
Theory of Aerospace Propulsion: Solutions Manual 

E7. TURBOMACHINERY  

 

 

E7.1 An axial flow compressor for a jet engine is operating on a test stand under standard 

sea level atmospheric conditions. The pressure ratio provided by the compressor is p3 

/p1=10 and it processes a mass flow rate of 45.3kg/s. The dimensions of the compressor 

are shown in Figure E7.1. Assuming that all processes are isentropic determine (a) the 

force F experienced by the load cell on the test stand, (b) the power P required to drive 

the compressor, and (c) the temperature leaving the compressor T3. 

 

1    2        3

33cm 

Test stand 

Load cell 

25.4cm 38.1cm 

 
 

Figure E7.1 Schematic diagram of axial flow compressor on test stand 

 

Solution 

(a) The areas A1= πr1
2 = 0.456m2 and A3 = π(r3a

2-r3,b
2) = 0.139m2. Sea level 1976 U.S. 

Standard Atmosphere has p0 = 101.3kPa, T0 = 288K. For isentropic flow p/p0 = 

(ρ /ρ0)γ  = (Τ /Τ0)γ/(γ−1) 

 

Mass flow: ρAV= 45.3kg/s = constant. The mass flow entering station 1 is then 
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The flow throughout the system is isentropic so we may rewrite Equation (E7.1) as 
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The velocity at station 1 is then V1=83.5m/s and likewise, the velocity at station 3 is 
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Applying the conservation of momentum to the fluid in a control volume between 

stations 1 and 3 yields  

 ( )1 1 1 1 3 3 3 3 0p A m V F p A m V+ − + − + =& &  

Then solving for F yields 
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This force on the fluid is acting to the right so the force on the load cell is Fcell=109.6kN 

to the left; therefore it is a thrust force. 

 

(b) The energy equation for adiabatic flow through the compressor is 
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The power added to the fluid is then 
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Using the mass flow from Equation (E7.1) we find P = 11.82MW 

 

(c) The temperature after isentropic compression is 
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Thus T3=550K      

 

 

E7.2 A turbojet engine is operated under standard sea level conditions and the following 

measurements are made at the compressor exit: stagnation temperature equals 216C and 

stagnation pressure equals 482kPa. The airflow through the compressor is determined to 

be 27.2kg/s. Determine: (a) the work input required per unit mass of air, (b) the power 

required, (c) the adiabatic compression efficiency of the compressor, and (d) the torque 

exerted on the fluid at a rotational speed of 12,000rpm. 

 

Solution 

(a) The engine is being run up on the ground so M0=0 and therefore pt,2=101.3kPa and 

Tt,2=288K. Assuming a constant specific heat for air, cp=1.0kJ/kg-K, the work required 

by the compressor is 

 Wc=cp(Tt,3 – Tt,2)=(1.0kJ/kg-K)(489K – 288K)=201kJ/kg 

 

(b) The power required is  

 = 27.2kg/s(201kJ/kg) = 5.47MW cP mW= &

 

(c) Assuming that for standard sea level air γ =1.4 the adiabatic efficiency of compression 

is  

ηc = [(pt,3/pt,2)(k-1)/k – 1][(Tt,3/Tt,2) – 1]-1 = [(482/101.3)2/7 – 1][(489/288) – 1]-1 = 0.805 

(d) The torque exerted on the fluid is 

 Tq = P /ω = (5.47x106N-m/s)/[2π(12000rpm)/60s-1] = 4.35kN-m 
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E7.3 A compressor operates with a stagnation pressure ratio of 4 and an inlet stagnation 

temperature of 5C. If the exit stagnation temperature is 171C, what is the adiabatic 

efficiency of compression? 

 

Solution 

Assuming a constant value for γ =1.4, the adiabatic efficiency of compression may be 

written as 

ηc = [(pt,3/pt,2)(k-1)/k – 1][(Tt,3/Tt,2) – 1]-1 = [(4)2/7 – 1][(444/278) – 1]-1 = 0.814 

 

 

 

E7.4 Axial flow compressors are characterized by flow passages whose radial 

coordinates change little over the length of the machine while centrifugal compressors 

have blade passages that start near the axis of rotation and increase substantially in radius 

by the time the exit of the machine is reached. Some idea of the difference is afforded by 

the accompanying photograph from NASA in the text showing examples of two such 

machines side by side. Consider standard sea level air entering a centrifugal flow 

compressor with the following conditions: r2 =6in, c2 = 300ft/s, and α2 =70o. The air 

leaves the rotor with r3 =18in, c3 =1200ft/s, and α3 =25o. The rotational speed of the 

compressor is 9000rpm and it processes 32.2lb/s of air. Carry out the following: (a) draw 

the combined entrance and exit velocity diagrams to scale, (b) determine the entrance and 

exit blade angles β2 and β3, (c) determine the torque required to drive the compressor, (d) 

determine the horsepower required, (e) find the ideal pressure head, (f) determine the 

contribution to the pressure rise provided by the external, internal, and centrifugal effects, 

(g) determine the whirl velocity Δcu, (h) determine the ideal pressure ratio of the 

compressor  

 

Solution 

(a)The velocity triangles for the centrifugal compressor are shown in Figure E7.2. 
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β2=37o 

α3=25o β3=57o

c2=300ft/s 
α2=70o

w3=600ft/s 
u2=471ft/s

w2=470ft/s c3=1200ft/s 

u3=1413ft/s 

 
 Figure E7.2 Velocity diagrams for the centrifugal compressor of exercise E7.4 

 

(b) From the diagram we can find c2,a = c2sinα2 = (300ft/s)sin70 = 281.9ft/s and c3,a = 

c3sinα3 = (1200ft/s)sin25 = 507.1ft/s.  

 

Similarly, c2,u = c2cosα2 = (300ft/s)cos70 = 102.6ft/s and c3,u = c3cosα2 = (1200ft/s)cos25 

= 1088ft/s.  

 

Now u2 = (2πN/60)r2 = (942.5s-1)(0.5ft) = 471.2ft/s and u3 = (2πN/60)r3 = (942.5s-1)(1.5ft) 

=1414ft/s. 

 

The relative speeds are  

w2=[(u2-c2,u)2+c2,a
2]1/2=[(471.2-102.6)2+281.92]=464.0ft/s and  

w3=[(u3-c3,u)2+c3,a
2]1/2=[(1414-1088)2+507.12]=602.8ft/s 

 

The rotor blade angles are  

β2 = arcsin(c2,a/w2) = arcsin(281.9/464) = 37.41o and  

β3 = arcsin(c3,a/w3) = arcsin(507.1/602.8) = 57.27o 

 

(c)The required torque Tq = m (r3c3,u-r2c2,u) = [(32.2lb/s)/(32.2ft/s2)][(1.5ft)(1088ft/s)-

(0.5ft)(102.6ft/s)] = 1581ft-lbs 

&

 

(d) The horsepower required is P = Tqω = (1581ft-lbs)(942.5s-1)/(550ft-lb/s/hp) = 2709hp 

 125

© 2011 Elsevier Inc. All rights reserved.  



