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Artificial intelligence (AI) has the ability of revolutionizing our lives and society in a radical way, 
by enabling machine learning in the industry, business, health, transportation, and many other 
fields. The ability to recognize objects, faces, and speech, requires however exceptional 
computational power and time, which is conflicting with the current difficulties in transistor scaling 
due to physical and architectural limitations. As a result, to accelerate the progress of AI, it is 
necessary to develop materials, devices, and systems that closely mimic the human brain. 
 
In this work, we review the current status and challenges on the emerging neuromorphic devices for 
brain-inspired computing. First, we provide an overview of the memory device technologies which 
have been proposed for synapse and neuron circuits in neuromorphic systems. Then, we describe 
the implementation of synaptic learning in the two main types of neural networks, namely the deep 
neural network (DNN) and the spiking neural network (SNN). Bio-inspired learning, such as the 
spike-timing dependent plasticity (STDP) scheme, is shown to enable unsupervised learning 
processes which are typical of the human brain. Hardware implementations of SNNs for the 
recognition of spatial and spatiotemporal patterns are also shown to support the cognitive 
computation in silico. Finally, we explore the recent advances in reproducing bio-neural processes 
via the device physics, such as insulating-metal transitions, nanoionics drift/diffusion, and 
magnetization flipping in spintronic devices. By harnessing the device physics in emerging 
materials, neuromorphic engineering with advanced functionality, higher density and better energy 
efficiency can be developed. 
 

1. Introduction 
 

After more than 50 years from its start, the evolution of the microelectronic industry can no longer 
be adequately described by the Moore’s law of scaling the transistor size [1]. For years, making the 
transistor smaller have meant improving the density, performance and power consumption of a 
digital circuit. More recently, transistor miniaturization has been replaced by more advanced 
approaches, such as the introduction of high-k materials for the gate dielectric [2], the adoption of 
enhanced transistor layouts such as trigate structures [3], and possibly in the future the use of 
alternative switch concepts [4]. Most importantly, new computing methodologies such as quantum 
computing [5], stochastic computing [6], and analogue computing [7] are currently under scrutiny 
to overcome the main limitations of the digital circuits. 
 
Among the novel computing approaches under investigation, neuromorphic computing is probably 
the most promising. Neuromorphic engineering defines the development of systems that emulate 
the human brain to achieve high energy efficiency, parallelism, and ability in cognitive tasks, such 
as object recognition, association, adaptation, and learning. The concept of neuromorphic systems is 
not novel, being first introduced in the 1980s as a branch of analogue circuit engineering [8]. The 
original neuromorphic concept is based on analogue circuits with extensive use of subthreshold-
biased transistors, as a means to minimize the energy consumption and exploit the similarity 
between carrier diffusion in the transistor and atomistic transport in the ionic channel of a biological 
synapse [9]. During the years, analogue circuits for neurons and synaptic functions have been 
proposed [10], and led to the development of general-purpose chip demonstrators [11]. Although 
the complementary metal-oxide semiconductor (CMOS) technology is essential to enable the 



integration of large-scale neuromorphic systems, it does not easily provide some of the inherent 
features of the neurobiological network, such as the long-term plasticity, the stochastic behavior, 
and the ability to update internal variable, such as synaptic weight and membrane potential, as a 
function of spike timing and frequency. 
 
In the last 10 years, there has been a wide exploration of new devices as technology enablers of 
neuromorphic computing. The class of emerging memories is very promising for neuromorphic 
computation, thanks to the ability to store analogue values in nonvolatile way, combined with the 
extremely small device size [12,13]. Also, emerging nonvolatile memories feature a unique device 
physics that can provide a broad portfolio of functions, such as time-dependent dynamics, low-
voltage operation and stochastic switching. Most importantly, emerging memories naturally enable 
the so-called in-memory computing paradigm, where data are processed directly within the 
memory, thus with no need for any energy- and time-consuming transfer to/from the memory 
circuit [14]. Note, in fact, that our brain is essentially built on the concept of in-memory computing, 
where neurons and synapses serve the function of both memory and computing elements [15,16]. 
Memory devices can also be organized with array architectures, such as the cross-point array 
[17,18] and the one-transistor/one-resistor (1T1R) array [19,20], which strictly resemble the 
structure of a neural network, where each memory conductance plays the role of a synaptic weight 
[14,21]. For all these reasons, emerging memories, also known as memristors, are considered a 
strong contender for the implementation of high-density, low energy neuromorphic circuits. 
 
This work provides an overview on the emerging devices for neuromorphic computing with an 
emphasis on nonvolatile memories for synaptic and neuron applications. First, the emerging 
memory devices that are currently investigated for neuromorphic applications are reviewed in terms 
of the physical switching mechanisms and inherent performance in terms of speed, multilevel 
operation, and scaling. Then, the synaptic concepts based on emerging memories are described, 
referring to various types of neural networks and learning rules, aiming at either supervised or 
unsupervised training. Examples of neural networks implementing brain-inspired learning rules for 
pattern recognition are shown. Neuron circuits employing emerging devices are then reported, 
including various classes of oscillating, accumulating, and stochastic neurons. Finally, examples of 
neural networks combining emerging neuron and synaptic devices are presented. The open 
challenges and remaining gaps for the development of this field are finally summarized. 
 

2. Neuromorphic networks 
Neuromorphic engineering aims at developing circuits that compute as the human brain. An 
essential feature of any neuromorphic circuit is the neural network architecture, where data are sent 
by neuronal terminals through a highly-parallel net of synaptic paths. The concept of neural 
network can be traced back to the neuron model proposed by McCulloch and Pitts, who for the first 
time described the neuron as a mathematical function of the synaptic inputs [22]. The prototypical 
version of the neural network is the perceptron, which is capable of recognizing linearly separable 
classes of objects [23]. More advanced schemes of neural networks, generally referred under the 
term of deep learning, have been first proposed [24] and more recently led to an increased interest 
[25] for the outstanding performance in object and face recognition, even matching or surpassing 
the human capability [26]. More brain-inspired concepts have been developed, such as the concept 
of reinforcement learning which enables self-adaptation within a neural network as for the human 
brain. For instance, it has been shown that a neuromorphic platform can learn to play videogames 
[27] or the ancient game of Go [28] by iteratively playing games, and autonomously learning from 
successes and failures. Most of these achievements were however obtained by running software 
programs in digital computers, taking advantage of the outstanding performance of advanced 
central processing units (CPUs) and graphics processing units (GPUs) to expedite the supervised 
training for setting the synaptic weights within the network. The digital computation is extremely 



power hungry, while lacking any similarity with the brain architecture. To realize energy efficient, 
scalable neuromorphic hardware systems, it is necessary to mimic the brain from its very 
fundamental architecture, communication and computation schemes. 
 

 
Fig. 1 Illustrative sketch of neuromorphic hardware options. (a) Neuromorphic hardware can be 
implemented via both artificial neural networks (ANNs) and brain-inspired neural networks. These two 
approaches rely on a different set of algorithms and learning rule, e.g., the backpropagation algorithm in 
ANNs, or the spike timing dependent plasticity (STDP) in brain-inspired concepts. (b) A generic neural 
network, organized as neuron layers where each neuron is connected by synapses to neurons in the previous 
layer, and the next layer (b). The number of layers defines the ‘depth’ of the neural network. 
 
 
Fig. 1a schematically illustrates the two basic types of neuromorphic hardware, namely artificial 
neural networks (ANNs) and brain-inspired networks. These types of hardware differ mainly from 
the methodology for training the network synapses, while sharing the general neural network 
architecture. In ANN, the deep structure with many layers can only be trained by supervised 
learning algorithms such as the backpropagation scheme [25]. On the other hand, brain-inspired 
networks adopt learning rules which are derived from the neurobiological systems, such as Hebbian 
learning and the spike timing dependent plasticity (STDP) [29,30]. Note that, although ANNs are 
also inspired by the brain, the training algorithms such as the backpropagation technique are not, 
which justifies the nomenclature in Fig. 1a. 
 
Both bio-inspired networks and ANNs in Fig. 1a rely on the fundamental neural network structure 
of Fig. 1b. This shows a fully-connected multilayer perceptron (MLP), which is the prototypical 
network for deep learning for object, face, and image recognition. The network consists of layers of 
neurons, including (i) input neurons, providing the input pattern of information, (ii) output neurons, 
providing the solution to the classification problem, and (iii) a number of hidden layers, where the 
intermediate solutions from input to output variables are found. Each neuron in the network can 
execute a summation or integration of the input signals, followed by a non-linear operation, such as 
logistic or sigmoidal function. The output of each neuron is then transmitted to neurons of the next 
layer via synaptic connections, which multiply the signal by a proper synaptic weight. The network 



can have a feed-forward structure, meaning that the information is sent from the input layer to the 
output layer, or a recurrent network, where a feedback connection is also present from a neuron 
layer back to another preceding layer. One example of recurrent network is the Hopfield network, 
where a layer of neurons sends information toward themselves through a single layer of synaptic 
connections [31]. Information among neurons is generally sent via synchronous or asynchronous 
spikes.  
 

3. Emerging memory devices 
To implement the neural network of Fig. 1b in hardware, it is necessary to identify the most suitable 
circuit to represent the neuron and synapse function. In this scenario, emerging memory devices 
play a major role, since they can provide added functionality to the conventional CMOS 
technology, such as the ability to implement analogue, nonvolatile memory within a nanoscale 
region on the chip. The emerging memory also enables the in-memory computing approach where 
data are processed in situ [14]. Emerging memory devices can be divided in two categories, namely 
2-terminal devices and 3 terminal devices, as illustrated in the following. 
 

 
Fig. 2 Illustrative sketch of the memory devices that are considered for in-memory computing, including 
neuromorphic computing. (a) A resistive switching random access memory (RRAM), and (b) its 
representative current-voltage indicating bipolar switching between a low resistance state (LRS) and a high 
resistance state (HRS). The switching process originates from the ionic migration across a filamentary path 
across the metal-insulator-metal (MIM) stack of the RRAM. (c) A phase change memory (PCM), and (d) its 
resistance-voltage (R-V) characteristic, where the resistance drop at low voltage is due to the crystallization, 
and the resistance increase is due to melting and amorphization of the phase change material. (e) A spin-
torque transfer magnetic random access memory (STT-MRAM), and (f) its R-V characteristic, where the 
transition between parallel (P) and antiparallel (AP) states dictates variations of the resistance. (g) 
Ferroelectric random access memory (FERAM), and (h) its polarization-voltage characteristic, indicating the 
typical hysteresis of ferroelectric insulating layer in the MIM stack. Reprinted with permission from [14]. 
Copyright 2018 Springer Nature Publishing. 
 
 

3.1 2-terminal devices 
Fig. 2 summarizes the 2-terminal devices that are currently studied for applications in neuromorphic 
computing circuits [14]. These include the resistive switching random access memory (RRAM), the 
phase change memory (PCM), the spin-transfer torque magnetic random access memory (STT-
MRAM) and the ferroelectric random access memory (FERAM). These memory devices all share 
the same basic structure, with an insulator and/or active material sandwiched between 2 metal 
electrode layers. The application of external voltage pulses to the device will induce a change in a 
characteristic property of the memory device, which can be sensed as a variation in the resistance, 
or the electric/magnetic polarization. As a result, one can program, erase and read the memory by 
electrical operations on the memory device, which can retain the written state for long time, e.g., 10 
years at elevated temperature. This is similar to the conventional nonvolatile Flash technology, 



which has been a consolidated memory device with extremely high density for the last 30 years 
[32,33]. However, Flash memory relies on the storage of charge within a floating gate of a MOS 
transistor, whereas all the emerging memory concepts in Fig. 2 are based on material properties 
which can be changed by electrical operations. Thanks to the charge-free material modification, the 
scalability of the emerging memory is generally superior to Flash memories. 
 
