## EL3210 Multivariable Feedback Control

Lecture 8: Youla parametrization, LMIs, Model Reduction and Summary [Ch. 11-12]

Elling W. Jacobsen, Automatic Control Lab, KTH

## Todays program

Optimal control problems

$$
\min _{K}\|N(K, P)\|_{m}, m=2, \infty
$$

- Youla parametrization: search over all stabilizing $K(s) \Rightarrow$ search over all stable transfer-functions $Q(s)$
- the model matching problem
- Linear Matrix Inequalities: translate optimization problem into low-complexity convex problem
- Model reduction: optimization problem typically yields high-order $K(s) \rightarrow$ reduce order of controller while maintaining essential properties


## Parametrization of all stabilizing controllers

 Internal Model Control (IMC) structure

- Assume $G$ stable. Then closed-loop internally stable iff

$$
\begin{array}{cc}
K(I+G K)^{-1}=Q & (I+G K)^{-1}=I-G Q \\
(I+K G)^{-1}=I-Q G & G(I+K G)^{-1}=G(I-Q G)
\end{array}
$$

all stable $\Leftrightarrow Q$ stable

- The error feedback controller $K=Q(I-G Q)^{-1}$
- Thus, a parametrization of all stabilizing controllers is

$$
K=Q(I-G Q)^{-1}
$$

where $Q(s)$ is any stable transfer-function matrix

## Example: $\mathcal{H}_{\infty}$ Model Matching Problem

The model matching problem: find stable $Q(s)$ such that

$$
\left\|P_{1}(s)-P_{2}(s) Q(s) P_{3}(s)\right\|_{\infty}<\gamma
$$

Example: find controller such that $\left\|w_{P} S\right\|_{\infty}<1$

- From IMC: $S=I-G Q$
- Introduce $P_{1}=w_{P}, P_{2}=w_{P} G, P_{3}=I, \gamma=1$. Then

$$
\left\|w_{P} S\right\|_{\infty}<1 \quad \Leftrightarrow \quad\left\|P_{1}(s)-P_{2}(s) Q(s) P_{3}(s)\right\|_{\infty}<\gamma
$$

## Parametrization for unstable plants

- Left coprime factorization

$$
G(s)=M^{-1}(s) N(s)
$$

such that $M, N$ proper, stable and satisfy Bezout identity

$$
N X+M Y=I
$$

- Parametrization of all stabilizing controllers

$$
K(s)=(Y(s)-Q(s) N(s))^{-1}(X(s)+Q(s) M(s))
$$

where $Q(s)$ is any stable transfer-matrix

## Strong Stabilizability

- A plant $G$ is strongly stabilizable if there exist a stable controller that stabilizes the plant, i.e., the set of stabilizing controllers include stable $K(s)$.
- Youla: a strictly proper SISO plant with an odd number of real RHP poles to the right of any RHP zero is not strongly stabilizable.

Example: The plant

$$
G(s)=\frac{(s-1)}{(s-2)(s+3)}
$$

can only be stabilized by an unstable controller.
Similar result for MIMO plants

## Todays program

Optimal control problems

$$
\min _{K}\|N(K, P)\|_{m}, m=2, \infty
$$

- Youla parametrization: search over all stabilizing $K(s) \Rightarrow$ search over all stable transfer-functions $Q(s)$
- the model matching problem
- Linear Matrix Inequalities: translate optimization problem into low-complexity convex problem
- Model reduction: optimization problem typically yields high-order $K(s) \rightarrow$ reduce order of controller while maintaining essential properties


## Linear Matrix Inequalities

Linear Matrix Inequality (LMI)

$$
F_{0}+F_{1} x_{1}+F_{2} x_{2}+\ldots F_{m} x_{m}>0
$$

where
$-x=\left[x_{1} \ldots x_{m}\right]$ is a real vector

- $F_{i}, i=0, m$ are symmetric real matrices

An LMI imposes a convex constraint on $x$

- feasibility problem: find some $x$ that satisfies LMI
- linear optimization problem: minimize $c^{T} x$ subject to LMI
- generalized eigenvalue problem: minimize largest generalized eigenvalue subject to LMI

