
1

Copyright 2002 by RoleModel Software, Inc.

Extreme Programming:
So What?

This talk by Ed Gehringer based on notes by
Roy W. Miller

RoleModel Software, Inc.

Copyright 2002 by RoleModel Software, Inc.

Why Extreme Programming?

• Be more valuable than your peers.
• Be more productive.
• Make you happier.

2

Copyright 2002 by RoleModel Software, Inc.

The Real Project Lifecycle

• Dream
• Plan
• Capture requirements
• Design a lot, code a little, test

if there’s time
• Limp to the finish

Create a comprehensive plan, stick to it at
all costs, kill change, hope you survive

Copyright 2002 by RoleModel Software, Inc.

The Results

• Junk
• Late
• For a lot of money

The software you wanted at the
beginning, not the end

Data from 2000 CHAOS Report, Standish Group

3

Copyright 2002 by RoleModel Software, Inc.

The Source: Taylorism

• Frederick Winslow Taylor,
Principles of Scientific
Management (1911)

• Accepted wisdom by 1950s
• Software began in 1950s
• Software “production” ~=

industrial production
• Exercise: Find an

interesting fact about
Taylorism. Submit here.

Making software is like a factory – an
efficiency optimization problem

“[I]n each…trade there is
always one method and one
implement which is quicker and
better than any of the rest. And
this one best method and best
implement can only be
discovered or developed
through a scientific study and
analysis of all of the methods
and implements in use,
together with accurate, minute,
motion and time study. “

Copyright 2002 by RoleModel Software, Inc.

Software Is Different

• Problem always different
• Solution always different
• Can’t optimize
• Change is constant
• Can’t predict accurately

Traditional view… Reality…

Software is emergent

• Problem always the same
• Solution always the same
• Optimize process
• Change is disruptive
• Increase predictability

Software like industrial
production

Software like predicting the
weather

4

Copyright 2002 by RoleModel Software, Inc.

Growing Software

Need a solution that…
• Allows us not to know
• Allows us to explore
• Gives us feedback to direct us
• Creates the right conditions, lets software emerge
• Lets us produce the right software at the END

XP creates the right conditions for
emergent software

Copyright 2002 by RoleModel Software, Inc.

XP In a Nutshell

• 4 core values: Simplicity, Communication, Feedback,
Courage

• 19 practices
• 1 team
• 3 roles: Customer, Manager, Programmer

What is the simplest thing we can do and
still make great software?

5

Copyright 2002 by RoleModel Software, Inc.

The Practices
Joint
– Common Vocabulary
– Iterations
– Open Workspace
– Retrospectives

Development
– Test-First Development
– Pair Programming
– Refactoring
– Collective Ownership
– Continuous Integration
– Just-In-Time Design

Management
– Accepted Responsibility
– Air Cover
– Quarterly Review
– Mirror
– Sustainable Pace

Customer
– Storytelling
– Release Planning
– Acceptance Tests
– Frequent Releases

XP is about more than programming

Copyright 2002 by RoleModel Software, Inc.

Joint Practices

Create an environment where “one team”
can exist and thrive

Being “Reflective Practitioners”
(Donald Schon), learn as we go

Retrospectives

Easy to communicate and learnOpen Workspace

Steering – frequent, regular
checkpoints so we can get lots
of concrete feedback

Iterations

Formerly “metaphor” – shared
understanding

Common Vocabulary

Exercise: Look up one of these practices (your row number mod 4), and find
an interesting fact about it. Submit here.

6

Copyright 2002 by RoleModel Software, Inc.

Customer Practices

“Drive” the entire process

Get software to users so the
team can get feedback to steer
with

Frequent Releases

Also “acceptance tests” or
“functional tests” – tell
programmers when they’re done

Customer Tests

Tell programmers which features
come first

Release Planning

Describe each system feature in
a small chunk that fits in an
iteration

Storytelling

Exercise: Look up one of these practices (your row number mod 4), and find
an interesting fact about it. Submit here.

Copyright 2002 by RoleModel Software, Inc.

