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 Overview of Random Variables and Stochastic Processes
– Discrete-time: {𝑋𝑋𝑛𝑛:𝑛𝑛 ≥ 0,𝑛𝑛 ∈ 𝑍𝑍}; Continuous-time: {𝑋𝑋(𝑡𝑡):𝑡𝑡 ≥ 0, 𝑡𝑡 ∈ ℜ}
– Discrete state-space if each 𝑋𝑋𝑛𝑛 or 𝑋𝑋(𝑡𝑡) has a countable range; Otherwise, Continuous state-space.
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E.g., Inventory Models
𝑋𝑋𝑛𝑛+1 = 𝑋𝑋𝑛𝑛 + 𝑞𝑞𝑛𝑛 − 𝐷𝐷𝑛𝑛
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– Difference between an infinite-length random vector & a discrete-time stochastic process?
» Similarity, they are both denoted as {𝑋𝑋𝑛𝑛:𝑛𝑛 ≥ 0,𝑛𝑛 ∈ 𝑍𝑍}.
» Difference is in the treatment of dependence:

 Random vectors 
– Only short lengths (2-3 rvs) can be studied if they are dependent; 
– Or assume structured dependence through copulas. 
– Or work with independent and identically distributed sequences.

 In discrete-time stochastic processes, assume Markov Property to limit the dependence  
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𝑋𝑋𝑛𝑛+1 = 𝑋𝑋𝑛𝑛 + 𝑞𝑞𝑛𝑛 − 𝐷𝐷𝑛𝑛
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Probability Stochastic Processes

 Difference between a discrete-time stochastic process & continuous-time stochastic process?
– Similarity, limited dependence is still sought.
– Difference is in the continuity of the process in time:

» Continuity is not an issue for processes with a discrete state space
» When the state space is continuous, we wonder how 𝑋𝑋(𝑡𝑡) & 𝑋𝑋(𝑡𝑡+ 𝜖𝜖) differ.

» For random variables, almost sure continuity: P lim
𝜖𝜖→ 0

𝜔𝜔 ∈ Ω: 𝑋𝑋 𝑡𝑡 = 𝑋𝑋 𝑡𝑡 − 𝜖𝜖 = 1.

 Ex: The exchange rate between Euro and US dollar is 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷. The stochastic process 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷(𝑡𝑡) can 
be generally continuous except when FED or ECB act to move the exchange rate in a certain direction.

– Immediately after some bank board meetings, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷(𝑡𝑡) can jump. Central bank interventions can cause jumps.
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 Convention:  A jump that happens at time 𝑡𝑡 is included in 𝑋𝑋(𝑡𝑡) but not in 𝑋𝑋 𝑡𝑡 − 𝜖𝜖
 Two common properties

– Independent increments  𝑋𝑋 𝑡𝑡1 − 𝑋𝑋 𝑠𝑠1 ⊥ 𝑋𝑋(𝑡𝑡2)−𝑋𝑋(𝑠𝑠2) for disjoint intervals (𝑠𝑠1,𝑡𝑡1] and (𝑠𝑠2,𝑡𝑡2].
– Stationary increments     P(𝑋𝑋(𝑠𝑠+ 𝑎𝑎) −𝑋𝑋(𝑠𝑠) = 𝑥𝑥) = P(𝑋𝑋(𝑡𝑡+ 𝑎𝑎)−𝑋𝑋(𝑡𝑡) = 𝑥𝑥).

 Ex: Independent increments imply P(𝑋𝑋(𝑡𝑡) = 𝑥𝑥𝑡𝑡|𝑋𝑋(𝑟𝑟) = 𝑥𝑥𝑟𝑟 for 𝑟𝑟 ∈ (0,𝑠𝑠]) = P(𝑋𝑋(𝑡𝑡) = 𝑥𝑥𝑡𝑡|𝑋𝑋(𝑠𝑠) = 𝑥𝑥𝑠𝑠), 
which is the Markov property.

 Continuity property

– Right-continuous evolution P lim
𝑡𝑡↓0

𝑋𝑋 𝑡𝑡 + 𝜖𝜖 = 𝑋𝑋𝑡𝑡 = 1, i.e., 𝑋𝑋𝑡𝑡 is right-continuous almost surely.

 Ex: Let 𝑋𝑋 𝑡𝑡,𝜔𝜔 = 𝐸𝐸𝑡𝑡(𝜔𝜔) and 𝑋𝑋 𝑡𝑡 + 𝜖𝜖,𝜔𝜔 = 𝐸𝐸𝑡𝑡+𝜖𝜖(𝜔𝜔) for 𝐸𝐸𝑡𝑡 ,𝐸𝐸𝑡𝑡+𝜖𝜖 iid from 𝐸𝐸(0,1).
– Check for convergence in probability. P 𝑋𝑋 𝑡𝑡 + 𝜖𝜖 − 𝑋𝑋𝑡𝑡 ≥ 0.5 = Area of two triangles in unit square = 1

4
– 𝑋𝑋 𝑡𝑡 + 𝜖𝜖 does not converge to 𝑋𝑋𝑡𝑡 in probability.  So it does not converge almost surely.
– 𝑋𝑋(𝑡𝑡) is not right continuous.  It is not left-continuous either.
– Can 𝑋𝑋(𝑡𝑡) be used to model a stock price?

