moment arm of (0.0800 m) °60sin . The moment arm of 

2F
r
 is 0.300 m, so 

 

N.116)231.0N)(500(
m)300.0(

60sin   m)0800.0(
12 ==

°
= FF  

 

 



11.49:     The horizontal component of the force exerted on the bar by the hinge must 

balance the applied force F
r
, and so has magnitude 120.0 N and is to the left. Taking 

torques about point  m),00.3( m)00.4N)(0.120(, VFA + so the vertical component is 

N160− , with the minus sign indicating a downward component, exerting a torque in a 

direction opposite that of the horizontal component. The force exerted by the bar on the 

hinge is equal in magnitude and opposite in direction to the force exerted by the hinge on 

the bar. 

 

 

11.50:     a) The tension in the string is N,502 =w and the horizontal force on the bar 

must balance the horizontal component of the force that the string exerts on the bar, and 

is equal to N,30 37sin  N)50( =°  to the left in the figure. The vertical force must be 

N.58N)50(N)30( c) .59
N30

N50
arctan  b) up.  N,50N1037 cos N)50( 22 =+°=








=+°  

         d) Taking torques about (and measuring the distance from) the left end, 

)m0.5)(N40()N50( =x , so m0.4=x , where only the vertical components of the 

forces exert torques. 

 

 

11.51:     a) Take torques about her hind feet. Her fore feet are 0.72 m from her hind feet, 

and so her fore feet together exert a force of N,9.73
m) 72.0(

m)28.0( N)190( =  so each foot exerts a 

force of 36.9 N, keeping an extra figure. Each hind foot then exerts a force of 58.1 N.  

b) Again taking torques about the hind feet, the force exerted by the fore feet is 

N,1.105
m 72.0

m)09.0( N)25(m) 28.0( N) 190( =+
 so each fore foot exerts a force of 52.6 N and each hind 

foot exerts a force of 54.9 N. 

 

 

11.52:     a) Finding torques about the hinge, and using L as the length of the bridge and 

  and BT ww for the weights of the truck and the raised section of the bridge, 

 

( ) ( ) °+°=° 30 cos L30 cos 70sin 
2
1

B4

3
T wLwTL ,  so 

 

 

( )
N.1057.2

70 sin

30 cos)sm 80.9( 5
2

B2
1

T4

3

×=
°

°+
=

mm
T  

 

b) Horizontal: ( ) N.109713070cos 5×=°−° .T Vertical: °−+ 40sin  BT Tww  

 N.102.46  5×=  

 
 



11.53:     a) Take the torque exerted by 2F
r
 to be positive; the net torque is then 

,sin sin)(sin )( 21 φφφ FllxFxF =++−  where F is the common magnitude of the forces. 

b) m,N3.2537 sin)m0.3)(N0.14(1 ⋅−=°−=τ  keeping an extra figure, and 

    m,N9.3737 sin)m5.4)(N0.14(2 ⋅=°=τ  and the net torque is m.N6.12 ⋅  About point 

P, m,N3.25)37 )(sinm0.3)(N0.14(1 ⋅=°=τ  and  

    m,N6.12)37 )(sinm5.1)(N0.14(2 ⋅−=°−=τ  and the net torque is m.N6.12 ⋅ The 

result of part (a) predicts ,37 sin)m5.1)(N0.14( °  the same result. 
 
 

11.54:     a) Take torques about the pivot. The force that the ground exerts on the ladder is 

given to be vertical, and θθF sin)m0.4)(N250(sin)m0.6(V =   

N.354 so ,sin)m50.1)(N750( V =+ Fθ  b) There are no other horizontal forces on the 

ladder, so the horizontal pivot force is zero. The vertical force that the pivot exerts on the 

ladder must be N,646)N354()N250()N750( =−+ up, so the ladder exerts a downward 

force of N 646  on the pivot. c) The results in parts (a) and (b) are independent of θ. 

