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Abstract (English)

We study dynamic data structures for different variants of orthogonal range
reporting query problems. In particular, we consider (1) the planar orthogonal
3-sided range reporting problem: given a set of points in the plane, report the
points that lie within a given 3-sided rectangle with one unbounded side, (2)
the planar orthogonal range maxima reporting problem: given a set of points
in the plane, report the points that lie within a given orthogonal range and
are not dominated by any other point in the range, and (3) the problem of
designing fully persistent B-trees for external memory. Dynamic problems like
the above arise in various applications of network optimization, VLSI layout
design, computer graphics and distributed computing.

For the first problem, we present dynamic data structures for internal and
external memory that support planar orthogonal 3-sided range reporting queries,
and insertions and deletions of points efficiently over an average case sequence
of update operations. The external memory data structures find applications
in constraint and temporal databases. In particular, we assume that the coor-
dinates of the points are drawn from different probabilistic distributions that
arise in real-world applications, and we modify existing techniques for updating
dynamic data structures, in order to support the queries and the updates more
efficiently than the worst-case efficient counterparts for this problem.

For the second problem, we present dynamic data structures for internal
memory that support different variants of planar orthogonal range maxima
reporting queries, and insertions and deletions of points efficiently in the worst
case. The presented structures for the pointer machine model improve upon
their previous counterparts either by a logarithmic factor in the query or update
complexity, or by the fact that they support all the operations efficiently in
the worst case. The presented structure for the word-RAM model is the first
structure that supports all operations in sublogarithmic worst case time. The
results are obtained by a new technique for updating dynamic data structures
that is based on partial persistence. The technique is interesting in its own right,
as it alleviates significantly the design of algorithms that handle deletions.

For the third problem, we present the currently most efficient fully persistent
B-trees, which comprises the implementation of an efficient multi-versioned
indexing database. We first present a generic method for making data structures
fully persistent in external memory. This method can render any database
multi-versioned, as long as its implementation abides by our assumptions. We
obtain the result by presenting an implementation of B-trees with worst case
efficient update time, and applying our method for full persistence to it.
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Abstract (Danish)

Vi studerer dynamiske data strukturer for forskellige varianter af ortogonale
range rapporterings query problemer. Specifikt, overvejer vi (1) det planfladet
ortogonale 3-sidet range rapporterings problem: given en punktmængde i pla-
nen, rapporter punkterne, der ligger indenfor et givet 3-sidet rektangel med en
ubundet side, (2) det planfladet ortogonale range maxima rapporterings prob-
lem: given en punktmængde i planen, rapporter punkterne, der ligger indenfor
en given ortogonale range og der ikke er domineret af andre punkter i ranget,
og (3) problemet for at designe fuldt-vedvarende B-træer for ekstern hukom-
melse. Dynamiske problemer som de ovennævnte opst̊ar i forskellige anvendelser
i netværksoptimering, VLSI design, computer grafik og distributeret regning.

I det første problem, præsenterer vi dynamiske data strukturer for intern
og ekstern hukommelse, der støtter planflade ortogonale 3-sidet range rappor-
terings querier, og indsættelser of slettelser af punkter effektivt over gennem-
snitstilfælds sekvenser af opdateringsoperationer. Data strukturen for ekstern
hukommelse har anvendelser i afgrænsede og tidsmæssige databaser. Specifikt,
antager vi at punkternes kooordinater er udtrukket fra forskellige probabilistiske
distributioner, som forekommer i dagligdags anvendelser, og vi modificer eksis-
terende teknikker for at opdatere dynamiske data strukturer med det mål at
støtte operationerne mere effektivt end problemets værste-tilfælds modstykker.

I det andet problem, præsenterer vi dynamiske data strukturer for intern
hukommelse, der støtter planflade ortogonale range maxima rapporterings querier,
og indsættelser og slettelser af punkter effektivt i det værste tilfælde. De
præsenterede strucktrurer for pointer-maskin modelen forbedrer de tidligere
løsninger enten ved en logaritmisk faktor i queriets eller opdaterings komplek-
siteten, eller ved at de støtte alle operationer effektivt i det værste tildfælde.
De præsenterede strukturer for word-RAM modelen er de første strukturer, der
støtter alle operarioner i underlogaritmiske værste tildfældes tid. Resultaterne
opn̊aes ven en ny teknik for at opdatere dynamiske data strukturer, der er
baseret p̊adelvis vedvarenhed. Teknikken er i sig selv interessant, fordi den
væsentligt letter designet af algoritmer, der behandler slettelser.

I det tredige problem, præsenterer vi de nuværende mest effektive fuldt-
vedvarende B-træer, der best̊ar implementationen af en effektiv multi-version
indeks database. Først præsenter vi en general metode for at lave data struk-
turer fuldt-vedvarende i ekstern hukommelse. Metoden gør hver database multi-
versioneret, s̊alænge den tilfredsstiller vores antagelser. Vi opn̊ar resultatet ved
at præsenter en implementation af B-træer med effektiv værste-tilfælds opda-
teringstid, og ved at anvende vores metode for fuldt-vedvarenhed i den.
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Abstract (Greek)

B
VLSI computer

pointer machine

word-RAM
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Preface

This dissertation is devoted to three aspects of dynamic data structures and
algorithms: efficient update operations, persistent data structures and orthogo-
nal range queries. Motivated by two different problems that arise in the field of
Dynamic Geometric Orthogonal Range Searching, we study how to use existing
techniques and we propose new techniques for updating dynamic data struc-
tures efficiently over average and worst case sequences of update operations.
Motivated by a problem that arises in the field of Multi-Versioned Databases,
we study how to make data structures for external memory persistent.

Structure of the dissertation

• Chapter 1 (Introduction). This chapter provides a detailed overview
of the subject of this dissertation. In particular, the three problems con-
sidered in the following chapters are formally defined, the relevant lit-
erature is surveyed, and our contributions are briefly stated. Moreover,
Section 1.2 provides the necessary preliminaries and the terminology for
the remainder of the dissertation.

• Chapter 2 (Dynamic Planar 3-Sided Range Reporting Queries)
The content of this chapter is based on two papers. In particular,
Sections 2.2 and 2.3 are part of a paper published in the Proceed-
ings of the 13th International Conference on Database Theory (ICDT
2010) [KPS+10]. It is entitled “Efficient Processing of 3-Sided Range
Queries with Probabilistic Guarantees”, and it is joint work with Alexis
Kaporis, Apostolos Papadopoulos, Spyros Sioutas and Kostas Tsich-
las. Section 2.4 is part of a paper published in the Proceedings of the
20th International Symposium on Algorithms and Computation (ISAAC
2009) [BKS+09]. It is entitled “Dynamic 3-Sided Planar Range Queries
with Expected Doubly Logarithmic Time”, and it is joint work with Gerth
Stølting Brodal, Alexis Kaporis, Spyros Sioutas and Kostas Tsichlas.

In this chapter, we study dynamic data structures for internal and ex-
ternal memory that support planar orthogonal 3-sided range reporting
queries and updates efficiently over an average case sequence of update
operations. In Section 2.2 we present a dynamic data structure for internal
memory and its variant for external memory, that support update oper-
ations more efficiently than the previous worst-case efficient structures,
under the assumption that the coordinates of the points are drawn from
a continuous but unknown probabilistic distribution. In Section 2.3 we
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present a dynamic data structure for internal memory and its variant for
external memory, that support both queries and updates more efficiently
than previous worst-case efficient structures, under the assumption that
the x-coordinates of the points are drawn from a smooth probabilistic
distribution, and the y-coordinates are drawn from a class of probabilistic
distributions that exhibit unbounded density. In Section 2.4 we waive the
assumption on the y-coordinates of the points. We present a dynamic data
structure for internal memory and its variant for external memory, that
support both queries and updates more efficiently than previous worst-
case efficient structures, only under the assumption that the x-coordinates
of the points are drawn from a smooth probabilistic distribution. Finally,
we propose some open problems.

• Chapter 3 (Dynamic Planar Range Maxima Queries) The con-
tent of this chapter is based on a paper published in the Proceedings of
the 38th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2011) [BT11]. It is entitled “Dynamic Planar Range
Maxima Queries”, and it is joint work with Gerth Stølting Brodal.

In this chapter, we study dynamic data structures for internal memory
that support different variants of planar orthogonal range maxima re-
porting queries and updates efficiently in the worst case. In Section 3.2
we present a dynamic data structure for the pointer machine model that
maintains the maximal points of a planar pointset, and supports inser-
tions and deletions in logarithmic worst case time. We obtain the result
by a new technique for updating dynamic data structures that is based
on partial persistence, which for our problem allows for deleting a point
in O(insertion) time. Moreover, we show that the structure supports in
the the same complexity, the more general query of reporting the max-
imal points among the points that lie within a given 3-sided orthogonal
rectangle unbounded from above. In Section 3.3 we adapt the above the
structure to the word-RAM model, and obtain the first dynamic data
structure for this model that supports all the operations in sublogathmic
worst case time. In Section 3.4 we present a dynamic data structure for
the pointer machine model that supports reporting the maximal points
among the points that lie within a given 4-sided orthogonal rectangle.
This improves previous results by a logarithmic factor. Finally, we pro-
pose some open problems.

• Chapter 4 (Fully Perstistent B-Trees) The content of this chapter is
based on a paper very recently submitted to the ACM-SIAM Symposium
on Discrete Algortithms 2012 (SODA 2012) [BSTT12]. It is entitled
“Fully Persistent B-Trees”, and it is joint work with Gerth Stølting Bro-
dal, Spyros Sioutas and Kostas Tsichlas.

In this chapter, we study the problem of making B-trees fully persis-
tent in external memory. In Section 4.2 we present a generic method
that makes any ephemeral pointer-based data structure fully persistent
in the I/O model and is efficient over a sequence of worst case update
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operations, as long as every node of the ephemeral structure occupies a
constant number of blocks on disk. We present the result in form of an
interface of fundamental operations to be executed by the implementation
of the ephemeral structure. In Section 4.3 we present an implementation
of (a, b)-trees, where every update operation causes at most a constant
number of modifications to the tree. In Section 4.4 we obtain the currently
most efficient implementation of a fully persistent B-trees, by applying
our method for full persistence in external memory to our implementation
of (a, b)-trees. Finally, we propose some open problems.
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Chapter 1

Introduction

This dissertation studies the problems of designing average case efficient
fully dynamic data structures for Planar 3-Sided Range Reporting in the inter-
nal and the external memory (Chapter 2), designing worst case efficient fully
dynamic data structures for Planar Range Maxima Reporting in the internal
memory (Chapter 3), and designing I/O-efficient Fully Persistent B-trees for
the external memory (Chapter 4). In the following, we introduce the field of
dynamic data structures in order to define the terminology.

Research on design and analysis of dynamic data structures studies how
to process and maintain volatile data efficiently. Volatile data arises in ap-
plications from network optimization, VLSI layout design, computer graphics,
distributed computing and other fields, is usually expressed as objects that have
some combinatorial relationship to each other. A dynamic data structure stores
a set of input objects in memory and supports the update operation. This op-
eration modifies the stored data either by modifying an already stored object,
or by inserting a new object in the stored set, or by deleting a stored object
from the memory. The data structure moreover supports the query operation
that processes the stored objects in order to answer questions about them. For
example, the objects may be points on the plane, where the relationship of two
points is their distance, and the query asks for the two points in the set with
minimum distance. An efficient dynamic data structure minimizes the space
that the objects occupy in memory and the time to support the query and the
update operations.

Consider the outcome of an update operation to a dynamic data structure
to be a new version of the structure. The new version contains the unmodified
objects, the modified objects and the inserted objects, and does not contain the
objects removed by the operation. A dynamic data structure is called persistent
if all the versions of the structure are maintained as update operations are per-
formed to it. Ordinary data structures, which do not have this capability are
called ephemeral. The problem of making an ephemeral dynamic data struc-
ture persistent can be seen as the problem of designing another dynamic data
structure, called persistent mechanism, that assumes the ephemeral structure
as an input object. The supported query and update operations, respectively
query and update a particular version of the structure.
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2 Chapter 1. Introduction

The field of Computational Geometry interprets the input objects as geo-
metric objects, such as points, lines, polygons, hyper-planes, etc., that lie in
the d-dimensional Euclidean space Rd. Problems in this field usually ask for
computing a geometric property of objects with high complexity. For example
the problem of Line Segment Intersection, asks to report all the intersections
that occur in a given set of line segments. The problem is called static when
the objects cannot be modified. Dynamic data structures with lower complex-
ity are useful tools for algorithms that solve such static problems. Moreover,
persistent data structures are usually used for preprocessing the input objects.
In this setting the sequence of update operations is known in advance, namely
the updates are offline, in contrast to an online setting. In many applications,
the update operations are often only insertions or only deletions, in which case
it suffices to use a semi-dynamic data structure.

Problems that arise in Geometric Range Searching, a fundamental subfield
of computational geometry, ask to store and preprocess a set of geometric ob-
jects, such that range queries can be supported efficiently. Range queries ask for
the some information about the objects that intersect a given query range. The
range may be a line, a hyper-rectangle, a simplex, a sphere, etc. The solution
to geometric range searching problems is given by a static data structure that
supports efficiently the range query, occupies minimal space and can be pre-
processed efficiently. Static data structures do not support update operations.
However, the fact that the data is immutable does not mean that the static
data structure may not be modified itself. Problems that arise in Dynamic Ge-
ometric Range Searching moreover ask for insertions and deletions of objects.
Solutions to such problems are given by fully dynamic data structures that sup-
port range queries and operate in an online setting, namely when the update
operations are not known in advance and they are executed upon request.

A database stores and processes large amounts of data, while maintaining
them under frequent updates. In practice, large amounts of data means that
the data is too big to be stored in internal memory, and thus it is stored in
external memory, which may be a hard disk or some other means of storage
with slow data access. Problems that arise in the field of Databases can be usu-
ally expressed as geometric range searching problems. Therefore I/O-efficient
data structures, namely data structures optimized for external memory, that
solve such problems, comprise also an implementation of databases that support
range queries. A database is updated by means of transactions that modify the
stored data. Dynamic I/O-efficient data structures implement databases that
can be updated in an online setting. Moreover, persistent I/O-efficient data
structures implement databases that maintain the history of modifications that
the transactions impose to the stored data, or also the history of modifications
that occur to the database itself. This finds applications in the subfield of
Multi-Versioned and Time-Evolving Databases.
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1.1 Dynamic Range Searching

Here we present the problems considered in this dissertation, survey the relevant
literature, and state our contributions. All considered problems are of variants
of Dynamic Orthogonal Range Reporting problems. The input is a set of n
points in d-dimensional Euclidean space Rd. A fundamental problem in this
field asks for dynamic data structures that support d-dimensional orthogonal
range reporting queries. The query reports the points that lie within a given d-
dimensional axis-aligned orthogonal hyper-rectangle [!1, r1]×[!2, r2]×. . .×[!d, rd],
where ∀i ∈ [1, d]!i ≤ ri. For d = 2, the queries are planar orthogonal 4-sided
rectangles [x!, xr]×[yb, yt].

1.1.1 Planar Orthogonal 3-Sided Range Reporting Queries

In Chapter 2 we consider the problem of designing dynamic data structures
for internal and external memory that support planar orthogonal 3-sided range
reporting queries, and are efficient in the average case. Worst case sequences of
operations do not usually arise in real-word applications, which motivates us to
study the average case complexity of the problem. For this reason we assume
that the x- and y-coordinates of the points are drawn from a probabilistic
distribution. Planar orthogonal 3-sided range reporting queries ask to report
the points that lie within a given orthogonal axis-aligned rectangle [x!, xr]×]−
∞, yt] where x! ≤ xr. 3-sided queries are also called grounded, since one side
of the rectangle extends to infinity. We refer to these queries simply as 3-
sided range queries. Figure 1.1 shows an example of a 3-sided range query.
Planar orthogonal 3-sided range reporting queries find applications in constraint
and temporal indexing databases [KRVV96], and in databases for uncertain
data [CXP+04].

y

xxrx!

yt

Figure 1.1: The planar orthogonal 3-sided range reporting query
[x!, xr]×]−∞, yt] is shown in gray. Black points are reported.

Table 1.1: Asymptotic bounds for planar orthogonal 3-sided planar range re-
porting in the pointer machine model. The update time is not stated for static
structures. The number of points in the structure is n, the universe of the
x-coordinates is [U ], and the size of the query output is t.

Space Query Time Update Time
[FMNT87] n + U log log n + t -

[McC85] n log n + t log n



4 Chapter 1. Introduction

Table 1.2: Asymptotic bounds for planar orthogonal 3-sided planar range re-
porting in the word-RAM model. The update time is not stated for static
structures. The number of points in the structure is n, the universe of the
x-coordinates is [U ], and the size of the query output is t.

Space Query Time Update Time
[ABR00] n+U 1 + t -

[SMK+04] n+U 1 + t -
[Wil00] n log n

log log n + t log n
log log n

[Wil00] a n log n
log log n + t

√
log n f

[Mor06] n log n
log log n + t logδ n, 0 ≤ δ < 1

Section 2.2 b e n log n + t log log n g

Section 2.3 c e n log log n + t g log log n g

Section 2.4 d e n log log n + t g log log n h

aNo assumption is posed on the input.
bx- and y-coordinates from an unknown µ-random distribution.
cx-coordinates from a smooth distribution, y-coordinates from restricted distribution.
dx-coordinates from a smooth distribution, y-coordinates from arbitrary distribution.
eDeletions are uniformly random over the inserted points.
fExpected time.
gExpected time with high probability.
hExpected amortized time.

Table 1.3: Asymptotic bounds for planar orthogonal 3-sided planar range re-
porting in the I/O model. The update I/Os is not stated for static structures.
The number of points in the structure is n, the size of the query output is t and
the size of the block is B.

Space Query I/Os Update I/Os
[IKO88] n/B log n+t/B -
[BG90] n/B logB n+t/B -

[KRVV96] n/B logB n+t/B+logB -
[RS94] n log B

B log log B logB n+t/B log n log B

[SR95] n/B logB n+t/B+log∗B logB n+ log2
B n
B

h

[ASV99] n/B logB n+t/B logB n h

Section 2.2 a d n/B logB n+t/B logB log n f

Section 2.3 b d n/B logB log n+t/B e logB log n f

Section 2.4 c d n/B log logB n+t/B e logB log n g

ax- and y-coordinates from an unknown µ-random distribution.
bx-coordinates from smooth distribution, y-coordinates from restricted distribution.
cx-coordinates from smooth distribution, y-coordinates from arbitrary distribution.
dDeletions are uniformly random over the inserted points.
eExpected I/Os with high probability.
fExpected amortized I/Os with high probability.
gExpected amortized I/Os.
hAmortized I/Os.
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Internal Memory By n we denote the number of stored points and by t
the size of the query’s output. The implementations of the data structure
for internal memory presented in Sections 2.2 and 2.3 contain priority search
trees [McC85] that support 3-sided range queries in O(log n+t) worst case time
and updates in O(log n) worst case time, using O(n) space. In the word-RAM
model, Willard [Wil00] presents a dynamic data structure, based on fusion
trees [FW93], that supports 3-sided range queries in O (log n/ log log n + t)
worst case time, using O(n) space. Updates are supported in O (log n/ log log n)
worst case time, or O(

√
log n) randomized time, where the randomization comes

from the data structure and not from the distribution of the points. In [Mor06]
the worst case update time is further improved to O(logδ n), for constant δ<1.

Fries et al. [FMNT87] present a static data structure for the pointer machine
that supports 3-sided range queries in O(log log n+t) time and uses O(n+U)
space and preprocessing time. They assume that the the x-coordinates of the
points lie on a grid, namely they are integers from the set [U ]={0, . . .,U−1}. In
the word-RAM model with word size w≥ log n, the x-coordinates can be con-
sidered as lying on the grid. Alstrup et al. [ABR00, Theorem 4] present a static
data structure for the word-RAM model that supports 3-sided range queries
in O(1+t) worst case time, using O(n+U) space and preprocessing time, when
the x-coordinates lie on the grid and the y-coordinates are from R. The data
structure for internal memory presented in Section 2.3 uses the modified prior-
ity search tree of Sioutas et al. [SMK+04], that supports the same operations
in the same complexities as [ABR00]. Tables 1.1 and 1.2 summarize the data
structures for internal memory that support 3-sided range queries.

External Memory By B we denote the size of a block in the I/O model.
Path-caching [RS94] is a generic technique to externalize data structures for
internal memory. Applying it to the priority search tree yields a data struc-
ture that supports 3-sided range queries in O(logB n + t/B) I/Os and updates
in O(log n log B) I/Os, using O(n log B log log B

B ) blocks. P-range trees [SR95]
support 3-sided range queries in O(logB n+t/B+log∗B) I/Os and updates in
O(logB n+log2

Bn/B) amortized I/Os, using O(n/B) blocks. The structures
for external memory in Sections 2.2 and 2.3 contain external priority search
trees [ASV99] that support 3-sided range queries in O(logB n+t/B) I/Os and
updates in O(logB n) amortized I/Os, using O(n/B) blocks. I/O-efficient static
data structures support 3-sided range queries in O(log n+t/B) I/Os [IKO88],
O(logB n+t/B) I/Os [BG90], and O(logB n+t/B+logB) I/Os [KRVV96], re-
spectively, using O(n/B) blocks. The structure for external memory in Sec-
tion 2.3 uses modified external priority search trees [KPS+10] that supports
3-sided range queries in O(t/B+1) expected I/Os with high probability, us-
ing O(n/B) blocks and preprocessing I/Os. Table 1.3 summarizes the data
structures for external memory that support 3-sided range queries.
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Our Contributions In Chapter 2 we present three dynamic data structures
for the word-RAM model that support 3-sided range reporting queries and
updates efficiently in the average case, using linear space. We moreover adapt
the three structures to the I/O model. We assume that the coordinates of the
inserted points are drawn continuously from a µ-random distribution. Moreover
we assume that every stored point is deleted with equal probability [Knu77]. All
presented data structures are deterministic and the expectation is with respect
to the input distribution.

We achieve different bounds by assuming different distributions and adapt-
ing the structures appropriately. In particular, in Section 2.2 we present a
dynamic data structure for the word-RAM model that supports 3-sided range
queries in O(log n + t) worst case time, using O(n) space. It supports updates
in O(log log n) expected time with high probability, when both the x- and y-
coordinates are drawn continuously from a continuous unknown µ-random dis-
tribution. In Section 2.2 we also present the I/O-efficient variant of the above
data structure that supports 3-sided queries in O(logB n+t/B) worst case I/Os,
using O(n/B) blocks of space. It support update operations in O(logB log n)
expected amortized I/Os with high probability, under the same assumptions.

In Section 2.3 we present a dynamic data structure for the word-RAM model
that supports 3-sided range queries in O(log log n + t) expected time with high
probability and supports updates in O(log log n) expected time with high prob-
ability, using O(n) space, when the x-coordinates are drawn continuously from
a (nα, nδ)-smooth distribution [MT93], for constants 0 < α, δ < 1, and the y-
coordinates are continuously drawn from a distribution of the restricted class. In
Section 2.3 we also present the I/O-efficient variant of the above data structure
that supports 3-sided range queries in O(logB log n + t/B) expected I/Os with
high probability and supports updates in O(logB log n) expected amortized I/Os
with high probability, using O(n/B) blocks of space, when the x-coordinates of
the points are continuously drawn from a (n/(log log n)1+ε, n1/B)-smooth dis-
tribution, for a constant 0 < ε, and the y-coordinates are continuously drawn
from a distribution of the restricted class.