 A process with Independent & Stationary increments, Right-continuous evolution is a Lévy process.

 Lévy-Itô Decomposition:  Lévy
Process = Poisson

Process + Brownian
Process + Martingale

Process + Deterministic drift
Linear in Time

 A Martingale satisfies E 𝑋𝑋(𝑡𝑡) 𝑋𝑋(𝑠𝑠) = 𝑥𝑥𝑠𝑠 = 𝑥𝑥𝑠𝑠 for 𝑠𝑠 ≤ 𝑡𝑡.
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 Assume independent and stationary increments:
– The number of events happening over disjoint intervals are independent: 𝑁𝑁 𝑡𝑡1 −𝑁𝑁 𝑠𝑠1 ⊥ 𝑁𝑁(𝑡𝑡2)−𝑁𝑁(𝑠𝑠2) or 

disjoint intervals (𝑠𝑠1,𝑡𝑡1] and (𝑠𝑠2,𝑡𝑡2].
– The number of events over two intervals of the same length have the same distribution: P(𝑁𝑁(𝑠𝑠+ 𝑎𝑎)−𝑁𝑁(𝑠𝑠) =

𝑘𝑘) = P(𝑁𝑁(𝑡𝑡+ 𝑎𝑎) −𝑁𝑁(𝑡𝑡) = 𝑘𝑘).

 Ex: For a car rental agency, let 𝑛𝑛𝑖𝑖 be the number of scratches on returned car 𝑖𝑖.  Then the associated 
counting process, which yields the total number of scratches in the first 𝑚𝑚 returned cars, is

𝑁𝑁 𝑚𝑚 = ∑𝑖𝑖=1
𝑚𝑚 𝑛𝑛𝑖𝑖 .

– 𝑁𝑁(𝑚𝑚) is indexed by integer 𝑚𝑚 but we can still ask if it has independent and stationary increments.
– Independence: Scratches generally occur when the cars are rented out to different drivers and driven on different 

roads at different times
– Stationary: Different cars have rental history of being driven under similar conditions.
– Assuming independent and stationary increments for 𝑁𝑁(𝑚𝑚) is equivalent to assuming iid for {𝑛𝑛1,𝑛𝑛2, … }.
– This highlights the similarity between stochastic processes and random vectors.

 A counting process {𝑁𝑁(𝑡𝑡): 𝑡𝑡 ≥ 0} is a 
continuous-time stochastic process with natural 
numbers as its state-space and 𝑁𝑁(𝑡𝑡) is the 
number of events that occur over interval (0, 𝑡𝑡].

– Start with N(0)=0 
– 𝑁𝑁(𝑡𝑡) is non-decreasing and right-continuous.
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 A counting process 𝑁𝑁(𝑡𝑡) is a Poisson process with rate 𝜆𝜆 if

i)     𝑁𝑁(0) = 0, 
ii)    𝑁𝑁(𝑡𝑡) has independent and stationary increments,

iii)   P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = exp −𝜆𝜆 𝑡𝑡 𝜆𝜆 𝑡𝑡 𝑛𝑛

𝑛𝑛!
.

 An alternative definition of the process is useful

 A function 𝑔𝑔 is said to be order of number ℎ and written as 𝑔𝑔 ∼ 𝑜𝑜(ℎ) if   lim
ℎ→0

𝑔𝑔 ℎ
ℎ

= 0.   
– An 𝑜𝑜(ℎ) function drops faster than the linear function ℎ as we get closer to 0. 

 Alternative definition of Poisson process, maintain properties i) and ii) but replace iii) with  
iii’a) P(𝑁𝑁(ℎ) = 1) = 𝜆𝜆ℎ + 𝑜𝑜(ℎ) and iii’b) P(𝑁𝑁(ℎ) = 0) = 1− 𝜆𝜆ℎ + 𝑜𝑜(ℎ).
– At most 1 event in a short interval with occurrence probability proportional to the length of interval

 Another alternative definition of Poisson process, maintain properties i) and ii) but replace iii) with  
iii’’) The interevent times are iid with 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(𝜆𝜆).

0
𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3

𝐸𝐸𝑖𝑖−1 𝐸𝐸𝑖𝑖

𝑋𝑋𝑖𝑖

Exponential interevent times 𝑋𝑋𝑖𝑖 = 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖−1 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(𝜆𝜆)

Gamma event times 𝐸𝐸𝑖𝑖 = ∑𝑗𝑗=1
𝑖𝑖 𝑋𝑋𝑗𝑗 ∼ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑖𝑖, 𝜆𝜆)

𝐸𝐸𝑛𝑛

𝑁𝑁 𝑡𝑡 ≥ 𝑛𝑛

𝐸𝐸𝑛𝑛 ≤ 𝑡𝑡

𝐸𝐸0
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iii) P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = exp −𝜆𝜆 𝑡𝑡 𝜆𝜆 𝑡𝑡 𝑛𝑛/n! ↔ 
iii’) P(𝑁𝑁(ℎ) = 1) = 𝜆𝜆ℎ + 𝑜𝑜(ℎ) & P(𝑁𝑁(ℎ) = 0) = 1 − 𝜆𝜆ℎ + 𝑜𝑜(ℎ)

iii) ⇒ iii’)

