
EVERYTHING
KUBERNETES:
A PRACTICAL GUIDE

CONTENTS
INTRODUCTION

KUBERNETES — BIRD’S EYE VIEW HIGH LEVEL ARCHITECTURE

KUBERNETES BUILDING BLOCKS

THE BASICS BLOCKS

USING LABELS AND SELECTORS FOR FINE-GRAINED CONTROL

SERVICE DISCOVERY

3 STORAGE BUILDING BLOCKS

CHOOSING THE RIGHT BLOCK FOR THE JOB

IMPERATIVE VS. DECLARATIVE ORCHESTRATION

HANDS-ON: GETTING STARTED

INSTALLATION

LOGGING

MONITORING

WORKING WITH MULTIPLE CLUSTERS

HANDS-ON: DEPLOYING AN APPLICATION

DIY CLUSTER CONSIDERATIONS

SUMMARY

ABOUT STRATOSCALE

USING KUBECTL CLI

3

4

6

6

8

8

9

10

12

13

14

18

19

19

21

33

35

36

36

INTRODUCTION
Kubernetes is an open-source, container management
solution originally announced by Google in 2014.
After its initial release in July 2015, Google donated
Kubernetes to the Cloud Native Computing Foundation.
Since then, several stable versions have been released
under Apache License.

For a developer, Kubernetes provides a manageable
execution environment for deploying, running,
managing, and orchestrating containers across clusters
or clusters of hosts. For devops and administrators,
Kubernetes provides a complete set of building
blocks that allow the automation of many operations
for managing development, test, and production
environments. Container orchestration enables
coordinating containers in clusters consisting of multiple
nodes when complex containerized applications
are deployed. This is relevant not only for the initial

deployment, but also for managing multiple containers
as a single entity for the purposes of scaling,
availability, and so on.

Being infrastructure agnostic, Kubernetes clusters can
be installed on a variety of public and private clouds
(AWS, Google Cloud, Azure, OpenStack) and on bare
metal servers. Additionally, Google Container Engine
can provide a deployed Kubernetes cluster. This makes
Kubernetes similar to Linux kernel, which provides
consistency across different hardware platforms, or
Java, which runs on almost any operating system.

Stratoscale3 Everything Kubernetes: A Practical Guide

KUBERNETES — HIGH
LEVEL ARCHITECTURE

NODE
A Kubernetes cluster consists of one or more nodes managed by Kubernetes. The nodes are bare-metal servers,
on-premises VMs, or VMs on a cloud provider. Every node contains a container runtime (for example, Docker Engine),
kubelet (responsible for starting, stopping, and managing individual containers by requests from the Kubernetes
control plane), and kube-proxy (responsible for networking and load balancing).

MASTER NODE
A Kubernetes cluster also contains one or more master nodes that run the Kubernetes control plane. The control plane
consists of different processes, such as an API server (provides JSON over HTTP API), scheduler (selects nodes to run
containers), controller manager (runs controllers, see below), and etcd (a globally available configuration store).

DASHBOARD AND CLI
A Kubernetes cluster can be managed via the Kubernetes Dashboard, a web UI running on the master node. The cluster
can also be managed via the command line tool kubectl, which can be installed on any machine able to access the API
server, running on the master node. This tool can be used to manage several Kubernetes clusters by specifying a context
defined in a configuration file.

Stratoscale4 Everything Kubernetes: A Practical Guide

Scheduler

Master Node

API's
Authentication
Authorization

Scheduler Controller
Manager

Kubecti(CLI)

Distributed
Storage

Node

Docker

Kublet Proxy

Internet

Pod

Container

Pod

Container

Node

Docker

Kublet Proxy

Pod

Container

Pod

Container

Stratoscale5 Everything Kubernetes: A Practical Guide

A pod is the smallest deployable unit that can be managed by Kubernetes. A pod is a logical group of one or more
containers that share the same IP address and port space. The main purpose of a pod is to support co-located
processes, such as an application server and its local cache. Containers within a pod can find each other via localhost,
and can also communicate with each other using standard inter-process communications like SystemV semaphores
or POSIX shared memory. In other words, a pod represents a “logical host”. Pods are not durable; they will not
survive scheduling failures or node failures. If a node where the pod is running dies, the pod is deleted. It can then be
replaced by an identical pod, with even the same name, but with a new unique identifier (UID).

A label selector can be used to organize Kubernetes
resources that have labels. An equality-based selector
defines a condition for selecting resources that have
the specified label value. A set-based selector defines
a condition for selecting resources that have a label
value within the specified set of values.

A label is a key/value pair that is attached to
Kubernetes resource, for example, a pod. Labels
can be attached to resources at creation time, as
well as added and modified at any later time.

THE BASICS

POD

SELECTORLABEL

KUBERNETES
BUILDING BLOCKS
Kubernetes provides basic mechanisms for the deployment, maintenance, and scaling of containerized applications. It
uses declarative primitives, or building blocks, to maintain the state requested by the user, implementing the transition
from the current observable state to the requested state.

Stratoscale6 Everything Kubernetes: A Practical Guide

A deployment defines a desired state for logical
group of pods and replica sets. It creates new
resources or replaces the existing resources, if
necessary. A deployment can be updated, rolled
out, or rolled back. A practical use case for a
deployment is to bring up a replica set and pods,
then update the deployment to re-create the
pods (for example, to use a new image). Later,
the deployment can be rolled back to an earlier
revision if the current deployment is not stable.