In Section 2.4 we present a dynamic data structure for the word-RAM model
that supports 3-sided range queries in O(log log n + t) expected time with high
probability and supports updates in O(log log n) expected amortized time, us-
ing O(n) space, when the x-coordinates of the points are continuously drawn
from a (nα, nδ)-smooth distribution, for constants 0 < α, δ < 1, and when the
y-coordinates are continuously drawn from any arbitrary distribution. In Sec-
tion 2.4 we also present the I/O-efficient variant of this structure that supports
3-sided range queries in O(log logB n+t/B) expected I/Os with high probability
and supports updates in O(logB log n) expected amortized I/Os, using O(n/B)
blocks of space, when the x-coordinates of the points are continuously drawn
from a (n/(log log n)1+ε, n1/B)-smooth distribution, for a constant 0 < ε, and
the y-coordinates are continuously drawn from any arbitrary distribution.
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1.1.2 Planar Orthogonal Range Maxima Reporting Queries

In Chapter 3 we consider the problem of designing dynamic data structures for
the pointer machine and the word-RAM model that support planar orthogonal
3-sided and 4-sided range maxima reporting queries and updates efficiently in
the worst case. Given a set n points in Rd, a point p = (p1, . . . , pd) dominates
another point q = (q1, . . . qd) if pi ≥ qi holds for all i ∈ [d]. The m points
that are not dominated by any other point in the set are called maximal. The
problem of computing all maximal point is known in the field of Databases as
the skyline problem [BKS01]. In database applications, maximal points model
objects that are “preferrable” in all their attributes.

y

x

Figure 1.2: The staircase of a planar pointset. Black points are maximal.
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Figure 1.3: Variants of planar orthogonal range maxima reporting queries are
shown in gray. Black points are reported.
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The maximal points of a static set of n d-dimensional points can be com-
puted in optimal O(n logd−2 n) worst case time for d ≥ 3 [KLP75]. When d=n,
the maximal points can be computed in O(n2.688) worst case time [Mat91].
For d=2 the maximal points are also called the staircase of the set since when
they are sorted by increasing x-coordinate they are also sorted by decreasing
y-coordinate. Figure 1.2 shows the staircase of a planar pointset. The staircase
can be computed in O(n log n) worst case time [KLP75], and in O(n) worst case
time if the points are already sorted by x-coordinate.

The problem of designing dynamic data structures that maintain the set
of maximal points under insertions and deletions of points in a set has been
considered in the pointer machine model [OvL81,FR90,Jan91,dFGT97,Kap00].
The data structures support several queries, such as reporting all m maximal
points (all maxima reporting queries), reporting the t maximal points that
dominate a given query point (maxima dominance reporting queries), reporting
the t maximal points among the points that lie to the left of a given vertical line
(maxima contour reporting queries), and deciding whether a given query point
lies above or below the staircase (maxima emptiness queries). The variants of
range maxima queries are shown in Figure 1.3.

Table 1.4: Asymptotic bounds for range maxima reporting queries in the pointer
machine model. “Dominance” queries: Report the maximal points that dom-
inate the query point. “Contour” queries: Report the maximal points among
the points that lie to the left of a given vertical query line. All structures occupy
O(n) space and report all maximal points in O(m) time. The time every struc-
ture decides whether a point is maximal or not, is the time of the dominance
query, when t = 0.

Dominance Contour Insertion Deletion
[OvL81] log m + t - log2 n log2 n
[FR90] log n + t min{log2 n+t, log n log2 n

(t+1) log n}
[Jan91] log n + t log n + t log n log2 n

[dFGT97] a log m + t - log n log n
[Kap00] log n + t b - log n log n

Section 3.2 log n + t log n + t log n log n

Section 3.3 c log n
log log n + t log n

log log n + t log n
log log n

log n
log log n

aOnly boundary updates are supported.
bAmortized time.
cFor the word-RAM model.

Table 1.5: Asymptotic bounds for rectangular visibility queries in the pointer
machine model. The number of points in the structure is n and the size of the
query output is t.

Space Query Time Insertion Time Deletion Time
[OW88] n log n log2 n + t log2 n log3 n
[OW88] n log n (1 + t) log n log2 n log2 n

Section 3.4 n log n log2 n + t log2 n log2 n
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Overmars and van Leeuwen [OvL81] present a dynamic data structure that
supports all maxima reporting queries in O(m) worst case time, and max-
ima emptiness queries in O(log m) worst case time, using O(n) space. The
insertion and deletion of an arbitrary point is supported in O(log2 n) worst
case time. Frederickson and Rodger [FR90] present a dynamic data structure
that supports all maxima reporting queries in O(m) worst case time, maxima
emptiness queries in O(log n) worst case time, maxima dominance reporting
queries in O(log n+ t) worst case time and maxima contour reporting queries in
O(min{log2 n + t, (t + 1) log n}) worst case time, using O(n) space. The worst
case insertion time is O(log n) and the worst case deletion time is O(log2 n).
Janardan [Jan91] presents a dynamic data structure that supports all max-
ima reporting queries in O(m) worst case time, maxima emptiness queries in
O(log n) worst case time, maxima dominance reporting queries and maxima
contour reporting queries in O(log n + t) worst case time, using O(n) space.
The worst case insertion time is O(log n), and the worst case deletion time
is O(log2 n). D’Amore et al. [dFGT97] improve the worst case deletion time
by assuming boundary updates, namely that the updated point has the max-
imum or minimum x-coordinate among the points in the set. They present
a dynamic data structure that supports insertions and deletions of points in
O(log n) worst case time. It supports all maxima reporting queries in O(m)
worst case time, maxima emptiness queries in O(log m) worst case time, and
uses O(n) space. Kapoor [Kap00] presents a dynamic data structure that sup-
ports insertions and deletions of arbitrary points in O(log n) worst case time.
The structure supports maxima emptiness queries in O(log n) worst case time
and uses O(n) space. Moreover, the structure supports all maxima reporting
queries in O(m + chng · log n) worst case time, where chng is the total num-
ber of changes that the update operations have caused to the staircase that
was reported by the latest query operation. Kapoor modifies the structure
such that a sequence of queries, and n insertions and d deletions of points re-
quires O(n log n + d log n + r) worst case time, where r is the total number of
reported maximal points. The worst case update time remains O(log n), how-
ever the query needs O(r) amortized time. Table 1.4 summarizes the dynamic
data structures for internal memory that maintain the maximal points under
insertions and deletions of points.

3-sided range maxima reporting queries report the maximal points among
the points that lie within a given 3-sided rectangle [x!, xr]×[yb,+∞[ unbounded
from above. They are obtained by composing maxima contour reporting queries
with maxima dominance reporting queries. The structure of [Jan91] support
3-sided range maxima reporting queries in O(log n + t) worst case time.

4-sided range maxima reporting queries report the maximal points among
the points that lie within a given 4-sided rectangle [x!, xr] × [yb, yt]. A spe-
cial case of 4-sided range maxima queries, namely when the query rectangle is
]−∞, xr]×]−∞, yt], can be used to answer rectangular visibility queries, namely
to report the points that are rectangularly visible from a given query point. A
point p ∈ S is rectangularly visible from a point q if the orthogonal rectan-
gle with p and q as diagonally opposite corners contains no other point in P .
Overmars and Wood [OW88] present a dynamic data structure that supports



10 Chapter 1. Introduction

rectangular visibility queries. It is weight-balanced search tree augmented with
secondary structures that support 3-sided range maxima queries. It supports
the queries in O(log2 n+t) worst case time, where t is the size of the output, in-
sertions and deletions of points in O(log2 n) worst case time and uses O(n log n)
space, when the structure of [Jan91] is applied. Both the insertion and deletion
time can be improved to O(log2 n) worst case, using O(n log n) space, at the
expense of O(t log n) worst case query time [OW88, Theorem 3.5]. Table 1.5
summarizes the dynamic data structure for rectangular visibility queries in the
pointer machine model.

Our Contributions In Section 3.2 we present a dynamic data structure
for the pointer machine model, that supports 3-sided range maxima reporting
queries in O(log n + t) worst case time, all maxima reporting queries in O(m)
worst case time and maxima emptiness queries in O(log n) worst case time, us-
ing O(n) space. It supports insertions and deletions in optimal O(log n) worst
case time. This improves by a logarithmic factor the worst case deletion time of
the structure of Janardan [Jan91] for 3-sided range maxima reporting queries.
It attains the same update time as the structure of Kapoor [Kap00]. However,
more general 3-sided range maxima reporting queries are supported, and the
running time are worst case, rather than amortized.

In Section 3.3 we present a dynamic data structure for the word-RAM model
that supports 3-sided range maxima reporting queries in optimal O( log n

log log n + t)
worst case, all maxima reporting queries in O(m) worst case time and maxima
emptiness queries in optimal O( log n

log log n) worst case time, using O(n) space. It
supports the insertion and deletion of a point in O( log n

log log n) worst case time.
These are the first sublogarithmic worst case bounds for all operations in the
word-RAM model.

In Section 3.4 we present dynamic data structure for the pointer machine
model, that supports 4-sided range maxima reporting queries in O(log2 n + t)
worst case time, updates in O(log2 n) worst case time, using O(n log n) space.
This improves by a logarithmic factor the deletion time of the structure of
Overmars and Wood [OW88] for rectangular visibility queries, when the dy-
namic data structure of Janardan [Jan91] for 3-sided range maxima reporting
queries is applied. This also improves by a logarithmic factor the query time
in [OW88, Theorem 3.5].
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1.1.3 Persistent B-Trees

In Chapter 4 we consider the problem of making B-Trees fully persistent in
the I/O model. B-Trees [BM72, Com79, HM82] are the most common dy-
namic dictionary data structures used for external memory. They support one-
dimensional range reporting queries, namely to report the stored one-dimensional
points that belong to a given range [x!, xr] in O(logB n+ t/B) worst case I/Os,
and updates in O(logB n) worst case I/Os, where t is the number of points in
the range. Persistent B-trees are the basic building block for multi-versioned
data bases [ST99]. In Section 1.2.5 we provide the definitions for persistent data
structures. By n we denote the number of elements in the accessed version, by
m the total number of updates performed to all versions, by t the size of the
range query’s output, and by B the size of the block in the I/O model.

The most efficient fully persistent B-Trees, which can also be used for con-
fluent persistence, are the fully persistent B+-Trees of Lanka and Mays [LM91].
They support range queries in O(logB m · (logB n + t/B)) I/Os and updates in
O(log2

B n) amortized I/Os, using O(m/B) disk blocks of space. Multiple vari-
ants of B-Trees have been made partially persistent [BM72,Com79,MS81,
HM81,HM82]. Salzberg and Tsotras’ [ST99] survey on persistent access meth-
ods and other techniques for time-evolving data provides a comparison among
partially persistent B+-Trees used to process databases on disks. They in-
clude the MVBT structure developed by Becker et al. [BGO+96], the MVAS of
Varman and Verma [VV97] and the TSB-Trees of Lomet and Salzberg [LS93].
Moreover, the authors in [GTVV93] acquire partially persistent hysterical B-
Trees [MS81] optimized for offline batched problems. The most efficient imple-
mentation of partially persistent B-Trees was presented by Arge et al. [ADT03]
in order to solve efficiently the static point location problem in the I/O model.
They support range queries in O(logB m+t/B) I/Os and updates in O(logB m)
amortized I/O, using O(m/B) disk blocks. Table 1.6 summarizes the persistent
B-Trees that can be used in an online setting.

Table 1.6: Asymptotic bounds for persistent B-Trees used in an online setting.
The number of operations is m, the size of the accessed version is n, the size of
the block is B and the size of the range query’s output is t.

Space Range Query I/Os Update I/Os
Partially Persistent B-Trees
[LS93] m/B logB m + t/B log2

B m
[BGO+96] m/B logB m + t/B log2

B n
[VV97] m/B logB m + t/B log2

B n a

[ADT03] m/B logB m + t/BlogB m a

Fully Persistent B-Trees
[LM91] m/B logB m · (logB n + t/B) logB m · logB n a

Chapter 4 m/B logB n + t/B logB n + log2 B a

aAmortized I/Os.
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Our Contributions In Chapter 4 we present an implementation of fully
persistent B-Trees that supports range queries at any version in O(logB n+t/B)
I/Os and updates at any version in O(logB n + log2 B) amortized I/Os, using
O(m/B) disk blocks.

We obtain the result by first designing a method for the I/O model that
makes pointer-based ephemeral data structures fully persistent (Section 4.2).
We assume that a record of the ephemeral structure occupies a constant number
of blocks. The method achieves O(1) worst case I/O-overhead per access step.
The access step for the I/O model is defined as an access to a block of the
ephemeral structure. Moreover, the method achieves O(din log B) amortized
I/O-overhead and O(din

B ) amortized space-overhead per update step, where din

is the maximum indegree of an ephemeral record. The update step in the I/O
model is defined a constant number of modifications made to a record of the
ephemeral structure.

In Section 4.3 we present the Incremental B-Trees, an implementation of B-
Trees that supports one-dimensional range reporting queries in O(logB n+t/B)
I/Os and updates in O(logB n) I/Os, using O(n/B) blocks of space, and where
each update operation performs in the worst case O(1) modifications to the
tree. The desired fully persistent B-Trees are achieved by applying our method
for I/O-efficient full persistence to Incremental B-Trees (Section 4.4).
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1.2 Preliminaries

In this section we provide the basic preliminary structures and methods that
we use or modify appropriately in order to attain our results. This moreover
serves the purpose of defining the terminology used to present our contributions
in the introduction of each chapter. For every presented result that is used by
our structures, we refer to the part of the dissertation that concerns it.

1.2.1 Models of Computation

Here we define the considered models of computation and their measures of
complexity. Computation in internal memory is usually studied by the pointer
machine and the word-RAM models. Accessing data in external memory is
usually studied by the I/O model.

The Pointer Machine model assumes that the memory consists of a set of
records that contain a constant number of fields, where either a value or a
pointer to another record can be stored. Comparisons are the only operation
allowed on the values, and they take constant worst case time. When the data
structure stores n elements, its space S(n) is measured in terms of the number
of occupied records. The query time Q(n) and update time U(n) is measured
in terms of value comparisons and pointer traversals.

The Random Access Machine model with word size w (word-RAM model)
assumes that the memory consists of an infinite array of cells, where every
cell contains w bits. The elements are considered to be integers from the uni-
verse U = {0, . . . , 2w − 1}. Every cell can be accessed in constant worst case
time (random acces), and bit-wise operations allowed on the elements, such as
comparisons, shifts, logical operations, etc., that need constant worst case time.
When w ≥ log n, n different integers can be stored. The integers belong to rank-
space, where two sets of integers that may have different values, but have the
same permutation, are mapped to the same instance of the problem. Tabulation
can be used in order to support the update operations in constant worst case
time. In particular, precomputed lookup-tables store precomputed information
about every possible permutation. The space occupied by the tables is not
the bottleneck, as long as the number of integers in the permutation is small
enough. When the data structure stores n elements, its space S(n) is measured
in terms of the number of occupied cells. The query time Q(n) and update time
U(n) is measured in terms cell accesses and bit-wise operations.

The Input/Output model (I/O model) [AV88] assumes that the memory
consist of two parts. The external memory that is an infinite array of blocks,
where every block contains at most B elements, and the internal memory that
consists of an array of M

B blocks. Complexity is measured in I/O-operations
(I/Os), namely in transfers of blocks between the two memories. Computation
occurs only among the elements stored in internal memory, and it is for free. A
block in external memory can be accessed in one I/O. When the data structure
stores n elements, its space S(n) is measured in terms of the number of occu-
pied blocks in external memory. The query time Q(n) and update time U(n)
is measured in terms I/O-operations, respectively called query and update I/Os.
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1.2.2 Dynamic Search Trees

The data structures presented in Sections 2.2, 2.3, 2.4, 3.2, 3.3, 3.4 and 4.3 are
either based on implementations or are modifications of search trees. Search
trees are dynamic data structures that solve the Dynamic Predecessor Search-
ing problem, namely they support predecessor searching queries. Let S be a
set of n elements that belong to a totally ordered universe U . Predecessor
searching queries ask to report the predecessor in S of a given element of U .
The predecessor of an element e in S is the largest element in S that is smaller
or equal to e. Similarly, the successor of an element e in S is the smallest ele-
ment in S that is larger or equal to e. If e exists in S, it is itself its predecessor
and successor. Therefore, predecessor queries can moreover decide whether a
given element belongs in S or not. These queries are called membership queries.
Search trees moreover support insertions and deletions of elements of U to S.

In order to support the operations efficiently, search trees maintain the
elements in S sorted with respect to their total order. In particular, search
trees are rooted trees that store the elements of S. Every internal node u stores
a set Lu = [p1, e1, p2, . . . , ek−1, pk] of k − 1 elements e1, . . . , ek−1 stored in non-
decreasing order and k pointers p1, . . . , pk. Every pointer pi, where i ∈ [i, k−1],
points to the root node ui of a recursively defined search tree on the elements
xi of S, such that ei < xi < ei+1 holds. Pointer pi is called a child pointer to
the child node ui of its parent node u. Each element of S is stored exactly once
in the tree, either in a leaf or in an internal node, thus the space of the search
tree is linear to the number of stored elements.

The elements stored in an internal node act as search keys. The search for
the predecessor of element e in the tree begins at the root. In every internal
node u, we search for the predecessor element ei of e in Lu. If e belongs to
Lu, and thus e = ei, the search returns ei. Otherwise if ei )= e and the search
recurses to the subtree pointed by pi+1. This defines a search path from the
root to the node that contains e, if it belongs to S. Otherwise, the search path
ends at the leftmost leaf of the subtree pointed by the child pointer that follows
in Lu the predecessor of e in S.

1
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1 3 5 72 64

Figure 1.4: Set S is depicted geometrically as one-dimensional points that lie
on the infinite line U . The predecessor (resp. successor) of e is 5 (resp. 6). The
search tree that stores S is also shown. Thick edges depict the search path.
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We define the attributes of search trees that are used in the remainder of
the dissertation. A search tree is node-oriented when the search keys are stored
elements. A search tree is leaf-oriented when the search keys are copies of stored
elements. A node u is the ancestor node of a node v in its subtree. Node v
is the descendant node of u. Two nodes that have a common parent node are
called sibling nodes. The depth of an internal node u is the number of edges
(length) in the root-to-u path. The height of an internal node u is the maximum
length of a u-to-! where ! is a leaf in the subtree of u. The weight of an internal
node is the number of leaves in its subtree. The degree of an internal node is
the number of its children. A search tree is binary when the degree of every
internal node is two. The two children are distinguished as left and right.

Balancing Here we describe how to update search trees efficiently. To insert
an element e to S, we search for the node u that contains its predecessor e′. If
u is a leaf we insert e in Lu. Otherwise, we insert e in the leaf that contains the
successor of e′. Notice that if e′ = ei in Lu, its successor belongs to the leftmost
leaf of the subtree pointed by the child pointer pi+1. To delete an element e
from S, we search for the node u that contains it. If e does not belong to S, no
deletion is required. If u is a leaf, we remove e from Lu. Otherwise, we swap
e with its successor element in S, such that e belongs to a leaf, and remove
it from the leaf. If the tree is not processed any further after an insertion or
deletion of an element, particular sequences of update operations may transform
the tree in such a way that the succeeding operations may not have the same
asymptotic complexity. For example consider inserting n times an element that
is larger than the currently largest element stored in the tree. Searching for the
largest element now needs O(n) time. To avoid this situation, the tree has to
be “balanced”. In particular, a search tree with n leaves and bounded degree
is balanced if the longest root-to-leaf path is at most c log n, for a constant
c ≥ 0. In order to achieve balance, constraints are imposed to the nodes with
respect to some attribute of the tree, such as the height, the weight, the degree
of the nodes, etc. As we explained, an insertion or deletion may cause some
nodes to violate their constraints and thus render the search tree unbalanced.
The violating nodes belong to the nodes of the search path for the updated
element. The tree is rebalanced by restoring the violated constraints.

A search tree is height-balanced if there is a constraint on the height of
the subtrees rooted at the children of every internal node of the tree. AVL
trees [AVL62] are height-balanced binary search trees that support predecessor
queries, insertions and deletions of elements in O(log n) worst case, using O(n)
space. The balance constraint asserts that the height of the left and the right
subtree of every internal node differ by at most one. The tree is rebalanced
by performing in the worst case O(log n) rotations over adjacent edges to the
unbalanced nodes of the search path. A right rotation over the edge (u, u′)
where node u is an unbalanced node on the search path and u′ is the left child
of u, sets the right child of u′ as the right child of u, and sets u as the right
child of u′. The height the left subtree of u decreases and the height of the right
subtree of u′ increases by one. Left rotations are symmetric.
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Figure 1.5: From left to right: A right rotation over edge (u, u′). From right to
left: A left rotation over edge (u′, u).

A search tree is weight-balanced if there is a constraint on the weight of
every node. The implementation of the data structure presented in Section 3.4
is based on BB[α]-trees [NR72,BM80]. They are weight-balanced binary search
trees that support predecessor queries, insertions and deletions of elements in
O(log n) worst case time, using O(n) space. The balance constraint asserts that
the weight of every node differs from the weight of its left child by at most a
constant multiplicative factor. The tree is rebalanced using in the worst case
O(log n) rotations along the search path.

A search tree is path-balanced if there is a constraint on the length of the
longest and the shortest path from every internal node to any leaf of the
node’s subtree. The implementation of the data structure presented in Sec-
tion 3.2 is based on red-black trees [GS78]. They are path-balanced binary
search trees that support predecessor queries, insertions and deletions of ele-
ments in O(log n) worst case time, using O(n) space. The nodes of the tree
are assigned colors on which constraints are imposed in order to ensure that
no path from an internal node u to a leaf ! of its subtree is longer than twice
the length of any other u-to-! path. In particular, every node can be either red
or black. The root, the leaves and the children of every red node are black.
Moreover, every path from a node to any leaf of its subtree contains the same
number of black nodes. The tree is rebalanced by rotations and by recolorings,
namely by changing the color assigned to the unbalanced nodes. In the worst
case, the tree is rebalanced by O(1) rotations and O(log n) recolorings after the
insertion of a leaf, and by O(log n) rotations and O(log n) recolorings after the
deletion of a leaf. BB-trees [Tar83] is an implementation of red-black trees that
are rebalanced in the worst case by O(log n) recolorings and only O(1) rotations
after every insertion and deletion of an element.