Theory of Aerospace Propulsion: Solutions Manual 

  

(e)The ideal pressure head is the work done per unit weight of working fluid and is given 

by Wc = (1/2g)[(c3
2-c2

2)+ (u3
2-u2

2)+ (w2
2-w3

2)] = (1/32.2ft/s2)[(135.0x104+177.7x104-

14.87x104)ft2/s2] = 46,250ft-lb/lb (=24.09psia for air at standard conditions) 

 

(f)Pressure head due to external effect = (1/2g)(c3
2-c2

2) = 20,960ft; internal effect = 

(1/2g)(w2
2-w3

2) = -2,309ft; centrifugal effect = (1/2g)(u3
2-u2

2) = 27,590ft 

 

(g)Whirl velocity Δcu=c3,u – c2,u = 1088-102.6 = 985.4ft/s 

 

(h) Ideal pressure ratio pt,3/pt,2 = [(ηcWc/cpTt,2)+1]γ/(γ−1)  

pt,3/pt,2 = [{(1)(46250ft)/(0.24Btu/lb-R)(778ft-lb/Btu*535R)}+1]7/2 = 3.78   

(Note: Tt2=T2+c2
2/2cp) 

 

 

 

E7.5 Repeat problem 4, changing only the entrance radius to r2=r3=18in, so that the 

machine now acts as an axial flow compressor. 

 

Solution 

(a) The velocity triangles for the axial compressor are shown below 

            

            

            

            

            

            

            

  

α3=25o β3=57o

c2=300ft/s 
α2=70o 

β2=12.2o 
u2=1413ft/s w3=600ft/s 

w2=1340ft/s c3=1200ft/s 

u3=1413ft/s 

 Figure E7.3 Velocity diagram for the axial compressor of exercise E7.5 
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(b) From the diagram we can find c2,a = c2sinα2 = (300ft/s)sin70 = 281.9ft/s and c3,a = 

c3sinα3 = (1200ft/s)sin25 = 507.1ft/s.  

 

Similarly, c2,u = c2cosα2 = (300ft/s)cos70 = 102.6ft/s and c3 u = c3cosα2 = (1200ft/s)cos25 

= 1088ft/s.  

 

Now u2 = (2πN/60)r2 = (942.5s-1)(1.5ft) = 1414ft/s and u3 = (2πN/60)r3 = (942.5s-1)(1.5ft) 

= 1414ft/s. 

 

The relative speeds are  

w2 = [(u2-c2,u)2+c2,a
2]1/2 = [(1414-102.6)2+281.92]1/2 =1341ft/s and  

w3 = [(u3-c3,u)2+c3,a
2]1/2 = [(1414-1088)2+507.12]1/2 = 602.8ft/s 

 

The rotor blade angles are  

β2 = arcsin(c2,a/w2) = arcsin(281.9/1341) = 12.14o and  

β3 = arcsin(c3,a/w3) = arcsin(507.1/602.8) = 57.27o 

 

(c)The required torque Tq = m (r3c3,u-r2c2,u) = [(32.2lb/s)/(32.2ft/s2)][(1.5ft)(1088ft/s)-

(1.5ft)(102.6ft/s)] =1478ft-lbs 

&

 

(d) The horsepower required is P = Tqω = (1478ft-lbs)(942.5s-1)/(550ft-lb/s/hp) = 2533hp 

 

(e) The ideal pressure head is the work done per unit weight of working fluid and is given 

by Wc = (1/2g)[(c3
2-c2

2)+ (u3
2-u2

2)+ (w2
2-w3

2)] = (1/32.2ft/s2)[(135.0x104+0 +143.5x104) 

ft2/s2  = 43,240ft-lb/lb (=22.52psia for air at standard temperature and pressure) 

 

(f) Pressure head due to external effect = (1/2g)(c3
2-c2

2) = 20,960ft; internal effect = 

(1/2g)(w2
2-w3

2) = 22,280ft; centrifugal effect = (1/2g)(u3
2-u2

2) = 0 ft 

 

(g) Whirl velocity Δcu = c3,u – c2,u = 1088-102.6 = 985.4ft/s 
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(h) Ideal pressure ratio pt,3/pt,2 = [(ηcWc/cpTt,2)+1]γ/(γ−1) = [{(1)(43240ft)/(0.24Btu/lb-

R)(778ft-lb/Btu)(535R)}+1]7/2 = 3.52  (Note: Tt2=T2+c2
2/2cp) 

 

 

 

E6. A compressor rotor like that in Figure E7.4 is operated at 10,000rpm on a test stand 

where the atmospheric conditions are those of a standard sea level day. The compressor 

has an axial inlet with a hub diameter of 13.35cm and an eye diameter of 25.40cm. The 

compressor has a radial exhaust and the rotor tip diameter is 50.80cm. If the average inlet 

Mach number is 0.7 determine: (a) the mass flow through the compressor, (b) the power 

required to drive the compressor, (c) the total temperature at the compressor exit, (d) the 

portion of the required power due to the centrifugal effect, (e) the overall pressure ratio of 

the machine, if the adiabatic efficiency of compression ηc=85%.  

 

Solution                    

(a) The mass flow through the compressor (ρAca)2. The Mach number at the inlet is 

M2=0.7 so c2a=a2M2=0.7(γRT2)1/2=0.7(1.4)(287m2/s2-K)(T2)1/2.  

 1. The compressor is operating on a laboratory test stand so the stagnation 

 pressure and temperature entering the compressor assumes its standard sea 

 level values. Thus T2 = Tt,2[1+0.5(k-1)M2
2] and thus T2 = Tt,2[1+0.5(γ -1)M2

2]-1 = 

 (289K)[1+0.2(0.49)]-1 and T2 = 263K.  