 P 𝑁𝑁 ℎ = 0 = exp −𝜆𝜆ℎ = 1 − 𝜆𝜆ℎ+ 𝜆𝜆ℎ 2

2!
− 𝜆𝜆ℎ 3

3!
… = 1− 𝜆𝜆ℎ + 𝑜𝑜(ℎ)

 P 𝑁𝑁 ℎ = 1 = exp −𝜆𝜆ℎ 𝜆𝜆ℎ = 𝜆𝜆ℎ+ − 𝜆𝜆ℎ 2 + 𝜆𝜆ℎ 3

2!
− 𝜆𝜆ℎ 4

3!
… = 𝜆𝜆ℎ+ 𝑜𝑜(ℎ)

iii’) ⇒ iii)
 Let 𝐸𝐸𝑖𝑖 𝑡𝑡 = P(𝑁𝑁 𝑡𝑡 = 𝑖𝑖)
 𝐸𝐸0(𝑡𝑡+ ℎ) = P(𝑁𝑁(𝑡𝑡) = 0,𝑁𝑁(𝑡𝑡 + ℎ)−𝑁𝑁(𝑡𝑡) = 0) = P(𝑁𝑁(𝑡𝑡) = 0)P(𝑁𝑁(ℎ) = 0) = 𝐸𝐸0 𝑡𝑡 𝐸𝐸0(ℎ) = 𝐸𝐸0(𝑡𝑡)(1− 𝜆𝜆ℎ+ 𝑜𝑜 ℎ ), 

which leads to 
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐸𝐸0 𝑡𝑡 = lim

ℎ→0

𝐸𝐸0(𝑡𝑡+ ℎ)− 𝐸𝐸0(𝑡𝑡)
ℎ

= −𝜆𝜆𝐸𝐸0 𝑡𝑡 + lim
ℎ→0

𝑜𝑜 ℎ
ℎ

= −𝜆𝜆𝐸𝐸0(𝑡𝑡)

– This differential equation has the solution of the form 𝐸𝐸0(𝑡𝑡) = 𝑐𝑐 exp(−𝜆𝜆𝑡𝑡). 
– Using the initial condition 𝐸𝐸0(0) = 1, we obtain 𝑐𝑐 = 1.  Hence, 𝐸𝐸0(𝑡𝑡) = exp(−𝜆𝜆𝑡𝑡).

 𝐸𝐸𝑖𝑖 𝑡𝑡+ ℎ = P 𝑁𝑁 𝑡𝑡 = 𝑖𝑖,𝑁𝑁 𝑡𝑡 + ℎ − 𝑁𝑁 𝑡𝑡 = 0 + P 𝑁𝑁 𝑡𝑡 = 𝑖𝑖 − 1,𝑁𝑁 𝑡𝑡 + ℎ − 𝑁𝑁 𝑡𝑡 = 1
+ P 𝑁𝑁 𝑡𝑡 = 𝑖𝑖 − 2,𝑁𝑁 𝑡𝑡+ ℎ −𝑁𝑁 𝑡𝑡 = 2 + P 𝑁𝑁 𝑡𝑡 = 𝑖𝑖 − 3,𝑁𝑁 𝑡𝑡+ ℎ −𝑁𝑁 𝑡𝑡 = 3 +⋯

= 𝐸𝐸𝑖𝑖 𝑡𝑡 1− 𝜆𝜆ℎ + 𝑜𝑜 ℎ + 𝐸𝐸𝑖𝑖−1 𝑡𝑡 𝜆𝜆ℎ+ 𝑜𝑜 ℎ + 𝑜𝑜 ℎ , which leads to, for 𝑖𝑖 ≥ 1,

𝑑𝑑
𝑑𝑑𝑡𝑡
𝐸𝐸𝑖𝑖 𝑡𝑡 + 𝜆𝜆𝐸𝐸𝑖𝑖 𝑡𝑡 = lim

ℎ→0

𝐸𝐸𝑖𝑖(𝑡𝑡+ ℎ) − 𝐸𝐸𝑖𝑖(𝑡𝑡)
ℎ

+ 𝜆𝜆𝐸𝐸𝑖𝑖 𝑡𝑡 = 𝜆𝜆𝐸𝐸𝑖𝑖−1 𝑡𝑡 + lim
ℎ→0

𝑜𝑜 ℎ
ℎ

= 𝜆𝜆𝐸𝐸𝑖𝑖−1(𝑡𝑡)

 What remains to show: this equation has the solution 𝐸𝐸𝑖𝑖(𝑡𝑡) = exp −𝜆𝜆𝑡𝑡 𝜆𝜆𝑡𝑡 𝑖𝑖/𝑖𝑖!. See the lecture notes.
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iii) P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = exp −𝜆𝜆 𝑡𝑡 𝜆𝜆 𝑡𝑡 𝑛𝑛/n! ↔ 
iii’’) The interevent times are iid with 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(𝜆𝜆)
 An algebraic equality used below: Differences of Gammas is Poisson 

P 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑛𝑛, 𝜆𝜆) ≤ 𝑡𝑡 = �
0

𝑡𝑡
𝑒𝑒−𝜆𝜆𝜆𝜆

𝜆𝜆𝑥𝑥 𝑛𝑛−1

𝑛𝑛 − 1 ! 𝜆𝜆𝑑𝑑𝑥𝑥 = 𝑒𝑒−𝜆𝜆𝑡𝑡
𝜆𝜆𝑡𝑡 𝑛𝑛

𝑛𝑛! + �
0

𝑡𝑡
𝑒𝑒−𝜆𝜆𝜆𝜆

𝜆𝜆𝑥𝑥 𝑛𝑛

𝑛𝑛! 𝜆𝜆𝑑𝑑𝑥𝑥

= P 𝑁𝑁(𝑡𝑡) = 𝑛𝑛 + P 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑛𝑛 + 1, 𝜆𝜆) ≤ 𝑡𝑡
It can be established via integration by parts; see lecture notes.