A search tree is degree-balanced if all the leaves of the tree have the same
depth and there is a constraint on the degree of every internal node of the tree.
The data structures presented in Sections 2.4 and 4.3 are modifications of (a, b)-
trees [HM82]. They are degree-balanced search trees that support predecessor
queries, insertions and deletions of elements in O(log n) worst case time, using
O(n) space. The amortized update time is O(1) for 2 ≤ a and 2a ≤ b. The
balance constraint asserts that the degree of every internal node, except for
the root, is an integer within the range [a, b], and the weight of every leaf is an
integer within [a′, b′], for constants a′ ≤ b′. The degree of the root is within [2, b]
when n ≥ 2. Parameters a and b are constants such that 2 ≤ a and 2a− 1 ≤ b.
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An element is inserted in a leaf of the tree, which may overflow the leaf,
namely its weight may exceed b′. The leaf is rebalanced by splitting it into
two balanced leaves ! and !′. Leaf !′ becomes the new child of the parent node
u of !. The leftmost element of !′ is moved as the new search key in u, and a
new child pointer to !′ is inserted to u. This may in turn overflow the internal
node u, namely its degree may exceed b. Node u is split recursively, which may
cause the splits to cascade up to the root of the tree. The two nodes that
occur when splitting the root become the children of a new root. An element is
deleted from a leaf of the tree, which may underflow the leaf, namely its weight
may become smaller than a′. The leaf is rebalanced by merging it with one of
its sibling leaves !′. The search key in the common parent node u is moved to
the resulting leaf, and the child pointer to !′ is removed. If the resulting leaf
overflows, we perform a share, namely we split the leaf again into two balanced
leaves. A merge may cause u to undeflow, namely its degree to become smaller
than a. Node u is merged recursively, which may cause the merges to cascade
up to the root of the tree. When the only two children nodes of the root are
merged, the resulting node becomes the new root of the tree.

(a, b)-trees are suitable for the I/O model. By setting a, b = Θ(B) every
node is stored in a constant number of blocks, and thus searching in a node,
splitting a node and merging two nodes can be performed in constant worst case
I/Os. Predecessor searching, inserting and deleting an element is supported in
O(logB n) worst case I/Os, using O(n/B) disk blocks.

The Amortized Complexity of Search Trees We study the amortized
complexity of rebalancing a search tree, namely the number of rebalancing oper-
ations over a sequence of worst case update operations. Two consecutive update
operations on (2, 3)-trees [AHU74], and more general on (a, 2a− 1)-trees or B-
trees1 [BM72,Com79], may cause two sequences of O(log n) rebalancings. For
example, consider inserting and deleting repeatedly an element whose insertion
rebalances all nodes on the search path. In particular, there exists a sequence
of n worst case operations such that the total time for rebalancing the tree is
O(n log n). Namely the amortized rebalancing time is O(log n). On the other
hand, hysterical [MS81], robust [HM81] and weak [HM82] B-trees, namely (a, b)-
trees with b ≥ 2a, have constant amortized rebalancing time. Namely, for every
sequence of n worst case operations, the total time for rebalancings is O(n).

For every red-black tree [GS78] there exist an equivalent (2, 4)-tree [Bay72].
In particular, a node with degree 4 in a (2, 4)-tree corresponds to a black node
with two red children in a red-black tree. A node with degree 3 in a (2, 4)-tree
corresponds to a black node with one red child in a red-black tree. Since the
red child can either be the left or the right child, the correspondence between
(2, 4)-tree and red-black trees is not one to one. In effect, a red node and its
parent node in a red-black tree is interpreted as belonging to the same node
in the equivalent (2, 4)-tree. A rotation in a red-black tree corresponds to
switchingthe interpretation of the corresponding degree 3 node. A recoloring in
a red-black tree corresponds to splitting a degree 4 node. Therefore, red-black

1Notice that under this context, B-trees are translates as “B”ayer-trees. (a, b)-trees with
a, b = O(B) are also called B-trees, or else “B”lock-trees.
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trees have also constant amortized rebalancing time. In particular, when they
are implemented as BB-trees, the time for rotations is O(1) in the worst case,
and the time for the recolorings is O(1) amortized.

BB[α]-trees satisfy the weight property [BM80]. It states that after re-
balancing a node with weight w, at least Ω(w) update operations need to be
performed to its subtree, before the node becomes unbalanced again.

Augmented Search Trees Balanced search trees can be used to solve dy-
namic problems that are harder than Dynamic Predecessor Searching, by ac-
commodating appropriate data structures in their internal nodes. Such aug-
mented search trees are used that consist of the base search tree, whose internal
nodes contain secondary structures that store auxiliary information. The data
structures presented in Sections 2.4, 3.2, and 3.3 are augmented search trees
that solve the Dynamic Planar 3-sided Range Reporting problem and the Dy-
namic Planar Range Maxima Reporting problem, respectively.

1.2.3 Updating Static Data Structures

Static or semi-dynamic data structures can be transformed to fully dynamic
data structures. In principle, parts of the static structure are reconstructed
from scratch accommodating the modifications that are being accummulated
over a sequence of operations.

Amortized Update Time The logarithmic method [Ove87] is a generic tech-
nique to transform static data structures into fully dynamic data structures,
incurring a logarithmic overhead in all complexities. More precisely, let the
static data structure that stores n elements support a particular query in Q(n)
worst case time, be preprocessed in P (n) worst case time, and use S(n) space.
The resulting dynamic data structure supports the queries in Q(n) log n worst
case time and the updates in P (n) log n amortized time, using S(n) log n space.

An update operation is weak if it does not degrade the running time of the
succeeding query operations by more that a constant factor. More precisely, if a
sequence of operations that contains αn weak updates is executed on a dynamic
data structure that supports the query in Q(n) worst case time, then the query
operations in the sequence need at most βQ(n) time in the worst case, where
0<α<1 and β≤1 are constants. For example, a sequence of n/2 deletions are
weak updates for a search tree tree since the height of the tree becomes at least
*log n

2 +, and thus queries and updates will still take O(log n) time. On the other
hand, insertions are not weak updates for a search tree, since the n insertions
of an elements that is larger than largest element currently stored in the tree
causes the height of the tree, and thus the worst case query time, to be O(n).

The technique of global rebuilding [Ove87] allows static or semi-dynamic
data structures to moreover support weak updates in amortized time. The
new version of the data structure is reconstructed from scratch, every time
a sequence of update operations (epoch) is over. The updates of the previous
epoch are incorporated in the construction of the new structure. By selecting an
adequately long epoch with respect to the preprocessing time of the structure,
the amortized time for the weak updates can be decreased down to a constant.
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Augmented Search Trees with Efficient Amortized Update Time The
static or semi-dynamic secondary structures of an augmented search tree can
be updated by global rebuilding. The data structures presented in Section 2.4
are search trees augmented with static secondary structures. We update them
using partial rebuilding [Ove87,MT93] that rebalances the nodes in the subtree
of the highest unbalanced node, and updates their secondary structures.

Worst Case Update Time The update time becomes worst case when the
update operations that exhibit expensive worst case time, are performed incre-
mentally over the sequence of succeeding updates. The total time to execute
the expensive update is divided into incremental steps, such that one step is
executed for every succeeding operation. In Section 4.3 we present an implemen-
tation of (a, b)-trees where rebalancing operations are performed incrementally
and take O(1) worst case time.

The data structures presented in Section 2.3 are updated using incremental
global rebuilding [Ove87]. This technique constructs incrementally a new data
structure, over the sequence of succeeding updates. In particular, two copies
of the structure are maintained during an epoch. The working copy, which is
initiated every time the reconstruction begins, and the background copy, which
is under construction. The queries are performed to the working copy. For every
update operation, a reconstruction step is executed on the background copy, and
thus the reconstruction advances using at most O(1) time. The update is stored
in a buffer and performed in the working copy. As soon as the reconstruction
is over, the buffered updates are performed incrementally to the background
copy. When this is over, the background copy becomes the working copy and
a new background copy is constructed, initiating a new epoch.

1.2.4 Dynamic Interpolation Searching

Chapter 2 provides implementations for dynamic data structures that solve
efficiently the Dynamic Planar 3-Sided Range Reporing Problem in the average
case. Worst case sequences of operations do not arise usually in real-world
applications. Data structures can be adapted accordingly in order to support
efficiently an average case sequence of operations.

Random Input To model the data that arises from real-world applications,
we assume that the input is random. In particular, we assume that the in-
put elements are drawn continuously from a µ-random probability distribution,
namely a probability distribution with density function µ. By “drawn contin-
uously” we mean that the distribution does not change during the lifespan of
the structure.

The running time of search trees can be significantly improved when the
input is “smoothly” distributed, namely when not too many insertions and
deletions occur within a constrained interval of the universe U of the elements.
Informally, a probability distribution defined over an interval I is smooth if the
probability density over any subinterval of I does not exceed a specific bound,
however small this subinterval is. In other words the distribution does not
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contain ”sharp peaks”. In particular, given two functions f1 and f2, a density
function µ = µ[a, b](x) is (f1, f2)-smooth [MT93] if there exists a constant β,
such that for all c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b and all integers n, it holds that:

∫ c2

c2− c3−c1
f1(n)

µ[c1, c3](x)dx ≤ β · f2(n)
n

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) = µ(x)/p for c1 ≤
x ≤ c3 where p =

∫ c3
c1

µ(x)dx. Intuitively, function f1 partitions an arbitrary
subinterval [c1, c3] ⊆ [a, b] into f1 equal parts, each of length c3−c1

f1
= O( 1

f1
); that

is, f1 measures how fine is the partitioning of an arbitrary subinterval. Function
f2 guarantees that no part, of the f1 possible, gets more probability mass than
β·f2
n ; that is, f2 measures the sparseness of any subinterval [c2 − c3−c1

f1
, c2] ⊆

[c1, c3]. The class of (f1, f2)-smooth distributions (for appropriate choices of f1

and f2) is a superset of both regular and uniform classes of distributions, as well
as of several non-uniform classes [AM93,KMS+03]. Actually, any probability
distribution is (f1,Θ(n))-smooth, for a suitable choice of β.

We define the restricted class of distributions as the class that contains dis-
tributions that exhibit unbounded density. The motivation for assuming these
distributions derives from the fact that they occur often in practice. Among
others the class contains the following districutions. The Zipfian distribution
is a distribution where the probabilities of occurrance follow Zipf’s law. Let
N be the number of elements, k be their rank and s be the value of the expo-
nent characterizing the distribution. Then Zipf’s law is defined as the function
f(k; s,N) = 1/ks

ΣN
k=11/ns . Intuitively, few elements occur very often, while many

elements occur rarely. The Power Law distributions is a distribution over prob-
abilities that satisfy Pr[X ≥ x] = cx−b for constants c, b > 0.

Dynamic Interpolation Search Trees Searching among elements that are
drawn from a smooth distribution can be benefited by interpolation [Pet57],
namely by utilizing an estimation of the inverse distribution.

The implementations of the data structure presented in Sections 2.3 and 2.4
contain a variant of interpolation search trees [MT93]. An interpolation search
tree occupies O(n) space and supports searching for an element in O(log log n)
expected time, when it stores n elements drawn from a (nα,

√
n)-smooth dis-

tribution, for a constant 1/2 ≤ α < 1. The worst case query and update time
is O(log2 n). Updates need O(log n) amortized time, and O(log log n) expected
amortized time when the sequence of update operations is average case.

Augmented sampled forests [AM93] occupy O(n) space and support search-
ing for an element in Θ(log log n) expected time, when n elements are stored that
are drawn from a broader class of (n/(log log n)1+ε, nδ)-smooth distributions,
for constants 0 < ε, 0 < δ < 1. The worst case query time is O(log n). Updates
are supported in O(log n) worst case time, and O(log log n) expected amortized
time. The expected search time is o(log log n) for ( n

o(poly log∗ n , logO(1))-smooth
distributions, and O(log n) for any distribution.
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For the internal memory data structures presented in Sections 2.3 and 2.4,
we use the dynamic interpolation search trees of [KMS+06]. This implementa-
tion occupies O(n) space and supports searching in O(log log n) expected time
with high probability, when n elements are stored that are drawn from an even
broader class of (nα, nδ)-smooth distribution, for constants 0 < α, δ < 1, using
O(n) space. The worst case query time is O(

√
log n

log log n). The structure moreover
allows for multiple occurances of the same elements, and for discrete µ-random
distributions. Given the position of the inserted or deleted element, the struc-
ture can be updated in O(1) worst case time. The structure uses O(n) space.
The expected search time is O(1) with high probability for (O(n), O(lnO(1) n))-
smooth distributions, and O(log log n) for the resticted class of distributions.

For the external memory data structures presented in Sections 2.3 and 2.4,
we use the variant of interpolation search trees for external memory, namely in-
terpolation search B-trees [KMM+05]. This implementation occupies O(n/B)
blocks of space and supports searching in O(logB log n) expected I/Os with high
probablity, when the n elements are drawn from (n/(log log n)1+ε, n1/B)-smooth
distributions, for a constant 0 < ε, using O(n) space. The worst case query
I/Os are O(logB n). Given the position of the inserted or deleted element, the
structure can be updated in O(1) worst case I/Os.

1.2.5 Persistent Data Structures

A persistent data structure is a dynamic data structure that remembers all the
its versions as updates are performed to it. Depending on the operations we
are allowed to do on previous versions, we get several notions of persistence. If
we can only update the version produced last and other versions are read-only,
the data structure is partially persistent. In this case the versions form a list
(version list). A more general case, the full persistence, allows any version
to be updated, yielding a version tree instead. In turn, this is a special case
of confluent persistence, where the additional operation of merging different
versions together is allowed. Here, the versions form a directed acyclic graph
(version DAG). A survey on persistence can be found in [Kap04]. Below we
survey the generic methods that make dynamic data structures persistent.

Partial Persistence We augment the search trees presented in Sections 3.2
and 3.3, using partially persistent secondary structures. Many data structures,
such as search trees and lists, have been made partially persistent. Over-
mars [Ove87] present generic approaches to make any ephemeral data structure
partially persistent in internal memory. The first approach stores explicitly a
copy of the structure after every update operation. It has the drawback that
the space and update time is at least linear to the size of the updated struc-
ture. The second approach stores the sequence of updates, and reconstructs the
data structure from scratch in order to query a particular version. A hybrid
approach stores only a sequence of k updates, for and appropriate choice of k.
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Driscoll et al. [DSST89] present two generic methods that make pointer-
based ephemeral data structures partially persistent. The ephemeral structure
consists of records that contain a constant number of fields, where either a value
or a pointer to another record is stored. Both methods implement a persistent
mechanism that records only the modifications that an update operation makes
to the ephemeral data structure.

The update operation of the ephemeral structure is decomposed into up-
date steps that make a constant number of modifications to one record of the
ephemeral structure. The query operation is decomposed into access steps that
access one record of the ephemeral structure each. The time and space efficiency
of the persistent mechanism is measured in terms of the time overhead of every
access step, and the time and space overhead of every update step performed
to the ephemeral structure. In other words, by the aggravation incurred to the
running time and space of the ephemeral structure.

The fat-node method can be applied to any pointer-based data structure.
Over a sequence of m update operations, it achieves O(log m) worst case time
overhead per update and access step and O(1) worst case space overhead per up-
date step. This method stores all the modifications to a record of the ephemeral
structure in a corresponding persistent record or persistent node, called the fat
node. The version list induces a total order on the versions. Therefore the
contents of a fat node for a particular version can be retrieved by binary search
over the versions stored in the fat node.

The node-copying method can be applied to pointer-based data structures
where at most a constant number of pointers point to the same record, i.e.
a structure with constant bounded in-degree. Over a sequence of m update
operations, it achieves O(1) amortized time and space overhead per update
step and O(1) worst case time overhead per access step. This method follows
the fat-node method and creates a new copy of the fat-node as soon as its size
exceeds a constant. Since there is only one updatable copy, every ephemeral
node corresponds to a linked list of constant size copies of persistent nodes.

Brodal [Bro96] shows how to achieve O(1) worst case update overhead. In
particular, the method makes a pointer-based ephemeral data structure with
constant bounded in-degree partially persistent, achieving O(1) worst case time
and space overhead per update step and O(1) worst case time overhead per
access step.
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Full Persistence In Section 4.2 we present a method for the I/O model
that makes pointer-based ephemeral structures fully persistent. Driscoll et
al. [DSST89] modify their methods in order to make ephemeral pointer-based
data structures fully persistent in internal memory. The modification of the
fat-node method achieves O(log m) worst case time overhead per update and
access step and O(1) worst case space overhead per update step. The ver-
sion tree induces only a partial order on the versions. The preorder of the
version tree induces a total order on the versions, and thus renders any two
versions comparable. The preorder of the tree is stored in a dynamic data
structure for the order maintenance problem [Die82, Tsa84, DS87, BCD+02].
This problem asks to maintain a list under insertions and deletions of elements,
such that order maintenance queries can be answered efficiently, namely given
two elements in the list to decide which lies to the left of the other. Dietz
and Sleator [DS87] present a data structure that supports all operations in
O(1) worst case time, and [BCD+02] present a simplified implementation that
achieves the same bounds.Finally, the algorithm for updating the persistent
mechanism is modified such that the query algorithm can retrieve the contents
of a fat node for a particular version, by comparing versions with respect to
their preorder.

The node-splitting method [DSST89], a modification of the node-copying
method, can be applied to pointer-based data structures with constant-bounded
indegree. It achieves O(1) amortized time and space overhead per update step
and O(1) worst case time overhead per access step. Every ephemeral record
corresponds to a linked list of constant size copies of persistent nodes. Since
every copy is updatable, the persistent nodes have to be split in order to preserve
the structure of the linked list.





Chapter 2

Dynamic Planar 3-Sided Range Queries

Abstract

We consider the problem of maintaining dynamically in internal and exter-
nal memory a set of planar points, and supporting planar orthogonal range
reporting queries of the type [x!, xr]×]−∞, yt] efficiently, when the x- and y-
coordinates of the points are continuously drawn from a probabilistic distribu-
tion. By n we denote number of currently stored points, by t the size of the
query’s output, and by B the block size.

For the word-RAM model, we present a dynamic data structure that sup-
ports 3-sided range queries in O(log n + t) worst case time and updates in
O(log log n) expected time with high probability, using O(n) space, when the
x- and y-coordinates of the points are both drawn from an unknown contin-
uous µ-random distribution. We improve upon the query time by a dynamic
data structure that supports 3-sided range queries in O(log log n + t) expected
time with high probability and updates in O(log log n) expected time with high
probability, using O(n) space, when the x-coordinates of the points are drawn
from a smooth distribution, and the y-coordinates of the points are drawn from
a restricted class of distributions that exhibit high density, such as the Zipfian
or the Power Law distribution. Finally we waive the assumption on the y-
coordinates, and present a dynamic data structure that supports 3-sided range
queries in O(log log n + t) expected time with high probability and updates in
O(log log n) expected amortized time, using O(n) space, when the x-coordinates
of the points are drawn from a smooth distribution, and the y-coordinates are
arbitrarily distributed. For all structures we assume that every stored point is
deleted with equal probability.

We present an O(n/B) space I/O-efficient variant of each structure that is
efficient under similar assumptions. We present a dynamic data structure that
supports 3-sided range queries in O(logB n+t/B) worst case I/Os and updates
in O(logB log n) expected amortized I/Os with high probability, a dynamic data
structure that supports 3-sided range queries in O(logB log n+t/B) expected
I/Os with high probability and updates in O(logB log n) expected amortized
I/Os with high probability, and a dynamic data structure that supports 3-sided
range queries in O(log logB n+t/B) expected I/Os with high probability and
updates in O(logB log n) expected amortized I/Os, respectively.

25
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2.1 Introduction

In this Chapter we present dynamic data structures for the internal and external
memory that support planar orthogonal 3-sided range reporting queries and
updates efficiently in the average case, namely when the x- and y-coordinates
of the points are continuously drawn from a probabilistic distribution.

In Section 2.2 we strive for O(log log n) update time. We present a dynamic
data structure for the word-RAM model and its variant for the I/O model.
The structure for the word-RAM model is a modification of the priority search
tree [McC85]. A priority search tree is a hybrid of a binary heap and a balanced
binary search tree. In particular, it consists of a binary balanced search tree
that supports predecessor queries for the the x-coordinates of the points. The
root of the tree contains the search key for the x-dimension and the point pymin

with minimum y-coordinate among the points in its subtree. The left and right
subtrees of the root are defined recursively as priority search trees over the set
of points that they contain, excluding point pymin . The tree satisfies the min-
heap property, namely that the points pymin in the nodes of any root-to-leaf path
occur in non-increasing order.

An update operation to a priority search tree involves recomputing the point
pymin along a root-leaf-path. However, we can only update nodes up to height
O(log log n) in O(log log n) time . We define a multi-level priority search tree,
namely we divide it into a lower level that contains all the nodes of height at
most log log n, and a higher level that contains all the nodes of height larger
than log log n. In Theorem 2.1 we prove that if the x- and y- coordinates
of the points are continuously drawn from an unknown continuous µ-random
distribution, then during a sequence of O(log n) update operations, at most
a constant number of update operations will involve nodes in the higher level
with high probability. The higher level is updated incrementally over an epoch
of O(log n) update operations, and thus updating the lower level comprises the
bottleneck of every update operation. The I/O-efficient variant of this structure
is an analogous modification to the external priority search tree [ASV99].

In Section 2.3 we strive for both O(log log n) query and update time. We
present a dynamic data structure for the word-RAM model and its variant for
the I/O model. The structure for the word-RAM model is a modification of the
structure in Section 2.2. To identify the points that have x-coordinates within
the query range in O(log log n) time, we store the points at the leaves of the
lower level in an interpolation search tree. In fact, we use the implementation
of [KMS+06], since it attains O(log log n) expected time with high probability
allowing the weakest assumption on the distribution of the x-coordinates.

To report the points that have y-coordinates within the query range in
O(log log n+t) time, we implement the higher level as a modified priority search
tree [SMK+04]. Since it is a static data structure, it can be dynamized by in-
cremental global rebuilding in O(n/ log n) worst case time. In Theorem 2.4 we
prove that if the x- coordinates are drawn from a smooth distribution and the
y- coordinates are drawn from a distribution of the restricted class, then during
a sequence of O(n) update operations, O(log n) update operations will involve
nodes in the higher level with high probability. The higher level is updated
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by incremental global rebuilding over an epoch of O(n) update operations, and
thus the bottleneck of the update operation consists of updating the interpola-
tion search tree, updating the lower levels, and managing the O(log n) update
operations that involve the higher level during the epoch. The variant of this
data structure for the I/O model is an analogous modification to the external
priority search tree [ASV99], where we use modified external priority search
trees [KPS+10] and interpolation search B-trees [KMM+05] instead.

In Section 2.4 we strive for O(log log n) query and update time, while waiv-
ing the assumption on the distribution of the y-coordinates of the points. We
make no restricting assumption about the distribution of the y-coordinates of
the points. In particular, we assume that y-coordinates are drawn from any arbi-
trary distribution. We use interpolation search trees to store the x-coordinates,
and thus we assume that they are drawn from a smooth distribution.

To manage the y-coordinates we first present weight-balanced exponential
trees, a combination of weight-balanced B-trees [AV03] with exponential search
trees [AT07]. Weight-balanced B-trees [AV03] is an adaptation of BB[α]-trees
that combines weight-balancing with degree-balancing and is also suitable for
the I/O model. More precisely, a weight-balanced B-tree with degree parameter
k and leaf parameter !, for costants k > 4 and ! > 0, if the leaves are in the
same level and have weight within [!, 2!− 1], the internal nodes at level i have
weight wi within [12ai, 2ai], and the root has minimum degree 2 and maximum
weight n. The tree is weight balanced by definition, and also degree balanced,
since the degree of a node at level i is wi

wi−1
∈ [k

4 , 4k]. Weight-balanced B-trees
also satisfy the weight property [AV03].

