
Chapter 8

Euclidean Space and Metric
Spaces

8.1 Structures on Euclidean Space

8.1.1 Vector and Metric Spaces

The set Kn of n-tuples x = (x1, x2 . . . , xn) can be made into a vector space
by introducing the standard operations of addition and scalar multiplication
through

x + y = (x1, x2 . . . , xn) + (y1, y2 . . . , yn) := (x1 + y1, x2 + y2 . . . , xn + yn) ,

λx = λ(x1, x2 . . . , xn) := (λx1, λx2 . . . , λxn) , λ ∈ K , x, y ∈ Kn .

As for the topology of Kn we introduce the distance function

d(x, y) :=
[ n∑
k=1

|xk − yk|2
]1/2

which satisfies the following properties
(m1) d(x, y) ≥ 0 ∀ x, y ∈ Kn and d(x, y) = 0⇔ x = y.
(m2) d(x, y) = d(y, x) ∀ x, y ∈ Kn.
(m3) d(x, z) ≤ d(x, y) + d(y, z) ∀ x, y, z ∈ Kn (triangle-inequality)

Definition 8.1.1. A pair (M,d) is called metric space iff
(i) M is a set.
(ii) d : M ×M → [0,∞) satisfies (m1)-(m3).
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Examples 8.1.2. (a)
(
Kn,

[∑n
k=1 |xk − yk|2

]1/2) is a metric space.

(b) (R, d0) is a metric space for d0(x, y) :=

{
0 , x = y

1 , x 6= y
x, y ∈ R

(c) If M = Kn and dp is defined by

dp(x, y) :=

{[∑n
k=1 |xk − yk|p

]1/p
, 1 ≤ p <∞ ,

maxk=1,...,n|xk − yk| , p =∞ ,

then (M,dp) is a metric spaces for p ∈ [1,∞].

8.1.2 Norms and Scalar Products

Observe that d2(x, y) only depends on the x− y. In particular, by defining

|x|2 :=
√∑n

k=1 x2
k, we recover d(x, y) = |x− y|2.

Definition 8.1.3. A pair (V, | · |V ) is a normed vector space if
(i) V is a K-vector space.
(ii) | · |V : V → [0,∞) is a norm on V , that is, it satisfies

(n1) |x|V ≥ 0 ∀ x ∈ V , |x| = 0 ⇐⇒ x = 0.

(n2) |αx|V = |α||x|V ∀ x ∈ V ∀ α ∈ K.

(n3) |x + y| ≤ |x|+ |y| ∀ x, y ∈ V . (triangle inequality)

Remarks 8.1.4. (a) If (V, | · |V ) is a normed vector space, then (V, dV ) is a
metric space for

dv(x, y) := |x− y|V ∀ x, y ∈ V .

(b) For each p ∈ [1,∞]

|x|p :=
( n∑
k=1

|xk − yk|p
)1/p

is a norm on V = Rn , Cn.
(c) If V = C([a, b]) 3 f and ‖f‖∞ := supx∈[a,b] |f(x)| then (V, ‖ · ‖∞) is a
normed vector space.
(d) If V = C1([a, b]) 3 f and ‖f‖1,∞ := ‖f‖∞ + ‖f ′‖∞ then (V, ‖ · ‖1,∞) is
a normed vector space.
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Definition 8.1.5. Let V be a vector space. Then

〈·, ·〉 = V × V → K , (x, y) 7→ 〈x, y〉

is called inner product if
(i1) 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ V .
(i2) 〈x + αy, z〉 = 〈x, z〉+ α〈y, z〉 and 〈x, y + αz〉 = 〈x, y〉+ ᾱ〈x, z〉

∀ x, y, x ∈ V ∀ α ∈ K.
(i3) 〈x, x〉 ≥ 0 ∀ x ∈ V and 〈x, x〉 = 0 iff x = 0. The pair

(
V, 〈·, ·〉

)
is called

inner product space.

Example 8.1.6. If V = C([a, b], K) and 〈f, g〉 :=
∫ b
a fḡ dx for f, g ∈ V , then(

V, 〈·, ·〉
)

is an inner product space.