Management Practices

Educate, facilitate, stay out of the way

Point out problems, suggest,
advise, encourage

Mirror

Help people avoid burnoutSustainable Pace

Soften up the defenses to make
room for the infantry

Air Cover

Make sure the team knows what
it needs to; make sure
management knows what it
needs to

Quarterly Review

Say what needs to be done, let
the team decide who does it and
how

Accepted Responsibility

Exercise: Look up one of these practices (your row number mod 5), and find
an interesting fact about it. Submit here.

7

Copyright 2002 by RoleModel Software, Inc.

Development Practices

Keep design simpleJust-In-Time Design

Integrate many times each dayContinuous Integration

Everyone owns all of the codeCollective Ownership

Remove “smells”Refactoring

All code gets two pairs of eyesPair Programming

No code without a failing
programmer test

Test-First Development

Copyright 2002 by RoleModel Software, Inc.

Test-First Development

• Write tests before you write code
– http://www.junit.org
– http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html

• Write just enough code to get each test to pass
• All about confidence
• Programmer tests tell you when the code “works”
• Programmer tests must pass 100% all the time
• Test anything you need to be sure it works

Complete test coverage, simplest code
that could possibly work, clear intent

8

Copyright 2002 by RoleModel Software, Inc.

Pair Programming

• 2 developers, 1 computer, solving problems together
• One person “drives,” the other “navigates”
• Not Driver/Passenger
• Not Pair Watching
• Pairs should rotate
• Love your pair

Continuous code review, more efficient
learning, lower project risk

Copyright 2002 by RoleModel Software, Inc.

Refactoring

• Changing the design of existing code without
changing function
– http://www.refactoring.com

• All about speed
• Refactor when code “smells”

– Methods, classes that are too long.
– Duplicate code (or “almost” duplicate code).
– Switch statements (instead of polymorphism).
– “Struct” classes—getters & setters but little else.

• Refactor before adding a feature, and after

Keep code simple, build learning in

9

Copyright 2002 by RoleModel Software, Inc.

Collective Ownership

• Any developer can change any code anytime
• Programmer tests and customer tests tell you if you

broke something
• You break it, you fix it

Convert “my code” to “our code” to lower
risk

Exercise: Is this a good idea? Look up points pro and con. Submit here.

Copyright 2002 by RoleModel Software, Inc.

Continuous Integration

• Integrate changes multiple times each day
• One failing Programmer Test = no integration
• Daily is not enough
• No “Big Bang”

Maintain speed and spread risk by
integrating many times per day

Exercise: Is this a good idea? Look up points pro and con. Submit here.

10

Copyright 2002 by RoleModel Software, Inc.

Just-In-Time Design

• Only design for what you’re building
• Always keep the design as simple as possible
• Simplicity allows for change
• Change is constant

Simple design: passes all tests, has no
duplication, expresses intent, has least

amount of code

Exercise: Is this a good idea? Look up points pro and con. Submit here.

Copyright 2002 by RoleModel Software, Inc.

All Or Nothing?

• Some practices can stand alone – Refactoring, Test-
First Development, Pair Programming

• All is better, some often better than none
• All doesn’t mean starting all at once

The closer you get to all, the better off
you are

11

Copyright 2002 by RoleModel Software, Inc.

So What?

• XP reflects the true nature of the problem (complex)
• XP is change-tolerant
• XP is realistic
• XP has the potential to facilitate organizational

change

XP increases likelihood for success

XP doesn’t matter – results do

Copyright 2002 by RoleModel Software, Inc.

Resources

http://www.xprogramming.com (Ron Jeffries)

http://www.junit.org (JUnit testing framework)

Addison Wesley XP Series:
Extreme Programming Explained: Embrace Change, Beck
Extreme Programming Installed, Jeffries, Hendrickson, Anderson
Planning Extreme Programming, Fowler and Beck
Extreme Programming Applied: Playing to Win, Auer and Miller

Refactoring, Fowler

IBM developerWorks XP Column, starting in August
(http://www.ibm.com/developerWorks)

Growing Software (working title), Addison Wesley, 2003

http://www.roywmiller.com