iii) ⇒ iii’’)
 P 𝐸𝐸1 > 𝑡𝑡 = P 𝑁𝑁 𝑡𝑡 = 0 = exp −𝜆𝜆𝑡𝑡 so 𝐸𝐸1 ∼ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(1,𝜆𝜆) and 𝑋𝑋1 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(𝜆𝜆)
 P 𝐸𝐸𝑛𝑛 > 𝑡𝑡 = P 𝑁𝑁 𝑡𝑡 ∈ {0,1, … , 𝑛𝑛 − 1} = ∑𝑖𝑖=0

𝑛𝑛−1P(𝑁𝑁(𝑡𝑡) = 𝑖𝑖)
= P 𝑁𝑁 𝑡𝑡 = 0 + ∑𝑖𝑖=1

𝑛𝑛−1P(𝑁𝑁(𝑡𝑡) = 𝑖𝑖)

= 𝑒𝑒−𝜆𝜆𝑡𝑡 +∑𝑖𝑖=1𝑛𝑛−1 ∫0
𝑡𝑡 𝑒𝑒−𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝑖𝑖−1

𝑖𝑖−1 !
𝜆𝜆𝑑𝑑𝑥𝑥 − ∫0

𝑡𝑡 𝑒𝑒−𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝑖𝑖

𝑖𝑖!
𝜆𝜆𝑑𝑑𝑥𝑥

= 𝑒𝑒−𝜆𝜆𝑡𝑡 + ∫0
𝑡𝑡 𝑒𝑒−𝜆𝜆𝜆𝜆 𝜆𝜆𝑑𝑑𝑥𝑥 − ∫0

𝑡𝑡 𝑒𝑒−𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝑛𝑛−1

𝑛𝑛−1 !
𝜆𝜆𝑑𝑑𝑥𝑥

= 1 − ∫0
𝑡𝑡 𝑒𝑒−𝜆𝜆𝜆𝜆 𝜆𝜆𝜆𝜆 𝑛𝑛−1

𝑛𝑛−1 !
𝜆𝜆𝑑𝑑𝑥𝑥 𝐸𝐸𝑛𝑛 ∼ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(𝑛𝑛, 𝜆𝜆) and 𝑋𝑋𝑛𝑛 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(𝜆𝜆)

iii’’) ⇒ iii)
 P(𝑁𝑁(𝑡𝑡) = 0) = P(𝑋𝑋1 > 𝑡𝑡) = 𝑒𝑒−𝜆𝜆𝑡𝑡 so 𝑁𝑁 𝑡𝑡 = 0 has the Poisson probability
 P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = P 𝑁𝑁 𝑡𝑡 ≥ 𝑛𝑛 − P 𝑁𝑁 𝑡𝑡 ≥ 𝑛𝑛 + 1

= P(𝐸𝐸𝑛𝑛 ≤ 𝑡𝑡) − P(𝐸𝐸𝑛𝑛+1 ≤ 𝑡𝑡)

= 𝑒𝑒−𝜆𝜆𝑡𝑡 𝜆𝜆𝑡𝑡 𝑛𝑛

𝑛𝑛! so 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 has Poisson probability

P 𝑁𝑁 𝑡𝑡 ≥ 𝑛𝑛 = P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 +P(𝑁𝑁 𝑡𝑡 ≥ 𝑛𝑛 + 1)
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 𝑁𝑁1(𝑡𝑡) is a the number of type 1 events; 𝑁𝑁2(𝑡𝑡) is a the number of type 2 events.  
 𝑁𝑁1 𝑡𝑡 +𝑁𝑁2 𝑡𝑡 = 𝑁𝑁(𝑡𝑡) and so  [𝑁𝑁1(𝑡𝑡) = 𝑛𝑛1 |𝑁𝑁(𝑡𝑡) = 𝑛𝑛] and [𝑁𝑁2(𝑡𝑡) = 𝑛𝑛2|𝑁𝑁(𝑡𝑡) = 𝑛𝑛] are dependent

– P 𝑁𝑁𝑖𝑖 𝑡𝑡 = 𝑛𝑛𝑖𝑖 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = P(𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛,𝐸𝐸𝑖𝑖 = 𝑛𝑛𝑖𝑖) for  𝑖𝑖 ∈ {1,2}
– Illustration of dependence 

» P 𝑁𝑁1 𝑡𝑡 = 𝑛𝑛1 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 P 𝑁𝑁2 𝑡𝑡 = 𝑛𝑛2 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = P(𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛,𝐸𝐸1 = 𝑛𝑛1)P(𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛,𝐸𝐸2 = 𝑛𝑛2)
» P 𝑁𝑁1 𝑡𝑡 = 𝑛𝑛1,𝑁𝑁2 𝑡𝑡 = 𝑛𝑛2 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = P 𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛,𝐸𝐸1 = 𝑛𝑛1 = P(𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛,𝐸𝐸2 = 𝑛𝑛2)

