

ELDERS TRIAL RESULTS BOOKLET

CONTENTS

GRASS VALLEY, WA 4

EVALUATION OF ANNUAL RYEGRASS CONTROL OPTIONS IN RT

CANOLA 4

PRE-EMERGENT LUPINS TRIAL 8

BARLEY AGRONOMY 14

GRASS WEED CONTROL IN CANOLA 24

RAND, NSW 30

KNOCKDOWN MIXTURES FOR FENCE LINE SPRAYING 30

PRE EMERGENT GRASS CONTROL IN WHEAT 34

BARLEY VARIETY TRIAL 38

WHEAT VARIETY TRIAL 42

MALLALA SOUTH AUSTRALIA 46

CANOLA SYSTEM TRIAL 46

DISEASE MANAGEMENT IN BARLEY TRIAL 50

ELDERS FENCE LINE KNOCKDOWN TRIAL 56

ELDERS BRASSICA WEED CONTROL TRIAL 60

EVALUATION OF ANNUAL RYEGRASS CONTROL OPTIONS IN RT CANOLA

li/ing farm

INTRODUCTION

The trial near Grass Valley, WA in 2015 evaluated a range of commercially available herbicides and application timings for best control of annual ryegrass (Lolium rigidum) in dual tolerant (RT) canola Hyola 525 RT.

Herbicide application timing included incorporated by sowing (IBS), post-sowing – pre-emergent (PSPE) and post-emergent applications at both 2-4 leaf and 4-6 leaf growth stages.

Results indicate that product choice and timing can impact ryegrass control and canola yield.

COMUNIC DETAIL									
SOWING DETAILS									
Seeding Date		30/4/2015							
Variety		Hyola 525 RT							
Seeding Rate		3kg/ha							
Nutrition	Pre	100kg/ha Gusto Gold	100kg/ha Gusto Gold						
	Post	50kg/ha Urea							
Tillage Type		Knife points and press wheels							
Row Spacing		25.4cm	25.4cm						
Sowing Speed		6.5km/hr							
Moisture		Moist @ 10-15cm, dry c	on surface (canola not expected to germinate)						
Seed Bed		Grazed wheat stubble	Grazed wheat stubble						
Clod size		Small (o-10mm diameter)							
Soil Throw		Sufficient to cover 80-9	Sufficient to cover 80-90% of interrow						
Stubble loading		5-10% groundcover of	previous pasture (capeweed, barley grass and ryegrass)						
Soil Throw at Seed	ing	Good. Sufficient to cov	er 90% of interrow						
Herbicides Applied	1	Pre-emergent	As per treatment list						
		Post-emergent	As per treatment list						
Insecticides applie	d	Pre-emergent	500 ml/ha Chlorpyrifos						
			200 ml/ha Bifenthrin						
		Post-emergent	100 ml/ha Transform						

ASSESSMENT DATA SCORING SYSTEMS

10120

Notations Used:

- IBS = Incorporated By Sowing PSPE = Post-Sowing – Pre-Emergent
- DAS = Days After Sowing
- DAA-C = Days After Application Timing C
- DAA-D = Days After Application Timing D
- fb = "followed by"

Percent Control

A subjective score was given based on the level of weed control as compared to the untreated control plots.

Weed Counts

The number of weeds from four 33 x 33 cm quadrats was counted within each plot and the resulting numbers converted to number of plants per square meter.

Yield

Plots were harvested with a Haldrup trial header and the weights in kg/plot recorded, then converted to t/ha.

WEATHER DATA

Weather

David			F	Rainfa	ll			Da			Tempe	erature	(min)			Dave	Temperature (max)						
Day	Apr	May	Jun	Jul	Aug	Sep	Oct		y Ap	May	Jun	Jul	Aug	Sep	Oct		Day	Apr	May	Jun	Jul	Aug	Sep	Oct
1	0.0	0.0	0.0	0.0	14.6	0.8	0.0	1	14.	5 12.8	2.6	5.3	10.1	2.5	7.1		1	24.0	21.5	20.1	19.7	14.0	14.4	34.9
2	0.0	0.0	0.2	1.2	0.2	0.0	0.0	2	12.	5 10.5	6.1	10.8	5.8	0.0	8.1		2	26.7	24.5	20.9	16.9	14.0	14.7	31.4
3	0.0	0.0	0.2	3.6	0.2	0.2	0.0	3	12.	4 13.5	10.7	12.5	2.2	5.1	13.0		3	29.0	22.9	23.0	20.7	15.8	19.1	28.4
4	0.0	0.2	0.4	0.4	0.0	0.0	0.0	4	13.	5 8.1	9.7	9.8	5.1	0.3	13.0		4	31.5	17.2	23.0	20.7	16.7	21.1	28.3
5	0.0	0.0	0.0	0.4	0.0	0.2	о.	5	16.	2.2	6.0	11.0	4.5	7.5	15.2		5	29.5	19.0	25.9	20.4	16.4	19.8	22.2
6	0.0	0.0	0.0	0.8	0.0	0.2	0.0	6	15.	4 2.5	8.0	7.3	5.5	3.2	1.1		6	24.3	21.1	22.2	17.9	17.6	17.1	20.9
7	1.4	0.0	0.0	0.0	2.0	0.0	0.0	7	15.	3 4.2	4.5	8.8	8.1	1.2	6.8		7	18.0	22.1	20.8	19.9	17.0	22.9	26.9
8	7.8	0.0	0.2	1.4	0.4	0.0	0.0	8	15.	3.2	5.0	7.2	6.0	3.1	8.8		8	24.0	23.7	19.9	13.4	14.0	25.4	33.4
9	2.0	0.0	0.0	0.2	5.0	0.0	0.0	9	16.	1 5.5	6.9	-0.6	0.3	2.9	11.2		9	23.5	22.5	21.6	13.8	14.7	30.1	37.0
10	6.6	0.0	0.0	0.0	0.6	0.0	0.0	10	18.	5 9.0	4.9	3.0	4.1	11.4	15.8		10	26.4	23.2	23.5	15.5	19.0	24.6	36.0
11	0.2	0.0	0.0	0.0	0.2	1.8	0.0	1:	14.	4	4.6	0.2	8.3	5.8	16.3		11	24.5	23.0	25.4	15.3	17.5	22.0	31.0
12	0.0	0.0	0.0	0.0	0.0	4.8	0.0	1:	15.	5 10.1	9.6	0.2	5.0	10.0	13.4		12	25.1	22.2	22.3	15.4	15.6	16.9	35.7
13	0.0	0.0	0.0	0.0	0.0	2.4	0.0	13	15.	5 7.1	8.4	3.1	6.3	1.2	11.3		13	23.4	21.8	18.7	16.3	17.1	17.8	35.3
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1/	11.	¥ 5.1	6.9	5.2	3.1	1.1	10.5		14	22.9	25.6	18.4	16.9	22.0	18.9	22.7
15	0.0	0.0	0.0	0.0	0.0	0.0	0.4	1	11.	5 4.1	4.5	6.1	4.3	6.2	7.9		15	22.0	24.9	18.3	16.2	25.0	16.1	21.2
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10	9.0	12.4	5.4	3.4	5.2	3.4	4.5		16	22.0	17.6	20.4	18.0	23.7	19.7	25.0
17	0.0	11.6	0.0	0.0	6.8	0.0	0.0	17	8.6	11.0	10.0	1.4	9.9	1.2	9.8		17	25.0	18.9	18.0	21.4	19.6	26.0	34.1
18	0.0	14.8	4.0	0.0	2.4	0.0	0.0	18	10.	4 11.6	10.7	5.0	11.0	3.3	13.5		18	26.6	20.2	21.0	22.9	19.8	29.8	24.1
19	0.0	0.0	0.6	0.0	1.6	0.0	0.4	19	12.	8.6	12.7	7.5	9.5	9.0	8.9		19	26.6	17.0	23.1	19.7	19.7	19.0	24.2
20	0.0	0.0	1.2	5.2	12.0	0.0	0.0	20	12.	2 6.8	13.4	11.5	10.5	1.5	8.0		20	27.0	15.8	21.3	20.0	18.1	18.8	28.7
21	0.0	0.0	12.6	3.6	0.2	0.0	0.0	2:	7.	5.3	13.5	7.6	6.9	5.9	12.1		21	27.1	18.0	18.1	15.6	15.4	21.9	35.5
22	0.0	0.0	9.8	0.0	6.4	0.0	0.0	2:	: 6.;	8.9	7.2	3.5	3.9	7.0	12.2		22	27.6	20.8	15.2	18.0	16.5	24.7	31.2
23	0.0	0.0	0.0	1.0	0.6	0.0	0.0	2	10.	9 4.0	0.2	7.6	4.3	3.5	12.0		23	24.9	22.2	15.0	16.2	16.5	28.9	26.0
24	0.0	0.2	0.2	0.2	0.0	0.0	0.0	2/	8.	6.2	2.2	-0.4	8.2	5.8	12.1		24	20.5	20.8	18.0	16.7	17.0	31.7	26.7
25	0.0	0.0	0.2	0.0	0.0	0.0	0.0	2	8.		0.2	4.3	4.5	9.3	13.7		25	21.5	21.8	19.4	16.8	17.7	27.5	25.2
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20	8.	5.1	3.9	1.5	3.1	9.3	14.2		26	24.0	20.4	18.5	16.0	19.9	24.8	27.8
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	7.	5.1	6.6	3.6	4.2	11.7	12.7		27	24.4	18.5	18.0	20.3	23.7	25.1	27.3
28	0.0	0.0	0.0	4.2	0.0	0.0	0.0	20	. 0.0	0.6	6.4	7.0	4.5	9.3	16.1		28	23.5	18.0	19.8	12.3	22./	30.0	29.5
29	0.0	0.0	0.0	33.6	1.0	0.0	0.0	2	9.	4.8	1.3	9.2	10.4	8.5	14.3		29	27.0	19.6	22.1	19.0	22.6	24.2	33.1
30	0.0	0.0	0.0	0.0	1.2	0.0	0.0	3	, 13.	3.0	2.4	14.4	10.3	0.4	16.0		30	20.2	21.0	22.0	19.0	10.0	27.0	31.0
31 Total	19.0	26.0	0.0	Q4 0	20.0	0.2	0.0	3	g 40	2.5	6 -	14.4	4.0		15.5		31	25.0	22.2	20 5	17.0	17.0	22.7	20.4
IULAL	10.0	20.0	29.0	01.0	55.0 Sow/	Sprav	1.2	AV	5 12.	0./	0.5	5.9	0.1	5.2	11.5		Avg	25.0	20.9	20.5	1/./	10.2	22./	29.1
						ferre			4-6 leaf spray															
					2-4 lea	ii spra	y																	

GRASS VALLEY

AIMS

Evaluate a range of commercially available herbicides and applications timings for the control of Annual Ryegrass in dual tolerance canola.

Trt No.	Treatment Name	Rate per Hectare	Application Timing	Appl. Code
1	Untreated Control			
2	Atrazine	1.1 kg	IBS	А
3	Atrazine	2.2 kg	IBS	А
4	Atrazine + Trifluralin	1.1 kg + 2.5 L	IBS	А
5	Trifluralin	2.5 L	IBS	А
6	Propyzamide	11	IBS	А
7	Dual Gold	500 ml	IBS	А
8	F9133-1	3 kg	IBS	А
9	F9133-1	3 kg	PSPE	В
10	FMZ 1204	1 L	IBS	А
11	Atrazine + Trifluralin fb	1.1 kg +2.5 L	IBS	А
	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	4-6 Leaf	D
12	Trifluralin fb	2.5 L	IBS	А
	Glyphosate fb	900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
13	Atrazine + Trifluralin fb	1.1 kg + 2.5 L	IBS	А
	Atrazine + Glyphosate fb	1.1 kg + 900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
14	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	4-6 Leaf	D
15	Glyphosate fb	900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
16	Atrazine + Glyphosate fb	1.1 kg + 900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
17	Atrazine fb	1.1 kg	2-4 Leaf	С
	Select + Uptake	500 ml + 1 %v/v	4-6 Leaf	D
18	Select + Uptake	500 ml + 1 %v/v	4-6 Leaf	D
19	Select + Uptake	1 L + 1 %v/v	4-6 Leaf	D
20	Factor + Select + Supercharge	80 g + 500ml + 1 %v/v	4-6 Leaf	D
21	Select + Verdict + Uptake	500 ml + 100 ml + 1 %v/v	4-6 Leaf	D

TABLE 2: : ANNUAL RYEGRASS COUNTS (PLANTS/M2) 36, 55 AND 92 DAS.

Trt	Treatment Name	Rate	Appl code	14 DAA*	294 DAA*	55 DAA*C
1	Untreated Control			223 a	222 a	399 a
2	Atrazine	1.1 kg	А	93 b	135 bc	129 b-e
3	Atrazine	2.2 kg	А	89 b	91 cd	97 def
4	Atrazine + Trifluralin	1.1 kg + 2.5 L	А	38 cd	36 ef	56 fgh
5	Trifluralin	2.5 L	А	46 bcd	63 de	89 ef
6	Propyzamide	1 L	А	36 d	13 gh	19 ij
7	Dual Gold	500 ml	А	87 bc	117 bc	119 cde
8	F9133-1	3 kg	А	16 d	25 fg	33 hi
9	F9133-1	3 kg	В	43 bcd	92 cd	90 ef
10	FMZ 1204	1 L	А	15 d	33 efg	44 ghi
	Atrazine + Trifluralin fb	1.1 kg +2.5 L	А			
11	Atrazine + Select +	1.1 kg + 500 ml +	D	17 d	23 fg	36 hi
	Uptake	1 %V/V	D	-		
	Trifluralin fb	2.5 L	А	_		
12	Glyphosate fb	900 g	C	34 d	5 h	17 ij
	Glyphosate	900 g	D	-		
	Atrazine + Trifluralin fb	1.1 kg + 2.5 L	А			
13	Atrazine + Glyphosate fb	1.1 kg + 900 g	С	34 d	2 h	3 j
	Glyphosate	900 g	D			
	Atrazine + Select +	1.1 kg + 500 ml +	D			
14	Uptake	1 %V/V	D	-	-	1/4 DC
45	Glyphosate fb	900 g	С	_	ao fa	a, hi
15	Glyphosate	900 g	D	-	2918	34 11
16	Atrazine + Glyphosate fb	1.1 kg + 900 g	C	_	a9 of	22 i
10	Glyphosate	900 g	D	-	30 61	231
47	Atrazine fb	1.1 kg	C	_	arab	To of a
1/	Select + Uptake	500 ml + 1 %v/v	D	-	151.0	79 eig
18	Select + Uptake	500 ml + 1 %v/v	D	-	-	193 b
19	Select + Uptake	1 L + 1 %v/v	D	-	-	149 bcd
20	Factor + Select +	80 g + 500ml +	D			120 cdo
20	Supercharge	1 %V/V	D	-	-	120 cue
24	Select + Verdict +	500 ml + 100 ml +	D	_		107 40
21	Uptake	1 %V/V	D	-	-	107 ue
			l.s.d.	-	-	-
			c.v.	26.5	18.7	18.0
			f-prob.	<0.001	<0.001	<0.001

CONCLUSION / SUMMARY

In this trial:

- IBS applications of Trifluralin, Trifluralin + Atrazine, F9133-1 and Propyzamide gave the best early control of Annual Ryegrass.
- Post emergent applications including Glyphosate showed the highest control of Annual Ryegrass 93 DAS. The lower control observed in response to 4-6 leaf applications of Select could be is likely related to Annual Ryegrass still dying at that assessment time.
- IBS Propyzamide applications maintained very good control throughout the trial period (96% 93 DAS), reducing Annual Ryegrass density by more than 97%.
- Annual Ryegrass density in response to IBS application of F9133-1 was significantly lower than the corresponding PSPE application.

PRE-EMERGENT LUPINS TRIAL

INTRODUCTION

The trial 5km south of Grass Valley, WA in 2015 evaluated a range of commercially available herbicides and application timing for control of annual ryegrass (Lolium rigidum) in Lupins Mandellup. Combinations of herbicides applications included Incorporated by sowing (IBS), and post emergent (PE) applications at the 406 leaf growth stage. Early post emergent control of annual ryegrass was most effective in response to IBS applications of Trifluralin + Simazine+Diuron. Post emergent applications containing select showed the highest overall control of Annual Ryegrass 11 weeks after seeding and was the highest yielding.

CROP & SOWING DETAILS							
Date Sown	30th April 2015						
Variety	Mandellup						
Seeding Rate	100kg/ha						
Nutrition Pre	8okg/ha Gusto Gold	okg/ha Gusto Gold					
Tillage Type	Knife points and press	wheels					
Row Spacing	25.4cm						
Moisture	Dry to 4cm						
Clod size	Small						
Stubble loading	15-20 % ground covera	age, 5% standing					
Herbicides Applied	Pre-emergent	As per treatment list					
	Post-emergent	As per treatment list Whole site received 2l/ha RoundUp late in the season (during grainfill)					
Insecticides Applied	Pre-emergent	1L/ha Chlorpyrifos 200mL/ha Bifenthrin					
	Post-emergent	150 ml/ha Transform					

ASSESSMENT DATA SCORING SYSTEMS

Notations Used:

IBS = Incorporated By Sowing WAS = Weeks After Sowing PE = Post-emergent DAA = Days After Application DAA-C = Days After Application Timing C

Percent Control

A visual subjective score was given to each plot based on the percentage of weed control as compared to untreated control plots, where o = no observed control and 100 = full weed control.

Weed Counts

Four 33cm2 quadrats per plot were counted (excluding the header rows) and the average taken and converted to plants/m2. **Yield**

Plots were harvested with a Haldrup trial header and the weights in kg/plot recorded, then converted to t/ha.