Theorem 8.1.7. (Cauchy-Schwarz)
Let

(
V, 〈·, ·〉

)
be an inner product space. Then

|〈x, y〉| ≤
√
〈x, x〉

√
〈y, y〉 =: |x|V |y|V ∀ x, y ∈ V .

Proof. (i) V is a R-vector space: If either x = 0 or y = 0 the inequality is
obvious. Assume therefore that x 6= 0 and y 6= 0. Then we can define

x̃ =
x

|x|V
and ỹ =

y

|y|V
and obtain |x̃|V = |ỹ|V = 1. Observing that

0 ≤ 〈x̃ + ỹ, x̃ + ỹ〉 = 〈x̃, x̃〉+ 2〈x̃, ỹ〉+ 〈ỹ, ỹ〉 = 2〈x̃, ỹ〉+ 2
0 ≤ 〈x̃− ỹ, x̃− ỹ〉 = 〈x̃, x̃〉 − 2〈x̃, ỹ〉+ 〈ỹ, ỹ〉 = −2〈x̃, ỹ〉+ 2

the claim follows by combining the two inequalities.
(ii)V is a C-vector space: We can again assume that x 6= 0 and y 6= 0 and
define x̃ and ỹ as above to obtain

0 ≤ 〈x̃ + ỹ, x̃ + ỹ〉 = 〈x̃, x̃〉+ 〈x̃, ỹ〉+ 〈ỹ, x̃〉+ 〈ỹ, ỹ〉
0 ≤ 〈x̃− ỹ, x̃− ỹ〉 = 〈x̃, x̃〉 − 〈x̃, ỹ〉 − 〈ỹ, x̃〉+ 〈ỹ, ỹ〉

which implies |<〈x̃, ỹ〉| ≤ 1 since 〈x̃, ỹ〉+ 〈ỹ, x̃〉 = 2<〈x̃, ỹ〉. It always is that

〈x̃, ỹ〉 = r eiθ for some r ≥ 0 and θ ∈ [0, 2π)

and, from this, it follows that

|〈x̃, ỹ〉| = |〈e−iθx̃, ỹ〉| = |<〈e−iθx̃, ỹ〉| ≤ 1

since 〈e−iθx̃, ỹ〉 is real and |e−iθx̃| = 1.
√
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Remarks 8.1.8. (a) If V is an R-vector space and 〈·, ·〉 is an inner product
on it, we obtain

〈x, y〉 =
1
4
(
|x + y|2V − |x− y|2V

)
, x, y ∈ V

for | · |V defined by |x|V =
√
〈x, x〉.

(b) If V is an C-vector space and 〈·, ·〉 is an inner product on it, we obtain

〈x, y〉 =
1
4
(
|x + y|2V − |x− y|2V + i|x + iy|2 − i|x− iy|2

)
, x, y ∈ V

(c) Let
(
V, 〈·|·〉

)
be an inner product space. Then the following parallelogram

identity
|x + y|2V + |x− y|2V = 2

(
|x|2V + |y|2V

)
, x, y ∈ V

holds.
(d) On a normed vactor space (V, | · |V ) there exists an inner product 〈·, ·〉
such that | x|V =

√
〈x, x〉 iff the parallelogram identity holds true.

Theorem 8.1.9. Let
(
V, 〈·, ·〉

)
be an inner product space. Then

|x|V =
√
〈x, x〉 , x ∈ V

defines a norm on V .

Proof. We need to verify the validity of conditions (n1)-(n3).
(i) (n1) follows from (i3).
(ii) As for (n2) we have

|αx|V =
√
〈αx, αx〉 =

√
αᾱ〈x, x〉 =

√
|α|2〈x, x〉 = |α||x|V ∀ x ∈ V ∀ α ∈ K .

(iii) Finally the triangular inequality follows from Cauchy-Schwarz. In fact

|x + y|2V = 〈x + y, x + y〉 = |x|2V + 2<〈x, y〉+ |y|2V
≤ |x|2V + 2|x|V |y|V + |y|2V =

(
|x|V + |y|V

)2 ∀ x, y ∈ V .

