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Dynamic Motion of a Single Degree of Freedom System 
Following a Rate and State Dependent Friction Law 

JAMES R. RICE AND SIMON T. TSE 1 

Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 

Sequences of dynamic instabilities are analyzed for a single degree of freedom elastic system which 
slides along a surface having frictional resistance depending on slip rate and slip rate history, in the 
manner of Dieterich, Ruina and others. The system is represented as a rigid block in contact with a fixed 
surface and having a spring attached to it whose opposite end is forced to move at a uniform slow speed. 
The resulting "stick-slip" motions are well understood in the classical case for which there is an abrupt 
drop from "static" to "sliding" frictional resistance. We analyze them here on the basis of more accurate 
frictional constitutive models. The problem has two time scales, an inertial scale set by the natural 
oscillation period T of the analogous frictionless system as T/2:rr and a state relaxation scale L/V 
occurring in evolution, over a characteristic slip distance L, of frictional stress u towards a "steady state" 
value uss(v) associated with slip speed V. We show that u _• uss(v) during motions for which acceleration 
a satisfies aL/V 2 << 1, and that this condition is met during an inertia controlled instability in typical 
circumstances for which the unstable slip is much greater than L. Since Via is of order T/2n during 
inertia controlled motion, one has L/V << T/2n, whereas L/V >> T/2n during much of the essentially 
quasi-static "stick" part of the cycle when there is a sufficiently small imposed velocity at the load point. 
Thus the physically irrelevant time scale (L/V during inertial controlled motion, T/2n during quasi-static 
motion) is much shorter than the relevant scale, which is troublesome from a numerical point of view as 
it is the shorter time scale which constrains allowable step size. We propose efficient numerical pro- 
cedures to deal with such response, in which the full equations with inertia and state relaxation are 
solved only in a transition regime when both time scales are significant. We show results for several 
friction laws, all having history dependence based on a single evolving state variable and all having 
properties that &/•V > 0 for instantaneous changes in V, that u evolves towards uss(v) as exp (--6/L) 
with ongoing slip 6 when V- const, and that duSS(V)/dV < 0 except possibly at high V. During the 
dynamic instabilities we find that motion continues at a nearly steady state condition, u •_ 'rss(v), until 
dynamic overshoot becomes so significant that "arrest" begins. In the arrest stage, V drops rapidly to 
very much lower values (never zero in our models) under nearly fixed state conditions, and then the long 
quasi-static "stick" phase of the motion begins again. 

INTRODUCTION 

A frictional sliding instability between rock surfaces in the 
laboratory corresponds at least qualitatively to shallow depth 
earthquake instability along an existing fault [Brace and By- 
erlee, 1966]. The simplest constitutive relation used to de- 
scribe the frictional interface is the classical "static-kinetic" 

friction law which is characterized by a static friction before 
slip initiates and a reduced kinetic friction once slip motion 
commences. For an initially stationary single degree of free- 
dom elastic system (spring-block arrangement as shown in 
Figure la) subjected to constant but slow load point displace- 
ment rate •o(= Vo), this law predicts that the block will start to 
slide when the spring force k• o is equal to z s. As shown in 
Figure lb, once sliding begins, the friction resistance instanta- 
neously drops down to the constant kinetic friction zk causing 
acceleration and then deceleration (dynamic overshoot) of the 
block. The block arrests after it has slipped 2(z s -zk)/k and 
the friction resistance then drops instantaneously from rn to 
the spring force r• - (rs - r•). The resistance starts to increase 
again slowly as the load point continues to move with con- 
stant speed. As the spring force increases to the static friction 
level, the block once again starts to slide and another cycle 
repeats. Independently of the spring stiffness, this law always 
predicts unstable motion once slip starts. However, it is ob- 
served in many friction experiments that sliding is stable in 

•Now at AT&T Bell Laboratories, Murray Hill, New Jersey. 

Copyright 1986 by the American Geophysical Union. 

Paper number 5B5486. 
0148-0227/86/005B- 5486 $05.00 

sytems of sufficiently great stiffness whereas unstable slip 
motion may be found in systems of low stiffness. Also, as 
pointed out by Ruina [1984], this law cannot generally predict 
quasi-static slip motion over a finite slip zone in an elastic 
continuum. Another constitutive relation commonly used to 
describe slip motion leading to instability is a slip-weakening 
law. In this model, once sliding begins, the shear strength 
decreases from a peak resistance to a residual strength over a 
characteristic slip distance. Quasi-static analysis shows that 
slip motion is stable for large enough system stiffness but 
unstable for low stiffness. This slip-weakening concept has 
been applied to preinstability fault modeling [Palmer and 
Rice, 1973; Stuart, 1979a, b; Stuart and Mavko, 1979; Li and 
Rice, 1983] and to dynamic rupture propagation [Ida, 1972; 
Andrews, 1976; Burridge et al., 1979; Day, 1982a, b]. This law 
is simple to use and able to simulate some seismological phe- 
nomena, but because it inherently neglects the time or rate 
effects, it cannot reproduce more than one cycle without artifi- 
cially resetting the friction level when the slip stops. 