Exponential search trees [AT07] is a method for the word-RAM model that
transforms static data structures that support a particular query operation into
a fully dynamic data structure. In particular, let S be a static data structure
that supports the query in Q(n) worst case time, and needs O(nk−1) space and
preprocessing time, when n elements are stored in it, for constant k ≥ 2. An
exponential search tree supports the same query and updates in T (n) worst
case time, where T (n) ≤ T (n1−1/k) + O(Q(n)), using O(n) space. The weight
wi of a node of height i is Θ(c( 1

1−k )i

), for a constant c. Every node at height
i is augmented with a static secondary structure that contains an element in
the subtree of every child of the node, and thus contains Θ( wi

wi−1
) = Θ(w

1
k
i )

elements. Thus, the time to rebuild the secondary structure of a node at level
i is linear to the time for rebuilding the whole subtree (dominance property).

In order to report the points with y-coordinate that that lie within the query
range, we define a weight-balanced exponential tree that moreover satisfies the
min-heap property. We follow the paradigm of [AT07] and augment every node
of the weight-balanced exponential search tree with a static secondary structure
that supports 3-sided range queries [ABR00] on the points py−min of its children
nodes. In fact, the authors in [ABR00] observe that 3-sided range queries can be
supported by a static data structure for range minimum queries. In particular,
given an array with n elements from a total order, a range minimum query
asks to report the minimum element among the elements that lie between to
given indices of the array. The static data structure of [HT84] supports range



28 Chapter 2. Dynamic Planar 3-Sided Range Queries

minimum queries in O(1) worst case time and uses O(n) space and preprocessing
time. In Lemma 2.2 we prove that the weight-balanced exponential search tree
also satisfies the weight-property. In Lemma 2.4 we prove that the augmented
weight-balanced exponential search tree also satisfies the dominance property,
and thus it supports an update operation in O(1) amortized time (Lemma 2.5).
In Lemma 2.6 we prove that the tree can be updated in O(1) expected amortized
time, regardless of the distribution of the y-coordinates of the points. Thus the
total update time becomes expected amortized and is asymptotically dominated
by the O(log log n) time for the interpolation search.

For the variant of this data structure for the I/O model, we use interpola-
tion search B-trees [KMM+05] to store the points by x-coordinate. We adapt
the weight-balanced exponential search trees to the I/O model and augment
them with precomputed tables that support 3-sided range queries. To achieve
O(n/B) blocks of space, we implement every consecutive Theta(B2) leaves of
the interpolation search B-tree with the dynamic data structure of Arge et
al. [ASV99, Lem. 1] that stores at most k ≤ B2 points in the plane, and sup-
ports 3-sided range queries in O(t/B +1) worst case I/Os, and updates in O(1)
worst case I/Os, using O(k/B) blocks of space.

2.2 3-Sided Queries for Unknown Random Distribu-
tions

The internal memory structure consists of two levels, as well as an auxiliary
data structure. All of them are implemented as priority search trees. The lower
level partitions the points into buckets of almost equal logarithmic size accord-
ing to their x-coordinates. That is, the points are sorted in increasing order
according to x-coordinate and then divided into sets of O(log n) elements each
of which constitutes a bucket. A bucket C is implemented as a priority search
tree and is represented by a point Cmin which has the smallest y-coordinate
among all points in it. This means that for each bucket the cost for insertion,
deletion and search is equal to O(log log n), since this is the height of the pri-
ority search tree that represents C. The higher level is a priority search tree
on the representatives of the lower level. Thus, the number of leaves in the
higher level is O

(
n

log n

)
. As a result, the higher level supports the operations

of insert, delete and search in O(log n) time. In addition, we keep an auxiliary
priority search tree for insertions of violating points. Under this context, we
call a point p violating, when its y-coordinate is less than Cmin of the bucket
C in which it should be inserted. In case of a violating point we must change
the representative of C and as a result we should make an update operation on
the PST of the higher level, which costs too much, namely O(log n).

Lemma 2.1 Let µ be the unknown continuous density function of a probability
distribution F over a totally ordered universe of elements. If µ does not change
as elements are drawn from F and stored in the set S, the probability that the
next drawn element q is less than the minimum element s in S is equal to 1

|S|+1 .
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Proof. Suppose that we have n random observations X1,. . . ,Xn from an un-
known continuous probability density function f(X), with cumulative distribu-
tion µ = F (X), X ∈ [a, b]. We want to compute the probability that the (n +
1)−th observation is less than min {X1, . . . , Xn}. Let X(1) = min {X1, . . . , Xn}.
Therefore, P

{
Xn+1 < X(1)

}
=

∑
x P

{
Xn+1<X(1)/X(1)=x

}
· P

{
X(1) = x

}
(α).

We can see that P
{
Xn+1 < X(1)/X(1)=x

}
= F (X)=P {Xn+1<x} (β). Also

P
{
X(k) = x

}
= n · f(x) ·

(
n−1
k−1

)
· F (X)k−1 · (1 − F (X))n−k (γ), where X(k) is

the k − th smallest value in {X1, . . . , Xn}.
In our case k = 1, which intuitively means that we have n choices for one in

{X1, . . . , Xn} being the smallest value. This is true if all the rest n−1 are more
than x, which occurs with probability: (1− F (X))n−1 = (1− P {X < x})n−1.
By (β) and (γ), expression (α) becomes:
P

{
Xn+1 < X(1)

}
=

∫ a
b n · f(X)

(
n−1
k−1

)
· F (X) · (1− F (X))n−1 dX =

∫ a
b n · f(X) · (1− F (X))n−1 · F (X)dX =

∫ a
b [− (1−F (X))n]

′
F (X) dX =∫ a

b [− (1−F (X))n · F (X)]
′
dX+

∫ a
b (1−F (X))n · F ′(X)dX=

{
− (1−F (X))n ·F (x)|ba

}
+

∫ a
b −

[
(1−F (X))n+1

n+1

]′
dX =

− (1−F (b))n · F (b)+ (1−F (a))n ·F (a)−
{

(1−F (X))n+1

n+1 |ba
}

=

−
{

(1−F (b))n+1

n+1 − (1−F (a))n+1

n+1

}
= 1

n+1 . !

Proposition 2.1 Let the x-coordinates be continuously drawn from an un-
known µ-random distribution on the interval [a, b] ⊆ -. Let there be n elements
stored in the data structure. Partition [a, b] into . n

log n/ buckets, such that each
bucket contains log n points. Consider an epoch that contains log n update oper-
ations. Let N(i) denote the number of stored elements into after the i-th update
operation of the epoch. Then N(i) ∈ [n, r · n], for a constant r > 1, and the
N(i) elements remain µ-randomly distributed in each bucket.

Proof. The proof is analogous to [KMS+03, Lem. 2] and is omitted. !

Theorem 2.1 For a sequence of O(log n) update operationss, the expected num-
ber of violating elements is O(1) with high probability, assuming that the ele-
ments are being continuously drawn from a µ-random distribution.

Proof. According to Proposition 2.1, there are N(i) ∈ [n, r · n] (with constant
r > 1) elements with their x-coordinates µ-randomly distributed in the buckets
j = 1, . . . , n

log n , that partition [a, b] ⊆ -. By [KMS+03, Th. 4], with high prob-
ability, each bucket j receives an x-coordinate with probability pj = Θ( log n

n ).
It follows that during the i-th update operation, the elements in bucket j is a
Binomial random variable with mean pj ·N(i) = Θ(log n).

The elements with x-coordinates in an arbitrary bucket j are αN(i) with

probability
( N(i)
αN(i)

)
pαN(i)

j (1 − pj)(1−α)N(i) ∼
[(pj

α

)α
(

1−pj

1−α

)1−α
]N(i)

. These are

≤ αN(i) = pj

2 N(i) (less than half of the bucket’s mean) with probability

≤ pjN(i)
2

·
[(pj

α

)α
(

1− pj

1− α

)1−α
]N(i)

→ 0 as n →∞ and α =
pj

2
. (2.1)
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Suppose that an element is inserted in the i-th update. It induces a violation
if its y-coordinate is strictly the minimum element of the bucket j it falls into.

• If the bucket contains≥pj

2 log N(i)≥pj

2 log n coordinates, then by Lemma 2.1
element y incurs a violation with probability O( 1

log n).

• If the bucket contains < pj

2 log N(i) coordinates, which is as likely as in
Eq. (2.1), then element y may induce ≤ 1 violation.

Putting these cases together, element y expectedly induces at most O( 1
log n)+Eq.

(2.1)= O( 1
log n) violations. We conclude that during the whole epoch of log n

insertions the expected number of violations are at most log n · O( 1
log n) plus

log n· Eq. (2.1) which is O(1). !

Update Operation We assume that the x and y-coordinates are drawn from
an unknown µ-random distribution and that the µ function never changes.
Under this assumption, according to the combinatorial game of bins and balls,
presented in Section 5 of [KMS+03], the size of every bucket is O(logc n), where
c > 0 is a constant, and no bucket becomes empty with high probability. We
consider epochs of size O(log n), with respect to update operations. During an
epoch, according to Theorem 2.1, the number of violating points is expected
to be O(1) with high probability. The auxiliary priority search tree stores
exactly those O(1) violating points. When a new epoch starts, we take all
points from the auxiliary priority search tree and insert them in the respective
buckets in time O(log log n) expected with high probability. Then we need
to incrementally update the auxiliary priority search tree of the higher level.
This is done during the new epoch that just started. In this way, we keep the
auxiliary priority search tree of the higher level updated and the size of the
extra auxiliary priority search tree constant. As a result, the update operations
are carried out in O(log log n) time expected with high probability, since the
update of the higher level costs O(1) time in the worst case.

Query Operation The query algorithm first searches in the higher priority
search tree for the buckets L and R that contain the points p! and pr with
x-coordinates that respectively succeed and precede the query parameters x!

and xr. It traverses the nodes of the respective search paths P! and Pr that
span both levels of the structure and reports their points pymin that belong to
the query range.

The subtrees rooted at the right children of the nodes of P! − Pr and the
left children of Pr −P! contain points whose x-coordinates belong to the query
range. The algorithm checks if the y-coordinate of the point pymin stored in
the roots of these subtrees is smaller or equal to yt. If it is not, the algorithm
terminates for the particular subtree, since all the points in the subtree have
even larger y-coordinate than pymin . Otherwise, the point is reported and the
algorithm recurses in both its children nodes. When pymin is the representative
point of a bucket, the x-coordinates of the points in the bucket belong to the
query range. If pymin also belongs to the query range, the query algorithm
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continues reporting the points in the priority search tree of the bucket in the
same way. Finally, we check the auxiliary priority search tree for points to be
reported points. The total worst case query time is O(log n + t).

Note that deletions of points do not affect the correctness of the query
algorithm. If a non violating point is deleted, it resides on the lower level and
thus it would be deleted online. Otherwise, the auxiliary priority search tree
contains it and thus the deletion is performed online. No deleted violating point
is incorporated into the higher level, since by the end of the epoch the auxiliary
priority search tree contains only inserted violating points.

Theorem 2.2 There exists a dynamic data structure for the word-RAM model
that supports 3-sided range reporting queries in O(log n + t) worst case time,
supports updates in O(log log n) expected time with high probability, using O(n)
space, under the assumption that the x- and y-coordinates are continuously
drawn from a continuous unknown µ-random distribution, and that the stored
points are deleted with equal probability.

External Memory The I/O-efficient variant of the above structure is ob-
tained by using external priority search trees [ASV99], instead of internal mem-
ory priority search trees. However the update time becomes amortized.

Theorem 2.3 There exists a dynamic data structure for the word-RAM model
that supports 3-sided range reporting queries in O(logB n+t/B) worst case I/Os,
supports updates in O(logB log n) amortized expected I/Os with high probability,
using O(n) space, under the assumption that the x- and y-coordinates are con-
tinuously drawn from a continuous unknown µ-random distribution, and that
the stored points are deleted with equal probability.

Figure 2.1: Internal memory structure for smooth and restricted distributions.
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2.3 3-Sided Queries for Smooth and Restricted Dis-
tributions

We modify the internal memory structure of Section 2.2 as following. We store
the x-coordinates of the points in a dynamic interpolation search tree [KMS+06].
Every point belongs to a bucket of the multi-level structure. For every point,
we store a pointer from the x-coordinate in the interpolation search tree to the
corresponding leaf of the priority search tree that implements the bucket. The
upper level is implemented as a static modified priority search tree [SMK+04].
Figure 2.1 shows the modified structure.

Theorem 2.4 For a sequence of O(n) updates, the expected number of violating
elements is O(log n) with high probability, assuming that x- coordinates are
drawn from a continuous smooth distribution and the y- coordinates are drawn
from the restricted class of distributions (Power Law or Zipfian).

Proof. Suppose an element is inserted, with its y-coordinate following a discrete
distribution (while its x-coordinate is arbitrarily distributed) in the universe
{y1, y2, . . .} with yi < yi+1,∀i ≥ 1. Also, let q = Pr[y > y1] and y∗j the min
y-coordinate of the elements in bucket j as soon as the current epoch starts.
Clearly, the element just inserted incurs a violation when landing into bucket j
with probability Pr[y < y∗j ].

• If the bucket contains ≥ pj

2 log N(i) ≥ pj

2 log n coordinates, then coordi-
nate y incurs a violation with probability ≤ q

pj
2 log n. (In other words, a

violation may happens when at most all the Ω(log n) coordinates of the
elements in bucket j are > y1, that is, when y∗j > y1.)

• If the bucket contains < pj

2 log N(i) coordinates, which is as likely as in
Eq. (2.1) then coordinate y may induces ≤ 1 violation.

All in all, y coordinate expectedly induces ≤ qΩ(log n)+ Eq. (2.1) violations.
Thus, during the whole epoch of n insertions the expected number of violations
are at most n ·

(
qΩ(log n)

)
+ n· Eq. (2.1) = nqΩ(log n) + o(1) violations. This is

at most c · log n = O(log n) if q ≤
(

c log n
n

)(log n)−1

→ e−1 as n →∞. Note that
Power Law and Zipfian distributions also satify this property. !

Update Operation We consider an epoch of O(n) update operations. For
every insertion of a point, we first insert the x-coordinate of the point in the
interpolation search tree, traverse the pointer and update the corresponding
bucket with the y-coordinate. If there is a violation, we store the point in the
auxiliary priority search tree. When a new epoch starts, we update the modified
priority search tree with the points stored in the auxiliary priority search tree
using incremental global rebuilding [Ove87].
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The time for updating the interpolation search tree is O(log log n) expected
with high probability. A bucket is updated in O(log log n) worst case time. By
Theorem 2.4 the expected number of violating points in the epoch is O(log n)
with high probability. Thus the auxiliary priority search tree consumes at most
O(log n) space during an epoch and is updated in O(log log n) expected time
with high probability. The modified priority search tree is updated in O(1)
worst case time per update operation.

Query Operation To answer a 3-sided range query, we query first the in-
terpolation search tree in order to find the points p! and pr with x-coordinates
that respectively succeed and precede the query parameters x! and xr.

Then the query proceeds bottom up the multi-level structure. First it tra-
verses the priority search trees of the buckets that contain p! and pr, starting
from the leaves that contain the points up to the root node. Then it queries
the modified priority search tree to report points in the upper level that need
to be reported, and to identify the buckets where the y-coordinate of the rep-
resentative point and x-coordinates of all the stored points of the bucket lie
within the query range. The query traverses these buckets top-down. Finally,
the auxiliary priority search tree is queried.

The search in the interpolation search tree takes O(log log n) expected time
with high probability. The paths in the buckets that contain p! and pr have
length O(log log n). The time to process the modified priority search tree and
to report the points that are stored in the buckets, is charged to the output. By
Theorem 2.4, the size of the auxiliary priority search tree is O(log n) with high
probability, thus it is queried in O(log log n) expected time with high probabil-
ity. The total query time is O(log log n+t) expected with high probability.

Theorem 2.5 There exists a dynamic data structure for the word-RAM model
that supports 3-sided range reporting queries in O(log log n + t) expected time
with high probability, supports updates in O(log log n) expected time with high
probability, using O(n) space, under the assumption that the x-coordinates of the
points are continuously drawn from a (nα, nδ)-smooth distribution, for constants
0 < α, δ < 1, the y-coordinates are continuously drawn from a distribution of
the restricted class such as the Zipfian or the Power Law distribution, and that
the stored points are deleted with equal probability.

External Memory The I/O-efficient variant of the above structure consists
of an interpolation search B-tree [KMM+05] for the x-coordinates, a three-
level structure for the y-coordinates, and auxiliary external priority search
tree [ASV99]. The n points are divided with respect to their x-coordinate into
n′ = n

log n buckets of size log n. Each bucket is implemented as an external prior-
ity search tree [ASV99]. The external priority search trees constitute the lower
level of the structure. The n′ representatives of the external priority search trees
are again divided into buckets of size O(B). These buckets single blocks and
constitute the middle level. The n′′ = n′

B representatives are stored in the leaves
of an external modified priority search tree [KPS+10], which constitutes the up-
per level of the structure. In total, the space of the aforementioned structures
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is O(n′ + n′′ + n′′ log(k) n′′) = O( n
log n + n

B log n + n
B log nB) = O( n

log n) = O( n
B ),

where k is such that log(k) n′′ = O(B) holds.
The update and query algorithms are similar to those of the internal memory

structure. The interpolation search B-tree is updated in O(logB log n) expected
I/Os with high probability. The external priority search tree of the bucket that
contains the updated point is updated in O(logB log n) amortized expected I/Os
with high probability. A middle level block is updated in one I/O. The upper
level is updated in O(1) worst case I/Os per update operation. By Theorem 2.4
the auxiliary external priority search tree is updated in O(logB log n) amortized
expected I/Os with high probability. Thus in total I/Os for an update are
O(logB log n) amortized expected I/Os with high probability.

The query operation takes O(logB log n) expected I/Os with high probabil-
ity for the interpolation search B-tree, for the traversal of the two buckets that
contain p!, pr, and for the traversal of the auxiliary external priority search
tree. In total the query takes O(logB log n + t/B) I/Os expected with high
probability, since the rest of the query I/Os can be charged to the output.

Theorem 2.6 There exists a dynamic data structure for the I/O model that
supports 3-sided range reporting queries in O(logB log n+ t) expected I/Os with
high probability, supports updates in O(logB log n) amortized expected I/Os with
high probability, using O(n/B) blocks of space, under the assumption that the x-
coordinates of the points are continuously drawn from a (n/(log log n)1+ε, n1/B)-
smooth distribution, for a constant 0 < ε, the y-coordinates are continuously
drawn from a distribution of the restricted class such as the Zipfian or the Power
Law distribution, and that the stored points are deleted with equal probability.

Figure 2.2: External memory structure for smooth and restricted distributions.
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2.4 3-Sided Queries for Smooth and Arbitrary Dis-
tributions

Here we describe a variant of exponential search trees [AT07] that we dy-
namize using a rebalancing scheme relative to that of the weight-balanced search
trees [AV03]. In particular, a weight-balanced exponential tree T on n points is a
leaf-oriented rooted search tree where the degrees of the nodes increase double
exponentially on a leaf-to-root path. All leaves have the same depth and reside
on the lowest level of the tree (level zero). The weight of a subtree Tu rooted
at node u is defined to be the number of its leaves. If u lies at level i ≥ 1,
the weight of Tu ranges within

[
1
2 · wi + 1, 2 · wi − 1

]
, for a weight parameter

wi = cci
2

1 and constants c2 > 1 and c1 ≥ 23/(c2−1) (see Lemma 2.2). Note that
wi+1 = wc2

i . The root does not need to satisfy the lower bound of this range.
Intuitively, a node at level i has degree di = √

wi−1 and has as children nodes
that root trees of size wi−1. Moreover, it holds that di = d3/2

i−1. The tree has
height Θ(logc2 logc1 n).

The insertion of a new leaf to the tree increases the weight of the nodes on
the leaf-to-root path by one. This might cause some weights to exceed their
range constraints (“overflow”). We rebalance the tree in order to revalidate
the constraints by a leaf-to-root traversal, where we “split” each node that
overflowed. An overflown node u at level i has weight 2wi. A split is performed
by creating a new node v that is a sibling of u and redistributing the children
of u among u and v such that each node acquires a weight within the allowed
range. In particular, we scan the children of u, accumulating their weights until
we exceed the value wi, say at child x. Node u gets the scanned children and
v gets the rest. Node x is assigned as a child to the node with the smallest
weight. Processing the overflown nodes u bottom up guarantees that, during
the split of u, its children satisfy their weight constraints.

The deletion of a leaf might cause the nodes on the leaf-to-root path to
“underflow”, i.e. a node u at level i reaches weight 1

2wi. By an upwards traversal
of the path, we discover the underflown nodes. In order to revalidate their node
constraints, each underflown node chooses a sibling node v to “merge” with.
That is, we assign the children of u to v and delete u. Possibly, v needs to
“split” again if its weight after the merge is more than 3

2wi (“share”). In either
case, the traversal continues upwards, which guarantees that the children of the
underflown nodes satisfy their weight constraints. The following lemma, which
is similar to [AV03, Lem. 9], holds.

Lemma 2.2 After rebalancing a node u at level i, Ω(wi) insertions or deletions
need to be performed on Tu, for u to overflow or underflow again.

Proof. A split, a merge or a share on a node u on level i yield nodes with
weight in

[
3
4wi − wi−1,

3
2wi + wi−1

]
. If we set wi−1 ≤ 1

8wi, which always holds
for c1 ≥ 23/(c2−1), this interval is always contained in [58wi,

14
8 wi]. !
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Internal Memory

Our internal memory construction for storing n points in the plane consists of
an interpolation search tree [KMS+06] that stores the points in sorted order
with respect to the x-coordinates. On the sorted points, we maintain a weight-
balanced exponential search tree T with c2 = 3/2 and c1 = 26. Thus its height
is Θ(log log n). In order to use T as a priority search tree, we augment it as
follows. The root stores the point with overall minimum y-coordinate. Points
are assigned to nodes in a top-down manner, such that a node u stores the
point with minimum y-coordinate py−min among the points in Tu that is not
already stored at an ancestor of u. Note that the point from a leaf of T can only
be stored at an ancestor of the leaf and that the y-coordinates of the points
py−min stored at a leaf-to-root path are monotonically decreasing (Min-Heap
Property). Finally, every node contains a static structure for range minimum
queries [HT84], henceforth reffered to as an RMQ-structure, that in turn stores
the y-coordinates of the points py−min in the children nodes and an array with
pointers to the children nodes.

Corollary 2.1 The total space of the internal memory data structure is O(n).

Proof. In total, excluding the leaves, each element occurs twice in T , namely
at an internal node u and at the RMQ-structure of u’s parent. Thus T con-
sumes O(n) space. Moreover, the space for the interpolation search tree is
linear [MT93,KMS+06], which yields total O(n) space. !