Here we used that <z ≤ |z| for any z ∈ C.
√

8.2 Topology of Metric Spaces

8.2.1 Open Sets

We now generalize concepts of open and closed further by giving up the
linear structure of vector space. We shall use the concept of distance in
order to define these concepts maintaining the basic intuition that open
should amount to every point having still some space around.
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Definition 8.2.1. (Open Ball)
Let (M,d) be a metric space and r ∈ (0,∞) Then the open ball about x ∈M
with radius r is defined by

B(x, r) := {y ∈M | d(x, y) < r} .

Definition 8.2.2. (Open Sets)
(i) O ⊂M is called open or, in short O

o
⊂M , iff

∀ x ∈ O ∃ r > 0 s.t. x ∈ B(x, r) ⊂ O .

(ii) Any set U ⊂M containing a ball B(x, r) about x is called neighborhood
of x. The collection of all neighborhoods of a given point x is denoted by
U(x).

Remark 8.2.3. The collection τM := {O ⊂ M |O is open } is a topology
on M .

Theorem 8.2.4. (Induced/Relative Metric)
Let (M,d) be a metric space and N ⊂ M . Then (N, dN ) is a metric space
with

dN : N ×N → [0,∞) , (x, y) 7→ d(x, y) .

Then O
o
⊂ N iff O = N ∩ Õ for some Õ

o
⊂M .

Corollary 8.2.5. If N
o
⊂M , then O

o
⊂ N iff O

o
⊂M .

Proof. “=⇒”: If O
o
⊂ N and x ∈ O, then we find rx > 0 such that

BN (x, rx) = {y ∈ N | d(x, y) < rx} ⊂ O .

Defining Õx = BM (x, rx) we obtain an open set in M . Setting

Õ =
⋃
x∈O

Õx
o
⊂M

we arrive at Õ ∩N = O.
“⇐=”: If O = N ∩ Õ for some Õ

o
⊂ M , then for any x ∈ O we find rx > 0

such that BM (x, rx) ⊂ Õ. In this case

BN (x, rx) = BM (x, rx) ∩N ⊂ Õ ∩N = O

which shows that O
o
⊂ N .

√
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8.2.2 Limits and Closed Sets

Definitions 8.2.6. Let (M,d) be a metric space and (xn)n∈N ∈MN. Then
we define
(i) xn → x∞ (n→∞) ⇐⇒ ∀ ε > 0 ∃N ∈ N s.t. d(xn, x∞) ≤ ε ∀ n ≥ N .
(ii) A point x is called limit point of the sequence (xn)n∈N ∈MN if there is
a subsequence (nj)j∈N of (n)n∈N such that

xnj → x (j →∞) .

(iii) A point x is called limit point of the the set A ⊂M iff
.
B(x, r) ∩A 6= ∅ ∀ r > 0

for
.
B(x, r) := {y ∈M | d(x, y) < r , y 6= x}.

(iv) A set A ⊂M is closed iff LP(A) ⊂ A.
(v) The closure Ā of a set A ⊂ M is given by Ā = A ∪ LP(A). In this case
Ā is closed.
(vi) A set A ⊂ B ⊂M is dense in B iff B ⊂ Ā.

Theorem 8.2.7. Let (M,d) be a metric space. Then

A = Ā ⇐⇒ Ac o
⊂M .

Proof. “⇐=”: Let x ∈ Ac
o
⊂M . Then we find r > 0 such that B(x, r) ⊂ Ac,

which means x /∈ LP(A). Rephrasing we obtain

LP(A) ⊂ (Ac)c = A

which gives A = Ā.
“=⇒”: Let A = Ā and x ∈ Ac. Then x cannot be a limit point of A, that
is, there is r > 0 with B(x, r) ∩A = ∅, which amounts to B(x, r) ⊂ Ac.

√

8.2.3 Completeness

Let (M,d) be a metric space and x ∈MN. The sequence x is called Cauchy
iff

∀ ε > 0 ∃N ∈ N s.t. d(xn, xm) ≤ ε ∀m,n ≥ N .

Any convergent sequence is Cauchy.

Definition 8.2.8. A metric space (M,d) is called complete iff every Cauchy
sequence has a limit in M .
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Theorem 8.2.9. Let a sequence (xm)m∈N in Rn be given. Then

|xm − x∞|2 → 0 (n→∞)⇐⇒ xk
m → xk

∞ (n→∞) .

