

Rollercoasters

Allotted Time: 90 mins

This challenge will have students design a mini rollercoaster from household items. This will reinforce the concept of conservation of energy and converting energy from potential to kinetic.

Materials needed (per group):

- Foam pipe insulation (3-4 pieces)
- Masking tape (1 roll)
- Marbles (1)
- Tissue paper (2-3 sheets)
- Disposable cups (1)
- Rubber bands (1)
- BBQ skewers (20)
- Popsicle Sticks (20)
- Newspaper (20 sheets)
- Timer (1)
- Calculator (1)
- Ruler/Metre stick (1)
- Measuring scale (1 for entire class)

Method

- 1. Split the class into groups of 2-3.
- 2. Each group will complete the *Rollercoaster Worksheet*.
- 3. Each group is given the materials listed above.
- 4. The group must construct their individual roller-coaster for the marble. At the end of the track the marble must stop at a tissue paper.
 - a. Points are awarded to complexity of the rollercoaster
 - i. Turn 5 points
 - ii. Hill 5 points
 - iii. Loop 10 points
 - iv. Spiral 10 points
 - v. Other unique feature 5 points
 - b. Points are deducted for safety
 - i. Marble goes off track minus 10 points
 - ii. Marble doesn't stop/tissue paper breaks minus 10 points
- 5. The team with the most points wins!!

Engineering Rollercoasters

Rollercoasters are meant to go FAST! But what makes a Rollercoaster go fast? *Energy*.

Energy comes in many forms, but rollercoasters mostly use *Potential Energy* and *Kinetic Energy*.

Potential Energy is stored energy.

- Rollercoasters use *gravitational potential energy* which is stored when objects go up high.
- The equation for gravitational potential energy is $E_p = mgh$

Kinetic Energy is the energy of a moving object.

• The equation for kinetic energy is $E_k = \frac{1}{2} mv^2$

Energy is always conserved. That means the energy at the start will equal the energy at the end.

- At the beginning of the rollercoaster you are up high but you are not moving yet. That means all of the energy is Potential energy.
- At the bottom of the rollercoaster you are down low but you are going very fast. That means all of the energy is Kinetic energy.
- In between, you have both Potential and Kinetic Energy

Rollercoaster Worksheet

If you design a marble rollercoaster that is 50cm high , what would be the potential energy?
$E_{\rm p}={ m mgh}$
What is the mass of the marble (m)?grams orkg
What is the acceleration due to gravity (g)? <u>9.8m/s²</u>
What is the height (h)? 50cm orm
What is E _p ?Joules (kg m/s²)
If the energy at the beginning equals the energy at the end, then:
$E_p(at the top) = E_k(at the bottom)$
$E_k = \frac{1}{2} m v^2$ rearranging we get $v = \sqrt{\frac{2E}{m}}$
For the 50cm high rollercoaster, what would be the velocity at the bottom?
Velocity (v) =m/s
What would the Potential energy be if you designed a rollercoaster 120cm high?Joules
What would be the velocity at the bottom?m/s
What would the Potential energy be if you designed a rollercoaster 10cm high?Joules
What would be the velocity at the bottom?m/s

Friction Force

© mr-wang.deviantart.com

How do we get our roller-coaster to stop? Using Brakes.

Brakes work by creating *Friction*.

Friction Force changes kinetic energy in heat energy.

- The friction force is related to the **Normal Force** or Weight of an object on a surface.
- The friction force is also related to the *material of the surface*. Different materials have different *Coefficients of Friction*.
- The equation for Friction is $F_f = \mu F_n$
- The normal force is equivalent to the weight $F_n = W = mg$
- The **heat energy** released from friction is $E_h = \mu F_n d$ where d is the distance travelled over the surface.

Now we must modify our equation

 $E_p(at \text{ the top}) = E_k(at \text{ the bottom}) + E_h(\text{released due to friction})$

Build a simple rollercoaster.
What is the mass of your marble: m=
Measure the height of your rollercoaster: h=
What is the gravitational potential energy of the marble at the top? $E_p = $
Let your marble go down the roller-coaster.
What is the velocity (speed) of the marble? v=d/t =
What is the kinetic energy of the marble? $E_k = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Can you calculate the Heat Energy released due to Friction? E _h =

Centripetal/Centrifugal Force

One of the most fun parts of a roller coaster is a loop-de-loop.

How does a rollercoaster go upside down on the loop-de-loop without falling?

This is due to *Centripetal Force* and the *Reactive Centrifugal Force*.

Centripetal Force is the force of an object moving along a curve or in a circle.

Reactive Centrifugal Force is equivalent to the centripetal force but in the opposite direction, and stops the rollercoaster from falling when it is upside down.

$$F_{c} = \frac{mv^{2}}{r}$$

To make sure that the marble does not fall when it goes upside down, the centrifugal force must be greater than the weight of the marble. W=mg

The roller coaster also needs to have enough *Kinetic Energy* to convert into *Gravitational Potential Energy* so it can reach the **maximum loop height** (h_L) at the top of the loop.

Add a loop to your rollercoaster.
What is the mass of the marble? m=
What was the velocity at the bottom (just before you added the loop)? v=
What is the maximum radius your loop can have? r =
What is the maximum loop height that your roller coaster can have? $h_L = $