 
 

11.55:     a) . and  THwmgV =+= To find the tension, take torques about the pivot 

point. Then, denoting the length of the strut by ,L  

.cot
4

or ,cos
6

cos
3

2
sin

3

2

θ
mg

wT

θ
L

mgθLwθLT








 +=








+






=








 

 

 

         b) Solving the above for w , and using the maximum tension for ,T  

N.951)sm 80.9()kg0.5(055tan)N700(
4

tan 2 =−°=−= .
mg

θTw  

 

         c) Solving the expression obtained in part (a) for θtan and letting 

.004 so ,700.0tan ,0
4

°===→ .θθω
T

mg
 

 

 



11.56:     (a) and (b) 

 

Lower rod: 

 
 

           )cm0.8()cm0.4)(N0.6(:0p A==Στ  

                                                                      N0.3=A  

            N 9.0N3.0N0.6N0.6:0 3 =+=+==Σ ATF  

 
Middle rod: 

 
)cm0.5)(N0.9()cm0.3(:0p ==Σ Bτ  

           N15=B  

      N24N9.0N15:0 32 =+=+==Σ TBTF  

 
 

 
 

 
 

Upper rod: 
 

 
 

 

)cm0.6()cm0.2)(N24(:0p C==τΣ  

N0.8=C  

        N32N8.0N24:0 21 =+=+==Σ CTTF  



11.57:  

 
 

hingeat  axis ,0=τΣ  

0)30)(cosm75.3()40)(sinm0.6( =°−° wT  

          N760 =T  

 
11.58:     (a) 

 

 

                             0Hinge =Στ  

              
N000,120                     

37 cos)m0.7)(N45,000(37m)sin 5.3(

=

°=°

T

T
 

 

         (b) N 000,120 :0 ===∑ THFx  

 

               N  45,000 :0 ==∑ VFx  

 

          The resultant force exerted by the hinge has magnitude N 1028.1 5×  and direction 

°6.20  above the horizontal. 

 

 



11.59:  

 
         a) ,0=∑τ  axis at lower end of beam 

         Let the length of the beam be L. 
 

        

N 2700
20 sin

40 cos 

040 cos
2

)20 (sin

2
1

=
°

°
=

=°






−=°

mg
T

L
mgLT

 

 

         b) Take +y upward. 

 

        
N 137260cos  gives 0

N 6.73 so 060sin   gives 0

sx =°==∑

==°+−=∑

TfF

nTwnFy
 

       19
N 73.6

N 1372
, s

sss ====
n

f
µnµf  

 

        The floor must be very rough for the beam not to slip. 

 

 
11.60:     a) The center of mass of the beam is 1.0 m from the suspension point. Taking 

torques about the suspension point, 

 

)m00.2)(N 100()m00.1)(N 0.140()m00.4( =+w  

 

(note that the common factor of sin °30  has been factored out),  from which N. 0.15=w  

 

         b) In this case, a common factor of sin °45  would be factored out, and the result 

would be the same. 

 



11.61:     a) Taking torques about the hinged end of  the pole  

0)m00.5()m00.5()N600()m50.2)(N200( =−×+ yT . Therefore the y-component of  

the tension is N700=yT . The x-component of the tension is then 

N714)N700()N1000( 22 =−=xT . The height above the pole that the wire must be 

attached is m90.4)m00.5(
714
700 = . b) The y-component of the tension remains 700 N and 

the x-component becomes N 795)N714(
m40.4

m90.4 = , leading to a total tension of 

N, 1059N) 700( N) 795( 22 =+  an increase of 59 N. 

 

 

11.62:     A and B are straightforward, the tensions being the weights suspended; 

N. 588.0)sm80.9)(kg0360.0kg0240.0( N, 353.0)sm80.9)(kg0360.0( 22

A =+=== BTΤ

To find , and DC TT a trick making use of the right angle where the strings join is available; 

use a coordinate system with axes parallel to the strings. Then, 

N, 353.053.1 cos  N, 470.036.9 cos =°==°= BDBC TTTT  To find ,ET  take torques about 

the point where string F is attached; 

m,N0.833                    

m)5000)(sm809kg)(1200(

)m200.0(53.1sin  )m800.0(36.9sin  )m000.1(

2

⋅=

+

°+°=

...