Corollary 8.2.10. The normed vector space Rn is complete.

Proof. (of theorem 8.2.9) “=⇒”: The simple inequality

|xk
m − xk

∞| ≤
( n∑

j=1

|xj
m − xj

∞|2
) 1

2 → 0 (m→∞)

is valid for any k ∈ {1, . . . , n} and implies the stated convergence for the
components.
“⇐=”: The assumed componentwise convergence implies the existence, for
any given ε > 0, of Nk(ε) ∈ N such that

|xk
m − xk

∞| ≤
ε√
n
∀m ≥ Nk(ε) .

For m ≥ N := maxk=1,...,n Nk, we then get

( n∑
j=1

|xj
m − xj

∞|2
) 1

2 ≤
( n∑

j=1

ε2

n

) 1
2 = ε

which gives the desired convergence.
√

Examples 8.2.11. (a) The normed vector space
(
C([a, b]), ‖ · ‖∞

)
is com-

plete.
(b) The normed space

(
C([a, b]), ‖ · ‖1

)
is not. Recall that

‖f‖1 =
∫ b

a
|f(x)| dx , f ∈ C([a, b]) .

(c) Let (M,d) be an incomplete metric space. Then, just as we orignally did
with Q, it can be completed. The procedure is completely analogous. First
define

C S(M) := {x ∈MN |x is a Cauchy sequence }

and the relation ∼ on it by

x ∼ y :⇐⇒ lim
n→∞

d(xn, yn) = 0 .

It can be shown that ∼ is an equivalence relation and the completion M of
M can be defined by

M = CS(M)/ ∼ .
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How would you introduce a concept of distance on M to show that

M ↪→M

and that M is indeed complete?

8.2.4 Compactness

Definition 8.2.12. (Compactness)
A subset K of a metric space (M,d) is called compact iff

∀ x ∈ KN ∃ (nk)k∈N , x ∈ K s.t. xnk
→ x (k →∞) .

A set is therefore compact if every sequence within the set has a convergent
subsequence with limit in the set itself.

Remark 8.2.13. Can M itself be compact? What is the relation to com-
pleteness in this case? Compactness always implies completeness since
Cauchy sequences can only have one limit. Completeness does not nec-
essarily imply compactness as the example M = Rn shows.

Lemma 8.2.14. Any compact metric space M has a countable dense subset.

Proof. Choose any x1 ∈M . Then pick recursively xk for k = 2, 3, . . . with

min
j=1,...,k−1

d(xj , xk) ≥
1
2

sup
x∈M

min
j=1,...,k−1

d(xj , x) =: Rk .

Clearly this is only possible if the supremum is finite. Suppose it is not for
some k; then, for that k, we find a sequence (yn)n∈N in M with

d(xk−1, yn) ≥ n , n ∈ N .

The sequence (yn)n∈N would have to have a convergent subsequence (ynj )j∈N
which has a limit y∞ ∈ M (by compactness of M). Thus it would follow
that

0 ≤ d(xk−1, ynj ) ≤ d(xk−1, y∞) + d(y, ynj ) ∀ j ∈ N

which is impossible since the right hand side is bounded whereas the left one
is unbounded. We thus obtain a sequence (xn)n∈N with the above properties.
We claim that it is dense in M . To see that, first observe that Rk has to
converge to 0. Indeed, if that were not the case, we would have

d(xj , xk) ≥ ε > 0 ∀ j, k ∈ N .
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Thus the sequence (xn)n∈N would not contain any convergent subsequence
contradiciting compactness. Then, given any x ∈ M and ε > 0, we find
xk ∈M with

d(x, xk) ≤ ε for some k ≤ n

if n is chosen so large that 2Rn ≤ ε.
√

Lemma 8.2.15. Let (M,d) be a compact metric space. Then each of its
open covers possesses a countable subcover.