A service uses a selector to define a logical group of pods and defines a policy to access such logical groups. Because
pods are not durable, the actual pods that are running may change. A client that uses one or more containers within
a pod should not need to be aware of which specific pod it works with, especially if there are several pods (replicas).

There are several types of services in Kubernetes, including ClusterIP, NodePort, LoadBalancer. A ClusterIP service
exposes pods to connections from inside the cluster. A NodePort service exposes pods to external traffic by
forwarding traffic from a port on each node of the cluster to the container port. A LoadBalancer service also exposes
pods to external traffic, as NodePort service does, however it also provides a load balancer.

DEPLOYMENT CONTROLLER

SERVICE

REPLICA SET

A replica set is the next-generation replication
controller. A replication controller supports only
equality-based selectors, while a replica set supports
set-based selectors.

A replication controller is responsible for running the
specified number of pod copies (replicas) across the
cluster.

A controller manages a set of pods and ensures that
the cluster is in the specified state. Unlike manually
created pods, the pods maintained by a replication
controller are automatically replaced if they fail,
get deleted, or are terminated. There are several
controller types, such as replication controllers or
deployment controllers.

REPLICATION CONTROLLERCONTROLLER

Stratoscale7 Everything Kubernetes: A Practical Guide

USING LABELS AND SELECTORS FOR
FINE-GRAINED CONTROL
A Kubernetes controller, for example, uses a selector to define a set of managed pods so that pods in that set have the
corresponding label. A label is just a key/value pair that is attached to Kubernetes resources such as pods. Labels can
be attached to resources when they are created, or added and modified at any time. Each resource can have multiple
labels. For example:

The first two selectors have an equality-based requirement, the third and fourth selectors have a set-based
requirement. The last selector contains the comma separator, which acts as a logical “AND” operator, so the selector
defines a set of resources where the label “release” equals “stable” and the label “environment” equals “dev.”

A label selector defines a set of resources by specifying a requirements for their labels. For example:

release: stable

environment: dev

environment = dev

environment != live

environment in (dev, test)

environment notin (live)

release = stable, environment = dev

SERVICE DISCOVERY
Kubernetes supports finding a service in two ways: through environment variables and using DNS.

Kubernetes automatically assigns DNS names to services. A special DNS record can be used to specify port numbers
as well. To use DNS for service discovery, a Kubernetes cluster should be properly configured to support it.

An application in the pod can use these variables to establish a connection to the service.

The service should be created before the replication controller or replica set creates a pod’s replicas. Changes made to
an active service are not reflected in a previously created replica.

ENVIRONMENT VARIABLES

DNS

Kubernetes injects a set of environment variables into pods for each active service. Such environment variables
contain the service host and port, for example:

MYSQL_SERVICE_HOST=10.0.150.150

MYSQL_SERVICE_PORT=3306

Stratoscale8 Everything Kubernetes: A Practical Guide

 3 STORAGE BUILDING BLOCKS

A container file system is ephemeral: if a container crashes, the changes to its file system are lost. A volume
is defined at the pod level, and is used to preserve data across container crashes. A volume can be also used
to share data between containers in a pod. A volume has the same lifecycle as the the pod that encloses it—
when a pod is deleted, the volume is deleted as well. Kubernetes supports different volume types, which are
implemented as plugins.

VOLUME

A persistent volume claim defines a specific amount of storage requested and specific access modes. Kubernetes
finds a matching persistent volume and binds it with the persistent volume claim. If a matching volume does not
exist, a persistent volume claim will remain unbound indefinitely. It will be bound as soon as a matching volume
become available.

A persistent volume represents a real networked storage unit in a cluster that has been provisioned by an
administrator. Persistent storage has a lifecycle independent of any individual pod. It supports different access
modes, such as mounting as read-write by a single node, mounting as read-only by many nodes, and mounting
as read-write by many nodes. Kubernetes supports different persistent volume types, which are implemented as
plugins. Examples of persistent volume types include AWS EBS, vSphere volume, Azure File, GCE Persistent Disk,
CephFS, Ceph RBD, GlusterFS, iSCSI, NFS, and Host Path.

PERSISTENT VOLUME CLAIM

PERSISTENT VOLUME

Stratoscale9 Everything Kubernetes: A Practical Guide

CHOOSING THE RIGHT BLOCK FOR
THE JOB

SECRET CONFIG MAP

Designed as a simple building block; a replication
controller’s only responsibility is to maintain the specified
number of replicas. A replication controller counts
only live pods;, terminated pods are excluded. Other
Kubernetes building blocks should be used together
with replication controllers for more advanced tasks.
For example, an autoscaler can monitor application-
specific metrics and dynamically change the number of
replicas in the existing replication controller. In addition,
a replication controller does not support scheduling
policies, meaning you cannot provide rules for choosing
cluster nodes to run pods from the managed set.

A replica set is another Kubernetes building block. The
major difference between it and a replication controller is
that replication controllers do not support selectors with
set-based requirements, while replica sets support such

A Kubernetes secret allows users to pass sensitive
information, such as passwords, authentication
tokens, SSH keys, and database credentials, to
containers. A secret can then be referenced when
declaring a container definition, and read from
within containers as environment variables or
from a local disk.

A Kubernetes config map allows users to
externalize application configuration parameters
from a container image and define application
configuration details, such as key/value pairs,
directory content, or file content. Config map
values can be consumed by applications through
environment variables, local disks, or command
line arguments.

selectors. From this perspective, a replica set is just
a more advanced version of a replication controller.

