Problem 1 A two-wire copper transmission line is embedded in a dielectric material with $\varepsilon_r = 2.6$ and $\sigma = 2 \times 10^{-6}$ S/m. Its wires are separated by 3 cm and their radii are 1 mm each.

- (a) Calculate the line parameters R', L', G', and C' at 2 GHz.
- (b) Compare your results with those based on CD Module 2.1. Include a printout of the screen display.

Solution:

(a) Given:

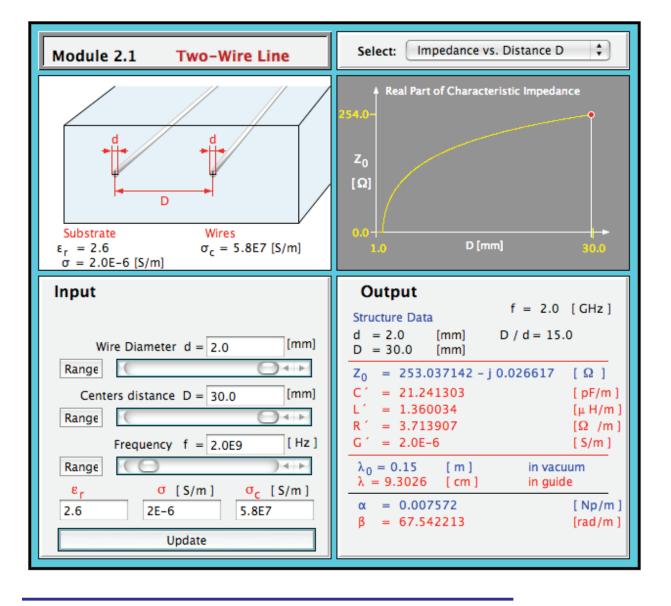
$$f = 2 \times 10^{9} \text{ Hz},$$

$$d = 2 \times 10^{-3} \text{ m},$$

$$D = 3 \times 10^{-2} \text{ m},$$

$$\sigma_{c} = 5.8 \times 10^{7} \text{ S/m (copper)},$$

$$\varepsilon_{r} = 2.6,$$


$$\sigma = 2 \times 10^{-6} \text{ S/m},$$

$$\mu = \mu_{c} = \mu_{0}.$$

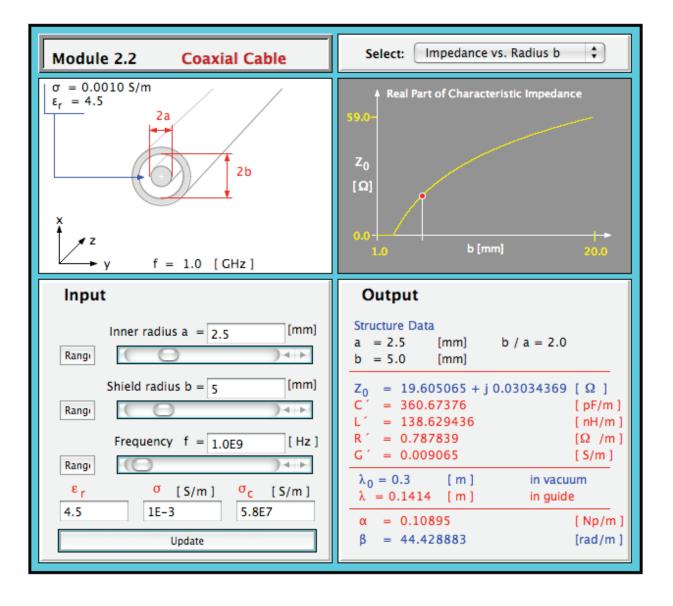
From Table 2-1:

$$\begin{split} R_{\rm s} &= \sqrt{\pi f \,\mu_{\rm c}}/\sigma_{\rm c} \\ &= [\pi \times 2 \times 10^9 \times 4\pi \times 10^{-7}/5.8 \times 10^7]^{1/2} \\ &= 1.17 \times 10^{-2} \,\Omega, \\ R' &= \frac{2R_{\rm s}}{\pi d} = \frac{2 \times 1.17 \times 10^{-2}}{2\pi \times 10^{-3}} = 3.71 \,\Omega/{\rm m}, \\ L' &= \frac{\mu}{\pi} \ln \left[(D/d) + \sqrt{(D/d)^2 - 1} \right] \\ &= 1.36 \times 10^{-6} \,\,{\rm H/m}, \\ G' &= \frac{\pi \sigma}{\ln[(D/d) + \sqrt{(D/d)^2 - 1}]} \\ &= 1.85 \times 10^{-6} \,\,{\rm S/m}, \\ C' &= \frac{G' \varepsilon}{\sigma} \\ &= \frac{1.85 \times 10^{-6} \times 8.85 \times 10^{-12} \times 2.6}{2 \times 10^{-6}} \\ &= 2.13 \times 10^{-11} \,\,{\rm F/m}. \end{split}$$

(b) Solution via Module 2.1:

Problem 2 Find α , β , u_p , and Z_0 for the coaxial line of Problem 2.6. Verify your results by applying CD Module 2.2. Include a printout of the screen display.

Solution: From Eq. (2.22),


$$\begin{split} \gamma &= \sqrt{(R' + j\omega L')(G' + j\omega C')} \\ &= \sqrt{(0.788 \ \Omega/m) + j(2\pi \times 10^9 \ \text{s}^{-1})(139 \times 10^{-9} \ \text{H/m})} \\ &\times \sqrt{(9.1 \times 10^{-3} \ \text{S/m}) + j(2\pi \times 10^9 \ \text{s}^{-1})(362 \times 10^{-12} \ \text{F/m})} \\ &= (109 \times 10^{-3} + j44.5) \ \text{m}^{-1}. \end{split}$$

Thus, from Eqs. (2.25a) and (2.25b), $\alpha = 0.109$ Np/m and $\beta = 44.5$ rad/m. From Eq. (2.29),

$$\begin{split} Z_0 = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} = \sqrt{\frac{(0.788 \ \Omega/\mathrm{m}) + j(2\pi \times 10^9 \ \mathrm{s}^{-1})(139 \times 10^{-9} \ \mathrm{H/m})}{(9.1 \times 10^{-3} \ \mathrm{S/m}) + j(2\pi \times 10^9 \ \mathrm{s}^{-1})(362 \times 10^{-12} \ \mathrm{F/m})}} \\ = (19.6 + j0.030) \ \Omega. \end{split}$$

From Eq. (2.33),

$$u_{\rm p} = \frac{\omega}{\beta} = \frac{2\pi \times 10^9}{44.5} = 1.41 \times 10^8 \text{ m/s}.$$

Problem 3 Polyethylene with $\varepsilon_r = 2.25$ is used as the insulating material in a lossless coaxial line with characteristic impedance of 50 Ω . The radius of the inner conductor is 1.2 mm.

- (a) What is the radius of the outer conductor?
- (b) What is the phase velocity of the line?

Solution: Given a lossless coaxial line, $Z_0 = 50 \Omega$, $\varepsilon_r = 2.25$, a = 1.2 mm: (a) From Table 2-2, $Z_0 = (60/\sqrt{\varepsilon_r}) \ln (b/a)$ which can be rearranged to give

$$b = ae^{Z_0\sqrt{\varepsilon_{\rm r}}/60} = (1.2 \text{ mm})e^{50\sqrt{2.25/60}} = 4.2 \text{ mm}.$$

(**b**) Also from Table 2-2,

$$u_{\rm p} = \frac{c}{\sqrt{\varepsilon_{\rm r}}} = \frac{3 \times 10^8 \text{ m/s}}{\sqrt{2.25}} = 2.0 \times 10^8 \text{ m/s}.$$

Problem 4 A 50- Ω lossless transmission line is terminated in a load with impedance $Z_{\rm L} = (30 - j50) \Omega$. The wavelength is 8 cm. Find:

- (a) the reflection coefficient at the load,
- (b) the standing-wave ratio on the line,
- (c) the position of the voltage maximum nearest the load,
- (d) the position of the current maximum nearest the load.
- (e) Verify quantities in parts (a)–(d) using CD Module 2.4. Include a printout of the screen display.