Proof. Let any open cover {Bα |α ∈ Λ} be given. Let {xn |n ∈ N} be a
dense subset which exists thanks to lemma 8.2.14 and observe that, for any
n ∈ N, we can find αn ∈ Λ with xn ∈ Bαn . Since latter set is open, we then
find m ∈ N such that B(xn, 1

m) ⊂ Bαn . Next define

I = {(n, m) | ∃ αn,m ∈ Λ s.t. B(xn,
1
m

) ⊂ Bαn,m}

and observe that pr1(I) = N. Finally we claim that the countable subcol-
lection {Bαn,m | (n, m) ∈ I} is a subcover. Indeed, if we pick any x ∈ K,
then we first find α ∈ Λ such that x ∈ Bα and, subsequently, a m ∈ N
with B(xn, 1

m) ⊂ Bα. Next we find n ∈ N with d(x, xn) < 1
2m . Finally,

B(xn, 1
2m) ⊂ Bα implies (n, 2m) ∈ I and therefore

x ∈ B(xn,
1

2m
) ⊂ Bαn,2m

which concludes the proof.
√

Theorem 8.2.16. A subset K ⊂ M of a metric space M is compact iff
it has the Heine-Borel property. Recall that a set K has the Heine-Borel
property iff each of its open covers admits a finite subcover.

Proof. “⇐=”: We shall argue by contraposition. Let a sequence (xn)n∈N in
K be given with no accumulation point in K. We can assume w.l.o.g that
all points xn are distinct. Define the sets

Bk = K \ {xk, xk+1, . . . } , k ∈ N .

It follows that
⋃

k∈N Bk = K. Since Bc
k has no limit points by assumption,

it must be closed. Thus {Bk | k ∈ N} is an open cover for K which clearly
cannot admit any finite subcover.
“=⇒”: Here we argue by contradition. By lemma 8.2.15 we can assume that
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a countable open cover {Bk | k ∈ N} can be found which does not admit a
finite subcover. The modified cover

B1 =: A1, B1 ∪B2 =: A2, B1 ∪B2 ∪B3 =: A3 . . .

will not cover, either. We therefore can construct a sequence (xn)n∈N in K
with x ∈ Ac

k. Then we can find a convergent subsequence (xnj )j∈N with
limit x∞ ∈ M . We clearly also have that {xk, xk+1, . . . } ⊂ Bc

k. Since Bc
k is

closed, it follows that x∞ ∈ Bc
k for each k ∈ N. This implies

x∞ /∈
⋃
k∈N

Bk = K

which is impossible.
√

As a corollary to the proof just finished we obtain the first two remarks
below.

Remarks 8.2.17. (a) A compact metric space (M,d) is bounded. Why?
(b) If (M,d) is a compact metric space, then, given any ε > 0, points
x1, . . . , xn ∈M can be found with

M =
n⋃

k=1

B(xk, ε) .

(c) Let N ⊂M be a subset of a complete metric space M . Then

(N, dN ) is complete ⇐⇒ N is closed in M .

Theorem 8.2.18.

K ⊂ Rn is compact ⇐⇒ K is closed and bounded.

Proof. “=⇒”: Clear.
“⇐=”: Let a sequence (xj)j∈N in K be given. Then, by boundedness of K
we find a constant c ∈ (0,∞) such that

|xk
j | ≤ |xj |2 ≤ c <∞∀ j ∈ N ∀ k ∈ {1, . . . , n} .

Then all sequences (xk
j )j∈N are bounded in R. We therefore find a subse-

quence of (j)j∈N for which

x1
j1
m
→ x1

∞ (m→∞) for some x1
∞ ∈ R .
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And then a further subsequence (j2
m)m∈N of (j1

m)m∈N for which

xk
j2
m
→ xk

∞ (m→∞) for some x2
∞ ∈ R and k = 1, 2 .

Continuing to choose subsequences in the same fashion we eventually obtain
one (jn

m)m∈N for which

xk
jn
m
→ xk

∞ (m→∞) for k = 1, . . . , n .

The gives that xjn
m
→ x∞ = (x1

∞, . . . , xn
∞) (m→∞) . and, by theorem 8.2.9

the claim.
√

Remark 8.2.19. In general compactness is not equivalent to closure and
boundedness. We give an example in the space M = C([0, 1]) which becomes
a metric space if the distance is defined by

d(f, g) := sup
x∈[0,1]

|f(x)− g(x)| = ‖f − g‖∞ .