Temperature (max)

Jun 20.1 19.7

20.9

23.0 20.7 15.8 19.1

23.0

25.9

22.2 17.9 17.6 17.1 20.9

20.8 19.9 17.0 22.9 26.9

19.9 13.4 14.0 25.4 33.4

21.6

23.5 15.5 19.0 24.6 36.0

25.4

22.3 15.4 15.6

18.7

18.4

18.3 16.2

20.4

18.0 21.4

21.0 22.9 19.8 29.8

23.1 19.7 19.7 19.0

21.3 20.0

18.1 15.6 15.4 21.9 35.5

15.2 18.0 16.5 24.7 31.2

15.0 16.2 16.5 28.9 26.0

18.0 16.7 17.0 31.7 26.7

19.4 18.5 16.0 19.9 24.8 27.8

18.0

19.8 12.3 22.7 30.0 29.5

22.1 19.0 22.6 24.2 33.1

22.0 19.0 17.6

16.8 17.7 27.5 25.2

20.3 23.7

25.1 27.3

18.6 27.6

17.0 20.5 17.7 18.2 22.7 29.1

Jul Aug Sep

16.9 14.0 14.7

20.7 16.7

20.4 16.4

13.8 14.7

15.3 17.5

16.9

18.0 23.7

14.0 14.4

21.1 28.3

19.8 22.2

30.1 37.0

22.0 31.0

16.9

18.9

19.7 25.0

19.6 26.0 34.1

16.3 17.1 17.8 35.3

22.0 25.0 16.1

18.1 18.8 28.7

35.7

22.7

21.2

24.1

24.2

Oct

34.9

31.4 28.4

WEATHER DATA

Nea	ather 105						20								G	rass	Vall	ey	
Dav			F	Rainfa	ແ			Dav			Tempe	rature	(min))			Dav		
Jay	Apr	May	Jun	Jul	Aug	Sep	Oct	Day	Apr	May	Jun	Jul	Aug	Sep	Oct		Day	Apr	May
1	0.0	0.0	0.0	0.0	14.6	0.8	0.0	1	14.6	12.8	2.6	5.3	10.1	2.5	7.1		1	24.0	21.
2	0.0	0.0	0.2	1.2	0.2	0.0	0.0	2	12.6	10.5	6.1	10.8	5.8	0.0	8.1		2	26.7	24.
3	0.0	0.0	0.2	3.6	0.2	0.2	0.0	3	12.4	13.5	10.7	12.5	2.2	5.1	13.0		3	29.0	22.9
4	0.0	0.2	0.4	0.4	0.0	0.0	0.0	4	13.5	8.1	9.7	9.8	5.1	0.3	13.0		4	31.5	17.2
5	0.0	0.0	0.0	0.4	0.0	0.2	0.4	5	16.0	2.2	6.0	11.0	4.5	7.5	15.2		5	29.5	19.0
6	0.0	0.0	0.0	0.8	0.0	0.2	0.0	6	15.4	2.5	8.0	7.3	5.5	3.2	1.1		6	24.3	21.:
7	1.4	0.0	0.0	0.0	2.0	0.0	0.0	7	15.3	4.2	4.5	8.8	8.1	1.2	6.8		7	18.0	22.
8	7.8	0.0	0.2	1.4	0.4	0.0	0.0	8	15.0	3.2	5.0	7.2	6.0	3.1	8.8		8	24.0	23.
9	2.0	0.0	0.0	0.2	5.0	0.0	0.0	9	16.1	5.5	6.9	-0.6	0.3	2.9	11.2		9	23.5	22.
10	6.6	0.0	0.0	0.0	0.6	0.0	0.0	10	18.6	9.0	4.9	3.0	4.1	11.4	15.8		10	26.4	23.:
11	0.2	0.0	0.0	0.0	0.2	1.8	0.0	11	14.4		4.6	0.2	8.3	5.8	16.3		11	24.5	23.
12	0.0	0.0	0.0	0.0	0.0	4.8	0.0	12	15.5	10.1	9.6	0.2	5.0	10.0	13.4		12	25.1	22.
13	0.0	0.0	0.0	0.0	0.0	2.4	0.0	13	15.5	7.1	8.4	3.1	6.3	1.2	11.3		13	23.4	21.8
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	11.4	5.1	6.9	5.2	3.1	1.1	10.5		14	22.9	25.
15	0.0	0.0	0.0	0.0	0.0	0.0	0.4	15	11.6	4.1	4.5	6.1	4.3	6.2	7.9		15	22.0	24.
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16	9.6	12.4	5.4	3.4	5.2	3.4	4.5		16	22.0	17.6
17	0.0	11.6	0.0	0.0	6.8	0.0	0.0	17	8.6	11.0	10.0	1.4	9.9	1.2	9.8		17	25.0	18.9
18	0.0	14.8	4.0	0.0	2.4	0.0	0.0	18	10.4	11.6	10.7	5.0	11.0	3.3	13.5		18	26.6	20.2
19	0.0	0.0	0.6	0.0	1.6	0.0	0.4	19	12.0	8.6	12.7	7.5	9.5	9.0	8.9		19	26.6	17.0
20	0.0	0.0	1.2	5.2	12.0	0.0	0.0	20	12.2	6.8	13.4	11.5	10.5	1.5	8.0		20	27.0	15.8
21	0.0	0.0	12.6	3.6	0.2	0.0	0.0	21	7.1	5.3	13.5	7.6	6.9	5.9	12.1		21	27.1	18.0
22	0.0	0.0	9.8	0.0	6.4	0.0	0.0	22	6.7	8.9	7.2	3.5	3.9	7.0	12.2		22	27.6	20.8
23	0.0	0.0	0.0	1.0	0.6	0.0	0.0	23	10.9	4.0	0.2	7.6	4.3	3.5	12.0		23	24.9	22.3
24	0.0	0.2	0.2	0.2	0.0	0.0	0.0	24	8.5	6.2	2.2	-0.4	8.2	5.8	12.1		24	20.5	20.
25	0.0	0.0	0.2	0.0	0.0	0.0	0.0	25	8.5		0.2	4.3	4.5	9.3	13.7		25	21.5	21.8
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26	8.5	5.1	3.9	1.5	3.1	9.3	14.2		26	24.0	20.
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27	7.5	5.1	6.6	3.6	4.2	11.7	12.7		27	24.4	18.
28	0.0	0.0	0.0	4.2	0.0	0.0	0.0	28	6.6	0.6	6.4	7.0	4.5	9.3	16.1		28	23.5	18.0
29	0.0	0.0	0.0	33.6	1.0	0.0	0.0	29	9.8	4.8	1.3	9.2	10.4	8.5	14.3		29	27.0	19.6
30	0.0	0.0	0.0	0.0	1.2	0.0	0.0	30	13.8	3.6	2.4		10.3	6.4	16.0		30	28.2	21.8
31		0.0		26.0	0.2		0.0	31		2.5		14.4	4.0		15.5		31		22.
Total	18.0	26.8	29.6	81.8	55.6	10.4	1.2	Avg	12.0	6.7	6.5	5.9	6.1	5.2	11.5		Avg	25.0	20.9
				5	Sown/	Spray	yed A												
	Sprayed (yed C													

31.0

28.4

Weed species present in this trial are Annual Ryegrass (Lolium rigidum).

WEED COUNTS

TABLE 1: ANNUAL RYEGRASS COUNTS (PLANTS/M2) 4, 7 & 11 WAS.

Trt No.	Treatment Name	Application Rate	Appl code	4 WAS*	7 WAS* 9 DAA-C	11 WAS 38 DAA-C
1	Untreated Control			231 a	226 a	119 a
2	Simazine	1.1 kg/ha	А	158 ab	210 ab	93 b
2	Simazine	0.55 kg/ha	Α	121 2 d	1 (o bod	zo bod
3	Atrazine	0.55 kg/ha	А	121 a-u	140 bcu	70 bcu
,	Simazine	1.1 kg/ha	Α	8a b o	127 cdo	oo b
4	Diuron	o.4 kg/ha	А	03 D-e	127 cue	90 0
F	Simazine	0.9 kg/ha	Α	67 h o	So d a	rod a
5	Metribuzin	o.4 kg/ha	А	67 D-6	80 u-g	50 u-g
6	Propyzamide	1 l/ha	А	62 b-e	35 g	30 gh
7	Terbyne	1.2 kg/ha	А	148 abc	167 abc	85 bc
8	Trifluralin	2.5 l/ha	А	33 de	48 fg	42 efg
	Trifluralin	2.5 l/ha	А			
9	Simazine	1.1 kg/ha	А	23 e	35 g	28 ghi
	Diuron	o.4 kg/ha	А			
	Simazine	1.1 kg/ha	А	00 h a		Qiba
10	Terrain	180 g/ha	А	88 D-6	98 de	84 DC
11	Sakura	118 g/ha	А	46 cde	41 fg	38 fgh
12	FMZ1204	1 l/ha	А	47 cde	42 fg	49 d-g
13	Boxer Gold	2.5 l/ha	А	37 de	88 def	74 bcd
14	F9133	3 kg/ha	А	30 de	42 fg	60 c-f
	Select	500 ml/ha	С			ra hi
15	Uptake	1 % V/V	С		119 cde	13 NI
	Select	1 /ha	С		0- 4	
16	Uptake	1 % V/V	С		80 a-g	21
	Select	500 ml/ha	С			
17	Elantra Xtreme	150 ml/ha	С		103 cde	11 hi
	Uptake	1 % V/V	С			
	Factor	180 g/ha	С			(2)
18	Supercharge	1 % V/V	С		125 cde	68 b-e
	Factor	180 g/ha	С			
19	Select	500 ml/ha	C		76 efg	15 hi
	Supercharge	1 % V/V	C			
			LSD	-	-	24.3
			CV	33.2	16.4	27.5
			f-prob.	0.004	(0.001	(0.001

*Data presented as back transformed means (Square Root). Application C not applied at 4 WAS assessment.

PERCENT WEED CONTROL

TABLE 2: ANNUAL RYEGRASS CONTROL (%) 4, 7 & 11 WAS.

Trt No.	Treatment Name	Application Rate	Appl code	4 WAS*	7 WAS* 9 DAA-C	11 WAS 38 DAA-C
1	Untreated Control			o e	o f	o e
2	Simazine	1.1kg/ha	А	47 C	o f	14 d
2	Simazine	o.55 kg/ha	А			
3	Atrazine	o.55 kg/ha	А	58 bc	27 e	39 C
,	Simazine	1.1 kg/ha	А			
4	Diuron	o.4 kg/ha	Α	77 a	27 e	33 cd
-	Simazine	0.9 kg/ha	А			
5	Metribuzin	o.4 kg/ha	А	83 a	82 a	76 b
6	Propyzamide	1 l/ha	Α	87 a	90 a	83 b
7	Terbyne	1.2 kg/ha	А	17 d	23 e	37 C
8	Trifluralin	2.5 l/ha	А	85 a	83 a	78 b
	Trifluralin	2.5 l/h	Α			
9	Simazine	1.1 kg/ha	Α			
	Diuron	o.4 kg/ha	Α	90 a	90 a	87 ab
10	Simazine	1.1 kg/ha	Α			
10	Terrain	180g/ha	Α	73 ab	40 d	33 cd
11	Sakura	118 g/ha	Α	87 a	88 a	80 b
12	FMZ1204	1 l/ha	Α	85 a	88 a	87 ab
13	Boxer Gold	2.5 l/ha	А	85 a	85 a	50 C
14	F9133	3 kg/ha	А	88 a	85 a	72 b
15	Select	500 ml/ha	С		119 cde	13 hi
	Uptake	1% V/V	С		65 b	97 a
16	Select	1 l/ha	С		80 d-g	2 i
	Uptake	1 % V/V	С		65 b	97 a
17	Select	500 ml/ha	С		103 cde	11 hi
	Elantra Xtreme	150 ml/ha	С			
	Uptake	1 % v/v C		58 bc	98 a	
18	Factor	180 g/ha	С		125 cde	68 b-e
	Supercharge	1 % V/V	С		50 cd	88 ab
19	Factor	180 g/ha	С		76 efg	15 hi
	Select	500 ml/ha	С			
	Supercharge	1 % V/V	С		60 bc	98 a
			LSD	16.2	11.9	-
			CV	14.1	12.4	13.2
			f-prob.	<0.001	<0.001	<0.001

*Data presented as back transformed means (ArcSine). Application C not applied at 4 WAS assessment

CROP YIELD

TABLE 3: CROP YIELD (T/HA).

Trt No.	Treatment Name	Application Rate	Appl code	t/ha			
1	Untreated Control			1.01 h			
2	Simazine	1.1 kg/ha	А	1.08 gh			
2	Simazine	0.55 kg/ha	Α	t ap of			
3	Atrazine	0.55 kg/ha	А	1.33 ei			
	Simazine	1.1 kg/ha	А	, vo dof			
4	Diuron	o.4 kg/ha	A	1.40 dei			
_	Simazine	o.9 kg/ha	А	. (a aha			
5	Metribuzin	o.4 kg/ha	A	1.69 aDC			
6	Propyzamide	1 l/ha	А	1.62 bcd			
7	Terbyne	1.2 kg/ha	А	1.06 gh			
8	Trifluralin	2.5 l/ha	А	1.40 def			
	Trifluralin	2.5 l/ha	A				
9	Simazine	1.1 kg/ha	A	1.74 abc			
	Diuron	o.4 kg/ha	A				
	Simazine	1.1 kg/ha	A				
10	Terrain	in 180 g/ha					
11	Sakura	118 g/ha	A	1.72 abc			
12	FMZ1204	1 l/ha	A	1.49 c-f			
13	Boxer Gold	2.5 l/ha	А	1.27 fg			
14	F9133	3 kg/ha	А	1.59 cde			
	Select	500 ml/ha	С	. 00 -h			
15	Uptake	1 % V/V	С	1.88 ab			
.(Select	1 l/ha	С				
16	Uptake	1 % V/V	С	1.89 a			
	Select	500 ml/ha	С				
17	Elantra Xtreme	150 ml/ha	С	1.88 ab			
	Uptake	1 % V/V	С				
	Factor	180 g/ha	С	. (, a d			
18	Supercharge	1 % V/V	С	1.64 a-u			
	Factor	180 g/ha	С				
19	Select	500 ml/ha	С	1.90 a			
	Supercharge	1 % V/V	С				
			LSD	0.234			
			f-prob.	(0.001			

CONCLUSION / SUMMARY

In this trial:

- IBS applications of Trifluralin + Simazine + Diuron gave the best early control of Annual Ryegrass.
- Post emergent applications containing Select showed the highest overall control of Annual Ryegrass 11 WAS and were highest yielding.
- Applications of Simazine, Simazine + Diuron and Simazine + Terrain gave <35% final control of Annual Ryegrass.

Access over 2000 locations, satellite and radar images, warnings and breaking weather information and much more.

NEW CHEMISTRY, NEW THINKING, NEW PARADIGM.

WITH THE FLEXIBILITY THAT YOU HAVE ALWAYS WANTED.

Paradigm[™] Herbicide with Arylex[™] active delivers a low dose, wide spectrum solution for the control of broadleaf weeds.

Widely compatible with the ability to safely go across wheat, barley, oats and triticale, Paradigm fits easily into your spray programme. Increase your productivity with less downtime due to tank clean out, changing the spray mix or worrying about compatibilities. Get some precious time back and make life easier.

Shift to the new Paradigm.

For more information call 1800 700 096 www.dowagrosciences.com.au

Solutions for the Growing World

® ™ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Do

ARYLEX[®] ACTIVE

BARLEY AGRONOMY

li) ing farm

ABSTRACT

One trial was conducted in Grass Valley, Western Australia, to demonstrate the potential of in furrow, seed treatments and foliar fungicides for the control of foliar diseases in barley (Hordeum vulgare cv. Baudin). The trial was sown into moisture on a sandy duplex soil. Seed and in furrow treatments were sown in one direction with foliar sprays applied post emergent perpendicular to the sowing runs. Post emergent treatments were applied when the crop was between Z25 and Z31. Foliar diseases present within the trial were Powdery Mildew (Blumeria graminis) and Net Blotch (Pyrenophora teres). During the season Rhizoctonia (Rhizoctonia solani) symptoms were also present within the trial but were not assessed. This trial was not replicated; as such trial observations do not contain statistical rigour.

In this trial, observations suggested that Powdery Mildew severity was reduced through the foliar application of Aviator Xpro or Prosaro, the in furrow application of Intake or the seed treatment Systiva. Assessment of Net Blotch demonstrated a reduction in severity through the foliar application or Radial or the in furrow application of Intake. Yield results were difficult to interpret due to confounding factors such as Rhizoctonia and soil type changes across the site; however Uniform, Systiva and Evergol were shown to provide higher yields.

TREATMENT NO	TREATMENT	RATE	APPLICATION METHOD
1	Untreated Control		
2	Uniform	400mL/ha	In Furrow
3	Systiva	150mL/100kg Seed	Seed Treatment
4	Evergol	80mL/100kg Seed	Seed Treatment
5	Vibrance	36omL/100kg Seed	Seed Treatment
6	Raxil	15mL/100kg Seed	Seed Treatment
7	Premis Pro C	100mL/100kg Seed	Seed Treatment
8	Intake	400mL/ha	In Furrow
9	Rancona Dimension	320mL/100kg Seed	Seed Treatment

Foliar Application	1	
Treatment No	Treatment	Rate
1	Tzar Xpert 1000mL/ha	1000mL/ha
2	Radial 840mL/ha	840mL/ha
3	BASF 70203F 750mL/ha	750mL/ha
4	Amistar Xtra 800mL/ha	8oomL/ha
5	ELDoo1 250mL/ha	250mL/ha
6	Dow Legend 30omL/ha	300mL/ha
7	Dow Legend	300mL/ha
	Propimax	145mL/ha
8	Prosaro	300mL/ha
9	Aviator Xpro	1000mL/ha
10	Cogito	250mL/ha

	итс	Tzar Xpert 1000ml/ ha	Radial 84oml/ ha	BASF 70203F 750ml/ ha	Amistar Xtra 800ml/ ha	Dupont ELDoo1 25oml/ ha	итс	DOW Legend 300ml/ ha	DOW Legend 300ml/ha+ Propimax	Bayer Prosaro 300ml/ ha	Bayer Aviator 1000ml/ ha	Syngenta Cogito 250ml/ ha	итс
utc													
uniform IF 400ml/ha													
Systiva 150ml/100kg													
utc													
Evergol 80ml/100kg													
Vibrance 36oml/100kg													
utc													
raxil													
Premis Pro C 100ml/100kg													
utc													
Intake 400ml/ha													
Rancona Dimension 320ml/100jkg													
utc													

EXPERIMENTAL APPLICATION DETAILS

FOLIAR TREATMENTS		
Date	18/08/2015	
Spray Time	Start	2:15
	Finish	3:15
Temperature (°C)	Start	18.9
	Finish	20.1
Delta T	Start	4.1
	Finish	3.9
Cloud Cover (%)	Start	30
	Finish	60
Relative Humidity (%)	Start	66.6
	Finish	55.5
Wind Speed (m/s)	Start	2.5
	Finish	2.6
Wind Direction	Start	5
	Finish	5
Soil Moisture	Moist to surface	
Application equipment	Handboom	
Application speed (km/hr)	6	
Pressure (bar)	2	
Spray volume (L/ha)	96	
Spray quality	Coarse	
Nozzles	120-015 Lechler	
Number of Nozzles	4	
Spacing (cm)	50	
Propellant	LPG Gas	

ASSESSMENT DATA SCORING SYSTEMS

Notations Used:

UTC = Untreated Check

DAA = Days After Application

WAA = Weeks After Application

%LAI = Percent Leaf Area Infection

Disease Severity

Crop parts were conducted in each plot and given a percent leaf area infected (% LAI) in the lower, mid and upper canopy for each disease present.