Solution:

(a) From Eq. (2.59),

$$\Gamma = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0} = \frac{(30 - j50) - 50}{(30 - j50) + 50} = 0.57e^{-j79.8^{\circ}}.$$

(b) From Eq. (2.73),

$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \frac{1 + 0.57}{1 - 0.57} = 3.65.$$

(c) From Eq. (2.70)

$$d_{\max} = \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{n\lambda}{2} = \frac{-79.8^{\circ} \times 8 \text{ cm}}{4\pi} \frac{\pi \text{ rad}}{180^{\circ}} + \frac{n \times 8 \text{ cm}}{2}$$

= -0.89 cm + 4.0 cm = 3.11 cm.

(d) A current maximum occurs at a voltage minimum, and from Eq. (2.72),

$$d_{\min} = d_{\max} - \lambda/4 = 3.11 \text{ cm} - 8 \text{ cm}/4 = 1.11 \text{ cm}.$$

(e) The problem statement does not specify the frequency, so in Module 2.4 we need to select the combination of f and ε_r such that $\lambda = 5$ cm. With ε_r chosen as 1,

$$f = \frac{c}{\lambda} = \frac{3 \times 10^8}{8 \times 10^{-2}} = 3.75 \text{ GHz}.$$

The generator parameters are irrelevant to the problem.

The results listed in the output screens are very close to those given in parts (a) through (d).

Module 2.4 Transm	ission Line Simulator	Options: Set Input / Output 🗘		
Zg -•	$d=0.0\lambda=0.0m$	Z _L = 30.0 - j 50.0 Ω		
$Z_{g} = 50.0 + j 0.0 \Omega$	$Z_0 = 50.0 + j 0.0 \Omega$	f = 3.75 GHz		
$\nabla_{g} = 1.0 + j 0.0 V$	$\varepsilon_r = 1.0$	$\lambda = 80.0 \text{ mm}$		
$d = 1.25 \lambda = 100.0 \text{ mm}$				
OPENDER 1000 mm Set Line Length units: $\bigcirc [\lambda]$ $\bigcirc [m]$ Low Loss Approximation Characteristic Z_0 $\bigcirc [m]$ Frequency f $=$ $3.75E9$ Hz Relative \aleph_T $=$ 1.0 0.1 $[m]$ Line Length I $=$ 0.1 $[m]$	$Z_{L} = 30 + j -50 \Omega$ $\bigcirc Impedance \land Admittance$ $Update$ $Set Generator$ $\nabla_{g} = 1.0 + j 0.0 V$ $Z_{g} = 50 + j 0.0 \Omega$ $Update$	$\begin{tabular}{ c c c c c } \hline U & Transmission Line Data 1 \\ \hline Uursor & d = 0.0 \ \lambda = 0.0 \ m \\ \hline Impedance & Z(d) = 30.0 - j 50.0 \\ \hline [\Omega] & = 58.309519 \ L - 1.0304 \ rad \\ \hline Admittance & Y(d) = 0.008824 + j 0.014706 \\ \hline [S] & = 0.01715 \ L 1.0304 \ rad \\ \hline Reflection & \Gamma_d = 0.10112359 - j 0.56179775 \\ \hline Coefficient & = 0.57082633 \ L - 1.392703 \ rad \\ & = 0.57082633 \ L - 79.796026 \ \circ \\ \hline Voltage & \overline{V}(d) = -0.280899 - j 0.550562 \\ \hline [V] & = 0.61808 \ L - 2.0426 \ rad \\ \hline Current & T(d) = 0.005618 - j 0.008989 \\ \hline [A] & = 0.0106 \ L - 1.0122 \ rad \\ \hline Power Flow & P_{av} = 1.685393 \\ \hline [m W] \end{tabular}$		