Experimental studies on frictional sliding in rocks as done 
and interpreted by Dieterich [1978, 1979a, b, 1981] and Ruina 
[1980, 1983] have led to a somewhat more realistic constitu- 
tive description. As formalized by Ruina, this description has 
the shear strength z depending on normal stress an, slip veloci- 
ty V and on the prior slip history in the form of dependence 
on a set of phenomenological parameters called state variables 
which evolve with ongoing slip. The general mathematical 
framework for this law has the form [Ruina, 1980, 1983] 
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z = F(V, fin, 01, 02''''' On) 

dOi/dt = Gi(V, fin, 01, 02,''', On) i= 1, 2, '", n 
(1) 
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Fig. 1. (a) Single degree of freedom elastic system. A block of 
mass m and unit base area slides distance 5 with frictional stress r. 

The load point moves a distance 5 o at an imposed speed V o, stressing 
the block through the spring with stiffness k. (b) Stress response of the 
block to a steadily moving load point for the classical static-kinetic 
friction law. Initially stationary, the block starts to move when the 
spring force k5 o is equal to the static friction zs, and it then slides with 
the constant kinetic friction r k. The arrows show the directions of the 
paths along which the frictional stress and spring force evolve. 

In slip motion at a fixed slip rate and normal stress, the state 
variables evolve towards steady state values 0i ss satisfying 
Gi(V, a,, 0• ss, 0•_•, ... , 0, •) = 0 such that the shear strength 
evolves towards a steady state value •:s•(V) corresponding to 
the fixed speed and normal stress (we do not further display a, 
as a variable). 

A fairly comprehensive nonlinear analysis of quasi-static 
slip motion of a driven spring-block system (Figure la) and its 
possible instabilities has been given by Gu et al. [1984], Rice 
and Gu [1983] and Blanpied et al. [1984] for specific one and 
two state variable laws (as special cases of the class (1)). The 
one state variable law was proposed by Ruina [1980, 1983] as 
an approximation to a law proposed by Dieterich [1979a, b, 
1981] and is cited later here; the two state variable law was of 
similar form but provided a closer fit to the observed relax- 
ations in Ruina's experiments. Also, extensive numerical simu- 
lations of quasi-static motion and its instability are given by 
Dieterich [1980] and G. M. Mavko (unpublished paper, 1984). 
From a linearized stability analysis that included inertia, Rice 
and Ruina [1983] showed that d•?(V)/dV < 0 from the above 
formulation is a necessary and sufficient condition for steady 
state sliding to become unstable at sufficiently reduced elastic 
stiffness for surfaces on which a step change of V, from that of 
a previous steady state to a new fixed value, is followed by a 
montonic approach of •: to the new •:•s(V). Conversely, 
d•rs*(V)/dV > 0 on surfaces with such monotonic approach at 
fixed V implies stability of steady sliding to small pertur- 
bations no matter what the elastic stiffness. However, as slip 
motion becomes unstable the slip velocity departs from the 
steady state value and the linearized analysis breaks down. 

The aim of this paper is to examine the full nonlinear de- 
scription of motion, including the effect of inertia, and to de- 
termine when the quasi-static analysis breaks down and how 
the inclusion of inertia affects the subsequent slip motion for 
the spring-block with imposed load-point motion. We report 
numerical simulations of several cycles of slip motion using 
different forms of a one state variable version of the constitu- 

tive law (1), and discuss characteristic time scales, dimension- 
less measures of their importance, and possible approxi- 
mations in numerical calculation. 

We do not suggest that the single degree of freedom system 
analyzed can be made to correspond closely to an actual fault. 
Rather, the analysis is intended to provide an understanding 
of stress response according to the rate and state dependent 
friction laws during inertia controlled motions, in the hope 
that this understanding will be in part transferable to more 
realsitic fault models involving slip between deformable con- 
tinua. 

RATE AND STATE DEPENDENT LAWS 

Specific forms of the general slip rate and slip rate history 
dependent law (1) have been proposed and discussed by Die- 
terich [1979a, 1980, 1981], Ruina [1980, 1983], Gu eta!. 
[1984], and Tullis and Weeks [1985]. Based on the a priori 
assumption (or approximation) that one state variable 0 in a 
constitutive law as in equations (1) suffices to characterize the 
surface state, Rice [1983] recently outlined a procedure for 
constructing constitutive relations on the basis of experi- 
mental features reported by a variety of workers (see refer- 
ences above). These are as follows: 

1. The effect of a suddenly imposed (i.e., at fixed state) 
increase or decrease of V is to respectively increase or decrease 
•:. Thus (&/•V)o > 0. We note that when there is a single 0, 
this derivative can be expressed as a function of •: and V, say, 
as (&/•V)o = A/V where A = A0:, V) > 0 is obtained experi- 
mentally from "velocity jump" tests. A - const is suggested in 
several references cited above. 

2. In slip motion at a fixed slip rate V, z evolves towards a 
steady state value corresponding to that slip rate V, i.e., •?(V). 