Using only pods and replication controllers
to deploy an application is, at least in part, an
imperative form of managing software, because
it usually requires manual steps. A Kubernetes
deployment is an alternative that enables
completely declarative application deployment.

Stratoscale10 Everything Kubernetes: A Practical Guide

JOB

DAEMON SET

QUOTA

NAMESPACE

A job is used to create one or more pods and ensure that a specified number of them successfully terminate.
It tracks the successful completions, and when a specified number of successful completions is reached, the
job itself is complete. There are several types of jobs, including non-parallel jobs, parallel jobs with a fixed
completion count, and parallel jobs with a work queue. A job should be used instead of a replication controller
if you need to spread pods across cluster nodes and ensure, for example, so that each node has only one
running pod of the specified type.

A daemon set ensures that all or some nodes
run a copy of a pod. A daemon set tracks the
additional and removal of cluster nodes and adds
pods for nodes that are added to the cluster,
terminates pods on nodes that are being removed
from a cluster. Deleting a daemon set will clean
up the pods it created. A typical use case for a
daemon set is running a log collection daemon or
a monitoring daemon on each node of a cluster.

A quota sets resource limitations, such as CPU,
memory, number of pods or services, for a given
namespace. It also forces users to explicitly
request resource allotment for their pods.

A namespace provides a logical partition of the
cluster’s resources. Kubernetes resources can
use the same name when found in different
namespaces. Different namespaces can be
assigned different quotas for resource limitations.

Stratoscale11 Everything Kubernetes: A Practical Guide

IMPERATIVE VS.
DECLARATIVE
ORCHESTRATION
Before getting to the practical steps of the Kubernetes
deployment, it’s important to understand the key
approaches to orchestration.

The classic imperative approach for managing software
involves several steps or tasks, some of which are manual.
When working in a team, it is usually required that these
steps be documented, and, in an ideal case, automated.
Preparing good documentation for a classic imperative
administrative procedure and automating these steps can
be non-trivial tasks, even if each of the steps is simple.

A declarative approach for administrative tasks is
intended to solve such challenges. With a declarative
approach, an administrator defines a target state for
a system (application, server, or cluster). Typically, a
domain-specific language (DSL) is used to describe
the target state. An administrative tool, such as
Kubernetes, takes this definition as an input and
takes care of how to achieve the target state from the
current observable state.

Stratoscale12 Everything Kubernetes: A Practical Guide

HANDS-ON:
GETTING STARTED

Minikube is an ideal tool for getting started with
Kubernetes on a single computer. It enables running of
a single-node Kubernetes cluster in a virtual machine.
It can be used on GNU/Linux or OS X and requires
VirtualBox, KVM (for Linux), xhyve (OS X), or VMware
Fusion (OS X) to be installed on your computer. Minikube
creates a new virtual machine with GNU/Linux, installs
and configures Docker and Kubernetes, and finally runs a
Kubernetes cluster.

In the following instructions, Minikube is used
to install a single-node Kubernetes cluster on a
machine with 64 bit GNU/Linux (Debian or Ubuntu)
and KVM. Refer to the Minikube documentation if
you want to use an alternative configuration.

Stratoscale13 Everything Kubernetes: A Practical Guide

https://github.com/kubernetes/minikube
http://www.stratoscale.com/blog/compute/difference-kvm-and-qemu-virtualization/
https://github.com/kubernetes/minikube

INSTALLATION

1. Install the kubectl command line tool locally:

3. Install Minikube:

2. Next, install the KVM driver:

$ curl -Lo kubectl \

http://storage.googleapis.com/kubernetes-release/\

release/v1.3.0/bin/linux/amd64/kubectl \

&& chmod +x kubectl \

&& sudo mv kubectl /usr/local/bin/

$ curl -Lo minikube \

https://storage.googleapis.com/minikube/\

releases/v0.6.0/minikube-linux-amd64 \

&& chmod +x minikube \

&& sudo mv minikube /usr/local/bin/

$ sudo curl -L \

 https://github.com/dhiltgen/docker-machine-kvm/\

 releases/download/v0.7.0/docker-machine-driver-kvm \

 -o /usr/local/bin/docker-machine-driver-kvm

 $ sudo chmod +x /usr/local/bin/docker-machine-driver-kvm

Stratoscale14 Everything Kubernetes: A Practical Guide

4. Start the Minikube cluster:

5. Check that the pod is up and running:

The Kubernetes cluster is up and running.
Let’s start with a simple deployment using an existing image:

“Running” should appear in the STATUS field. If “ContainerCreating” appears instead,
wait a few moments, then repeat the last command.

$ minikube start --vm-driver=kvm

Starting local Kubernetes cluster...

Kubernetes is available at https://192.168.42.213:8443.

Kubectl is now configured to use the cluster.

$ kubectl get pod

NAME READY STATUS RESTARTS AGE

hello-minikube-2433534028-ouxw8 1/1 Running 0 4m

$ kubectl run hello-minikube \

--image=gcr.io/google_containers/echoserver:1.4 \

--port=8080

deployment “hello-minikube” created

$ kubectl expose deployment hello-minikube --type=NodePort

service “hello-minikube” exposed

Stratoscale15 Everything Kubernetes: A Practical Guide

6. Check that the service works:

7. Execute the following command to open the Kubernetes
Dashboard in your web browser:

$ curl $(minikube service hello-minikube --url)

CLIENT VALUES:

client_address=172.17.0.1

command=GET

real path=/

query=nil

request_version=1.1

request_uri=http://192.168.42.213:8080/

SERVER VALUES:

server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:

accept=*/*

host=192.168.42.213:31759

user-agent=curl/7.35.0

BODY:

-no body in request-

$ minikube dashboard

Stratoscale16 Everything Kubernetes: A Practical Guide

8. To stop the cluster (shut down the virtual machine and
preserve its state), execute the following command:

9. To start the cluster again and restore it to the previous state,
execute the following command:

10. To delete the cluster (delete the virtual machine and its state),
execute the following command:

$ minikube stop

Stopping local Kubernetes cluster...