 Similarly p2 = pt,2[1+0.5(γ -1)M2
2

)u

]-γ/(γ-1) = (101kPa)(0.721) = 72.8kPa 

 2. Then c2a = 0.7(1.4)(287m2/s2-K)(263K)1/2 = 227m/s 

 3. The density is obtained from the equation of state ρ = p/RT so that   

 ρ2 = (72,800N/m2)/(287 m2/s2-K)(263K) = 0.964kg/m3 

 4. The flow area is A2 = π(reye
2 – rhub

2) = 3.14[(25.4cm2)-(13.35cm2)]10-4/4 = 

 0.0366m2 

Then the mass flow is = 0.964kg/m3(0.0366m2)(227m/s) =8.01kg/s m&

 
(b) The power required is . However, c2u=0 because the flow enters 

the compressor axially and u3 =c3u because the flow leaves the impeller radially. The 

( 3 3 2 2uP m u c u c= −&
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linear speed of rotation at the exit is u3 = (2πN/60) r3 = 

(2)(3.14)(10,000/60)[(0.5)(0.508m)] = 265m/s. Therefore the power = 

(8.01kg/s) (265m/s)2 = 563kW 

2
3P mu= &

 

 ueye  uhub 

α2,eye     α2hub 

Blade leading edge 
twists radially from 
α2hub to α2eye 

Axial entry 

Since w3 is radial, c3u = u3  
u3 c3 

w3=w3r 

c2r 

c2r 

w2eye 

       w2eye       
        w2hub 

w2hub 

c2= c2r 

 
 Figure E7.4 Centrifugal compressor showing hub and eye details 

 

(c) The stagnation temperature at the exit may be found from Wc=cp(Tt,3 – Tt,2) or  

Tt,3=Tt,2+Wc/cp = 289K+(563,000N-m/s)[(8.01kg/s)(1000N-m/kg-K)]-1. 

Then Tt,3 = 289K+70.3K = 359K. 

 

(d) At the exit u3= 265m/s as already calculated. At the eye station of the exit u2 = 

(2πN/60)r2 = (2)(3.14)(10,000/60)[(0.5)(0.254m)] =133m/s. The linear speed of rotation 

decreases as the hub is approached so we’ll use the eye value just calculated to give a 

conservative estimate of the fraction of the power arising from the centrifugal effect. 

Then  
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( )

2 2

2 2
3 2
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(e) The pressure ratio of the machine is pt,3/pt,2={1+ηc[(Tt,3/Tt,2) -1]}γ/(γ-1) 

     pt,3/pt,2 = {1+0.85[(359/289) -1]}7/2 =1.93 

  

 

 

E7. Carry out exercise E7.6 for the case where instead of the engine being operated on a 

test stand it is operating in an aircraft flying at M0=0.7 at sea level where the atmospheric 

conditions are those of a standard day. 

 

Solution 

(a) The mass flow through the compressor is (ρAca)2. The Mach number at the inlet is M2 

= 0.7 so c2a = a2M2 = 0.7(γRT2)1/2 = 0.7[(1.4)(287m2/s2-K)(T2)]1/2.  

 (i)The compressor is operating in flight so the static pressure and the static 

temperature entering the compressor assume their standard sea level values. Thus T2 = 

288K and p2 =101.3kPa. At M2 = 0.7, Tt,2 = 316K and pt,2 =140kPa  

 (ii) Then c2a=0.7[(1.4)(287m2/s2-K)(288K)]1/2=238m/s and a=340m/s 

 (iii) The density is the standard sea level value ρ2=1.225kg/m3 

 (iv) The flow area is A2 = π(reye
2-rhub

2) = 3.14[(25.4cm2)-(13.35cm2)]10-4/4 = 

0.0366m2 

Then the mass flow is 1.225kg/m3(0.0366m2)(238m/s) =10.7kg/s 

 

(b) The power required is . However, c2u=0 because the flow enters 

the compressor axially and u3 =c3u because the flow leaves the impeller radially. The 

linear speed of rotation at the exit is u3 = (2πN/60)r3  = 

(2)(3.14)(10,000/60)[0.5)(0.508m)] = 265m/s. Therefore the power = (10.7kg/s) 

(265m/s)2 = 571kW 

( 3 3 2 2uP m u c u c= −& )u

2
3P mu= &
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(c) The stagnation temperature at the exit may be found from Wc = cp(Tt,3 – Tt,2) or  

Tt,3 = Tt,2+Wc/cp = 316K+(751,000N-m/s)[(10.7kg/s)(1000N-m/kg-K)]-1. 

Then Tt,3 = 316K+70.2K =386K. 

 

 (d) At the exit u3= 265m/s as already calculated. At the eye station of the exit u2 = 

(2πN/60)r2 = (2)(3.14)(10,000/60)[(0.5)(0.254m)] =133m/s. The linear speed of rotation 

decreases as the hub is approached so we’ll use the eye value just calculated to give a 

conservative estimate of the fraction of the power arising from the centrifugal effect. 

Then  

 
( )

2 2

2 2
3 2

11 10.7 265 133
22 0.374
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centrifugal

kg m m
m u u s s sP

kJP P
s
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&

 

 

(e) The pressure ratio of the machine is pt,3/pt,2={1+ηc[(Tt,3/Tt,2) -1]}γ/(γ-1) 

pt,3/pt,2={1+0.85[(386/316) -1]}7/2=1.83 

 

 

 

8. A radial bladed centrifugal compressor designed with zero pre-whirl (axial entry) for a 

turbojet engine is shown in Figure E7.5 and has the following data: 

 Slip angle =14o    

Impeller tip radius = 26.3cm  

 Impeller eye radius = 15cm  

 Impeller hub radius = 7cm  

 Impeller tip width = 4.4cm  

 Number of vanes = 29 

 Diffuser inner radius = 30.5cm  

 Diffuser outer radius = 40.6cm  

 N =16,750rpm 
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The compressor operates with an axial inlet Mach number of 0.8 at maximum rpm at the 

impeller inlet as the aircraft moves through the atmosphere at standard sea level 

conditions. 

          

 

Impeller wheel 

Eye  

40.6 
30.5 

15 
7 

26.3 

4.4 

Diffuser 

Hub  

Impeller shroud 

Figure E7.5 Schematic diagram of impeller wheel 

 

 (a) Determine the linear speed of rotation at the impeller tip, eye, and hub 

 (b) Determine the inlet flow area allowing for 5% blockage by vane thickness 

 (c) Sketch the inlet blade design showing proper diameters and blade angles at the 

hub, eye, and at the station midway between the two. 

 (d) Calculate the airflow rate 

 (e) If τ = 0.94 draw the exit velocity diagram to scale and indicate all magnitudes 

 (f) If ηc= 80% determine p3, pt,3, T3, and Tt,3 

 (g) What is the entrance angle for the fixed diffuser vanes? (Note that angular 

momentum of the fluid is conserved in the annulus between the impeller tip and the 

diffuser entrance 

 (h) What is the diffuser entrance Mach number? 

 (i) What is the pressure ratio of the compressor pt,3/pt,2? 