3. The evolution of z towards z•(V) at constant V is 
characterized by an approximately exponential decay over a 
characteristic slip distance L = L(V) such that &r/dr5 =-(z 
-z•)/L in slip 5 at constant V. (It is generally understood 

that a superposition of two or more such decay processes, 
each with their own L, better fits data and must be included to 
explain some phenomena, but here for compatibility with the 
assumed one state variable form we must assume that only a 
single decay process is active.) Thus, since d•: = (&/•O)v dO in 
slip at constant V, we are assuming that 

ao/at = - [v/œ(v)][, - eXv)] 

As Rice [1983] noted, although the last equation is motivated 
as an idealization of approach to steady state at constant V, 
the expression that it gives for dO/dt in terms of V and 0 (•: and 
(&/•O)v can be regarded as functions of V and 0) must apply 
during general motions with variable V. This is because the 
one state variable version of (1) requires that dO/dt be deter- 
mined only by 0 and V and not, e.g., by dV/dt or higher 
derivatives of V. 

A procedure for assigning numerical values to 0 has not yet 
been identified. This can be done with some degree of arbi- 
trariness, associating 0 values with members of the one param- 
eter family of curves in a •, V plane of which each represent 
constant state response, i.e., instantaneous changes of •: and V 
[Ruina, 1980, 1983]. However, the exercise is unnecessary. We 
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can rewrite the class of constitutive relations just described (or, 
as recognized also by Ruina [1983], all relations that involve a 
single state variable) without explicit reference to 0. To do so, 
note that 

(•'r/•?O)v dO = du - (•u/•?V)odV = du - (A/V) dV 

Thus, the constitutive laws discussed in items 1 to 3 above are 
equivalent to saying that the first order differential equation 

du A(u, V) dV V 
= -- • [u -- uss(v)] (2a) 

dt V dt L(V) 

links histories of V and u to one another. For example, given 
V and u at t = 0 (i.e., given the initial state), the equation 
associates a stress history u(t) with any given velocity history 
V(t). The experimental quantities or functions required are the 
instantaneous viscosity parameter A = c9u/c9(ln V) at fixed 
state, the steady state strength u ss , and the decay slip distance 
L. Sometimes the system may undergo a motion that is so 
close to steady state conditions that equation (2a) can be re- 
placed by 

ß = ss(v) (2b) 

Various forms for A, u ss and L can be chosen. The one state 
variable law of Ruina [1980, 1983] mentioned above corre- 
sponds to (again, for fixed an) 

A = const L = const u's = u, -- (B -- A) In (V/V,) 

(3a) 

where B is a constant and V, is an arbitrary reference velocity 
at which the steady state strength would be u,. The law is 
more familiar as Ruina first wrote it, 

u = F(V, O)= u, + A In (V/V,) + 0 (3b) 

dO/dt = G(V, O)= --(V/L)[O + BIn (V/V,)] (3c) 

but (2a) and (3a) are fully equivalent to (3b) and (3c). Fitting 
this law to Dieterich's [1981] experiments (under constant 
normal stress an of 100 bars and at room temperature) on 
frictional sliding of intact Westerly granite on a gouge layer of 
the same material with variable layer thickness, gouge particle 
size and degree of surface roughness, Gu et al. [1984] found 
that for rough surfaces A/an = 0.006 to 0.008, B/A = 1.12 to 
1.14, L=40 to 50 #m/s and u,/an=0.6 for V,=I #m/s. 
When fitted to the other surface roughness the values are 
slightly different but they are of the same order of magnitude. 
One can see that both A and B are small fractions of u, (about 
1%). This law can therefore be viewed as a small deviation 
from the classical kinetic friction concept. The state or history 
dependence gives an effect like "static" friction in certain cir- 
cumstances [e.g., Dieterich, 1980; Ruina, 1983]. 

Experimental observation over a wide range of V suggests 
that the steady state stress uss(v) tends to level out to a re- 
sidual level at higher slip speeds (above 0.1 mm/s in the results 
of Dieterich [1978] on Westerly granite at room temperature). 
This was also observed by Scholz and Engelder [1976]. It is 
found that uss(v) is, approximately, inversely proportional to 
the logarithm of slip velocity from about 10 -'• mm/s to 10-• 
mm/s. Hence, one can replace the last entry in equations (3a) 
by 

uss(v) = u, + (B - A) In (V,/V + e -n) (4) 

and use this in (2a). Here, n is a positive number chosen (de- 
pending on the choice of reference speed V,) in such a way 
that uss(v) reduces to a residual level for slip velocity higher 
than a certain value. For example, if V, is equal to 30 mm/yr 

(typical plate velocity) and uss(v) begins to level off after 10- x 
mm/s, n can be chosen as 10. 

The function uss(v) in equations (3a) and (4) has the proper- 
ty that duss(v)/dV < 0 for the values of B and A quoted. Re- 
versal of the inequality has been observed in experiments at 
high temperatures [Stesky et al., 1974; Stesky, 1975, 1978] and 
on surfaces that have undergone relatively little total slip [Die- 
terich, 1981]. Based on the stability analyses mentioned in the 
introduction, for duss(v)/dV < 0 steady state sliding is unstable 
for small enough stiffness or large enough perturbations while 
for duss(v)/dV > 0 steady state sliding is always stable. Tse 
and Rice [1984] suggested the depth cut-off of crustal earth- 
quake activity (e.g., between approximately 10 and 15 km 
along the San Andreas fault) can be understood in terms of 
the variation of the friction response with depth (increasing 
temperature) from a regime with duss(v)/dV < 0 to one with 
duss(v)/dV>O. Mavko [1980, unpublished paper, 1984] 
showed that a change in sign of duss(v)/dV at a certain depth 
tends to concentrate instability, in quasi-static strike slip slid- 
ing between two elastic plates, into the shallower region with 
duSS/dV < O. 