For n ≥ 3 define

fn(x) :=


0 , x ≤ 1

2 −
1
n ,

n
2 (x− 1

2 + 1
n) , x ∈ [12 −

1
n , 1

2 + 1
n ] ,

1 , x ≥ 1
2 + 1

n .

Then {fn |n ≥ 3} is closed and bounded but it is not compact! Why?

8.3 Continuous Functions on Metric Spaces

The distance function on a metric space allows to measure distances and
therefore define concepts like convergence as we have seen in previous sec-
tions. Convergence in its turn can be used to define continuity, for instance.
This is precisely what we shall do in this section. It turns out that much of
the intuition we have developed in one dimension carries over to this more
abstract setting of a metric space.

8.3.1 Characterizing Continuity

The intuitive non-rigorous definition of continuity of a function is that small
perturbations in argument should lead to small perturbations in value. This
leads to the usual ε−δ definition. But, as we have already seen for real real-
valued functions, other equivalent definitions are possible, e.g. by means of
sequences or open sets. The same turns out to be valid for metric spaces.



136 CHAPTER 8. EUCLIDEAN SPACE AND METRIC SPACES

Theorem 8.3.1. Let (M,dM ) and (N, dn) be metric spaces and let f : M →
N . Then the following are equivalent:

(i) ∀ x0 ∈M ∀ ε > 0 ∃ δ = δ(x0, ε) > 0 s.t. dN

(
f(x), f(x0)

)
≤ ε

∀ x ∈M with dM (x, x0) ≤ δ .

(ii) dN

(
f(xn), f(x∞)

)
→ 0 ∀ (xn)n∈N ∈MN

with dM (xn, x∞)→ 0 (n→∞) for some x ∈M .

(iii) f−1(O)
o
⊂M ∀O

o
⊂ N .

Proof. “(i)=⇒(ii)”: By assumption, for any given ε > 0, we can find δ > 0
such that

dN

(
f(x), f(x∞)

)
≤ ε whenever dM (x, x∞) ≤ δ .

Assume that the sequence (xn)n∈N converges to x ∈M . Then we find N ∈ N
with

d(xn, x∞) ≤ δ ∀ n ≥ N ,

which, then, clearly implies

dN

(
f(x), f(x∞)

)
≤ ε ∀ n ≥ N ,

and concludes the first step of the proof.
“(ii)=⇒(i)”: Assume the contraposition of (i). Then we find x∞ ∈M , ε > 0
and a sequence (xn)n∈N such that

dN

(
f(xn), f(x∞)

)
≥ ε but dM (xn, x∞) ≤ 1

n
.

This gives us a sequence in M which is mapped to a non-convergent se-
quence, which is the contraposition of (ii).
“(i)=⇒(iii)”: Let O

o
⊂ N ; we need to show that f−1(O)

o
⊂M . To that end,

let x0 inf−1(O). It is then possible to find ε > 0 for which

BN

(
f(x0), ε

)
⊂ O .

But then, by assumption, there exists δ > 0 such that

f
(
BM (x0, δ)

)
⊂ BN

(
f(x0), ε

)
which is just a reformulation of the continuity condition. Since x0 was
arbitrary, this implies the claim by definition of open set in a metric space.
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“(iii)=⇒(i)”: For any x0 ∈ M and any ε > 0 the ball BN

(
f(x0), ε

)
is open

in N . By assumption, then so is

f−1
(
BN

(
f(x0), ε

))
⊂M .

This readily implies the existence of δ > 0 such that

BM (x0, δ) ⊂ f−1
(
BN

(
f(x0), ε

))
which is nothing but the continuity condition as observed earlier.

√

Remarks 8.3.2. Let (M,dM ), (N, dN ) and (P, dP ) be metric spaces.
(a) Assume that f ∈ C(M,N) and g ∈ C(N,P ). Then f ◦ g ∈ C(M,P ).
(b) If N = Kn and f, g ∈ C(M,N), then f + g, λf ∈ C(M, Kn) for any
λ ∈ K. If n = 1, then also fg ∈ C(M, K).
(c) f ∈ C(M, Kn)⇐⇒ fk ∈ C(M, K) ∀ k = 1, . . . , n.
(d) Xk : Kn → K , x→ xk is continuous for k = 1, . . . , n.
(e) p =

∑
|α|≤m pαXα ∈ C(Kn, K) for any m ∈ N and any choice of pα ∈ K.