Old problem, efficient solvers now available

Remark: LMIs often written on matrix form also for $x$

$$
F_{0}+\sum_{i=1}^{n} G_{i} X_{i} H_{i}>0
$$

where $G_{i}, H_{i}$ are given matrices and we seek $X_{i}$

## Example 1: Linear stability problem

LTI system

$$
\dot{x}=A x(t)
$$

- Lyapunov function $V(x)=x^{\top} P x>0$ with $\dot{V}(x)<0$ iff

$$
P=P^{T}>0, \quad A^{T} P+P A<0
$$

- Corresponds to an LMI feasibility problem (just stack the two inequalities into one big matrix)


## Example 2: Linear robust stability problem

Polytopic LTV system

$$
\dot{x}=A(t) x(t), \quad A(t) \in\left\{A_{1}, \ldots, A_{L}\right\}
$$

- Lyapunov function exist iff

$$
P=P^{T}>0, \quad A_{i}^{T} P+P A_{i}<0, i=1, \ldots L
$$

- LMI feasibility problem


## Optimization problems: $\mathcal{H}_{\infty}$-norm

Consider LTI system

$$
\begin{aligned}
\dot{x} & =A x(t)+B w(t) \\
z(t) & =C x(t)+D w(t)
\end{aligned}
$$

The $\mathcal{H}_{\infty}$ norm of $G_{z w}$ is equivalent to solving

$$
\min \gamma \quad \text { s.t. } \quad\left(\begin{array}{ccc}
A^{T} P+P A & P B & C^{T} \\
B^{T} P & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right)<0, \quad P>0
$$

i.e., minimization subject to LMI.

## Upper Bound on $\mu_{\Delta}(N)$

Recall upper bound for $\mu$

$$
\mu_{\Delta}(N) \leq \min _{D \in \mathcal{D}} \bar{\sigma}\left(D N D^{-1}\right) ; \quad \mathcal{D}: D \Delta=\Delta D
$$

Translate into LMI

$$
\begin{aligned}
& \bar{\sigma}\left(D N D^{-1}\right) \leq \gamma \Leftrightarrow \rho\left(D^{-H} N^{H} D^{H} D M D^{-1}\right)<\gamma^{2} \\
\Leftrightarrow & D^{-H} N^{H} D^{H} D N D^{-1}-\gamma^{2} l<0 \Leftrightarrow N^{H} P N-\gamma^{2} P<0
\end{aligned}
$$

where $P=D^{H} D>0$ and has same structure as $D$.
Corresponds to generalized eigenvalue problem

$$
\min \gamma^{2} \quad \text { s.t. } \quad N^{H} P N-\gamma^{2} P<0
$$

## LMIs in control - the Essence

- Many problems in optimal and robust control can be cast as LMI problems $\Rightarrow$ convex optimization problems for which efficient algorithms exist (e.g., interior point methods)
- Matlab: LMI toolbox, and LMI Lab in Robust Control toolbox.
- See EL3300 Convex Optimization with Engineering Applications


## Todays program

Optimal control problems

$$
\min _{K}\|N(K, P)\|_{m}, m=2, \infty
$$

- Youla parametrization: search over all stabilizing $K(s) \Rightarrow$ search over all stable transfer-functions $Q(s)$
- the model matching problem
- Linear Matrix Inequalities: translate optimization problem into low-complexity convex problem
- Model reduction: optimization problem typically yields high-order $K(s) \rightarrow$ reduce order of controller while maintaining essential properties