The RRAM device in Fig. 2a consists of a metal-insulator-metal (MIM) structure, where the 
insulating layer can change its resistance from relatively large, in the high resistance state (HRS), to 
relatively low, in the low resistance state (LRS) [34-36]. The resistance change generally takes 
place at a localized region within the insulating layer, referred to as conductive filament (CF). To 
form the CF, RRAM is subjected to a preliminary operation, called forming, consisting of a soft 
dielectric breakdown to induce a local decrease of resistance. The set process allows to operate the 
transition from the HRS to the LRS, whereas the reset process is responsible for the transition from 
the LRS to the HRS. The set and reset processes are both induced by the application of voltage 
pulses, which can have the same bias polarity, in the case of unipolar RRAM [37,38], or, most 
typically, the opposite bias polarity, in the case of bipolar RRAM. Fig. 2b shows a typical current-
voltage characteristic for a bipolar RRAM, indicating the set transition as a steep increase of the 
current at the positive set voltage Vset and the reset transition to the HRS starting at the negative 
voltage Vreset. The set and reset transitions are generally explained in terms of defect migration 
within the CF: for instance, the application of a reset voltage across the CF leads to drift and 
diffusion of the ionized defects, such as oxygen vacancies and metallic impurities, resulting in a 
retraction of the CF toward the negatively-biased electrode [39]. The CF retraction causes the 
formation of a depleted gap with low concentration of defects, hence high resistivity, which is 
responsible for the increase of resistance in the reset transition. Applying an opposite voltage leads 
to the migration of defects back into the depleted gap, which can decrease the resistance to the LRS. 
Various materials have been adopted for the insulating layer, most typically being a metal or 
semiconductor oxide such as HfO2 [40], TaO2 [41], or SiO2 [42]. The RRAM resistance can be 
usually controlled with analogue precision between the HRS and the LRS, thus enabling multilevel 
cell (MLC) operation with storage of at least 3 bits [43,44]. RRAM also shows excellent 
downscaling to the 10 nm size [45] and the capability for 3D integration [46], thus serving as a 
promising technology for high density storage class memory. 
 
Fig. 2c schematically illustrates a PCM structure, where the device resistance is changed upon a 
phase transformation of the active material [47-49]. The latter usually consists of a chalcogenide 
material, such as Ge2Sb2Te5 (GST) [50]. The active material is usually in a crystalline phase, with a 
doped-semiconductor band structure and a relatively large conductivity [51,52]. The crystalline 
phase can be changed to amorphous by the application of an electrical pulse, called the reset pulse, 
which is large enough to locally induce melting in the chalcogenide material [53]. The amorphous 
phase has a high resistivity thanks to the pinning of the Fermi level at the midgap. The crystalline 
phase can then be obtained again by the application of a set pulse below the melting point, which 
causes the fast crystallization in the amorphous region thanks to the local Joule heating [53]. Fig. 2d 
shows the resistance-voltage (R-V) characteristic of a PCM, indicating the resistance R measured 
after the application of a pulse of voltage V to a device initially prepared in the amorphous phase. 
At relatively low voltage, the device shows a transition from the high-resistivity amorphous phase 
to the crystalline phase. For voltage above the melting point Vm, the resistance increases because of 
the increasing amorphization within the active layer. The PCM is generally operated by unipolar 
set/reset pulses, although bipolar operation of the PCM has also been reported [54]. Various 
chalcogenide materials have been proposed to date, most typically to increase the crystallization 
temperature with respect to conventional GST, thus enhancing the retention capability of the device. 
High-temperature materials include GeSb [55], InGeSbTe [56], and Ge-rich GST [57,58]. Similar 
to the RRAM, analogue control of resistance and MLC operation have been reported [59]. 



 
Fig. 2e shows the structure of a STT-MRAM device, consisting of a MIM stack with ferromagnetic 
(FM) metal electrodes, e.g., CoFeB, and a tunneling insulating layer, e.g., MgO. This structure is 
also known as a magnetic tunneling junction (MTJ), where the magnetic polarization in the two FM 
layers can be either parallel (P) or antiparallel (AP), resulting in a low or high resistance values, 
respectively. The different resistance is due to the coherent tunneling of spin polarized electrons, 
which has a high probability in the case where the FM polarization is parallel [60,61]. Of the two 
FM layers in the MTJ, one is the pinned layer, which is stabilized by the presence of adjacent 
magnetic layers, such as a synthetic antiferromagnetic (SAF) stack [62]. The other FM layer is 
instead free to change its polarization, which can be switched by the spin-transfer torque 
mechanism [63]. Fig. 2f shows the typical R-V curve of a STT-MRAM device, indicating an AP-to-
P transition at positive voltage and a P-to-AP transition at negative voltage. Note the V-dependent 
resistance of the AP state, which is due to the non-linear transport across the tunneling layer. The 
abrupt transition at the switching points indicate a binary behavior of the STT-MRAM, which 
therefore is hardly compatible with MLC operation and analogue-state storage. On the other hand, 
the FM polarization switching in the STT-MRAM is purely electronic, which enables a fast 
switching [64] and an extremely high cycling endurance [65]. 
 
Fig. 2g shows a FERAM, which consists of a MIM stack where the insulating layer is made with a 
ferroelectric (FE) material [66]. The electrical dipoles within the FE material can be oriented by 
applying an external bias, as shown in the hysteretical polarization-voltage (P-V) characteristic in 
Fig. 2h. In particular, applying a positive voltage to the top electrode results in a residual positive 
polarization Pr in the FE layer, while a negative voltage will lead to negative residual polarization -
Pr. The reversal of the dipole polarization occurs at voltages above the coercive voltage Vc. Note 
that the resistance is not sensitive to the FE polarization, thus the FERAM in Fig. 2g cannot be used 
as a resistive memory. On the other hand, the displacement currents induced by the polarization 
switching can be sensed externally to probe the FE state, which provides the basic read operation of 
the FERAM [66]. This read operation is, however, destructive of the pre-existing state, which 
makes the FERAM readout relatively expensive in terms of time and energy. Typical FERAM 
materials include PbZrTiO3 (PZT) [67], BiSrTiO3 (BST) [68] and doped HfO2 [69]. The discovery 
of FE properties of HfO2, which is a mainstream material in the front end of line of CMOS 
technology, has significantly revived the research on FERAM in the last 5 years. 
 

 
Fig. 3 Three-terminal synaptic memory devices. (a) A ferroelectric field effect transistor (FEFET), where the 
ferroelectric polarization of individual domains in the ferroelectric layer dictates the threshold voltage, thus 
serving as a nonvolatile memory and synaptic weight element. (b) Synaptic ionic transistor, where the 
application of a gate voltage signal induces migration of active ionic species (e.g., Li+) across the electrolyte, 
thus modifying the channel conductivity. (c) A spin-orbit-torque magnetic memory device (SOT-MRAM), 
where the current flowing across the heavy metal induces a change in the magnetic polarization in the 
adjacent ferroelectric layer, hence a change of resistance across the MTJ. (d) A memtransistor based on a 2D 
semiconductor, such as MoS2, where the application of a source-drain voltage causes dislocation drift, hence 
a change of the source-drain conductivity. Reprinted with permission from [70,74,77,82]. Copyright 2017 
IEEE, Copyright 2017 Wiley, Copyright 2014 AIP, Copyright 2018 Springer Nature Publishing.  
 

3.2 3-terminal devices 



Devices in Fig. 2 have a 2-terminal structure, which is practical in view of adopting a high density 
crosspoint architecture [14]. In many cases, however, memory devices can be associated with a 
transistor selector, which results in a 1T1R structure. The transistor gate thus introduces a third 
terminal, which may complicate the device structure and increase its footprint. However, the 
additional transistor improves the controllability of the memory state and prevents sneak paths in 
the array, which makes the 1T1R essential in most cases. Other device concepts or device structures 
show a 3-terminal architecture, as summarized in Fig. 3.  
 
Fig. 3a shows the ferroelectric field-effect transistor (FEFET) which consists of a MOS transistor 
where the gate dielectric is a FE layer [70,71]. The polarization state of the FE layer can be 
controlled by the gate voltage and affects the threshold voltage VT of the FEFET, which provides a 
straightforward, non-destructive read methodology. Second, the FEFET improves the compactness 
of the typical one-transistor/one-capacitor (1T1C) structure of the FERAM, and enables high 
density memory architectures such as the NAND arrays [68] and vertical 3D concepts [72]. HfO2-
based FEFET memory arrays have been recently demonstrated with 28 nm CMOS technology [73]. 
 
Fig. 3b shows a solid-electrolyte transistor, also known as electro-chemical random access memory 
(ECRAM), which consists of a transistor where the gate dielectric is made of a solid-state 
electrolyte for ion migration [74]. Typically, Li+ is used as migrating ion within a solid-state 
electrolyte, such as lithium phosphorous oxynitride (LiPON) [74]. The application of a positive gate 
voltage induces Li ion migration toward the LiCoO2 channel, where Li reduction and intercalation 
cause the conductivity to decrease, thus resulting in a smaller drain current. A negative gate voltage 
instead induces Li de-intercalation from the channel and a consequent increase of conductivity [74]. 
Thanks to the decoupling of the write and read paths, the device shows enhanced linearity of 
conductance update, which makes this device concept extremely promising as a synaptic connection 
in supervised neural networks. Organic electro-chemical transistors based on proton migration were 
also shown for flexible circuits [75]. Device scaling and ns-operation were demonstrated with Li+ 
ECRAM with WO3 channel, thus supporting this technology for fast, energy-efficient circuits [76].  
 
Fig. 3c shows the spin-orbit torque magnetic random access memory (SOT-MRAM) [77,78]. 
Similar to the STT-MRAM, the core concept in the SOT-MRAM is an MTJ, where the P or AP 
states of the FM layers dictate the resistance. To switch the magnetization state, instead, a current is 
fed across the bottom electrode, consisting of a heavy metal (HM) such as Pt [79] or Ta [80]. The 
horizontal current can induce an accumulation of spin-polarized electrons at the HM/FM interface, 
thus inducing the magnetization switching in the MTJ [79]. The current-induced spin accumulation 
is generally explained by the spin Hall or the Rashba effects [81]. Fast switching time of about 
0.4 ns was demonstrated by using a large current density of about 300 MAcm-2 in the HM electrode 
[79]. However, the large current is not fed through the sensitive MTJ, thus considerably extending 
the cycling endurance of the SOT-MRAM with respect to the STT-MRAM.  
 
Fig. 3d shows the memristive transistor, or memtransistor, consisting of a polycrystalline 2D 
semiconductor, such as MoS2, acting as a channel in a MOS transistor [82,83]. The application of a 
large source-drain voltage activates a resistance transition, which is explained by the migration of 
grain boundaries [83] or Li+ impurities [84] in the 2D semiconductor. As a result, the mem-
transistor can be viewed as a transistor with a memory, depending on the previous history of pulses 
applied across the channel. Neuromorphic properties of spike accumulation and spike timing 
plasticity have been experimentally evidenced [82]. 
 
