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Abstract. We show how malicious web content can extract crypto-
graphic secret keys from the user’s computer. The attack uses portable
scripting languages supported by modern browsers to induce contention
for CPU cache resources, and thereby gleans information about the mem-
ory accesses of other programs running on the user’s computer. We show
how this side-channel attack can be realized in WebAssembly and PNaCl;
how to attain fine-grained measurements; and how to extract ElGamal,
ECDH and RSA decryption keys from various cryptographic libraries.

The attack does not rely on bugs in the browser’s nominal sandbox-
ing mechanisms, or on fooling users. It applies even to locked-down plat-
forms with strong confinement mechanisms and browser-only function-
ality, such as Chromebook devices.

Moreover, on browser-based platforms the attacked software too may
be written in portable JavaScript; and we show that in this case even
implementations of supposedly-secure constant-time algorithms, such as
Curve25519’s, are vulnerable to our attack.

1 Introduction

Since their introduction [5,29,30,36], microarchitectural side channel attacks
have become a serious security concern. Contrary to physical side channels,
which require physical proximity for exploitation, microarchitectural attacks only
require the attacker to execute code on the target machine. Even without spe-
cial privileges, such code can contend with concurrently-executing target code
for the use of low-level microarchitectural resources; and by measuring the thus-
induced timing variability, an attacker can glean information from the target
code. Many such resources have been analyzed and exploited, including branch
predictors and arithmetic units, but contention for cache resources has been
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proven to be particularly devastating. Cache attacks allow fine grained moni-
toring of memory access patterns, and can extract cryptographic keys [5,29,30],
website fingerprints [28], and keystrokes [15]; see [11] for a survey.

Less is known, however, about realistic attack vectors by which cache attacks
(and other microarchitectural attacks) be deployed in practice. Most research
has assumed that the attacker has the ability to run native code on the tar-
get machine. This makes sense for scenarios such as attacks across virtual
machines [17,31,37], especially in public compute clouds, or attacks between
different users sharing the same PC. But in the typical end-user setting, hard-
ware devices are not shared by multiple mistrusting users. Moreover, native code,
run locally by a user, usually executes in a security context that allows access
to that user’s data, making security-savvy users reluctant to run such untrusted
code.

Recent works [13,28] made progress towards effective cache attacks on end-
user devices, using JavaScript code running in the target’s browser and without
requiring native code execution. However, since JavaScript is far-removed from
the native platform, the information obtained by a JavaScript attacker is severely
degraded. Indeed compared to attacks which are based on native-code execu-
tion, those works were only able to detected coarse-scale events (distinguishing
between websites loaded in another browser tab or ASLR de-randomization),
leaving open the feasibility of monitoring and exploiting fine-grained events.

Thus, in this work we focus on the following question: (a) Are there prac-
tical deployment vectors for microarchitectural attacks on single-user
devices, that are capable of extracting fine-grained information (such
as cryptographic keys), and do not require privileged user operations
(such as software installation or native code execution)? In particular,
do such attacks apply to locked-down platforms, such as Chromebook running
Chrome OS, where functionality is restricted to sandboxed web browsing?

Even when microarchitectural information leakage occurs, its exploitability
depends on the implementation of the attacked software. Modern cryptographic
software is often designed with side channels in mind, employing mitigation tech-
niques that require low-level details of the executed code—first and foremost,
to make it constant-time. This picture changes when cryptographic software is
deployed as portable high-level code, where the final code and memory layout are
left to the whims of a just-in-time compiler. On the one hand, defensively exercis-
ing the requisite control becomes more difficult. On the other hand, the attacker
too has to cope with increased variability and uncertainty, so it is not obvious
that leakage (if any) is at all exploitable. We thus ask: (b) Do portable pro-
gram representations compromise the side-channel resilience of (sup-
posedly) constant-time algorithms?

1.1 Our Results

We answer both questions in the affirmative. (a) We present cache side-channel
attacks which can be executed from a web page loaded in a sandboxed browser
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Fig. 1. Attack scenario screenshot. The targeted user opens an online streaming web-
site in Tab 2. Clicking within this tab (e.g., to start a movie) causes a pop-under to
open up as Tab 3. The malicious advertisement in Tab 3 then monitors the cache
activity on the target machine. When an encrypted email is received and decrypted
using Google’s encrypted email extension (in Tab 1), the malicious advertisement in
Tab 3 learns information about the user’s secret key.

environment, and are capable of extracting keys from ElGamal and RSA imple-
mentations. (b) We demonstrate key extraction even from an implementation
of Curve25519 ECDH, which was explicitly designed to minimize side channel
leakage, but becomes susceptible due to use of high-level JavaScript.