 (j) What is the torque and power required to drive the impeller? 
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Solution  

(a) The linear speed of rotation u = ωr = 2πNr/60 =1754r, therefore 

 utip= 461m/s ueye= 263m/s uhub=123m/s 

 

(b) The flow area A2 = π(reye
2 – rhub

2) – Ablades. Thus A2 = 0.0525m2 

 

(c) Blade design is shown in Figure E7.7. For clarity the velocity diagram for the point 

midway between the hub and eye is omitted. It should be clear how to construct it. Note 

that c2a=M2aa =0.8[1.4(287m2/s2-K)(288K)]1/2 = 272m/s 

eye 

hub 

c2a=272m/s 

βeye=46.0o βhub=65.7oβ3=30.5o 

 
 Figure E7.7 Blade angles at hub, eye, and tip 

 

(d) Airflow rate = ρc2aA2 = (1.23kg/m3)(272m/s)(0.0525m2) = 17.6kg/s 

 

(e) The slip coefficient τ = c3u/u3 = 0.94. From part (a) u3 = 461m/s so c3u = 433m/s. The 

velocity diagram appears in Figure E7.8. The velocity triangle yields [w3r / (u3-c3u)] = 

tan76o = 4.01 and u3-c3u = u3-0.94 u3 = 0.06 u3. Therefore w3r = 0.06(461m/s)(4.01) = 

111m/s and c3 = [cu
2+wr

2]1/2 = 447m/s. Then w3 = w3r/sin76o = 114m/s 
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u3=461m/s 
c3u=433m/s 

c3r=111m/s 
w3=114m/s 

c3=447m/s 

α3=14.4o 
14o 

    0             100           200           300          400          500    (m/s) 

 
  Figure E7.8 Velocity diagram for τ = 0.94 

 

(f) The work done per unit mass  

 ( )3 3 2 2c uW m u c u c= −& u  
 

Because the flow enters the compressor axially, c2u=0 and Wc= (u3c3u) = 

(461m/s)(433m/s) = 200,000m2/s2. But the work per unit mass is also given by Wc = 

cp(Tt,3 – Tt,2) = (1kg/kJ-K)(Tt,3 – Tt,2). Since the compressor is moving through the air at 

M0=0.8, Tt,2 = T2[1+0.5(γ − 1)M0
2] = 288K[(1+0.2(0.64)], so Tt,2=325K. Then Tt,3 = 

[(2x105m2/s2)/(1000J/kg-K)]+325K and Tt,3=525K.  

 

The total pressure ratio is given by pt,3/pt,2 ={1+ηc[(Tt,3/Tt,2) -1]}γ/(γ-1) so that  pt,3/pt,2 = 

{1+0.8[(525/325) -1]}7/2 = 4.06. The stagnation pressure entering the compressor is pt,2 = 

p2[1+0.5(γ –1)M2
2] γ/(γ-1) = (101kPa)[1+(0.2)(0.64]7/2 = (101kPa)(1.52), so pt,2=154kPa and 

thus pt,3=625kPa.  

 

The static temperature may be found from the adiabatic energy equation for a streamline 

leaving the compressor: cpT3+c3
2/2 = cpTt,3. Then T3= 525K- (447m/s)2/(2)(103J/kg-K) 

and T3=425K. Therefore the sound speed a3 = (γRT3)1/2 = [1.40(287m2/s2-K)(425K)1/2 = 

413m/s. The Mach number M3 = c3/a3 = (447m/s)/(413m/s) =1.08. Then the static 

pressure is given by p3 = pt,3[1+0.5(γ –1)M3
2]-γ/(γ-1) = (625kPa)[1+0.2 (1.08)2]-7/2 and p3 = 
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299kPa. For reference, the density ρ3 = p3/RT3 = (299,000N/m2)/(287J/kg-K)(425K) and 

ρ3 = 2.45kg/m3. 

 

(g) The flow leaves the impeller with angular momentum per unit mass of r3c3u = 

(0.263m)(433m/s) = 114m2/s. Since no work is done on the fluid as it proceeds to the 

diffuser entrance, the angular momentum per unit mass remains constant and the 

tangential component of absolute velocity at the diffuser entrance is cu,ent=c3u(r3/rent). This 

becomes cu,ent = (433m/s)(0.263m/0.305m) =373m/s. The conservation of mass requires 

that (ρAcr)3 = (ρAcr)ent and  

 cr,ent = cr3(2πhr3/2πhrent)(ρ3/ρent) = 111m/s(26.3m/30.5m) (ρ3/ρent).  

Thus cr,ent=95.7m/s(ρ3/ρent), assuming that the height of the passage, h, is constant across 

the gap. We know that cent
2 = cu,ent

2[1+( cr,ent/ cu,ent)2] = cu,ent
2[1+0.0658(ρ3/ρent)]. Since we 

expect the density to change little across the gap, and the ratio of radial to tangential 

absolute velocity is small, a reasonable approximation is the density is constant and cent 

~1.03 cu,ent =1.03(373m/s)=384m/s. There is essentially no difference in the diffuser blade 

angle (keeping accuracy of 3 significant figures), as can be seen in the results shown in 

Figure E7.9. 

 

    0             100           200           300          400           500    (m/s) 

u3=461m/s 
c3u=433m/s 

14o 
w3=114m/s 

c3=447m/s 

Diffuser entrance 

α3=14.4o 

cent=384m/s 

αent=14.4o

c3u,ent =373m/s 

cr,ent~95.7m/s 

Impeller exit 

 
 Figure E7.9 Velocity diagram for impeller exit and diffuser entrance 
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(h) The energy equation across the gap, assuming cp = constant, is cpT3+ c3
2/2 = cpTent+ 

cent
2/2 so that Tent = T3 + (c3

2 - cent
2)/2cp = 425K+(4472-3842)/2(1030m2/s2-K) and Tent = 

450K and the speed of sound is aent = [1.4(287m2/s2-K)(450K)]1/2 = 425m/s. The Mach 

number entering the diffuser is thus Ment = cent / aent = 384m/s/425m/s, or Ment = 0.904. 

 

(i) The pressure ratio across the machine is pt,3/pt,2 since there is assumed to be no friction 

in the diffuser. From part (f) pt,3/pt,2=625kPa/154kPa = 4.06. 

 

(j) The power is = (17.7kg/s)(461m/s)(433m/s) = 3.53MW and the torque is 

Tq = P/ω = (3.53x106N-m/s)/[2π(16,750)/60s-1] = 20.12kN-m 

3 3uP mu c= &

 

(k) The mass flow at the gap is ρ3(0.95)(2πr3h)c3r =17.6kg/s so the gap height h = 

0.0412m = 4.12cm 

 

 

 

 

E7.9 Redo exercise E7.8 at a reduced rotational speed N=6,750rpm. Discuss the major 

differences between the two cases. 

 

Solution 

(a) The linear speed of rotation u=ωr=2πNr/60=707r, therefore 
 utip=185m/s ueye=106m/s uhub=49.5m/s 
 
(b) The flow area A2=π(reye

2-rhub
2)-Ablades. Thus A2=0.0525m2  

 
 
(c) Blade design is shown in Figure E7.10. For clarity the velocity diagram for the point 

midway between the hub and eye is omitted. It should be clear how to construct it. Note 

that c2a=M2aa =0.8[1.4(287m2/s2-K)(288K)]1/2 = 272m/s 
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eye 

hub 

c2a=272m/s 

βeye=68.8o 

βhub=79.7o 

β3=55.8o 

 
 
 Figure E7.10 Blade angles at hub, eye, and tip 
 
 
(d) Airflow rate ρc2aA2=(1.23kg/m3)(272m/s)(0.0525m2) =17.6kg/s 

 

(e) The slip coefficient τ = c3u/u3 = 0.94. From part (a) u3=185m/s so c3u=174m/s. The 

velocity diagram appears in Figure E7.11. 