Query Operation Before we describe the query algorithm of the data struc-
ture, we will describe the query algorithm that finds all points with y-coordinate
less than yt in a subtree Tu, rooted at internal node u. The query begins at
node u. At first we check if the y-coordinate of the point py−min stored at u
is smaller or equal to yt (we call it a member of the query). If not we stop.
Else, we identify the tu children of u storing points py−min with y-coordinate
less than or equal to yt, using the RMQ-structure of u. That is, we first query
the whole array and then recurse on the two parts of the array partitioned by
the index of the returned point. The recursion ends when the accessed point
py−min has y-coordinate larger than yt (non-member point).

Lemma 2.3 For an internal node u and value yt, all points stored in Tu with
y-coordinate ≤yt can be found in O(t + 1) time, when t points are reported.

Proof. Querying the RMQ-structure at a node v that contains tv member points
will return at most tv+1 non-member points. We only query the RMQ-structure
of a node v if we have already reported its point as a member point. Summing
over all visited nodes we get a total cost of O (

∑
v(2tv + 1))=O(t + 1). !

In order to query the whole structure, we first process a 3-sided query
[x!, xr]×] − ∞, yt] by searching for x! and xr in the interpolation search ree.
The two accessed leaves !, r of the interpolation search tree comprise leaves
of T as well. We traverse T from ! and r to the root. Let P! (resp. Pr) be
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the root-to-leaf path for ! (resp. r) in T and let Pm = P! ∩ Pr. During the
traversal we also record the index of the traversed child. When we traverse a
node u on the path P!−Pm (resp. Pr −Pm), the recorded index comprises the
leftmost (resp. rightmost) margin of a query to the RMQ-structure of u. Thus
all accessed children by the RMQ-query will be completely contained in the
query’s x-range [x!, xr]. Moreover, by Lemma 2.3 the RMQ-structure returns
all member points in Tu.

For the lowest node in Pm, i.e. the lowest common ancestor (LCA) of ! and
r, we query the RMQ-structure for all subtrees contained completely within x!

and xr. We don’t execute RMQ-queries on the rest of the nodes of Pm, since
they root subtrees that overlap the query’s x-range. Instead, we merely check
if the x- and y-coordinates of their stored point lies within the query. Since the
paths Pm, P! − Pm and Pr − Pm have length O(log log n), the query time of
T becomes O(log log n + t). When the x-coordinates are smoothly distributed,
the query to the interpolation search tree takes O(log log n) expected time with
high probability [MT93]. Hence the total query time is O(log log n+t) expected
with high probability.

Update Operation Before we describe the update algorithm of the data
structure, we will first prove some properties of updating the points in T . Sup-
pose that we decrease the y-value of a point pu at node u to the value y′ < y.
Let v be the ancestor node of u highest in the tree whose point py−min has
y-coordinate bigger than y′. We remove pu from u. This creates an “empty
slot” that has to be filled by the point of u’s child with smallest y-coordinate.
The same procedure has to be applied to the affected child, thus causing a
“bubble down” of the empty slot until a node is reached with no points at its
children. Next we replace v’s point pv with pu (swap). We find the child of
v that contains the leaf corresponding to pv and swap its point with pv. The
procedure recurses on this child until an empty slot is found to place the last
swapped out point (“swap down”). In case of increasing the y-value of a node
the update to T is the same, except that pu is now inserted at a node along the
path from u to the leaf corresponding to pu.

For every swap we will have to rebuild the RMQ-structures of the parents of
the involved nodes, since the RMQ-structures are static data structures. This
has a linear cost to the size of the RMQ-structure.

Lemma 2.4 Let i be the highest level where the point has been affected by an
update. Rebuilding the RMQ-structures due to the update takes O(wc2−1

i ) time.

Proof. The executed “bubble down” and “swap down”, along with the search
for v, traverse at most two paths in T . We have to rebuild all the RMQ-
structures that lie on the two v-to-leaf paths, as well as that of the parent of
the top-most node of the two paths. The RMQ-structure of a node at level j is
proportional to its degree, namely O (wj/wj−1). Thus, the total time becomes
O

(∑i+1
j=1 wj/wj−1

)
= O

(∑i
j=0 wc2−1

j

)
= O

(
wc2−1

i

)
. !
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To insert a point p, we first insert it in the interpolation search tree. This
creates a new leaf in T , which might cause several of its ancestors to overflow.
We split them as described in Section 2.4. For every split a new node is created
that contains no point. This empty slot is filled by “bubbling down” as described
above. Next, we search on the path to the root for the node that p should reside
according to the Min-Heap Property and execute a “swap down”, as described
above. Finally, all affected RMQ-structures are rebuilt.

To delete point p, we first locate it in the interpolation search tree, which
points out the corresponding leaf in T . By traversing the leaf-to-root path in
T , we find the node in T that stores p. We delete the point from the node and
“bubble down” the empty slot, as described above. Finally, we delete the leaf
from T and rebalance T if required. Merging two nodes requires one point to be
“swapped down” through the tree. In case of a share, we additionally “bubble
down” the new empty slot. Finally we rebuild all affected RMQ-structures and
update the interpolation search tree.
Analysis. We assume that the point to be deleted is selected uniformly at
random among the points stored in the data structure. Moreover, we assume
that the inserted points have their x-coordinates drawn independently at ran-
dom from an (nα, n1/2)-smooth distribution for a constant 1/2<α<1, and that
the y-coordinates are drawn from an arbitrary distribution. Searching and
updating the interpolations search tree needs O(log log n) expected with high
probability [MT93,KMS+06], under the same assumption for the x-coordinates.

Lemma 2.5 Starting with an empty weight balanced exponential tree, the amor-
tized time of rebalancing it due to insertions or deletions is O(1).

Proof. A sequence of n updates requires at most O(n/wi) rebalancings at level
i (Lemma 2.2). Rebuilding the RMQ-structures after each rebalancing costs
O

(
wc2−1

i

)
time (Lemma 2.4). We sum over all levels to get a total time

of O(
∑height(T )

i=1
n
wi

· wc2−1
i ) = O(n

∑height(T )
i=1 wc2−2

i )= O(n), when c2<2. !

Lemma 2.6 The expected amortized time for inserting or deleting a point in
a weight balanced exponential tree is O(1).

Proof. The insertion of a point creates a new leaf and thus T may rebalance,
which by Lemma 2.5 costs O(1) amortized time. Note that the shape of T only
depends on the sequence of updates and the x-coordinates of the points that
have been inserted. The shape of T is independent of the y-coordinates, but the
assignment of points to the nodes of T follows uniquely from the y-coordinates,
assuming all y-coordinates are distinct. Let u be the ancestor at level i of the
leaf for the new point p. For any integer k ≥ 1, the probability of p being in-
serted at u or an ancestor of u can be bounded by the probability that a point
from a leaf of Tu is stored at the root down to the k-th ancestor of u plus the
probability that the y-coordinate of p is among the k smallest y-coordinates of
the leaves of T . The first probability is bounded by

∑height(T )
j=i+k

2wj−1
1
2wj

, whereas

the second probability is bounded by k
/

1
2wi. It follows that p ends up at the
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i-th ancestor or higher with probability at most O
( ∑height(T )

j=i+k
2wj−1

1
2wj

+ k
1
2wi

)
=

O
(∑height(T )

j=i+k w1−c2
j−1 + k

wi

)
= O

(
w1−c2

i+k−1 + k
wi

)
= O

(
w

(1−c2)ck−1
2

i + k
wi

)
= O

(
1
wi

)

for c2 = 3/2 and k = 3. Thus the expected cost of “swapping down” p is
O

(∑height(T )
i=1

1
wi

· wi+1

wi

)
=O

(∑height(T )
i=1 wc2−2

i

)
=O

(∑height(T )
i=1 c

(c2−2)ci
2

1

)
=O(1)

for c2 < 2. A deletion results in “bubbling down” an empty slot, whose cost
depends on the level of the node that contains it. Since the point to be deleted
is selected uniformly at random and there are O (n/wi) points at level i, the
probability that the deleted point is at level i is O (1/wi). Since the cost of an
update at level i is O (wi+1/wi), we get that the expected “bubble down” cost
is O

(∑height(T )
i=1

1
wi

· wi+1

wi

)
= O(1) for c2 < 2. !

Theorem 2.7 There exists a dynamic data structure for the word-RAM model
that supports 3-sided range reporting queries in O(log log n + t) expected time
with high probability, supports updates in O(log log n) expected amortized time,
using O(n) space, under the assumption that the x-coordinates of the points
are continuously drawn from a (nα, nδ)-smooth distribution, for constants 0 <
α, δ < 1, the y-coordinates are continuously drawn from any arbitrary distribu-
tion, and that the stored points are deleted with equal probability.

External Memory

We now convert our internal memory into a solution for the I/O model. First
we substitute the interpolation search tree with its I/O-efficient variant, the in-
terpolation search B-tree [KMM+05]. We implement every consecutive Θ(B2)
leaves of the interpolation search B-tree with the data structure of Arge et
al. [ASV99]. Each such structure constitutes a leaf of a weight balanced expo-
nential tree T that we build on top of the O(n/B2) leaves.

In T every node now stores B points sorted by y-coordinate, such that
the maximum y-coordinate of the points in a node is smaller than all the y-
coordinates of the points of its children (Min-Heap Property). The B points
with overall smallest y-coordinates are stored at the root. At a node u we
store the B points from the leaves of Tu with smallest y-coordinates that
are not stored at an ancestor of u. At the leaves we consider the B points
with smallest y-coordinate among the remaining points in the leaf to comprise
this list. Moreover, we define the weight parameter of a node at level i to be
wi=B2·(7/6)i . Thus we get wi+1 = w7/6

i , which yields a height of Θ(log logB n).
Let di = wi

wi−1
= w1/7

i denote the degree parameter for level i. All nodes at level
i have degree O(di). We store an array in every node stores that indexes the
children according to their x-order. To identify the children with respect to
their y-coordinates, we replace the structure for range minimum queries of the
internal memory solution with a table. For every possible interval [k, l] over the
children of the node, we store in an entry of the table the points of the children
that belong to this interval, sorted by y-coordinate. Since every node at level
i has degree O(di), there are O(d2

i ) different intervals and for each interval we
store O(B · di) points. Thus, the total size of this table is O(B · d3

i ) points or
O(d3

i ) disk blocks.
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Corollary 2.2 The I/O-efficient data structure occupies O(n/B) blocks.

Proof. The interpolation search B-tree consumes O(n/B) blocks [KMM+05].
Moreover, there are O(n/B2) leaves at T , each of which contains O(B2) points.
Thus the leaves contain O(n) points that are stored in O(n/B) blocks. An
internal node at level i ≥ 1 of T contains B points plus the points in its table,
which are O(B · d3

i ). There are n/wi nodes at level i, thus the total space of

level i is O
(

n
wi

·B · d3
i

)
= O

(
n ·B · 1

w
4/7
i

)
. The total space of T is bounded

by O

(∑height(T )
i=1

n·B
(B2· 76

i
)
4
7

)
= O(n) points, i.e. O(n/B) disk blocks. !

Query Operation The query is similar to the internal memory construc-
tion. First we access the interpolations search B-tree, spending O(logB log n)
expected I/Os with high probability, given that the x-coordinates are smoothly
distributed [KMM+05]. This points out the leaves of T that contain the left-
most point to the right of x! and the rightmost point to the left of xr. We
perform a 3-sided range query at the two leaf structures. Next, we traverse
upwards the leaf-to-root path P! (resp. Pr) on T , while recording the index k
(resp. l) of the traversed child in the table. That costs Θ(log logB n) I/Os. At
each node we report the points of the node that belong to the query range. For
all nodes on P! − Pr and Pr − P! we query as follows: We access the table at
the appropriate children range, recorded by the index k and l. These ranges
are always [k + 1,last child] and [0, l − 1] for the node that lie on P! − Pr and
Pr − P!, respectively. The only node where we access a range [k + 1, l − 1] is
the lowest common ancestor of the leaves that contain a and b. The recorded
indices facilitate access to these entries in O(1) I/Os. We scan the list of points
sorted by y-coordinate, until we reach a point with y-coordinate bigger than
yt. All scanned points are reported. If the scan has reported all B elements of
a child node, the query proceeds recursively to that child, since more member
points may lie in its subtree. Note that for these recursive calls, we do not
need to access the B points of a node v, since we accessed them in v’s parent
table. The accessed table entries contain the complete range of children. If the
recursion accesses a leaf, we execute a 3-sided query on it, with respect to x!

and xr [ASV99].
The list of B points in every node can be accessed in O(1) I/Os. The con-

struction of [ASV99] allows us to load the B points with minimum y-coordinate
in a leaf also in O(1) I/Os. Thus, traversing P! and Pr costs Θ(log logB n) I/Os
worst case. There are O(log logB n) nodes u on P! − Pm and Pr − Pm. The
algorithm recurses on nodes that lie within the x-range. Since the table en-
tries that we scan are sorted by y-coordinate, we access only points that belong
to the answer. Thus, we can charge the scanning I/Os to the output. The
algorithm recurses on all children nodes whose B points have been reported.
The I/Os to access these children can be charged to their points reported by
their parents, thus to the output. That allows us to access the child even if it
contains only o(B) member points to be reported. The same property holds
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also for the access to the leaves. Thus we can perform a query on a leaf in
O(t/B) I/Os. Summing up, the worst case query complexity of querying T
is O(log logB n + t

B ) I/Os. Hence in total the query costs O(log logB n + t
B )

expected I/Os with high probability.

Update Operation Insertions and deletions of points are analogous to the
internal solution. For the case of insertions, first we update the interpolation
search B-tree. This creates a new leaf in the interpolation search B-tree that
we also insert at the appropriate leaf of T in O(1) I/Os [ASV99]. This might
cause some ancestors of the leaves to overflow. We split these nodes, as in
the internal memory solution. For every split B empty slots “bubble down”.
Next, we update T with the new point. For the inserted point p we locate the
highest ancestor node that contains a point with y-coordinate larger than p’s.
We insert p in the list of the node. This causes an excess point, namely the one
with maximum y-coordinate among the B points stored in the node, to “swap
down” towards the leaves. Next, we scan all affected tables to replace a single
point with a new one.

In case of deletions, we search the interpolation search B-tree for the deleted
point, which points out the appropriate leaf of T . By traversing the leaf-to-root
path and loading the list of B point, we find the point to be deleted. We remove
the point from the list, which creates an empty slot that “bubbles down” T
towards the leaves. Next we rebalance T as in the internal solution. For every
merge we need to “swap down” the B largest excess points. For a share, we
need to “bubble down” B empty slots. Next, we rebuild all affected tables and
update the interpolation search B-tree.
Analysis. Searching and updating the interpolation search B-tree requires
O(logB log n) expected I/Os with high probability, when the x-coordinates are
drawn from an ( n

(log log n)1+ε , n1/B)-smooth distribution, for ε>0 [KMM+05].

Lemma 2.7 For every path corresponding to a “swap down” or a “bubble down”
starting at level i, the cost of rebuilding the tables of the paths is O

(
d3

i+1

)
I/Os.

Proof. Analogously to Lemma 2.4, a “swap down” or a “bubble down” traverse
at most two paths in T . A table at level j costs O(d3

j ) I/Os to be rebuilt, thus

all tables on the paths need O
(∑i+1

j=1 d3
j

)
= O

(
d3

i+1

)
I/Os. !

Lemma 2.8 Starting with an empty external weight balanced exponential tree,
the amortized I/Os for rebalancing it due to insertions or deletions is O(1).

Proof. We follow the proof of Lemma 2.5. Rebalancing a node at level i requires
O

(
d3

i+1 + B · d3
i

)
I/Os (Lemma 2.7), since we get B “swap downs” and “bubble

downs” emanating from the node. For a sequence of n updates the I/Os are
O

( ∑height(T )
i=1

n
wi
·(d3

i+1+B ·d3
i )

)
= O

(
n ·

∑height(T )
i=1 w−1/2

i +B·w−4/7
i

)
= O(n). !
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Lemma 2.9 The expected amortized I/Os for inserting or deleting a point in
an external weight balanced exponential tree is O(1).

Proof. By similar arguments as in Lemma 2.6 and considering that a node
contains B points, we bound the probability that point p ends up at the i-th
ancestor or higher by O(B/wi). An update at level i costs O(d3

i+1) = O
(
w1/2

i

)

I/Os. Thus “swapping down” p costs O
( ∑height(T )

i=1 w1/2
i · B

wi

)
= O(1) expected

I/Os. O
(∑height(T )

j=i+k B · 2wj−1
1
2wj

+ k·B
1
2wi

)
=

O

(∑height(T )
j=i+k B · 1

w
1/6
j−1

+ k·B
wi

)
= O

(
B · 1

w
1/6
i+k−1

+ k·B
wi

)
= O

(
B
wi

)
for k = 11.

In case of deletions, following a similar argument as Lemma 2.6 of the internal
solution, we get that the cost of an update at level i is O

(
w1/2

i

)
I/Os. Thus,

the expected I/Os for the “bubble down” are O
(∑height(T )

i=1
B
wi

· w1/2
i

)
=O(1).!

Theorem 2.8 There exists a dynamic data structure for the I/O model that
supports 3-sided range reporting queries in O(log logB n+ t) expected I/Os with
high probability, supports updates in O(logB log n) amortized expected I/Os, us-
ing O(n/B) blocks of space, under the assumption that the x-coordinates of the
points are continuously drawn from a (n/(log log n)1+ε, n1/B)-smooth distribu-
tion, for a constant 0 < ε, the y-coordinates are continuously drawn from any
arbitrary distribution, and the stored points are deleted with equal probability.

2.5 Open Problems

• Can the solutions for external memory in Sections 2.2 and 2.3 attain
exactly the complexities of their internal memory counterparts? That
requires external memory priority search trees [ASV99] with O(logB n)
worst case update I/Os instead of amortized. Is there an I/O-efficient
static data structures that supports 3-sided range reporting queries in
O(1 + t/B) worst case I/Os [KPS+10]?

• Can we modify the solution of Section 2.4 for the arbitrary distribution
of the y-coordinated, such that it attains exactly the complexities of the
other solutions that impose more restricting assumptions to the input?
More precisely, when the y-coordinates are arbitrarily distributed, can
the update time become expected amortized time with high probabil-
ity? Can the query complexity for the external memory variant become
O(logB log n) I/Os instead of O(log logB n) I/Os?

• The dynamic interpolation search trees of [KMS+06] have the most pre-
ferrable properties, as they can manage efficiently elements that are drawn
from the broadest smooth distribution, from discrete distributions and
from distibutions with unbounded density. An interesting open problem
is to adapt this implementation to the external memory, and thus improve
upon the existing interpolation search B-trees [KMM+05].



Chapter 3

Dynamic Planar Range Maxima Queries

Abstract

We consider the problem of maintaining dynamically in internal memory a set of
points in the plane, and supporting planar orthogonal range maxima reporting
queries efficiently in the worst case. Let P be a set of n points in the plane. A
point is maximal if it is not dominated by any other point in P .

We present a dynamic data structure for the pointer machine model that
supports reporting the maximal points among the points that lie within a given
planar orthogonal 3-sided range [x!, xr] × [yb,+∞[ in O(log n + t) worst case
time, and supports insertions and deletions of points in optimal O(log n) worst
case time, using O(n) space, where t is the size of the query’s output. This is
the first dynamic data structure that supports these queries and the updates
in logarithmic worst case time.

We adapt the data structure to the RAM model with word size w, where the
coordinates of the points are integers in the range U={0, . . . , 2w−1}. We present
a linear space data structure that supports 3-sided range maxima reporting
queries in optimal O( log n

log log n + t) worst case time, and supports updates in
O( log n

log log n) worst case time, using O(n) space. These are the first sublogarithmic
worst case bounds for all operations in the RAM model.

Finally, we present a dynamic data structure for the pointer machine model
that supports reporting the maximal points that lie within a given 4-sided
planar orthogonal range [x!, xr]× [yb, yt] in O(log2 n + t) worst case time, and
support updates in O(log2 n) worst case update time, using O(n log n) space.
This improves by a logarithmic factor the space or the worst case deletion time
of the previous strutures for the dynamic rectangular visibility query problem.

43
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3.1 Introduction

In this Chapter we present dynamic data structures that support planar orthog-
onal range maxima reporting queries and support insertions and deletions of
points efficiently in the worst case. Maintaining the maximal points is not diffi-
cult, when only insertions are allowed. It suffices to store the maximal points in
a binary search tree, in order to support the insertions in O(log m) time. How-
ever deletions cannot be processed efficiently, when only the maximal points
are stored. A deletion of a maximal point p may cause the maximal points
among the points dominated by p to become maximal for the whole pointset.
The fact that deletions modify the query’s output significantly is the reason
that previous results attain O(log2 n) deletion time. Kapoor [Kap00] attains
O(log n) worst case time by delaying the recomputation of maximal points for
the time they are returned by the query operation. However, this only allows
for O(log n) amortized query time.

The structure of [OvL81] consists of a balanced binary search tree where
every node contains a linked list that stores the maximal points among the
points stored in the subtree of the node. Given that the linked lists in two
sibling nodes are already computed, the maximal points of their common parent
node are computed by moving to the parent node the points in the linked list
of the left child with y-coordinate larger than the largest y-coordinate of the
points stored in the right child, and the linked list in the right child. The rest
of the linked list of the left child remains stored in the left child. In this way
all the maximal points are stored in the root, and an update operation involves
a bottom-up computation that takes O(log2 n) time.

In Section 3.2 we present a pointer based data structure that maintains the
maximal points and supports the insertion and deletion of a point in O(log n)
worst case time, using O(n) space. Comparisons are the only allowed computa-
tion on the coordinates of the points. Our structure follows the basic approach
of previous structures. We store the points sorted by x-coordinate at the leaves
of a tree, and maintain a tournament in the internal nodes of the tree with
respect to their y-coordinates. An internal node u is assigned the point with
maximum y-coordinate in its subtree. We observe that the nodes in the subtree
of u that contain this point form a path. We also observe that the maximal
points among the points assigned to the nodes hanging to the right of this path
are also maximal among the points in the subtree of u. We store these rep-
resentative points in node u, so that the query algorithm accesses recursively
only points to be reported.

The implementation of our structures is based on the fact that we can
obtain the set of points we store in a node from the set stored in its child
node that belongs to the same path. In particular if that is the left child,
we need to delete the points that are dominated by the point assigned to the
right child and insert this point into the set. Sundar [Sun89] shows how to
implement a priority queue that supports exactly this operation (attrition) in
O(1) worst case time. In particular, given a set of elements from a totally
ordered universe, a priority queue with attrition (PQA) supports the opera-
tions DeleteMax, which deletes and returns the maximum element from the
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PQA, and InsertAndAttrite(x), which inserts element x into the PQA and
removes all elements smaller than x from the PQA (attrition). PQAs uses space
linear to the number of inserted elements, and support both operations in O(1)
worst case time. Operation InsertAndAttrite(x) has to find the largest el-
ement that is smaller than x. However, this can not be achieved in O(1) worst
case time by searching among the inserted elements. A PQA is implemented
as a doubly linked list with a constant number of additional pointers that facil-
itate removing the elements that have been attrited incrementally. In this way
the elements are only attrited semantically. Namely, the attrited elements may
remain in the structure, but they are never returned by DeleteMax. Given
a value x, the elements in the PQA that are larger than x can be reported in
sorted order in O(t + 1) time, where t is the size of the output.