Our attacks do not require installing any software on the target machine,
and do not rely on vulnerabilities in the browser’s nominal isolation mechanisms
(e.g., they work even if Same Origin Policy and Strict Site Isolation are perfectly
enforced). Rather, they glean information from outside the browser’s sandbox
purely by inducing and measuring timing variability related to memory accesses
outside its sandbox. All the target user has to do in order to trigger the attack
is to have its browser execute malicious code embedded in a comprised website.

Drive-By Attack. The main attack scenario we investigate is a “drive-by” web
attack, where the attacker’s code is embedded in a web page and is automatically
activated when it is rendered by the user’s browser. This can happen when the
user explicitly visits the attacker’s web page (e.g., enticed by phishing), or a page
into which the attacker can inject HTML code (e.g., by a cross-site scripting
attack). Most deviously, the attack may be automatically triggered when the
user visits unrelated third-party web sites, if those sites display ads from web ad
services that support non-static ads (JavaScript, pop-under or IFRAME ads).

Concretely, we embedded the attack code in an advertisement, which we
submitted to a commercial web ad service. Whenever a user navigated to a site
that uses that service, and our ad was selected for display, the attack code was
triggered (see Fig. 1). This code measured the memory access patterns on the
user’s machine, and sent it to our server for analysis. When the targeted crypto-
graphic software happens to be repeatedly invoked using some secret key during
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the time when the ad was shown in some browser tab (even in the background),
our code extracted the secret key in as little as 3 min. This works even across
processes and browsers (e.g., JavaScript ad in Firefox attacking cryptographic
code running in Chrome).

Attacking Curve25519. One of our attacks targets a JavaScript implementa-
tion of Curve25519 Elliptic Curve Diffie-Hellman (ECDH) [6]. The implementa-
tion attempts to mitigate side-channel leakage by using a nearly constant-time
Montgomery-ladder scalar-by-point multiplication, but the in-browser compila-
tion from JavaScript introduces key-dependent control flow, which we can detect
and exploit by a portable code-cache side-channel attack.

Measurement Technique. We implement the cache measurement procedure
using portable code running within the browser. To achieve the measurement
resolution required to mount an attack on ElGamal and ECDH, we used PNaCl
or WebAssembly. These are architecture-independent code representations which
browsers execute in a sandbox—analogously to JavaScript, but lower-level and
more efficient. PNaCl is supported by desktop versions of the Chrome and
Chromium browsers since 2013, and automatically executed by the browser with-
out user involvement. WebAssembly is the standardization of the idea behind
PNaCl. It is supported by all major browsers and enabled by default since 2017.

Like JavaScript, PNaCl and WebAssembly are sandboxed, subject to Same
Origin Policy, and isolated from host resources such as the filesystem and other
processes. However, the portable code (inevitably) uses the underlying microar-
chitectural resources of the CPU it is executing on, and in particular the data
cache. Thus, it can induce the memory-contention effects required for cache side-
channel attacks. Using this, and additional techniques, the portable code can
execute a variant of the Prime+Probe attack of [29], to detect which memory
addresses are accessed by other processes.

Compared to the two prior works on portable-code cache attacks (see
Sect. 1.3), our use of a portable but low-level program representation, as opposed
to JavaScript in [28], reduces measurement overheads and provides better tim-
ing sources on modern browsers; and by using a precise eviction set construction
algorithm (adapting the approach of [23] to the portable setting) we moreover
reduce the eviction sets’ size by ×64 compared to [13]. Taken together, these
attain the requisite temporal resolution for several cryptanalytic attacks.

Challenges. Launching cache attacks involves numerous challenges, such as
recovering the mapping between the memory and the cache, and identifying
cache sets corresponding to security-critical accesses (see [23] for a detailed list).
Mounting the attack from portable code introduces several additional challenges:

1. Emulated environment: Both PNaCl and WebAssembly modules run inside
an emulated 32-bit environment, preventing access to useful host platform
services such as huge pages, mlock() and posix memalign().
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2. Slower memory access: memory accesses using (current implementations of)
portable architectures incur an overhead compared to native execution, reduc-
ing the measurements’ temporal resolution.

3. Inability to flush the CPU pipeline and cache: PNaCl and WebAssembly do
not support instructions for flushing the CPU pipeline, the cache or avoiding
out-of-order execution, as needed by many native-code attacks.