 

4. Artificial synapses in ANNs 
 



Neuromorphic computing in the neural network of Fig. 1b requires both synapses and neurons. In 
the human brain, there is a ratio of about 10,000 between synapses and neurons, thus the synaptic 
element should be extremely small and energy-efficient to enable a cognitive computation with 
brain-like connectivity. To meet this goal, the emerging devices in Figs. 2 and 3 have been 
considered as potential artificial synapses in neural networks, in both ANN and SNN computing 
approach. 
 
In general, an artificial synapse serves as an electrical connection between a pre-synaptic neuron, or 
PRE, and a post-synaptic neuron, or POST. The conductance of the artificial synapse provides the 
synaptic weight that multiplies the PRE signal before it is fed to the POST, according to the formula 
[22]: 
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where yj is the input signal at the j-th POST, xi is the signal of the i-th PRE, and wij is the synaptic 
weight connecting the i-th PRE with the j-th POST. Such scheme naturally enables the 
implementation of algorithms requiring the summation of many individual contributions. Typically, 
resistive devices are organized in crossbar arrays [21], providing high integration density and high 
computational parallelism, which represent essential elements to efficiently implement deep 
learning algorithms. 
 
An example of a modern ANN, called deep neural network (DNN), is shown in Fig. 4. A DNN is a 
large neural network, composed of many neuron layers connected by synaptic weights in different 
connection schemes. For instance, Fig. 4 shows a typical fully-connected DNN, where all the 
neurons in one layer are connected to all the neurons in the subsequent layer, also referred to a 
multi-layer perceptron (MLP). Other implementations, instead, adopt the convolutional neural 
network (CNN) structure, where small sets of synaptic weights, organized in 2-D or 3-D kernels, 
are iteratively used to process and propagate information. The synaptic weights can be either 
positive or negative and must be trained with proper algorithms to perform a certain specific task, 
such as recognition of a dataset of objects or patterns. 
 
DNNs typically adopt the backpropagation algorithm to train the synaptic weights for a wide 
variety of tasks, such as image recognition, speech processing and machine translation. The 4-layer 
MLP in Fig. 4, for instance, is trained on an image classification task, such as the recognition of 
handwritten digits from the MNIST dataset [85]. The images from a training dataset are forward 
propagated through the network, providing an xi value for each neuron and a classification guess yj 
for the images. Such guess is represented by the output of the last-layer neurons and is compared to 
the expected, or correct answer gj, also known as the ‘label’. By subtracting the two quantities, an 
error dj = yj – gj is obtained and backpropagated through the entire network, allowing the 
calculation of the error dj for the neurons of each layer. Finally, the synaptic weights wij are updated 
according to the formula: 
 
Dwij = h·xi·dj,                       (2) 
 
where h is the learning rate. This procedure is then repeated for every training image, and the entire 
training set is iteratively presented for many training cycles, called epochs. However, to evaluate 
the quality of such training, the network must be tested on previously unseen patterns, namely the 
test dataset [86].  
 



Due to the large amount of weights typically involved in such networks, the training operation on 
CPUs and GPUs can become very expensive in terms of energy and time [87]. This is mainly 
because the multiple synaptic weights must be transferred between the memory and the processor, 
representing a major bottleneck (typically referred as “Von-Neumann bottleneck”) and preventing a 
fast and energy efficient training process. To overcome this issue, several digital-custom 
implementations have been recently developed [88] to speed-up the training or forward inference of 
such networks [89]. However, the most promising approach in terms of density, speed and energy 
efficiency is the implementation of neural networks with crosspoint arrays, as shown in Fig. 5. The 
main advantage provided by crossbar arrays of non-volatile memories is the efficient calculation of 
Eq. (1), enabling a strong acceleration of training and forward inference tasks.  
 

 
Fig. 4 Backpropagation algorithm within a multilayer fully-connected network. The network is trained by the 
backpropagation algorithm to classify images of a specific dataset, such as the MNIST dataset of handwritten 
digits. Input patterns are forward propagated, then the output results yj are compared with the correct answer 
gj. The errors dj = yj – gj are back-propagated to previous layer and used to control the synaptic weight 
update in the network based on Eq. (2). 
 

 
Fig. 5 Crosspoint array implementation of a neuromorphic circuit. (a) Synaptic weight is represented by a 
differential pair consisting of an array memory Gij and a reference memory Gr., which is preferred when the 
memory device exhibits analogue behavior in both increase and decrease conductance directions. In this 
case, updates are performed on the array device, while the other device is shared among array cells in the 
same row as a reference device. (b) Synaptic weight is represented by a differential pair consisting of two 
memory devices G+

ij and G-
ij, which is preferred when the memory device exhibits analogue behavior in one 

direction only. 



 
 
Fig. 5 shows a typical fully connected network implemented by crosspoint array of non-volatile 
memories. Here, voltage neuron signals Vi applied at the array rows induce currents Ij given by the 
Kirchhoff’s and Ohm’s laws, namely: 
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which thus describes the neural network fundamental property of Eq. (1). Since the synaptic weight 
wij in Eq. (3) can have both positive and negative sign, two conductances are generally needed to 
implement a single weight in hardware. For instance, the conductance in Fig. 5a is obtained as the 
difference between a tunable conductance Gij and a fixed reference conductance Gr, and the overall 
synaptic weight is thus given by wij = Gij – Gr. Two tunable memory elements with conductances 
Gij+ and Gij- are instead used in Fig. 5b, thus yielding wij = Gij+ - Gij- [21,90]. The scheme of Fig. 5a 
is adopted when a single resistive device can be tuned in analogue fashion for both conductance 
increase and decrease, whereas the scheme of Fig. 5b is instead preferred when the resistive 
memory device shows analog tuning capability in just one direction, e.g., the conductance increase 
for PCM [91] and the conductance decrease for filamentary RRAM [92]. Note that the architecture 
of Fig. 5a is more area efficient, since the reference device can be shared among an entire row. This 
structure is feasible for devices capable of analogue potentiation and depression, e.g., PCMO-based 
RRAM [93] and ECRAM memory devices [76]. In both circuits in Fig. 5, PRE neurons forward 
propagate information from row to column lines, and the POST neurons integrate the aggregate 
currents and apply a non-linear function f. 
 

 
Fig. 6 Vertical RRAM synapse. (a) Structure of the vertical array, where each cell is interposed between 
stacked horizontal Ti electrodes and vertical Ta electrodes deposited on the sidewall of a trench. (b) RRAM 
structure, including a TaOx/TiO2 stack as switching layer. (c) Characteristics of pulsed potentiation and 
depression, indicating repeatable conductance window of about 35% with gradual switching. Reprinted with 
permission from [94,96]. Copyright 2013 IEEE, Copyright 2016 IOP. 
 
An efficient and accurate training can be obtained by adjusting the weight correction Dwij to be 
linearly dependent on the product of x and d, as expressed in Eq. (2). For this purpose, a high 
degree of linearity is requested to the weight updates of the memory devices. Such highly linear 
update of the memory conductance can in principle be obtained with any analogue resistive device 
by a closed-loop scheme, such as a program-verify algorithm to accurately update the device 



conductance. However, the degradation of speed performance becomes unacceptable, thus steering 
the programming technique towards an open-loop tuning. In the recent years, there has been a clear 
progress in improving the linearity of synaptic devices by means of pulse-width modulation or 
material stack engineering [94]. For instance, Fig. 6 shows an example of a vertical RRAM (a) 
where the switching layer consists of a stacking of TaOx and TiO2, interposed between a horizontal 
Ti electrode and a vertical Ta top electrode (b) [94]. This type of vertical RRAM is particularly 
promising in view of the superior scaling with respect to the horizontal stacking of horizontal 
crosspoint arrays [95]. Fig. 6c shows the corresponding weight update characteristics under open-
loop application of pulses with a fixed voltage, indicating that a proper engineering of the RRAM 
stack enables good linearity and high repeatability of analogue update [96]. 
 

 
Fig. 7 Synaptic weight update characteristics for (a) TaOx/TiO2, (b) Pr1-xCaxMnO3, or PCMO, and (c) Ag:a-
Si synapses, indicating various degree of linearity, symmetry and window of the conductance change. Pulses 
of fixed positive/negative voltage were applied during potentiation and depression, respectively. Reprinted 
with permission from [97]. Copyright 2015 IEEE. 
 

 
Fig. 8 Characteristics of the ECRAM synapse device. (a) The update characteristics indicate low non-
linearity with low coefficient n. (b) Summary of nonlinearity coefficients comparing ECRAM with various 
RRAM and PCM. (c) Summary of the energy per spike during potentiation/depression, as a function of the 
device conductance, the latter providing a metric for the energy consumption during spike transmission. 
Reprinted with permission from [76]. Copyright 2018 IEEE. 
 
 
Fig. 7a shows the weight update characteristics for the TaOx/TiO2 bilayer stack of Fig. 6, where the 
depression characteristic is shown with reversed pulse count [94,97]. The weight update 
characteristics are compared with other synaptic RRAM devices, namely polycrystalline Pr1-

xCaxMnO3 (PCMO) [93,98], and (c) amorphous Si with an Ag top electrode [99]. Pulses with equal 
voltage were applied during both potentiation and depression. In general, RRAM synapses show 



some degree of non-linearity in both potentiation and depression, which might result in inaccuracy 
for image and speech recognition [93].  
 
The synaptic linearity can be improved by increasing the complexity of the synaptic structure. For 
instance, it has been shown that a one-transistor/2-resistor (1T2R) structure can improve the update 
linearity, despite the increased synapse area because of the additional transistor and resistance 
[100]. Alternatively, the update linearity is generally improved in synaptic transistors as in Fig. 3b. 
These 3-terminal structures such as Li-based memories [74,76] or organic based memories [75], can 
achieve a high linearity of potentiation/depression, despite a relatively small window of 
conductance. Fig. 8a shows the update characteristics for a Li-based ECRAM device, indicating an 
almost linear behavior for both potentiation and depression across a relative window by a factor 3 
[76]. From Fig. 8a, a linearity factor can be defined as the coefficient n in the potentiation formula 
G = Gmin + G0(1+exp(-np)), where Gmin is the minimum conductance, G0 is a reference conductance 
describing the synaptic window, and p is the normalized number of pulses [101]. Fig. 8b 
summarizes the linearity factor n for various synaptic stacks, including TaOx/TiO2 RRAM [94], 
AlOx/HfO2 RRAM [102], PCMO [93,98], Ag/a-Si RRAM [99] and capacitor-based structures 
[103]. PCM synapses are also included in the comparison, although they can provide weight update 
in one direction only, namely potentiation by gradual crystallization of the phase change material 
[21]. Among all materials reported in Fig. 8b, ECRAM combines excellent linearity and symmetry 
of the potentiation/depression update. In addition, the update and read paths can be separated in the 
device, corresponding to the gate-channel and the source-drain terminals, respectively, thus 
enabling a good reliability and low energy operation. This is supported by Fig. 8c, showing the 
energy per spike for weight update as a function of the synapse conductance, which describes the 
energy during the feedforward operation of the neural network. The figure compares various 
synaptic technologies including ECRAM [76], TaOx/HfAlyOx RRAM [104], AlOx/HfO2 RRAM 
[102], PCMO [105], HfOx/TiOx [106], HfO2 [107], and PCM [108]. ECRAM devices show a low 
conductance, enabling low current operation of the neural network in the inference mode, combined 
with a low energy per spike during weight update, thus offering a promising solution as a synaptic 
technology with high energy efficiency. 
 