Stopping “minikubeVM”...

$ minikube start --vm-driver=kvm

$ minikube delete

Note: There are other open-source tools, such as kubeadm, that simplify installation of
Kubernetes cluster in public clouds, on-premises virtual machines, and bare-metal servers.
However, there are still many things that are out of scope. For example, you still need
a reliable distributed block or file storage, you still need to think about HA, scalability,
networking and security. Sometimes, it is simpler to use Kubernetes as a Service.
			

Stratoscale17 Everything Kubernetes: A Practical Guide

https://kubernetes.io/docs/getting-started-guides/kubeadm/

LOGGING
Basic logging in Kubernetes behaves much like logging in Docker. There is a kubectl logs command that
will show you all the information written to stdout and stderr for a given container in a pod. If a pod has
only one container, there is no need to specify it explicitly, however when a pod has several containers
we need to add -c container to the end of the command. As with Docker, we can opt to follow
logs, to reduce the number of recent lines with --tail and we can filter them by date. Unlike Docker,
Kubernetes enables us to check the logs of a container that crashed using the --previous option.

The ability to keep the logs of a previous container is available as long as the pod it was run in remains
available. When a pod is removed, so are its logs.

Log rotation is performed by Kubernetes. The default values are daily rotation or 10 MB to avoid log files
taking up all the available disk space. Up to five rotations are kept for historical evidence. Remember that
only the last rotation is displayed with kubectl logs; if you want to access an earlier one, you must do so
manually.

Per our example with the Hello Minikube service, we can use kubectl logs hello-minikube-
2433534028-ouxw8 to view the access log containing our curl request.

All information so far concerns per-node log files. There are no cluster-level logging capabilities built into
Kubernetes, but there are some common methods that can be implemented for this purpose.

In this approach, a logging agent is run on every node, preferably through a DeamonSet replica. A
popular choice in this space is fluentd. It can be configured with various backends among which are
Google Cloud Platform and Elasticsearch.

Fluentd even goes as far as to provide a ready to use DaemonSet YAML on GitHub. All that needs
to be done is edit its configuration to point at our logging backend.

There are several use cases for this approach. The general idea is that a dedicated logging
component in each pod either writes logs to its stdout and stderr or delivers the logs directly to a
logging backend. With such a sidecar approach, we can aggregate all logs from different containers
in a pod to a single stream that can be accessed with kubectl logs or we can split logs of one
application into different logical streams. For example, Webservers’ access.log and error.log can each
be streamed by a dedicated container to its stdout, so we can check them separately with kubectl
logs $podname -c access-log and kubectl logs $podname -c error-log.

If the application running in a pod can already communicate with a logging backend, it is possible to
skip the Kubernetes logging options altogether. While direct logging may offer some performance
advantages and provide slightly better security (all data stored in just one place), it also prevents us
from using kubectl logs. In most cases, this approach is discouraged.

DEDICATED AGENT RUNNING ON EVERY NODE

DEDICATED CONTAINER INSIDE A POD

DIRECT LOGGING FROM AN APPLICATION

Stratoscale18 Everything Kubernetes: A Practical Guide

http://www.fluentd.org/
https://github.com/fluent/fluentd-kubernetes-daemonset/blob/master/fluentd-daemonset-elasticsearch.yaml

MONITORING

WORKING WITH MULTIPLE
CLUSTERS

As Kubernetes containers are actually Linux processes, we can use our favourite tools to monitor
cluster performance. Basic tools, such as top or kubectl top, will behave as expected. It’s also
possible to use solutions that are dedicated to Kubernetes. One such solution is Heapster. Heapster
aggregates events and data from across the cluster. It runs as a pod in system namespace. Discovery
and querying of resources is done automatically with data coming from a kubelet managing node.

Storage is configurable with InfluxDB and Google Cloud Monitoring being the most popular choices.
When building a DIY cluster InfluxDB with Grafana for visualization is the preferred choice. Using
it with Minikube requires two easy steps. First, enable the Heapster addon (minikube addons
enable heapster) by opening the dashboard with Minikube addons. Then open Heapster.

By default, dashboards are available for Cluster and for Pods, one for monitoring running nodes and
overall cluster utilization, the other for running pods. The information presented for pods includes
CPU usage, memory usage, network usage, and filesystem usage. It is possible to edit existing graphs
or add custom ones based on data exported by Heapster.

So far, we have used kubectl to connect to only one cluster created by Minikube. But kubectl can
be configured to use multiple clusters and multiple contexts to connect to them. To check available
contexts, we use kubectl config get-contexts.