## The LTI Model Reduction Problem

Given minimal state-space model $(A, B, C, D)$

$$
\begin{aligned}
\dot{x} & =A x(t)+B u(t) & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m} \\
y(t) & =C x(t)+D u(t) & y \in \mathbb{R}^{\prime}
\end{aligned}
$$

or, as input-output model

$$
Y(s)=\underbrace{\left[C(s I-A)^{-1} B+D\right]}_{G(s)} U(s)
$$

- model reduction: we seek a model

$$
\begin{array}{cc}
\dot{x}_{r}=A_{r} \hat{x}(t)+B_{r} u(t) & x_{r} \in \mathbb{R}^{k}, u \in \mathbb{R}^{m} \\
y(t)=C_{r} x_{r}(t)+D_{r} u(t) & y \in \mathbb{R}^{\prime} \\
G_{a}(s)=C_{r}\left(s I-A_{r}\right)^{-1} B_{r}+D_{r}
\end{array}
$$

with $k<n$, such that the predicted input-output behavior is close in some sense, e.g., $\left\|G-G_{a}\right\|_{\infty}$ is small

## Why Model Reduction?

- Reduced computational complexity
- time for dynamic simulation is approximately proportional to $n^{3}$ (if $A$ dense)
- in particular, important for real time applications, e.g., controllers
- Controller synthesis methods typically yield controllers that have order at least equal to model order, usually significantly higher. Thus, to obtain low order controller
- reduce model order prior to control design, or
- reduce controller order after design

A multitude of model reduction methods. Here we will consider those most commonly employed in linear control theory.

## Truncation and Residualization

Divide state vector $x$ into two vectors $x_{1}$ and $x_{2}$ of dimension $k$ and $n-k$, respectively

$$
\begin{aligned}
\dot{x}_{1} & =A_{11} x_{1}(t)+A_{12} x_{2}(t)+B_{1} u(t) \\
\dot{x}_{2} & =A_{21} x_{1}(t)+A_{22} x_{2}(t)+B_{2} u(t) \\
y(t) & =C_{1} x_{1}(t)+C_{2} x_{2}(t)+D u(t)
\end{aligned}
$$

We aim at removing the state vector $x_{2}$, i.e., obtain a $k$ th order model from an $n$th order model

- Truncation: let $x_{2}=0$, i.e., remove $x_{2}$ from state-space model
- Residualization: let $\dot{x}_{2}=0$, i.e., $x_{2}$ becomes an algebraic variable which depends on $x_{1}$ and $u$


## Truncation

With $x_{2}=0$ we get

$$
\left(A_{r}, B_{r}, C_{r}, D_{r}\right)=\left(A_{11}, B_{1}, C_{1}, D\right)
$$

- Simply removing a number of states makes little sense in general
- Consider first transforming ( $A, B, C, D$ ) into Jordan form and arrange the states so that $x_{2}$ correspond to the fastest modes
- If the Jordan form is diagonal (distinct eigenvalues $\lambda_{i}$ ) then

$$
G(s)=\sum_{i=1}^{n} \frac{c_{i} b_{i}^{T}}{s-\lambda_{i}}
$$

- Removing the $n-k$ fastest modes then yields the model error

$$
G(s)-G_{a}(s)=\sum_{i=k+1}^{n} \frac{c_{i} b_{i}^{T}}{s-\lambda_{i}} \Rightarrow\left\|G-G_{a}\right\|_{\infty} \leq \sum_{i=k+1}^{n} \frac{\bar{\sigma}\left(c_{i} b_{i}^{T}\right)}{\left|\operatorname{Re}\left(\lambda_{i}\right)\right|}
$$

note: must assume stable $G(s)$

## Truncation cont'd

- The $H_{\infty}$ error bound

$$
\sum_{i=k+1}^{n} \frac{\bar{\sigma}\left(c_{i} b_{i}^{T}\right)}{\left|\operatorname{Re}\left(\lambda_{i}\right)\right|}
$$

depends not only on eigenvalues of fast modes, but also on the residues $c_{i} b_{i}^{T}$, i.e., the effect of inputs $u$ on $x_{2}$ and effect of $x_{2}$ on outputs $y$