 
 

u3=185m/s 
c3u=174m/s 

w3=45.9m/s 

14o 
c3=180m/s c3r=44.5m/s 

α3=14.4o 

    0              40            80             120          160           200    (m/s) 

 
 
 Figure E7.11 Velocity diagram for τ = 0.94 
 
The velocity triangle yields [w3r/(u3-c3u)] = tan76o = 4.01 and u3-c3u = u3-0.94 u3 = 0.06 u3. 

Therefore w3r = 0.06(185m/s)(4.01) = 44.5m/s and c3 = [cu
2+wr

2]1/2 =180m/s. Then w3 = 

w3r/sin76o = 45.94m/s 
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(f) The work done per unit mass  

 ( )3 3 2 2c uW m u c u c= −& u  
 

Because the flow enters the compressor axially, c2u=0 and Wc= (u3c3u) = 

(185m/s)(174m/s)=32,200m2/s2. But the work per unit mass is also given by Wc = cp(Tt,3 – 

Tt,2) = (1kg/kJ-K)(Tt,3 – Tt,2). Since the compressor is moving through the air at M0=0.8, 

Tt,2 = T2[1+0.5(γ − 1)M0
2] = 288K[(1+0.2(0.64)], so Tt,2=325K. Then Tt,3 = 

[(3.22x104m2/s2)/(1000J/kg-K)]+325K =358K. 

 

The total pressure ratio is given by pt,3/pt,2 ={1+ηc[(Tt,3/Tt,2) -1]}γ/(γ-1) so that  pt,3/pt,2 = 

{1+0.8[(358/325) -1]}7/2 = 1.31. The stagnation pressure entering the compressor is pt,2 = 

p2[1+0.5(γ –1)M2
2] γ/(γ-1) = (101kPa)[1+(0.2)(0.64]7/2 = (101kPa)(1.52), so pt,2=154kPa and 

thus pt,3=202kPa.  

 
The static temperature may be found from the adiabatic energy equation for a streamline 

leaving the compressor: cpT3+c3
2/2 = cpTt,3. Then T3= 358K- (180m/s)2/(2)(103J/kg-K) 

and T3=342K. Therefore the sound speed a3 = (γRT3)1/2 = [1.40(287m2/s2-K)(342K)]1/2 = 

371m/s. The Mach number M3 = c3/a3 = (180m/s)/(371m/s) =0.486. Then the static 

pressure is given by p3 = pt,3[1+0.5(γ –1)M3
2]-γ/(γ-1) = (202kPa)[1+0.2 (0.486)2]-7/2 and p3 = 

172kPa. For reference, the density ρ3 = p3/RT3 = (172,000N/m2)/(287J/kg-K)(342K) and 

ρ3 = 1.75kg/m3. 

 
(g) The flow leaves the impeller with angular momentum per unit mass of r3c3u = 

(0.263m)(174m/s) = 45.8m2/s. Since no work is done on the fluid as it proceeds to the 

diffuser entrance, the angular momentum per unit mass remains constant and the 

tangential component of absolute velocity at the diffuser entrance is cu,ent=c3u(r3/rent). This 

becomes cu,ent = (174m/s)(0.263m/0.305m) =150m/s. The conservation of mass requires 

that (ρAcr)3 = (ρAcr)ent and  

 cr,ent = cr3(2πhr3/2πhrent)(ρ3/ρent) = 44.5m/s(26.3m/30.5m) (ρ3/ρent).  

Thus cr,ent=38.4m/s(ρ3/ρent), assuming that the height of the passage, h, is constant across 

the gap. We know that cent
2 = cu,ent

2[1+( cr,ent/ cu,ent)2] = cu,ent
2[1+0.0655(ρ3/ρent)]. Since we 
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expect the density to change little across the gap, and the ratio of radial to tangential 

absolute velocity is small, a reasonable approximation is the density is constant and cent 

~1.03 cu,ent =1.03(150m/s)=155m/s. There is essentially no difference in the diffuser blade 

angle (keeping accuracy of 3 significant figures), as can be seen in the results shown in 

Figure E7.12. 

u3=185m/s 
c3u=174m/s 

14o 
w3=45.9m/s 

c3=180m/s 

Diffuser entrance 

α3=14.3o 

αent=14.3o 

cent=155m/s 

c3u,ent =150m/s 

    0              40             80            120           160          200    (m/s) 

cr,ent~38.4m/s 

Impeller exit 

 
 
 Figure E7.12 Velocity diagram for impeller exit and diffuser entrance 

 
(h) The energy equation across the gap, assuming cp = constant, is cpT3+ c3

2/2 = cpTent+ 

cent
2/2 so that Tent = T3 + (c3

2 - cent
2)/2cp = 342K+(1802-1552)/2(1030m2/s2-K) and Tent = 

346K and the speed of sound is aent = [1.4(287m2/s2-K)(346K)]1/2 = 373m/s. The Mach 

number entering the diffuser is thus Ment = cent / aent = 155m/s/373m/s, or Ment = 0.416. 

 

(i) The pressure ratio across the machine is pt,3/pt,2 since there is assumed to be no friction 

in the diffuser. From part (f) pt,3/pt,2=202kPa/154kPa = 1.31. 

 

(j) The power is = (17.7kg/s)(185m/s)(174m/s) = 0.57MW and the torque is 

Tq = P/ω = (0.57x106N-m/s)/[2π(6,750)/60s-1] = 806N-m 

3 3uP mu c= &
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(k) The mass flow at the gap is ρ3(0.95)(2πr3h)c3r =17.6kg/s so the gap height h = 

0.142m = 14.2cm 

 

 

E7.10 Consider a staged axial flow compressor with the general configuration shown in 

the Figure E7.13. Only the rotor of the first stage is shown and it accepts air from the 

inlet guide vanes with the following conditions: p2=96.2kPa, T2=289K. The rotor mean 

line has r=30.5cm, α2=60o, β2=80o, and u2=427m/s. 

(a) Draw the velocity diagram of the entry to the rotor and find w2, c2, c2a and then 

find pt2, Tt2, and  M2, where the last 3 items are based upon the absolute velocity 

c2. 

(b) Determine N, the rotational speed of the machine in rpm. 

(c) If the stagnation pressure ratio across the rotor is1.15 and ηc=85%, find c3u-

 c2u. 

(d) Draw the exit velocity diagram to scale and find w3, c3, β3, α3, assuming 

 c2a=c3a. 

(e) Find the blade angle of the first stator passage at the median radius r of the 

 rotor. 