We can confirm that only one context and only one cluster is defined by kubectl config view. It should
look like this:

apiVersion: v1

clusters:

- cluster:

 certificate-authority: $HOME/.minikube/ca.crt

 server: https://192.168.99.100:8443

 name: minikube

contexts:

- context:

 cluster: minikube

 user: minikube

 name: minikube

kind: Config

preferences: {}

users:

- name: minikube

 user:

 client-certificate: $HOME/.minikube/apiserver.crt

 client-key: $HOME/.minikube/apiserver.key

Stratoscale19 Everything Kubernetes: A Practical Guide

The config file used by kubectl is stored at ~/.kube/config. We can edit it with a text editor and
add another cluster, context and user. When ready, kubectl config get-contexts should show
our newly added context without marking it as current. This is the desired state:

To switch context, we use kubectl config use-context secondkube. We can verify the
switch was successful again with kubectl config get-contexts. The marker for current should
have moved to the new context. All kubectl commands from now on will be executed in a selected
context (which in our example is exactly the same as the first one).

apiVersion: v1

clusters:

- cluster:

 certificate-authority: $HOME/.minikube/ca.crt

 server: https://192.168.99.100:8443

 name: minikube

- cluster:

 certificate-authority: $HOME/.minikube/ca.crt

 server: https://192.168.99.100:8443

 name: secondkube

contexts:

- context:

 cluster: minikube

 user: minikube

 name: minikube

- context:

 cluster: secondkube

 user: secondkube

 name: secondkube

current-context: secondkube

kind: Config

preferences: {}

users:

- name: minikube

 user:

 client-certificate: $HOME/.minikube/apiserver.crt

 client-key: $HOME/.minikube/apiserver.key

- name: secondkube

 user:

 client-certificate: $HOME/.minikube/apiserver.crt

 client-key: $HOME/.minikube/apiserver.key

Stratoscale20 Everything Kubernetes: A Practical Guide

STEP 1. CREATE A KUBERNETES SECRET

$ echo -n “app-db” | base64

YXBwLWRi

$ echo -n “app-user” | base64

YXBwLXVzZXI=

$ echo -n “app-pass” | base64

YXBwLXBhc3M=

$ echo -n “app-rootpass” | base64

YXBwLXJvb3RwYXNz

HANDS-ON: DEPLOYING
AN APPLICATION
In this example, we deploy the WordPress content management system with a MySQL backend. It is a classic two-tier
application, where the first tier is the application server (WordPress) that uses the second tier for data persistence (MySQL).

As discussed above, Kubernetes secrets allow users to pass sensitive information, such as
passwords, database credentials, to containers. In the first step, we need to define a Kubernetes
secret that contains a database name, user, and password. It should also contain the root
password for MySQL.

Before creating a secret, we need to encode such information in Base64 format. Let’s assume we
want to use the following values in our application:
•	 “app-db” as a database name
•	 “app-user” as a database user name
•	 “app-pass” as a database password
•	 “app-rootpass” as a database root password

Note that we need to provide a database root password to allow WordPress to create the
required database. To encode these values to Base64 format, we can use the standard base64
utility that is available in almost all Linux distributions:

Stratoscale21 Everything Kubernetes: A Practical Guide

https://en.wikipedia.org/wiki/Base64

apiVersion: v1

kind: Secret

metadata:

 name: app-secret

type: Opaque

data:

 dbname: YXBwLWRi

 dbuser: YXBwLXVzZXI=

 dbpass: YXBwLXBhc3M=

 dbrootpass: YXBwLXJvb3RwYXNz

$ kubectl create -f app-secret.yaml
secret “app-secret” created

$ kubectl get secrets

NAME TYPE DATA AGE

app-secrets Opaque 4 1m

We use the “-n” option to make sure that the new line symbol (“\n”) is not included in the
encoded value.

To define a new Kubernetes secret, create a new file, app-secret.yaml, with the following
content:

Note:Kubernetes allows its building blocks to be defined using JSON and YAML formats. These
formats are quite popular now as a more lightweight alternative to XML. The idea behind XML,
JSON, and YAML is to provide a universal text notation to serialize data in both machine- and
human-readable form. In this example, we will use YAML.

In the app-secret.yaml file, we specified the required Kubernetes API version and the
data type to let Kubernetes know that we are defining a secret. In addition, the file defines four
keys (dbname, dbuser, dbpass, dbrootpass) with the corresponding values we encoded
above. Now we can create our Kubernetes secret using its definition in the app-secret.yaml
file:

Let’s verify the secret creation:

Stratoscale22 Everything Kubernetes: A Practical Guide

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/YAML

apiVersion: v1

kind: PersistentVolume

metadata:

 name: app-pv

 labels:

 vol: mysql

spec:

 capacity:

 storage: 1Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: /data/app

$ sudo mkdir -p /data/app

$ kubectl create -f app-pv.yaml

persistentvolume “app-pv” created

Next, we will create a Kubernetes persistent volume to provide the underlying storage for our
MySQL database. To define a new persistent volume, create a new file, app-pv.yam, with the
following content:

In this file, we use a HostPath volume, which will just pass a directory from the host into a
container for consumption. To specify that the persistent volume will be used for our application,
we added a label (vol: mysql) that can be used later in a selector.

