BRUGG Lifting

BRUGG

Lifting

Brugg Lifting is a global manufacturer of elevator ropes, architectural ropes, wire ropes and lashing and lifting gear. But we're not just a product supplier; we're a partner in innovative elevator design.

Our global team supports your projects from start to finish to take the guesswork out of product development With premium ropes, collaborative relationships and personalized support, we help strengthen your in-house expertise and capacity for innovation, empowering you to create safer, more modern elevators.

Together, we're reaching new heights in elevator design so you can become a leader in the lifting industry.

As a Brugg Group company, we
are part of a Swiss-based global group with more th experience in rope and cable echnology.
With three branch sites and
With three branch sites and
in Europe, North America and
Asia, Brugg Lifting is a partner elevator development to customers worldwide.

Partnership
at every
leve

Guaranteed safety

Our premium ropes are
Customized solutions
Pushing the boundaries of
lifting can mean creating
17] siting can mean creatity a parthng complet Ta parter in innovative elevator co-create custom mpoducts
orservices a signed with your
overal strategy

We make product
develoloment easie
2) develiopment easier by 5 detween different
 Engineering, Sales, etc.
to ensure our solution fits to ensure our solution
your strategic needs.

Systems approach
We offer a wide range
of elevator ropes, coated i. $\begin{aligned} & \text { tech hologises, acessories } \\ & \text { and tools so meen your } \\ & \text { precise reauruen }\end{aligned}$ precise requirements. We can
supply complete packages or individual parts depenending
\oiiint intereational standards for
maximum eliability and
quality, helloing extend the Qualty, helping extend the
ifespan of your elevators. We aere centififed to IIO90001:2018
and ISO $14001: 2015$ standards - distribution network, we did

ค웅 is critical, our express senvice
provices materils and ships them by
around the wordd.

Take your elevators to the next level with our premium rope technology

As system supplier, we have the corresponding end terminations, buffer
systems and accessories for all elevator ropes in our product range.

Most items are available from inventory, ailowing short delivery times and seamless logistics.
We specialize in the development and manufacture of threaded swaged end fittings and can also provide customized end terminations.

OUR ELEVATOR ROPES

i-Line \& Color Coding

Correctly installed hoist ropes increase the service life and safety of the elevator while improving riding comfort and reducing downtime.
Regardless of the construction or the producer, every hoist rope is susceptible to untwisting during the installation. With the help of the i-LINE, which is applied to Brugg Lifting hoist ropes during production, untwisted hoist ropes can be located, detected and corrected quickly and easily.
8×19

Advantages of the i-LINE

3 simple and correct installation
13 safe instalation aid
Ob optimizes product performance
$13 \begin{aligned} & \text { color-coded for the identification } \\ & \text { of the rope type }\end{aligned}$

Minimum Breaking Load in $\%$
MBL represents the minimum load that can be
appliep to a rope beforie titreaks.
applied to a rope before tt break
The graphic compares the minimum breaking
load of the different types of suspension ropes
Reference: $100 \%=8 \times 19$ suspension rope with
inition

Designation and classification of wire ropes

(EN 12385-2 formerly ISO 17893)

A. Rope nominal Diameter in $m m$

B Rope Construction
C Construction and L Lay Direction

 example forstantand construction: $\quad 19 \mathrm{~W} . \mathrm{d} .(1 .-6-6+6)$

D Construction of Core

Singe leyer rope with stele core wC
wine stand
Wsc ore
Rope with parallel lay
E Nominal Tensile Grade of Wires in $\mathrm{N} / \mathrm{m}^{2}$
F Surface Finish of Wires

G $\underset{2}{2}$ Type and Direction of Lay

APAG (CTP®)
 Product Data
 APAG-end connections are TÜV tested and
 Advantages simple, fast
 ast and safe end terminations shortenens instalalation end tiere, sininations mounting of end connections ny custome
 | item number | d_{1} | d_{2} | d_{3} | d_{d} | L_{2} | L_{2} | L_{3} | L_{4} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | For use with CTP' 8.1 mm

 mounting of end connections by customesno special tools reaired the compact type enables a very tight
arrangement of ropes and paralle 1 running ropes
simple securing against rotation
position of piot thole for rope end postion of piliot hole or rope end ndividual parts

Product Data

 Repe lock transeass $8 \% \%$ of the minimints Thereaded frod for fivarized steel

Advantages
can be assembled safely and simply on-site
springs, buffers and other accessories can be mounted individually