Instead of a linked list, we augment every node with a PQA that contains the
representative points. This allows us to complete a bottom-up recomputation
of the secondary structures in O(log n) worst case time, using the operation In-
sertAndAttrite.The query operation utilizes the DeleteMax operation to
report identify the next point to be reported. Moreover, in Lemma 3.3 we prove
that our implementation moreover supports the more general planar orthogonal
3-sided range maxima reporting queries in O(log n + t) worst case time, where
t is the number of reported points.

To achieve linear space we implement every path that contains the same
point as a partially persistent priority queue with attrition. The priority queue
with attrition abides by the assumptions of the methods for partial persistence.
However, we do not use the node-copying method [DSST89] to make the priority
queues with attrition partially persistent, since the time overhead is amortized.
Instead we use the method of Brodal [Bro96], since it has a worst case ovehead.
This allows the rollback operation that discards the latest version and renders
its preceding version updatable. Since the overhead is constant, discarding
the secondary structures in a top-down fashion along a root-to-leaf path takes
O(log n) worst case time. Thus a point is inserted and deleted by a updating
the secondary structures along a root-to-leaf path in O(log n) time.

This is the first dynamic search tree that explicitly uses partially persistent
secondary structures. The structure of [OvL81] can be seen as an implicit
implementation of partially persistent linked lists. In fact, our technique can
be used to augment any search tree, as long as the secondary structure of a
node in the tree is obtained by updating the secondary structure in only one of
its children nodes. The major benefit of this approach is that for our problem
a deletion takes essentially O(insertion) time, even if the deletion modifies the
output of the query significantly. Moreover, the technique obviates tedious case
analysis that usually arises when designing algorithms for deletion. Instead of
deleting a point, the structure in essence “forgets” how the point was inserted,
due to the rollback operation.

In Section 3.3 we adapt the above structure to the word-RAM model by
increasing the degree of the tree to Θ(logε n) for some 1/4<ε<1. To search and
update a node in O(1) time, we use precomputed tables that solve dynamic
3-sided range maxima reporting for a set of O(log

1
4 n) points, and the Q-heap
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of Fredman and Willard [FW94]. They are dynamic data structures for the
word-RAM model that supports predecessor searching, insertions and deletions
of integers in O(1) worst case time, when the stored set contains at most w1/4

integers. They use O(w1/4) space, and utilizes an O(2w) space global precom-
puted lookup-table that needs O(2w) preprocessing time. Our adaptation is
similar to the implementation of fusion trees [FW93]. They support predecessor
searching, insertions and deletions of integers in O( log n

log log n) worst case time, us-
ing O(n) space. In particular, fusion trees are (a, b)-trees with b = O(log1/4 n),
that are augmented with a constant number of Q-heaps per internal node.

In Section 3.4 we present a dynamic data structure that supports 4-sided
range maxima queries. The result is obtained by following the approach of
[OW88]. Namely we augment BB[α]-trees [WL85] with our dynamic structure
for 3-sided range maxima reporting queries of Section 3.2.

Optimality Brodal et al. [BCR96] show that if the insertion and deletion of
an element requires t comparisons, then operation FindMax requires at least

n
e22t−1 comparisons. Mapping element x to the point (x, x), inserts and deletes
the points along the diagonal x = y. The only maximal point corresponds to
the element returned by FindMax and can be computed in O(1) worst case
time. Thus O(1) ≥ n

e22t−1 ⇒ t = Ω(log n). Alstrup et al. [AHR98] show that if
the insertion and deletion of a two-dimensional point requires O(polylogn) cell
probes, deciding whether a given query point is dominated by a point or not
requires Ω

(
log n

log log n

)
cell probes. The answer can be inferred by whether the

query point lies above or below the staircase. The lower bound also holds for
the problem of reporting the maximal points.

3.2 3-Sided Maxima Queries in the Pointer Machine

We store the points sorted by increasing x-coordinate at the leaves of a red-
black tree [GS78] T . We maintain a tournament on the internal nodes of T
with respect to the y-coordinates of the points. In particular, every internal
node u contains the points px−max(u) and py−max(u) that are respectively the
points with maximum x- and y-coordinate among the points in the subtree of
u. Points px−max(u) allow us to search in T with respect to the x-coordinate.
Points py−max(u) define n disjoint winning paths in T whose nodes contain the
same point. Let u be an internal node. Let u belong to a winning path π. We
denote by πu the suffix of π that starts at node u and ends at the leaf that
stores py−max(u). We denote by Ru the set of right children of the nodes in πu

that do not belong to πu themselves. We denote by MAX(u) the points that
are maximal among {py−max(v) | v ∈ Ru}. We can obtain MAX(u) from the set
of points MAX(c), where c is the child of u that belongs to πu. In particular,
if that is the right child uR then Ru = RuR and thus MAX(u) = MAX(uR).
Otherwise if that is the left child uL, then Ru = RuL ∪ {uR}. Point py−max(uR)
belongs to MAX(u) since it has the largest x-coordinate among all points in Ru.
Moreover, all the points in MAX(uL) with y-coordinate at most py−max(uR)y

should be excluded from MAX(u) since they are dominated by py−max(uR).
Figure 3.1 illustrates Ru and MAX(u) for a generic winning path.
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u
Ru

MAX(u)

Figure 3.1: The winning path π is bold. The circular nodes are in Ru. The
black circular nodes are in MAX(u).

We implement the sets MAX(u) of the nodes u along a winning path π as
the versions of a partially persistent priority queue with attrition (PPPQA).
That is, every internal node u stores the y-coordinates of the points in MAX(u)
in a priority queue with attrition (PQA). If u is the i-th node of π, then it
contains the i-th version of the PPPQA. The leaf of π contains version 0. The
child of u that belongs to π contains the i−1-th version. If that is uR, the i-th
version and the i−1-th versions have the same content. Else if that is uL, the
i-th version is obtained by executing InsertAndAttrite(py−max(uR)y) to the
i−1-th version. Moreover, for every point in MAX(u) we store a pointer to the
node of Ru that stores the point. This node is the highest node of its winning
path. Note that Ru is not explicitly maintained anywhere in the data structure.

Let p be the point with maximum y-coordinate among the points py−max(uL)
and py−max(uR). To extend the winning path that contains p from the child
node to node u, we assign to u the points px−max(uR) and p, and compute
MAX(u).

Lemma 3.1 Extending a winning path from an internal node to its parent node
needs O(1) time and O(1) extra space.

Proof. Points px−max(u) and py−max(u) can be computed from the children
of u in O(1) time. To extend the winning path that contains py−max(uR),
we create the reference to the new version of the PPPQA for the winning
path in O(1) time. To extend the winning path that contains py−max(uL),
we record persistently the operation InsertAndAttrite(py−max(uR)y) and
create a reference to the new version in O(1) worst case time using O(1) extra
space [Bro96,Sun89]. !

Lemma 3.1 implies that T can be constructed bottom-up in O(n) worst case
time, assuming that the n points are given sorted by increasing x-coordinate.
The total space usage is O(n).
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u
Ru

MAX(u)

Figure 3.2: A concrete example of the structure for planar orthogonal 3-sided
range maxima reporting queries for a given pointset.

Query Operation

In the following we describe how to answer 3-sided range maxima queries. This
immediately also gives us maxima dominance and maxima contour queries,
since these are special cases where the query ranges are [qx,+∞[×[qy,+∞[ and
]−∞, xr]×]−∞,+∞[ respectively. Figure 3.2 shows a concrete example of our
structure for a particular pointset.

Reporting the maximal points that lie above qy We first show how
to report all maximal points with y-coordinate larger than a given value qy

among the points that belong to a subtree Tu of T rooted at an internal node
u. If py−max(u)y≤qy we terminate since no maximal point of Tu has to be
reported. Otherwise we report py−max(u) and compute the prefix p[1], . . . , p[k]
of MAX(u) of points with y-coordinate larger than qy. To do so we report the
elements of the PQA of u that are larger than qy. Let ui be the node of Ru such
that py−max(ui) = p[i]. We report recursively the maximal points in Tui with y-
coordinate larger than p[i+1]y for i ∈ {1, . . . , k−1}, and larger than qy for i = k.
The algorithm reports the maximal points in Tu in decreasing y-coordinate and
terminates when the maximal point with the smallest y-coordinate larger than
qy is reported.

For the correctness of the above observe that the point py−max(u) is the
leftmost maximal point among the points in Tu. The x-coordinates of the rest
of the maximal points in Tu are larger than py−max(u)x. The subtrees rooted
at nodes of Ru divide the x-range ]py−max(u)x,+∞[ into disjoint x-ranges. The
point p′ with maximum y-coordinate of each x-range is stored at a node u′ of
Ru. The points in MAX(u) are maximal among the points in Tu. Let p[i + 1]
be the leftmost maximal point in Tu to the right of p′. If p′ does not belong
to MAX(u) then none of the points in Tu′ are maximal, since p′y ≤ p[i + 1]y
and p[i + 1]x is larger than the x-coordinate of all points in Tu′ . Otherwise
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p′ belongs to MAX(u) and more precisely p′ = p[i]. Point p[i] is the leftmost
maximal point among the points in Tu′ . The maximal points among the points
in Tu with x-coordinate at least p[i]x and y-coordinate larger than p[i + 1]y
belong to Tu′ . In particular, they are the maximal points among the points in
Tu′ with y-coordinate larger than p[i + 1]y.

Lemma 3.2 Reporting the maximal points with y-coordinate larger than qy

among the points of a subtree of T takes O(t + 1) worst case time, where t is
the number of reported points.

Proof. If py−max(u) is not reported we spend in total O(1) time to assess that no
point will be reported. Otherwise py−max(u) is reported. We need O(k+1) time
to compute the k points in MAX(u) with y-coordinate larger than qy. If k = 0
we charge the O(1) time we spent in node u to the reporting of py−max(u).
Otherwise we charge the time to compute p[i] and to access node ui to the
reporting of p[i]. In total every reported point is charged O(1) time. !

In order to report all maximal points of P we apply the above algorithm to
the root of T with qy=−∞. The total time is O(m).

3-sided Range Maxima Queries We show how to report all maximal points
of the point set P ∩ ([x!, xr] × [yb,+∞[). We search for the leaves ! and r of
T that contain the points with the largest x-coordinate smaller than xr and
smallest x-coordinate larger than x!, respectively. Let π! and πr be the root-
to-leaf paths to ! and r, respectively. Let R denote the set of right children
of nodes of π! \ πr that do not belong to π! themselves, and the set of left
children of nodes of πr \ π! that do not belong to πr themselves. The subtrees
rooted at the nodes u of R divide the x-range ]x!, xr[ into disjoint x-ranges.
We compute the maximal points p[1], . . . , p[k] among the points py−max(u) in R
with y-coordinate larger than yb using [KLP75]. Let ui be the node of R such
that py−max(ui) = p[i]. We report recursively the maximal points in Tui with
y-coordinate larger than p[i+1]y for i∈{1, . . ., k−1}, and larger than yb for i=k.

Lemma 3.3 Reporting the maximal points for the 3-sided range maxima query
takes O(log n + t) worst case time, where t is the number of reported points

Proof. There are O(log n) nodes u in R. The points py−max(u) are accessed in
decreasing x-coordinate. Therefore we can compute the maximal points p[i], i ∈
{1, . . . , k} in O(log n) time [KLP75]. Let p[i] = py−max(ui) for a particular node
ui of R, and let there be ti maximal points to be reported in the subtree Tui .
Since p[i] will be reported we get that ti ≥ 1. By Lemma 3.2 we need O(ti)
time to report the ti points. Therefore the total worst case time to report the
t =

∑k
i=1 ti maximal points is O(log n + t). !

In order to answer whether a given query point q = (qx, qy) lies above or
below the staircase (maxima emptiness query) in O(log n) time we terminate
a 3-sided range maxima query for the range [qx,+∞[×[qy,+∞[ as soon as the
first maximal point is reported. If so, then q lies below the staircase. Else if no
point is reported then q lies above the staircase.
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Update Operation

To insert (resp. delete) a point p = (px, py) in the structure, we search for the
leaf ! of T that contains the point with the largest x-coordinate smaller than
px (resp. contains p). We traverse the nodes of the parent(!)-to-root search
path π top-down. For each node u of π we discard the points px−max(u) and
py−max(u), and rollback the PQA of u in order to discard MAX(u). We insert
a new leaf !′ for p immediately to the right of the leaf ! (resp. delete !) and we
rebalance T . Before performing a rotation, we discard the information stored
in the nodes that participate in it. Finally we recompute the information in
each node u missing px−max(u), py−max(u), and MAX(u) bottom-up following
π. For every node u we extend the winning path of its child u′ such that
py−max(u) = py−max(u′) as in Section 3.2. Correctness follows from the fact that
every node that participates in a rotation either belongs to π or is adjacent to a
node of π. The winning path that ends at the rotated node will be considered
when we extend the winning paths bottom-up.

Lemma 3.4 Inserting or deleting a point in T takes O(log n) worst case time.

Proof. The height of T is O(log n). Rebalancing a red-black takes O(log n)
time. We need O(1) time to discard the information in every node of π. By
Lemma 3.1 we need O(1) time to extend the winning path at every recomputed
node. The total time to update the internal nodes of T is O(log n). !

3.3 3-Sided Maxima Queries in the word-RAM

We store the points of P sorted by increasing x-coordinate at the leaves of
an (a, b)-tree T , such that a = 1

2 log
1
4 n and b = log

1
4 n. The height of T is

O( log n
log log n). Every node u is assigned the points py−max(u) and px−max(u).

Define Cy(u) = {py−max(ui)y | ui is a child of u} and similarly let Cx(u) be
the x-coordinates of the points with maximum x-coordinate assigned to the
children of u. In every internal node u we store Cx(u) and Cy(u) in two Q-
heaps X(u) and Y (u), respectively. We store two global lookup-tables for the
Q-heaps. We store a global look-up table S that supports 3-sided range maxima
queries for a set of at most log

1
4 n points in rank-space. Every node u stores a

reference to the entry of S that corresponds to the permutation in Cy(u). We
adopt the definitions for the winning paths and MAX(u) from Section 3.2, with
the difference that now Ru denotes the children of nodes v of πu that contain
the second maximal point in cy(v). As in Section 3.2, we implement the sets
MAX(u) of the nodes u along a winning path as the versions of a PPPQA. For
every point p in MAX(u) we store a pointer to the node v of πu whose child is
assigned p. The tree and the look-up tables use O(n) space.

Query Operation To report the maximal points in a subtree Tu with y-
coordinate larger than qy, we first compute the prefix p[1], . . . , p[k] of the points
in MAX(u) with y-coordinate larger than qy, as in Section 3.2. For each com-
puted point p[i] we visit the node v of πu whose child is assigned p[i]. We use the
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Y (v) and the reference to S to compute the maximal points p′[j], j ∈ {1, . . . , k′}
among the points in Cy(v) that lie in the range ]p[i]x,+∞[× ]p[i + 1]y,+∞[.
Let vj be the child of v such that p′[j] = py−max(vj). We recursively report
the maximal points in the subtree Tvj with y-coordinate larger than p′[j + 1]y
for j ∈ {1, . . . , k′ − 1}, and larger than p[i + 1]y for j = k′. If i = k and
j = k′ we recursively report the points in Tvj with y-coordinate larger than qy.
Correctness derives from the fact that p[i]x < p′[1]x < · · · < p′[k′]x < p[i + 1]x
and p[i]y > p′[1]y > · · ·> p′[k′]y > p[i + 1]y hold, since p[i] and p′[1] are respec-
tively the first and the second maximal points among the points in Cy(v). The
worst case query time is O(t). To answer a 3-sided range maxima query, we
first use the Q-heaps for the x-coordinates in order identify the nodes on the
paths π! and πr to the leaves that contain the points with smallest x-coordinate
larger than x! and with largest x-coordinate smaller than x!, respectively. This
takes O( log n

log log n) worst case time. For each node on π! and πr we identify the
interval of children that are contained in the x-range of the query. For each
interval we identify the child c with maximum py−max(c) using S in O(1) time.
These elements define the set R from which we compute the maximal points
using [KLP75] in O( log n

log log n) worst case time. We apply the above modified al-
gorithm to this set, ignoring the maximal points p′[j] outside the x-range of the
query. The worst case time for 3-sided range maxima query is O( log n

log log n + t).

Update Operation To insert and delete a point from T we proceed as in
Section 3.2. To extend a winning path to a node v we first find the child u
of v with the maximum py−max(u)y using Y (v), i.e. the winning path of u
will be extended to v. Then we set px−max(v) = px−max(uk) where uk is the
rightmost child of v, we set py−max(v) = py−max(u), insert px−max(u)x and
py−max(u)y to X(v) and Y (v) respectively, we recompute the reference to the
table S using Y (v), and we recompute MAX(v) from MAX(u) as in Section 3.2.
In order to discard the information from a node u we remove px−max(u) and
py−max(u) from node u and from the Q-heaps X(v) and Y (v) respectively, and
rollback MAX(u). These operations take O(1) worst case time. Rebalancing
involves splitting a node and merging adjacent sibling nodes. To facilitate these
operation in O(1) worst case time we execute them incrementally in advance,
by representing a node as a pair of nodes. Therefore we consider each Q-heap
as two separate parts Q! and Qr, and maintain the size of Q! to be exactly a.
In particular, whenever we insert an element to Q!, we remove the rightmost
element from Q! and insert it to Qr. Whenever we remove an element to Q!, we
remove the leftmost element from Qr and insert it to Q!. In case Qr is empty
we remove the rightmost or leftmost element from the immediately left or right
sibling node respectively and insert it to Q!. Otherwise if both sibling nodes
have a elements in their Q-heaps, we merge them. The total worst case time
for an update is O( log n

log log n) since we spend O(1) time per node.
Theorem 3.1 Given n planar points with integer coordinates in the range U =
{0, 1, . . . , 2w−1}, there exists a dynamic data structure for the RAM model with
word size w that supports 3-sided range maxima queries in O( log n

log log n + t) worst
case time when t points are reported, and supports updates in O( log n

log log n) worst
case time, using O(n) space.
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3.4 4-sided Maxima Queries and Rectangular Visi-
bility

For the rectangular visibility query problem, where we want to report the points
that are rectangularly visible from a given query point q = (qx, qy), we note that
it suffices to report the maximal points p that lie to the lower left quadrant
defined by point q (namely the points where px ≤ qx and py ≤ qy holds).
The rectangularly visible points of the three other quadrants can be found in a
symmetric way. This corresponds exactly to a 4-sided range maxima query for
the range ]−∞, qx]×]−∞, qy]. The rectangular visibility query problem can be
solved in the same bounds, using four 4-sided range maxima structures.

To support 4-sided range maxima queries, as in [OW88], we store all points
sorted by increasing y-coordinate at the leaves of a weight-balanced BB[α]-tree
S [WL85]. In every internal node u of S we associate a secondary structure
that can answer 3-sided range maxima queries on the points that belong to the
subtree Su of S. To perform a 4-sided range maxima query we first search for the
leaves of S that contain the point with the smallest y-coordinate larger than yb

and the point with largest y-coordinate smaller than yt, respectively. Let πb and
πt be the root-to-leaf search paths respectively. Let L denote the set of nodes of
S that are left children of the nodes in πt\πb and do not belong to πt themselves,
and the set of nodes of S that are right children of the nodes in πb \ πt and do
not belong to πb themselves. The subtrees rooted at the nodes of L divide the
y-range ]yb, yt[ into O(log n) disjoint y-ranges. We consider the nodes u1, . . . , uk

of L in decreasing y-coordinate. In the secondary structure of u1 we perform a 3-
sided range maxima query with the range ]x!, xr]×]−∞,+∞[. In the secondary
structure of every other node ui of L we perform a 3-sided range maxima query
with the range ]bi−1, xr]×]−∞,+∞[, where bi−1 is the x-coordinate of the last
point reported from the secondary structures of u1, . . . , ui−1, i.e. the rightmost
point that lies to the left of xr and lies in y-range spanned by the subtrees
Su1 , . . . , Sui−1 . See Figure 3.3 for the decomposition of a 4-sided query.

To insert (resp. delete) a point in S, we first search S and create a new
leaf (resp. delete the leaf) for the point. Then we insert (resp. delete) the
point to the O(log n) secondary structures that lie on the search path. Finally
we rebalance the weight-balanced BB[α]-tree S and reconstruct the secondary
structures at rebalanced nodes.

bi−1 yt

yb

x! xr

Su1

Su2

Sui

Suk

Figure 3.3: The decomposition of a 4-sided range maxima query into O(log n)
3-sided range maxima queries.
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Theorem 3.2 Given a set of n points in the plane, the dynamic 4-sided range
maxima query problem can be solved using O(n log n) space, O(log2 n+t) worst
case query time, and O(log2 n) worst case update time, when reporting t points.

Proof. There are k=O(log n) nodes in L where we execute a 3-sided range
maxima query. By Lemma 3.3 each such query takes O(log n + ti) worst case
time, where ti is the number of reported points. In total the worst case time to
report the t =

∑k
i=1 ti points is O(log2 n+ t). Each point p occurs once in every

secondary structure of a node of S that is an ancestor of the leaf that contains
p. There are O(log n) such ancestor nodes, thus the total space is O(n log n).
By Lemma 3.4 we need O(log n) time to insert and delete a point p from each
secondary structure at an ancestor node. The worst case time to insert and
delete p to the secondary structures that contain it is O(log2 n). When the
incremental rebalancing algorithm of [AV03] is applied, then for each insertion
and deletion to S, O(1) updates are applied to the secondary structures at each
of O(log n) levels of S. By Lemma 3.4 each such update needs O(log n) worst
case time, thus the rebalancing costs O(log2 n) worst case time. !

3.5 Open Problems

• An immediate adaptation of the structure of Section 3.3 for maintaining
the maximal points to the I/O model yields an I/O-efficient dynamic data
structure that supports updates O(logB n) worst case I/Os, dominance
maxima queries in O(logB n + t) worst case I/Os and all maxima queries
in O(m) worst case I/Os, using O(n/B) blocks. The query operations
make random I/Os, since they access the output via representative points.
Can all maxima queries be supported in O(m/B) I/Os, while supporting
updates in O(logB n) worst case I/Os?

• Is the space of our dynamic data structure for 4-sided range maxima
reporting queries optimal? Our structure in Section 3.4 shows that it
is difficult to report the maximal points among the points dominated by
upper right corner of the query rectangle using linear space. These queries
are also known as dominated maxima queries [ABGP07]. Can we prove
an Ω(n log n) space lower bound for a static data structure that supports
such queries in O(polylog n) worst case time?

• All dynamic data structures for the pointer machine that maintain maxi-
mal points [WL85,Kap00] or support rectangular visibility queries [OW88]
on points of dimension d ≥ 3, are obtained by augmenting BB[α]-trees
accordingly. This imposes a logarithmic overhead per dimension over the
query, update and space complexity. Even for d = 3 and even for the
static case, does there exist data structures that support reporting or-
thogonal range maxima queries in O(polylog n + t) time, where t is the
size of the output?