Yield

Plots were harvested with a Haldrup trial header and the weights in kg/plot recorded, then converted to t/ha. Three grain samples were taken for moisture content.

RESULTS

PRE-SPRAY DISEASE LEVELS

Table 1: Pre-spray leaf area infected (%).

	U	ntreate	ed	ι	Jniforn	n		Systiva	1	U	ntreate	ed	l	Evergo	l	v	ibranc	e
	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper									
Powdery Mildew	30	5	1	10	2	0	5	0	0	40	5	0	30	5	0	20	3	0
Net Blotch	5	0	0	1	0	0	2	0	0	2	0	0	5	0	0	5	0	0

	U	ntreate	ed		Raxil		Pre	emis Pı	o C	U	ntreate	ed		Intake		R	ancon	a
	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Powdery Mildew	30	10	0	30	10	0	50	5	0	50	5	0	20	5	0	40	5	0
Net Blotch	10	0	0	10	0	0	15	5	0	5	0	0	5	0	0	10	1	0

POWDERY MILDEW

Table 2: Powdery Mildew (% LAI) 3 WAA

Powdery Mildew	U	ntreat	ed	ι	Jniforn	n		Systiva	a	U	ntreat	ed	E	Evergo	ι	v	ibranc	e
Canopy level	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	10	5	1	2	5	0	3	3	0	7	5	0	3	3	0	3	5	1
Tzar Xpert	5	3	0	2	0	0	2	0	0	2	2	0	2	2	1	3	1	0
Radial	5	3	0	2	3	0	2	0	0	2	1	0	2	1	0	2	1	0
BAS 7020	0	0	0	0	0	2	0	0	0	1	0	0	1	0	0	1	0	0
Amistar Xtra	5	3	0	2	3	0	2	0	0	2	2	0	2	2	0	5	2	0
ELD001	2	0	0	3	1	0	3	2	0	2	2	0	3	0	0	2	0	0
Untreated	7	2	0	5	2	0	5	2	0	7	3	0	10	2	0	5	2	0
Legend	5	2	0	5	2	0	0	0	0	5	2	0	3	2	0	3	3	0
Legend + Propimax	5	1	0	3	0	ο	ο	0	0	2	0	0	3	0	0	2	0	0
Prosaro	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	3	1	0
Aviator	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cogito	3	1	0	4	1	0	3	1	0	7	3	0	5	2	0	3	1	0
Untreated	30	15	3	20	7	0	5	5	0	20	10	5	30	20	2	30	5	0

Powdery Mildew	Untreated			Raxil		Pre	mis Pı	ю С	U	ntreate	ed		Intake		R	ancon	a	
Canopy level	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	5	3	1	5	3	0	5	4	0	10	10	0	3	2	0	15	3	0
Tzar Xpert	5	3	0	3	3	0	10	10	0	10	3	0	3	3	1	5	3	0
Radial	3	2	0	5	3	0	3	3	0	2	1	0	2	0	0	3	1	0
BAS 7020	1	0	0	5	2	0	1	0	0	2	0	0	1	0	0	2	0	0
Amistar Xtra	3	1	0	3	1	0	2	0	0	3	3	3	2	1	0	2	0	0
ELD001	3	1	0	3	0	0	5	2	0	2	0	0	5	2	0	3	1	0
Untreated	7	3	1	10	5	1	20	10	3	10	5	1	5	3	1	10	5	1
Legend	5	2	0	3	2	0	3	2	0	10	3	0	5	2	0	5	2	0
Legend + Propimax	2	0	0	3	1	0	3	0	0	3	1	0	2	1	0	3	1	0
Prosaro	1	0	0	1	0	0	1	0	0	2	0	0	1	0	0	1	0	0
Aviator	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Cogito	7	2	0	3	1	0	5	3	0	3	3	0	7	3	0	3	1	0
Untreated	10	5	0	15	7	0	30	20	0	30	40	0	20	10	0	30	15	1

POWDERY MILDEW

Table 3: Powdery Mildew (% LAI) 7 WAA.

U	ntreat	ed	ι	Jniforn	n	9	Systiva	a	U	ntreat	ed	E	Evergo	ι	v	ibranc	e
Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
15	7	5	5	7	2	7	5	2	12	7	5	7	3	0	7	5	1
10	5	1	5	0	0	5	1	0	7	2	0	5	2	1	5	1	1
12	5	0	5	2	0	7	1	0	3	2	0	5	1	0	3	1	0
5	2	0	2	0	0	2	0	0	2	1	0	2	1	0	2	0	0
10	7	2	7	3	2	2	1	0	10	1	0	5	2	0	5	1	0
5	0	0	5	1	0	7	5	1	5	2	0	7	0	0	5	0	0
12	3	1	7	3	0	7	2	0	12	5	1	15	7	1	7	3	1
7	3	0	7	2	1	1	0	0	7	5	0	5	1	1	5	3	1
7	2	1	5	1	0	2	0	0	3	2	0	5	0	0	3	0	0
1	0	0	1	0	0	1	0	0	2	0	0	1	0	0	5	1	0
0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	1	0	0
5	1	0	5	2	0	5	1	0	12	2	0	7	2	1	5	1	0
40	30	10	30	10	2	7	5	1	30	10	7	40	25	5	20	10	5
	U Lower 15 10 25 10 5 12 7 7 7 7 7 7 1 1 0 5 5 40	Lower Mid 15 7 10 5 12 2 10 7 5 2 10 7 12 3 7 3 7 2 11 0 0 1 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3 13 3 14 3 15 1 16 3	Isower Mid Upper 15 7 5 15 7 5 10 5 1 12 5 0 12 5 0 13 7 2 14 7 2 15 0 0 10 7 2 11 3 0 12 3 0 12 3 0 12 3 0 12 3 0 12 3 0 12 3 0 12 3 0 13 0 0 14 0 0 15 1 0 15 1 0 15 1 0	LowerMidUpperLower157551575510515125021220210727500512317530772151100172151230113015140015105640301030	UViewMidUpperLowerMid105571051571051571250521250521272731072731131731231731315111401111510111631031	LowerMidUpperCoverMidUpper157557215755721051572125052012202021072732107273210727321172173123172112317301311731140110115105201400100151011016301030102	LowerMidUpperLowerMidUpperCover15757271575727105157271250202712502022107273221173173712317307123173071231730712317307131011011140010111510101115105205140010011510311115101111	LowerMidUpperCowerMidUpperLowerMidUpperLowerMid1575727510515727512500511125020711372732114727321150051072107273073113073010123151072143173072151510101160101010172151010180101010191010101110010101015101010114001010115101011114001011115101 </td <td>LowerMidUpperLowerMidUpperLowerMidUpper15757275210557275210515727521250205101250207101272732210107273221010727322101173107310123173073011317307301231730730131731010014315101001510100100140520510015101001001405205100151000101014000</td> <td>Image: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemInoregoineMidUpperMidUpperInoregoineMidUpperInoregoineInoregoine157572752121051572752121250520710312502072101010727322110101072730721111100510721111112317307211111131731111111111411111111111115101011111111151010111111111510101111111116101<t< td=""><td>Image: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemInoregoineMidUpperMidUpperMidUpperMidUpperInoregoineMid1575572752127105157275212710515005107212505207103210727307103210727307211010121173173072112312123173072111</td><td>LowerMidUpperLowerMidUpperLowerMidUpperLowerMidUpperLowerMidUpperMidUpper1575572752127510515727521275105157275212751250520710320125052071032012505107101001072002010100101072010710101001173072110101010123173072110101012317307211010101317310111101111114110101</td><td>Image: Normal systemImage: Normal system</td><td>Image: Normal systemImage: Normal system</td><td>Image: Normal bar bar bar bar bar bar bar bar bar bar</td><td>Image: Normal bar bar bar bar bar bar bar bar bar bar</td><td>U U I S I U I</td></t<></td>	LowerMidUpperLowerMidUpperLowerMidUpper15757275210557275210515727521250205101250207101272732210107273221010727322101173107310123173073011317307301231730730131731010014315101001510100100140520510015101001001405205100151000101014000	Image: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemInoregoineMidUpperMidUpperInoregoineMidUpperInoregoineInoregoine157572752121051572752121250520710312502072101010727322110101072730721111100510721111112317307211111131731111111111411111111111115101011111111151010111111111510101111111116101 <t< td=""><td>Image: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemInoregoineMidUpperMidUpperMidUpperMidUpperInoregoineMid1575572752127105157275212710515005107212505207103210727307103210727307211010121173173072112312123173072111</td><td>LowerMidUpperLowerMidUpperLowerMidUpperLowerMidUpperLowerMidUpperMidUpper1575572752127510515727521275105157275212751250520710320125052071032012505107101001072002010100101072010710101001173072110101010123173072110101012317307211010101317310111101111114110101</td><td>Image: Normal systemImage: Normal system</td><td>Image: Normal systemImage: Normal system</td><td>Image: Normal bar bar bar bar bar bar bar bar bar bar</td><td>Image: Normal bar bar bar bar bar bar bar bar bar bar</td><td>U U I S I U I</td></t<>	Image: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemImage: Normal systemInoregoineMidUpperMidUpperMidUpperMidUpperInoregoineMid1575572752127105157275212710515005107212505207103210727307103210727307211010121173173072112312123173072111	LowerMidUpperLowerMidUpperLowerMidUpperLowerMidUpperLowerMidUpperMidUpper1575572752127510515727521275105157275212751250520710320125052071032012505107101001072002010100101072010710101001173072110101010123173072110101012317307211010101317310111101111114110101	Image: Normal systemImage: Normal system	Image: Normal systemImage: Normal system	Image: Normal bar	Image: Normal bar	U U I S I U I

Powdery Mildew	Untreated		ed		Raxil		Pre	mis Pı	o C	U	ntreate	ed		Intake		R	ancon	a
Canopy level	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	10	5	2	15	5	2	10	2	0	20	15	0	7	2	1	25	7	2
Tzar Xpert	10	5	1	5	5	1	15	10	1	15	10	0	5	3	1	20	7	1
Radial	5	2	1	10	5	1	7	3	1	5	1	0	3	0	0	20	5	2
BAS 7020	3	1	0	12	5	1	2	1	0	5	0	0	2	0	0	5	0	0
Amistar Xtra	5	0	0	5	0	0	5	2	0	5	2	0	5	1	1	10	7	1
ELD001	5	1	0	5	1	0	7	3	0	3	0	0	10	2	1	5	1	0
Untreated	15	5	2	10	7	3	30	15	7	20	10	2	7	5	2	15	7	1
Legend	10	3	1	5	3	1	5	3	1	15	5	0	7	2	1	7	2	2
Legend + Propimax	3	0	0	5	1	1	5	0	ο	5	1	0	3	1	1	3	1	1
Prosaro	2	0	0	2	0	0	2	0	0	5	0	0	2	0	0	2	0	0
Aviator	1	0	0	1	0	0	2	0	0	1	1	0	1	0	0	1	0	0
Cogito	10	3	1	5	1	1	7	3	1	5	3	0	10	5	2	5	1	1
Untreated	15	5	2	20	10	1	40	30	5	40	10	1	30	10	5	30	15	5

NET BLOTCH Table 4: Net blotch (% LAI) 3 WAA

Net Blotch	U	ntreat	ed	ι	Iniforr	n		Systiva	a	Uı	ntreat	ed	E	vergo	ol	v	ibrano	:e
	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	3	2	0	3	2	0	2	2	0	2	2	0	2	2	1	3	1	0
Tzar Xpert	2	1	0	2	0	0	2	0	0	1	2	0	1	0	0	1	1	0
Radial	2	1	0	0	2	0	1	1	0	0	3	0	1	0	0	1	0	0
BAS 7020	2	2	0	2	3	0	2	0	0	2	2	0	2	2	0	5	2	0
Amistar Xtra	5	3	0	3	3	0	0	0	0	5	0	0	3	2	0	3	1	0
ELD001	3	2	0	2	2	0	5	3	1	5	2	5	3	1	0	5	3	0
Untreated	5	2	0	3	2	0	5	2	1	2	2	1	3	3	1	3	2	0
Legend	2	2	0	2	1	0	3	1	1	3	2	1	5	2	1	3	2	0
Legend + Propimax	2	1	0	0	0	0	2	1	0	3	2	0	3	3	0	5	5	1
Prosaro	3	2	0	0	1	0	1	1	0	2	2	0	3	2	0	3	1	0
Aviator	3	1	0	1	1	0	1	0	0	3	2	0	3	1	0	3	2	0
Cogito	5	2	0	3	1	0	3	2	0	5	2	0	5	2	0	5	2	0
Untreated	3	3	0	3	2	0	3	2	0	5	3	0	2	2	0	2	3	0

Net Blotch	U	ntreat	ed		Raxil		Pre	mis P	ro C	U	ntreat	ed		Intake	:	R	ancon	a
	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	5	3	0	3	3	0	10	10	0	11	3	0	3	3	1	5	3	0
Tzar Xpert	1	2	0	2	0	0	2	0	0	2	0	0	2	2	0	2	0	0
Radial	2	0	0	1	0	0	1	0	0	5	2	0	3	2	0	2	0	0
BAS 7020	3	1	0	3	1	0	2	0	0	3	3	3	2	1	0	2	0	0
Amistar Xtra	2	0	0	2	0	0	3	2	2	3	2	0	3	2	0	10	5	2
ELD001	5	2	0	1	2	0	5	2	1	5	2	0	3	2	0	3	2	0
Untreated	2	3	1	2	2	1	2	2	0	3	3	1	2	2	0	2	3	0
Legend	5	2	0	3	3	1	3	3	1	3	3	0	2	0	0	3	3	1
Legend + Propimax	3	2	0	3	2	0	7	3	0	5	2	0	2	2	0	3	2	0
Prosaro	2	2	0	2	2	0	3	2	0	3	2	0	3	2	0	3	2	0
Aviator	3	3	1	3	1	0	3	1	0	3	3	0	3	1	0	3	1	0
Cogito	5	2	0	3	3	0	5	3	0	5	3	0	5	3	0	5	2	0
Untreated	3	2	0	2	2	0	2	1	0	2	0	0	2	0	0	3	0	0

NET BLOTCH Table 3: Powdery Mildew (% LAI) 7 WAA.

ici y milaci	•••••

Net Blotch	Ui	ntreat	ed	U	Iniforr	n		Systiva	1	U i	ntreat	ed	E E	Evergo	ol	V	ibrand	:e
	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	5	2	2	7	2	1	7	5	1	7	5	5	5	5	0	7	3	2
Tzar Xpert	5	2	1	3	1	0	5	1	0	2	2	0	1	0	0	1	1	0
Radial	5	2	1	0	5	0	2	1	0	0	5	0	2	1	0	2	0	0
BAS 7020	5	5	2	5	2	0	5	1	0	5	2	0	5	2	0	10	2	0
Amistar Xtra	10	3	2	5	1	0	7	5	1	7	5	2	5	1	1	5	2	0
ELD001	5	5	1	7	2	0	10	5	2	10	3	1	5	1	0	5	5	0
Untreated	7	3	0	5	2	2	7	2	1	5	2	1	5	3	1	5	2	1
Legend	3	2	0	3	2	1	5	1	1	5	2	1	7	3	1	5	3	2
Legend + Propimax	3	1	1	1	0	0	3	2	1	7	3	1	5	3	3	7	3	1
Prosaro	5	2	0	0	2	1	2	1	0	5	2	0	5	2	1	5	1	0
Aviator	5	2	0	2	0	0	2	1	0	5	2	1	5	1	0	5	2	0
Cogito	7	3	0	5	2	0	5	2	1	7	1	0	7	3	1	7	3	1
Untreated	7	5	2	3	1	0	5	2	1	10	5	3	5	2	1	5	2	1

Net Blotch	U	ntreat	ed		Raxil		Pre	mis Pı	ro C	Uı	ntreate	ed		ntake		R	ancon	a
	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper	Lower	Mid	Upper
Untreated	15	5	2	10	5	1	7	3	1	10	5	2	10	5	2	7	5	2
Tzar Xpert	3	5	1	3	1	0	5	1	0	7	0	0	5	2	0	5	3	1
Radial	2	2	1	3	1	0	5	0	0	7	3	1	5	2	1	7	2	1
BAS 7020	5	1	0	5	1	0	5	0	0	7	7	2	3	1	0	5	2	0
Amistar Xtra	5	3	1	7	2	1	5	1	1	7	3	1	5	3	1	3	2	0
ELD001	10	3	1	3	1	0	10	3	0	7	2	2	5	2	0	5	2	0
Untreated	5	3	1	5	2	1	5	2	1	5	3	1	5	2	1	3	3	1
Legend	7	3	2	5	3	2	7	3	1	5	3	0	3	0	0	5	3	1
Legend + Propimax	7	2	1	5	3	1	10	5	0	7	2	0	5	2	0	5	2	0
Prosaro	5	2	0	5	3	1	5	2	1	5	1	1	5	2	0	5	2	0
Aviator	7	5	1	5	1	0	5	1	0	5	3	1	5	1	0	5	1	1
Cogito	7	2	0	7	5	0	7	5	2	7	5	1	7	2	1	5	3	0
Untreated	5	2	1	5	2	0	3	2	1	5	0	0	5	0	0	5	2	0