TTT CDE

 

so FE TT  N. 833.0=  may be found similarly, or from the fact that FE TT + must be the 

total weight of  the ornament. N. 931.0 which from N, 76.1)sm80.9)(kg180.0( 2 == FT  

 

 

11.63:     a) The force will be vertical, and must support the weight of the sign, and is 300 

N. Similarly, the torque must be that which balances the torque due to the sign’s weight 

about the pivot, mN225)m75.0)(N300( ⋅= . b) The torque due to the wire must balance 

the torque due to the weight, again taking torques about the pivot. The minimum tension 

occurs when the wire is perpendicular to the lever arm, from one corner of the sign to the 

other. Thus, N. 132or  m,N 225)m80.0()m50.1( 22 =⋅=+ TT The angle that the wire 

makes with the horizontal is .0.62)(arctan 90
1.50

0.80 °=−° Thus, the vertical component of 

the force that the pivot exerts is (300 N) –(132 N) sin N 1830.62 =° and the horizontal 

force is  N62062cos)N132( =°. , for a magnitude of 193 N and an angle of °71  above 

the horizontal. 

 

 



11.64:     a) m.3.1)m1030.0(4)100.9)(23.0()( 244

0 µwllσw =π××−=∆−=∆ −−
 

 

         b) 

                    

N, 101.3
m100.2

m1010.0
 

42.0

 )m)100.2( ( Pa) 101.2(

 
1

6

 2

32211

×=
×
×××

=

∆
=

∆
=

−

−−

⊥

π

w

w

σ
AY

l

l
AYF

 

 

where the Young’s modulus for nickel has been used. 

 

 

11.65:     a) The tension in the horizontal part of the wire will be 240 N. Taking torques 

about the center of the disk,  N. 60or w ,0m))00.1( m)250.0N)( 240( ==− w                  

b) Balancing torques about the center of the disk in this case, 

°==+− 1.53 so,0 cos m))N)(2.00 20(m)00.1N)( 60((m)250.0( N) 240( θθ . 

 

 

11.66:     a) Taking torques about the right end of the stick, the friction force is half the 

weight of the stick, ⋅=
2

wf  Taking torques about the point where the cord is attached to 

the wall (the tension in the cord and the friction force exert no torque about this 

point),and noting that the moment arm of the normal force is 

.22 )40.0(arctan   so 0.40, tanThen, tan,tan
2

°=<<=⋅= θθθθ  nl
n

fw  

 

         b) Taking torques as in part (a), and denoting the length of the meter stick as ,l  

.
2

 tan n and )(
2

wx
l

wθlxlw
l

wfl +=−+=  

In terms of the coefficient of friction ,sµ  

.tan
2

23
tan
)(

2

2
s θ

xl

xl
θ

x

xl

n

f
l

l

+
−

=
+
−+

=>µ  

Solving for x, 

cm.230
tan

tan3 

2 s

s .
θµ

µθl
x =

+
−

>  

         c) In the above expression, setting gives for  solving and cm 10 sµ=x  

.625.0
201

tan)203(
s =

+
−

>
l

θl
µ  

 

 



11.67:     Consider torques around the point where the person on the bottom is lifting. The 

center of mass is displaced horizontally by a distance °− 45sin  m)25.0m625.0(  and the 

horizontal distance to the point where the upper person is lifting is °45sin  m)25.1( , and 

so the upper lifts with a force of N. 588)300.0(
45sin25.1

45sin375.0 ==°
° ww  The person on the 

bottom lifts with a force that is the difference between this force and the weight, 1.37 kN. 

The person above is lifting less. 

 

                                             

 

 

 



11.68:  
          (a) 

 

       

 

 

 

         

N 2.59

)cm0.15)(N 0.15()cm80.3(
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         (b) 

             

   

 

 
 

 

 

 

 

 

 

 

N 754

)cm0.33)(N 0.80()cm0.15)(N 0.15()cm80.3(
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11.69:     a) The force diagram is given in Fig. 11.9. 
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         c)   The result of part (b) shows that maxw increases when D increases. 