4. Inaccurate time source: Architecture independence forces PNaCl applications
to only use generic interfaces or indirect measurements to measure time.
WebAssembly modules can interact with external APIs only using JavaScript,
hence they are limited to the time sources available to JavaScript code.
Moreover, the cryptographic software we attack is implemented in JavaScript,
which introduces yet more challenges:

5. Unpredictable memory layout: The target’s JavaScript code is compiled anew
at every page load, and moreover, its memory allocations are done in an
unpredictable way at every invocation.

6. No shared memory: Many prior cache attacks relied on the attacker code and
target code having some shared memory (e.g., AES S-tables or code), due to
shared libraries or memory deduplication, not unavailable here.

1.2 Targeted Hardware and Software

Chromebook. We demonstrate the attacks on a Chromebook device (Samsung
XE550C22) which is tailored for running Chrome OS 58.0.3029.112 (a locked-
down version of Linux running the Chrome web browser), including all of its
security measures. It is equipped with an Intel Celeron 867 Sandy-bridge 1.3 GHz
CPU featuring a 2048 KB L3 cache divided into 4096 sets and 8 ways.

HP Laptop. The attacks are mostly independent of the operating system, and
of the precise CPU model (within a CPU family). To demonstrate this, we also
execute the attacks on an HP EliteBook 8760w laptop, running Kubuntu 14.04
with Linux kernel 3.19.0-80, with an Intel i7-2820QM Sandy Bridge 2.3 GHz
CPU featuring a 8192KB L3 cache divided into 8192 sets and 16 ways.

Elliptic. Elliptic [18] is an open-source JavaScript cryptographic library, pro-
viding efficient implementations of elliptic-curve cryptographic primitives such
as Elliptic Curve Diffie-Hellman (ECDH). Elliptic is widely used (over 20M
downloads), and underlies more than a hundred dependent projects including
crypto-currency wallets. Elliptic supports state-of-the-art elliptic curve construc-
tions such as Curve25519 [6], which was designed to offer increased resistance to
side channel attacks. We show that while Elliptic’s implementation does use the
Montgomery-ladder method with apparently constant execution time, memory
access leakage induced by the JavaScript routines does allow for key extraction.
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Google’s End-to-End Library. End-to-End is an open-source JavaScript
cryptographic library developed by Google for use by websites and browser plug-
ins. To facilitate email encryption and signing directly inside the user’s browser,
End-to-End supports the OpenPGP standard, as documented in RFC 4880. End-
to-End is the cryptographic engine for many browser plugins such as E2EMail,
Google encrypted email extension, and Yahoo’s fork of EndToEnd.

OpenPGP.js. OpenPGP.js is a popular open-source library for browser-based
cryptographic operations, and in particular encrypted email. Similarly to End-to-
End, OpenPGP.js implements the OpenPGP standard and is widely deployed
in web applications and browser plug-ins. These include password managers,
encrypted mail clients and other applications. To create seamless user experience,
some of those plug-ins (e.g., ProtonMail and CryptUp) automatically decrypt
received content upon opening the received email.

1.3 Related Work

Cache Attacks. Cache attacks were introduced over a decade ago [5,29,30,
36]. Initial attacks exploited the L1 and L2 data caches [29,35], however later
attacks targeted other caches, such as the L1 instruction cache [1,4] the shared
last level cache [16,23] and specialized caches including the branch prediction
unit [2,3,10] and the return stack buffer [7]. Recent works [13,34] were able to
extract information without using huge pages. See [11] for a survey.

Cache Attacks from Portable Code. The first published browser-based
cache attack was shown by [28]. Using JavaScript, they detected coarse cache
access patterns and used them to classify web sites rendered in other tabs. They
did not demonstrate attacks that use fine-grain cache monitoring (such as key
extraction attacks). Moreover, following [28] web browsers nowadays provide
reduced timer precision, making the techniques of [28] inapplicable.

Recently, [13] achieved higher cache-line accuracy, and used it to derandomize
the target’s ASLR from within it’s browser. They relied on constructing very
large eviction sets, resulting in low temporal resolution of the memory access
detection, well below what is required for key extraction attacks (see Sect. 3).

The Rowhammer attack [20] was also implemented in JavaScript by [14].