(f) Determine the airflow rate for the compressor if the blade height is 12.7cm 

assuming that 5% of the flow passage is blocked by blade leading edges. 

(g) Calculate the required torque, power, and work per unit mass for this first 

 stage. 

(h) Determine the power required to drive a compressor using of 13 stages like the 

 first stage. 

(i) Calculate the static pressure rise achieved in the one stage shown. 

(j) Determine the percent reaction of the one stage shown 
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stator 

rotor 
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u 

c3 
c3 
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c3a 

c2a 

first 
stage 

 

Figure E7.13 Schematic diagram of a staged axial flow compressor 

 

Solution 

(a) A velocity diagram may be drawn to scale using the data given and Figure E7.10 as a 

guide. Velocities from velocity diagram: w2 = 575m/s, c2 = 654m/s, c2a = 566m/s. From 

the given value of the temperature T2 = 289K the sound speed is found to be a2= 341m/s. 

Then from the definition of the Mach number M2 = c2/a2 and M2 =1.92. The given 

pressure p2 = 96.2kPa may be used to find the stagnation pressure from pt,2 = 

p2[1+0.2M2
2]3.5 yielding  pt,2 = 664kPa. Similarly, the stagnation temperature may be 

found from Tt,2 = T2[1+0.2M2
2] = 502K. 

  

(b) The rotational speed: ω=u/r, N=60ω/2π so that N=13,370rpm 

 

(c) For the given value of pressure ratio and efficiency Wc = (cpTt,2/ηc)[(pt,3/pt,,2)0.286-1] = 

24.1kJ/kg = u(c3u-c2u), therefore (c3u-c2u) = 56.4m/s 

 

(d) Again from the velocity diagram: w3 = 568m/s, c3 = 684m/s, β3 = 85o, α3 = 55.8o 

 

(e) The blade angle of stator is α3=55.8o 
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(f) Airflow rate:  

ρ2A2c2a=(1.16kg/m3)π[(0.305m+0.0635m)2–(0.305m–0.0635m)2](0.95)(566m/s) 

            = 152kg/s 

 

(g)The torque =(152kg/s)(0.305m)(56.4m/s)=2,610N-m, the power Pc= 

ωTq = 3.66MW and the work per unit mass of fluid 

( 3 2q uT mr c c= −& )u

c
PW
m

=
&

= 24.1kJ/kg 

 

(h) To find the power required for 13 identical stages of pressure ratio =1.15 we calculate 

the overall pressure ratio to be pt,3 / pt,2 = (1.15)13 = 6.15. Then using Equation 7.65 we 

find the overall efficiency to be ηc=0.0812 so the overall work is  

 
( )

( )
1

0.286,2 ,3

,2

1 502
1 6.15 1 421

0.812
p t t

c
c t

kg Kc T p kJkJ KW
p kg

γ
γ

η

−

⎛ ⎞⎡ ⎤ ⎜ ⎟⎛ ⎞ −⎢ ⎥ ⎝ ⎠ ⎡ ⎤= − = − =⎜ ⎟⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

 

Then the overall power is Pc = (152kg/s)(421kJ/kg) = 64MW 

 

(i) The stagnation pressure rise in the stage: pt3-pt2 = pt2[(pt3/pt,2)-1] = 664kPa[1.15-1] = 

99.6kPa. 

Static pressure rise across stage: p3-p2. The work result may be used to find Tt3 = 526K 

and the energy equation along a streamline yields T3 = 292K leading to M3 = 1.97, 

showing that there is little change in the Mach number across the rotor. Then p3 = 

98.1kPa and therefore the static pressure rise is p3-p2  = 1.95kPa.  

 

(j)Thus the degree of reaction is r =1.95/99.6 or r = 2%. An incompressible analysis 

would suggest that rinc = (w2
2 – w3

2)/[(c3
2 – c2

2)+ (w2
2 – w3

2)] = 16.6%. Although the 

density is almost constant in this problem, the flow must still be considered compressible 

because of the high Mach number and therefore compressible flow relations must be 

used. For example, the stagnation pressure calculated for incompressible flow relations 

would be pt,2,inc = p2+0.5ρ2c2
2 = 96.2kPa+248kPa =344kPa whereas the compressible flow 

result is 664kPa.  
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E7.11 A 50% reaction stage of an axial flow turbine shown in Figure E7.14 has blades 

12.7cm in height and a linear speed of rotation u=366m/s at the mean line of the rotor 

where the diameter is d=76.2cm. The stagnation temperature and stagnation pressure 

entering the stator from the combustor are Tt=1144K and pt=687kPa. The angle for the 

stator exit absolute velocity is α4=25o. 

rotor 

u 

w4 

c4 

u 

u 
w5 

stator 

stator 

12.7cm 

38.1cm c4 

α4 

Axial flow from 
combustor exit  

c5 

stage 

 

FigureE7.14 A 50% reaction turbine stage with α4=25o 

 

(a) Draw 2 possible combined velocity diagrams for this stage. The diagrams should be 

neat, executed with a straight edge or by computer, of reasonable size, clearly marked, 

and shown to scale. The combined velocity diagram is one which shows the inlet and 

outlet velocities referenced to a single u velocity. For example, the general velocity 

diagrams shown in the figure may be superimposed to form a combined velocity diagram. 

(b) Calculate the work per unit mass W for the case where the turbine is extracting the 

maximum work per unit of entering kinetic energy W/(c4
2/2)  

(c) Determine the blade efficiency ηb, which is defined as ηb=u/c4, for the case of 

maximum work described in part (c) and draw the corresponding combined velocity 

diagram.  

(d) Plot the distribution of stagnation and static values of pressure and temperature, as 

well as the Mach number, through the stage as a function of x, starting from the entrance 

to the stator blades and ending at the exit of the rotor blades. 
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(e) If the blades block 5% of the flow area determine the mass flow rate through the 

turbine 

(f) Determine the power developed by the turbine 

 

Solution 

(a) Since only u and α4 are given there are a wide variety of possible velocity diagrams 

for a 50% reaction axial turbine stage and these are shown in Figure E7.15. Note that the 

work done per unit mass by flow turning, as expressed by the product of u and the 

difference in u-components of velocity Δcu=c4u – c5u is also given by 

 

   W = uΔcu = u(c4u – c5u) = (1/2)[(c4
2-c5

2) – (w4
2-w5

2)]              (E7.1) 

β4 

Δcu

Δcu 

Δcu 

  c5      c5     c5 w4    w4    w4 

α4=25o 

  0            100          200        300           400  u (m/s) 

            
 Figure E7.15 Possible velocity diagrams for fixed values u=366m/s and α4=25o. 

 Values of β4 are shown in red for β4<π/2, in blue for β4=π/2, and in black for 

 β4>π/2, along with the corresponding velocities c4 and w4. 