CROP YIELD

Table 6: Crop yield (t/ha)

t/ha	Untreated	Tzar Xpert	Radial	BAS 7020	Amistarr Xtra	ELD001	Untrated	Leend	Legend+ Peopimax	Prosarao	Aviator	Cogito	Untreated
Untreated	2.43	2.78	2.66	2.15	2.08	2.31	1.57	1.90	1.02	0.98	0.93	1.14	0.53
Uniform	2.40	2.69	2.82	2.23	2.56	2.53	1.60	1.81	1.20	1.04	1.28	1.27	0.75
Systiva	1.52	2.31	2.24	2.84	2.65	2.31	1.96	1.57	1.02	1.20	1.46	1.51	1.32
Untreated	2.11	1.85	2.40	2.16	2.66	1.93	1.57	1.31	1.09	1.35	1.42	1.20	1.08
Evergol	1.89	3.28	2.43	1.93	2.38	2.33	1.13	1.56	1.11	1.14	1.64	1.30	1.07
Vibrance	1.81	2.57	2.43	1.97	2.17	1.77	1.31	1.44	0.96	1.38	1.53	1.48	1.17
Untreated	2.14	2.19	1.23	1.78	1.45	1.39	1.61	1.36	0.96	1.23	1.16	1.51	1.33
Raxil	1.84	2.44	1.94	2.37	1.94	1.93	1.83	1.60	1.32	1.22	1.41	1.52	1.22
Premis Pro C	1.67	2.35	1.81	2.74	2.06	1.29	1.34	1.97	1.56	1.42	1.78	1.57	1.39
Untreated	1.75	1.96	1.69	1.67	2.09	1.24	1.26	2.31	1.73	1.52	1.85	1.67	1.42
Intake	1.92	1.52	1.87	1.67	2.13	1.66	1.34	1.71	1.88	1.70	1.88	1.57	1.85
Rancona	1.56	1.40	1.67	1.56	1.64	1.43	0.94	1.26	1.55	1.58	1.53	1.77	1.88
Untreated	1.29	1.29	1.41	1.34	1.38	1.14	0.87	1.59	1.45	1.92	1.64	1.88	1.25

Visual Representation of Yield

t/ha	Untreated	Tzar Xpert	Radial	BAS 7020	Amistarr Xtra	ELDoo1	Untrated	Leend	Legend+ Peopimax	Prosarao	Aviator	Cogito	Untreated
Untreated	2.43	2.78	2.66	2.15	2.08	2.31	1.57	1.90	1.02	0.98	0.93	1.14	0.53
Uniform	2.40	2.69	2.82	2.23	2.56	2.53	1.60	1.81	1.20	1.04	1.28	1.27	0.75
Systiva	1.52	2.31	2.24	2.84	2.65	2.31	1.96	1.57	1.02	1.20	1.46	1.51	1.32
Untreated	2.11	1.85	2.40	2.16	2.66	1.93	1.57	1.31	1.09	1.35	1.42	1.20	1.08
Evergol	1.89	3.28	2.43	1.93	2.38	2.33	1.13	1.56	1.11	1.14	1.64	1.30	1.07
Vibrance	1.81	2.57	2.43	1.97	2.17	1.77	1.31	1.44	0.96	1.38	1.53	1.48	1.17
Untreated	2.14	2.19	1.23	1.78	1.45	1.39	1.61	1.36	0.96	1.23	1.16	1.51	1.33
Raxil	1.84	2.44	1.94	2.37	1.94	1.93	1.83	1.60	1.32	1.22	1.41	1.52	1.22
Premis Pro C	1.67	2.35	1.81	2.74	2.06	1.29	1.34	1.97	1.56	1.42	1.78	1.57	1.39
Untreated	1.75	1.96	1.69	1.67	2.09	1.24	1.26	2.31	1.73	1.52	1.85	1.67	1.42
Intake	1.92	1.52	1.87	1.67	2.13	1.66	1.34	1.71	1.88	1.70	1.88	1.57	1.85
Rancona	1.56	1.40	1.67	1.56	1.64	1.43	0.94	1.26	1.55	1.58	1.53	1.77	1.88
Untreated	1.29	1.29	1.41	1.34	1.38	1.14	0.87	1.59	1.45	1.92	1.64	1.88	1.25

DISCUSSION

One trial was conducted in Grass Valley, Western Australia, to demonstrate the potential of in-furrow, seed treatments and foliar fungicides to control foliar diseases in barley (Hordeum vulgare cv. Baudin). The trial was sown into moisture on a sandy duplex soil. Seed and in-furrow treatments were sown in one direction with foliar sprays applied post emergent perpendicular to sowing. Post emergent treatments were applied when the crop was between Z25 and Z31. Foliar diseases present within the trial were Powdery Mildew (Blumeria graminis) and Net Blotch (Pyrenophora teres). During the season Rhizoctonia (Rhizoctonia solani) symptoms were also present within the trial but were not assessed. This trial was not replicated; as such trial observations do not contain statistical rigour and any conclusions should be treated with caution.

Assessment of Powdery Mildew 3 WAA showed infection levels of 10-30% in the lower canopy of the untreated control (Table 2). Foliar application of Aviator Xpro reduced Powdery Mildew to 0% across all seed and in furrow treatments. Of the seed and in-furrow treatments; Intake and Systiva were shown to decrease Powdery Mildew the most. Subsequent assessment of Powdery Mildew 7 WAA still showed high levels of infection in the untreated plots (5-40%), however most of the disease was contained in the lower and mid canopy (Table 3). Aviator and Prosaro demonstrated the lowest disease severity of the foliar fungicides, with Uniform and Systiva continuing to provide the highest control of the in furrow and seed treatments.

Assessment of Net Blotch infection 3 WAA showed infection levels of 0-5% in the lower canopy of the untreated control (Table 4). Results did not highlight any stand out foliar treatments. Of the seed and in furrow treatments; Intake appeared to decrease Net Blotch severity, but only very slightly compared to the untreated control. Further assessment 7 WAA showed increasing levels of Net Blotch infection on the untreated plots (2-10%) with the disease spread throughout the lower, mid and upper canopy (Table 5). Radial appeared to have the lowest disease levels of the foliar treatments, with minimal variation identified in the in furrow and seed treatments.

Assessment of crop yield highlighted some large differences, with yields ranging from 0.53t/ha to 3.28t/ha Table 6). This large variation can be attributed to foliar disease levels, along with Rhizoctonia and soil type changes within the trial. Of the foliar treatments, it appeared that Legend + Propimax produced lower yield results, with Tzar Xpert and Radial showing favorable results. Evaluation of the seed and in furrow treatments suggested increased yields through the application of Uniform, Systiva and Evergol.

CONCLUSION / SUMMARY

In this trial:

- Powdery Mildew severity was reduced through the foliar application of Aviator Xpro and Prosaro, in-furrow application of Intake and seed treating with Systiva.
- Net Blotch severity was reduced slightly through the foliar application of Radial and in-furrow application of Intake.
- Yield results were confounded by soil type and Rhizoctonia; however Uniform, Systiva and Evergol all performed well (all Rhizoctonia treatments).

ELDERS AGRONOMY GRADUATE PROGRAM

At Elders, we've been adding value to Australian agribusiness for 175 years. Value built on innovation, specialist knowledge, tailored advice and strong relationships. Value that only comes from breathing and living agriculture. This makes us an essential part of everyday rural life and a great place to work and develop your career.

We offer training in a supportive and safety focussed environment that encourages you to contribute and recognises your achievements. Our Agronomy Graduate Program will prepare and support you for a rewarding career with Elders and provide you with invaluable training to ensure you are set up to succeed.

THE ELDERS AGRONOMY GRADUATE PROGRAM:

is aimed at Agronomy graduates with a minimum Degree in Ag Science, or equivalent who are passionate about Agronomy and who want to strengthen their on the job experience and product knowledge in a leading Australian Agribusiness.

For more information contact careers@elders.com.au

GRASS WEED CONTROL IN CANOLA

li)/ing farm

INTRODUCTION

The trial conducted 40km north of Esperance, WA in 2015 evaluated a range of commercially available herbicides and application timings for control of annual ryegrass (Lolium rigidim) in dual tolerant Canola Hyola 525 RT). Combinations of herbicides applications included incorporated by sowing (IBS), post-sowing pre-emergent (PSPE), early post-emergent (EPE) applications at 2-4 leaf growth stage and post emergent (PE) at 4-6 leaf growth leaf stage. Mixed application timing and herbicide groups gave the highest control overall.

CROP & SOWING	DETAILS		
Date Sown		25th April 2015	
Variety		Hyolla 525RT	
Seeding Rate		3.5kg/ha	
Nutrition	Pre	50k5/ha Urea 125kg/ha Gusto Gold	
	Post	150kg/ha SOA	
Tillage Type		Knife points and press	wheels
Row Spacing		25.4cm	
Moisture		Marginal, moisture at	3-5cm
Seed Bed		Grazed pasture	
Clod size		Fine	
Stubble loading		High	
Herbicides Applie	d	Pre-emergent	As per treatment list
		Post-emergent	As per treatment list
Insecticides Appli	ed	Pre-emergent	150 ml/ha Bifenthrin 400 ml/ha Chlorpyrifos
		Post-emergent	100 ml/ha Transform

ASSESSMENT DATA SCORING SYSTEMS

Notations Used:

RT = Dual herbicide tolerant IBS = Incorporated by Sowing PSPE = Post-Sowing - Pre-Emergent EPE = Early Post Emergent (2 leaf crop stage) PE = Post Emergent (4-6 leaf crop stage) DAS = Days After Sowing DAA-C = Days After Application Timing C DAA-D = Days After Application Timing D fb = Followed By (e.g. Glyphosate fb Glyphosate)

Percent Control

A visual subjective score was given to each plot based on the level of weed control when compared to the untreated control plots (o = no control, 100% = complete weed death)

Ryegrass Counts

Four 33cm2 quadrats per plot were placed randomly in each plot and counted (excluding the header rows). The average was converted to plants/m2.

Yield

Plots were harvested with a Haldrup trial header and the weights in kg/plot recorded, then converted to t/ha.

WEATHER DATA

Wea	the	r				954	<u>j</u> 2								Es	sperance	5						
Dav			F	tainfa	ll			Dav		-	Tempe	rature	(min))	-	Dav		٦	Гетре	rature	(max)	
Day	Apr	May	Jun	Jul	Aug	Sep	Oct	Day	Apr	May	Jun	Jul	Aug	Sep	Oct	Day	Apr	May	Jun	Jul	Aug	Sep	Oct
1	19.8	0.0	0.0	0.0	18.2	15.6	0.2	1	14.8	14.4	6.4	11.1	10.12	5.5	11.6	1	21.8	20.5	20.0	20.3	13.2	12.1	32.1
2	0.02	0.2	0.0	0.0	0.0	6.2	0.0	2	12.2	5.8	11.6	12.6	8.0	4.7	14.8	2	21.8	19.9	21.5	16.7	14.8	13.9	28.8
3	0.0	0.6	0.0	3.4	1.2	0.4	0.0	3	15.0	14.0	11.9	11.4	7.0	3.3	14.1	3	25.3	20.7	22.6	19.8	15.2	18.1	24.5
4	0.0	8.0	0.0	0.2	0.6	0.0	0.0	4	14.3	7.8	10.1	9.2	6.2	8.4	125	4	27.8	13.1	22.5	17.4	16.1	24.0	30.5
5	0.0	15.2	0.0	0.8	1.2	1.4	0.0	5	15.5	7.3	8.4	9.7	5.2	11.6	13.6	5	22.9	18.0	26.8	17.8	15.5	18.8	22.4
6	0.2	5.8	0.0	0.0	0.4	0.0	1.6	6	12.0	10.6	11.0	7.3	6.8	4.0	5.2	6	20.2	17.0	20.7	17.9	17.5	16.8	16.7
7	0.0	2.2	0.0	0.0	0.0	0.0	0.0	7	10.9	9.0	9.0	7.8	8.7	5.5	5.8	7	21.2	19.2	19.8	18.9	16.9		21.9
8	3.2	0.0	0.0	2.6	0.2		0.0	8	12.9	9.6	8.6	10.0	8.8	8.3	9.4	8	20.1	20.9	18.0	13.5	17.6	23.0	26.2
9	1.6	0.2	0.2	18.8	4.6	0.0	0.0	9	13.4	9.4	10.7	5.8	5.2	10.2	10.3	9	25.6	20.5	18.8	13.5	12.0	25.5	31.0
10	10.0	0.6	0.4	0.2	2.8	0.0	0.0	10	15.4	12.9	9.6	6.4	4.3	14.6	15.2	10	31.8	20.1	18.5	15.1	16.3	25.4	32.3
11	0.0	1.0	0.0	0.8	12.2	0.0	0.0	11	17.0	14.0	6.3	7.1	8.6	8.1	13.7	11	25.8	18.9	20.0	14.4	14.5	21.9	20.7
12	0.8	1.8	0.0	0.2	2.4	0.0	0.0	12	15.4	11.9	10.7	7.5	8.6	9.0	11.4	12	23.7	17.2	19.5	14.6	15.8	22.5	29.3
13	1.6	0.0	1.2	0.0	1.4	15.4	0.0	13	15.3	10.6	12.3	6.6	8.8	6.2	16.3	13	19.9	18.9	18.4	15.3	15.8	14.2	35.7
14	2.8	0.2	2.2	0.6	0.0	4.0	0.0	14	12.7	8.7	8.4	8.8	6.2	5.2	15.7	14	22.1	20.6	16.4	14.4	21.1	18.0	23.3
15	12.8	0.0	4.8	1.4	0.2	6.2	0.0	15	13.4	8.3	8.5	7.3	9.8	8.1	10.3	15	19.0	22.4	17.8	13.7	22.9	14.9	19.9
16	0.0	0.0	0.4	0.0	0.0	0.2	0.0	16	9.8	12.8	7.1	5.6	11.0	5.7	5.7	16	18.3	17.8	17.1	14.6	26.0	14.1	24.5
17	0.2	0.0	0.2	0.6	0.0	0.0	0.0	17	8.2	12.9	7.2	5.9	12.1	5.9	10.2	17	21.5	21.6	15.2	15.6	17.9	20.0	30.7
18	2.2	6.8	1.4	0.0	5.4	0.2	0.6	18	9.6	11.3	10.0	6.4	13.3	8.1	15.9	18	17.5	17.7	12.8	19.4	19.9	26.8	35.0
19	0.6	9.4	10.0	0.0	0.8	0.0	8.2	19	8.4	11.0	10.7	8.3	9.3	9.5	9.9	19	22.4	15.3	17.0	20.3	18.8	14.7	19.7
20	0.0	3.0	0.8	0.2	27.4	3.8	0.2	20	9.9	6.6	11.5	10.8	9.9	6.3	7.1	20	22.8	14.9	21.8	17.8	15.3	15.0	20.2
21	0.0	0.2	8.6	0.8	11.8	0.0	0.0	21	9.0	5.8	13.8	5.5	7.5	8.1	9.8	21	23.7	15.8	16.2	13.7	16.4	16.6	28.0
22	0.0	0.0	9.4	1.8	5.6	0.2	0.0	22	9.7	7.2	7.2	4.5	9.7	8.0	12.2	22	25.0	18.7	15.8	15.4	13.9	20.2	34.5
23	0.0	0.0	18.6	1.4	5.8	0.2	0.0	23	8.6	9.5	9.1	7.3	8.3	9.5	15.5	23	19.6	20.4	15.2	13.5	15.0	22.8	25.6
24	0.6	2.2	0.2	7.4	2.2	0.0	0.8	24	11.4	7.9	5.4	6.7	5.6	9.7	13.3	24	17.5	17.0	16.2	14.2	14.2	24.6	21.8
25	1.0	2.2	0.0	1.0	2.6	0.0	0.2	25	6.8	9.9	6.5	7.6	6.5	12.5	13.7	25	18.0	21.5	17.1	14.0	16.4	29.4	17.8
26	0.0	0.4	0.0	5.0	0.2	0.0	2.8	26	6.1	10.0	6.5	5.9	6.1	10.9	12.9	26	20.0	19.0	17.4	13.4	17.9	18.7	18.2
27	0.2	0.8	2.2	0.8	0.0	0.0	0.4	27	11.4	8.2	9.9	6.0	7.6	10.0	13.7	27	21.6	17.2	16.3	15.7	19.5	16.6	20.2
28	0.0	2.6	0.0	0.0	0.0	0.6	5.2	28	9.7	8.5	9.6	7.6	8.7	7.7	14.4	28	23.6	14.8	16.4	12.8	22.3	22.8	24.3
29	0.0	1.8	0.0	0.2	0.0	0.2	1.2	29	11.0	5.2	9.1	9.0	10.7	11.8	12.9	29	24.5	16.7	18.0	16.8	24.9	25.3	27.4
30	0.0	0.0	0.2	2.0	0.4	0.0	0.0	30	14.4	5.2	6.5	10.1	10.4	7.5	12.8	30	28.8	17.7	19.5	16.5	18.0	24.2	33.1
31		0.4		0.6	0.0		0.6	31		6.6		13.1	6.8		16.3	31		19.7		15.3	17.5		24.0
Total	57.8	65.6	60.8	50.8	107.6	54.6	22.0	Avg		22.6		18.6	17.3		26.8	Avg	22.5	18.5	18.4	15.9	17.4	20.0	25.8
				Sow	/n/Sp	rayed	A&B		Spra	yed D													
						Spray	/ed C																

AIMS

Evaluate the different methods of grass weed control in dual tolerant Canola using Roundup Ready and Triazine Tolerant technology.

METHODOLOGY

TREATMENT LIST

Trt No.	Treatment Name	Rate per Hectare	Application Timing	Appl. Code
1	Untreated Control			
2	Atrazine	1.1 kg	IBS	А
3	Atrazine	2.2 kg	IBS	А
4	Atrazine + Trifluralin	1.1 kg + 2.5 L	IBS	А
5	Trifluralin	2.5 L	IBS	А
6	Propyzamide	1 L	IBS	А
7	Dual Gold	500 ml	IBS	А
8	F9133-1	3 kg	IBS	А
9	F9133-1	3 kg	PSPE	В
10	FMZ 1204	1 L	IBS	А
11	Atrazine + Trifluralin fb	1.1kg + 2.5 l/ha	IBS	А
	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	4-6 Leaf	D
12	Trifluralin fb	2.5 L	IBS	А
	Glyphosate fb	900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
13	Atrazine + Trifluralin fb	1.1 kg + 2.5 L	IBS	А
	Atrazine + Glyphosate fb	1.1 kg + 900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
14	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	4-6 Leaf	D
15	Glyphosate fb	900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
16	Atrazine + Glyphosate fb	1.1 kg + 900 g	2-4 Leaf	С
	Glyphosate	900 g	4-6 Leaf	D
17	Atrazine fb	1.1 kg	2-4 Leaf	С
	Select + Uptake	500 ml + 1 %v/v	4-6 Leaf	D
18	Select + Uptake	500 ml + 1 %v/v	4-6 Leaf	D
19	Select + Uptake	1 L + 1 %v/v	4-6 Leaf	D
20	Factor + Select + Uptake	80 g + 500ml + 1 %v/v	4-6 Leaf	D
21	Untreated Control			

Weed species present in this trial was Annual Ryegrass (Lolium Rigidum).