 

 

11.70: 

 

 
 

         By symmetry, A=B and C=D. Redraw the table as viewed from the AC side. 

 

( ) ( )

N 670       

 and N 130        Use
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τ

 

         By Newton’s third law of motion, the forces A, B, C, and D  on the table are the 

same as the forces the table exerts on the floor. 

 

 



11.71:     a) Consider the forces on the roof 

 
 

         V and H  are the vertical and horizontal forces each wall exerts on the roof. 
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         By Newton’s 3rd law, the roof exerts a horizontal, outward force on the 

wall. For torque about an axis at the lower end of the wall, at the ground, this 

force has a larger moment arm and hence larger torque the taller the walls. 

b) 

 
 

 

 

Consider the torques 

on one of the walls. 



11.72:     a) Take torques about the upper corner of the curb. The force F
r
acts at a 

perpendicular distance hR −  and the weight acts at a perpendicular distance 

( ) .2 222 hRhhRR −=−− Setting the torques equal for the minimum necessary force, 

.
2 2

hR

hRh
mgF

−
−

=  

         b) The torque due to gravity is the same, but the forceF
r
acts at a perpendicular 

distance ,2 hR − so the minimum force is hvRhmg −2)( /2R–h. c) Less force is 

required when the force is applied at the top of the wheel. 

 

 

11.73:     a) There are several ways to find the tension. Taking torques about point B (the 

force of the hinge at A is given as being vertical, and exerts no torque about B), the 

tension acts at distance
22 )m00.2()m00.4( +=r 47.4= m and at an angle of 

.6.56
4.00

2.00
arctan 30 °=







+°=φ  Setting 

N 268 gives for  solving and )m00.2(N)500(sin  == TTφTr .   b) The hinge at A is given 

as exerting no horizontal force, so taking torques about point ,D  the lever arm for the 

vertical force at point m,4.3130.0 tan)m00.4(m)(2.00 is =°+B  so the horizontal force 

at N. 232
m31.4

)m00.2(N)500(
 is =B  Using the result of part (a), 

however, N 23230.0 cosN)268( =°  In fact, finding the horizontal force at B first 

simplifies the calculation of the tension slightly. c) N. 3660.30sin)N 268()N 500( =°−  

Equivalently, the result of part (b) could be used, taking torques about point ,C  to get the 

same result. 

 

 



11.74:     a) The center of gravity of top block can be as far out as the edge of the lower 

block. The center of gravity of this combination is then 43L  from the right edge of the 

upper block, so the overhang is .43L  

         b) Take the two-block combination from part (a), and place it on the third block 

such that the overhang of 43L  is from the right edge of the third block; that is, the center 

of gravity of the first two blocks is above the right edge of the third block. The center of 

mass of the three-block combination, measured from the right end of the bottom block, is 

6L−  and so the largest possible overhang is .1211)6()43( LLL =+  

Similarly, placing this three-block combination with its center of gravity over the right 

edge of the fourth block allows an extra overhang of ,8L  for a total of  .2425L  c) As 

the result of part (b) shows, with only four blocks, the overhang can be larger than the 

length of a single block. 

11.75:     a)  
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         b) Consider the forces on the bottom marble. The horizontal forces must sum to 

zero, so 

         
N 848.0

30sin

sin

=
°

=

=

A

A

F
n

θnF

 

         Could use instead that the vertical forces sum to zero 

         
checks. which N, 848.0

30cos

0cos

=
°

−
=

=−−

mgF
n

nmgF

B

B θ
 

 



11.76:     (a) Writing an equation for the torque on the right-hand beam, using the hinge 

as an axis and taking counterclockwise rotation as positive: 

0
2

sin
22

cos
22

sinwire =−−
θL

w
θL

F
θ

LF c  

whereθ  is the angle between the beams, cF  is the force exerted by the cross bar, and w is 

the weight of one beam. The length drops out, and all other quantities except cF  are 

known, so 

 

2
 tan )2(

cos 

sin   sin
wire

22
1

22
1

2wire
c

θ
wF

wF
F

θ

θθ

−=
−

=  

 

Therefore 

N 130
2

53
 tan 260 =

°
=F  

         b) The cross bar is under compression, as can be seen by imagining the behavior of 

the two beams if the cross bar were removed. It is the cross bar that holds them apart. 