Speculative Execution Attacks. Going beyond cryptographic keys, cache
attacks can be also leveraged to read memory contents across security domains.
The Meltdown [22] and Spectre [21] attacks exploit the CPU’s speculative exe-
cution to let a process glean memory content to which it does not have access
permissions, by accessing that memory directly (Meltdown) or by inducing the
valid owner of that memory to access it within a mispredicted branch (Spectre).
In both attacks, the read is invalid and the architectural state will eventually be
rewound, but the carefully-crafted side effects on the cache can be observed.
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These attacks rely on cache covert channels, for which very coarse cache mea-
surements suffice, as opposed to our side-channel setting, which necessitates fine-
grained cache measurements. Meltdown further requires the attacker to access a
protected memory that is mapped into its own address space; this is inapplicable
to portable code. Web-based Spectre does not work across browser processes (of
different browsers or tabs).

Side-Channel Attacks on ElGamal Encryption. Several works show side-
channel attacks on implementations of ElGamal encryption. [39] show a cross-
VM attack on ElGamal that exploits the L1 data cache and the hypervi-
sor’s scheduler. Our attack is loosely modeled after [23], who implemented a
Prime+Probe attack [29] targeting an implementation of ElGamal. Recently,
[12] show a physical (electromagnetic) side-channel attack on ElGamal running
on PCs.

2 Preliminaries

2.1 Portable Code Execution

JavaScript is the oldest and most common portable programing language
that can be executed inside the web browser. For intensive computational
tasks, JavaScript is much slower than native applications; NaCl, PNaCl and
WebAssembly are alternative, more efficient solutions.

PNaCl. Modern Chrome browser support Google Native Client (NaCl) [38].
This is a sandboxing technology which enables secure execution of native code
as part of untrusted web applications, which can run compiled code at near-
native speeds and fine-grained control over the memory usage. While NaCl
deploys architecture-dependent (through OS-independent) code, the subsequent
Portable Native Client (PNaCl) achieves full cross-platform portability by split-
ting the compilation process into two parts. First, the developer compiles the
source code into an intermediate representation, called a bitcode executable. Next,
as part of loading the code to the host browser, the bitcode executable is auto-
matically translated to the host-specific machine language. PNaCl is enabled by
default on Chrome browsers and does not require user interaction.

WebAssembly. WebAssembly is the standardized successor of PNaCl, stan-
dardized by the World Wide Web Consortium (W3C), and supported by all
major web browsers on all operating systems, including mobile platforms. Sim-
ilarly to PNaCl, WebAssembly defines a binary format which can be executed
in a sandboxed environment inside the browser. Code is represented in simple
stack machine, with a limited set of operations (mostly arithmetical and memory
accesses). This is translated, by the browser, to the host’s native instruction set,
allowing it to be executed in near-native speed.
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The simple abstract machine severely limits the environment observable
to WebAssembly code. As oppose to PNaCl, the limited instruction set of
WebAssembly does not directly expose any of the system’s APIs; function-
ality beyond simple computation is exposed only via call-outs to interpreted
JavaScript code, which are relatively slow.

Web Workers and JavaScript’s SharedArrayBuffer. Web Workers is an
API designed to allow JavaScript code to run heavy computational tasks in
a separate context, without interfering with the user interface, using multiple
threads. The communication between the main JavaScript context and Web
Workers threads can be done using an asynchronous messaging system, or via
the SharedArrayBuffer API which can allocate a shared memory buffer and
coordinate access to it using synchronization primitives.

3 Constructing Eviction Sets

The Prime+Probe attack relies on having an eviction set for every targeted cache
set. The main obstacle to constructing these sets is the requirement of finding
the mapping between the internal addresses used in the attacker’s program and
the cache sets they map to In the case of both PNaCl and WebAssembly, the
mapping from memory addresses to cache sets consists of multiple abstraction
layers, as follows. The portable runtime emulates a 32-bit execution environment,
which is mapped (by the browser) into the hosting process’s virtual address
space, which is in turn mapped (by the operating system) into physical memory.
Neither mapping is made available to the portable code. Lastly, physical memory
addresses are mapped (by the CPU) to cache sets; Intel does not disclose this
mapping, but it has been reverse-engineered. Despite two levels of indirections
with unknown mapping, and complications introduced by the third one, we can
find the mapping of memory blocks to sets.

Past Approaches. Several prior works [14,23,24] describe techniques for cre-
ating the eviction sets using huge pages: a CPU feature that allows pages in
the page table to have a very large size (typically 2 MB instead of 4 KB), for
improved address translation efficiency (e.g., reduced TLB thrashing).