Rice [1983] also discussed a case for which V(c•u/c•V)o = 
A = 0•, with 0• = const. In this case integration at fixed 0 
shows that the variation of u with V is u = W V • where the 

integration "constant" W is a function of state 0 and, for that 
matter, could be used itself as the variable to be identified as 0. 
Since A is typically of order 0.01u, 0• would have to be of order 
0.01. In that case experimental data fitted over several orders 
of magnitude in V to V(c9u/OV)o = A = const = 0.01u,, leading 
to the logarithmic direct velocity dependence in (3a), could be 
fitted comparably well to V(&/3V)o = A = czu •, 0.01u, leading 
to a power form u oc V • for the direct velocity dependence, 
since u differs only modestly from u, over a wide range of V. 
The latter form remains well defined at V = 0, although such 
simulations as we report here never involve V so close to zero 
that the awkward behavior of In (V/V,) very near that point 
shows up. 

The formulation in equation (2a) can also be applied with 
the quotient form 

u = anC(O)/f(V) 

for F(V, O) favored by Dieterich [1979a, 1980, 1981]. In his 
case• 

C(O) = Cl + c2 loglo (1 + c30) 

f(V) = 1 +f2 10g•o (1 +f3/V) 

where c•, c2, c3, f2, f3 are constants and 0 is interpreted as an 
effective contact lifetime whose steady state value is dc IV. For 
this case, 

A = -uV[df(V)/dV]/f(V) uss(v) = anC(dc/V)/f(V) 

and L = dc in equation (2a), although the presumed ex- 
ponential evolution, in the form exp (-•i/L), of • towards 
uss(v) at fixed V, implicit in equation (2a), is different in detail 
from results of the different evolution laws for 0 adopted by 
Dieterich at different times in his work [see Dieterich, 1981]. 

ELASTIC LOAD SYSTEM INTERACTION, INERTIAL EFFECTS, 
AND CHARACTERISTIC TIME SCALES 

For the spring-block arrangement of Figure la with unit 
base area, let k be the spring constant and rn the mass per unit 
base area. We write rn = k(T/2rO 2 where T is the vibration 
period of the analogous freely slipping system. Since the forces 
acting on the block are the spring force k(g0- g) and the 
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resistance r, the equation of motion is 

d2g 

(T/2rr) 2 • = (go -- g)- ,/k (5a) 
with go = Vot, V0 = const, whereas the quasi-static analyses 
discussed earlier began with 

= - 

The complete description of the motion requires simulta- 
neous solution of equations (2a) and (Sa), the variables of 
which are linked by V = dg/dt. We see that each of these 
equations contains a characteristic time scale. In equation (2a), 
L/V is a characteristic time for state relaxation and in equa- 
tion (Sa) T/2• is a characteristic vibrational or inertial time. 
The state relaxation time scale varies throughout the motion 
and hence, as will be seen, in cases as we consider here the 
ratio of inertial to relaxation times, VT/2•rL, varies from << 1 
to >> 1. 

We are concerned here with loading speeds V0 that are 
sufficiently slow that the time between unstable inertia-limited 
motions, analogous to that depicted in Figure lb, is very much 
larger than T. Thus, although constitutive relations of the type 
we use predict that the block is never truly stationary, we 
expect that the quasi-static equation (5b) together with equa- 
tion (2a) is a quite accurate description over most of the long 
time interval that is analogous to the "stick" phase for the 
classical stick-slip model. Also, the nature of parameters is 
such that the slip during the inertia limited instabilities is very 
much larger than the relaxational slip distance L. As will be 
discussed, this implies that the steady state equation (2b) to- 
gether with equation (5a) give an accurate description of the 
motion over most of the inertia limited phase. 

Let us note the difficulties that occur if one tries to solve the 

complete equations, (2a) and (5a), for all phases of the motion. 
In terms of the characteristic inertial and relaxational times, 
T/2n << L/V during most of what is the analogue of the stick 
part of the cycle. We know that T/2n is irrelevant then, and 
that solutions of equation (5a) effectively reduce to those (5b). 
However, if one attempts to solve equations (2a) and (5a) 
numerically, it is the much shorter but irrelevant time scale 
T/2n which controls numerical step size, and hence greatly 
increases the time required for numerical solution. On the 
other hand, during much of the inertia controlled instability, 
L/V << T/2n. Solutions of equation (2a) then effectively reduce 
to equation (2b) and the relaxational time L/V is then irrel- 
evant. However, there again occurs the problem that if we try 
to solve the full system of equations (2a) and (5a) numerically, 
the much shorter but irrelevant time scale, L/V, controls nu- 
merical step size and greatly increases solution time. 