Before creating the actual persistent volume, verify that the directory /data/app exists:

Now we can create our persistent volume:

STEP 2. CREATE A PERSISTENT VOLUME

Stratoscale23 Everything Kubernetes: A Practical Guide

$ kubectl describe pv/app-pv

Name: app-pv

Labels: vol=mysql

Status: Available

Claim:

Reclaim Policy: Retain

Access Modes: RWO

Capacity: 1Gi

Message:

Source:

 Type: HostPath (bare host directory volume)

 Path: /data/app

No events.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: app-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 selector:

 matchLabels:

 vol: mysql

Let’s verify that the persistent volume is available:

For MySQL, we need to claim our previously created persistent volume. Create a new file, app-
pvc.yaml, with the following content:

STEP 3. CLAIM A PERSISTENT VOLUME

$ kubectl create -f app-pvc.yaml

persistentvolumeclaim “app-pvc” created

The label selector “matchLabels” is used to make the association to the persistent volume that
we created early. To create the persistent volume claim using its definition execute the following:

Stratoscale24 Everything Kubernetes: A Practical Guide

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: mysql-deployment

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: mysql

 spec:

 containers:

 - name: mysql

 image: “mysql:5.6”

 ports:

 - containerPort: 3306

 volumeMounts:

 - mountPath: “/var/lib/mysql”

 name: mysql-pd

 env:

 - name: MYSQL_ROOT_PASSWORD

 valueFrom:

 secretKeyRef:

 name: app-secret

 key: dbrootpass

 - name: MYSQL_USER

 valueFrom:

 secretKeyRef:

 name: app-secret

 key: dbuser

 - name: MYSQL_PASSWORD

 valueFrom:

 secretKeyRef:

 name: app-secret

 key: dbpass

 - name: MYSQL_DATABASE

 valueFrom:

 secretKeyRef:

 name: app-secret

 key: dbname

 volumes:

 - name: mysql-pd

 persistentVolumeClaim:

 claimName: app-pvc

Now we will create a new deployment for MySQL using the existing Docker image. Create a new
file, mysql-deployment.yaml, with the following content:

STEP 4. DEPLOY MYSQL

Stratoscale25 Everything Kubernetes: A Practical Guide

$ kubectl create -f mysql-deployment.yaml

deployment “mysql-deployment” created

$ kubectl get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM

REASON AGE

app-pv 1Gi RWO Bound default/app-pvc

10m

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE

app-pvc Bound app-pv 0 5m

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE

AGE

mysql-deployment 1 1 1 1

2m

There is quite a lot of stuff happening in the above YAML. Let’s break it down:
•	 We are specifying a standard pod’s information, such as container name (mysql), image to

use (mysql:5.6), and exposed port to access (3306).
•	 We are specifying the number of replicas (1) and attaching a label (app: mysql).
•	 We are then mounting a volume to the “/var/lib/mysql” directory in the container,

where the volume to mount is named “mysql-pd” and is declared at the bottom of this
document.

•	 We are also declaring environment variables to initialize. The MySQL image we are
using that is available on Docker Hub supports environment variable injection. The four
environment variables we are initializing are defined and used within the Docker image
itself. The environment variables set all reference different keys we defined in our secret
earlier. When this container starts up, we will automatically have MySQL configured with
the desired root user password. We will also have the database for WordPress created with
appropriate access granted for our WordPress user.

To create the deployment using its definition, execute the following:

Let’s verify that everything was created successfully:

Stratoscale26 Everything Kubernetes: A Practical Guide

apiVersion: v1

kind: Service

metadata:

 name: mysql-service

spec: ports:

 - port: 3306

 protocol: TCP

 targetPort: 3306

 selector:

 app: mysql

$ kubectl create -f mysql-service.yaml

service “mysql-service” created

$ kubectl describe svc/mysql-service

Name: mysql-service

Namespace: default

Labels: <none>

Selector: app=mysql

Type: ClusterIP

IP: ...

Port: <unset> 3306/TCP

Endpoints: 172.17.0.3:3306

Session Affinity: None

No events.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP

mysql-deployment-... 1/1 RUNNING 0 30m

172.17.0.3

As we know, pods are ephemeral. They come and go, with each newly created pod receiving a
new and different IP address. To connect to a database, the WordPress application should know
its IP address. If the database container is ephemeral, then how should our application keep
track of the database server’s IP addresses? We need an IP address that is decoupled from that
pod and that never changes, and this is exactly what Kubernetes Services offer. To define a
service for MySQL, create a new file, mysql-service.yaml, with the following content:

To create the actual service execute, the following command:

Let’s verify that the service is created and correctly mapped:

STEP 5. CREATE A SERVICE FOR MYSQL

Stratoscale27 Everything Kubernetes: A Practical Guide

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: wordpress-deployment

spec:

 replicas: 2

 strategy:

 type: RollingUpdate

 template:

 metadata:

 labels:

 app: wordpress

 spec:

 containers:

 - name: “wordpress”

 image: “wordpress:4.5-apache”

 ports:

 - containerPort: 80

 env:

 - name: WORDPRESS_DB_HOST

 value: mysql-service

 - name: WORDPRESS_DB_USER

 valueFrom:

 secretKeyRef:

 name: app-secrets

 key: dbuser

 - name: WORDPRESS_DB_PASSWORD

 valueFrom:

 secretKeyRef:

 name: app-secret

 key: dbpass

 - name: WORDPRESS_DB_NAME

 valueFrom:

 secretKeyRef:

 name: app-secret

 key: dbname

To define a deployment for WordPress, create a new file, wordpress-deployment.yaml, with the
following content:

From the output above, we can verify the service was correctly mapped to the pod for our
MySQL deployment in that the Endpoints IP address for the service aligns with the IP address
for the MySQL Pod.