 

         c) The upward pull of the wire on each beam is balanced by the downward pull of 

gravity, due to the symmentry of the arrangement. The hinge therefore exerts no vertical 

force. It must, however, balance the outward push of the cross bar: 130 N horizontally to 

the left for the right-hand beam and 130 N to the right for the left-hand beam. Again, it’s 

instructive to visualize what the beams would do if the hinge were removed. 

 

 
11.77:     a) The angle at which the bale would slip is that for which 

( ) .0.31arctan or  ,sin  cos sss °===== µββw βwµΝµf  The angle at which the bale 

would tip is that for which the center of gravity is over the lower contact point, or 

arctan °°= 27or  ,6.26(
m) 50.0

m) 25.0
to two figures. The bale tips before it slips. b) The angle for 

tipping is unchanged, but the angle for slipping is arctan °°= 22or    ,8.21)40.0( to two 

figures. The bale now slips before it tips. 

 

 

11.78:     a) N 103)smkg)(9.800.30)(35.0( 2

kk ===== mgµΝµfF  

         b) With respect to the forward edge of the bale, the lever arm of the weight is 

m125.0
2

m250.0 =  and the lever arm h of the applied force is then h 

m.36.0 m)125.0( m)125.0(
35.0

m125.01

k
==== µF

mg
 

 

 



11.79:     a) Take torques about the point where wheel B is in contact with the track. With 
respect to this point, the weight exerts a counterclockwise torque and the applied force 

and the force of wheel A both exert clockwise torques. Balancing torques, 

m).N)(1.00 950(m)60.1)((m)00.2(A =+ FF  Using 

N. 870 and N, 80 N, 494k =−==== ABA FwFFwF µ  b) Again taking torques about the 

point where wheel B is in contact with the tract, and using 

m. 92.1 so N),00.1N)( 950( )N 494( (a),part in  as N 494 === hhF  

 

 

11.80:     a) The torque exerted by the cable about the left end is θTLsin . For any angle 

,sin)180(sin , θθ =−°θ  so the tension T will be the same for either angle. The horizontal 

component of the force that the pivot exerts on the boom will be 

θTTθT cos)180( cosor  cos −=−° θ . b) From the result of part (a), , α 
sin
1
θ

T and this 

becomes infinite as .180or  0 °→→θ  Also, c), the tension is a minimum when θsin  is a 

maximum, or ,90°=θ  a vertical string. d) There are no other horizontal forces, so for the 

boom to be in equilibrium, the pivot exerts zero horizontal force on the boom. 

 

 

11.81:     a) Taking torques about the contact point on the ground, 

N.3664)640( so ,sinm)5.4(sin)m0.7( === w.TθwθT  The ground exerts a vertical  

force on the pole, of magnitude N 2052=−Tw . b) The factor of θsin appears in both 

terms of the equation representing the balancing of torques, and cancels. 

 

 

11.82:     a) Identifying x with l∆ in Eq. (11.10), .0lAYk =  

         b) .2 )21( 0

22 lAxYkx =  

 

 

11.83:     a) At the bottom of the path the wire exerts a force equal in magnitude to the 

centripetal acceleration plus the weight, 

 

N. 1007.1)sm80.9)m50.0(rev))rad 2)(srev00.2((( 322 ×=+= πmF  

From Eq. (11.10), the elongation is 

mm.5.5
)m10014.0)(Pa 107.0(

)m50.0)(N 1007.1(
2411

3

=
××

×
−  

 

         b) Using the same equations, at the top the force is 830 N, and the elongation is 

0.0042 m. 