Figure P2.19(a)

Module 2.4 Transm	ission Line Simulator	Options: Set Input / Output 🗘		
$d = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $				
	d = 0.0 k = 0.0 m $Z_0 = 50.0 + j 0.0 $ Ω $ε_r = 1.0$	$Z_{L} = 30.0 - J 50.0 \Omega$ f = 3.75 GHz $\lambda = 80.0 \text{ mm}$		
$d = 1.25 \ \lambda = 100.0 \text{ mm}$ Set Line Length units: $\bigcirc [\lambda] \bigcirc [m]$ Low Loss Approximation Characteristic Impedance Frequency $f = 3.75E9$ Hz Relative Permittivity $e_r = 1.0$ 0.1 $[m]$ Update	$Z_{L} = 30 + j -50 \Omega$ $\bigcirc Impedance \bigcirc Admittance$ $Update$ $Set Generator$ $\nabla_{g} = 1.0 + j 0.0 V$ $Z_{g} = 50 + j 0.0 \Omega$ $Update$	$\label{eq:starting} \begin{array}{c c} & & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$		

Figure P2.19(b)

Problem 5 A 50- Ω lossless line terminated in a purely resistive load has a voltage standing-wave ratio of 3. Find all possible values of $Z_{\rm L}$.

Solution:

$$\Gamma| = \frac{S-1}{S+1} = \frac{3-1}{3+1} = 0.5.$$

For a purely resistive load, $\theta_r = 0$ or π . For $\theta_r = 0$,

$$Z_{\rm L} = Z_0 \left[\frac{1+\Gamma}{1-\Gamma} \right] = 50 \left[\frac{1+0.5}{1-0.5} \right] = 150 \ \Omega.$$

For $\theta_{\rm r} = \pi$, $\Gamma = -0.5$ and

$$Z_{\rm L} = 50 \left[\frac{1 - 0.5}{1 + 0.5} \right] = 15 \ \Omega.$$

Problem 6 At an operating frequency of 300 MHz, a lossless 50- Ω air-spaced transmission line 2.5 m in length is terminated with an impedance $Z_{\rm L} = (40 + j20) \Omega$. Find the input impedance.

Solution: Given a lossless transmission line, $Z_0 = 50 \Omega$, f = 300 MHz, l = 2.5 m, and $Z_{\text{L}} = (40 + j20) \Omega$. Since the line is air filled, $u_{\text{p}} = c$ and therefore, from Eq. (2.48),

$$\beta = \frac{\omega}{u_{\rm p}} = \frac{2\pi \times 300 \times 10^6}{3 \times 10^8} = 2\pi \text{ rad/m}.$$

Since the line is lossless, Eq. (2.79) is valid:

$$Z_{\rm in} = Z_0 \left(\frac{Z_{\rm L} + jZ_0 \tan \beta l}{Z_0 + jZ_{\rm L} \tan \beta l} \right) = 50 \left[\frac{(40 + j20) + j50 \tan (2\pi \operatorname{rad/m} \times 2.5 \operatorname{m})}{50 + j(40 + j20) \tan (2\pi \operatorname{rad/m} \times 2.5 \operatorname{m})} \right]$$

= 50 [(40 + j20) + j50 × 0] 50 + j(40 + j20) × 0
= (40 + j20) \Omega.

Problem 7 A lossless transmission line of electrical length $l = 0.35\lambda$ is terminated in a load impedance as shown in Fig. P2.28. Find Γ , *S*, and *Z*_{in}. Verify your results using CD Modules 2.4 or 2.5. Include a printout of the screen's output display.