 Conditional random variables are dependent; unconditional ones can still be independent, in 2 steps:

1. Unconditional random variable 𝑁𝑁1 𝑡𝑡 ∼ 𝑃𝑃𝑜𝑜(𝜆𝜆𝐸𝐸1𝑡𝑡). Similarly 𝑁𝑁2 𝑡𝑡 ∼ 𝑃𝑃𝑜𝑜(𝜆𝜆𝐸𝐸2𝑡𝑡) .
– P 𝑁𝑁1 𝑡𝑡 = 𝑛𝑛1 = ∑𝑛𝑛=𝑛𝑛1

∞ P 𝑁𝑁1 𝑡𝑡 = 𝑛𝑛1 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = ∑𝑛𝑛=𝑛𝑛1
∞ P(𝐵𝐵𝑖𝑖𝑛𝑛 𝑛𝑛,𝐸𝐸1 = 𝑛𝑛1)P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛

= ∑𝑛𝑛=𝑛𝑛1
∞ 𝐶𝐶𝑛𝑛1

𝑛𝑛 𝐸𝐸1
𝑛𝑛1 𝐸𝐸2

𝑛𝑛−𝑛𝑛1𝑒𝑒−𝜆𝜆𝑡𝑡 𝜆𝜆𝑡𝑡 𝑛𝑛

𝑛𝑛!
= 𝑒𝑒−𝜆𝜆𝑝𝑝1𝑡𝑡 𝜆𝜆𝑝𝑝1𝑡𝑡 𝑛𝑛1

𝑛𝑛1 !
𝑒𝑒−𝜆𝜆𝑝𝑝2𝑡𝑡∑𝑛𝑛=𝑛𝑛1

∞ 1
(𝑛𝑛−𝑛𝑛1)!

𝐸𝐸2𝜆𝜆𝑡𝑡 𝑛𝑛−𝑛𝑛1 = 𝑒𝑒−𝜆𝜆𝑝𝑝1𝑡𝑡 𝜆𝜆𝑝𝑝1𝑡𝑡 𝑛𝑛1

𝑛𝑛1 !

2. Independence: 𝑁𝑁1 𝑡𝑡 ⊥ 𝑁𝑁2 𝑡𝑡
– P(𝑁𝑁1(𝑡𝑡) = 𝑛𝑛1, 𝑁𝑁2(𝑡𝑡) = 𝑛𝑛2) = P(𝑁𝑁1(𝑡𝑡) = 𝑛𝑛1, 𝑁𝑁2(𝑡𝑡) = 𝑛𝑛2|𝑁𝑁(𝑡𝑡) = 𝑛𝑛1 + 𝑛𝑛2) P(𝑁𝑁(𝑡𝑡) = 𝑛𝑛1 + 𝑛𝑛2)

= P 𝑁𝑁1 𝑡𝑡 = 𝑛𝑛1 𝑁𝑁 𝑡𝑡 = 𝑛𝑛1 + 𝑛𝑛2 P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛1 + 𝑛𝑛2 = 𝐶𝐶𝑛𝑛1
𝑛𝑛1+𝑛𝑛2 𝐸𝐸1

𝑛𝑛1 𝐸𝐸2
𝑛𝑛2𝑒𝑒−𝜆𝜆𝑡𝑡

𝜆𝜆𝑡𝑡 𝑛𝑛1+𝑛𝑛2

(𝑛𝑛1+ 𝑛𝑛2)!

= 𝑒𝑒−𝜆𝜆𝑝𝑝1𝑡𝑡
𝜆𝜆𝐸𝐸1𝑡𝑡 𝑛𝑛1

𝑛𝑛1!
𝑒𝑒−𝜆𝜆𝑝𝑝2𝑡𝑡

𝜆𝜆𝐸𝐸2𝑡𝑡 𝑛𝑛2

𝑛𝑛2!
= P 𝑁𝑁1 𝑡𝑡 = 𝑛𝑛1 P(𝑁𝑁2(𝑡𝑡) = 𝑛𝑛2)

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸𝑖𝑖−1 𝐸𝐸𝑖𝑖 𝐸𝐸𝑛𝑛

Some events are blue, some are green; with probabilities 𝐸𝐸1 , 𝐸𝐸2 and 𝐸𝐸1 + 𝐸𝐸2 = 1. All events occur according 
to Poisson process.  Occurrence of green or of blue events according to thinning of Poisson process. 

With probability 𝐸𝐸1

With probability 𝐸𝐸2
Poisson process
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 Ex: A graduate student is interested in Texas style horseback riding but does not have much money to spend on this. 
o The student enrolls in livingsocial.com's Dallas email list to receive a discount offer for horseback riding.  
o Livingsocial sends offers for other events such as piloting, karate lessons, gun carriage license training, etc. 
o Livingsocial includes 1 discount offer in every email and that offer can be for any one of the events listed above.  

What is the expected number of livingsocial emails that the student has to receive to find an offer for horseback riding?  
– Probability 𝐸𝐸1 is for each email to include a discount offer for horseback riding.  Let 𝑁𝑁1 be the index of the first 

email including a horseback riding offer.  Then P(𝑁𝑁1 = 𝑛𝑛1) = 𝐸𝐸1 1− 𝐸𝐸1 𝑛𝑛1−1,𝑁𝑁1 is a geometric random variable.