In addition to linearity, symmetry and energy efficiency, another key concerns for synaptic 
implementations is the granularity of conductance steps and the associated variability. To increase 
the available number of steps and reduce the stochastic variability, a novel weight structure 
combining multiple PCM devices in parallel was proposed [108]. The overall weight is obtained by 
the summation of all the parallel conductance. During training, the weight is updated by 
programming only one device each time. This implementation increases the overall dynamic range 
of the weight, since the maximum and minimum achievable weights are now N times larger, where 
N is the number of parallel memory devices in the synapse. The single conductance step is instead 
determined by a single device, thus reducing the impact of device variability [108]. 
 
Fig. 9a shows an advanced weight structure consisting of a differential pair of PCM devices, with 
conductances G+ and G-, and a third conductance g of a capacitance-controlled transistor. These 
synaptic conductances have different significance within the overall synaptic weight W, which is 
given by the formula [109,110]: 
 
W = F·(G+- G-) + g – gshared,         (4)  
 
where F is a gain factor for the multiplication of the PCM weight. As a result, the PCM devices are 
used as the most significant pair (MSP), which is amplified by the gain factor F = 3, which thus 
increases the maximum and minimum implementable weights. The least significant pair (LSP) is 
instead given by g-gshared, where gshared is a reference conductance shared by all the synaptic 



elements in the same row. The LSP is implemented by using 3-transistor/1-capacitor (3T1C) CMOS 
structures. The weight update during training is performed on the LSP by increasing or decreasing 
the amount of charge on the capacitor. The latter capacitor drives the gate of a MOS transistor, 
which results in a tunable source conductance. The capacitor is charged by a p-MOS and discharged 
by an n-MOS, thus the conductance updates have similar amplitudes in either potentiation or 
depression. This enables the sharing of the reference 3T1C structure with conductance gshared among 
many weights, thus resulting in a high integration density [109]. Once every thousands of training 
epochs, the total weight W composed by the MSP and LSP is read and transferred into the PCM 
MSP, thus preserving the non-volatility of the overall weight. The LSP is then reset, enabling 
further training without the risk of capacitor saturation. Since the transfer operation is infrequent, 
the PCM devices can be programmed using a closed-loop procedure which ensures accurate weight 
programming [109]. The reduced number of PCM programming steps also allows to minimize any 
possible degradation due to potentiation/depression cycles. 
 

 
Fig. 9 Advanced synaptic structure to improve linearity. (a) The synaptic weight is implemented using two 
resistive devices, such as PCMs, and a 3-transistor/1-capacitor (3T1C) structure. The conductance g of the 
3T1C structure represents the LSB, which is regularly updated, whereas the PCM represents the MSB, which 
is updated only once every 1000 cycles. (b) A sample of the MNIST dataset for training and testing the 
accuracy of the neural network. (c) Accuracy for learning the MNIST dataset, indicating that testing results 
are equivalent to TensorFlow results. Reprinted with permission from [109]. Copyright 2018 Springer 
Nature Publishing. 
 
 
The weight structure in Fig. 9a allows to execute supervised training with conventional small and 
medium-size datasets such as MNIST (Fig. 9b), MNIST with noise, and CIFAR-10/100, and 
achieve software-equivalent training accuracy (Fig. 9c) [109]. A similar structure with multiple 
conductance of varying significance can be implemented with any pairs of non-volatile memories, 
thus allowing to replace the relatively bulky 3T1C circuits. The introduction of different pairs of 
conductance diversifies the requests on resistive devices in LSP or MSP. For example, while high 
linearity and endurance are required for LSP devices, weak retention is acceptable since the transfer 
operation preserves the overall weight value. On the other hand, devices in MSP should show a 
good retention, while linearity is not necessary, due to the closed-loop programming procedure 
[109, 111]. 
 

5. Artificial synapses in SNNs 
Most practical applications of neural networks have a typical ANN structure as shown in Fig. 4 and 
adopt a supervised technique for training the network on specific dataset. However, this type of 
neural network is not similar to the brain, where learning does not take place with a supervised 
process such as the backpropagation algorithm. Brain-inspired learning typically occurs by 



unsupervised or semi-supervised processes, such as the spike-timing dependent plasticity (STDP) 
[29,30,112-116] or spike rate dependent plasticity (SRDP) [117-120]. In these processes, the 
simultaneous spiking activity at 2 neurons can lead to a potentiation of the synapse connecting 
them. This can be referred to as a generalized Hebb’s learning rule, where ‘neurons that fire 
together wire together’, meaning that 2 neurons which are active in response to the same event 
should be linked by a relatively strong synaptic connection [121-122]. A similar concept is the 
associative memory, where the simultaneous spiking of two neurons within a recurrent network is 
awarded by synaptic potentiation to strengthen their respective synaptic link. Note that Hebbian and 
STDP rules are dictated by time, which is an essential variable describing the information within a 
SNN, as opposed to the synchronous timing in an ANN.  
 
Fig. 10a illustrates the STDP learning rule, where the synaptic weight of a synapse is dictated by the 
relationship between the PRE spike time tPRE and the POST spike time tPOST. In particular, if the 
POST fires after some time Dt = tPOST – tPRE > 0 from the PRE spike, then the synaptic weight 
increases, while if Dt is negative, i.e., the PRE spike follows the POST spike, then the synaptic 
weight decreases. This is summarized in Fig. 10b, showing the change of synaptic conductance as a 
function of Dt: long-term potentiation (LTP) with an increase of conductance occurs for Dt > 0, 
whereas long-term depression (LTD) is seen for Dt < 0. For relatively long delays Dt, no synaptic 
change is observed. Fig. 10c shows experimental characteristics of STDP from the hippocampus, 
supporting the relevance of STDP as a learning rule in biological networks [29]. 
 

  
Fig. 10 Spike timing dependent plasticity (STDP) rule. (a) STDP controls the weight update within a synapse 
based on the timing between the spikes of the presynaptic neuron (PRE) and the postsynaptic neuron 
(POST). (b) Typical STDP characteristic, where the conductance variation ΔG is positive (long-term 
potentiation) for positive delay (POST spike following the PRE spike), and it is negative (long-term 
depression) for negative delay (PRE spike following the POST spike). (c) Data from in vivo biological 
samples from the hippocampus provide direct confirmation of the STDP. Reprinted with permission from 
[29]. Copyright 1998 Journal of Neuroscience. 
 
 

5.1 Overlap STDP  
There have been extensive efforts to implement STDP in hardware synapses adopting emerging 
memories. A synchronous protocol for STDP was proposed according to a time-division 
multiplexing (TDM) of neuronal signals passing through a synapse, the latter consisting of a bipolar 
switching memory such as a RRAM [123]. The proposed scheme allows to separate the two major 
roles of the synapse, namely (i) transmission of neuron spikes with proper weight, and (ii) learning 
or plasticity, where the weight is adjusted in response to the timing of PRE and POST spikes. The 
adjustment occurred via overlap of pulses for either LTP or LTD using pulse width modulation 
(PWM) of spiking signals. For instance, overlapping pulses at the two terminals of the RRAM 



device can result in a positive voltage drop across the memory device exceeding the threshold for 
set transition, thus leading to LTP. A similar concept was later introduced to implement STDP in 
real RRAM devices with Ag as top electrode and amorphous Si as switching layer [99]. In this type 
of devices, which are generally referred to as conductive bridge random access memory (CBRAM), 
the CF originated from migrating cations from the top electrode, such as Ag [124-128] or Cu [129-
132].  
 

 
Fig. 11 Scheme for an overlap STDP with a RRAM synapse. (a) Trains of spikes generated by the PRE and 
the POST result in a potential difference across the synapse with a large positive pulse for Dt > 0, or a large 
negative pulse for Dt < 0. (b) Measured conductance change as a function of the spike delay Dt, indicating 
potentiation for Dt >0, and depression for Dt < 0. Reprinted with permission from [133]. Copyright 2011 
IEEE. 
 
 
Fig. 11 shows a more straightforward approach to STDP implemented in a RRAM device with 
HfO2 switching layer [133]. Here, the shape of the neuron spikes is tailored to achieve a certain 
STDP response by overlap of pulses [13]. For instance, Fig. 11a shows that each spike consists of a 
train of 6 pulses, the first being negative, while the following 5 have decreasing positive 
amplitudes. Ideally, none of the pulses within each spike alone can result in a change of 
conductance, as the threshold voltage for set and reset transitions in the RRAM are larger than the 
spike amplitude. However, the application of 2 partially-overlapping spikes at the 2 terminals of the 
RRAM device results in a possible overlap exceeding the threshold for set and reset transitions. For 
instance, a large positive voltage arises from the spike overlap for Dt > 0, thus resulting in a set 
transition and consequent LTP. On the other hand, a large negative voltage exceeding the reset 
threshold occurs for Dt < 0, thus leading to a reset transition, or LTD. Fig. 11b shows the measured 
conductance change DG for a HfO2 RRAM device, indicating LTP and LTD for positive and 
negative spike delay, respectively [133]. This type of overlap-based STDP has been applied to 
several device concepts, including metal-oxide RRAM [134-135], PCM [90,136,137], STT-MRAM 
[138], FeRAM [139], and also Flash memories with a floating gate [140,141] or a nanocrystal 
storage layer [142]. Both multiple pulse trains or single pulses were assumed for the spike in the 
STDP [116]. The pulse shape can be adapted to achieve the desired STDP function, where LTP and 
LTD are obtained for a certain range of Dt [13]. 
 
Despite the overlap STDP scheme of Fig. 11 can be applied to a wide variety of synaptic devices 
capturing various pulse shapes and STDP characteristics, the two-terminal device structure in the 
figure might have some drawbacks for RRAM synapses. For instance, typical filamentary switching 
requires a current limitation during set, which is typically achieved by adding a series transistor in a 
1T1R structure [143]. The voltage driven set transition in Fig. 11 might thus cause uncontrolled 
growth of the CF with detrimental impact on synapse reliability. To overcome the limitations of the 
two-terminal synapse in Fig. 9, the 1T1R synaptic circuits were proposed for overlap STDP 
[91,92,144]. In a 1T1R structure, the larger number of terminals allows to independently control 



spike transmission and plasticity, while offering the capability to limit the RRAM current during 
set/potentiation for improved reliability. The 1T1R array also allows for a better control of the 
synaptic array, thanks to the select transistor in series with the memory element, either a RRAM 
[92,144] or a PCM [91]. 
 