ANNUAL RYEGRASS COUNTS

TABLE 1: ANNUAL RYEGRASS COUNTS (PLANTS/M2) 30, 61 & 118 DAS.

Trt No.	Treatment Name	Rate per Hectare	Appl code	30 DAS o DAA-C	61 DAS* 31 DAA-C 1 DAA-D	118 DAS* 88 DAA-C 58 DAA-D
1	Untreated Control			778 a	752 a	850 a
2	Atrazine	1.1 kg	Α	709 ab	644 a	703 ab
3	Atrazine	2.2 kg	А	554 bc	544 ab	593 b
4	Atrazine + Trifluralin	1.1 kg + 2.5 L	А	51 ef	91 ef	119 d-g
5	Trifluralin	2.5 L	А	21 f	57 fg	114 d-g
6	Propyzamide	11	А	47 ef	93 ef	135 def
7	Dual Gold	500 ml	А	483 c	588 a	534 b
8	F9133-1	3 kg	А	93 de	115 def	105 d-g
9	F9133-1	3 kg	В	395 C	344 bc	356 c
10	FMZ 1204	1 L	А	140 d	170 de	171 d
	Atrazine + Trifluralin fb	1.1 kg +2.5 L	А	an of	Q4 of a	St of a
11	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	D	37 81	oreig	oreig
	Trifluralin fb	2.5 L	А			
12	Glyphosate fb	900 g	С	60 ef	18 g	54 ghi
	Glyphosate	900 g	D			
13	Atrazine + Trifluralin fb	1.1 kg + 2.5 L	А			
	Atrazine + Glyphosate fb	1.1 kg + 900 g	С	32 ef	17 g	22 i
	Glyphosate	900 g	D			
14	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	D	-	-	167 d
15	Glyphosate fb	900 g	С		a c c dof	(ofi
	Glyphosate	900 g	D	-	144 dei	601-1
16	Atrazine + Glyphosate fb	1.1 kg + 900 g	С		222 cd	40 ghi
	Glyphosate	900 g	D		232 Cu	49 811
17	Atrazine fb	1.1 kg	С		(
	Select + Uptake	500 ml + 1 %v/v	D	-	697 a	108 d-g
18	Select + Uptake	500 ml + 1 %v/v	D	-	-	143 de
19	Select + Uptake	1 L + 1 %v/v	D	-	-	74 e-i
20	Factor + Select + Uptake	80 g + 500ml + 1 %v/v	D	-	-	92 d-h
21	Untreated Control			-	-	674 ab
			LSD	-	-	-
			CV	16.8	19.7	16.7
			f-prob.	<0.001	<0.001	<0.001

*Data presented as back transformed means (Square Root).

PERCENT WEED CONTROL

TABLE 2: PERCENT ANNUAL RYEGRASS CONTROL (%) 30, 61 & 118 DAS.

Trt No.	Treatment Name	Rate per Hectare	Appl code	30 DAS o DAA-C	61 DAS* 31 DAA-C 1 DAA-D	118 DAS* 88 DAA-C 58 DAA-D
1	Untreated Control			o f	o f	o g
2	Atrazine	1.1 kg	А	10 e	6 ef	6 f
3	Atrazine	2.2 kg	Α	18 d	18 de	16 ef
4	Atrazine + Trifluralin	1.1 kg + 2.5 L	Α	96 a	80 c	77 C
5	Trifluralin	2.5 L	Α	96 a	87 abc	78 c
6	Propyzamide	11	А	95 a	83 bc	78 c
7	Dual Gold	500 ml	Α	50 C	30 d	27 e
8	F9133-1	3 kg	Α	92 a	80 c	83 bc
9	F9133-1	3 kg	В	43 C	17 de	54 d
10	FMZ 1204	1 L	А	84 b	77 C	75 C
	Atrazine + Trifluralin fb	1.1 kg +2.5 L	А	06.0	82.6	o (ab
11	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	D	96 a	821	94 au
	Trifluralin fb	2.5 L	А			
12	Glyphosate fb	900 g	С	95 a	97 ab	96 a
	Glyphosate	900 g	D			
13	Atrazine + Trifluralin fb	1.1 kg + 2.5 L	А			
	Atrazine + Glyphosate fb	1.1 kg + 900 g	С	95 a	98 a	98 a
	Glyphosate	900 g	D			
14	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	D			75 C
15	Glyphosate fb	900 g	С		8r.bc	o (ab
	Glyphosate	900 g	D		85 DC	94 ab
16	Atrazine + Glyphosate fb	1.1 kg + 900 g	C		71.0	oo ah
	Glyphosate	900 g	D		/10	93 ab
17	Atrazine fb	1.1 kg	С		. f	80.0
	Select + Uptake	500 ml + 1 %v/v	D		11	800
18	Select + Uptake	500 ml + 1 %v/v	D			70 cd
19	Select + Uptake	1 L + 1 %v/v	D			78 c
20	Factor + Select + Uptake	80 g + 500ml + 1 %v/v	D			80 c
21	Untreated Control					o g
			LSD	-	-	-
			CV	6.7	17.7	11.9
			f-prob.	<0.001	<0.001	<0.001

*Data presented as back transformed means (Square Root).

CONCLUSION / SUMMARY

In this trial:

- IBS applications of Atrazine + Trifluralin, Trifluralin and Propyzamide gave the best early control of Annual Ryegrass.
- Post emergent applications of Glyphosate fb Glyphosate, Atrazine + Glyphosate fb Glyphosate and Select + Uptake (1000 ml/ha) showed the highest control of Annual Ryegrass 118 DAS.
- IBS fb post emergent applications of Atrazine + Trifluralin fb Atrazine + Glyphosate fb Glyphosate gave the best control of Annual Ryegrass overall and the highest yield.
- Applications of Atrazine (1.1 and 2.2 kg/ha) and Dual Gold gave -30% final control of Annual Ryegrass.

YIELD

TABLE 3: CANOLA YIELD (T/HA).

Trt No.	Treatment Name	Rate per Hectare	Appl code	t/ha
1	Untreated Control			0.67 j
2	Atrazine	1.1 kg	А	1.15 gh
3	Atrazine	2.2 kg	А	1.01 hi
4	Atrazine + Trifluralin	1.1 kg + 2.5 L	А	1.65 cd
5	Trifluralin	2.5 L	Α	1.52 de
6	Propyzamide	11	А	1.55 cde
7	Dual Gold	500 ml	А	1.11 gh
8	F9133-1	3 kg	А	1.77 C
9	F9133-1	3 kg	В	1.46 def
10	FMZ 1204	1 L	А	1.53 de
	Atrazine + Trifluralin fb	1.1 kg +2.5 L	А	2.28.2
11	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	D	2.20 d
	Trifluralin fb	2.5 L	А	
12	Glyphosate fb	900 g	С	2.03 b
	Glyphosate	900 g	D	
13	Atrazine + Trifluralin fb	1.1 kg + 2.5 L	А	
	Atrazine + Glyphosate fb	1.1 kg + 900 g	С	2.34 a
	Glyphosate	900 g	D	
14	Atrazine + Select + Uptake	1.1 kg + 500 ml + 1 %v/v	D	1.57 cd
15	Glyphosate fb	900 g	С	a aa ah
	Glyphosate	900 g	D	2.23 dD
16	Atrazine + Glyphosate fb	1.1 kg + 900 g	С	2 26 ah
	Glyphosate	900 g	D	2.20 ab
17	Atrazine fb	1.1 kg	С	
	Select + Uptake	500 ml + 1 %v/v	D	1.57 Cu
18	Select + Uptake	500 ml + 1 %v/v	D	1.05 h
19	Select + Uptake	1 L + 1 %v/v	D	1.24 fgh
20	Factor + Select + Uptake	80 g + 500ml + 1 %v/v	D	1.33 efg
21	Untreated Control			0.79 ii
			LSD	-
			CV	6.7
			f-prob.	(0.001

Figure 1: Relationship of (A) Annual Ryegrass density to final yield, and (B) Percent Annual Ryegrass control to final yield.

KNOCKDOWN MIXTURES FOR FENCE LINE SPRAYING

INTRODUCTION

A trial was conducted near Rand, NSW in 2015 to evaluate the efficacy of knockdown mixtures for fence line spraying. The trial was unreplicated and targeted the weeds annual ryegrass (ARG, Lolium rigidum), black oats (Avena spp.), capeweed (Arctotheca calendula), milk thistle (Sonchus oleraceus) and graza radish (Raphanus sativus).

20915 vs Long Term (LT) Mean Rainfall Rand (Walbundrie) NSW

GENERAL DISCUSSION

A trial was conducted near Rand, NSW in 2015 to evaluate the efficacy of knockdown mixtures for fence line spraying. The trial was unreplicated and targeted the weeds annual ryegrass (ARG, Lolium rigidum), black oats (Avena spp.), capeweed (Arctotheca calendula), milk thistle (Sonchus oleraceus) and graza radish (Raphanus sativus).

Weather

Growing season rainfall was slightly below average with 258 mm falling between May and September, compared to the long term average of 265 mm. Conditions were very dry through September and October. Temperature was generally average with some severe frosting in low lying, frost prone areas.

General Observations

Weed numbers were generally low and variable across the trial site. Good results were however seen when visual control was assessed (Tables 1, 2 & 3). Weed size had generally increased, as expected, from application timing A to B (Tables 1 & 2). ARG and graza radish were top-dressed across the site, however they did not establish well.

Visual Weed Control

At 15 days after application A (DA-A), all products applied at timing A (treatments 2-14) showed between 70 and 100 % control, except Sharpen at 26 g/ha plus Kwickin which showed very poor control of 10 % (Table 3). By 44 DA-A, visual control had increased to between 95 and 100 % for each product. The exceptions were in areas treated with Spray seed at 1800 ml/ha where reduced visual control was observed and in areas treated with Sharpen plus Kwickin where no visual control was observed.

At 7 days after application B (DA-B), products applied at timing B (treatments 15-23) showed varying levels of control. Paradigm at 50 g/ha plus Roundup Ultra Max at 950 ml/ha and Sharpen at 26 g/ha plus Arsenal Express at 5000 ml/ha plus Hasten at 500 ml/100 l gave the lowest levels of control of 10 and 15 %, respectively. Spray seed at 3200 ml/ha plus Uragan at 3500 g/ha plus BS 1000 at 100 ml/100 l and Alliance at 6000 ml/ha applied alone gave the highest levels of control of 70 and 85 %, respectively

THERE'S A NEW XPERT IN CEREAL DISEASE CONTROL.

The new fungal disease solution for barley, oats and wheat. Its unique formulation, extensive registrations and dual mode of action, provides unsurpassed efficacy and flexibility.

© 2016 Nufarm Australia Ltd. All trade marks (℗,™) are owned by Nufarm Australia Ltd or used under license.

RESULTS - TABLE 3 - VISUAL WEED CONTROL

Ratin Ratin Ratin Days	g Date g Type g Unit After First/Last Application				19/08/2015 Visual control % 15 <u>15</u>	08/09/2015 Visual control % 35_35	17/09/2015 Visual Control % 44_7
Trt-Ev	val Interval				15 DA-A	35 DA-A	7 DA-B
No.	Treatment	Rate	Unit	Appl			
1	Untreated				0.0	0.0	0.0
2	Spray Seed	1800	ml/ha	A	95.0	90.0	70.0
3	Roundup Ultra Max	950	ml/ha	Α	80.0	95.0	100.0
4	Gramoxone 360	1250	ml/ha	А	95.0	70.0	95.0
5	Gramoxone 360	1250	ml/ha	Α	_		
	Sharpen	17	g/ha	Α	100.0	90.0	100.0
	Kwickin	1000	ml/100 l	А			
6	Roundup Ultra Max	950	ml/ha	A	_		
	Sharpen	17	g/ha	A	100.0	100.0	100.0
	Kwickin	1000	ml/100 l	A			
7	Sharpen	26	g/ha	А	- 10.0	0.0	0.0
	Kwickin	1000	ml/100 l	A	1010		
8	NUL3065	30	g/ha	A	_		
	Weedmaster DST	1150	ml/ha	A	95.0	100.0	100.0
	Kwickin	500	ml/100 l	A			
9	Roundup Ultra Max	950	ml/ha	A	_		
	Nail 600	10	ml/100 l	A	90.0	100.0	100.0
	Kwickin	500	ml/100 l	A			
10	Roundup Ultra Max	950	ml/ha	А	_		
	Hammer 400	15	ml/ha	A	95.0	100.0	100.0
	Kwickin	500	ml/100 l	A			
11	Goal Tender	37.5	ml/ha	A	70.0	95.0	100.0
	Roundup Ultra Max	950	ml/ha	A	7010	<i>y</i> y .c	
12	Roundup Ultra Max	950	ml/ha	A	_		
	Starane Advance	450	ml/ha	A	70.0	95.0	100.0
	Uptake	500	ml/100 l	A			
13	F6246	300	ml/ha	A	- 95.0	90.0	100.0
	Roundup Ultra Max	950	ml/ha	A	<i>yy</i>)0.0	
14	F6246	600	ml/ha	A	- 100.0	100.0	100.0
	Roundup Ultra Max	950	ml/ha	A			
15	Paradigm	50	g/ha	В	- 0.0	0.0	10.0
	Roundup Ultra Max	950	ml/ha		0.0		
16	Hot Shot	1	l/ha	В	- 0.0	0.0	30.0
	Roundup Ultra Max	950	ml/ha				
17	Garlon Fallow Master	327	ml/ha	В	- 0.0	0.0	40.0
	Roundup Ultra Max	950	ml/ha				
18	Sprayseed	3200	ml/ha	В	_		
	Uragan	3500	g/ha	В	0.0	0.0	70.0
	BS 1000	100	ml/100 l	В			
19	Sharpen	26	g/ha	B	_		
	Arsenal Express	5000	ml/ha	В	0.0	0.0	15.0
	Hasten	500	ml/100 l	В			
20	Alliance	6000	ml/ha	B	0.0	0.0	85.0
21	NUL3065	700	g/ha	B	- 0.0	0.0	60.0
	Gramoxone 360	2000	ml/ha	В			
22	F6365	370	ml/ha	В	- 0.0	0.0	50.0
	Roundup Ultra Max	950	ml/ha	В			
23	F6365	750	ml/ha	В	- 0.0	0.0	50.0
	Roundup Ultra Max	950	ml/ha	В			

Note: Timing B applications are residual sprays and we wouldn't expect full weed control after 7 days.

Cash-back in times of drought

Enrol online at: www.syngenta.com.au

AgriClime is an offer from Syngenta designed to help share with growers the risk of low rainfall seasons through a special cash back offer.

Eligible cereal growers receive a portion of their investment in Syngenta technology as cash-back if rainfall does not meet a threshold level over an elected period of offer during the season.

3 easy steps to participate in AgriClime Enrol online at: www.SyngentaAgriclime.com.au

1 0 Sign up online

and purchase at

local retailer

if it doesn't rain

3

Receive cash-back via EFT within 2 weeks (Must provide proof of purchase)

To find out more, talk to your local Elders agronomist or visit www.syngenta.com.au

® Registered trademark of Syngenta Australia. [#] Terms and Conditions apply. AD16/205

syngenta

Have your say...

Join the Elders Insiders community. Be rewarded for your feedback, WIN monthly prizes for sharing your thoughts with us.

The Elders Insiders community exists to better understand what's important to you, and allow you to share your feedback, ideas and suggestions that will shape our business into the future. We are excited to see what you have to say.

Join the Elders Insiders community today. www.eldersinsiders.com.au

PRE-EMERGENT GRASS CONTROL IN WHEAT

INTRODUCTION

GENERAL DISCUSSION

A trial was conducted near Rand, NSW in 2015 to evaluate the efficacy of pre-emergent herbicides for grass control in wheat, cv. Lancer. The trial targeted annual ryegrass (ARG, Lolium rigidum) which was evenly sown across the trial site. Both the wheat crop and ARG established well in good soil moisture.

Weather

Growing season rainfall was slightly below average with 258 mm falling between May and September, compared to the long term average of 265 mm. Conditions were very dry through September and October.

Temperature was generally average with some severe frosting in low lying, frost prone areas.

Visual Weed Control and Weed Counts

At 58 days after application (DAA), all treatments gave over 90 % control of ARG with the exception of NUL3065, Avadex Xtend, FMZ 1303 and Terbyne Xtreme plus Avadex Xtend or Trifluralin. The addition of Avadex Xtend, Boxer Gold or Sakura to NUL3065 and Trilogy 600 or FMZ 1407 to FMZ 1303 increased visual control of the weed significantly (Table 1 and Figure 1). By 87 DAA all mixtures gave equal to or over 95 % control of ARG, as did Sakura, Boxer Gold and FMZ 1303 when applied alone. Slightly lower levels of control were given by Avadex Xtend and NUL3065 gave 83 % control at this time. This result was also reflected in ARG weed counts where areas treated with NUL3065 had a mean of 33 plants/m2 where all other mixtures were associated with numbers between o and 8 plants/m2. The plant counts showed that all mixtures were highly effective for the control of ARG as numbers in untreated areas ranged between 105 and 111 plants/m2.

Crop Phytotoxicity

At 58 and 87 DAA there was no phytotoxicity evident (Table 2).

Crop Biomass

At 58 DAA, there were no biomass reductions in areas treated with NUL3065 at 120 g/ha plus Sakura at 118 g/ha, FMZ 1303 at 2500 ml/ha and Terbyne Xtreme at 1000 g/ha plus Avadex Xtend at 2500 ml/ha (Table 2). All other mixtures reduced biomass slightly and NUL3065 plus Boxer Gold, Boxer Gold plus Avadex Xtend, FMZ 1303 plus FMZ 1047 and Terbyne Xtreme plus Trifluralin were associated with biomass reductions of 10 % or more at this time. By 87 DAA all treatments, with the exception of FMZ 1303, were associated with some reductions in biomass. Biomass reductions of slightly more than 10 % remained in areas treated with the above mentioned mixtures.