• Can our technique for augmenting search trees using partially persistent
secondary structures be used to improve the deletion time for other dy-
namic problems, besides dynamic range maxima reporting problem?





Chapter 4

Fully Persistent B-Trees

Abstract

We present I/O-efficient fully persistent B-Trees that support range searches at
any version in O(logB n + t/B) I/Os and updates at any version in O(logB n +
log2 B) amortized I/Os, using space O(m/B) disk blocks. By n we denote
the number of elements in the accessed version, by m the total number of
updates, by t the size of the query’s output, and by B the block size. The
result improves the previous fully persistent B-Trees of Lanka and Mays by a
factor of O(logB m) for the range query complexity and O(logB n) for the update
complexity. To achieve the result, we first present a new B-Tree implementation
that supports searches and updates in O(logB n) I/Os, using O(n/B) blocks of
space. Moreover, every update makes in the worst case a constant number of
modifications to the data structure. We make these B-Trees fully persistent
using an I/O-efficient method for full persistence that is inspired by the node-
splitting method of Driscoll et al. The method we present is interesting in
its own right and can be applied to any external memory pointer based data
structure with maximum in-degree din and out-degree bounded by O(B), where
every node occupies a constant number of blocks on disk. The I/O-overhead
per modification to the ephemeral structure is O(din log2 B) amortized I/Os,
and the space overhead is O(din/B) amortized blocks. Access to a block of the
ephemeral data structure is supported in O(1) worst case I/Os.

55
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4.1 Introduction

In this Chapter we consider the problem of making B-Trees fully persistent in
the I/O model. In the pointer machine model, a direct application of the node-
splitting method [DSST89] to B-Trees with constant degree is efficient since
the in-degree of every node is one. However, applying this method directly to
the I/O model will not yield an I/O-efficient fully persistent data structure.
The persistent node of Driscoll et al. has constant size and thus corresponds
to at most a constant number of updated elements of the ephemeral structure.
However, a persistent node of size ω(1), say Θ(B), may correspond to Θ(B)
versions of an ephemeral node. In order to find the appropriate version during
navigation in the persistent node, as many versions must be compared in the
version list. Since the versions are too many to fit in internal memory, the order
maintenance structure is stored in external memory. Thus, one I/O is needed
per version comparison, which necessitates O(B) I/Os to handle one node in
the worst case. By simple modifications an O(log2 B) I/O-overhead per update
and access step can be achieved.

In Section 4.2 we present a method that makes pointer-based ephemeral
structures fully persistent in the I/O model. In particular, we present an inter-
face of basic operations to be called by the implementation of the ephemeral
structure. We assume that a record of the ephemeral structure occupies a con-
stant number of blocks. The method achieves O(1) worst case I/O-overhead
per access step, and O(din log B) amortized I/O-overhead and O(din

B ) amor-
tized space-overhead per update step, where din is the maximum indegree of
any ephemeral record.

We follow a similar approach to the node-splitting method. We further mod-
ify this method such that whenever a persistent node is accessed by a pointer
traversal, the contents of the node for a particular version can be retrieved by
at most a predefined number of version comparisons. In this way we manage
to optimize the I/O-cost of an access step. However, maintaining this property
after a sequence of update operations requires comparing a particular version
against all the versions that are stored in a node. Moreover, a packed memory
is used in order to manage the persistent nodes that have small size.

Applying our method to B-trees even when they need O(1) amortized
I/Os to rebalance, yields fully persistent B-trees that support range queries
at any version in O(logB n + t

B ) worst case I/Os and updates at any version in
O(logB n · log B) amortized I/Os, using O(m

B logB n) space. By definition of full
persistence, an update operation that causes O(logB n) nodes to be rebalanced
in the worst case can be repeated arbitrarily many times. The update and
the space overhead comes from the fact that the necessary rebalancing opera-
tions can be divided into O(logB n) update steps, where each makes a constant
number of modifications to the tree.

In Section 4.3 we present the Incremental B-trees, an implementation of
(a, b)-trees that has the same complexities as regular B-trees, and where more-
over each update operation performs in the worst case O(1) modifications to
the tree. In regular search trees some update operations may unbalanced more
that a constant number of nodes, over a worst case sequence of update opera-
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tions. Balance is restored only when all the unbalanced nodes are rebalanced.
In our implementation, the necessary rebalancing operations are executed in-
crementally over a sequence of operations, and they spend at most O(1) worst
case time per update operation.

Inclined AVL trees [Tsa86] is an implementation of AVL-trees, where a
constant number of rebalancings per update operation that involves the nodes
of a fixed root-to-leaf path is are executed. Extra information is stored on the
nodes of this path, in order to decide which rotations of the nodes are neces-
sary to be executed. This information is also updated in O(1) time. Driscoll
et al. [DSST89] present an implementation of red-black trees where at most a
constant number of nodes are rebalanced per update operation. In particular, it
is an implementation of BB-trees that also does lazy recoloring, namely it per-
forms O(1) recolorings per update operation. They observe that the nodes to be
recolored after an update operation, form a consecutive path. They define in-
cremental paths that are maintained in a similar way as [Tsa86]. Moreover, the
incremental paths are maintained node disjoint, spending O(1) worst case time
per every update operation that affects them. Our Incremental B-trees can be
seen as a generalization of lazy recoloring to (a, b)-trees.

In Section 4.4 we present fully persistent B-trees that support range queries
at any version in O(logB n+t/B) I/Os and updates at any version in O(logB n+
log2 B) amortized I/Os, using O(m/B) disk blocks. The result is obtained by
applying our I/O-efficient method for full persistence (Section 4.2) to Incremen-
tal B-trees (Section 4.3).

4.2 I/O-Efficient Method for Full Persistence

In this section we present a generic method that makes a pointer based ephemeral
data structure fully persistent in the I/O model, provided that every node of
the underlying graph occupies at most a constant number of disk blocks. The
overhead for accessing an ephemeral node is O(1) I/Os in the worst case. The
overhead for updating a field in an ephemeral node is O(din log2 B) amortized
I/Os and the space overhead is O(din/B) amortized blocks, where din denotes
the maximum in-degree of any ephemeral node.

In particular, the ephemeral data structure D is represented by a graph
where every ephemeral node u contains at most cfB fields for some constant
cf . Each field stores either an element, or a pointer to another ephemeral node.
One ephemeral entry node provides access to the graph. An ephemeral node
is empty if none of its fields contains elements or pointers.

The following interface provides the necessary operations to navigate and
to update any version of the fully persistent data structure D̄. The interface
assumes that the user has only knowledge of the ephemeral structure. The i-th
version of D̄ is an ephemeral data structure Di where all nodes, elements and
pointers are associated with version i. A field is an identifier of a field of a
node of Di. The value of the field is either the element in the field at version
i, or a pointer pi to another node of Di. Since the pointer resides in and
points to nodes of the same version, we associate this version with the pointer.
The version i is a unique identifier of Di.
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pointer pi = Access(version i) returns a pointer pi to the entry node at
version i.

value x = Read(pointer pi, field f) returns the value x of the field f
in the node at version i pointed by pointer pi. If x is a pointer, it points to
a node at the same version i.

Write(pointer pi, field f, value x) writes the value x in the field f of
the node at version i pointed by pi.

pointer pi = NewNode(version i) creates a new empty node at version i and
returns a pointer pi to it.

version j = NewVersion(version i) creates an new version Dj that is a copy
of the current version Di and returns a new version identifier for Dj .

By definition of full persistence, the outcome of updating Di is a new
ephemeral structure Dj , where the new version j )= i becomes a leaf of the
version tree. The above interface allows the outcome of updating Di to be Di

itself. In other words, it provides the extra capability of updating an internal
node of the version tree1. In order to abide by the definition, the user has to
explicitly create a new version Dj before every update operation.

The Structure

Our method is inspired by the node-splitting method [DSST89] to which we
make non-trivial modifications, such that whenever a node of the structure
is accessed by a pointer traversal, the contents of the node for a particular
version can be retrieved by at most a predefined number of version comparisons.
Moreover, a packed memory is used in order to manage the persistent nodes
that have small size.

As defined by full persistence, all the versions of the ephemeral data struc-
ture can be represented by a directed rooted version tree T . If version i is
obtained by modifying version j, version j is the parent of i in T . Simi-
larly to [DSST89] we store the preorder layout of T in a dynamic list that
supports order maintenance queries [Die82,Tsa84,DS87,BCD+02], called the
global version list (GVL). Given two versions i and j, an order maintenance
query returns true if i lies before j in the list, and it returns false otherwise.
To preserve the preorder layout of T whenever a new version is created, it is
inserted in the GVL immediately to the right of its parent version. In this
way, the descendants of every version occur consecutively in the GVL. By im-
plementing the GVL as in [DS87], order maintenance queries are supported in
O(1) worst case I/Os. The insertion of a version is supported in O(1) worst
case I/Os, given a pointer to its parent version.

We record all the changes that occur to an ephemeral node u in a linked
list of persistent nodes ū, called the family φ(u). To implement the linked list,
the persistent node ū contains a pointer c(ū) to the next persistent node in
φ(u). For every field f of the corresponding ephemeral node u, the persistent

1This does not immediately yield a retroactive data structure [DIL04], since all the versions
in the subtree of the updated node have to be modified appropriately as well.
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LVL

B

F

v̄

ū

Figure 4.1: The persistent node ū. The versions stored in the local version list of ū
are represented by black dots. The values stored in F(ū) and B(ū) are represented
with white dots. The values lie on the column that corresponds to the version they are
associated with. When the field in F(ū) contains pointers, the values contain forward
pointers that are represented with thick arrows. The values in B(ū) contain backward
pointers that are represented with thin arrows. They point to the persistent node
v̄ that contains the corresponding forward pointers. Forward pointers point to their
associated version in the local version list of ū.

node ū stores a set Ff (ū). If field f stores elements, then Ff (ū) contains pairs
(version i, value x) where x is the element stored in f at version i. Else, if field
f stores pointers, then Ff (ū) contains pairs (version i, pointer −→p ) where the
forward pointer −→p corresponds to the ephemeral pointer p that is stored in f at
version i. If p points to the node v at version i, then −→p points to the persistent
node v̄ in φ(v) that corresponds to node v at version i. For every persistent
node v̄ that contains forward pointers pointing to ū, the persistent node ū
stores a set B←−p (ū) of pairs (version i, pointer ←−p ) where the backward pointer
←−p points to v̄. Backward pointers do not correspond to ephemeral pointers and
they are only used by the persistent mechanism to accommodate updates. The
pairs in the sets Ff (ū) and B←−p (ū) are sorted with respect to the order of their
first component (version i) in the GVL. We denote F(ū) = ∪f∈ūFf (ū) and
B(ū) = ∪←−p ∈ūB←−p (ū). Finally, the persistent node ū contains a local version list
LVL(ū) that stores all the versions i in the pairs of F(ū) and B(ū), sorted with
respect to their order in the GVL. The first version in the LVL(ū) comprises
the version iū of the persistent node ū.

To provide access to the structure we maintain an access array whose i-th
position stores a forward pointer −→p to the persistent node that corresponds to
the entry node at version i, and a pointer to version i in the GVL. For ease of de-
scription we consider that the access array contains the pairs (version i, pointer
−→p ). We define the size of a persistent node ū to be the number of pairs in F(ū)
and B(ū). This dominates the number of versions in the LVL(ū), since there
exists at least one pair per version. We call a persistent node small if its size
is at most cf

2 B. To utilize space efficiently, we pack all families of small size in
an I/O-efficient auxiliary linked list.

Invariant 4.1 In every set Ff (ū) and B(ū) there exist a pair with version iū,
the version of the persistent node ū.

Invariant 4.1 ensures that an ephemeral node u can be retrieved by accessing
exactly one persistent node ū in the family φ(u).
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Invariant 4.2 The size of a persistent node ū that is not stored in the auxiliary
linked list is cf

2 B ≤ |ū| ≤ cmaxB for cmax = Ω(cf (din + d2
in
B )).

Invariant 4.2 ensures that a persistent node ū occupies at most a constant
number of blocks.

Invariant 4.3 For every forward pointer −→p that points to the persistent node v̄
and resides in a pair (i,−→p ) of Ff (ū) or in a pair of the access array, there exists
a pair (i,←−p ) in B←−p (v̄) where the backward pointer ←−p points to the persistent
node ū or to the i-th position of the access array, respectively.

Invariant 4.3 associates a forward pointer −→p with a corresponding backward
pointer ←−p . It moreover ensures that the version i of the forward pointer −→p
belongs to the LVL of the pointed persistent node v̄. We set all forward pointers
to particularly point to the version i in the LVL(v̄). It suffices for backward
pointer ←−p to only point to the persistent node ū.

We define the valid interval of a pair (i, x) in Ff (ū) to be the set of versions
in the GVL for which field f has the particular value x. In particular, it is the
interval of versions in the GVL from version i up to but not including version j.
Version j is the version in the next pair of Ff (ū), if this pair exists. Otherwise,
j is the version in the first pair of Ff (c(ū)), if c(ū) exists. Otherwise, the valid
interval is up to the last version in the GVL. The valid interval of a pair (i,−→p )
in Ff (ū), where −→p is a forward pointer to the persistent node v̄, is identical
to the valid interval of the pair (i,←−p ) in B←−p (v̄), where the backward pointer
←−p corresponds to −→p . A pair (i,−→p ) where the forward pointer −→p points to the
persistent node v̄, implements the pointers pj that point to v at every version
j that belongs to the valid interval of the pair. All versions occur in the access
array, since NewVersion is called before every update. Thus, the valid interval
of a pair (i,−→p ) in the access array is only version i. We define the valid interval
of a persistent node ū to be the union of the valid intervals of the pairs in F(ū)
and B(ū). In particular, it is the interval of versions in the GVL from version
iū up to but not including version ic(ū), if c(ū) exists. Otherwise, it is up to the
last version in the GVL.

We define the span of a forward pointer −→p that points to the persistent
node v̄ to be the versions in the intersection of the valid interval of the pair
that contains −→p with the LVL(v̄). The backward pointer ←−p that corresponds
to −→p has the same span with −→p .

Invariant 4.4 The size of the span of every forward pointer is d ∈ N where
1 ≤ d ≤ 2π for π ≥ din + 9.

Invariant 4.4 ensures that whenever a persistent node is accessed by traversing
a forward pointer, the contents of the persistent node for a particular version
can be retrieved by comparing against a set of at most d versions.
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Algorithms

Here we present the implementation of the user-interface. Operations Write,
NewNode, and NewVersion immediately restore Invariants 4.1 and 4.3. This may
cause at most din forward pointers to violate Invariant 4.4 and some persistent
nodes to violate Invariant 4.2. The auxiliary subroutine Repair() restores those
invariants utilizing an auxiliary violation queue.

We say that a version precedes version i in the local version list, if it is the
rightmost version of the list that is not to the right of version i in the global
version list. Note that version i precedes itself when it belongs to the set. We
denote by i+ the version immediately to the right of version i in the GVL.

pointer pi = Access(version i) We return the forward pointer in i-th po-
sition of the access array, since it points to the entry node at version i.

value x = Read(pointer pi, field f) Let pointer pi point to the ephemeral
node u at version i. Let ū be the persistent node in φ(u) whose valid interval
contains version i. To return the value x that field f has in the ephemeral node
u at version i, we determine the pair in Ff (ū) whose valid interval contains
version i.

The pairs in F(ū) whose valid interval contain version i, also contain the
version j that precedes version i in the LVL(ū). We determine j by searching
in the LVL(ū) as following. Let the pair (i′,−→p ) contain the forward pointer
that implements pointer pi. By Invariant 4.3 version i′ belongs to the LVL(ū).
Since version i belongs to the valid interval of this pair, version i′ lies to the
left of version i in the GVL. If i′ )= j, then version j lies to the right of version
i′ in the LVL(ū). Version j belongs to the span of −→p .

We perform a binary search on the version of the span of −→p in the LVL(ū).
Every comparison is implemented by an order maintenance query between the
accessed version in the span and version i. In this way, we locate the rightmost
version j in the span for which the order maintenance query returns true. At
least one order maintenance query returns true, since version i′ lies to the left of
version i in the GVL. We find the pair of Ff (ū) with the version that precedes
version j in the LVL(ū), and return the value it contains.

ji′ū

x

Figure 4.2: Operation Read(pi,f). The thick arrow represents the forward pointer
−→p that implements pointer pi. B(ū) and Ff (ū) are represented by thin rectangles.
The white dot represents the backward pointer that corresponds to −→p . We assume
that version i does not belong to the LVL(ū).
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Write(pointer pi, field f , value x) Let pointer pi point to the ephemeral
node u. Let ū be the persistent node in φ(u) whose valid interval contains
version i. As in Read, we find the version j that precedes version i in the
LVL(ū), and the pair (j′, y) in Ff (ū) whose valid interval contains version i.

If j′ = i, we merely replace y with x. In this case, version i is the currently
updated version and it belongs to the LVL(ū). Otherwise, we add the pairs (i, x)
and (i+, y) to Ff (ū). By this way version i belongs only to the valid interval
of the pair (i, x). Moreover, the versions that belonged to the valid interval of
the pair (j′, y) and succeed version i in the GVL, continue having the previous
value y. If there is already a pair in Ff (ū) with version i+, it suffices to only
add the pair (i, x). If Ff (ū) is empty, we add the pairs (iū, null), (i, x) and
(i+, null) instead, where iū is the version of the persistent node ū.

Version i is inserted to the LVL(ū) immediately to the right of version j.
Unless version i+ already exists in the LVL(ū), it is inserted immediately to the
right of version i. These insertions may cause at most din forward pointers

−→
Pū

that point to ū to violate Invariant 4.4. The persistent nodes that contain them
have to be inserted to the violation queue. To find the forward pointers

−→
Pū,

we determine the corresponding backward pointers in ū. In particular, we find
all the pairs (k,←−p ) in B(ū) whose valid intervals contain the inserted versions,
and check if there are more than 2π versions in the LVL(ū) between version k
and the version of the next pair in B←−p (ū). If so, we access the persistent node
z̄ pointed by ←−p and mark the pair in Ff (z̄) with the corresponding forward
pointer. We insert z̄ to the violation queue, unless it has already been inserted.

If x is a pointer to an ephemeral node v at version i, the argument pointer
xi is implemented by a forward pointer −→x to the persistent node v̄ in φ(v) whose
valid interval contains version i. Version i belongs to the span of −→x . We add
to Ff (ū) the pairs (i,−→x ) and (i+,−→y ′) instead, where −→y ′ is a forward pointer
to the persistent node w̄ pointed by the forward pointer −→y of the pair (j′,−→y )
in Ff (ū). We restore Invariant 4.3 for the added pair (i,−→x ) by inserting the
corresponding backward pointer ←−x to B(v̄). In particular, we add the pair
(i,←−x ) to B←−x (v̄) where the backward pointer ←−x points to the persistent node
ū. We perform a binary search in the span of −→x in order to find the version
in the LVL(v̄) that precedes version i. Unless it is i itself, we insert version i

immediately to the right of it. The at most din forward pointers
−→
Pv̄ that violate

Invariant 4.4 are processed as described above. We set −→x to point to version
i in the LVL(v̄). The added pair implements pointer xi. If (i+,−→y ′) was also
added, we restore Invariant 4.3 for −→y ′ as described above. Version i+ belongs to
the span of −→y . The at most din forward pointers

−→
Pw̄ may violate Invariant 4.4.

Notice that ū may contain a pointer from
−→
Pv̄ or

−→
Pw̄.

The insertion of pairs in the persistent nodes ū, v̄ and w̄ increases their
size. If the nodes are not small anymore due to the insertion, we remove them
from the auxiliary linked list. If they violate Invariant 4.2, we insert them to the
violation queue, unless they have already been inserted. Finally we call Repair.
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Figure 4.3: Operation Write inserts to the ephemeral node u at version i a pointer x
that points to the ephemeral node v at version i. The figures show how the correspond-
ing persistent nodes ū, v̄ and w̄ look before and after the operation. The persistent
node w̄ is the node that is pointed by the forward pointer of the pair in Ff (ū) whose
valid interval contains version i, where f is the field in ū that contains the inserted
pointer. The local version lists are represented by horizontal lines.

pointer pi = NewNode(version i) We create a new family φ(u) which
consists of one empty persistent node ū. We insert version i to the LVL(ū), so
that ū satisfies Invariant 4.1. Node ū is added to the auxiliary linked list since
it is small. We return a forward pointer to version i in the LVL(ū).

version j = NewVersion(version i) We traverse the pointer stored at the
i-th position of the access array to find the position of version i in the GVL.
We insert version j immediately to the right of version i in the GVL. We insert
to the j-th position of the access array a pointer to version j in the GVL. Let
ū be the persistent node pointed by the forward pointer in the i-th position of
the access array. We insert in the j-th position of the access array a forward
pointer to ū. At most din forward pointers

−→
Pū may violate Invariant 4.4. If

ū violates Invariant 4.2 we insert it to the violation queue, unless it has been
already inserted. Finally Repair is called.

Repair() iteratively pops a persistent node ū from the violation queue, and
restores Invariant 4.4 for the forward pointers in the marked pairs of Ff (ū) and
Invariant 4.2 for ū. These invariants may in turn be violated in other persistent
nodes, which we insert in the violation queue as well. This iteration terminates
when the queue becomes empty.

To restore Invariant 4.4 for the forward pointer in the marked pair (i,−→p )
in Ff (ū), we reset the size of its span to π as following. Let −→p point to the
persistent node v̄. We find the version j in the span of −→p that resides π positions
to the right of version i in the LVL(v̄). We set the forward pointer −→p ′ to version
j in the LVL(v̄), and add the pair (j,−→p ′) to Ff (ū). If the span of −→p ′ violates
Invariant 4.4, we mark its pair. We restore Invariant 4.3 for the added pair as
described in Write. Node v̄ may violate Invariant 4.2. We find the version that
precedes version j in the LVL(ū), by a binary search over the whole LVL(ū).
We insert j immediately to the right of its preceding version, unless it already
exists. This may cause at most din forward pointers

−→
Pū to violate Invariant 4.4.

Node ū may violate Invariant 4.2.
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To restore Invariant 4.2 for the persistent node ū, we split it into two per-
sistent nodes, such that the right one has size approximately cmax

2 B. We first
determine the version j at which we will split ū, by scanning LVL(ū) from right
to left. Version j is the leftmost version in the LVL(ū), such that the number
of pairs whose version succeeds j is less than cmax

2 B. Unless j′ = j, for every
pair (j′, x) in ū whose valid interval contains version j, we add a pair (j, x) in
ū. If x is a forward pointer to a persistent node v̄, we restore Invariant 4.3
as described in Write. If x is a backward pointer to v̄, restoring Invariant 4.3
involves a binary search for the version that precedes j′ in the LVL(v̄). Node
v̄ may violate Invariant 4.2. Moreover, at most din forward pointers

−→
Pv̄ may

violate Invariant 4.4. We create a new persistent node ū′ that succeeds ū in
the family φ(u), by setting c(ū′) = c(ū) and c(ū) = ū′. We split the LVL(ū)
at version j. The right part becomes LVL(ū′). Version j becomes the ver-
sion of ū′. All the pairs in ū with a version in LVL(ū′) are moved to ū′. We
traverse all forward and backward pointers in F(ū′) and B(ū′) in order to set
the corresponding backward and forward pointers to point to ū′, respectively.
Version j becomes the version of ū′. The node ū′ satisfies Invariant 4.1 due to
the addition of the pairs (j, x).