 

 



11.84:     a) 

 
 

         b) The ratio of the added force to the elongation, found from taking the slope of the 

graph, doing a least-squares fit to the linear part of the data, or from a casual glance at the 

data gives .mN 1000.2 4×=
∆l

F From Eq. (11.10), 

Pa. 108.1
))m1035.0((

m)50.3(
)mN 1000.2( 11

23

40 ×=
×

×=
∆

=
−πA

l

l

F
Y  

         c) The total force at the proportional limit is N, 80N 60N 0.20 =+ and the stress at 

this limit is Pa. 101.2 8

)m1035.0(

)N 80(
23 ×=−×π

 

 

 
11.85:     a) For the same stress, the tension in wire B must be two times in wire A, and so 

the weight must be suspended at a distance m70.0)m05.1)(32( = from wire A..  

 

         b) The product Y A for wire B is )34(  that of wire B, so for the same strain, the 

tension in wire B must be )34(  that in wire A, and the weight must be 0.45 m from wire 

B. 

 

 

11.86:     a) Solving Eq. (11.10) for l∆  and using the weight for F, 

m.108.1
)m1000.8)(Pa 100.2(

)m0.15)(N 1900( 4

2411

0 −
− ×=

××
==∆

YA

Fl
l  

         b) From Example 5.21, the force that each car exerts on the cable is 

,0
2

0

2 lwlmωF
g
w==  and so 

m.109.1
)m1000.8)(Pa 100.2)(sm 80.9(

)m0.15()srad84.0)(N 1900( 4

24112

222

0

2

0 −
− ×=

××
===∆

gYA

lwω

YA

Fl
l  

 

 



11.87:     Use subscripts 1 to denote the copper and 2 to denote the steel. a) From Eq. 

(11.10), with , and 2121 FFll =∆=∆  

m.63.1
)Pa109)(cm00.2(

)Pa1021)(cm00.1(
)m 40.1(

102

102

11

22
12 =









×

×
=








=

YA

YA
LL  

         b) For nickel, Pa 1000.4 8

1
×=

A
F and for brass, Pa. 1000.2 8

2
×=

A
F c) For nickel, 

3

Pa 1021

Pa 1000.4 109.110

8 −

×
× ×= and for brass, .102.2 3

Pa 109

Pa 1000.2
10

8 −

×
× ×=  

 

 

11.88:     a) N. 102.4)010.0)(m100.3)(Pa 104.1( 42410

max0

max ×=××=






 ∆
= −

l

l
YAF  

 

         b) Neglect the mass of the shins (actually the lower legs and feet) compared to the 

rest of the body. This allows the approximation that the compressive stress in the shin 

bones is uniform. The maximum height will be that for which the force exerted on each 

lower leg by the ground is maxF found in part (a), minus the person’s weight. The impulse 

that the ground exerts is 

s.mkg 102.1)s 030.0))(sm 80.9)(kg 70(N 102.4( 324 ⋅×=−×=J The speed at the 

ground is ghmJgh 22 so ,2 =  and solving for h, 

 

m,64
2

2

1
2

=






=
m

J

g
h  

but this is not recommended. 

 

 

11.89:     a) Two times as much, 0.36 mm, b) One-fourth (which is 2)21( ) as much, 

0.045 mm.c) The Young’s modulus for copper is approximately one-half that for steel, so 

the wire would stretch about twice as much. mm. 33.0)mm 18.0(
Pa 1011

Pa 1020
10

10

=
×
×  

 

11.90:     Solving Eq. (11.14) for ,V∆  

L. 0541.0

m)150.0(

)sm80.9)(kg1420(
)L 250)(Pa 10110(

2

2
111

00

−=

×−=

−=∆−=∆

−−

π

A

mg
kVPkVV

 

 

The minus sign indicates that this is the volume by which the original hooch has 

shrunk, and is the extra volume that can be stored. 

 

 



11.91:     The normal component of the force is θF cos  and the area (the 

intersection of the red plane and the bar in Figure (11.52)) is , cos / θA  so the 

normal stress is .cos )( 2θAF  

         b) The tangential component of the force is ,sin  θF  so the shear stress is 

. cos sin  )AF( θθ   

         c) θ2cos is a maximum when 0.or  1, cos == θθ  d) The shear stress can be 

expressed as ,)(2sin  )2( θAF which is maximized when 

.45
2

90
 or ,1)(2sin °=

°
== θθ  Differentiation of the original expression with respect 

to θ  and setting the derivative equal to zero gives the same result. 
 