- At $\omega=\infty$

$$
G_{a}(i \infty)=G(i \infty)=D
$$

Thus, no error at infinite frequency

## Residualization

With $\dot{x}_{2}=0$ we get (assume $A_{22}$ invertible)

$$
x_{2}(t)=-A_{22}^{-1} A_{21} x_{1}(t)-A_{22}^{-1} B_{2} u(t)
$$

and elimination of $x_{2}$ from partitioned model then yields

$$
\begin{aligned}
\dot{x}_{1}(t) & =\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) x_{1}(t)+\left(B_{1}-A_{12} A_{22}^{-1} B_{2}\right) u(t) \\
y(t) & =\left(C_{1}-C_{2} A_{22}^{-1} A_{21}\right) x_{1}(t)+\left(D-C_{2} A_{22}^{-1} B_{2}\right) u(t)
\end{aligned}
$$

- Thus, the reduced model $\left(A_{r}, B_{r}, C_{r}, D_{r}\right)=$

$$
\left(A_{11}-A_{12} A_{22}^{-1} A_{21}, B_{1}-A_{12} A_{22}^{-1} B_{2}, C_{1}-C_{2} A_{22}^{-1} A_{21}, D-C_{2} A_{22}^{-1} B_{2}\right)
$$

- Corresponds to a singular perturbation method if $A$ transformed to Jordan form first
- At zero frequency

$$
G_{a}(0)=G(0)
$$

follows from the fact that $\dot{x}_{2} \equiv 0$ at steady-state

## Comments on Truncation and Residualization

- Truncation gives best approximation at high frequencies
- Residualization gives best approximation at low frequencies
- The two methods are related through the bilinear transformation $s \rightarrow \frac{1}{s}$
- Both methods can in principle give rise to arbitrarily large model reduction errors since effect of states on input-output behavior not only related to the speed of response
- Should be combined with some method that ensures relatively small overall effect of removed states on input-output behavior $\Rightarrow$ balancing


## The Controllability Gramian

- The state space model $(A, B, C, D)$ has an impulse response from $u(t)$ to $x(t)$ given by

$$
X(t)=e^{A t} B
$$

- A quantification of the "size" of the impulse response is

$$
P(t)=\int_{0}^{t} X(\tau) X^{T}(\tau) d \tau=\int_{0}^{t} e^{A \tau} B B e^{A^{T} \tau} d \tau
$$

- Define the Controllability Gramian P as

$$
P=\lim _{t \rightarrow \infty} P(t)
$$

- The controllability gramian can be computed from the Lyapunov equation

$$
A P+P A^{T}+B B^{T}=0
$$

- $P$ is a quantitative measure for controllability of the different states. Essentially, measures the effect of the inputs on the different states


## The Observability Gramian

- The state space model $(A, B, C, D)$ with input $u(t)=0$ and initial state $x(0)=x^{*}$ has the output

$$
y(t)=C e^{A t} x^{*}
$$

- The energy of the output

$$
\int_{0}^{t} y^{T}(\tau) y(\tau) d \tau=x^{T *} \underbrace{\int_{0}^{t} e^{A^{\top} \tau} C^{T} C e^{A \tau} d \tau}_{Q(t)} x^{*}
$$

- Define the Observability Gramian $Q$ as

$$
Q=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{A^{\top} \tau} C^{T} C e^{A \tau} d \tau
$$

- The observability gramian can be computed from the Lyapunov equation

$$
A^{T} Q+Q A+C^{T} C=0
$$

- $Q$ is a quantitative measure for observability of the different states.