 Ex: Livingsocial sends offers for 5 types of events with probabilities 𝐸𝐸1 + 𝐸𝐸2 + 𝐸𝐸3 + 𝐸𝐸4 + 𝐸𝐸5 = 1.  What is the expected 
number of emails that the student has to receive to obtain a discount offer for each event type? 

– Let 𝑁𝑁𝑖𝑖 be the index of the first email including a discount offer for event type 𝑖𝑖.  
– A particular realization can have [𝑁𝑁1 = 3,𝑁𝑁2 = 7,𝑁𝑁3 = 1,𝑁𝑁4 = 2,𝑁𝑁5 = 5], 

» the 1st email has an offer for event 3, 
» the 2nd has an offer for event 4, 
» the 3rd has an offer for event 1, 
» the 4th and 6th must include offers for events 1, 3 and 4.  
» the 5th has an offer for event 5
» the 7th has an offer for event 2

– In this realization, the number of emails to endure to obtain an offer for each event is max{3, 7, 1, 2, 5} = 7. 
– In general,   

𝑁𝑁 = max{𝑁𝑁1,𝑁𝑁2,𝑁𝑁3,𝑁𝑁4,𝑁𝑁5} for dependent𝑁𝑁𝑖𝑖s
is the number emails to obtain an offer for each event.

– We want E(𝑁𝑁),  but 𝑁𝑁𝑖𝑖s are dependent even if they have marginal pmf’s that are geometric distributions.

– How to break the dependence?

3 4 1

25



ut
da

lla
s.edu /~m

etin
Page 11

Amount of Time until a Coupon for Each
Continuous-time Analog

 Suppose emails are sent at the rate of 1 per day. Number of emails 𝑁𝑁 𝑡𝑡 ∼ 𝑃𝑃𝑜𝑜(1𝑡𝑡) with interevent time 𝑌𝑌𝑖𝑖 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(1).
 𝑁𝑁𝑖𝑖 𝑡𝑡 is the number of coupons of type 𝑖𝑖 obtained by time 𝑡𝑡.  𝑁𝑁𝑖𝑖 𝑡𝑡 ∼ 𝑃𝑃𝑜𝑜(1𝐸𝐸𝑖𝑖𝑡𝑡)
 𝑁𝑁𝑖𝑖 𝑡𝑡 is obtained from 𝑁𝑁(𝑡𝑡) via thinning so 𝑵𝑵𝟏𝟏 ⊥ 𝑵𝑵𝟐𝟐 ⊥ ⋯ ⊥ 𝑵𝑵𝟓𝟓
 𝑋𝑋𝑖𝑖 is the interevent time for 𝑁𝑁𝑖𝑖 𝑡𝑡 process.  𝑋𝑋𝑖𝑖 ∼ 𝐸𝐸𝑥𝑥𝐸𝐸𝑜𝑜(1𝐸𝐸𝑖𝑖)

– 𝑋𝑋𝑖𝑖 is the time between two emails both containing coupon 𝑖𝑖
 Amount of time until a coupon for each event

𝑋𝑋 = max 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5 for 𝑿𝑿𝟏𝟏 ⊥ 𝑿𝑿𝟐𝟐 ⊥ ⋯ ⊥ 𝑿𝑿𝟓𝟓.
 Relating the number of emails to the time of the emails.  

– How many emails are received in 𝑋𝑋 amount of time?  How much time does it take to receive 𝑁𝑁 emails?
𝑁𝑁(𝑡𝑡 = 𝑋𝑋) or   𝑋𝑋 = ∑𝑖𝑖=1𝑁𝑁 𝑌𝑌𝑖𝑖

– Proceeding in either way: E 𝑁𝑁 𝑋𝑋 = 1E 𝑋𝑋 = E(𝑋𝑋) or  E 𝑋𝑋 = E 𝑌𝑌𝑖𝑖 E 𝑁𝑁 = 1E(𝑁𝑁),  so E 𝑁𝑁 = E 𝑋𝑋 .
 To finish, we need E 𝑋𝑋 . First equality is from independence,

P 𝑋𝑋 ≤ 𝑡𝑡 = �
𝑖𝑖=1

5

P 𝑋𝑋𝑖𝑖 ≤ 𝑡𝑡 =�
𝑖𝑖=1

5

1 − 𝑒𝑒−𝑝𝑝𝑖𝑖𝑡𝑡

E 𝑋𝑋 = ∫0
∞

P 𝑋𝑋≥ 𝑡𝑡 𝑑𝑑𝑡𝑡 = �
0

∞
1−�

𝑖𝑖=1

5

1− 𝑒𝑒−𝑝𝑝𝑖𝑖𝑡𝑡 𝑑𝑑𝑡𝑡

– For the number of event types approaching infinity, E 𝑋𝑋 → ∞.  For a single event type, E(𝑋𝑋) = 1.  