STEP 6. DEPLOY WORDPRESS

Stratoscale28 Everything Kubernetes: A Practical Guide

$ kubectl create -f wordpress-deployment.yaml

deployment “wordpress-deployment” created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

mysql-deployment 1 1 1 1 45m

wordpress-deployment 2 2 2 2 5m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

mysql-deployment-... 1/1 Running 0 45m

wordpress-deployment-... 1/1 Running 0 6m

wordpress-deployment-... 1/1 Running 0 6m

$ kubectl exec -it wordpress-deployment-... bash

root@wordpress# getent hosts mysql-service

10.0.0.248 mysql-service.default.svc.cluster.local

In this file, we are specifying standard pod information such as container name (wordpress),
image to use (wordpress: 4.5-apache), exposed port to access (80), and number of replicas (2).
We are also attaching a label (app: wordpress) to the pod’s replicas. One of the key things we
accomplish in the YAML above is the initialization of the environment variable ”WORDPRESS_
DB_HOST” to a value of “mysql-service”. This is how we are tell the WordPress application to
access its database through the Kubernetes service we created in the previous step.

To create the actual deployment, execute the following command:

Verify the deployment:

Get a list of created pods:

Make note of the name of one of the WordPress pods from the output above. Execute an
interactive shell within that pod:

Let’s check that the MySQL service can be resolved within the pod using the service’s name:

Stratoscale29 Everything Kubernetes: A Practical Guide

root@wordpress# grep -i db /var/www/html/wp-config.php

define(‘DB_NAME’, ‘app-db’);

define(‘DB_USER’, ‘app-user’);

define(‘DB_PASSWORD’, ‘app-pass’);

define(‘DB_HOST’, ‘mysql-service’);

...

apiVersion: v1

kind: Service

metadata:

 name: wordpress-service

 labels:

 app: wordpress

spec:

 type: NodePort

 ports:

 - port: 80

 nodePort: 30080

 selector:

 app: wordpress

The above output verifies that mysql-service can be resolved through DNS to the ClusterIP
address that was assigned to the MySQL service (your IP address may be different).

Now let’s verify that WordPress is properly configured:

The WordPress pod has configured itself using the environment environments “injected” into
container using the values from the Kubernetes secret we defined earlier.

The final step is to expose the WordPress application to external users. For this, we again need
a service. In this step, we expose a port on the node running our application, and forward it
to port 80 of our container. This allows us to access the application, but it probably is not the
approach one would take in production, especially if Kubernetes is hosted by a service provider.
Kubernetes can integrate with load balancing services offered by platforms such as GCE and
AWS. If you are using either of those, then that would be an approach to take for using the load
balancing functionality offered by those platforms.

To define a service for the WordPress application, create a new file, wordpress-service.yaml, with
the following content:

STEP 7. CREATE A SERVICE FOR WORDPRESS

Stratoscale30 Everything Kubernetes: A Practical Guide

$ kubectl create -f wordpress-service.yaml

service “wordpress-service” created

$ kubectl describe svc/wordpress-service

Name: wordpress-service

Namespace: default

Labels: app=wordpress

Selector: app=wordpress

Type: NodePort

IP: ...

Port: <unset> 80/TCP

NodePort: <unset> 30080/TCP

Endpoints: ...:80,...:80,...:80

Session Affinity: None

No events.

To create the actual service using the definition from the wordpress-service.yaml file,
execute the following command:

Verify its status:

Stratoscale31 Everything Kubernetes: A Practical Guide

In production, we may want to update the WordPress deployment increasing the number of
replicas to handle a high load for the application. We can easily do it manually, but the preferred
way in Kubernetes is to use auto-scaling feature. For the MySQL deployment in our example,
there is no simple way to increase the number of MySQL pods, because we cannot share the
same persistent volume between several MySQL processes: MySQL does not support that. To
scale the database and make it highly available we can use, for example, a Galera cluster in the
multi-master node. In this case, each Galera pod will use its own persistent volume and Galera
cluster will replicate its data between pods using its own protocol.

Service

Selector

app=wordpress Secret

Service

Selector

app=mysql

Volume Claim

Label

vol=mysql

Volume

Label

vol: mysql

Pod

Container

wordpress
Label

app: wordpress

Pod

Container

wordpress
Label

app: wordpress

Pod

Container

mysql

Label

app: mysql

/var/lib/mysql

Open your browser and navigate to http://<nodeIP>:30080, where <nodeIP> is the address of
your Kubernetes cluster node. You can follow the installation wizard to get WordPress up and
running through the browser. Congratulations!

The following diagram shows all of the Kubernetes building blocks we defined and created for
our application:

STEP 8. TEST THE WORDPRESS APPLICATION

Stratoscale32 Everything Kubernetes: A Practical Guide

DIY CLUSTER
CONSIDERATIONS

HIGH AVAILABILITY
Possible cases of failure in Kubernetes clusters usually point to pods, nodes, and master nodes. Pod failures can be
handled by built-in Kubernetes features, so the main concern here is to provide persistent storage if needed. Node
failures can be handled by master nodes and require use of services outside of Kubernetes. For example, kubelet
talks to an external load-balancer rather than directly to clients; if the entire node fails, traffic can be load balanced
to the node with corresponding pods. Finally, the master controller can fail, or one of its services can die. We need to
replicate the master controller and its components for a Highly Available environment. Fortunately, multiple master
nodes are also accounted for in Kubernetes.

Furthermore, when it comes to monitoring the deployment, It is advisable that process watchers be implemented
to “watch” the services that exist on the master node. For example, the API service can be monitored by a kubelet. It
can be configured with less aggressive security settings to monitor non-Kubernetes components such as privileged
containers. On a different level is the issue of what happens if a kubelet dies. Monitoring processes can be deployed
to ensure that the kubelet can be restarted. Finally, redundant storage service can be achieved with clustered etcd.