Rope socket (CTP ${ }^{\oplus}$) asymmetrical [similar to EN 13411-67
Product Data

Rope lock transfers 80% of the minimum break force of the rope
-Thea assembly, andavinied steen
Advantages
can be assembled safely and simply on-site
\qquad

Rope Clamp
Rope Clamp
zinc coated zoc coauted for onont operation the explanations of the norm EN
1341-5 are valid Advantages
can be assembled safely and dvantages
can be asemble
simply ons-site

Product Data

 - polyurethane elastomer withcell
s sutithe for APAGG, evelet bolt,
wedge socketsymmetrical
and sssmmetrical Advantages - excellent buffering properities at minimum overalt he
transversie elongation
also and
and also applicable ont one
counterweight side as rop counterweight side a a rope
length homensation
grease-and oil ersistant

Spring
$\underset{\substack{\text { Product Data } \\ \text { steel spring, brig }}}{ }$

- colilidiciang thperight
suitabe for $A P A G$, eyelet bolt, wedge
soche
- suitable for APAGG, eyelet bolt, wedge
socket symmetrical and asymmetrical

	$\begin{gathered} \text { for tread } \\ \mathrm{mm} \end{gathered}$	dimensions in mm					$\frac{\text { max. stat. weight }}{\mathrm{kg}}$	
		50	13	22	${ }^{28}$	${ }^{33}$		
7765	M12	50	13		28		170	6.887
77660^{*}	M16	50	17	22	28	${ }^{3}$	170	6.887
7761	M16	50	17		${ }^{28}$		170	6.887
77662^{*}	${ }^{120}$	65	${ }^{21}$	27	28	${ }^{33}$	270	1.772
7763	M20	65	${ }^{21}$		${ }^{28}$		270	1.772
77664*	${ }^{124}$	80	25	27	28	${ }^{33}$	420	11.772
77665	${ }^{24}$	80	25		${ }^{28}$		420	n.172

Radius Gauge

VT-LUBE

This rope care Iuticant was especially
developed for the relubrication of
developer for
elevator ropes.
Advantages

- Exelententeration quality casses

optimum friction reenuction in ithe rope | optimum tritioion reduction inthe rop |
| :--- |
| -Excellent creep uuality enables ven |

in the rope

- Exellent orrosion protection suitabl
for high ropes speedt through very
 good adhesive quality neutral qua

The RPM Rope performance measurement device makes it easier for you to
check the rope tension during the installation, inspection and maitenance of
Advantages
quick, easy
Advantages
- cuick, aesy and precise deteremination of rope diameter and tension
comparison and measurement of the rope tensions, e.g, within a rope set
 eass docounentation, weienty on cabin, con, counterweitights, etc.
results through sororage in the device results through storage in the device
high precision of rope tension measure
- versatile through battery-Supplied operation ($1 \times 9 \mathrm{~V}$ battery)
- handy device: just $330 \times 20 \times 20$
weight only 2.6 kg
$5,731 \mathrm{lb})$

Keep the tension under control
Only the enentension within an elevator rope set can guarantee wear- and
maintenance-low operation and secure a high economic efficiency.

Packaging
When selecting the packaging, Rrugg Liftiting
chooses the best transoort torotetition chooses the best transport troretection
possibe. Our ropes are protected during possibile. Our ropes are protected during
transport with speiil packagning materials
against corrosion and mechanical damaging Whenever possible, our ropes are delivered
onsturdy yeturnabie reels and drums that can
be reused.

Cross Drums capacity according to rope
diameter rom $100 \mathrm{~m}(0) 16 \mathrm{~mm})$ diameter from 100 m
to $400 \mathrm{~m}(0,6,5 \mathrm{~mm})$
 1118 kg reel weigh

Round Reels
$\rho /$ width $300-6$

Coils
upto 50 m or 30 kg

System Deliveries in Sturdy System Delven
Cardboard Bor
LWH: 80×600

What is Rope Modulus?
The rope modulus is a calculated value that relates the following inputs: Metalic area (A), force
(F) \& stretch (ε) which enables the conversion of any load f(force in

Because a rope is made up of many (100)+ wires which move indepentently and interact in a
non-linear wav, the relationshib petween load and strain is not pot proportional. This can best be non-linear way, the relations
explined using a diagram.

As can be seen, the curve becomes steeper as the load increases. The rope module can be
 Ferveempade at 11 strin in
stretech then at 8% MBL.