Thus in numerical simulations one may simplify the equa- 
tion set to equations (2a) and (Sb) in phases of the stick-slip 
cycle when VT/2nL << 1 and simplify to equations (2b) and 
(5a) when VT/2nL >> 1, but one must contend with the full set 
of equations (2a) and (5a) in an intermediate range whose' 
limits can be set for given surface, system and loading parame- 
ters after some trial computations. 

The condition for steady state resistance, i.e., that equation 
(2a) reduces to (2b) can be understood as follows. Let 

= 

and, for simplicity, assume A = const as in equation (3a). 
Equation (2a) can then be rewritten, using dt = dg/V where 
g = slip and writing acceleration a = dV/dt, as 

du/d(g/L) + u = [1 - V(d,SS/dV)/A](aL/V2) 

The bracketed term is of order unity for the constitutive laws 
discussed, and hence if lalL/V 2 << 1 throughout some phase of 
a motion for which slip g of order of a few times L occurs, 
then u _• 0 in that motion. More precisely, lul is of order 
lalL/V 2 which is << 1. Thus we have in those conditions z = 
rss(v) plus A times a very small number, which means that 
•-• rss(v). Therefore the condition for solutions to (2a) to 
reduce to those of (2b) is that 

lalL/V 2 << 1 

during slips of a few times L and more. Related to this, we 
note that Gu [1984] showed that solutions to (3b), (3c) for 
uniformly accelerated motion, a- const, have the property 
that • approaches ,ss(v) as V increases such that the above 
condition is met. The condition can also be understood in the 

following way: IdVI/V is a fractional change of V, associated 
with activation of the instantaneous viscosity effect and with 
change of the ,ss(V) towards which • evolves, whereas dg/L is 
a fractional slip towards steady state. The latter will dominate, 
so that • _• ,ss(v), in sustained slip with 

IdVI/V lal/V lalL 
- - << 1 

dg/L V/L V 2 

The inequality is satisfied during inertia controlled instabil- 
ities for the conditions considered here. To see why we note 
that rs•(V) is either constant or a slowly (logarithmic) varying 
function of V at large V, and may be treated as effectively 
constant over at least a modest range of V. Thus making the 
assumption, subject to verification, that equation (2b) applies 
during much of the inertia controlled range, we will have the 
harmonic oscillation form 

V •' Vma x sin (2•rt/T) a • (2•r/T)Vma x cos (2•rt/T) 

where [/max is the maximum slip velocity. (These equations 
describe exactly the case in Figure lb.) Thus lal is of order 
(2n/T)V during such motion, and hence lalL/V 2 is of order 
(L/V)/(T/2n). But this is, apart from a numerical factor, the 
ratio of the characteristic state relaxation slip L to the total 
slip during the inertia controlled instability. For the cases con- 
sidered here, the latter slip is many times L, and we confirm 
that lalL/V 2 << 1, which means that the condition for equation 
(2a) to reduce to (2b) is met. 

We do not consider slip between deformable elastic con- 
tinua in detail here. However, we may note that if a uniformly 
stressed fault grows in circular shape with rupture speed V,, 
and has a uniform stress drop AT, then the Kostrov [1964] 
solution applies. The slip at distance r < V,t from the center is 

g =/•(Ar/t0(V, 2t 2 _ •.2)1/2 

where tt is the shear modulus of the elastic medium and/• is a 
function of V, which is of order unity for all speeds less than 
the shear wave speed. Elementary calculation with V -- Og/Ot, 
a = O V/Or shows then that 

aL/V 2 -- (L/•Xr2/Vr2t 2) _< L/• 

Thus at all points of the dynamic rupture surface for which a 
slip g much greater than L has occurred, we have aL/V 2 << 1 
and hence meet conditions for equation (2a) to reduce to (2b). 
This should be useful in dynamic rupture analysis for realistic 
fault models with slip between elastic continua. 

The simple spring-block model that we analyze here cannot 
be made to correspond closely to such realistic fault models. 
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Fig. 2. Trajectories of the block motion according to quasi-static analysis for a stationary load point in the normal- 
ized stress, (z - z,)/A, versus logarithm of velocity, In (V/V,), phase diagram for the one state variable law (3) for the case 
kL/A = 0.8 and (B- A)/A = 1. The thick solid line is the steady state line. The curve Po = 0 separates unstable orbits 
(Po > 0) from stable orbits (Po < 0). 

However, for a rupture involving slip over a region which 
grows at the shear wave speed • to diameter D and then stops 
growing, we might approximately associate the period T of 
the oscillator with 2D/•. That is, T/2, the portion of acom- 

plete cycle with positive velocity, is the sum of the time D/2• 
over which rupture grows plus the same time D/2• for arrest 
phases to spread backwards from the stopped edge of the 
rupture. Thus, for D = 9 km and • = 3.5 km/s, T _• 5 s. 
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Fig. 3. Numerical simulation of slip motion for the one state variable law (3) (z•(V)= z, -(B- A) In (V/V,)) with 
kL/A = 0.8, (B - A)/A -- 1, V o - V, - 30 mm/yr, L/Vo - 2.7 yr and T - 5 s. The block and load point initially slide in 
steady state at velocity V = Vo = V,. The load point speed is then suddenly increased to 1.5Vo and subsequently held 
constant. Dashed and solid lines are results from quasi-static and dynamic calculations, respectively. (a) Plot of dimension- 
less stress (z - z,)/A versus logarithm of velocity, In (V/V,). (b) Plot of dimensionless stress versus dimensionless slip, J/L. 
(c) Plot of dimensionless stress versus dimensionless time, V,t/L.(d) Plot of dimensionless slip versus dimensionless time. 
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quasi-static and dynamic analyses, respectively. (a) Plot of dimensionless stress versus dimensionless slip, 6/L. (c) Plot of 
dimensionless stress versus dimensionless time, V,t/L. (d) Plot of dimensionless slip versus dimensionless time. 