Fig. 12a shows a RRAM synapse with 1T1R structure [145]. The RRAM synapse has 3 terminals 
including (i) the transistor gate, connected to the input node of the PRE, (ii) the transistor source, 
connected to the input node of the POST, and (iii) the top electrode of RRAM device. The latter is 
connected to the POST for the control of transmission and plasticity phases of the RRAM synapse. 
The PRE spike of amplitude VG at the transistor gate induces a synaptic current, as the top electrode 
voltage VTE is normally biased to a relatively small value below the threshold for set/reset processes 
[144]. The synaptic current is proportional to the synaptic weight, namely the RRAM conductance, 
as the gate voltage is large enough to prevent any significant voltage drop across the transistor. The 
current flows across the transistor and enters the POST input node, which behaves as a current-
summing virtual ground. The POST can thus integrate the synaptic current from several synapses, 
all connected to the same input node, and fire in correspondence of the internal potential reaching a 
given threshold [145]. At fire, the POST applies a feedback spike to the top electrodes of all 
synapses activating STDP process. Fig. 12b shows the PRE spike (top) and the POST (feedback) 
spike (bottom) as a function of time, for the case of a small positive delay Dt between the spikes 
[145]. The feedback spike includes a positive pulse and a negative pulse, exceeding the threshold 
for set and reset transition of the RRAM device. For Dt > 0, there is an overlap between the PRE 
spike and the positive pulse of the POST spike, thus causing a set transition, or LTP. On the other 
hand, for Dt < 0, the overlap occurs at the negative top electrode voltage, which thus induces a reset 
transition, or LTD. Note that the transistor controls the current during set transition, thus setting a 
maximum limit to the RRAM conductance after LTP. On the other hand, LTD is self-limited by the 
highest resistance of the HRS, typically from one to two decades larger than LRS. Fig. 12c shows 
the STDP characteristics, namely the conductance change h = log(G/G0), where G is measured 
before the STDP event and G0 is measured before the STDP event, as a function of Dt and G0. The 
data generally indicate that the synapse is potentiated for Dt > 0 and depressed for Dt < 0, although 
the amount of LTP/LTD depends on the initial conductance. For instance, LTD is inhibited when 
the initial state is HRS, since the conductance cannot be decreased below a certain minimum 
amount. Similarly, LTP is inhibited when the device is initiated in the LRS, thanks to the 
compliance current controlled by the transistor. 
 
The 1T1R synapse can be generalized to other memory elements by changing the feedback spike of 
Fig. 12b. For instance, the feedback spike includes 2 positive pulses in the 1T1R PCM synapse, the 
first being a relatively small set pulse below the melting voltage, whereas the second is above 
melting voltage to induce a reset process [91]. A possible limitation of the STDP characteristics in 
Fig. 12c is the rectangular shape, instead of the exponential dependence on Dt [13]. For an 
improved control of the STDP characteristics, the two-transistor/1-resistor (2T1R) structure was 
proposed for RRAM [146] or PCM [147]. In the 2T1R synapse, the two gates activate the memory 
element for either transmission or plasticity, while the top electrode node is connected to the PRE. 
Applying a time-dependent gate voltage at the plasticity transistor from the POST, one can freely 
change the set transition current at the device, thus shaping the time dependence of the LTP. The 
time dependence of the LTD can be instead dictated by the top electrode voltage from the POST 
[146]. The 1T1R synapse of Fig. 12 was also adapted to SRDP, with the addition of few transistors 
resulting in a four-transistor/one-resistor (4T1R) structure [148,149].  
 
 



 
Fig. 12 Scheme for an overlap STDP with a 1T1R structure. (a) Circuit scheme for the 1T1R synapse, where 
the PRE spike is applied to the transistor gate, while the POST spike is applied to the top electrode. The 
spike current is activated by the PRE spike and fed into the POST through the bottom electrode. As the 
integrated PRE spikes lead to fire, the POST spike is applied to the TE, thus inducing potentiation or 
depression depending on the spike delay Dt. (b) PRE and POST spike for Dt > 0, where the resulting overlap 
pulse is positive, thus inducing set transition, or potentiation. (c) Measured conductance ratio h = log(G/G0) 
as a function of initial resistance R0 and spike delay Dt, indicating potentiation for Dt >0, and depression for 
Dt < 0. Reprinted from [145].  
 
 

 
Fig. 13 Unsupervised learning in a one-layer perceptron with 1T1R synapses. (a) Illustration of the one-layer 
perceptron, where a pattern is presented at the input neuron layer (PRE) via spikes, while the single POST 
integrates the spiking currents across each synapse. (b) Examples of 4x4 visual patterns and typical noise 
presented at the PRE layer. (c) Initial and final synaptic weights after sequential presentation of three 
patterns. (d) Summary of the presented patterns during three sequential phases. (e) Time evolution of the 
synaptic weights for pattern synapses, i.e., those belonging to the pattern, and background synapses, i.e., 
those not belonging to the pattern. Pattern and background synapses display potentiation and depression 
thanks to unsupervised learning. Reprinted from [145]. 
 
 
STDP rule is an enabling algorithm for unsupervised learning patterns in space [91,144,145,148, 
150-155] and space/time [156]. Fig. 13a shows a prototypical neural network, namely a one-layer 
perceptron with 16 PREs and one POST, to test the ability to learn via STDP [145]. This network 
was implemented in hardware by using RRAM synapses with 1T1R structure, as the one described 
in Fig. 12. PRE spiking signals were applied to the transistor gate electrodes, while all synaptic 
currents were summed in real time and integrated by a microcontroller Arduino Due to serve as the 
POST. At fire, POST feedback spikes were applied to all the synaptic array, thus resulting in LTP 
and LTD, depending on the relatively delay between PRE and POST spikes according to STDP. 
Fig. 13b shows the applied spikes, consisting of a space 4x4 pattern which was changed in time 
during three sequential phases of training of the network. Unsupervised learning is inherently 
stochastic, meaning that noise patterns must also be submitted randomly to the network to induce 
LTD as a result of uncorrelated PRE noise spikes following the POST fire. Fig. 13c shows the 



synaptic conductance before the training session, and after each of the three training phases, always 
indicating the correct learning of the input pattern with no remaining traces of the previous pattern. 
The ability to ‘forget’ the pattern from the previous phases can be attributed to the LTD at the 
background positions within submitted pattern, where only random noise is presented, thus 
inducing LTD [145]. Fig. 13d summarizes the submitted spikes, including both pattern and noise 
spikes, and Fig. 13e shows the time evolution of all the measured synaptic weights. The ability for 
unsupervised learning can be extended to larger networks, e.g. to enable learning of realistic input 
patterns such as the MNIST data set [91,157,158]. The STDP rule in 1T1R synaptic RRAM was 
also shown to support spatio-temporal learning [156] and associative memory behavior within a 
recurrent network [159]. 
 

 
Fig. 14 Scheme for a non-overlap synapse with a RRAM synapse. (a) Schematic of the atom switch RRAM 
consisting of a conductive bridge RRAM where the applied pulse induces migration of Ag cation. The pulse 
frequency dictates the transition from STP to LTP, similar to the biological synapse. (b) Measured 
conductance (top) in response to a low-frequency stimulation (bottom) indicating STP with fast decay after 
each pulse. (c) Measured conductance (top) in response to a high-frequency stimulation (bottom) indicating 
LTP reaching permanent increase of conductance. Reprinted with permission from [161]. Copyright 2011 
AAAS. 
 
 

5.2 Non-overlap STDP  
The STDP learning rule by overlapping spikes is generally robust and reliable, however it also has 
drawbacks in terms of energy consumption and pulse-width. In fact, the PRE spike pulse-width 
must be at least the same as the scale of delay time of the STDP characteristics in Fig. 12, because 
there is no memory effect taking place in the RRAM element after the end of the PRE spike. The 
long spike pulse-width results in a large energy consumption during the spike, as well as an 
excessive occupation of interconnect lines in address-event-representation (AER) architectures 
which are typical for multicore SNNs [160]. 
 
To overcome the limitations of the overlap learning scheme and enable the development of non-
overlap neuromorphic devices, the inherent memory properties of emerging memories can be 
considered. Fig. 14a shows a schematic of an atom-switch RRAM, consisting of a stack of a metal 



top electrode, an Ag bottom electrode, and an Ag2S film as solid-state electrolyte [161]. Differently 
from the CBRAM device, a vacuum nanogap is interposed between the top electrode and the solid 
electrolyte. The application of voltage pulses to the top electrode can lead to the formation of an Ag 
atomic bridge across the nanogap [162]. As shown in Fig. 12a, the atomic switch can act as an 
artificial synapse since repeated pulses can lead to the gradual formation of an atomic bridge, 
according to a sequence of a first phase of short-term potentiation (STP), followed by a second 
phase of LTP [161]. This dynamic behavior can also lead to SRDP, where STP or LTP behaviors 
are observed depending on the spiking frequency. In particular, the application of spikes with 
relatively low frequency results in STP, where the RRAM conductance increases temporarily, then 
decays within the period before the next spike is applied (Fig. 14b). On the other hand, the 
application of spikes at higher frequency induces LTP, as each spikes contributes an additional 
increase of conductance reaching a maximum value of about 80 µS after just 5 spikes (Fig. 14c). 
 

 
Fig. 15 Non-overlap synapse based on second-order memristor. (a) Schematic of the second-order memristor 
where the application of a first stimulus causes a temporary increase of conductance, followed by a 
spontaneous decay. The application of a subsequent stimulus can induce a permanent conductance change. 
(b) Illustration of the second order memristor dynamics, where the application of a sequence of two spikes 
can lead to potentiation only if the spike delay Dt is sufficiently short as a result of the second-order 
memristor dynamics. Reprinted with permission from [163]. Copyright 2015 ACS. 
 
Similar dynamic effects have been reported in RRAM devices. Fig. 15a schematically illustrates the 
concept of second-order memristor, namely a RRAM synapse which can learn depending not only 
on the pulse amplitude, but also on the time delay between two successive spikes [163]. Namely, if 
the time delay Dt between two pulses with relatively low amplitude is long, no conductance change 
is observed, whereas the conductance increases if the second pulse is applied at short time delay 
from the first one. This second-order dynamic behavior has been explained by the role of the local 
temperature within the device: when the second pulse is applied at short delay after the first one, the 
device temperature is still relatively high, due to the limited thermal time constant which was 
estimated around 500 ns [163]. The local high temperature thus assists the ionic migration at the 
origin of the conductance change, which could lead to non-overlap STDP and SRDP process in a 
Pd/Ta2O5-x/TaO2/Pd RRAM synapse [163]. 
 
Fig. 16a shows a similar concept for a non-overlap synapse based on a one-selector/one-resistor 
(1S1R) structure, where the resistor device is a nonvolatile RRAM, while the selector device is a 
volatile RRAM [164]. The volatile RRAM, also referred to as diffusive memristor, consists of a 
stack of Ag top electrode and an oxide solid electrolyte, such as SiOx [42], SiON [164] and HfOx 
[165]. In these devices, similar to the atomic switch in Fig. 14, the CF formed by the application of 
a positive voltage pulse to the top electrode spontaneously disconnects after a characteristic 
retention time in a variable timescale from few ns [165] to the µs or ms range [166]. This volatile 
behavior has been explained in terms of the impact of the mechanical stress surrounding the CF 
[128] and the surface tension aiming at minimizing the surface-to-volume ratio of the metallic 
filament [164,167].  
 



The combination of volatile and nonvolatile RRAM devices in the synapse of Fig. 16a enables 
SRDP as summarized by the weight change Dw as a function of time separation between spikes tzero 
in Fig. 16b. The dependence on spiking frequency can be explained by the competition between 
synaptic potentiation induced by the electric field during the spike, and synaptic relaxation induced 
by surface diffusion during the waiting time tzero [168]. Similarly, a non-overlap concept for STDP 
was demonstrated, as summarized in Fig. 16c and d [164]. These and other artificial synapses based 
on the rich physics of emerging memory devices might spur the development of novel 
neuromorphic systems which can parallel the energy efficiency and parallelism of the human brain. 
 