 

(b) Then the work extracted, for a 50% reaction axial turbine, where c4=w5 and c5=w4, is 

given by either of the two following equalities: 

    

    W = (c4
2-w4

2) = u(c4cosα4 – w4cosβ4)               (E7.2) 
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Note that cosβ4 = -cos(π − β4) so that the work extracted continually grows as β4 

increases, and that w4cosβ4 = u-c4cosα4 so that Equation (E7.2) may be written as 

 

   W = u(2c4cosα4-u) = c4
2[2(u/c4)cosα4 – (u/c4)2]   (E7.3) 

 

Then Equation (E7.3) may be expressed non-dimensionally as  

 

    W/c4
2 = 2ηbcosα4 – ηb

2                                      (E7.4)  

 

This ratio of the work to twice the kinetic energy entering the rotor is expressed as a 

function of what may be called the blade efficiency ηb = u/c4 and it has a maximum value 

when ηb = cosα4 and therefore when 

      u = c4cosα4                      (E7.5)  

 

That is, when the absolute velocity leaving the blade is purely axial, as shown by the blue 

lines in Figure E7.15, the blade efficiency is a maximum. Under this maximum condition 

the work extracted per unit mass is 

 

    Wmax. blade eff. = c4
2cos2α4 = u2                (E7.6) 

 

The velocity c4=404m/s and the axial velocity component c4a=c4sin25=171m/s. For fixed 

values of u and α4 the work extracted per unit mass continues to grow linearly with c4, 

and therefore with the mass flow, which is proportional to the axial component of 

velocity c4a=c4sinα4. If we choose to consider the case of the maximum blade efficiency, 

then the work extracted is 

 

    Wmax. blade eff. =(366m/s)2=134kJ/kg    (E7.7)  

 

(c) To determine the pressure and temperature profiles through the blade passages we 

must consider the flow to be compressible. The variation of the stagnation temperature 
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and the stagnation pressure (red and blue solid lines, respectively) and the static 

temperature and static pressure (red and blue dashed lines, respectively) are shown in 

Figure E7.16 2. 

529kPa 

u 

w4 
c4 

u 

u 

w5 

685kPa 

529kPa 

c4 685kPa 

c5 

α4 

476kPa 
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M=0.667 

M=0.631 

M=0.27 
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1029K 959K 

1144K 

1016K 

1074K 

 
 Figure E7.16 The variation of the stagnation temperature and the stagnation 

 pressure (red and blue solid lines, respectively) and the static temperature and 

 static pressure (red and blue dashed lines, respectively) through the turbine 

 passages. Also shown is the variation of the absolute Mach number entering and 

 leaving the rotor (solid green lines) and the relative Mach number entering and 

 leaving the passage (dashed green line) 

 

We assume that there are no friction losses and no heat transfer through the passages so 

that the stagnation pressure and temperature are constant through the stator passages. We 

further assume that cp = 1.16kJ/kg-K and γ = 4/3 and that both are constant throughout the 

passages. We are given that the stagnation temperature entering the rotor is Tt,4 =1144K 

and in  the rotor passage the work extracted per unit mass, which we have calculated 

already as 134kJ/kg, is given by 

 

  W = cp(Tt,4-Tt,5) = (1.16kJ/kg-K)(1144K-Tt,5) =134kJ/kg 

 

We find then that the stagnation temperature leaving the rotor is Tt,5=1029K. The 

stagnation temperature variation through the passages is shown in Figure E7.16. The 
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static temperature (and the corresponding sound speeds) entering and leaving the rotor 

may be found by applying the energy equation along a streamline for adiabatic flow as 

follows: 

 

  T4 = Tt4 – c4
2/2cp = 1144K – (404m/s)2/[2(1160m2/s2-K)] =1074K 

   

  a4 = (γRT4)1/2 =(1.33*287m2s2-K*1074K)=640m/s 

 

  M4 = (404m/s)/(640m/s) =0.631 

 

  M4’ = (171m/s)/(640m/s) = 0.267 (relative to rotor at rotor exit) 

 

  T5 = Tt5 – c5
2/2cp = 1029K – (171m/s)2/[2(1160m2/s2-K)] =1016K 

 

  a5 = (γRT5)1/2 = (1.33*287m2s2-K*1016K) =622m/s 

 

  M5 = (171m/s)/(622m/s)=0.275 

 

  M5’= (404m/s)/(622m/s)= 0.649 (relative to rotor at rotor exit) 

 

Knowing the sound speed at any point we may find the corresponding Mach numbers 

from M=c/a. Then the isentropic relations between static and stagnation properties may 

be used to find the static pressures and densities. At the entrance to the rotor the 

stagnation pressure is given as 685kPa and the absolute Mach number has been 

calculated to be 0.631 so the static pressure at the rotor entrance is  

 

 p4 = pt4[1+0.5(γ-1)M4
2] - γ / (γ-1) = 685kPa[1+M4

2/6]-4 = 532kPa 

 

The density may be found from the equation of state 

 

 ρ4=p4/RT4=(532kPa)/[(0.287kJ/kg-K)(1074K)] =1.73kg/m3 
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Note that the conservation of mass requires 

   ρ4Aca4 = ρ5Aca5  

In other words the density is constant through the stage, as may be expected since we 

have assumed, a priori, that the axial component of velocity is unchanged through the 

stage. Then using the state equation to calculate the static pressure leaving the rotor we 

obtain 

 

 p5 = ρ5RT5 = (1.73kg/m3)(0.287kJ/kg-K)(1016K) =504kPa 

 

The stagnation pressure leaving the rotor is then given by the isentropic relation 

 

  pt5 = p5 [1+0.5(γ-1)M5
2]γ/(γ-1) =504kPa[1+M5

2/6] 4 = 529kPa 

 

(d) The area of the turbine flow path is, accounting for 5% blockage due to blade width, 

given by 

 A = 0.95π(ro
2 – ri

2) = 0.95π[(0.381+0.0635)2 – (0.381-0.0635)2] = 0.304m2 

The mass flow through the turbine is then 

 ρ4Aca4 =ρ4(0.304m2)ca= (1.73kg/m3)(0.304m2)(171m/s) = 85.3 kg/s 

 

(e) The power developed by the turbine is  

 P= (134kJ/kg)(85.3kg/s)=11.45MW 

 

Note: To find the flow conditions at the entrance to the inlet guide vanes one may make 

use of the fact that one knows the mass flow, the area, and the stagnation conditions at 

that station so that using 

 
( )

1
2 1211

2t
t

m p A M M
RT

γ
γγ γ
+

−
−−⎛ ⎞= +⎜ ⎟

⎝ ⎠
&  

 

Solving this equation yields M=0.21. Then using the usual isentropic flow equations we 

find p=665kPa and T=1137K 
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E7.12 A turbine blade receives hot gas from a stator with an outlet angle of 70o as shown 

in the diagram. The blade is designed to have 3o incidence at the root when the linear 

speed of rotation at the root is 213.4 m/s. The absolute speed leaving the stator is 

548.6m/s and the radius of the turbine disc at the root.  

