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Todays program

Optimal control problems

min IN(K, P)llm, m =2, 00

@ Youla parametrization: search over all stabilizing K(s) = search
over all stable transfer-functions Q(s)

— the model matching problem

@ Linear Matrix Inequalities: translate optimization problem into
low-complexity convex problem

@ Model reduction: optimization problem typically yields high-order
K(s) — reduce order of controller while maintaining essential
properties
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Parametrization of all stabilizing controllers
Internal Model Control (IMC) structure

K

T + ) N + y
= — Q G g
+
:
model

@ Assume G stable. Then closed-loop internally stable iff
KI+GK)"'=Q (I+GK)'=1-GQ
(I+KG)'=1-QG G(I+KG)'=G(I-QG)
all stable < Q stable

@ The error feedback controller K = Q(/ — GQ) ™!
@ Thus, a parametrization of all stabilizing controllers is

K=Q(-GQ)™"

where Q(s) is any stable transfer-function matrix
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——
Example: H., Model Matching Problem

The model matching problem: find stable Q(s) such that
1P1(s) — P2(s)Q(s)P3(s) e <~
Example: find controller such that ||wpS||o < 1

@ FromIMC: S=1/- GQ
@ Introduce Py = wp, P> = wpG, P3 =1, =1. Then

WpSloo <1 = [[P1(8) — Pa(8)Q(S)P3(S)lc <
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Parametrization for unstable plants

@ Left coprime factorization
G(s) = M~1(s)N(s)
such that M, N proper, stable and satisfy Bezout identity
NX + MY =1
@ Parametrization of all stabilizing controllers
K(s) = (Y(s) — Q(s)N(s)) " (X(s) + Q(s)M(s))

where Q(s) is any stable transfer-matrix

Lecture 8: Youla, LMIs, ... EL3210 MIMO Control 5/33



——
Strong Stabilizability

@ Aplant G is strongly stabilizable if there exist a stable controller
that stabilizes the plant, i.e., the set of stabilizing controllers
include stable K(s).

@ Youla: a strictly proper SISO plant with an odd number of real
RHP poles to the right of any RHP zero is not strongly stabilizable.

Example: The plant

B (s—1)
G(s) = (s —2)(s+3)

can only be stabilized by an unstable controller.

Similar result for MIMO plants
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IR
Todays program

Optimal control problems

m’gn IN(K, P)||m, m=2,00

® Youla parametrization: search over all stabilizing K(s) = search
over all stable transfer-functions Q(s)

— the model matching problem

@ Linear Matrix Inequalities: translate optimization problem into
low-complexity convex problem

® Model reduction: optimization problem typically yields high-order
K(s) — reduce order of controller while maintaining essential
properties
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Linear Matrix Inequalities

Linear Matrix Inequality (LMI)

F0+F1X1+F2X2+...Fme>0

where
— X = [X1...Xn] is a real vector
— F;, i =0, m are symmetric real matrices

An LMI imposes a convex constraint on x

o feasibility problem: find some x that satisfies LMI

@ linear optimization problem: minimize ¢’ x subject to LMI

@ generalized eigenvalue problem: minimize largest generalized
eigenvalue subject to LMI

Old problem, efficient solvers now available
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Remark: LMIs often written on matrix form also for x
Fo + ZP:1 GiXiH; >0

where G;, H; are given matrices and we seek X;
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Example 1: Linear stability problem

LTI system
x = Ax(t)

@ Lyapunov function V(x) = x” Px > 0 with V(x) < 0 iff

P=PT >0 ATP+PA<O

@ Corresponds to an LMI feasibility problem (just stack the two
inequalities into one big matrix)
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Example 2: Linear robust stability problem

Polytopic LTV system
x=AtX(t), At e{Ar.... Al
@ Lyapunov function exist iff
P=P' >0, ATP+PA <0, i=1,...L

@ LMI feasibility problem
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Optimization problems: H..-norm

Consider LTI system

x = Ax(t) + Bw(t)
z(t) = Cx(t) + Dw(t)

The H., norm of Gy is equivalent to solving

ATP+PA PB CT
miny s.t. B'"P  —yI DT | <0, P>0

C D —~l

i.e., minimization subject to LMI.
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e —
Upper Bound on pa(N)

Recall upper bound for
< N ~ -1y . . —
ua(N) < g;'gU(DND ); D:DA=AD
Translate into LMI
G(DND™") <~ « p(D-HNHDHDMD™) < 2
s DHANFDHDND™' - ~21<0 < NFPN-~+2P <0
where P = DD > 0 and has same structure as D.
Corresponds to generalized eigenvalue problem

miny? s.t. NIPN—-~2P <0
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LMlIs in control - the Essence

@ Many problems in optimal and robust control can be cast as LMI
problems = convex optimization problems for which efficient
algorithms exist (e.g., interior point methods)

@ Matlab: LMI toolbox, and LMI Lab in Robust Control toolbox.