 
Fig. 16 Non-overlap synapse based on volatile RRAM, also called diffusive memristor. (a) Schematic of the 
1S1R synapse, consisting of a volatile RRAM (1S) and a nonvolatile RRAM (1R), where PRE and POST 
spikes are applied, similar to a biological synapse with neurotransmitters and receptors. (b) Conductance 
change Dw as a function of the spike delay for a train of spikes. Potentiation decreases with increasing delay 
between spikes, thus mimicking the SRDP of biological synapses. (c) Illustration of the sequence of POST 
spike followed by PRE spike (top), or the sequence of PRE spike followed by POST spike (bottom), with a 
delay Dt between the spikes. (d) Conductance change as a function of the delay between PRE and POST 
spike, showing STDP dynamics similar to the biological synapse. Reprinted with permission from [164]. 
Copyright 2016 Springer Nature Publishing. 
 
 

6. Neuron circuits 
The synapse is generally assumed to serve as passive element to store the weight, while the neuron 
plays the role of active element executing current summation, integration and threshold firing. Due 
to the large area occupation and power consumption that CMOS circuits require for neuron 
implementation, it is desirable to follow a different approach where portions of neurons 
functionalities could be realized with compact and low-power resistive devices. As an example, the 
integration of spikes in a spike-based network, which is typically performed with large capacitors 
receiving current contributions, has been recently demonstrated via emerging memory devices 
[169]. A similar type of accumulating neuron has been proposed by using ReRAM devices based on 
PCMO [170] and Ag/SiON stack [171]. 
 
Fig. 17 shows a possible implementation of an integrating neuron using a PCM device [169]. While 
conventional CMOS integrators rely on capacitive elements to accumulate charge induced by 
voltage or current spikes, this type of memory-based neuron integrates the voltage spikes by 
inducing a partial crystallization within the amorphous volume, as shown in Fig. 17a. Here, each 
voltage pulse leads to a local Joule heating within the memory device, thus resulting in an 
increasing crystallization by nucleation and/or growth of the crystalline phase. Since the crystalline 



phase has a lower resistivity than the amorphous phase, the PCM conductance increases at each 
step, thus serving as an internal membrane potential of the biological neuron. When the 
conductance reaches a threshold, a fire event is triggered, corresponding to an output voltage spike 
generated by the neuron circuit. In addition, the PCM device is reset back to the amorphous phase, 
as shown in Fig. 17b, thus allowing to operate the spike integration in the next cycle. The 
modulation of the voltage pulse in terms of voltage amplitude and pulse-width leads then to 
different and controllable firing rates.  
 

 
Fig. 17 Phase change neuron. (a) PCM conductance as a function of the number of applied spikes, indicating 
a gradual increase due to the growth of the crystalline phase within the active region of the phase change 
material. (b) Conductance change as a function of the number of spikes, or various pulse width (top: 20 ns, 
bottom: 50 ns) and amplitude (left: 2 V, right: 4 V). The conductance increases until it exceeds a certain 
threshold, then the low conductance is restored by a reset operation. (c) Synaptic weight for two distinct sets 
of PCMs, corresponding to active synapses where the applied spikes induce potentiation, or inactive spikes 
leading to depression. (d) Number of spikes to reach the threshold as a function of the pulse width. Reprinted 
with permission from [169]. Copyright 2016 Springer Nature Publishing. 
 
 
Note that the PCM device is only suitable for integration, while an additional CMOS circuit is 
needed to provide the spike generation and the optional refractory period. Based on this concept, the 
authors demonstrated a single layer perceptron specialization with STDP algorithm and one PCM 
neuron. This is illustrated in Fig. 17c, showing the conductance of two distinct families of synapses, 
corresponding to synapses being active within the pattern, thus receiving potentiation, and synapses 
being non-active because not involved in the pattern channels, thus receiving depression [169]. 
Another crucial feature for brain-inspired artificial neurons is the intrinsic stochasticity of 
integration and fire. To this purpose, the PCM firing pulses were shown to feature a natural 
stochastic behavior, as every reset operation results in a statistically different atomic structure 
within the amorphous phase, thus causing variable conductance paths and crystallization times 
during integration, hence random neuron fire events. Fig. 17d reports the distribution of times 
between successive fire events as a function of the input voltage pulse-width, which supports the 
ability to control the amount of stochasticity by changing the programming conditions [169]. 
 



 
 
Fig. 18 Mott insulator neuron. (a) Schematic of the neuron circuit including two coupled relaxation 
oscillators based on NbOx RRAM. (b) I-V characteristics of the NbOx RRAM with crosspoint structure 
(inset). The curve indicates threshold switching from the off state to the on state, followed by a return back 
to the off state at the characteristic holding voltage of about 1.3 V. (c) Oscillating dynamics of the neuron. 
As the DC bias voltage increases, the fire rate increases as a result of the relaxation oscillator dynamics. 
Reprinted with permission from [173]. Copyright 2013 Springer Nature Publishing. 
 
Many learning schemes in SNNs, such as STDP, require neurons with leaky integrate-and-fire 
functionality, to elaborate the incoming spike and provide signals to the next neuron layers. Other 
computing schemes instead rely on neurons emitting a train of spikes with controllable rate. 
According to the neuron model of Hodgkin and Huxley [172], the cell membrane releases an action 
potential with a specific shape and a refractory period. Volatile memory devices enable the 
implementation of such neuron by their switching and recovery processes [173]. Fig. 18a shows an 
example of neuron circuit implemented with a couple of RRAM devices based on NbO2, described 
by the I-V curves in Fig. 18b [173]. NbO2 -based RRAM devices are characterized by a typical 
threshold switching behavior, where the device shows a transition from the off-state to the on-state, 
followed by a transition back to the off-state [174-176]. Combining one or more threshold switches 
with parallel capacitor as in the circuit of Fig. 18a thus results in controlled relaxation oscillations 
which can be adopted to generate spike trains with various shape. The neuron circuit of Fig. 18a is 
in fact able to generate a time-oscillating dynamics thanks to a constant input current. Fig. 18c 
provides a comparison of experimental and simulated results, where a neuron biased at a constant 
current I = 20 µA delivers spike trains with tunable inter-spike intervals depending on the 
capacitance values C1 and C2 [173]. 
 



 
Fig. 19 Magneto-resistive neuron. (a) Schematic of a superparamagnetic junction, where a bias current IDC 
induces an oscillating dynamics due to magnetic precession. (b) Oscillating output voltage as a result of the 
resistance change due to the MTJ effect. (c) Amplitude of the voltage oscillation as a function of IDC. (d) 
Neuron circuit combining a DC bias and an external stimulation. (e) Typical input/output voltage, where a 
constant voltage input results in an oscillating output voltage with variable amplitude. Reprinted with 
permission from [177]. Copyright 2017 Springer Nature Publishing. 
 
 
Although the NbOx oscillating neuron shows excellent agreement with biological neurons, the need 
for integrated capacitors prevents easy scalability toward very high density. For this reason, 
achieving a neuron with oscillating functionalities inherently in a single device is desirable.  
Fig. 19a shows an example of a single nano-device oscillator [177]. The device structure consists of 
two ferromagnetic layers separated by a non-ferromagnetic material, such as a MgO tunneling 
barrier. The applied current flows across the bottom layer which shows a fixed in-plane 
magnetization. The bottom layer causes spin-polarization of the flowing electrons, which eventually 
cause the rotation of the magnetic polarization of the top ferromagnetic layer. The rotation of the 
magnetization leads to a variation in the device electrical resistance due to tunneling magneto-
resistance (TMR) effect [60], with a consequent oscillation of the voltage drop across the device, as 
shown in Fig. 19b. Fig. 19c shows the amplitude of the voltage oscillations as a function of the bias 
current, indicating that the oscillation amplitude increases with the applied current [177]. This 
nanomagnet oscillator thus provides a remarkable scheme for controllable spiking neurons with 
extremely small area and high density. 
 
Based on this principle, the input information can be sent to the oscillator by superposing a signal 
VIN to a constant current IDC. The input signal thus causes a modulation of the oscillation amplitude, 
as shown in Figs. 19d and e. Interestingly, the envelope curve Ṽ(t) in Fig. 19e shows a relaxation 
time on the scale of tenths of nanoseconds providing a memory effect which can be used to perform 
computation [177]. In fact, the state of downstream neurons in a trained neural network depends on 
the state of neurons in the previous layer. Similarly, the same concept can be translated in time, 
where the state of a neuron in the future depends on the state of the same neuron in the past [177]. 
Based on this concept, a neural network adopting a single oscillating nanomagnet neuron allows to 
recognize audio waveforms of single spoken digits pronounced by five female speakers [177]. A 
similar concept of oscillating nanodevice was proposed by harnessing random telegraph signal 
within a single RRAM device [178]. These results support memory devices as a very promising 
approach for small-area neuron circuits, where computation takes place via the inherent device 
physics.  



 
7. Conclusions and outlook 

Neuromorphic circuits are gaining momentum as an alternative computing paradigm 
complementing the conventional digital circuits at the end of Moore’s law. By taking inspiration 
from the architecture and processing scheme in the brain, the neuromorphic circuits offer the 
possibility to perform advanced tasks, such as recognizing objects in an image frame, or translating 
a speech to a different language. In carrying out such important tasks, however, it is essential that 
the minimum energy is consumed in the least computing time within the smallest possible circuit. 
In this scenario, memory devices show a very attractive wealth of physical processes, combined 
with an extreme scalability thanks to material switching, which makes this class of device the most 
promising technology for future neuromorphic circuits.  
 
Despite the very strong opportunities of memory devices in neuromorphic computing, there are 
indeed several steps to be taken to fully support a memory-centric neuromorphic technology. First, 
it clearly appears that DNNs and SNNs rely on different computing concepts, thus the 
synapse/neuron devices should have correspondingly different properties. For instance, it appears 
that analogue or multilevel switching is essential for DNN synapses, whereas SNNs might rely on 
stochastic, binary synapses. Also, SNNs make large use of integrate-and-fire neurons, whereas a 
nonlinear amplifier is needed as neuronal element in DNNs. In addition, artificial synapses and 
neurons are usually implemented with different type of nanodevices, e.g., a nanomagnetic spiking 
neuron and a hybrid CMOS-RRAM synapse. Finally, 3D integration technology might be needed to 
achieve the necessary neuron/synapse density to reproduce a brain-like cognitive function. As a 
result, a full neuromorphic hardware might result in a complicated system combining various types 
of devices with 3D process integration.  
 
The stochastic variation and lack of repeatability might still be an issue toward the development of 
DNNs, where the recognition accuracy is subject to a careful, extensive training of the synaptic 
weight. Reliability issues such as the resistance drift in PCM [179] or the stochastic fluctuation of 
resistive states in RRAM [180] might represent serious threats toward achieving a high recognition 
accuracy matching the software implementations of the neural network. A solution to these issues 
might require careful engineering of the device from the materials, geometry, and algorithm points 
of view, which are all subject to a better understanding of the switching mechanisms and the 
associated reliability issues. A deeper insight into the switching processes in the memory devices 
might also set the stage for improved numerical and compact models for the design of 
neuromorphic circuits and a better device-circuit codesign of the integrated system. 
 