QUASI-STATIC MOTIONS 

In this limit T/2• << L/V and equation (5a) reduces to (5b). 
Then equations (5b) and (2a) show that motions with 
dt - Vo - const are described by trajectories in a stress versus 
velocity plane which are the integral curves of 

kA('L V)L(VXV- Vo) dV/V 2 

+ [•: -- •:•(V) -- kL(VXV - Vo)/V] d•: = 0 

Gu et al. [1984] and Rice and Gu [1983] show examples of 
these trajectories for the particular constitutive law described 
by equations (3). In that case Gu et al. [1984] show that for 
motions with V >> Vo (precisely, for Vo = 0), the trajectories 
are given by 

= const (6) 

where the constant Po is determined from initial conditions. 
The trajectories for the case kL/A = 0.8, (B- A)/A = 1 are 
drawn in Figure 2. Po > 0 gives unbounded slip velocity in 
finite time; Po < 0 gives decaying slip speed and Po- 0 is a 
trajectory dividing stable (Po < 0) and unstable (Po > 0) re- 
gions. The predicted motions involve a nonrelaxed state as 
can be seen by calculating aL/V '• using a = V dV/&5 = -kV 
dV/d•. Thus one finds 

aL/V' kL/(B A, Poexp[(BA LC5ø)] = _ + (7) 

and it is seen that along the unstable trajectories (positive 
factor before the exponential) this becomes much larger than 
unity, implying nonrelaxation of state. This quasi-static analy- 
sis neglects the inertia effect for the whole slip history and this 
must ultimately become inappropriate along the unstable tra- 
jectories as V increases (towards infinity in finite time) and we 
no longer meet the condition T/2• >> L/l/. 

DYNAMIC MOTION, NUMERICAL SIMULATIONS 

As such conditions are approached it is necessary to revert 
from (5b) to (5a), that is, to solve the full equations with iner- 
tia. However, from what has been discussed earlier we know 
that once inertia exerts its control of acceleration, at relatively 
high slip velocity, we will typically be in the regime for which 
state relaxation can be neglected T/2• >> L/V, and equation 
(2a) can be reduced to (2b). Then the motion as governed by 
equations (5a) and (2b) can again be described by a trajectory 
in a spring force F[F = k(•5 o - •5)] per unit area versus veloci- 
ty plane. (Note that •- F in the quasi-static case discussed 
above.) These trajectories satisfy 

(T/2•r)2(V -- Vo) dV + EF -- •:ss(v)] dF/k 2 = 0 

and integrate to simple elliptical curves when l/is sufficiently 
high that rss is independent of l/. 

Because of the high slip speed involved during dynamic 
instability, the nearly steady state sliding is expected to contin- 
ue through at least the beginning of the dynamic overshoot 
stage (the stage at which the block decelerates due to the 
compression of the spring). Towards the ends of the dynamic 
overshoot when further shortening of the spring becomes too 

_ 
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Fig. 5. Numerical simulation of the slip motion for the one state variable law (3) with limiting speed approximation 
(see text for details). The parameters and initial condition are identical to the case in Figure 3. For slip speed lower than 
limiting speed V L (i.e., In (VL/V,)= 21.6), the solution is found from quasi-static analysis. When the slip speed reaches the 
limiting speed, the block is allowed to slide at this speed until the sliding stress is balanced by the spring force. Then, 
quasi-static analysis is resumed. (a) Plot of dimensionless stress (z - z,)/A versus logarithm of velocity, In (V/V,). (b) Plot 
of dimensionless stress versus dimensionless slip, •i/L. (c) Plot of dimensionless stress versus dimensionless time, V,t/L. (d) 
Plot of dimensionless slip versus dimensionless time. 

difficult, the full equations (5a) and (2a) must again be used. 
We find in numerical solutions that the high block speed is 
slowed down substantially or "arrested" within a short slip 
distance. This implies that the "arrest" process is achieved 
under a nearly constant or "frozen" state. After the block is 
arrested, the slip speed becomes low enough so that quasi- 
static analysis applies again. 

A numerical simulation of the slip motion described above 
is performed for the case kL/A = 0.8, (B -- A)/A = 1, imposed 
load point velocity Vo = V, = 30 mm/yr, L/Vo = 2.7 years and 
T- 5 s. The block is initially sliding in a steady state con- 
dition with constant load point velocity Vo such that V = 
Vo = V, and rss= r,. The slip motion is then made unstable 
quasi-statically by suddenly increasing the load point velocity 
to a new constant value 1.5Vo. The results are shown in Figure 
3. In the early stage of the slip motion, the block responds to 
the sudden increase of the load point velocity by a growing 
oscillation. However, the slip speed is still small so that quasi- 
static analysis remains valid. Because of this and compu- 
tational efficiency, the system of equations is solved quasi- 
statically in the low speed range and dynamically in the high 
speed range. 