CROP & SOWING DETAILS	
Crop Name	Wheat
Variety	Lancer
Planting Date	24/5/15
Planting Method:	Direct Drilled
Planting Rate (kg/ha):	65
Depth, Unit (cm):	2
Row Spacing, Unit (cm):	23
No. Rows:	6
Soil Moisture:	Moist
Seed Bed:	Friable

TRIAL MAINTENANCE				
Fertiliser				
Date	Product Name	Description	Rate	Unit
24/05/2015	Granulock Z	Below Seed	80.0	kg
11/09/2015	Urea	Top-dressed @ GS32-37	100.0	kg

MAINTENANCE				
Date	Product Name	Description	Rate	Unit
24/05/2015	Roundup UltraMax	KD	1.5	L
10/09/2015	Precept		1.5	L
	Prosaro	6531-32	450.0	ml

TREATMENT APPLICATION		
Application Description	Α	В
Application Date:	24/05/2015	24/05/2015
Application Timing:	IBS	PSPE

RAINFALL

GSR (1st May – 3oth September) – 258 mm Long-term average GSR (1st May – 3oth September) – 265 mm

(Source: Walbundrie, NSW - Bureau of Meteorology)

Pest Name Crop Name Rating Date Rating Type Rating Unit Crop Stage Days After	e Majority Application				ARG Wheat 21/07/2015 Visual Control % GS 14-21 58 DAA	ARG Wheat 19/08/2015 Visual Control % GS30-31 87 DAA	ARG Wheat 21/07/2015 Weed counts plants/m2 GS 14-21 58 DAA
No.	Treatment	Rate	Rate	Appl			
1	Untreated				o d	o e	105 a
2	NUL3065	120	g/ha	А	73 C	83 d	33 b
3	NUL3065	120	g/ha	А	- 02.3	ozabc	0.0
	Avadex Xtend	2500	ml/ha	А	93 a	97 abc	
4	Avadex Xtend	2700	ml/ha	А	88 ab	93 C	8 c
5	NUL3065	120	g/ha	А		100.3	1.0
	Boxer Gold	2500	ml/ha	А	93 a	100 a	10
6	NUL3065	120	g/ha	А	- oo ah	100.2	
	Sakura	118	g/ha	А	90 ab	100 a	00
7	Sakura	118	g/ha	А	95 a	100 a	ос
8	Sakura	118	g/ha	А		100.2	4.6
	Avadex Xtend	2500	ml/ha	А	95 a	100 a	10
9	Boxer Gold	2500	ml/ha	А	95 a	97 abc	ос
10	Boxer Gold	2500	ml/ha	А		100.2	4.6
	Avadex Xtend	2500	ml/ha	А	95 a	100 a	10
11	Boxer Gold	1750	ml/ha	А	aa ah	or be	
	Boxer Gold	750	ml/ha	В	90 ab	95 DC	4 C
12	FMZ 1303	2500	ml/ha	А	78 bc	97 abc	о с
13	FMZ 1303	2500	ml/ha	А		100.2	
	Trilogy 600	1600	ml/ha	А	90 ab	100 a	00
14	FMZ 1303	2500	ml/ha	А	95 a		
	FMZ1407	190	ml/ha	А		98 ab	3 C
15	Untreated				o d	o e	111 a
16	Terbyne Xtreme	1000	g/ha	А			
	Avadex Xtend	2500	ml/ha	А		97 abc	3 C
17	Terbyne Xtreme	1000	g/ha	А	0- 1	'	
	Trifluralin	2000	ml/ha	А		97 abc	4 C
LSD P=.05 CV Treatment F	Prob(F)				13.5 10.3 0.0001	4.71 3.31 0.0001	11.53 42.8 0.0001

ARG = Annual Ryegrass DAA = Days After Application A = IBS application; B = PSPE application Means followed by same letter do not significantly differ (P=.05, LSD)

Pre-emergent grass control in wheat ARG Visual Control vs Weed Counts

At Elders, we've been nurturing Australian agribusiness for 175 years. How? By adding value built on innovation, specialist knowledge, tailored advice and strong relationships. Value that only comes from breathing agriculture like you do, and living your business like it's our very own.

elders.com.au/live-it

BARLEY VARIETY TRIAL

INTRODUCTION

GENERAL DISCUSSION

A trial was conducted near Rand, NSW in 2015 to evaluate seventeen barley varieties. All varieties established well in good soil moisture.

Weather

Growing season rainfall was slightly below average with 258 mm falling between May and September, compared to the long term average of 265 mm. Conditions were very dry through September and October.

Temperature was generally average with some severe frosting in low lying, frost prone areas.

Yield

LaTrobe gave the highest yield of 3.48 t/ha which was 1.28 t/ha greater than the lowest yielding variety Oxford (2.20 t/ha). Hindmarsh (2.96 t/ha), Gairdner (2.70 t/ha), GrangeR (2.86 t/ha), Alestar (2.94 t/ha), Maltstar (2.79 t/ha) and IGB1334T (2.83 t/ha) also yielded significantly higher than Oxford.

CROP & SOWING DETAILS	
Crop Name	Barley
Variety	Various
Planting Date	24/05/2015
Planting Method	Direct Drilled
Planting Rate (kg/ha)	55
Depth, Unit (cm)	3.5
Row Spacing, Unit (cm)	23
No. Rows	6
Soil Moisture	Moist
Seed Bed	Friable
Stubble Cover	100
Harvest Date	14/12/2015

Fertiliser				
Date	Product Name	Description	Rate	Unit
24/05/2015	Granulock Z	Below Seed	80.0	kg
24/05/2015	Urea	Below Seed	50.0	kg
08/09/2015	Urea	Top-dressed @ GS32	100.0	kg
11/09/2015	Urea	Top-dressed @ GS32-37	100.0	kg

MAINTENANCE				
Date	Product Name	Description	Rate	Unit
24/05/2015	Roundup UltraMax	KD	1.5	L
24/05/2015	Sharpen	KD	25.0	g
24/05/2015	Boxer Gold	IBS	2.5	L
10/09/2015	Precept		1.5	L
	Prosaro	u331-32	450.0	mL

RAINFALL

GSR (1st May – 3oth September) – 258 mm Long-term average GSR (1st May – 3oth September) – 265 mm

(Source: Walbundrie, NSW – Bureau of Meteorology)

TABLE 1: BARLEY YIELD (T/HA)

Crop Nan Rating Da Rating Ty Rating U	ne ate rpe nit			Barle 14/12/2 YIEL t/ha	ey 2015 D
Trt No.	Treatment Name	Rate	Rate Unit	3	
1	Hindmarsh	55	kg/ha	2.96	b
2	LaTrobe	55	kg/ha	3.48	а
3	Baudin	55	kg/ha	2.27	de
4	Buloke	55	kg/ha	2.49	b-e
5	Compass	55	kg/ha	2.55	b-e
6	Commander	55	kg/ha	2.52	b-e
7	Scope	55	kg/ha	2.49	b-e
8	Gairdner	55	kg/ha	2.70	bcd
9	Rattler	55	kg/ha	2.68	b-e
10	Flinders	55	kg/ha	2.44	cde
11	Westminster	55	kg/ha	2.27	de
12	GrangeR	55	kg/ha	2.86	bc
13	Oxford	55	kg/ha	2.20	e
14	Alestar	55	kg/ha	2.94	b
15	Topstar	55	kg/ha	2.49	b-e
16	Maltstar	55	kg/ha	2.79	bc
17	IGB1334T	55	kg/ha	2.83	bc
LSD P=.0 CV Treatmen	י5 it Prob(F)			0.496 11.28 0.0017	

Means followed by same letter or symbol do not significantly differ (P=.05, LSD) Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL.

Smart Farmer

Elders Smart Farmer gives you access to a team of productivity experts who can provide expert advice to support you throughout the production cycle. When you use our Smart Farmer service you will receive a customised plan specific to your needs, so we can ensure you get the outcomes you require and help identify where the greatest opportunities are for achieving potential. Our experts work with you to drive the outcomes you need to maximise your yield, increase productivity or ensure the sustainability of your enterprise.

Contact your local branch to learn more about Elders Smart Farmer.

WHEAT VARIETY TRIAL

INTRODUCTION

GENERAL DISCUSSION

A trial was conducted near Rand, NSW in 2015 to evaluate twenty wheat varieties. All varieties established well in good soil moisture.

Weather

Growing season rainfall was slightly below average with 258 mm falling between May and September, compared to the long term average of 265 mm. Conditions were very dry through September and October.

Temperature was generally average with some severe frosting in low lying, frost prone areas.

Yield

Corack gave the highest yield of 3.57 t/ha, 1.78 t/ha greater than the lowest yielding variety Penne (1.79 t/ha). Wedgetail (2.05 t/ha), Naparoo (1.99 t/ha) and Rotini (1.97 t/ha) all had similar yields to Penne. All other varieties were associated with significantly higher yields than Penne.

CROP & SOWING DETAILS	
Crop Name	Wheat
Variety	Various
Planting Date	24/05/2015
Planting Method	Direct Drilled
Planting Rate (kg/ha)	65
Depth, Unit (cm)	2
Row Spacing, Unit (cm)	23
No. Rows	6
Soil Moisture	Moist
Seed Bed	Friable
Stubble Cover	0
Harvest Date	14/12/2015

Fertiliser				
Date	Product Name	Description	Rate	Unit
24/05/2015	Granulock Z	Below Seed	80.0	kg
24/05/2015	Urea	Below Seed	50.0	kg
08/09/2015	Urea	Top-dressed @ GS32	100.0	kg
11/09/2015	Urea	Top-dressed @ GS32-37	100.0	kg

MAINTENANCE				
Date	Product Name	Description	Rate	Unit
24/05/2015	Roundup UltraMax	KD	1.5	L
24/05/2015	Sharpen	KD	25.0	g
24/05/2015	Boxer Gold	IBS	2.5	L
10/09/2015	Precept		1.5	L
	Prosaro	0331-32	450.0	mL

RAINFALL

GSR (1st May – 30th September) – 258 mm Long-term average GSR (1st May – 3oth September) – 265 mm

20915 vs Long Term (LT) Mean Rainfall

(Source: Walbundrie, NSW – Bureau of Meteorology)

TABLE 1: WHEAT YIELD (T/HA)

Crop Nam Rating Da Rating Ty Rating Un Crop Stag	ne ate rpe nit ge Majority			Whea 14/12/2 YIEL t/ha GS9	at 2015 D 1 9
Trt No.	Treatment Name	Rate	Rate Unit	2	
1	Wedgetail	65	kg/ha	2.05	fgh
2	Forrest	65	kg/ha	2.77	е
3	Naparoo	65	kg/ha	1.99	fgh
4	Gregory	65	kg/ha	3.04	b-e
5	Lancer	65	kg/ha	2.23	fg
6	Trojan	65	kg/ha	2.85	de
7	Viking	65	kg/ha	3.26	b
8	Corack	65	kg/ha	3.57	a
9	Livingston	65	kg/ha	3.05	b-e
10	Suntop	65	kg/ha	2.85	de
11	Jade*	65	kg/ha	2.95	cde
12	Steel*	65	kg/ha	2.97	b-e
13	Penne*	65	kg/ha	1.79	h
14	Rotini*	65	kg/ha	1.94	gh
15	Cobalt*	65	kg/ha	3.16	bc
16	B53*	65	kg/ha	3.03	b-e
17	Condo	65	kg/ha	3.10	bcd
18	Emu Rock	65	kg/ha	2.97	b-e
19	Spitfire	65	kg/ha	2.27	f
20	V43-15136	65	kg/ha	3.02	b-e
LSD P=.o CV Treatmen	5 t Prob(F)			0.290 6.41 0.0001	

Means followed by same letter or symbol do not significantly differ (P=.05, LSD) Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL. NOW ALSO ASSESSING SCLEROTINIA

A new way to minimise your risk.

LOW RISK

Current weather conditions are considered to create a low possibility of a sclerotinia outbreak only.

MEDIUM RISK

Current weather conditions are considered to create a medium possibility of a sclerotinia outbreak - particularly in low-lying or slowdrying areas of the paddock.

HIGH RISK

Current weather conditions are considered to create a high possibility of a sclerotinia outbreak - particularly in low-lying or slowdrying areas of the paddock.

PROSARO

A free and easy to use online tool, the Prosaro Scale is an early warning system that takes the guesswork out of spray application for disease management in canola. Originally devised for blackleg risk assessment, the Prosaro Scale is now also available for sclerotinia risk assessment. Based on your location and calculated with real time weather information sourced from the Bureau of Meteorology, the Prosaro Scale calculates the potential risk of a sclerotinia outbreak in your area. Simply enter your postcode to assess your risk and determine the best time to treat with Prosaro 420 SC – Australia's most effective foliar fungicide treatment against blackleg and sclerotinia.

To assess your sclerotinia risk try theprosaroscale.com.au today.

www.bayercropscience.com.au

Bayer CropScience Pty Ltd, Level 1, 8 Redfern Road, Hawthorn East VIC 3123 AUSTRALIA. ABN 87 000 226 022 Technical Enquiries 1800 804 479. Prosaro® is a registered trademark of the Bayer Group.

Veritas True broad spectrum performance.

Introducing new Veritas[®] Fungicide for Wheat, Barley, Chickpeas and Lentils. The combination of strobilurin plus triazole chemistry in Veritas[®] is rapidly absorbed and translocated within the plant to provide outstanding protection and maximise the yield potential and quality of your crops.

With proven outstanding control of all key diseases affecting Wheat and Barley crops and the ability to effectively manage Ascochyta Blight and Grey Mould in Chickpeas and Lentils under permit^{*}, Veritas[®] truly does provide broad spectrum performance.

adama.com

* The use of Veritas® in Chickpeas and Lentils is covered until 30th September 2017 by APVMA Permit Number PER81533.

adama.com

To find out more about Veritas® use your QR reader.

Ţ

ॐ

(Q)

FOR CUSTOMER ENQUIRIES: 1800 4 ADAMA

CANOLA SYSTEM TRIAL

INTRODUCTION

The trial was conducted near Mallala 42 km north of Adelaide South Australia in 2015 to evaluate new and current commercial available chemistry in Canola to assess insect, weed and disease control using many different application techniques including, seed treatment, fertiliser treatment, incorporated by sowing and post emergent.

GENERAL CONCLUSION

Weather

The trial was sown into a canola stubble to promote disease after early rainfall, however conditions dried and below average growing season rainfall fell at the site.

Control of annual ryegrass (Lolium rigidum) and snail medic (Medicago scutellata)

At 50 and 63 DAA DA-A, All herbicide treatments provided significant control of Snail medic in the canola cv. 43Y85CL. No biomass differences were observed when assessed at 50 and 117 days after planting (DAP) Annual ryegrass was not present in sufficient numbers to draw any reliable conclusions on herbicide efficacy.

Insect control

Insects were not present in sufficient numbers to conduct any assessments on level of control. Biomass was not reduced by any of the evaluated insecticides.

Control of blackleg (Leptosphaeria maculans)

At 116 DAP, severity of blackleg was significantly reduced by treatments of Intake Combi and Amistar Xtra. Aviator Xpro tended to reduce severity of blackleg, but this was not significant.

Bioforge seed treatment

The application of Bioforge as a seed treatment did not increase biomass of the canola cv. 43Y85CL under the conditions of this trial.

SOWING DETAILS	
Crop Name	Canola
Variety	43Y85CL
Planting Date	04/06/2015
Planting Method	Knife Point Press Wheel
Planting Equipment	TPS012
Planting Rate (kg/ha)	3.5
Depth, Unit (cm)	1
Row Spacing, Unit (cm)	25
No. Rows	5
Soil Moisture	Moist
Stubble Cover	30
Paddock History, 2014	Canola
Paddock History, 2013	Lentils

Trial Maintenance				
Fertiliser				
Date	Product Name	Description	Rate	Unit
04/06/2015	Croplift19	Below Seed	150.0	kg/ha
24/08/2015	Urea	Top Dress (GS 50)	100.0	kg/ha
Maintenance				
Date	Product Name	Description	Rate	Unit
03/06/2015	Roundup UltraMax	IBS	3.0	L/ha
23/07/2015	Lontrel Advanced	GS14-16	170.0	mL/ha
13/08/2015	Roundup	Buffering (GS31)	2.0	L/ha
	Hammer	Buffering (GS31)	35.0	mL/ha
04/09/2015	Prosaro	GS50 - Range 1 only	400.0	mL/ha
	BS 1000	GS50 - Range 1 only	0.1	%v/v
	Amistar	GS50 - Range 2 only	1.0	L/ha
	BS 1000	GS50 - Range 2 only	0.1	%v/v
	Aviator	GS50 - Range 3 only	600.0	mL/ha
	BS 1000	GS50 - Range 3 only	0.1	%v/v
29/10/2015	Reglone	Trial destruction	3.0	L/ha
	Gramoxone	Trial destruction	3.0	L/ha
	BS1000	Trial destruction	0.1	%v/v

(Source: Roseworthy, SA - Bureau of Meteorology)

Application Description					
	А	В	С	D	
Application Date:	03/06/2015	05/06/2015	21/07/2015	13/08/2015	
Application Timing:	IBS	PSPE	EARLY POST-EM	EXTRA	

Crop Stage At Each Application				
	Α	В	С	D
Stage Scale Used:	BBCH	BBCH	BBCH	BBCH
Stage Majority, Percent:	00	00	14	22
Stage Minimum, Percent:	00	00	14	22
Stage Maximum, Percent:	00	00	16	22

MALLALA, SA

MAINTENANCE	
Date	
05/06/2015	Weeds present: Snail Medic 2-4 Node, Diameter: 10cm & 2/m2
	Ryegrass: GS10-24, Diameter 5-15cm & -1/m2
26/06/2015	No weeds, no insects or disease present
26/06/2015	HA/NA - Growth stage too young to apply timing C. Mick advised on weekly basis.
21/07/2015	A lot of snail medic weeds 2-3 leaf.
23/07/2015	Rows 11 and 18 sprayed only. Confirmed with Elders, Mick Brom HA
	Photos available on webdocs of untreated plots 308, 202 and 101 HA
	Due to low weed count throughout trial whole of plots were recorded with only the untreated plots having slightly more weeds - HA
05/08/2015	Photos available on webdocs for plots 116 and 118. Plot 117 showed similar symptoms but subsequent growth has cure it HA
	No aphids anywhere to be seen so not entered to rating shell. MB confirmed HA
	Remainder of trial had no distinctive diseases detected HA
13/08/2015	An extra application to buffer 319 was requested of 800 mL/ha Ecopar and 3% v/v BS1000 HA
24/08/2015	56 DA-A assessment unable to be assessed due to lack of insect and disease pressure. This was decided between Elders (Mick Brougham) and Kalyx.
	Majority of Blackleg infection in plots are confined to lower half of plant leaves HA
04/09/2015	Range 1, 2 & 3 were applied with different fungicide mixes as per request from Mick Brougham. Refer to maintenance tab for further details.