Discrete-time:
Number of emails
to obtain coupon 𝑖𝑖

Continuous-time:
Amount of time
to obtain coupon 𝑖𝑖

3 4 1

25

𝑋𝑋3 𝑋𝑋4𝑋𝑋1
𝑋𝑋5 𝑋𝑋2
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Distribution of Event Times 
Conditioned on Number of Events

 Recall from order statistics: {𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛} is an iid sequence, where 𝑋𝑋𝑖𝑖 ∼ 𝑓𝑓𝑋𝑋, and 𝑌𝑌𝑖𝑖 is the 𝑖𝑖th smallest element in the 
sequence.  The joint pdf of 𝑌𝑌 = [𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛] is, for 𝑦𝑦1 ≤ 𝑦𝑦2 ≤ ⋯ ≤ 𝑦𝑦𝑛𝑛,

𝑓𝑓𝑌𝑌(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛) = 𝑛𝑛!�
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑋𝑋(𝑦𝑦𝑖𝑖)

 Ex: What is the joint pdf of the order statistics vector 𝑌𝑌 if each of underlying random variable 𝑋𝑋𝑖𝑖 ∼ 𝐸𝐸(0,𝑡𝑡)? 
– The pdf of 𝑋𝑋𝑖𝑖 is 𝑓𝑓𝑋𝑋(𝑥𝑥) = 𝐼𝐼𝜆𝜆∈(0,𝑡𝑡] /𝑡𝑡.  Then the joint pdf of the order statistics vector 𝑌𝑌 is, for 0 < 𝑦𝑦1 < 𝑦𝑦2 < ⋯ < 𝑦𝑦𝑛𝑛 < 𝑡𝑡,

𝑓𝑓𝑌𝑌 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 = 𝑛𝑛!�
𝑖𝑖=1

𝑛𝑛
1
𝑡𝑡

=
𝑛𝑛!
𝑡𝑡𝑛𝑛

 Regardless of the rate of Poisson, the conditional joint pdf of ([𝐸𝐸1,𝐸𝐸2, … , 𝐸𝐸𝑛𝑛]|𝑁𝑁(𝑡𝑡) = 𝑛𝑛) is

𝑓𝑓[𝑆𝑆1 ,𝑆𝑆2 ,…,𝑆𝑆𝑛𝑛]|𝑁𝑁(𝑡𝑡)=𝑛𝑛 𝑠𝑠1,𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 =
𝑛𝑛!
𝑡𝑡𝑛𝑛

for 0 < 𝑠𝑠1 < ⋯ < 𝑠𝑠𝑛𝑛 < 𝑡𝑡.

– First note 
[𝐸𝐸1 = 𝑠𝑠1,𝐸𝐸2 = 𝑠𝑠2, … , 𝐸𝐸𝑛𝑛 = 𝑠𝑠𝑛𝑛,𝑁𝑁(𝑡𝑡) = 𝑛𝑛] iff [𝑋𝑋1 = 𝑠𝑠1,𝑋𝑋2 = 𝑠𝑠2 − 𝑠𝑠1, … ,𝑋𝑋𝑛𝑛 = 𝑠𝑠𝑛𝑛 − 𝑠𝑠𝑛𝑛−1,𝑋𝑋𝑛𝑛+1 ≥ 𝑡𝑡 − 𝑠𝑠𝑛𝑛].

– Hence,
𝑓𝑓𝑆𝑆1 ,𝑆𝑆2,…,𝑆𝑆𝑛𝑛 ,𝑁𝑁(𝑡𝑡) 𝑠𝑠1,𝑠𝑠2, … , 𝑠𝑠𝑛𝑛,𝑛𝑛 = 𝑓𝑓𝑋𝑋 𝑠𝑠1 𝑓𝑓𝑋𝑋 𝑠𝑠2− 𝑠𝑠1 … 𝑓𝑓𝑋𝑋 𝑠𝑠𝑛𝑛 − 𝑠𝑠𝑛𝑛−1 1−𝐹𝐹𝑋𝑋 𝑡𝑡− 𝑠𝑠𝑛𝑛

= 𝜆𝜆 𝑒𝑒−𝜆𝜆𝑠𝑠1𝜆𝜆𝑒𝑒−𝜆𝜆 𝑠𝑠2−𝑠𝑠1 …𝜆𝜆𝑒𝑒−𝜆𝜆 𝑠𝑠𝑛𝑛−𝑠𝑠𝑛𝑛−1 𝑒𝑒−𝜆𝜆 𝑡𝑡−𝑠𝑠𝑛𝑛 = 𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆𝑡𝑡.
– Then going forward mechanically

𝑓𝑓[𝑆𝑆1 ,𝑆𝑆2,…,𝑆𝑆𝑛𝑛]|𝑁𝑁(𝑡𝑡)=𝑛𝑛 𝑠𝑠1,𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 =
𝑓𝑓𝑆𝑆1 ,𝑆𝑆2 ,…,𝑆𝑆𝑛𝑛 ,𝑁𝑁 𝑡𝑡 𝑠𝑠1,𝑠𝑠2, … , 𝑠𝑠𝑛𝑛,𝑛𝑛

P 𝑁𝑁 𝑡𝑡 = 𝑛𝑛
=

𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆𝑡𝑡

(𝜆𝜆𝑡𝑡)𝑛𝑛𝑒𝑒−𝜆𝜆𝑡𝑡/𝑛𝑛!
=
𝑛𝑛!
𝑡𝑡𝑛𝑛

.

 From the last two examples, the conditional joint pdf of ([𝐸𝐸1,𝐸𝐸2, … , 𝐸𝐸𝑛𝑛]|𝑁𝑁(𝑡𝑡) = 𝑛𝑛) and the pdf of order statistics 
[𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑛𝑛] with an underlying iid 𝑋𝑋𝑖𝑖 ∼ 𝐸𝐸𝑖𝑖(0,𝑡𝑡] have the same distribution. 