 

11.92:     a) Taking torques about the pivot, the tensionT in the cable is related to 

the weight by .
sin  2

 so ,2 sin  00
θ

mg
TmgllθT ==  The horizontal component of the 

force that the cable exerts on the rod, and hence the horizontal component of the 

force that the pivot exerts on the rod, is θ
mg

cot  
2

and the stress is .cot  
2

θ
A

mg

b) 

.
2

cot 00

AY

θmgl

AY

Fl
l ==∆  

         c) In terms of the density and length, ,)( 0lρAm =  so the stress is 

θgρl cot  )2( 0  and the change in length is .cot  )2( 2

0 θΥgρl  d) Using the numerical 

values, the stress is 5104.1 ×  Pa and the change in length is  m. 102.2 6−× e) The 

stress is proportional to the length and the change in length is proportional to the 

square of the length, and so the quantities change by factors of 2 and 4. 

 

 



11.93:     a) Taking torques about the left edge of the left leg, the bookcase would 

tip when ,750
)m1.80(

)m90.0)(1500( Ν== Ν
F  and would slip when ,600)1500)(( s Ν=Ν= µF  so 

the bookcase slides before tipping. b) If F is vertical, there will be no net 

horizontal force and the bookcase could not slide. Again taking torques about the 

left edge of the left leg, the force necessary to tip the case is kN.5.13
)m10.0(

)m90.0)(1500( =Ν

c) To slide, the friction force is ), cos (s θFwµf +=  and setting this equal 

to θF sin   and solving for F  gives 

.
 cos sin s

s

θµ

wµ
F

−θ
=  

To tip, the condition is that the normal force exerted by the right leg is zero, and 

taking torques about the left edge of the left leg, 

),m 90.0()m 0.10( cos m) (1.80 sin  wθFθF =+  and solving for F  gives 

.
sin  2  cos )91( θθ

w
F

+
=  

Setting the expression equal gives 

, cos sin)sin 2  cos )91(( ss θµθθθµ −=+  

and solving for θ  gives 

.66
)2-1(

)910(
arctan 

s

s °=







=

µ

µ
θ  

 

 



11.94:     a) Taking torques about the point where the rope is fastened to the 

ground, the lever arm of the applied force is 
2
h  and the lever arm of both the 

weight and the normal force is .tan)( so and ,tan
2

θθ hwnFh h −=  Taking torques 

about the upper point (where the rope is attached to the post), .
2
hFhf = Using 

nf sµ≤  and solving for F, 

, 400
36.9 tan

1

30.0

1
) 400(2

 tan

11
2

11

s

nNnNwF =







°

−=







−≤

−−

θµ
 

         b) The above relations between become  and  , fnF  

,
5

2
 , tan )(

5

3
FfhwnhF =−= θ  

and eliminating gives for  solving and  and Fnf  

,
tan

5352
1

s

−









−≤

θµ
wF  

and substitution of numerical values gives 750 N to two figures. c) If the force is 

applied a distance y above the ground, the above relations become 

 
,)(  ,tan )( fhyhFhwnFy =−−= θ  

which become, on eliminating , and fn  

( ) ( )
.

tan

1

s









−

−
≥

θµ
h

y

h

y

Fw  

As the term in square brackets approaches zero, the necessary force becomes 

unboundedly large. The limiting value of y is found by setting the term in square 

brackets equal to zero. Solving for y gives 

.71.0
36.9 tan30.0

9.36 tan

 tan

 tan
=

°+
°

=
+

=
θµ

θ

sh

y
 

 

 



11.95:     Assume that the center of gravity of the loaded girder is at ,2L  and that 

the cable is attached a distance x to the right of the pivot. The sine of the angle 

between the lever arm and the cable is then ,))2(( 22 xLhh −+  and the tension is 

obtained from balancing torques about the pivot; 

,2
))2(( 22

Lw
xLh

hx
T =













−+
 

where w is the total load (the exact value of w and the position of the center of 

gravity do not matter for the purposes of this problem). The minimum tension will 

occur when the term in square brackets is a maximum; differentiating and setting 

the derviative equal to zero gives a maximum, and hence a minimum tension, at 

).2()( 2

min LLhx +=  However, if ,2 if occurs which ,min LhLx >>  the cable must 

be attached at L, the furthest point to the right. 