In the calculations performed here, the quasi-static calcula- 
tion is switched over to a dynamic calculation when VT/2rL 
is greater than a prescribed small number (5 x 10 -4 is used 
here) and vice versa. The dashed and solid lines in Figure 3 
show results from quasi-static and dynamic analyses, respec- 
tively. As shown in the plot of shear stress versus displacement 
in Figure 3b, during the initial stage of the dynamic range, the 

excess of spring force k(J o -- J) over the sliding friction r accel- 
erates the block and the sliding stress evolves rapidly towards 
a steady state value corresponding to the current slip rate V 
(line 1-2). The block then continues to slide under a nearly 
steady state condition until further shortening of spring is 
prohibited (line 2-3). At this point, the block is "arrested" 
within an extremely short slip distance (line 3-4). It can be 
seen from Figure 3a that this arrest occurs at a frozen state. 
The response should be compared to Figure lb for the classi- 
cal friction law. At the end of the arrest, the spring force and 
the sliding friction are equal and the speed is low enough so 
that quasi-static calculation is resumed. During this quasi- 
static stage (line 4-5), the sliding stress restrengthens to a peak 
value at a nominally stationary contact. After the peak, the 
friction stress decreases rapidly so that the block is accelerated 
and once again the system enters the dynamic range at high 
speed. The result shows that the system exhibits a limit cycle. 
The stress variations with slip and time during the cycle are 
shown in Figures 3b and 3c, respectively. Although the cycles 
are repeated exactly, the stress build up after a slip event is not 
strictly linear with time (Figure 3c) and the system is nom- 
inally stationary (effectively locked) for most of the cycle time 
(Figure 3d) with accelerating slip preceding the next event. 

Experiments on rocks by Tullis and Weeks [1985] confirm 
that arrest after instability occurs at nearly frozen state, repre- 
sented by a measured r versus In V line analogous to line 3-4 
in Figures 3 and 4. 

An identical numerical simulation as described above has 

been carried out with the friction law (4). In this case, the 
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steady state stress rss(V) decreases linearly with In (V/V,) at 
low speeds and reduces to residual level at high speeds (here, n 
in equations (4) is taken to be 10 with V, = 30 mm/yr so that 
the steady state stress becomes relatively constant for speeds 
higher than 10-• mm/s). The results are plotted in Figure 4 
which show identical features as described above except that 
the dynamic stress drop, dynamic slip, total strength drop and 
cycle time are expectedly smaller. 

As is seen in Figures 3a and 4a, the sliding stress r changes 
rapidly with the slip rate to the steady state value during the 
acceleration stage. This seems to take place over a narrow slip 
rate range (on the logarithmic scale) as compared to the whole 
slip rate range calculated. One may ask if this could be ap- 
proximated by the following procedure: As the slip rate of an 
unstable slip increases to a limiting speed V•., the quasi-static 
assumption becomes invalid. The block is then artificially con- 
strained to slide at this limiting speed such that the stress 
evolves towards the steady state value. The assumption of 
instability continues until the spring force is reduced to equal 
to the sliding stress, after which quasi-static equilibrium is 
reasserted. This approximation procedure has been adopted 
by Dieterich [1981] and G. M. Mavko (unpublished paper, 
1984) in their numerical simulations of experiments and tec- 
tonic earthquake instability models respectively. The limiting 
speed VL can be estimated from an energy balance condition 
such that the potential energy released from the unloading 

spring is used to increase the kinetic energy of the sliding 
block, i.e., 

Ar2/2k = mVL2/2 (8a) 

or 

V• = (2r•/T)(Ar/k) (80) 

where T is the period of natural vibration and Ar is the dy- 
namic stress drop. This dynamic stress drop can be estimated 
as 

AT = •q(VO- •ss(vo (9) 

where rq(V•.) denotes the stress predicted along the quasi-static 
trajectory at speed V•.. Hence equations (80) and (9) become an 
implicit equation for V•. but are easy to solve iteratively since 
AT is a slowly varying function of V•. When the case in Figure 
3 is analyzed in this way (see Figure 5a for the full quasi-static 
trajectories), we find V• = 2.40 m/s. Hence In (Vl•/ V,)= 21.6 
and this is very close to the maximum speed attained in the 
full dynamic calculation (Figure 3a shows In (VL/V,) = 21.6). A 
quasi-static numerical calculation for the same elastic system 
with the limiting speed taken to be such that In (V•/V,) = 21.6 
has been performed. The results are plotted in Figure 5. Com- 
paring Figure 5 with Figure 3 shows that this procedure ap- 
proximates the response reasonably well in the acceleration 
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stage but not in the dynamic overshoot stage. The latter is 
expected because the procedure implicitly neglects the dynam- 
ic overshoot phenomenon. Therefore, in the limiting speed 
approximation, the total strength drop, dynamic slip and cycle 
time are generally underestimated (at least for this one degree 
of freedom system) while the dynamic stress drop is the same. 