In addition to device-specific challenges, understanding the scope of neuromorphic hardware is still 
a general point of debate. DNNs find natural applications in image and speech recognition, where 
the development of neuromorphic devices enabling a higher density, a faster training and a lower 
energy consumption will further spur the transition of AI from cloud computing to edge computing, 
e.g., the ability to recognize and translate a speech on a smartphone. On the other hand, the 
potential applications for brain-inspired SNNs are not clear yet. While unsupervised learning and 
spiking operation are clearly attractive features for a neuromorphic system aiming at replicating the 
human brain, there has not been any compelling evidence that a SNN can even barely get close to 
the capability of a full cognitive system. A strong barrier toward achieving a brain-like 
neuromorphic computer on a chip is the lack of our understanding about how information is 
processed within the human brain. Solving this mystery would spur the development of SNNs and 
drive the demand for neuromorphic devices, where memory devices might offer unprecedented 
advantages in terms of scaling and functionality thanks to their unique physical properties. 
 
 



8. Acknowledgments 
We acknowledge Valerio Milo for critical reading of the manuscript. This article has received 
funding from the European Research Council (ERC) under the European Union’s Horizon 2020 
research and innovation programme (grant agreement No. 648635). 
 

9. References 
 
[1] Moore G E 1965 Electronics 38 114-7 
[2] Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265-91 
[3] Kuhn K J 2012 IEEE Trans. Electron Devices 59 1813-28 
[4] Theis T N and Solomon P M 2010 Proc. IEEE 98 2005-14 
[5] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195-
202 
[6] Maass W 2014 Proc. IEEE 102 860-80 
[7] Guo N, Huang Y, Mai T, Patil S, Cao C, Seok M, Sethumadhavan S and Tsividis Y 2016 IEEE 
J. Solid-State Circuits 51 1514-24 
[8] Mead C 1990 Proc. IEEE 78 1629-36  
[9] Liu S-C, Kramer J, Indiveri G, Delbruck T and Douglas R 2002 Analog VLSI: Circuits and 
Principles (Cambridge, MA, USA: MIT Press) 
[10] Chicca E, Stefanini F, Bartolozzi C and Indiveri G 2014 Proc. IEEE 102 1367-88 
[11] Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D and Indiveri G 2015 
Front. Neurosci. 9 141 
[12] Indiveri G, Linares-Barranco B, Legenstein R, Deligeorgis G and Prodromakis T 2013 
Nanotechnology 24 384010 
[13] Zamarreño-Ramos C, Camuñas-Mesa L A, Pérez-Carrasco J A, Masquelier T, Serrano-
Gotarredona T and Linares-Barranco B 2011 Front. Neurosci. 5 26 
[14] Ielmini D and Wong H-S P 2018 Nat. Electron. 1 333-43 
[15] Merolla P A et al 2014 Science 345 668-73 
[16] Indiveri G and Liu S-C 2015 Proc. IEEE 103 1379-97 
[17] Kau D et al 2009 IEEE IEDM Tech. Dig. 617-20 
[18] Liu T-Y et al 2013 IEEE ISSCC Tech. Dig. 210-1 
[19] Arnaud F et al 2018 IEEE IEDM Tech. Dig. 424-7 
[20] Fackenthal R et al 2014 IEEE ISSCC Tech. Dig. 338-9 
[21] Burr G W et al 2014 IEEE IEDM Tech. Dig. 697-700 
[22] McCulloch W S and Pitts W A 1943 Bulletin of Mathematical Biophysics 5 115-33 
[23] Rosenblatt F 1957 Report 85-460-1, Cornell Aeronautical Laboratory, Buffalo, New York. 
[24] LeCun Y 1985 Proceedings of Cognitiva 85 599-604 
[25] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436-44 
[26] Taigman Y, Yang M, Ranzato M and Wolf L 2014 IEEE Conference on Computer Vision and 
Pattern Recognition 1701-8 
[27] Mnih V et al 2015 Nature 518 529-33 
[28] Silver D et al 2016 Nature 529 484-9 
[29] Bi G-Q and Poo M-M 1998 J. Neurosci. 18 10464-72 
[30] Markram H, Lübke J, Frotscher M and Sakmann B 1997 Science 275 213-5 
[31] Chicca E, Badoni D, Dante V, D’Andreagiovanni M, Salina G, Carota L, Fusi S and Del 
Giudice P 2003 IEEE Trans. Neural Netw. 14 1297-307 
[32] Momodomi M, Itoh Y, Shirota R, Iwata Y, Nakayama R, Kirisawa R, Tanaka T, Aritome S, 
Endoh T, Ohuchi K and Masuoka F 1989 IEEE J. Solid-State Circuits 24 1238-43 
[33] Monzio Compagnoni C, Goda A, Spinelli A S, Feeley P, Lacaita A L and Visconti A 2017 
Proc. IEEE 105 1609-33 
[34] Waser R and Aono M 2007 Nat. Mater. 6 833-40 



[35] Wong H-S P, Lee H-Y, Yu S, Chen Y-S, Wu Y, Chen P-S, Lee B, Chen F T and Tsai M-J 
2012 Proc. IEEE 100 1951-70 
[36] Ielmini D 2016 Semicond. Sci. Technol. 31 063002 
[37] Russo U, Ielmini D, Cagli C and Lacaita A L 2009 IEEE Trans. Electron Devices 56 186-92 
[38] Ielmini D, Bruchhaus R and Waser R 2011 Phase Transition 84 570-602 
[39] Larentis S, Nardi F, Balatti S, Gilmer D C and Ielmini D 2012 IEEE Trans. Electron Devices 
59 2468-75 
[40] Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H and 
Tsai M-J 2008 IEEE IEDM Tech. Dig. 297-300 
[41] Lee M-J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y-B, Kim C-J, Seo D H, Seo S, 
Chung U-I, Yoo I-K and Kim K 2011 Nat. Mater. 10 625-30 
[42] Bricalli A, Ambrosi E, Laudato M, Maestro M, Rodriguez R and Ielmini D 2018 IEEE Trans. 
Electron Devices 65 115-21 
[43] Balatti S, Larentis S, Gilmer D and Ielmini D 2013 Adv. Mater. 25 1474-8 
[44] Prakash A, Park J, Song J, Woo J, Cha E-J and Hwang H 2015 IEEE Electron Device Lett. 36 
32-4 
[45] Govoreanu B et al 2011 IEEE IEDM Tech. Dig. 729-32 
[46] Baek I G et al 2011 IEEE IEDM Tech. Dig. 737-40 
[47] Wuttig M and Yamada N 2007 Nat. Mater. 6 824-32 
[48] Raoux S, Welnic W and Ielmini D 2010 Chem. Rev. 110 240-67 
[49] Raoux S, Ielmini D, Wuttig M and Karpov I V 2012 MRS Bull. 37 118-23 
[50] Yamada N, Ohno E, Nishiuchi K, Akahira N and Takao M 1991 J. Appl. Phys. 69 284 
[51] Kato T and Tanaka K 2005 Jpn. J. Appl. Phys. 44 7340-44 
[52] Kim J-J, Kobayashi K, Ikenaga E, Kobata M, Ueda S, Matsunaga T, Kifune K, Kojima R and 
Yamada N 2007 Phys. Rev. B 76 115124 
[53] Ielmini D, Lacaita A L, Pirovano A, Pellizzer F and Bez R 2004 IEEE Electron Device Lett. 25 
507-9 
[54] Ciocchini N, Laudato M, Boniardi M, Varesi E, Fantini P, Lacaita A L and Ielmini D 2016 Sci. 
Rep. 6 29162 
[55] Chen Y C, et al 2006 IEEE IEDM Tech. Dig. 1-4 
[56] Morikawa T et al 2007 IEEE IEDM Tech. Dig. 307-10 
[57] Cheng H Y et al 2012 IEEE IEDM Tech. Dig. 725-8 
[58] Zuliani P et al 2013 IEEE Trans. Electron Devices 60 4020-6 
[59] Nirschl T et al 2007 IEEE IEDM Tech. Dig. 461-4 
[60] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813-23 
[61] Dieny B et al 2010 Int. J. Nanotechnol. 7 591-614 
[62] Wang D, Nordman C, Daughton, J M, Qian Z and Fink J 2004 IEEE Trans. Magnetics 40 
2269-71 
[63] Slonczewski J 1996 J. Magn. Magn. Mater. 159 L1-7 
[64] Kent A D and Worledge D C 2015 Nat. Nanotechnol. 10 187-91 
[65] Carboni R, Ambrogio S, Chen W, Siddik M, Harms J, Lyle A, Kula W, Sandhu G and Ielmini 
D 2018 IEEE Trans. Electron Devices 65 2470-8 
[66] Mikolajick T, Dehm C, Hartner W, Kasko I, Kastner M J, Nagel N, Moert M and Mazure C 
2001 Microelectron. Reliab. 41 947-50 
[67] Takashima D et al 2001 IEEE J. Solid-State Circuits 36 1713-20 
[68] Sakai S, Takahashi M, Takeuchi K, Li Q H, Horiuchi T, Wang S, Yun K Y, Takamiya M and 
Sakurai T 2008 IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW) 103-4 
[69] Böscke T S et al 2011 IEEE IEDM Tech. Dig. 547-50 
[70] Mulaosmanovic H, Ocker J, Müller S, Noack M, Müller J, Polakowski P, Mikolajick T and 
Slesazeck S 2017 Symp. VLSI Tech. Dig. 176-7 
[71] Takahashi M and Sakai S 2005 Jpn. J. Appl. Phys. 44 25 L800-2 