Analysis

The following remarks are necessary for the analysis. A version in the LVL(ū)
belongs to the span of at most din forward pointers that point to ū, and thus
it belongs to the valid interval of at most din pairs in B(ū).

Lemma 4.1 After splitting a persistent node ū the size of ū′ is within the range
[( cmax

2 − cf )B,
(

cmax
2 + cf

)
B + din − 1].

Proof. The number of pairs with version j and with versions that succeed ver-
sion j in LVL(ū) before the split is at least ( cmax

2 − cf )B. This sets the lower
bound. The number of pairs with a version that succeeds j in the LVL(ū) is
at most cmax

2 B − 1. There are at most cfB pairs with a single version in F(ū),
and at most din pairs in B(ū) whose valid interval contains version j. We add
one pair for each of them to ū′. This sets the upper bound. !

First we analyze the worst case cost of every operation. Access performs
one I/O to the access array. Read performs at most cmax I/Os to load the
persistent node ū into memory, and at most log2 2π I/Os for the order mainte-
nance queries in order to determine the appropriate version j. Write performs
at most cmax I/Os to load ū as well as at most log2 2π I/Os to locate the
proper version as in Read. One I/O is needed to access version i+ in the
GVL, and at most dincmax I/Os are needed to access the forward pointers of
−→
Pū. If the written value is a pointer, then we also need at most 2 log2 2π I/Os
to process v̄ and w̄, and 2dincmax I/Os to access the forward pointers of

−→
Pv̄

and
−→
Pw̄. In total, without taking into account the call to Repair, the worst

case cost is 3dincmax + 3 log2 2π + cmax + 1 I/Os. NewNode makes at most
cmax I/Os to access the entry node. NewVersion spends one I/O to update
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the GVL, and at most cmax I/O to process ū and to insert ū to the violation
queue. To restore Invariant 4.4 for one forward pointer Repair makes at most
2cmax I/Os to load ū and v̄ into memory, at most log2 cmaxB I/Os to insert
version j to the LVL(v̄), and at most dincmax I/Os to insert the nodes with

−→
Pv̄

to the violation queue. In total the worst case cost is cmax(din +2)+log2 cmaxB
I/Os. To restore Invariant 4.2 for a persistent node, Repair makes at most
cmax I/Os to load the node into memory, at most cfB(cmax + log2 2π) I/Os to
restore Invariant 4.3 for the added pairs in ū with forward pointers, at most
din(cmax + log2 cmaxB) I/Os to restore Invariant 4.3 for the added pairs in ū
with backward pointers, at most (cfB + din)dincmax I/Os to insert the nodes
with

−→
Pv̄ to the violation queue, and at most (( cmax

2 )B − 1)cmax I/Os to set the
forward and backward pointers to point to ū′. In total the worst case cost is
B( c2max

2 + cf (cmax(din + 1) + log2 2π)) + din(cmax(din + 1) + log2 cmaxB) I/Os.
Let Di be the persistent structure after the i-th operation. We define the

potential of Di to be Φ(Di) =
∑
−→p ∈P Ξ(−→p )+

∑
ū∈U Ψ(ū), where P is the set of

all forward pointers and U is the set of all persistent nodes in Di. The function
Ξ(−→p ) = max{0, |−→p | − π} provides the potential to the forward pointer −→p for
the splitting of its span. By |−→p | we denote the size of the span of −→p . Function
Ψ(ū) = max

{
0, 3

(
|ū|−

((
cmax

2 + cf

)
B + din

))}
provides the potential to the

persistent node ū for its split. By |ū| we denote the size of the persistent node ū.
Operation Write, without the call to Repair, increases Ψ(ū), Ψ(v̄) and Ψ(w̄)

by at most 12 in total. The potential of the at most din forward pointers of
−→
Pū

is increased by at most 2. The potential of the at most 2din forward pointers
−→
Pv̄

and
−→
Pū is increased by at most 1. In total the potential increases by 12 + 4din.

Operation NewVersion increases Ψ(ū) by 3 and the potential of at most din

forward pointers
−→
Pū by 1. In total the potential increases by 3 + din. When

operation Repair restores Invariant 4.4 for one marked pair it increases Ψ(ū)
and Ψ(v̄) by 6 in total, and the potential of the at most din forward pointers
Pū by at most 1. The potential of the forward pointer in the pair is decreased
by π. In total the potential changes by din + 6 − π. When operation Repair
restores Invariant 4.2 for the persistent node ū, it increases Ψ(ū) by at most
3cfB due to the added pairs with elements and forward pointers, and by at
most 3din due to the added pairs with backward pointers. The addition of
the corresponding backward and forward pointers increases the potential of at
most cfB + din persistent nodes by 3. The potential of at most din(cfB + din)
forward pointers to these persistent nodes is increased by 1. After the split,
the potential decreases by 3( cmax

2 − cf )B by the lower bound in Lemma 4.1. In
total the potential changes by B(cf (9 + din)− 3

2cmax) + din(din + 6).
Let Di be the result of executing Write or NewVersion on Di−1, followed

by a Repair operation. We assume that a version and a pair fit in a field
of a block. A modification of a field involves adding a pair or a version in a
persistent node, or changing the value in a pair. The number of modifications
caused by Repair bounds asymptotically the number of persistent nodes it
accesses. The amortized number of fields modified by Repair is c̃i = ci +
Φ(Di)−Φ(Di−1), where ci is the real number of modifications in Di−1. If Repair
restores Invariant 4.4 for α forward pointers, the amortized number of modified
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fields is
α (3 + (din + 6− π))

This is be case we add one version and two pairs. It is non-positive for π ≥
din + 9. If Repair restores Invariant 4.2 for β persistent nodes, the amortized
number of modified fields is

β

(
3cfB+3din+2(

cmax

2
+cf )B+2din−2+B(cf (9+din)−3

2
cmax)+din(din+6)

)

This is because we add at most cfB pairs with forward pointers in the node and
one corresponding backward pointer and version at the node pointed by each of
these forward pointers. We add at most din pairs with backward pointers in the
node and one corresponding forward pointer and version at the node pointed
by each backward pointer. We transfer at most (cmax

2 + cf )B + din − 1 pairs to
ū′ and update as many pointers. It is non-positive for cmax ≥ cf (28 + 2din +
2d2

in+11din−2
B ). The amortized number of fields modified by Write is 8+12+4din.

This is because we add at most 4 versions and 4 pairs. The amortized number
of fields modified by NewVersion is 2 + 3 + din. This is because we add at
most one version and one pair. Thus, the amortized number of fields modified
by Write and NewVersion is O(din), which implies an O(din(cmax + log2 π))
amortized I/O-cost per modification, since O(cmax) I/Os are needed to load a
node in memory and O(log2 π) I/Os are needed to insert a version to the span.
Moreover, when we insert a version to the local version list of a persistent node
that is accessed by a backward pointer, we need log2 cmaxB I/Os. Thus, we
charge every modified field with log2 cmaxB I/Os. The total cost for an update
step is O(din(cmax + log2 cmaxB) + log2 π) amortized I/Os. Since an update
operation makes O(din) amortized number of fields modifications and since all
small blocks are packed in the auxiliary linked list, it follows that the space
usage after m operations is Θ(din

m
B ). The following theorem is proved.

Theorem 4.1 Let D be a pointer-based ephemeral data structure that supports
queries in O(q) worst case I/Os and where updates make O(u) modifications to
the structure in the worst case. Given that every node of D occupies at most
.cf/ blocks, for a constant cf , D can be made fully persistent such that a query
to a particular version is supported in O(q(cmax +log2 π)) worst case I/Os, and
an update to any version is supported in O(din(cmax + log2 cmaxB) + log2 π)
amortized I/Os, where din is the maximum in-degree of any node in D, cmax =
Ω(cf (din+ d2

in)
B ) is the number of blocks occupied by a node of D̄, and π ≥ din+9

is a parameter. After performing a sequence of m updates, the fully persistent
structure occupies O(mudin

B ) blocks of space.
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4.3 Incremental B-Trees

In this section we design B-Trees [BM72,Com79,HM82] that use O(n/B) disk
blocks of space, support insertions and deletions of elements in O(logB n) I/Os,
and range queries in O(logB n + t/B) I/Os. They are designed such that an
update makes in the worst case O(1) modifications to the tree. This is achieved
by marking the unbalanced nodes and by incrementally performing the expen-
sive rebalancing operations of ordinary B-Trees over the sequence of succeeding
updates.

The Structure

An Incremental B-Tree is a rooted tree with all leaves on the same level. Each
element is stored exactly once in the tree, either in a leaf or in an internal node.
In the latter case it acts as a search key. An internal node u with k children
stores a list [p1, e1, p2, . . . , ek−1, pk] of k− 1 elements e1, . . . , ek−1 stored in non-
decreasing order and k children pointers p1, . . . , pk. The discussion that follows
shows that B

2 − 1≤k≤2B + 1. If xi is an element stored in the i-th subtree of
u, then x1<e1<x2<e2<· · ·<ek−1<xk holds. To handle the incremental rebal-
ancing of the tree, each node can either be unmarked or it contains one of the
following marks:

Overflowing mark : The node should be replaced by two nodes.

Splitting mark : The node w is being incrementally split by moving elements
and children pointers to its unmarked right sibling w′. We say that nodes w
and w′ define an incremental splitting pair.

Fusion mark : The node w is being incrementally fused by moving elements and
children pointers to its unmarked right sibling w′. In case w is the rightmost
child of its parent, then w′ is its unmarked left sibling and elements and children
pointers are moved from w′ to w. We say that nodes w and w′ define an
incremental fusion pair.

Unmarked nodes that do not belong to incremental pairs are called good
nodes. We define the size su of an internal node u to be the number of good
children plus twice the number of its children with an overflowing mark plus
the number of its children with a fusion mark. The size of a leaf is the number
of elements in it. Conceptually, the size of an internal node is the degree that
the node would have, when the incremental rebalancing of its children has been
completed. The advance of the incremental rebalancing is captured by the
following invariants.

Invariant 4.5 A node with an overflowing mark has size 2B + 1.

Invariant 4.6 An incremental splitting pair (w,w′) with sizes sw and sw′ re-
spectively satisfies 2 · |sw + sw′ − 2B − 1| ≤ sw′ < sw.
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The left inequality of Invariant 4.6 ensures that the incremental split termi-
nates before the resulting nodes may participate in a split or a fusion again. In
particular, it ensures that the number of the transferred elements and children
pointers from w to w′ is at least twice the number of insertions and deletions
that involve the nodes of the splitting pair since the beginning of the incremen-
tal split. This allows for the transfer of one element and one child pointer for
every such insertion and deletion. The right inequality of Invariant 4.6 ensures
that the incremental split terminates, since the size of w′ increases and the size
of w decreases for every such insertion and deletion.

Invariant 4.7 An incremental fusion pair (w,w′) with sizes sw and sw′ respec-
tively, where elements and children pointers are moved from w to w′, satisfies
0 < sw ≤ B

2 + 3− 2 · |sw + sw′ −B + 1|.

Conversely, the right inequality of Invariant 4.7 ensures that the incremental
fusion terminates before the resulting node may participate in a split or a fusion
again. The left inequality of Invariant 4.7 ensures that the incremental fusion
terminates, since the size of w decreases for every insertion and deletion that
involve the nodes of the incremental pair.

Invariant 4.8 Except for the root, all good nodes have size within [B/2, 2B].
If the root is unmarked, it has at least two children and size at most 2B.

It follows from the invariants that the root of the tree cannot have a splitting
or a fusion mark, since no sibling is defined. It can only have an overflowing
mark or be unmarked. All kinds of marks can be stored in the nodes explicitly.
However, we cannot afford to explicitly mark all unbalanced nodes since an
update operation may unbalance more than a constant number of them. Thus,
overflowing and fusion marks can also be stored implicitly, based on the obser-
vation that the unbalanced nodes occur consecutively in a path of the tree. In
particular, for a u→v path in the tree, where u is an ancestor of v and all nodes
in the path have overflowing marks, we can represent the marks implicitly, by
marking u with an overflowing mark and additionally storing in u an element
of v. The rest of the nodes in the path have no explicit mark. This defines an
overflowing path. Similarly, we can represent paths of nodes with fusion marks,
which defines a fusion path.

Invariant 4.9 All overflowing and fusion paths are node-disjoint.

Lemma 4.2 The height of the Incremental B-Tree with n elements is O(logB n).

Proof. We transform the Incremental B-Tree into a tree where all incremental
operations are completed and thus all nodes are unmarked. We process the
marked nodes bottom-up in the tree and replace them by unmarked nodes, such
that when processing a node all its children are already unmarked. A node with
an overflowing mark that has size 2B + 1 is replaced by two unmarked nodes
of size B and B + 1 respectively. The two nodes in an incremental splitting
pair (w,w′) are replaced by two nodes, each containing half the union of their
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children. More precisely, they have sizes * sw+sw′
2 + and . sw+sw′

2 / respectively.
By Invariant 4.6 we derive that 8

5B ≤ sw +sw′ , i.e. each of the nodes has degree
at least B/2. The two nodes in an incremental fusion pair (w,w′) are replaced
by a single node that contains the union of their children and has size sw + sw′ .
By Invariant 4.7 we derive that 3

4B−1 ≤ sw + sw′ . In all cases the nodes of the
transformed tree have degree at least B/2, thus its height is O(logB n). The
height of the transformed tree is at most the height of the initial tree minus
one. It may be lower than that of the initial tree, if the original root had degree
two and its two children formed a fusion pair. !

Algorithms

The insertion and deletion algorithms use the explicit mark and the incremental
step algorithms as subroutines. The former maintains Invariant 4.9 by trans-
forming implicit marks into explicit marks. The latter maintains Invariants 4.6
and 4.7 by moving at most four elements and child pointers between the nodes
of an incremental pair, whenever an insertion or a deletion involve these nodes.

In particular, let u→v be an implicitly defined overflowing (resp. fusion)
path where u is an ancestor of v in the tree. That is, all marks are implicitly
represented by marking u explicitly with an overflowing (resp. fusion) mark
and storing in u an element e of v. Let w be a node on u→v, and wp, wc be its
parent and child node in the path respectively. Also, let ep be an element in wp.
The subroutine explicit mark makes the mark on w explicit, by breaking the
u→v path into three node-disjoint subpaths u→wp, w, and wc→v. This is done
by replacing the element at u with ep, explicitly setting an overflowing mark
on w, and explicitly setting an overflowing mark together with the element e in
wc. If u = w or w = v, then respectively the first or the third subpath is empty.

The incremental step algorithm is executed on a node w that belongs to a
fusion or a splitting pair (w,w′), or on an overflowing node w. In the latter
case, we first call the procedure explicit mark on w. Then, we mark it with an
incremental split mark and create a new unmarked right sibling w′, defining a
new incremental splitting pair. The algorithm proceeds as in the former case,
moving one or two children from w to w′, while preserving consistency for the
search algorithm. Note that the first moved child causes an element to be
inserted to the parent of w, increasing its size.

In the former case, the rightmost element ek and child pk+1 of w are moved
from w to w′. If the special case of the fusion mark definition holds, they are
moved from w′ to w. Let wp be the common parent of w and w′, and let ei be
the element at wp that separates w and w′. If pk+1 is part of an overflowing or
a fusion path before the move, we first call explicit mark on it. Next, we delete
ek and pk+1 from w, replace ei with ek, and add pk+1 and ei to w′. If pk+1

was part of a splitting or fusion pair, we repeat the above once again so that
both nodes of the pair are moved to w′. We also ensure that the left node of
the pair is marked with an incremental fusion mark, and that the right node is
unmarked. Finally, if the algorithm causes sw′ ≥ sw for a splitting pair (w,w′),
the incremental split is complete and thus we unmark w. It is also complete if it
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causes sw = 0 for a node w of a fusion pair. Thus, we unmark the nodes of the
pair, possibly first marking them explicitly with a fusion mark and dismissing
the empty node w from being a child of its parent.

Insert The insertion algorithm inserts one new element e in the tree. Like
in ordinary B-Trees, it begins by searching down the tree to find the leaf v in
which the element should be inserted, and inserts e in v as soon as it is found.
If v is marked, we perform two incremental steps at v and we are done. If v
is unmarked and has size at most 2B after the insertion, we are done as well.
Finally, if v has size 2B + 1 it becomes overflowing. We define an overflowing
path from the highest ancestor u of v, where all the nodes on the u→v path have
size exactly 2B, are unmarked and do not belong to an incremental pair. We
do this by explicitly marking u with an overflowing mark and inserting element
e in it as well. This increases the size of up, the parent of u. We perform
two incremental steps to up, if it is a marked node or if it is an unmarked
node that belongs to an incremental pair. Otherwise, increasing the size of up

leaves it unmarked and we are done. Note that in order to perform the above
algorithms, the initial search has to record node up, the topmost ancestor and
the bottommost node of the last accessed implicitly marked path, and the last
accessed explicitly marked node.

Delete The deletion algorithm removes an element e from the tree. Like in
ordinary B-Trees, it begins by searching down the tree to find node z that
contains e, while recording the topmost and the bottommost node of the last
accessed implicitly marked path and the last accessed explicitly marked node.
If z belongs to an overflowing or a fusion path, it explicitly marks it. If z is not
a leaf, we then find the leaf v that stores the successor element e′ of e. Next,
we swap e and e′ in order to guarantee that a deletion always takes place at
a leaf of the tree. If v belongs to an overflowing or a fusion path, we mark it
explicitly as well. The explicit markings are done in order to ensure that e and
e′ are not stored as implicit marks in ancestors of z or v.

We then delete e from v. If v is good and has size at least B/2 after the
deletion, then we are done. If v is overflowing or belongs to an incremental
pair, we perform two incremental steps on v and we are done. Otherwise, if
leaf v is unmarked and has size B/2 − 1 after the deletion, we check its right
sibling v′. If v′ is overflowing or belongs to an incremental pair, we perform
two incremental steps on v′, move the leftmost child of v′ to v and we are done.
Only the move of the leftmost child suffices when v′ is good and has degree
more than B/2 + 1. Finally, if v′ is good and has size at most B/2 + 1, we
begin a search from the root towards v in order to identify all its consecutive
unmarked ancestors u of size B/2 that have a good right sibling u′ of size at
most B/2 + 1. We act symmetrically for the special case of the fusion pair.

Let up be the node where the search ends and u be its child that was last
accessed by this search towards v. We implicitly mark all the nodes on the
u→v path as fusion pairs by setting a fusion mark on u and storing an element
of v in u. We next check node up. If it is unmarked and has size greater than
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B/2, defining the fusion path only decreases the size of up by one, hence we
are done. If node up is marked, we additionally apply two incremental steps on
it and we are done. If up is good and has size B/2, and its sibling u′p is good
and has size bigger than B/2 + 1, we move the leftmost child of u′p to up. This
restores the size of u′p back to B/2 and we are done. Finally, if node up is good
and has size B/2, but its sibling is marked or belongs to an incremental pair,
we explicitly mark up and move the leftmost child of u′p to up. Next, we apply
two incremental steps on u′p.

Range Search A range search is implemented as in ordinary B-Trees. It
decomposes into two searches for the leaves that contain the marginal elements
of the range, and a linear scan of the leaves that lie in the range interleaved
with a inorder traversal of the search keys in the range.

Correctness & Analysis

We show that the update algorithms maintain all invariants. Invariant 4.5
follows from the definition of overflowing paths in the insert algorithm. The
insert and delete algorithms perform two incremental steps, whenever the size
of a node that belongs to an incremental pair increases or decreases by one.
This suffices to move at least one element and pointer and thus to preserve
Invariants 4.6 and 4.7. Invariant 4.8 is a corollary of Invariant 4.5, 4.6 and 4.7.
With respect to Invariant 4.9, the insert and delete algorithms define node-
disjoint incremental paths. Moreover, each incremental step ensures that two
paired nodes remain children of a common parent node. Finally, the moves
performed by the delete algorithm excluding incremental steps, explicitly mark
the involved node preventing the overlap of two paths.

Theorem 4.2 Incremental B-Trees can be implemented in external memory
using O(n/B) blocks of space and support searching, insertions and deletions
of elements in O(logB n) I/Os and range searches in O(logB n + t/B) I/Os.
Moreover, every update makes a constant number of modifications to the tree.

Proof. By Lemma 4.2 we get that the height of the tree is O(logB n). We now
argue that the tree has O(n/B) nodes, each of which has degree O(B), i.e. the
space bound follows and each node can be accessed in O(1) I/Os.

From Invariants 4.5 - 4.8, it follows that all overflowing and the good leaves
have size at least B/2. Also two leaves in an incremental pair have at least B/2
elements combined. Thus the leaves consume O(n/B) disk blocks of space,
which dominates the total space of the tree. The same invariants show that all
nodes have at most 8B+4

3 elements in them and their degree is upper bounded
by 16B+8

3 . Thus every node consumes O(1) disk blocks of space and can be
accessed in O(1) I/Os.

We conclude that searching, inserting and deleting an element costs O(logB n)
I/Os. A range search costs O(logB n) I/Os for the search and O(t/B) I/Os for
the traversal. Finally, the rebalancing algorithms are defined such that they
perform at most a constant number of modifications (incremental steps and
definitions of paths) to the structure. !
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4.4 Fully Persistent Incremental B-Trees

The interface can be used to make Incremental B-Trees fully persistent. The
marks of every node are recorded by an additional field. Since din = 1, cf ≤ 3,
by Theorem 4.1 we get constants π ≥ 10 and cmax = 96. A range search
operation on the i-th version of the fully persistent incremental B-Tree is im-
plemented by an Access(i) operation to determine the root at version i, and
a Read operation for every node at version i visited by the ephemeral algorithm.
Since every node at version i is accessed in O(1) I/Os, the range search makes
O(logB n+ t/B) I/Os. An update operation on the i-th version is implemented
first by a NewVersion(i) operation that creates a new version identifier j for
the structure after the update operation. Then, an Access(j) operation and
a sequence of Read operations follow in order to determine the nodes at ver-
sion j to be updated. Finally, a sequence of Write operations follows in order
to record the modifications made by the insertion and the deletion algorithms
described in 4.3. By Theorem 4.1 the corollary follows.

Corollary 4.1 There exist fully persistent B-Trees that support range searches
at any version in O(logB n+t/B) I/Os and updates at any version in O(logB n+
log2 B) amortized I/Os, using space O(m/B) disk blocks, where n denotes the
number of elements in the accessed version, m the total number of updates, t
the size of the query’s output, and B the disk block size.

4.5 Open Problems

• Obtaining fully persistent B-Trees with O(1) I/O- and space-overhead per
access and update step remains an open problem, even when the update
operations to the ephemeral B-trees makes at most a constant number of
modifications to it.

• An even more difficult problem was posed by Vitter [Vit08], who asks of
designing fully persistent B-Trees with O(1) I/O- and space-overhead per
access and update step, when the ephemeral B-tree only exhibits O(1)
amortized update I/Os.
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