RESULTS

TABLE 4 - FUNGICIDE TREATMENTS

- Pest severity and incidence percent of (Leptospaeria maculans) at 23, 88 DA-A and 46 DA-D - Analysis of variance

Pest N Crop N Rating Rating Crop S Asses Days A Trt-Ev ARM A	ame lame g Date g Type g Unit stage Majority sed By After First/Last al Interval Action Codes	Applic.			Black Can 26/06, Pest Se % 10 HA/ 23 23 D	kleg ola /2015 everity NA 21 A-A	Blac Can 26/06 Pest Ind 9 1 HA/ 23 23 D	kleg jola /2015 cidence 6 0 /NA 21 DA-A	Black Cano 24/08/ Pest Se % 50 H/ 82 82 D	kleg ola /2015 verity A 11 A-A	Blac Can 24/08 Pest Inc % 5 5 H 82 82 82	kleg ola /2015 idence o A 11 A-A	Black Cano 28/09/ Pest Se % 67 H/ 117 46 D/ Al	kleg bla /2015 verity k 46 4-D	Blackl Cano 28/09/: Pest Incia % 67 HA 117 4 46 DA	eg la 2015 dence 46 -D
Trt No.	Treatment Name	Rate	Rate Unit	Appl Code												
1	Untreated		kg/ha		0.0	а	0.0	а	7.1	а	100.0	а	27.6	а	0.0	b
15	Intake Combi	333	ml/100 kg	А	0.0	а	0.0	а	8.0	а	97.3	а	11.5	с	100.0	а
16	Aviator Xpro	550	ml/ha	С	0.0	а	0.0	а	10.2	а	100.0	а	18.9	ab	100.0	а
17	Amistar Xtra	1000	ml/ha	С	0.0	a	0.0	а	7.4	а	100.0	a	14.5	bc	100.0	а
LSD P	=.05								NSD		NSD		N/A			
Stand	ard Deviation				0.00		0.00		1.82		2.31		0.09t		0.00	1
CV					0.0		0.0		22.2		2.3		8.61t		0.0)
Bartle	tt's X2				0.0		0.0		1.0		0.0		0.6		0.0)
P(Bart	lett's X2)				.		•		0.796				0.899			
Replic	ate F				0.000		0.000		1.303		1.000		5.401		0.000)
Replic	ate Prob(F)				1.0000		1.0000		0.3389		0.4219		0.0328		1.0000)
Treatn	nent F				0.000		0.000		1.761		1.000		133.717		0.000)
Treatn	nent Prob(F)				1.0000		1.0000		0.2542		0.4547		0.0001		1.0000)

Means followed by same letter or symbol do not significantly differ (P=.05, LSD) t=Mean descriptions are reported in transformed data units, and are not de-transformed. Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL. Could not calculate LSD (% mean diff) for columns 2,3,16 because error mean square = 0. NSD = Not Significantly Different N/A = Not applicable AL = Data transformed using log with resulting letter of separation applied to original means.

Butisan[®] Herbicide **Superior control**

Manage resistance

All canola systems

Butisan[®] a new standard in pre-emergent grass weed control in canola^{*}

For more information visit agro.basf.com.au

* Butisan® is currently under evaluation by the APVMA for registration prior to the 2017 winter cropping season

ALWAYS READ AND FOLLOW LABEL DIRECTIONS. © Copyright BASF 2016 @ Registered trademark of BASF. W541677 06.2016

NO ONE LIKES RADISH IN THEIR CEREAL.

Wild Radish is one of the problem weeds of our generation - a fierce competitor with our crops and a prolific seeder, so excellent weed control is essential.

We create chemistry

Ecopar provides a cost effective alternative to current popular and expensive herbicides. Ecopar has a group G mode of action which is different to most currently used chemistry. With its combination partner MCPA Amine, Ecopar controls numerous weeds not controlled by other products.

Ecopar is a perfect partner to use in rotation with other popular herbicides. Where two spray strategies are used, Ecopar is a perfect option, as it can be used from the 2 leaf stage of the crop.

The new Ecopar label permits use rates up to 800ml per hectare in cereal crops.

For further information, refer to the product label.

DISEASE MANAGEMENT IN BARLEY TRIAL

INTRODUCTION

The trial was conducted near Mallala 42 km north of Adelaide SA in 2015 to evaluate new and current commercial available fungicide products in Barley.

GENERAL DISCUSSION

Weather

Barley cv. Charger was sown into Barley stubble with high soil moisture after good early rainfall, however below average rainfall was recorded for the growing season after a dry finish. Treatments were applied to seed and fertilizer prior to sowing, with foliar treatments being applied in a water rate of 100 L/ha at 49 days after planting.

Net form of net blotch control (Pyrenophora teres)

At 17 days after application timing B (DA-B), treatments containing Systiva, as well as combinations of Tazer Xpert with Banjo, and BAS 70203F most effectively reduced the incidence of net blotch on FL-1, compared with other treatments. A similar trend was observed for severity of net blotch infection, with AD-AU-1408 also providing comparable levels of net blotch control.

On FL-2, the combination of Tazer Xpert and Banjo, with and without Systiva, as well as Systiva alone reduced the incidence and severity of net blotch of FL-2. Furthermore on FL-3, the incidence of net blotch was only significantly reduced by Systiva.

Although insignificant, treatments of Aviator, Tazer Xpert in combination with Banjo, as well as Systiva with a mixture of Tazer Xpert and Banjo, tended to reduce incidence of net blotch on FL-1 at 31 DA-B. At this assessment timing, severity of net blotch on FL-2 was most effectively controlled by Systiva applied alone, and followed by Tazer Xpert and Banjo, as well as the high rate of Tazer Xpert and Banjo, BAS 70203F and Amistar Xtra. Prosaro, ELDoo1 and Legend were less effective for control of net blotch on FL-2.

At 47 DA-B, incidence and severity of net blotch on FL-2 was most effectively reduced by treatments containing Systiva, as well as the high rate of Tazer Xpert and Banjo and BAS 790203F. The incidence of net blotch on FL-3 was only significantly reduced by treatments containing Systiva at 47 DA-B.

Yield was taken with a plot harvester at 103 DA-B, with no significant differences between treatments recorded.

SOWING DETAILS	
Crop Name	Barley
Variety	Charger
Planting Date	04/06/2015
Planting Method	Knife Point Press Wheel
Planting Equipment	TPS012
Planting Rate (kg/ha)	75
Depth, Unit (cm)	3
Row Spacing, Unit (cm)	25
No. Rows	5
Soil Moisture	Moist
Stubble Cover	35
Paddock History, 2014	Barley
Paddock History, 2013	Wheat

Trial Maintenance				
Fertiliser				
Date	Product Name	Description	Rate	Unit
04/06/2015	Croplift19	Below Seed	150.0	kg/ha
31/07/2015	Urea	Top Dress (GS18-23)	240.0	g/plot
17/08/2015	Urea	Top Dress (GS32-39)	240.0	g/plot
11/09/2015	Urea	Top-dressed @ GS32-37	100.0	kg

Maintenance				
Date	Product Name	Description	Rate	Unit
03/06/2015	Roundup UltraMax	Knockdown	3.0	L/ha
23/07/2015	Lontrel Advance	GS12-15	75.0	mL/ha
	LVE Agritone	GS12-15	600.0	mL/ha
13/08/2015	Roundup	Buffering (GS31)	2.0	L/ha
	Hammer	Buffering (GS31)	35.0	mL/ha
29/10/2015	Reglone	Trial destruction	3.0	L/ha
	Gramoxone	Trial destruction	3.0	L/ha
	BS1000	Trial destruction	0.1	%v/v

2015 vs Long Term (LT) Mean Rainfall

(Source: Roseworthy, SA - Bureau of Meteorology)

Application Description		
	А	В
Application Date:	4/6/2015	31/07/2015
Application Timing:	Day of sowing	6 WA-S

Crop Stage At Each Application		
	Α	В
Crop 1 Code, BBCH Scale:	Barley	Barley
Stage Scale Used:	BBCH	BBCH
Stage Majority, Percent:	Day of sowing	GS18-23

Charger Barley FL-2 Leaf area infected by net form net blotch @ 31 Days after application B

Photo 1: Example of untreated control net form net blotch infection in barley cv. Charger at 17 DA-A

TABLE 1: DISEASE SEVERITY AND INCIDENCE OF NET FORM NET BLOTCH (PYRENOPHORA TERES) ON FLAG-1, 2 AND 3 IN BARLEY CV. CHARGER AT 17 DA-A

Rating Crop V Rating Part R Rating Crop S Trt-Ev ARM	y Date ariety y Type ated y Unit tage Minimum/Maximum al Interval Action Codes			Aug-1; Cha Pest S Fla % 32 17 D	7-2015 rger everity g-1 LAI 39 M-A	Aug-17 Char PestInci Flag 32 17 D/	-2015 ger dence (-1 39 A-A	Aug-1; Cha Pest S Fla % 32 17 D	7-2015 rger everity g-2 LAI 39 DA-A	Aug-17 Char Pest Inc Flag % 32 17 D A	-2015 ger idence g-2 39 A-A A	Aug-17-2015 Charger Pest Severity Flag-3 % LAI 32 39 17 DA-A		Aug-17-2015 Charger Pest Incidence Flag-3 % 32 39 17 DA-A AA	
Trt No.	Treatment Name	Rate	Rate Unit												
1	Untreated			7.3	а	81.3	ab	10.3	а	93.3	abc	37.2	а	100.0	а
2	Systiva	150	ml/100 kg	1.2	fg	22.7	ef	1.7	ghi	33.3	ghi	8.5	ef	69.3	b
3	Amistar Xtra	400	ml/ha	3.2	c-f	52.0	cd	4.9	b-g	68.0	def	20.8	bcd	90.7	а
4	Cogito	125	ml/ha	4.3	b-e	66.7	abc	5.7	b-f	82.7	a-e	21.9	bcd	100.0	а
5	BAS 70203F	750	ml/ha	2.6	ef	40.0	de	4.5	c-h	56.0	e-h	15.3	de	88.0	а
6	Jockey Stayer	300	ml/100 kg	3.7	cde	69.3	abc	4.7	b-h	70.7	b-f	25.7	bcd	98.7	а
7	Prosaro	150	ml/ha	5.0	bcd	80.0	ab	5.9	b-e	84.0	a-d	24.8	bcd	100.0	а
8	Aviator Xpro	400	ml/ha	5.3	abc	81.3	ab	7.6	a-d	97.3	а	30.9	ab	100.0	а
9	Intake Combi	300	ml/100 kg	4.7	b-e	74.7	abc	7.7	abc	90.7	a-d	28.8	abc	100.0	а
10	ELD001	250	ml/ha	5.0	bcd	70.7	abc	7.6	a-d	88.0	a-e	29.8	ab	98.7	а
11	AD-AU-1408	1000	ml/ha	2.6	ef	50.7	cd	3.5	e-i	58.7	e-h	30.4	ab	100.0	а
12	Bumper 625	100	ml/ha	3.5	cde	60.0	bcd	4.3	d-h	70.7	c-f	27.4	abc	98.7	а
13	Radial	420	ml/ha	2.9	def	54.7	cd	3.9	e-h	66.7	d-g	29.3	abc	100.0	а
14	Legend (Experimental)	300	ml/ha	5.9	ab	85.3	а	8.1	ab	89.3	ab	27.3	abc	100.0	а
15	Tazer Xpert	1000	ml/ha	5.7		- 5.5				- 7 - 5		1.2			
-)	Banio	1000	ml/100 l	1.3	fg	25.3	ef	2.4	f-i	42.7	fgh	21.6	bcd	98.7	а
16	Tazer Xnert	500	ml/ha												
10	Banio	1000	ml/100 l	1.1	fg	21.3	ef	1.5	hi	30.7	hi	18.5	cde	84.0	а
17	Sustiva	1000	ml/100 kg												
17	Tazar Vport	150	ml/ha	0.2	a	6 7	f	0.5	;	0.2	;	2.7	f	507	h
	Ranio	1000	ml/100 l	0.3	8	0.7	1	0.5	I	9.3	1	3./	1	50.7	D
	Vibrance	1000													
18		180	ml/100 kg	3.9	b-e	73.3	abc	5.1	b-f	82.7	a-e	28.1	abc	100.0	а
	Uniform	400	ml/100 kg	2.15		24.26		2 27		Ν/Λ		10.06		Ν/Δ	
Stand	ard Deviation			1.30		14.68		2.03		12.38t		6.61		0.75t	
CV				36.62		26.01		40.68		21.47t		27.66		11.81t	
Bartle	tt's X2			26.181		21.839		24.981		14.399		10.197		7.81	
P(Bart	lett's X2)			0.071		0.191		0.095		0.639		0.895		0.452	
Replic	ate F			1.191		0.049		0.339		0.006		20.762		1.055	
Replic	ate Prob(F)			0.3162		0.9518		0.7148		0.9940		0.0001		0.3592	
Treatm	nent F			6.125		8.087		4.873		6.536		4.729		5.047	
Treatm	ient Prob(F)			0.0001		0.0001		0.0001		0.0001		0.0001		0.0001	

Means followed by same letter or symbol do not significantly differ (P=.05, LSD) t=Mean descriptions are reported in transformed data units, and are not de-transformed. Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL. AA = Data transformed using arcsine with resulting letter of separation applied to original means. N/A = Not Applicable

TABLE 2: DISEASE SEVERITY AND INCIDENCE OF NET FORM NET BLOTCH (PYRENOPHORA TERES) ON FLAG-1, 2 AND 3 IN BARLEY CV. CHARGER AT 31 DA-A

Rating Crop V Rating Part R Rating Crop S Trt-Eva ARM A	; Date ariety ; Type ated ; Unit :tage Minimum/Maximum al Interval action Codes			Aug-3 Cha Pest S Fla % 37 31 [1-2015 rger everity g -1 LAI 37 DA-A	Aug-31 Char Pest Inci Flag % 31 D/ A/	-2015 ger dence ; -1 37 A-A	Aug-3: Cha Pest S Flag % 31 31 D A	1-2015 rger everity g -2 LAI 37 DA-A L	Aug-31 Chai Pest Inc Flag % 31 31 D A	Aug-31-2015 ChargerAug-31-2015 ChargerAug-31-2015 ChargerPest Incidence Flag -2Pest Severity Flag -3 % LAIPest Incidence Flag -3 % LAI37373731 DA-A AA31 DA-A AL31 DA-A		2015 ger lence -3 37 -A		
Trt No.	Treatment Name	Rate	Rate Unit												
1	Untreated			1.6	а	32.0	а	10.2	а	96.0	а	17.3	а	100.0	а
2	Systiva	150	ml/100 kg	0.7	а	14.7	а	1.4	f	28.0	fg	1.3	fg	26.7	gh
3	Amistar Xtra	400	ml/ha	1.1	а	21.3	а	3.9	cde	62.7	de	3.5	d-g	50.7	efg
4	Cogito	125	ml/ha	0.5	а	9.3	а	4.7	bcd	69.3	cd	8.4	a-d	89.3	a-d
5	BAS 70203F	750	ml/ha	0.7	а	13.3	а	6.0	cde	56.0	de	8.1	b-e	58.7	c-f
6	Jockey Stayer	300	ml/100 kg	0.6	а	12.0	а	4.9	bcd	64.0	cde	18.7	ab	85.3	abc
7	Prosaro	150	ml/ha	0.4	а	8.0	а	7.5	abc	76.0	bcd	9.1	a-d	86.7	a-d
8	Aviator Xpro	400	ml/ha	0.2	а	4.0	а	5.0	bcd	78.7	bcd	8.9	abc	92.0	ab
9	Intake Combi	300	ml/100 kg	0.9	а	18.7	а	5.9	bcd	78.7	bcd	9.6	abc	93.3	a-d
10	ELD001	250	ml/ha	1.7	а	34.7	а	7.9	ab	85.3	abc	14.1	abc	92.0	a-d
11	AD-AU-1408	1000	ml/ha	0.9	а	18.7	а	4.6	bcd	74.7	bcd	10.1	abc	93.3	ab
12	Bumper 625	100	ml/ha	0.2	а	4.0	а	3.6	cde	64.0	cde	11.2	a-d	81.3	a-d
13	Radial	420	ml/ha	0.3	а	6.7	а	4.3	bcd	76.0	bcd	6.9	a-d	86.7	a-d
14	Legend (Experimental)	300	ml/ha	0.6	а	10.7	а	6.1	abc	90.7	ab	8.0	abc	96.0	ab
15	Tazer Xpert	1000	ml/ha						<i>c</i>		c				ć
	Banjo	1000	ml/100 l	0.1	а	1.3	а	1.9	er	38.7	er	2.1	erg	40.0	rg
16	Tazer Xpert	500	ml/ha										6		
	Banjo	1000	ml/100 l	0.1	а	1.3	а	3.5	de	58.7	de	4.8	C-t	64.0	def
17	Systiva	150	ml/100 kg												
	Tazer Xpert	500	ml/ha	0.0	а	0.0	а	0.7	f	13.3	g	0.6	g	12.0	h
	Banjo	1000	ml/100 l												
18	Vibrance	180	ml/100 kg											0	
	Uniform	400	ml/100 kg	0.3	а	5.3	а	3.7	cae	69.3	са	5.7	b-e	82.7	b-e
LSD P=	=.05			NSD		N/A		N/A		N/A		N/A		N/A	
Standa	ard Deviation			0.69		12.18t		0.16t		9.33t		0.26t		13.36t	
Bartlet	tt's X2			26 5 26		78.54L		27.81		16.881		35.141		21.131	
P(Bart	lett's X2)			0.047*		0.826		0.051		0.336		0.016*		0.093	
Replica	ate F			2.748		4.721		0.505		2.311		2.192		4.389	
Replica	ate Prob(F)			0.0783		0.0155		0.6080		0.1146		0.1272		0.0202	
Treatm	nent Prob(F)			0.1214		0.0537		0.0001		0.0001		0.0002		0.0001	

Means followed by same letter or symbol do not significantly differ (P=.o5, LSD) t=Mean descriptions are reported in transformed data units, and are not de-transformed. Mean comparisons performed only when AOV Treatment P(F) is significant at mean comparison OSL. AA = Data transformed using arcsine with resulting letter of separation applied to original means. AL = Data transformed using log with resulting letter of separation applied to original means. N/A = Not Applicable NSD = Not Significantly Different

ELDERS RED NOTEBOOK APP

THE ICONIC ELDERS RED NOTEBOOK IS NOW DIGITAL

Elders

The most comprehensive app of its kind in agriculture, the Elders Red Notebook app truly is your number one back pocket tool, providing access to information and assistance at your finger tips.