(a) Find the rotor blade angle β4 for a blade that is untwisted over its entire length  

(b) Find the incidence at the tip for this untwisted blade 

(c) Find the stator outlet angle α4 and the rotor blade inlet angle β4 at the root and at the 

tip under the following set of assumptions: 

 (i) The original conditions pertain only to the root station 

 (ii) There is free vortex flow in the gap between the stator and the rotor, which 

 implies that ucu = constant through the gap and, likewise, the axial 

component ca=constant. 

 (iii) The incidence at all points along the leading edge of the blade is 3o 

 (iv) The rotor outlet absolute velocity c4 is 231.6m/s and is in the axial direction 

 (v) The deviation is 5o at all points along the trailing edge of the stator blade 

stage 

rotor 

u 

w4 

-i 
i 

stator 

stator 

c4 
50.8cm 

10.16cm 

+δ 

70o 

 

Note that i is the incidence and δ is the deviation. These 
angles are measured with respect to the tangent to the 
camber line at the leading and trailing edges, respectively. 
The curvature of the blade as shown is purely illustrative 
and the angles are exaggerated for clarity.  

 

Figure E7.17  Sketch of an axial flow turbine passage 
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Solution 

The solution is given in the details appearing on Figure E7.18. 

 

 

 

α2=20o α2=20o 

Rotor blade 
root leading 
edge 

i =3o i =-1.1o 

β2=148.3o β2=144.2o 

c2=548.6m/s 

u=213.4m/s u=256.1m/s 

w2=407m/s 
c2=548.6m/s 

w2=407m/s 

Rotor blade 
tip leading 
edge 

α2= 20+5o deviation 
c2,root  
    c2,tip w2,root   

         w2,tip 

c2,A 

29o 39o 56o

5o 

42o 

24o 

59o

Stator tip trailing 
edge δ =5o 

Rotor root 
leading edge 
i =3o 

Rotor tip leading 
edge 
i =3o 

Free vortex flow in the gap between stator 
and rotor: ucu=constant, therefore 
c3tip=(rroot/rtip)c3root=414.3m/s and c2=474.7m/s 

Tip velocities Root velocities 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E7.18 Diagram of blade properties for the axial turbine stage 
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E7.13 An axial flow turbine blade 10.2cm in height is attached to a 50.8cm radius turbine 

wheel as shown in Figure E7.19. The blade is designed to receive air from a stator that 

has an outlet angle α4=20o. When the linear speed of rotation at the root of the blade (that 

is, at the point where the blade is attached to the wheel) is 213m/s the angle of incidence 

of the chord line of the blade there is i=3o. The absolute velocity from the stator outlet is 

constant at c4=549m/s. 

Consulting the sketch below and assuming incompressible flow: 

(a) Find the stagger angle γ of the blade chord at the root 

(b) If the blade is untwisted throughout its height find the angle of incidence at the tip of 

the blade under the given conditions 

(c) Find the work performed per unit mass of fluid processed if the rotor blade provides 

an exit absolute velocity that is purely axial. 

 

rotor 

stage 

u 

+i 

w4 

-i stator 

c4 

50.8cm 

10.2cm 

blade tip 

20O 

w4 

chord line 

blade root 

γ 

Definition of incidence 
and stagger angles 

 

Figure E7.19 Schematic diagram of axial flow turbine with blade details 

Solution 

(a) The axial velocity component is ca = c4sinα4 = 549m/s(sin20) =188m/s 

The component c4u=c4cosα4=549cos20=516m/s 
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At the blade root the angle π −β4,root = arctan[ca/(c4u-uroot)] = arctan[188/(516-213)] = 

31.8o. The stagger angle at the root is γ = (π −β4) + i = 31.8+3 = 34.8o 

 

           

 

c4=549m/s 

α4=20o31.8o 35.9o 

ca=188m/s 

α4=20o 

utip=256m/s uroot= 213m/s 

34.8o 34.8o 

i = -1.1o i =3o 

root tip 

 Figure E7.20 Velocity diagrams constructed for the turbine blade 

 

(b) The linear speed of rotation at the tip is utip = uroot (rtip / rroot) = 

(213m/s)(50.8+10.2)/50.8 = 256m/s 

Then the angle π − β4,tip = arctan[ca/(c4u-utip)] = arctan[188/(516-256)] = 35.9o 

The incidence at the tip for an untwisted blade is itip = γ−(π−β4,tip) = 34.8-35.9 =  -1.1o 

 

(c) The work per unit mass is W = umeanΔcu = 0.5(utip+uroot)(c4u-c5u) =0.5(213+256)(516-0) 

W = 121,000m2/s2 or the work per unit weight is W/g=12,334m 
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E7.14 An axial flow compressor stage is designed for 50% reaction, a rotational speed of 

13,760rpm, and a mean radius of 25.4cm. Carry out all analyses at the mean radius 

location and you may assume the flow is incompressible in this problem. 

(a) If the rotor blade relative velocity exits at an angle β3 =70o and ca=152m/s, draw the 

velocity diagram for the entrance and the exit of the rotor at the mean radius 

approximately to scale and determine all appropriate angles and velocities and note them 

directly on the diagram. 

(b) If the airflow rate is 36.2kg/s find the torque and the power required and the ideal 

total head produced. 

 

Solution 

i. The stage is a 50% (symmetric) stage so β3 = α2 and β2 = α3 while w3 = c2 and w2 = c3.  

ii. The rotational speed is ω = 2πN/60 = 2π(13760)/60 =1441s-1  

iii. The linear speed of rotation at the mean radius is u = ωrm= (1441)(0.254m) = 366m/s 

iv. The axial velocity ca=w3sin70 or w3 = (152m/s)(sin70)-1=162m/s and thus c2 =162m/s 

v. The velocity component c3u = u -w3cos70 = 366m/s-(162m/s)(0.3420) = 311m/s 

vi. The absolute velocity c3 = (c3u
2+c3a

2)1/2 = (3112+1522)1/2 = 346m/s 

vii. The velocity component c2u = c2cos70 = 162m/s(cos70) = (162m/s)(0.3420) =55.4m/s 

 

(a) 

26o 26o 

w3=346m/s 

ca=152m/s 

c2=162m/s 

70o70o 

c3=346m/s 

ca=152m/s 

w3=162m/s 

u=366m/s u=366m/s 
 

 

(b) 

(i) The torque is Tq= m rm(c3u-c2u) = (36.2kg/s)(.254m)(311m/s – 55.4m/s) = 2350N-m) &

(ii) The power required is P = Tqω = (2350N-m)(1441s-1) = 3387kW 
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 154

(iii) The ideal total heat is P/mg=(3387000N-m/s)/(36.2kg/s)(9.81m/s2)=9537m 
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