How does Brugg Lifting measure these values? Since elevator ropes are used betwen 2% and 8.3% of Minimum Breaking
Load, we now state the values in the application-oriented load ranges $3 \%, 5 \%$ and 7% of the breaking load
This is made possible by a specially developed measuring method that simulates
the ropes's unning in phase. Ater this phase we measure all three of the the ropes unn ing-in phase. Atter this phase we measure all three of
characteristic values described above in just one measurement.
For this purpose, asuspension rope is subjected to 50 cylles with increased
load in order to simulate the seting of the rope. During the entire test, the strain behavior is recorded using a laser strain gauge and then each of the 50 cycles is behavior is recorded using laser strain gauge and then each of the 50 cycles is
evaluated automatically, The rope modul value at the especective load levels 3%, 3% evaluated automatically. The rope module value at the respective load levels (5 (
5% and 700 is calculated as the average of the last 15 cycles. The permanent

This chart shows the typical behavior of the permanent elongation and the rope modulus during
a test of a DPP9 elevator rope. Test results of a DP9 Traction Rope

Technical specifications
Below you will find guide values for our products

CTP ${ }^{\circledR}$
 Inspection Manual

This document shall serve as practical guidance for CTP® rope inspections out in the field. It covers the official discard criteria of the CTP rope as well as specific fields of inspection in a running elevator system which are most critical to rope life.

1. Discard criteria of the CTP' rope Brugg Lititing applies a simple replacement criteria that
limits
lin use of the CTP
rope to a d defined number of

This discard criterion forms part of all CTP*
rope certifications, which have been issued
 The defined maximum number of bending cycles is Nive defined maximum number of bending cycles is
divided by the number of pulleys that are passed mos
oten by the bended rope. often by the bended rope.

$$
\begin{aligned}
& \text { according actions, which must be take } \\
& \text { maintenance company in such a case. }
\end{aligned}
$$

2. Elevator specifications

Only with the help of speificic elvator data are we able

3. Visual inspection

External factors that could have a negative impact on the rope
should be evoluatated. Beforo doing detailed measurements we should be evaluated. Before doing detailed measurements we
recommend to first visually check the eutside appearance of the rope. Particulara attention must te e paid to the topere coating

Hegularities regarding rope coating surface Urats, dents, or similar)

- ifasion of the coating on the rope or on the

The following points should also be evaluated
Rope touching elveator parts or shaft
-Ropes touching each other due to electro-static charge
Rope vibation during operation Rope viration during operation nsuticient aligment of traction sheave
and/or diverting pulle
Whenever possible, pictures of the rope should be takea traction sheave, diverting pulley and end terminations

. Inspection of fleet angle

The allowable flee angle is 0.5°. For the CTP' 8.1 , this

 angle can be increased up to a maximum of 10° as Iongas the number of trips is reduced limited to $24000^{\circ} 000$ an divided by the number of pulleys massing the mosst bended
part of the rope (this does NOT apoply tor the CTP'6.5) part of the rope (this does NOT apply for the CTP ${ }^{\circ} \cdot(5)$.).
Fleet angle allowed (in accordance with our certificate)
 the rope. This effect also applies to conveni.
seven more pronounced in the CTP'
rope.
The most critical positions are when the cabin is at the to
loor (maximum flet angle between cabio
 sheave/deflecting pulley) and when the cabin is at the
owest floor (maximum fleet angle between counter weight and traction sheaveldefeliecting pulley). It is fairly difificult to directly measure the fleet angle between rope and sheave. For this reason we recommend an indirect see below.
To geta rough estimate on the flee tangle measure
following points (illustrated on an elevator with $1: 1$

1. Distance from traction sheave to end
2. Distance from rope to rope a t rope termination on eave. Distance from
oove to-groove rope to tope on tractioe
distance and on ope
termination on counte
3 Distance from traction sheave to end termination on
counter weight (when cabini is at the very bottom)
3. Inspection of groove shape
(Traction sheave and diverting pulley)

Furthermore check the groove surface for following defects

- Rust or abrasion of rope coatio

Finally, checkif it the bearings of the diverting pulleys still run
smoothly, if possible.

6. Rope tension

 is more precise - to a certain extent but not all eleatorors
are equiped
with such springs. The mosteliable way of are equiped with such springs. The mostreliable way of
measuring ope tession is byeasurng the ension on the
rope itself.There are various tools tor ter measuring tension

Discard Criteria