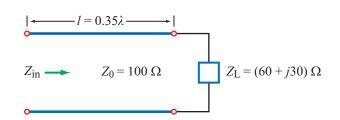


Figure P2.28: Circuit for Problem 2.28.

Solution: From Eq. (2.59),

$$\Gamma = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0} = \frac{(60 + j30) - 100}{(60 + j30) + 100} = 0.307 e^{j132.5^{\circ}}.$$

From Eq. (2.73),

$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \frac{1 + 0.307}{1 - 0.307} = 1.89.$$

From Eq. (2.79)

$$Z_{\rm in} = Z_0 \left(\frac{Z_{\rm L} + jZ_0 \tan \beta l}{Z_0 + jZ_{\rm L} \tan \beta l} \right)$$

= 100 $\left[\frac{(60 + j30) + j100 \tan \left(\frac{2\pi \operatorname{rad}}{\lambda} 0.35\lambda\right)}{100 + j(60 + j30) \tan \left(\frac{2\pi \operatorname{rad}}{\lambda} 0.35\lambda\right)} \right] = (64.8 - j38.3) \Omega$

Module 2.4 Transmi	ssion Line Simulator	Options: Set Input / Output 🛟
d =)∢⊧► λ
	d = 0.35 λ = 28.0 mm $Z_0 = 100.0 + j 0.0 \Omega$ $ε_r = 1.0$	$Z_{L} = 60.0 + j 30.0 \Omega$ f = 3.75 GHz $\lambda = 80.0 \text{ mm}$
$d = 0.35 \ \lambda = 28.0 \text{ mm}$ Set Line Length units: $\bigcirc [\lambda]$ $\bigcirc [m]$ Low Loss Approximation Characteristic Impedance Frequency $f = 3.75E9$ Relative Permittivity $\varepsilon_{r} = 1.0$ 0.35 $[\lambda]$ Update	$Z_{L} = \begin{bmatrix} 60 \\ +j \end{bmatrix} 30 \qquad \Omega$ $\textcircled{o} Impedance \qquad \bigcirc Admittance$ \boxed{Update} $\boxed{Set \ Generator}$ $\nabla_{g} = \begin{bmatrix} 1.0 \\ +j \end{bmatrix} 0.0 \qquad V$ $Z_{g} = \begin{bmatrix} 50 \\ +j \end{bmatrix} 0.0 \qquad \Omega$ \boxed{Update}	$\label{eq:starting} \begin{split} d &= 0 \\ \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

HW2 Solution

Problem 8

A 6-m section of 150- Ω lossless line is driven by a source with

$$v_{\rm g}(t) = 5\cos(8\pi \times 10^7 t - 30^\circ)$$
 (V)

and $Z_{\rm g} = 150 \ \Omega$. If the line, which has a relative permittivity $\varepsilon_{\rm r} = 2.25$, is terminated in a load $Z_{\rm L} = (150 - j50) \ \Omega$, determine:

- (a) λ on the line.
- (b) The reflection coefficient at the load.
- (c) The input impedance.
- (d) The input voltage \widetilde{V}_i .
- (e) The time-domain input voltage $v_i(t)$.
- (f) Quantities in (a) to (d) using CD Modules 2.4 or 2.5.

Solution:

$$v_{g}(t) = 5\cos(8\pi \times 10^{7}t - 30^{\circ}) \text{ V},$$

 $\widetilde{V}_{g} = 5e^{-j30^{\circ}} \text{ V}.$

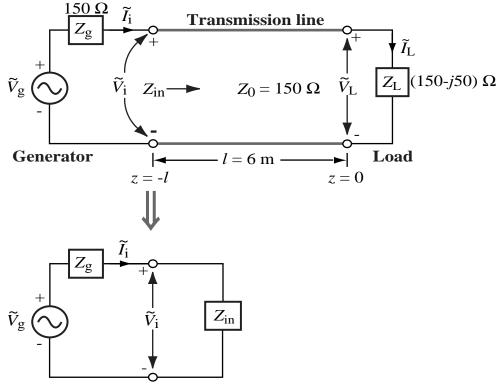


Figure P2.32: Circuit for Problem 2.32.