@ See EL3300 Convex Optimization with Engineering Applications
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Todays program

Optimal control problems

m’gn IN(K, P)||m, m=2,00

® Youla parametrization: search over all stabilizing K(s) = search
over all stable transfer-functions Q(s)

— the model matching problem

@ Linear Matrix Inequalities: translate optimization problem into
low-complexity convex problem

@ Model reduction: optimization problem typically yields high-order
K(s) — reduce order of controller while maintaining essential
properties
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I
The LTI Model Reduction Problem

Given minimal state-space model (A, B, C, D)
x = Ax(t) + Bu(t) x eR"ueR™
y(t) = Cx(t) + Du(t) yeR
or, as input-output model

Y(s) = [C(sl — A)~'B+ D] U(s)

G(s)

@ model reduction: we seek a model
X, = AX(t) + Bru(t) x, € RK.u e R™
y(t) = Crx,(t) + Dru(t) yeRr
Ga(s) = Ci(sl — A) "B, + D,

with k < n, such that the predicted input-output behavior is close in
some sense, e.g., |G — Gal|~ is small
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|
Why Model Reduction?

@ Reduced computational complexity

— time for dynamic simulation is approximately proportional to n® (if A
dense)
— in particular, important for real time applications, e.g., controllers

@ Controller synthesis methods typically yield controllers that have order at
least equal to model order, usually significantly higher. Thus, to obtain
low order controller

— reduce model order prior to control design, or
— reduce controller order after design

A multitude of model reduction methods. Here we will consider those most
commonly employed in linear control theory.
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Truncation and Residualization

Divide state vector x into two vectors x; and x, of dimension k and n — k,
respectively

).(1 = A11X1(t) + A12X2(t) + B U(t)

Xo = Aot x1(t) + Asoxa(t) + Bou(t)

y(t) = Cix1(t) + Coxo(t) + Du(t)
We aim at removing the state vector x», i.e., obtain a kth order model from an
nth order model
@ Truncation: let x> = 0, i.e., remove x» from state-space model

@ Residualization: let x, = 0, i.e., xo becomes an algebraic variable
which depends on x; and u

Lecture 8: Youla, LMIs, ... EL3210 MIMO Control 18/33



Truncation

With x, = 0 we get
(AfaBI’a Cerr): (A11vB17017D)

@ Simply removing a number of states makes little sense in general

@ Consider first transforming (A, B, C, D) into Jordan form and arrange the
states so that x» correspond to the fastest modes

@ If the Jordan form is diagonal (distinct eigenvalues );) then

@ Removing the n — k fastest modes then yields the model error

n

C,'b,-T
G(S)— Ga(s) = Z 3_7)\ = ”G Ga”oo > Z

i=k+1 ! i=k+1

If?ff(A )\
note: must assume stable G(s)
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Truncation contd

@ The H,, error bound

i 5(C/b,-T)
e [FE()]

depends not only on eigenvalues of fast modes, but also on the residues
cib], i.e., the effect of inputs u on x. and effect of x» on outputs y

@ Atw =00
Ga(io) = G(ico) = D

Thus, no error at infinite frequency
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Residualization

With X, = 0 we get (assume Ao, invertible)
Xe(t) = —Ag; Ao (1) — Ay Bou(t)
and elimination of x» from partitioned model then yields
X1 (1) = (Arr — AraAg Aa1)xi (1) + (Br — AraAz,) Bo)u(t)
¥(t) = (C1 — CoAz) Aot )xi () + (D — CoAy; Bo)ul(t)

@ Thus, the reduced model (A, B, C;, D;) =
(A1 — A2A%, Axt, By — A12Ag, Bo, Ci — CoAy, Aot, D — CoAy,) Bo)
@ Corresponds to a singular perturbation method if A transformed to
Jordan form first

@ At zero frequency
Ga(0) = G(0)
follows from the fact that xo = 0 at steady-state
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Comments on Truncation and Residualization

Truncation gives best approximation at high frequencies
Residualization gives best approximation at low frequencies

The two methods are related through the bilinear transformation s — 15

Both methods can in principle give rise to arbitrarily large model
reduction errors since effect of states on input-output behavior not only
related to the speed of response