Here we use the notation Xα = Πn
k=1X

αk
k .

8.3.2 Continuous Functions on Compact Domains

From consideration in the one dimensional case we expect continuous func-
tions on compact domains to be particularly “nice”.

Theorem 8.3.3. Let (M,dM ) and (N, dn) be metric spaces and assume that
f ∈ C(M,N). If M is compact, then f is uniformly continuous.

Proof. Given ε > 0, for each x0 ∈M , there is δ = δ(x0) > 0 sucht that

f
(
BM (x0, 2δ)

)
⊂ BN

(
f(x0),

ε

2
)
.

All these balls give an open cover of M

M =
⋃

x∈M

B
(
x, δ(x)

)
which consequently has a finite subcover {B

(
xj , δ(xj)

)
| j = 1, . . . , n} . Let

δ = mink=1,...,n δ(xj) and observe that dM (x, y) ≤ δ implies

dM (xjx , y) ≤ dM (x, xjx) + dM (xjx , y) ≤ 2δ(xjx)

if jx is chosen such x ∈ B(xjx , δjx). Thus x, y ∈ B(xjx , 2δjx) and therefore

dN

(
f(x), f(y)

)
≤ dN

(
f(x), f(xjx)

)
+ dN

(
f(xjx), f(y)

)
≤ ε

which shows uniform continuity of f .
√
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Theorem 8.3.4. Let (M,dM ) be a compact metric space and f ∈ C(M, R).
Then

sup
x∈M

f(x) and inf
x∈M

f(x)

exist and there are x, x ∈M such that

sup
x∈M

f(x) = f(x) and inf
x∈M

f(x) = f(x) .

Proof. We prove the claim for the supremum only, since the same proof
can be applied to find the infimum of f coincides with the negative of the
supremum of −f . By definition we find a sequence of arguments (xn)n∈N ∈
MN such that

f(xn)→ sup
x∈M

f(x) (n→∞) .

Since M is compact, a subsequence (xnk
)k∈N) can be found that converges

to some limit x ∈M . Then continuity of f yields

f(xnk
)→ f(x) = sup

x∈M
f(x) (k →∞)

which concludes the proof.
√

Theorem 8.3.5. Let (M,dM ) and (N, dn) be metric spaces and assume that
f ∈ C(M,N). Then

K ⊂M is compact =⇒ f(K) ⊂ N is compact.

Proof. Let {Oα |α ∈ Λ} be an open cover of f(K). Then, since f is contin-
uous, the preimages {f−1(Oα) |α ∈ Λ} of the sets in the cover are open and
clearly cover K. Since K is compact, a finite subcover

{f−1(Oαj ) | j = 1, . . . , n}

can be found which leads to ⋃
j=1,...,n

Oαj ⊃ f(K)

and the claim is proved.
√
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8.3.3 Connectedness

We know look into the generalization of the intermediate theorem. You will
remember that it states the images of intervals under continuous functions
are again intervals. The concept of interval is clearly confined to a one
dimensional setting and we therefore need a more general concept which
can be used for metric spaces.

Definition 8.3.6. (Connectedness)
Let (M,d) be a metric space. M is said to be connected iff

M = A
·
∪B , A,B

o
⊂M =⇒ A = ∅ or B = ∅ .

In other words, a connected set cannot be decomposed into two disjoint open
subsets.

Remarks 8.3.7. (a) M is connected iff

A ⊂M open and closed =⇒ A = M or A = ∅ .

(b) If M = R, then A ⊂ R is connected iff it is an interval.

Definition 8.3.8. Let (M,d) be a metric space and I ⊂ R be an interval.
Then γ : I →M is called curve in M if it is continuous.

Example 8.3.9. Let M = R3. Then γ(t) :=
(
cos(t), sin(t), t

)
, t ∈ [0, 2π],

is a curve in R3. Can you picture its path?

Definition 8.3.10. (Pathwise Connected)
A subset N of a metric space (M,d) is called pathwise connected iff

∀ x, y ∈ N ∃ γ : I = [a, b]→ N s.t. γ(a) = x , γ(b) = y .