1		_	i.	
Ξ	-			
=				
٩			,	
- 4			έ.	

Reports: Access audio recordings of livestock, wool, and grain market sales reports from across the country.

Ξ	_	2	þ
	1	_	J .

Notes: Gives you the ability to keep a log when you don't have a pen on hand. Includes a sketch function and ability to email.

Community Support: Contact information for important and helpful resources in times of emergency or crisis.

First Aid: Useful and up to date information for common first aid emergencies.

Calendar Events: Your own diary and point of reference for key dates and events.

Tables and Figures: All the quick tools you need on farm including chemical compatibility, wool selling centre locations and breeding tables.

Elders Weather: One of Australia's leading free online services of detailed weather information covering over 550 locations, satellite and radar images, synoptic charts, warnings and breaking weather information.

Elders Online: A direct, easily-accessible portal to the Elders website.

Download today through your app store or visit www.elders.com.au/rednotebook

ELDERS FENCE LINE KNOCKDOWN TRIAL

INTRODUCTION

The trial was conducted near Mallala 42 km north of Adelaide SA in 2015 to evaluate experimental and existing commercial available chemistry for knockdown and residual fence line weed control.

GENERAL CONCLUSION

All treatments were applied in a water rate of 100 L/ha to a fenceline consisting of wild oats, soursob, sow thistle and marshmallow. The spectrum of weeds varied between plots, resulting in not all weed species being present in all plots. Percentage control assessments for each species were conducted at 8, 32 and 47 DAA (days after application), with general brownout scores also being conducted at 32 and 47 DAA.

Control of wild oats (Avena fatua)

At 8 DAA, a higher level of wild oat control by treatments containing paraquat when compared with glyphosate was observed, with all treatments containing either Sprayseed or Gramoxone 360 achieving 100% control of wild oats. The addition of F6246 to Roundup Ultra Max gave greater control of wild oats than Roundup Ultra Max applied alone, with Hammer 400EC, Hot shot, Paradigm, and Nail.

All treatments evaluated gave 100% control of wild oats at 32 and 47 DAA.

Control of soursob (Oxalis pes-caprae)

Treatments containing Sprayseed or Gramoxone 360 as well as Alliance gave 100% control of soursob at 8 DAA. Treatments of F6246 in combination with Roundup Ultra Max increased control of soursob at the initial assessment.

By 32 DAA, all treatments evaluated achieved 100% control of soursob.

Control of sow thistle (Sonchus oleraceus)

At 8 DAA, all treatments able to be evaluated showed 100% control of sow thistle, with the exception of Roundup Ultra Max with Nail 600 and Hasten, and Roundup Ultra Max with Starane Advance and Uptake.

All treatments except Roundup Ultra Max applied alone completely controlled sow thistle by 32 DAA.

Control of marshmallow (Malva parvi)

All treatments able to be evaluated gave close to 100% control of marshmallow at 8, 32 and 47 DAA

The general brownout assessment showed very high to complete brownout for all treatments except Sharpen applied with Hasten, which gave 20% brownout at 32 DAA and 5% at 47 DAA

RAINFALL DATA

GSR (1st May – 30th September 2015) – 181.2 mm Annual Rainfall (January – December 2015) - 324mm

T1 – Fenceline Demo

Crop Stage At Each Application	
	Α
Stage Majority:	N/A (Fenceline)

IBS

Comments	
Date	Product Name
27/08/2015	New fenceline position acquired. Plots 10x2 m. 101 is western end of road - HA
13/10/2015	Brownout column, plot 12 has had a hand boom fault.

Untreated control at 32 DAA

Roundup at 950 mL/ha, Hammer at 10 mL/ha and Hasten at 500 mL/100L at 32 DAA

RAW DATA TABLE 2: WEED CONTROL OF THISTLE (CIRSIUM SP.) AND MARSHMALLOW (PARVA MALVI) AT 8, 32 AND 47 DA-A

Ratin Crop Pest Ratin Ratin	g Date Name Name g Type g Unit					Sep-4-2015 Fenceline Thistle Weed Control %	Sep-28-2015 Fenceline Thistle Weed Control %	Oct-13-2015 Fenceline Thistle Weed Control %	Sep-4-2015 Fenceline Marsh-mallow Weed Control %	Sep-28-2015 Fenceline Marsh-mallow Weed Control %	Oct-13-2015 Fenceline Marsh-mallow Weed Control %
Trt-E	val Interval					8 DA-A	32 DA-A	47 DA-A	8 DA-A	32 DA-A	47 DA-A
Trt No.	Treatment Name	Rate	Rate Unit	App Cod	ol Plot le						
1	Untreated				101	0.0	0.0	0.0	0.0		
					Mean =	0.0	0.0	0.0	0.0		
2	SpraySeed	1800	ml/ha	А	102	100.0	100.0	100.0	100.0	100.0	100.0
					Mean =	100.0	100.0	100.0	100.0	100.0	100.0
3	Roundup Ultra Max	950	ml/ha	А	103						
					Mean =						
4	Gramoxone 360	1250	ml/ha	А	104	100.0	100.0	100.0			•
					Mean =	100.0	100.0	100.0			
5	Gramoxone 360	1250	ml/ha	А	105	100.0	100.0	100.0	100.0	100.0	100.0
-	Sharpen	17	g/ha	А							
	Hasten	1000	ml/100 l	А							
					Mean =	100.0	100.0	100.0	100.0	100.0	100.0
6	Roundup Ultra Max	950	ml/ha	А	106	100.0	100.0	100.0	100.0	100.0	100.0
	Sharpen	17	g/ha	А							
	Hasten	1000	ml/100 l	A		 			<u>.</u>	<u>.</u>	
		1000			Mean =	100.0	100.0	100.0	100.0	100.0	100.0
7	Sharpen	26	g/ha	А	107						
,	Hasten	1000	ml/100 l	А	- /						
					Mean =						
8	Terrain FG	30	g/ha	А	108	100.0	100.0	100.0			
-	Weedmaster DST	1150	ml/ha	A							
	Hasten	E00	ml/100 l	Δ							
		300	111/ 100 1		Mean =	100.0	100.0	100.0			
0	Roundun Illtra Max	05.0	ml/ha	Δ	100	10.0	100.0	100.0	•	•	•
9	Nail 600	10	ml/ha	Δ	109	10.0	100.0	100.0	•	•	•
	Haston	10	ml/100 l	^							
		500	111/1001	A	Moon -	10.0	100.0	100.0			
10	Roundun Illtra Max	05.0	ml/ha	Δ	110	10.0	100.0	100.0	•	•	•
10	Hammer 400	950 1F	ml/ha	Δ	110	•	•	•	•	•	•
	Haston	15	ml/100 l	^							
		500	111/1001	~	Moon -						
	Goal Tondor	27.5	ml/ha	٨	Mean -	•	•	•	•	•	•
11	Boundun Illtra Max	ml/ha	^	111	•	•	•	•	•	•	
		950	iiii/iid	~	Moon -						
12	Poundun Illera May	05.0	ml/ha	٨			•	•	•	•	•
12	Starana Advance	950	ml/ha	A	112	10.0	•	•	•	•	•
		450	ml/caal	A							
	υριακε	500	mi/100 l	А							
					Mean =	10.0	•	•	•	•	•

Ratin Crop Pest Ratin Ratin	ng Date Name Name ng Type ng Unit					Sep-4-2015 Fenceline Thistle Weed Control %	Sep-28-2015 Fenceline Thistle Weed Control %	Oct-13-2015 Fenceline Thistle Weed Control %	Sep-4-2015 Fenceline Marsh-mallow Weed Control %	Sep-28-2015 Fenceline Marsh-mallow Weed Control %	Oct-13-2015 Fenceline Marsh-mallow Weed Control %	
Trt-E	val Interval					8 DA-A	32 DA-A	47 DA-A	8 DA-A	32 DA-A	47 DA-A	
13	F6246	300 ml/ha A 113		113	100.0	100.0	100.0	100.0	100.0	100.0		
	Roundup Ultra Max	950	ml/ha	А								
					Mean =	100.0	100.0	100.0	100.0	100.0	100.0	
14	F6246	600	ml/ha	А	114	•	•	•	•	•		
	Roundup Ultra Max	950	ml/ha	А								
					Mean =	•	•	•	•	•		
15	Paradigm	50	g/ha	А	115	•	•	•	•	•		
	Roundup Ultra Max	950	ml/ha	А								
					Mean =	•	•		•			
16	Hot Shot	1000	ml/ha	А	116	•			•			
	Roundup Ultra Max	950	ml/ha	А								
					Mean =				•			
17	Garlon 600	327	ml/ha	А	117	•	•					
	Roundup Ultra Max	950	ml/ha	А								
					Mean =							
18	SpraySeed	3200	ml/ha	А	118				100.0	100.0	100.0	
	Uragan	3500	g/ha	А								
	BS 1000	100	ml/100 l	А								
					Mean =				100.0	100.0	100.0	
19	Sharpen	26	g/ha	А	119				•			
	Arsenal Express	5000	ml/ha	А								
	Hasten	500	ml/100 l	А								
					Mean =				•			
20	Alliance	6000	ml/ha	А	120	100.0	100.0	100.0	95.0	100.0	100.0	
					Mean =	100.0	100.0	100.0	95.0	100.0	100.0	
21	Terrain FG	700	g/ha	А	121	100.0	100.0	100.0	•	100.0	100.0	
	Gramoxone 360	2000	ml/ha	А								
					Mean =	100.0	100.0	100.0		100.0	100.0	
22	Roundup Ultra Max	950	ml/ha	А	122	100.0	100.0	100.0	100.0	100.0	100.0	
	F6365	370	ml/ha	А								
					Mean =	100.0	100.0	100.0	100.0	100.0	100.0	
23	Roundup Ultra Max	950	ml/ha	А	123	100.0	100.0	100.0				
	F6365	750	ml/ha	А								
					Mean =	100.0	100.0	100.0				
		-										

ELDERS BRASSICA WEED CONTROL TRIAL

INTRODUCTION

Demonstration was conducted near Mallala 42 km north of Adelaide SA in 2015 to evaluate existing commercial available chemistry for crop safety in conventional and alternative break crops for winter cropping.

GENERAL CONCLUSION

Weather

The trial was sown into good moisture after early rain. Below average rainfall was recorded at the site due to a dry finish.

Weed control and Phytotoxicity

Strips of chickpeas cv. Monarch, faba beans cv. Fiesta, lentils cv. Hurricane, vetch cv. Timok and Morava, monola cv. NL852, canola cv. Bonito TT, buckwheat, quinoa, linseed and coriander were sown on the 4th June. Treatments were applied perpendicular to the direction of sowing in two timings, one applied and incorporated by sowing, and the other applied post emergence at 49 days after planting (DAP). A crop damage assessment was conducted 62 days after planting

The chickpeas, buckwheat and quinoa did not emerge, and therefore assessments could not be conducted on these crop types.

Avadex at 8000 mL/ha applied at timing A showed low levels of damage in the lentils, canola and faba beans.

180 g/ha of Terrain caused no phytotoxic effects in the linseed or coriander.

The combinations of Ecopar and Spinnaker, Ecopar with Brodal and Options, Boxer Gold with Clethodim and Hasten, and Ecopar with Simazine and Broadstrike all caused significant damage to all crop types able to be evaluated. The combination of Simazine and Atrazine caused no damage to the monola and canola.

SOWING DETAILS	
Crop Name	Chickpeas/Faba Beans/Lentils/Vetch/ Vetch/Monola/Canola/Buckwheat/Quinoa//Linseed Coriander
Variety	Monarch/Fiesta/Hurricane/Timok/ Morava/NL852/Bonito TT/NA/NA/NA/NA
Planting Date	04/06/2015
Planting Method	Knife Point Press Wheels
Planting Equipment	TPS012
Planting Rate (kg/ha)	60/100/50/50/3.5/3.5/45/10/15/40
Depth, Unit (cm)	1cm: Coriander, Linseed, Buckwheat, Canola, Monola
Depth, Unit (cm)	5-6cm: Faba Beans, Chickpeas, Vetch x 2, Lentils
Row Spacing, Unit (cm)	25
No. Rows	5
Soil Moisture	Moist
Stubble Cover	30
Paddock History, 2014	Canola
Paddock History, 2013	Lentils

Trial Maintenance				
Fertiliser				
Date	Product Name	Description	Rate	Unit
04/06/2015	Croplift19 (Legumes Only)	Below Seed	125.0	kg/ha
	Croplift19	Below Seed	150.0	kg/ha

Maintenance				
Date	Product Name	Description	Rate	Unit
03/06/2015	Roundup UltraMax	Knockdown	3.0	L/ha
23/07/2015	Le-Mat	GS See Note	100.0	mL/ha
29/10/2015	Reglone	Trial destruction	3.0	L/ha
	Gramoxone	Trial destruction	3.0	L/ha
	BS1000	Trial destruction	0.1	%v/v

RAINFALL DATA

GSR (1st May – 30th September 2015) – 181.2 mm Annual Rainfall (January – December 2015) - 324mm

²⁰¹⁵ vs Long Term (LT) Mean Rainfall

(Source: Roseworthy, SA - Bureau of Meteorology)

RESULTS RAW DATA TABLE 1: CROP DAMAGE AT 62 DA-P

Aug-5-2015 Coriander		Damage	10-0	5 5	62 DP-1 62 DP-1				10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0	1.0	0.0		0.0	1.0		1.0	1.0		1.0	1.0			1.0	2.0		2.0	1.0		1.0
Nug-5-2015 / Linseed	5	Damage	10-0	14	oz 13 62 DP-1				10.0	10.0	10.0	10.0	10.0	10.0	8.0	8.0	10.0	10.0	7.0	7.0	5.0		5.0	7.0		7.0	4.0		4.0	5.0			5.0	5.0		5.0	2.0		2.0
Aug-5-2015 A	3 7	Damage	10-0	22 ,	02 13 62 DP-1				•	•	•	•	•	•	•	·	·	•	•		•		•	•		•	•		•	•			•	•		•	•		•
Aug-5-2015 / Buckwheat		Damage	10-0	24	62 13 62 DP-1					•	•	•		•	•	•	•			•			•	•										•		•			·
Aug-5-2015	Bonito TT	Damage	10-0	10 10	02 13 62 DP-1				10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.0	9.0	5.0	5.0	0.0		0.0	5.0		5.0	4.0		4.0	4.0			4.0	10.0		10.0	2.0		2.0
Aug-5-2015 Canola	Monola	NL852	uamage	10-0	10 62 13	62 DP-1			10.0	10.0	10.0	10.0	10.0	10.0	8.0	8.0	9.0	9.0	5.0	5.0	1.0		1.0	5.0		5.0	5.0		5.0	5.0			5.0	10.0		10.0	2.0		2.0
Aug-5-2015	Morava	Damage	10-0	27	02 13 62 DP-1				10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	1.0		1.0	3·0		3.0	5.0		5.0	3.0			9.0 3	2.0		2.0	2.0		2.0
Aug-5-2015 Vetch	Timok	Damage	10-0	27	62 13 62 DP-1				10.0	10.0	10.0	10.0	8.0	8.0	10.0	10.0	9.0	9.0	10.0	10.0	1.0		1.0	4.0		4.0	5.0		5.0	6.0			6.0	3.0		3.0	4.0		4.0
Aug-5-2015	Hurricane	Damage	10-0	58	62 DP-1 62 DP-1				10.0	10.0	10.0	10.0	10.0	10.0	8.0	8.0	9.0	9.0	9.0	9.0	3.0		3.0	7.0		7.0	4.0		4.0	4.0			4.0	6.0		6.0	4.0		4.0
Aug-5-2015 Faha hean	Fiesta	Damage	10-0	50	02 13 62 DP-1				10.0	10.0	10.0	10.0	10.0	10.0	9.0	9.0	10.0	10.0	9.0	9.0	4.0		4.0	5.0		5.0	5.0		5.0	5.0			5.0	4.0		4.0	5.0		5.0
Aug-5-2015 Chirknea	Monarch	Damage	10-0	8	02 13 62 DP-1						•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		•	•			•	•			•		•
						i		101	Mean =	102	Mean =	103	Mean =	104	Mean =	105	Mean =	106	Mean =	107		Mean =	108		Mean =	109		Mean =	110			Mean =	111		Mean =	112			Mean =
						· : : :	kate uni			ml/ha		ml/ha		ml/ha		g/ha		ml/ha		ml/ha	g/ha		ml/ha	g/ha		ml/ha	ml/ha		ml/ha	ml/ha	v/v %		g/ha	g/ha		ml/ha	g/ha	g/ha	
					.:	Ì	kate			2000		4000		8000		180		800		800	100		800	25		800	100		2500	500	4		1000	1000		800	150	25	
g Date Name	Variety	g Type	g unit	Stage Majority	Arter First/Last Applie -Eval Interval		o. Ireatment name	Untreated		Avadex Xtend		Avadex Xtend		Avadex Xtend		Terrain		Ecopar		Ecopar	Spinnaker		Ecopar	Broadstrike		Ecopar	Brodal Options		Boxer Gold	Clethodim	Hasten		Simazine	Atrazine		Ecopar	Simazine	Broadstrike	
Ratin	Crop	Ratin	Katin	d L L L	Days Plant					2		m		4		5		6		7			∞			6			10				11			12			

DP-1 = Days After Planting