 

 

11.96:     The geometry of the 3-4-5 right triangle simplifies some of the 

intermediate algebra. Denote the forces on the ends of the ladders by 

RL FF  and (left and right). The contact forces at the ground will be vertical, since 

the floor is assumed to be frictionless. a) Taking torques about the right end, 

RLL FFF  N.391 so),m90.0)(N360()m40.3)(N480()m00.5( =+= may be found in a 

similar manner, or from N. 449N 840 =−= LR FF  b) The tension in the rope may be 

found by finding the torque on each ladder, using the point A as the origin. The 

lever arm of the rope is 1.50 m. For the left ladder, 

N 1.322 so ),m60.1)(N480()m20.3()m50.1( =−= TFT L (322 N to three figures). As a 

check, using the torques on the right ladder, 

)m90.0)(N360()m80.1()m50.1( −= RFT  gives the same result. c) The horizontal 

component of the force at A must be equal to the tension found in part (b). The 

vertical force must be equal in magnitude to the difference between the weight of 

each ladder and the force on the bottom of each ladder, 480 N−391 N = 449 
N−360 N = 89 N. The magnitude of the force at A is then 

N.334)N89()N 1.322( 22 =+  

         d) The easiest way to do this is to see that the added load will be distributed 

at the floor in such a way that 

N.961)N800)(64.0( and N,679)N800)(36.0( =+=′=+=′ RRLL FFFF  Using these 

forces in the form for the tension found in part (b) gives 

N,53.936
)m50.1(

)m90.0)(N360()m80.1(

)m50.1(

)m60.1)(N480()m20.3(
=

−′
=

−′
= RL FF

T  

which is 937 N to three figures. 

 

 



11.97:     The change in the volume of the oil is pvk ∆= OO and the change in the 

volume of the sodium is .ss pvk ∆=  Setting the total volume change equal to Ax (x is 

positive) and using ,AFp =∆  

),)(( ssOO AFVkVkAx +=  

and solving for sk  gives 

⋅







−=

s

OO

2

s

1

V
Vk

F

xA
k  

 

 

11.98:     a) For constant temperature ( )0=∆T , 

( )
.

)(
 and 0) ()()( p

V

Vp
BVpVppV =

∆
∆

−==∆+∆=∆  

         b) In this situation, 

( ) ,0)( ,0 )( 1 =
∆

+∆=∆+∆ −γ

V

V
γppVVγpVp γ  

and 

.
)(

γp
V

Vp
B =

∆
∆

−=  

 

 

11.99:     a) From Eq.(11.10), mm 0.66or  m, 1062.6 4

)m 1000.5)(Pa 1020(

)m50.1)(sm80.9)(kg50.4(

2710

2 −

××
×==∆ −l  

to two figures. b) J.022.0)m100500.0)(sm80.9)(kg50.4( 22 =× −  c) The magnitude 

F will be vary with distance; the average force is N, 7.16)cm 0250.0( 0 =lAY and so 

the work done by the applied force is J. 1035.8)m 100500.0(N)7.16( 32 −− ×=× d) The 

wire is initially stretched a distance m 1062.6 4−× ( the result of part (a)), and so the 

average elongation during the additional stretching is m 1012.9 4−× , and the 

average force the wire exerts is N. 8.60 The work done is negative, and equal to 

J. 1004.3)m 100500.0)(N8.60( 22 −− ×−=×−  e) See problem 11.82. The change in 

elastic potential energy is 

( )
J, 1004.3))m 1062.6()m 1062.11((

m 50.12

)m 1000.5)(Pa 1020( 22424
2710

−−−
−

×=×−×
××

 

the negative of the result of part (d). (If more figures are kept in the intermediate 

calculations, the agreement is exact.)  