@ Should be combined with some method that ensures relatively small
overall effect of removed states on input-output behavior = balancing
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——
The Controllability Gramian

@ The state space model (A, B, C, D) has an impulse response from u(t)
to x(t) given by
X(t) = e''B

@ A quantification of the “size” of the impulse response is
t t
P(t) = / X(1)XT(r)dr = / e* BBe” " dr
0 0

@ Define the Controllability Gramian P as
P = lim P(t)

t—o0
@ The controllability gramian can be computed from the Lyapunov equation
AP+ PAT + BBT =0

@ Pis a quantitative measure for controllability of the different states.
Essentially, measures the effect of the inputs on the different states
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——
The Observability Gramian

@ The state space model (A, B, C, D) with input u(t) = 0 and initial state
x(0) = x* has the output

y(t) = CeMx*

@ The energy of the output

t t
/ YT () (r)dr = xT* / AT CT Ce dr X
0 0

@ Define the Observability Gramian Q as e

= lim / A" CTCcerdr

t—o0
@ The observability gramian can be computed from the Lyapunov equation
ATQ+QA+C'C=0

@ Qisa quantltatlve measure for observablllty of the different states.
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Balanced Realizations

@ We seek a similarity transformation of the states xp(t) = Tx(t) so that
the transformed state space model

Xp = TAT " 'xp(t) + TBu(t)
y(t) = CT " xp(t) + Du(t)

has controllability and observability gramians

P:Q:diag(m,...,o,,); O’,'Z\/)\,'(PQ)
where the Hankel singular values o1 > oo > ... > op

@ Each state x,; in the balanced realization is as observable as it is
controllable, and o; is a measure of how controllable/observable it is

@ A state with a relatively small o; has a relatively small effect on the
input-output behavior and can hence be removed without significantly
affecting the predicted input-output behavior
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Balanced Truncation and Residualization

@ Consider the balanced realization (A, B, C, D) of G(s) with partitioning
A A2 B,
<A21 A22> ’ <32) ’ (G )

A~ (X0
P-Q- ( . z)
where 1 = diag(o+,...,0x) and o = diag(ok+1,-..,0n)

@ A balanced truncation or residualization retaining the k states
corresponding to ¥4 will both have model reduction error

n
IG- Gl <2 o
“twice the sum of the tail” i=k+1

@ May in principle include frequency dependent weighting to emphasize
certain frequency ranges, However, this introduces extra states and it is
furthermore usually non-trivial to choose weigths that give the desired [&
result
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Optimal Hankel Norm Approximation

@ The Hankel norm of a transfer-matrix E(s)
IE(S)IH = o1 = /p(PQ)
i.e., equals the maximum Hankel singular value of E(s)

@ Optimal Hankel norm approximations seeks to minimize |G — GX|| 4 for a
given order k of the reduced order model

@ For stable square G(s) the optimal Hankel norm kth order approximation
can be directly computed and has Hankel norm error

IG — Gl = o
@ The optimal Hankel norm is independent of the D-matrix of GX The
minimum oo-norm of the error is

n
: K
min |G- Gllle < 3 o

i=k+1

i.e., “sum of the tails” only
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I
Unstable models

Balanced truncation and residualization and optimal Hankel norm

approximations applies to stable G(s) only. Two “tricks” to deal with unstable
models

@ Separate out unstable part before performing model reduction of stable
part

G(S) = Gu(S) + Gs(S) = Ga(S) = Gu(S) + Gsa(s)

@ Consider coprime factorization of G(s)
G(s) = M~ (s)N(s)

with M(s) and N(s) stable. Apply model reduction to [M(s) N(s)] and
use

Ga(s) = M;1(S)Na(s)
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Model Reduction in Matlab

modreal: truncation or residualization

slowfast: slow/fast mode decomposition

balreal: balanced realization

hankelmr: optimal Hankel norm approximation

stabproj: decompose into stable and antistable parts

ncfmr: balanced model truncation for normalized coprime factors
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Model Reduction Course

@ EL3500 Introduction to Model Order Reduction
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Learning Outcomes
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Learning Outcomes
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The Final Moment

Exam:
@ Covers Lectures and Ch. 1-9 (+ Ch. 11-12 tutorial) in Skogestad
and Postlethwaite
@ 1-day take home exam, open book.

o allowed aids: course book(s), lecture slides, matlab, calculator
e not allowed: exercises, solutions, or anything but the above

@ available between December 15 and January 15

@ send an email to jacobsen@kth.se with the date at which you
want to take it (give at least 2 days notice)

@ all exercises must be approved prior to taking out exam
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