Fssentially measures the effect of states on outnuts

## Balanced Realizations

- We seek a similarity transformation of the states $x_{b}(t)=T x(t)$ so that the transformed state space model

$$
\begin{aligned}
\dot{x}_{b} & =T A T^{-1} x_{b}(t)+T B u(t) \\
y(t) & =C T^{-1} x_{b}(t)+\operatorname{Du}(t)
\end{aligned}
$$

has controllability and observability gramians

$$
P=Q=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) ; \quad \sigma_{i}=\sqrt{\lambda_{i}(P Q)}
$$

where the Hankel singular values $\sigma_{1}>\sigma_{2}>\ldots>\sigma_{n}$

- Each state $x_{b i}$ in the balanced realization is as observable as it is controllable, and $\sigma_{i}$ is a measure of how controllable/observable it is
- A state with a relatively small $\sigma_{i}$ has a relatively small effect on the input-output behavior and can hence be removed without significantly affecting the predicted input-output behavior


## Balanced Truncation and Residualization

- Consider the balanced realization $(A, B, C, D)$ of $G(s)$ with partitioning

$$
\begin{gathered}
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\binom{B_{1}}{B_{2}}, \quad C=\left(\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right) \\
P=Q=\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)
\end{gathered}
$$

where $\Sigma_{1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ and $\Sigma_{2}=\operatorname{diag}\left(\sigma_{k+1}, \ldots, \sigma_{n}\right)$

- A balanced truncation or residualization retaining the $k$ states corresponding to $\Sigma_{1}$ will both have model reduction error
"twice the sum of the tail"

$$
\left\|G-G_{a}^{k}\right\|_{\infty} \leq 2 \sum_{i=k+1}^{n} \sigma_{i}
$$

- May in principle include frequency dependent weighting to emphasize certain frequency ranges, However, this introduces extra states and it is furthermore usually non-trivial to choose weigths that give the desired result


## Optimal Hankel Norm Approximation

- The Hankel norm of a transfer-matrix $E(s)$

$$
\|E(s)\|_{H}=\sigma_{1}=\sqrt{\rho(P Q)}
$$

i.e., equals the maximum Hankel singular value of $E(s)$

- Optimal Hankel norm approximations seeks to minimize $\left\|G-G_{a}^{k}\right\|_{H}$ for a given order $k$ of the reduced order model
- For stable square $G(s)$ the optimal Hankel norm $k$ th order approximation can be directly computed and has Hankel norm error

$$
\left\|G-G_{a}^{k}\right\|_{H}=\sigma_{k+1}
$$

- The optimal Hankel norm is independent of the $D$-matrix of $G_{a}^{k}$ The minimum $\infty$-norm of the error is

$$
\min _{D}\left\|G-G_{a}^{k}\right\|_{\infty} \leq \sum_{i=k+1}^{n} \sigma_{i}
$$

i.e., "sum of the tails" only

## Unstable models

Balanced truncation and residualization and optimal Hankel norm approximations applies to stable $G(s)$ only. Two "tricks" to deal with unstable models
(1) Separate out unstable part before performing model reduction of stable part

$$
G(s)=G_{u}(s)+G_{s}(s) \Rightarrow G_{a}(s)=G_{u}(s)+G_{s a}(s)
$$

(2) Consider coprime factorization of $G(s)$

$$
G(s)=M^{-1}(s) N(s)
$$

with $M(s)$ and $N(s)$ stable. Apply model reduction to $[M(s) N(s)]$ and use

$$
G_{a}(s)=M_{a}^{-1}(s) N_{a}(s)
$$

## Model Reduction in Matlab

- modreal: truncation or residualization
- slowfast: slow/fast mode decomposition
- balreal: balanced realization
- hankelmr: optimal Hankel norm approximation
- stabproj: decompose into stable and antistable parts
- ncfmr: balanced model truncation for normalized coprime factors


## Model Reduction Course

- EL3500 Introduction to Model Order Reduction


## Learning Outcomes

## $?$

## Learning Outcomes



## The Final Moment

## Exam:

- Covers Lectures and Ch. 1-9 (+ Ch. 11-12 tutorial) in Skogestad and Postlethwaite
- 1-day take home exam, open book.
- allowed aids: course book(s), lecture slides, matlab, calculator
- not allowed: exercises, solutions, or anything but the above
- available between December 15 and January 15
- send an email to jacobsen@kth.se with the date at which you want to take it (give at least 2 days notice)
- all exercises must be approved prior to taking out exam