Remark 8.3.11. Let (M,d) be a pathwise connected metric space. Then,
if g ∈ C(M, R) and x, y ∈M ,

g(x) = a, g(y) = b =⇒ [a, b] ⊂ g(M) .

Proof. Take any curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y.
Then g ◦ γ ∈ C([0, 1], R) and, by theorem 4.2.5, we obtain that g ◦ γ([0, 1])
is an interval and thus contains [a, b].

√

Theorem 8.3.12. A pathwise connected metric space is connected.
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Proof. We argue by contradiction. Assume that M is not connected but is
pathwise connected. Then nontrivial subsets A,B

o
⊂ M can be found such

that M = A
·
∪B. Pick x ∈ A and y ∈ B; then there is a curve γ : [0, 1]→M

connecting them, i.e., s.t.

α(0) = x , α(1) = y .

By continuity of γ the sets

γ−1(A) and γ−1(B)

are open subsets of [0, 1] (w.r.t. the relative topology). Since γ(t) is either
in A or B for each t ∈ [0, 1] we see that

[0, 1] = γ−1(A)
·
∪ γ−1(B)

which is impossible since [0, 1] is connected.
√

Remark 8.3.13. The converse is not true in general.

Theorem 8.3.14. Let (M,dM ) and (N, dn) be metric spaces and assume
that f ∈ C(M,N) is surjective. Then
(i) If M is connected, so is N .
(ii) If M is pathwise connected, then so is N .

Proof. (i) Assume that N = A
·
∪B for some A,B

o
⊂ N . Then

M = f−1(A)
·
∪ f−1(B) = M

since f is surjective. Since f−1(A), f−1(B)
o
⊂M by continuity of f , it follows

that M cannot be connected.
(ii) Let x, y ∈ N = f(M); then we find u, v ∈ M such that f(u) = x and
f(v) = y. Since M is pathwise connected, a curve γ ∈ C([0, 1],M) can be
found connecting u and v. But then f ◦ γ is a curve connecting x and y in
N which is precisely what we need to conclude the proof.

√

8.3.4 Contraction Mapping Theorem

Next we prove a simple theorem which has a very large number of applica-
tions. We shall assume throughout that (M,d) is a metric space and that
f ∈ C(M,M).
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Definition 8.3.15. (Contraction)
The self-map f is called contractive (or a contraction) iff it satisfies

d
(
f(x), f(y)

)
≤ r d(x, y) ∀ x, y ∈M

for some r ∈ (0, 1).

We shall make use of the following notation

f◦n = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n-times

for the n-fold composition of f with itself.

Theorem 8.3.16. (Contractive Mapping Theorem)
Let (M,d) be a complete metric space and f ∈ C(M,M) be a contraction.
Then f possesses a unique fixed-point x0 ∈ M , that is, a point for which
f(x0) = x0.
Moreover, for each x ∈M it holds that

f◦n(x)→ x0 (n→∞) and d
(
x0, f

◦n(x)
)
≤ c rn

for a constant which depend on x.

Proof. (i) Uniqueness: Let x0 and x1 be two fixed-points of f , then

f(x0, x1) = d
(
f(x0(, f(x1)

)
≤ r d(x0, x1)

which is only possible if x0 = x1.
Existence: Let x ∈M and define xn = f◦n(x) for n ∈ N. Then

d(xn+1, xn) ≤ r d(xn, xn−1) ≤ · · · ≤ rn d(x1, x) , n ∈ N

and, consequently,

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn) ≤ [rm−1 + · · ·+ rn]d(x1, x) .

The convergence of the geometric series implies that, for any given ε > 0, a
N ∈ N can be found such that

d(xm, xn) ≤ ε ∀ n, m ≥ N

showing that (xn)n∈N is a Cauchy sequence. Since M is complete, there
exists a limit x0 ∈ M for this sequence. Since f is continuous, it follows
that

f(x0) =
(

lim
n→∞

fxn

)
= lim

n→∞
f(xn) = x0 .
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Finally we see that

d(xn, x) = lim
m→∞

d(xn, xm) ≤
∞∑

k=n

rkd(x1, x) =
rn

r − 1
d(x, f(x))

and the proof is complete.
√