(a)

$$u_{\rm p} = \frac{c}{\sqrt{\varepsilon_{\rm r}}} = \frac{3 \times 10^8}{\sqrt{2.25}} = 2 \times 10^8 \quad ({\rm m/s}),$$

$$\lambda = \frac{u_{\rm p}}{f} = \frac{2\pi u_{\rm p}}{\omega} = \frac{2\pi \times 2 \times 10^8}{8\pi \times 10^7} = 5 \, {\rm m},$$

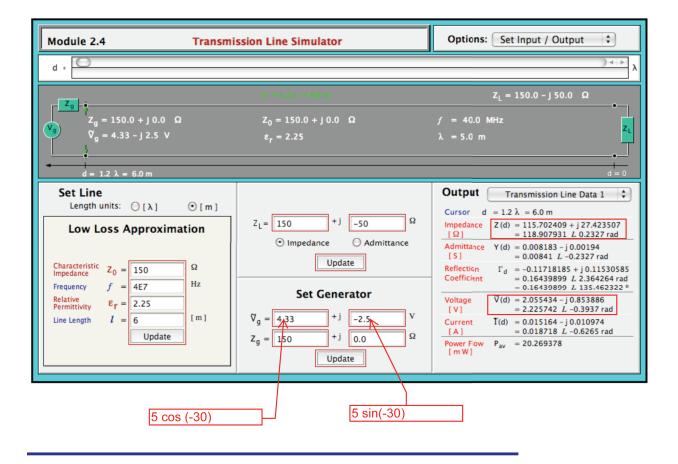
$$\beta = \frac{\omega}{u_{\rm p}} = \frac{8\pi \times 10^7}{2 \times 10^8} = 0.4\pi \quad ({\rm rad/m}),$$

$$\beta l = 0.4\pi \times 6 = 2.4\pi \quad ({\rm rad}).$$

Since this exceeds 2π (rad), we can subtract 2π , which leaves a remainder $\beta l = 0.4\pi$ (rad).

(b)
$$\Gamma = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0} = \frac{150 - j50 - 150}{150 - j50 + 150} = \frac{-j50}{300 - j50} = 0.16 e^{-j80.54^{\circ}}.$$

(c) $Z_{\rm L} = Z_0 \left[\frac{Z_{\rm L} + jZ_0 \tan \beta l}{2} \right]$


$$Z_{\rm in} = Z_0 \left[\frac{Z_L + jZ_0 \tan \beta t}{Z_0 + jZ_L \tan \beta t} \right]$$

= 150 $\left[\frac{(150 - j50) + j150 \tan(0.4\pi)}{150 + j(150 - j50) \tan(0.4\pi)} \right] = (115.70 + j27.42) \Omega.$

(d)

$$\begin{split} \widetilde{V}_{i} &= \frac{\widetilde{V}_{g}Z_{in}}{Z_{g} + Z_{in}} = \frac{5e^{-j30^{\circ}}(115.7 + j27.42)}{150 + 115.7 + j27.42} \\ &= 5e^{-j30^{\circ}} \left(\frac{115.7 + j27.42}{265.7 + j27.42}\right) \\ &= 5e^{-j30^{\circ}} \times 0.44 e^{j7.44^{\circ}} = 2.2 e^{-j22.56^{\circ}} \quad (V). \end{split}$$

(e)

$$v_{i}(t) = \Re \mathfrak{e}[\widetilde{V}_{i}e^{j\omega t}] = \Re \mathfrak{e}[2.2e^{-j22.56^{\circ}}e^{j\omega t}] = 2.2\cos(8\pi \times 10^{7}t - 22.56^{\circ})$$
 V.