[72] Florent K et al 2018 IEEE IEDM Tech. Dig. 43-6 
[73] Trentzsch M et al 2016 IEEE IEDM Tech. Dig. 294-7 
[74] Fuller E J, El Gabaly F, Léonard F, Agarwal S, Plimpton S J, Jacobs-Gedrim R B, James C D, 
Marinella M J and Talin A A 2017 Adv. Mater. 29 1604310 
[75] van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, 
Talin A A and Salleo A 2017 Nat. Mater. 16 414-8 
[76] Tang J et al 2018 IEEE IEDM Tech. Dig. 292-5 
[77] Cubukcu M et al 2014 Appl. Phys. Lett. 104 042406 
[78] Miron I M et al 2011 Nature 476 189-93 
[79] Garello K et al 2014 Appl. Phys. Lett. 105 212402 
[80] Lo Conte R, Hrabec A, Mihai A P, Schulz T, Noh S-J, Marrows C H, Moore T A and Kläui M 
2014 Appl. Phys. Lett. 105 122404 
[81] Garello K et al 2013 Nat. Nanotechnol. 8 587-93 
[82] Sangwan V K, Lee H-S, Bergeron H, Balla I, Beck M E, Chen K-S and Hersam M C 2018 
Nature 544 500-4 
[83] Sangwan V K et al 2015 Nat. Nanotechnol. 10 403-6 
[84] Zhu X, Li D, Liang X and Lu W. D 2019 Nat. Mater. 18 141-8 
[85] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Proc. IEEE 86 2278-324 
[86] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning Ch. 8 (MIT Press) 
[87] Tsai H, Ambrogio S, Narayanan P, Shelby R M and Burr G W 2018 J. Phys. D: Appl. Phys. 51 
28 
[88] Sze V, Chen Y, Yang T and Emer J S 2017 Proc. IEEE 105 2295-329 
[89] Jouppi N P et al 2017 44th International Symposium on Computer Architecture (ISCA) 1-17.  
[90] Suri M et al 2011 IEEE IEDM Tech. Dig. 79-82 
[91] Ambrogio S, Ciocchini N, Laudato M, Milo V, Pirovano A, Fantini P and Ielmini D Front. 
Neurosci. 10 56 
[92] Ambrogio S, Balatti S, Nardi F, Facchinetti S and Ielmini D 2013 Nanotechnology 24 384012 
[93] Jang J-W, Park S, Burr G W, Hwang H and Jeong Y-H. 2015 IEEE Electron Device Lett. 36 
457-9 
[94] Hsu C-W, Wan C-C, Wang I-T, Chen M-C, Lo C-L, Lee Y-J, Jang W-Y, Lin C-H and Hou T-
H 2013 IEEE IEDM Tech. Dig. 264-7 
[95] Park S-G et al 2012 IEEE IEDM Tech. Dig. 501-4 
[96] Wang I-T, Chang C-C, Chiu L-W, Chou T and Hou T-H 2016 Nanotechnology 27 365204 
[97] Yu S, Chen P-Y, Cao Y, Xia L, Wang Y and Wu H 2015 IEEE IEDM Tech. Dig. 451-4 
[98] Park S, Sheri A, Kim J, Noh J, Jang J, Jeon M, Lee B, Lee B R, Lee B H and Hwang H 2013 
IEEE IEDM Tech. Dig. 625-8 
[99] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297-
301 
[100] Moon K, Kwak M, Park J, Lee D and Hwang H 2017 IEEE Electron Device Lett. 38 1023-6 
[101] Chen P-Y, Lin B, Wang I-T, Hou T-H, Ye J, Vrudhula S, Seo J-S, Cao Y and Yu S 2015 
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) 194-9 
[102] Woo J, Moon K, Song J, Lee S, Kwak M, Park J and Hwang H 2016 IEEE Electron Device 
Lett. 37 994-7 
[103] Li Y, Kim S, Sun X, Solomon P, Gokmen T, Tsai H, Koswatta S, Ren Z, Mo R, Yeh C C, 
Haensch W and Leobandung E 2018 IEEE Symp. VLSI Tech. Dig. 25-6 
[104] Yao P et al 2017 Nat. Commun. 8 15199 
[105] Fumarola A, Narayanan P, Sanches L L, Sidler S, Jang J, Moon K, Shelby R M, Hwang H 
and Burr G W 2016 IEEE International Conference on Rebooting Computing (ICRC) 1-8 
[106] Yu S, Gao B, Fang Z, Yu H, Kang J and Wong H-S P 2013 Adv. Mater. 25 1774-9 
[107] Li C et al 2018 Nat. Commun. 9 2385 
[108] Boybat I et al 2018 Nat. Commun. 9 2514 



[109] Ambrogio S et al 2018 Nature 558 60-7 
[110] Agarwal S et al 2017 IEEE Symp. VLSI Tech. T174-5 
[111] Cristiano G, Giordano M, Ambrogio S, Romero L P, Cheng C, Narayanan P, Tsai H, Shelby 
R M and Burr G W 2018 J. Appl. Phys. 124 151901 
[112] Masquelier T and Thorpe S J 2007 PLoS Comput. Biol. 3 e31 
[113] Masquelier T, Guyonneau R and Thorpe S J 2008 PLoS ONE 3 e1377  
[114] Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G and Linares-Barranco B 
2013 Front. Neurosci. 7 2 
[115] Saïghi S et al 2015 Front. Neurosci. 9 51 
[116] Kuzum D, Yu S and Wong H-S P 2013 Nanotechnology 24 382001 
[117] Bienenstock E L, Cooper L N and Munro P W 1982 J. Neurosci. 2, 32-48 
[118] Bear M F 1996 Proc. Natl. Acad. Sci. USA 93 13453-9 
[119] Gjorgjieva J, Clopath C, Audet J and Pfister J P 2011 Proc. Natl. Acad. Sci. USA 108 19383-8 
[120] Rachmuth G, Shouval H Z, Beard M F and Poon C-S 2011 Proc. Natl. Acad. Sci. USA 108 
E1266-74 
[121] Hebb D O 1949 The Organization of Behavior: A Neuropsychological Study (New York: 
Wiley) 
[122] Gerstner W, Ritz R and Van Hemmen J 1993 Biological Cybernetics 69 503-15 
[123] Snider G 2008 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH 2008) 85-92 
[124] Kozicki M N, Park M and Mitkova M 2005 IEEE Trans. Nanotechnol. 4 331-8 
[125] Gilbert N, Zhang Y, Dinh J, Calhoun B and Hollmer S 2013 IEEE Symp. VLSI Tech. Dig. 
C204-5 
[126] Guo X, Schindler C, Menzel S and Waser R 2007 Appl. Phys. Lett. 91 133513 
[127] Yang Y, Gao P, Gaba S, Chang T, Pan X and Lu W 2012 Nat. Commun. 3 732 
[128] Ambrogio S, Balatti S, Choi S and Ielmini D 2014 Adv. Mater. 26 3885-92 
[129] Kozicki M N, Gopalan C, Balakrishnan M and Mitkova M 2006 IEEE Trans. 
Nanotechnol. 5 535-44 
[130] Schindler C, Thermadam S C P, Waser R and Kozicki M N 2007 IEEE Trans. Electron 
Devices 2007 54 2762-8 
[131] Schindler C, Staikov G and Waser R 2009 Appl. Phys. Lett. 94 072109 
[132] Schindler C, Weides M, Kozicki M N and Waser R 2008 Appl. Phys. Lett. 92 122910 
[133] Yu S, Wu Y, Jeyasingh R, Kuzum D and Wong H-S P 2011 IEEE Trans. Electron Devices 58 
2729-37 
[134] Prezioso M, Merrikh Bayat F, Hoskins B, Likharev K and Strukov D 2016 Sci. Rep. 6 21331 
[135] Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C and Zhu X J 2012 Adv. Funct. Mater. 22 2759-
65 
[136] Kuzum D, Jeyasingh R G D, Lee B and Wong H-S P 2012 Nano Lett.12 2179-86 
[137] Tuma T, Le Gallo M, Sebastian A and Eleftheriou E 2016 IEEE Electron Device Lett. 37 
1238-41 
[138] Srinivasan G, Sengupta A and Roy K 2016 Sci. Rep. 6 2954 
[139] Boyn S et al 2017 Nat. Commun. 8 14736 
[140] Kim C-H, Lee S, Woo S Y, Kang W-M, Lim S, Bae J-H, Kim J and Lee J-H 2018 
IEEE Trans. Electron Devices 65 1774-8 
[141] Malavena G, Spinelli A S and Monzio Compagnoni C 2018 IEEE IEDM Tech. Dig. 35-8 
[142] Alibart F, Pleutin S, Bichler O, Gamrat C, Serrano-Gotarredona T, Linares-Barranco B and 
Vuillaume D 2012 Adv. Funct. Mater. 22 609-16 
[143] Ielmini D 2011 IEEE Trans. Electron Devices 58 4309-17 
[144] Ambrogio S, Balatti S, Milo V, Carboni R, Wang Z, Calderoni A, Ramaswamy N and Ielmini 
D 2016 IEEE Trans. Electron Devices 63 1508-15 
[145] Pedretti G, Milo V, Ambrogio S, Carboni R, Bianchi S, Calderoni A, Ramaswamy N, Spinelli 
A S and Ielmini D 2017 Sci. Rep. 7 5288 



[146] Wang Z-Q, Ambrogio S, Balatti S and Ielmini D 2015 Front. Neurosci. 8 438 
[147] Kim S et al 2015 IEEE IEDM Tech. Dig. 443-6 
[148] Milo V, Pedretti G, Carboni R, Calderoni A, Ramaswamy N, Ambrogio S and Ielmini D 2016 
IEEE IEDM Tech. Dig. 440-3 
[149] Milo V, Pedretti G, Carboni R, Calderoni A, Ramaswamy N, Ambrogio S  and Ielmini D 
2018 IEEE Trans. VLSI 26 2806-15 
[150] Suri M et al 2013 IEEE Trans. Electron Devices 60 2402-9 
[151] Covi E, Brivio S, Serb A, Prodromakis T, Fanciulli M and Spiga S 2016 Front. Neurosci. 10 
482 
[152] Serb A, Bill J, Khiat A, Berdan R, Legenstein R and Prodromakis T 2016 Nat. Commun. 7 
12611 
[153] Hansen M, Zahari F, Kohlstedt H and Ziegler M 2018 Sci. Rep. 8 8914 
[154] Prezioso M, Mahmoodi M R, Merrikh Bayat F, Nili H, Kim H, Vincent A and Strukov D B 
2018 Nat. Commun. 9 5311 
[155] Pedretti G, Milo V, Ambrogio S, Carboni R, Bianchi S, Calderoni A, Ramaswamy N, Spinelli 
A S and Ielmini D 2018 IEEE J. Emerging Topics in Circuits and Systems (JETCAS) 8 77-85 
[156] Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S and 
Ielmini D 2018 Sci. Adv. 4 eaat475 
[157] Diehl P U and Cook M 2015 Front. Comput. Neurosci. 9 99 
[158] Ambrogio S, Balatti S, Milo V, Carboni R, Wang Z, Calderoni A, Ramaswamy N and Ielmini 
D 2016 IEEE Symp. VLSI Tech. Dig. 196-7 
[159] Milo V, Ielmini D and Chicca E 2017 IEEE IEDM Tech. Dig. 263-6 
[160] Serrano-Gotarredona R et al 2009 IEEE Trans. Neural Netw. 20 1417-38 
[161] Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski J K and Aono M 2011 Nat. Mater. 
10 591-5 
[162] Terabe K, Hasegawa T, Nakayama T and Aono M 2005 Nature 433 47-50 
[163] Kim S, Du C, Sheridan P, Ma W, Choi SH and Lu W D 2015 Nano Lett. 15 2203-11 
[164] Wang Z et al 2017 Nat. Mater. 16 101-8 
[165] Midya R et al 2017 Adv. Mater. 29 1604457 
[166] Wang M et al 2018 Adv. Mater. 30 1802516 
[167] Wang W, Wang M, Ambrosi E, Bricalli A, Laudato M, Sun Z, Chen X and Ielmini D 2019 
Nat. Commun. 10 81 
[168] Wang W, Bricalli A, Laudato M, Ambrosi E, Covi E and Ielmini D 2018 IEEE IEDM Tech. 
Dig. 932-5 
[169] Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Nat. Nanotechnol. 11 
693-9 
[170] Lashkare S, Chouhan S, Chavan T, Bhat A, Kumbhare P and Ganguly U 2018 IEEE Electron 
Device Lett. 39 484-7 
[171] Wang Z et al 2018 Nat. Electron. 1 137-45 
[172] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500-44 
[173] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114-7 
[174] Pickett M D and Williams R S 2012 Nanotechnology 23 215202 
[175] Kim S et al 2012 Proc. IEEE Symp. VLSI Technol. (VLSIT) 155-6 
[176] Nandi S K, Liu X, Venkatachalam D K and Elliman R G 2015 J. Phys. D: Appl. Phys. 48 
195105 
[177] Torrejon J et al 2017 Nature 547 428-31 
[178] Mehonic A and Kenyon A J 2016 Front. Neurosci. 10 57 
[179] Ciocchini N, Palumbo E, Borghi M, Zuliani P, Annunziata R and Ielmini D 2014 IEEE 
Trans. Electron Devices 61 2136-44 
[180] Ambrogio S, Balatti S, McCaffrey V, Wang D and Ielmini D 2015 IEEE Trans. Electron 
Devices 62 3812-9 