It is also possible to incorporate dynamic overshoot effects 
directly into quasi-static calculations with the limiting speed 
procedure. Once the quasi-static analysis suggests that V has 
reached VL, calculated as above, we suspend use of equation 
(5b) and let slip continue ar rate V• until the spring force F has 
reduced to whatever level below zss(VL) is desired (for example, 
to make the overshoot rs'(V•)- F a certain fraction of the 
"dynamic" stress drop rq(VD- r"(VD). During this rapid slip 
at V•, r evolves rapidly to r's(VL) and the state evolves to the 
corresponding steady state value. Once the spring force has 
been lowered to the desired level, we instantaneously reduce 
velocity (i.e., at constant state, along line 3-4 in Figure 6a), to 
make • fall from zs'(V•) to the spring force, and then resume 
quasi-static calculations using equation (5b). Figure 6 shows 
the result of this procedure when the overshoot is chosen as 
90% of the dynamic stress drop. Comparing Figure 6 and 
Figure 3, this modification of the quasi-static limiting speed 
procedure predicts the dynamic motion remarkably well. 
Under crustal conditions where some energy is lost to seismic 
radiation, the dynamic overshoot is expected to be smaller 
than the virtually complete overshoot analyzed here. 

CONCLUSIONS AND DISCUSSION 

In summary, we have shown that two different time scales 
exist for single degree of freedom elastic systems sliding ac- 
cording to rate and state dependent friction. For low slip 
speeds, the state relaxation time scale L/V dominates and a 
quasi-static analysis is valid. For higher slip speeds occurring 
along unstable trajectories of the quasi-static analysis, the time 
scale characterized by the period T of natural vibration be- 
comes essential and full dynamic effects have to be considered. 
Slow quasi-static slip motion that is developing towards insta- 
bility is characterized by an unrelaxed state which continu- 
ously diverges from steady state. During unstable slip, the 
frictional stress decreases with slip faster than the spring force 
does, and the excess spring force accelerates the block to 
higher speeds, which allows the state to evolve rapidly to- 
wards a steady state condition. The unstable inertia limited 
slip motion occurs in nearly steady state conditions, i.e., z -• 
z"(V), until the block overshoots dynamically. Motion is ar- 
rested rapidly such that final velocity reduction occurs under a 
nearly frozen state as the friction force reduces to the spring 
force. Quasi-static analysis is found to be appropriate when 
T/2n << L/V, whereas dynamic analysis under the assumption 
of instantaneously steady state resistance (z = zs'(v)) is appro- 
priate for large slip 6/L with T/2n >> L/V. 

Two numerical examples of the one state variable friction 
law are examined. In one the steady state stress zs'(V) de- 
creases linearly with In (slip rate) and in the other it decreases 
linearly with In (slip rate) at low speeds but becomes relatively 
constant at high speeds. The two show identical features as 
described above but the latter has less dynamic stress drop, 
slip and cycle time. Comparing the stress versus slip curves in 
Figure lb with those in Figures 3b and 4b, one finds a close 
resemblance. In fact, due to the "smallness" of the parameters 
A and B, the slip rate and state dependent laws (3) or (4) can 
be viewed as a small deviation from the classical law. How- 

ever, this small deviation contributes important features affect- 
ing the stability of the slip motion. One difference between the 

rate and state dependent law and the classical law is that the 
first predicts a gradual change in friction stress with ongoing 
slip whereas the latter predicts an instantaneous drop in stress 
as motion begins. Also, just before the "arrest" process, slip 
speed predicted by the classical law is zero while the slip speed 
predicted by the rate and state dependent law begins high and 
falls at essentially constant state to very small, but nonzero, 
values. 

The quasi-static limiting speed procedure seems to approxi- 
mate the slip motion reasonably well in the acceleration stage 
but to under estimate the total strength drop, dynamic slip 
and cycle time because dynamic overshoot is implicitly ig- 
nored. However, we show a modification of the procedure 
which seems to duplicate dynamic results quite closely. The 
dynamic overshoot is expected to be less pronounced in a 
continuous system in which seismic radiation occurs. 

The full numerical simulations demonstrate cycles of the 
slick-slip phenomenon. In dynamic slipping, the block slides 
rapidly with a reduced shear stress over a large slip distance. 
Seismologically, this is analogous to an earthquake rupture. 
After the dynamic motion, the slip velocity becomes so low 
that the slip surface is essentially stationary. During this 
nearly stationary contact, slowly increasing loads cause shear 
stress to increase and, because of the concomitant evolution of 
state, a preinstability peak level must be overcome as the 
system prepares for the next event. This slow "stick" process is 
an analog to the formation of a "locked" zone in seismology. 
The stick-slip cycle is complete when the shear stress passes a 
peak value and decreases so that velocity grows rapidly to 
values controlled by inertia. 

Our work also shows a new representation for rate and 
state dependent friction with a single evolving state variable, 
and notes that constitutive rate relations between stress and 

velocity can be written without explicit reference to the state 
variable. 
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