𝐸𝐸𝑖𝑖 𝑁𝑁 𝑡𝑡 = 𝑛𝑛 = 𝑌𝑌𝑖𝑖(𝐸𝐸1(0, 𝑡𝑡], … ,𝐸𝐸𝑛𝑛(0, 𝑡𝑡]) in distribution
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 Ex:  A DART bus departs from UTD to grocery markets every 𝑇𝑇 minutes.  
o Passengers arrive according to Poisson process 𝑁𝑁(𝑡𝑡) with rate 𝜆𝜆 and wait for the departure.
o E.g.,, the 𝑖𝑖th passenger that arrives over (0,𝑡𝑡] arrives at 𝐸𝐸𝑖𝑖 and waits for 𝑇𝑇 − 𝐸𝐸𝑖𝑖.  
o The expected total waiting time is

E �
𝑖𝑖=1

𝑁𝑁 𝑇𝑇

𝑇𝑇 − 𝐸𝐸𝑖𝑖 = E E �
𝑖𝑖=1

𝑁𝑁 𝑇𝑇

𝑇𝑇 − 𝐸𝐸𝑖𝑖 |𝑁𝑁 𝑇𝑇 = 𝑛𝑛 = �
𝑛𝑛=0

∞

E �
𝑖𝑖=1

𝑁𝑁 𝑇𝑇

𝑇𝑇 − 𝐸𝐸𝑖𝑖 |𝑁𝑁 𝑇𝑇 = 𝑛𝑛
(𝜆𝜆𝑇𝑇)𝑛𝑛𝑒𝑒−𝜆𝜆𝑇𝑇

𝑛𝑛!

= �
𝑛𝑛=0

∞

E �
𝑖𝑖=1

𝑛𝑛

𝑇𝑇 − 𝑌𝑌𝑖𝑖 𝐸𝐸1 0, 𝑇𝑇 , … ,𝐸𝐸𝑛𝑛 0,𝑇𝑇 P 𝑁𝑁 𝑇𝑇 = 𝑛𝑛

= �
𝑛𝑛=0

∞

�
𝑖𝑖=1

𝑛𝑛

E 𝑇𝑇 − 𝑌𝑌𝑖𝑖 (𝐸𝐸1(0, 𝑇𝑇], … ,𝐸𝐸𝑛𝑛(0,𝑇𝑇]) P(𝑁𝑁 𝑇𝑇 = 𝑛𝑛)

= �
𝑛𝑛=0

∞

𝑛𝑛𝑇𝑇 − E �
𝑖𝑖=1

𝑛𝑛

𝑌𝑌𝑖𝑖 𝐸𝐸1 0, 𝑇𝑇 , … ,𝐸𝐸𝑛𝑛 0, 𝑇𝑇 P(𝑁𝑁 𝑇𝑇 = 𝑛𝑛)

= �
𝑛𝑛=0

∞

𝑛𝑛𝑇𝑇 − 𝑛𝑛
𝑇𝑇
2 P 𝑁𝑁 𝑇𝑇 = 𝑛𝑛 =

1
2 𝑇𝑇𝑇 𝑁𝑁 𝑇𝑇 =

𝟏𝟏
𝟐𝟐 𝑻𝑻𝑻𝑻𝑻𝑻

𝜆𝜆𝑇𝑇

𝑇𝑇

Arrival time 
𝐸𝐸𝑖𝑖|𝑁𝑁(𝑡𝑡) = 𝑌𝑌𝑖𝑖(𝐸𝐸1(0,𝑇𝑇], … ,𝐸𝐸𝑛𝑛(0,𝑇𝑇])

Waiting time

Area of the triangle
is the expected total

waiting time 

Sum of order statistics = Sum of sample

E �
𝑖𝑖=1

𝑛𝑛

𝑌𝑌𝑖𝑖 = E �
𝑖𝑖=1

𝑛𝑛

𝐸𝐸𝑖𝑖

= 𝑛𝑛𝑇 𝐸𝐸𝑖𝑖 = 𝑛𝑛
𝑇𝑇
2
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Number of calls arriving to a call center
in 15 minute time intervals

Generalizations

 Nonhomogeneous Poisson process.
– Non-stationary Stationary Increments
– Time dependent event rate 𝜆𝜆(𝑥𝑥) at time 𝑥𝑥
– The expected number of events over (0,𝑡𝑡] is  

�
0

𝑡𝑡
𝜆𝜆 𝑥𝑥 𝑑𝑑𝑥𝑥

– The number of events during (0,𝑡𝑡] has 

𝑃𝑃𝑜𝑜 �
0

𝑡𝑡
𝜆𝜆 𝑥𝑥 𝑑𝑑𝑥𝑥

– Independent increments?
– To model varying traffic intensity

 Compound Poisson process: A Poisson process 𝑁𝑁(𝑡𝑡) and an iid sequence {𝑌𝑌𝑖𝑖} can be 
combined to obtain the compound Poisson process:

𝑋𝑋(𝑡𝑡) = �
𝑖𝑖=1

𝑁𝑁 𝑡𝑡

𝑌𝑌𝑖𝑖

– Independent increments?
– To model batch arrivals of customers to a store (or buying multiple units at once)

Early
morning

Early
evening
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