What if you need a production ready Kubernetes
cluster, but for some reason you cannot use the
existing cloud offerings, such as Google Container
Engine? Kubernetes can be installed on a variety
platforms, including on-premises VMs, VMs on a
cloud provider, and bare-metal servers. There are
several tools that allow installing production ready
Kubernetes cluster on a variety of targets:
•	 kargo
•	 kube-deploy
•	 kube-admin

When deploying a Kubernetes cluster in production,
one should take care of several things to ensure the
best possible outcome. High Availability of master
nodes helps minimize downtime and data loss as
well as eliminates single point of failure. Networking
should be both robust and scalable to handle growing
needs (e.g., The number of nodes in a cluster to handle
more replicas). Finally, some users may want to take
advantage of multi-site support to uniformly handle
geographically dispersed data centers.

Stratoscale33 Everything Kubernetes: A Practical Guide

SECURITY
First of all, direct access to cluster nodes (either physical or through SSH) should be restricted. kubectl exec allows
access to containers—this should be enough. Use Security Contexts to segregate privileges. Defining quotas for
resources helps prevent DoS attacks. Selectively grant users permissions according to their business needs. Finally,
consider separating network traffic that is not related (e.g., The load balancer only needs to see a front-end service,
while the back-end service has no need to contact the load balancer).

SCALE
Kubernetes allows for adding and removing nodes dynamically. Each new node has to be configured appropriately and
pointed at the master node. The main processes of interest are kubelet and kube-proxy. For larger scale clusters, a
means of automation is preferred, such as Ansible or Salt. If the cluster is running on one of supported cloud providers,
there is also an option to try the Cluster Autoscaler.

Stratoscale34 Everything Kubernetes: A Practical Guide

https://kubernetes.io/docs/concepts/policy/security-context/
https://www.ansible.com/
https://saltstack.com/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

SUMMARY
Kubernetes is an open-source project that is well supported by community. It allows
application development to be completely infrastructure-agnostic and avoids vendor
lock-in.

Installing, maintaining, and manually monitoring a production-ready Kubernetes cluster
on premises is a difficult task. For the installation, high availability and networking
models should be chosen and properly implemented. A tool to manage nodes in the
cluster or to monitor the cluster’s and nodes’ health is also handy.

Keeping previous suggestions in mind, you should be able to roll out your own HA
cluster for Kubernetes. It takes some work, both in terms of planning and actual
execution. Planning carefully should save you much time later on when you start to
scale your services. However if you want to take advantage of Kubernetes features but
are not keen on maintaining your own cluster, Stratoscale’s Kubernetes-as-a-Service
may suit your needs perfectly.

Stratoscale35 Everything Kubernetes: A Practical Guide

http://www.stratoscale.com/products/kubernetes-as-a-service/

ABOUT
STRATOSCALE
SYMPHONY
Stratoscale is the cloud infrastructure company, providing comprehensive cloud infrastructure
software solutions for service providers, enterprise IT and development teams. The company’s
comprehensive cloud data center software, Stratoscale Symphony, can be deployed in minutes
on commodity x86 servers, providing an Amazon Web Services (AWS) experience with the ability
to augment aging VMware infrastructure. Stratoscale was named a “Cool Vendor in Servers and
Virtualization” by Gartner and is backed by over $70M from leading investors including: Battery
Ventures, Bessemer Venture Partners, Cisco, Intel, Qualcomm Ventures, SanDisk and Leslie
Ventures.

SIMPLE CREATION
Admins can create private clusters via
intuitive GUI or API.

MINIMAL LEARNING CURVE
Leverage Kubernetes GUI and maintain
existing practices.

MULTI-TENANCY
Kubernetes is transformed to offer a true
multi-tenant service.

ONGOING MONITORING
Easily monitor cluster health and usage.

Use KubeCtl CLI commands to allocate a
storage pool, network (VPC) and floating IP
to the new Kubernetes cluster.

Use KubeCtl CLI commands to continuously
monitor the clusters and check their status.

Use KubeCtl CLI commands to create the
new cluster based on the required number
of nodes and the parameters for each node,
including number of CPUs and memory.
The assigned floating IP will be used as the
cluster’s end-point.

As needs and requirements evolve, use
KubeCtl CLI commands to easily expand
the cluster and increase the number of
Kubernetes nodes.

STEP 1.
ASSIGN STORAGE AND
NETWORK FOR THE CLUSTER

STEP 3.
MONITOR KUBERNETES
CLUSTERS

STEP 2.
CREATE A NEW KUBERNETES
CLUSTER

STEP 4.
MANAGE AND EXTEND
KUBERNETES CLUSTERS

SYMPHONY: YOUR ON-PREM AWS-REGION

This simple example demonstrates how you can leverage the agility and simplicity of cloud method-
ologies within your on-prem environment. Symphony’s service offers easy and single-click creation,
monitoring and management of Kubernetes clusters to ensure a smooth transition towards a con-
tainers-driven application strategy.

FOR SINGLE-CLICK MANAGEMENT OF KUBERNETES CLUSTERS

USING KUBECTL CLI

Symphony’s fully managed Kubernetes-as-a-Service removes the operational barriers of adopting a
container-based strategy. Admins can leverage KubeCtl CLI or Symphony’s intuitive GUI to create
Kubernetes clusters and easily monitor cluster health and usage.

Symphony keeps the clusters up and running according to defined sizes and provides network
access to cluster endpoints and node maintenance.

For more information, visit:

http://www.stratoscale.com

US Phone: +1 877 420-3244 | Email: sales@stratoscale.com

FOR SINGLE-CLICK MANAGEMENT OF KUBERNETES CLUSTERS