Because both the physical and the virtual starting addresses of a huge page
must be a multiple of a huge page size, the virtual address and its corresponding
physical address share the least significant 21 bits. In particular, that means
that given a virtual address in a huge page, we know bits 0–20 of the physical
address and consequently we know the index within a slice of the cache set that
the virtual address maps to.

Avoiding Huge Pages. Recent attacks [13,34] were able to avoid huge pages,
at the cost of imposing other limitations. The attack of [34] assumes consecutive
physical memory allocation and deterministic heap behavior. Those assumptions
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allows the attacker to find the cache set index up to a fixed offset, providing as
much information as using huge pages. Unfortunately, they are generally inap-
plicable, and for JavaScript code running in a browser environment, due to its
complex garbage collection pattern, we empirically did not observe any alloca-
tion pattern between different execution of the decryption operations.

Next, the work of [13] avoided huge pages by only using the 6 bits shared
between the virtual address and physical address to construct the eviction-sets.
In this approach, all cache-sets sharing the 6 least significant bits are mapped
to a single large eviction set. However, using such large eviction sets increases
probing time by a factor of ×64 (compared to smaller eviction sets which are
designed to only evict a single cache set) thus reducing the channel’s bandwidth.
Large eviction sets also induce higher measurement noise due to unrelated mem-
ory accesses. While that method suffices to derandomize ASLR, key extraction
attacks requires fine-grained, low-noise measurements of the target’s memory
access, with temporal resolution on the order of a big-integer multiplication.

3.1 Methodology

We now describe our methodology of constructing eviction sets by recovering the
mapping from memory blocks to cache sets. As described above, the mapping
consists of several layers. The work of [23] introduced an algorithm for uncov-
ering the mapping between the physical address and cache slices, without the
knowledge of the CPU’s internals. However, the algorithm assumed knowledge
of the cache set index, acquired by using huge pages. This assumption does not
hold for PNaCl and WebAssembly since they do not provide access to huge
pages. Instead we generalize this algorithm to the portable environment.

Constructing Eviction Sets from Portable Environment. Portable code
only has access to the 12 least significant bits of the physical address, due to the
fact that “page offset” goes through the mapping between portable environment
and physical address space. Thus, the portable code knows the 6 least significant
bits of the cache set index, but is missing the 4 or 5 most significant bits.

To overcome this, we first find eviction sets for all of the cache sets that have
indices with 6 least significant bits being zero. To that end, we create a large
pool of memory address whose least significant 12 bits are zero. Applying the
algorithm of [23] on the pool results in initial eviction set for each cache set
index with 6 least significant bits equal to 0. Then, by enumerating each of the
possible values for the 6 least significant bits, we extend each initial eviction set
to 64 eviction sets, each corresponding to a single cache set.

However, for the algorithm to work, we need to modify the eviction testing
procedure. This is since when running on a system configured with regular-size
memory pages, performing eviction testing as described accesses a large num-
ber of memory pages. This stresses the address translation mechanism, and in
particular causes evictions from the Translation Lookaside Buffer (TLB), which
is a specialized cache used for storing the results of recent address translations.
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These TLB evictions causes delays in memory accesses even when the accessed
memory block is cached. In particular, this introduces noise when checking if the
witness block is successfully evicted.

Handling TLB Noise. Eviction testing finds whether accessing a list of mem-
ory blocks forces a cache eviction of a specific, witness, memory block. To address
the TLB noise, we modify the eviction testing approach, ensuring that the TLB
entry for the witness block is updated before we measure the access time. We
achieve this by accessing another memory block in the same page as the witness.
Thus the eviction testing algorithm becomes: access the witness to ensure it is
in the cache; access each memory block in the list of memory blocks; access a
memory block in the same page as the witness (to ensure the TLB entry for the
page is updated); and finally measure the access time to the witness (which will
be short if the witness is in the cache or long if accessing the list of memory
blocks evicts the witness from the cache).

Handling Additional Noise. Even after handling the noise from the TLB,
the increased footprint of our methodology and the overhead of the portable
environment causes high measurement noise. We handle this noise by repeating
the contracting stage, randomizing the order of the tested elements each time,
and calculating the intersection between the constructed eviction sets.

3.2 Implementation

PNaCl Implementation. The above approach requires several capabilities.
In order to distinguish between slow memory accesses (corresponding to cache
misses) and fast memory accesses (corresponding to cache hits) the attack code
must gain accesses to a timing source of sufficient resolution. Conveniently,
PNaCl provides a clock gettime() function which provides time at nanosec-
ond accuracy (when called with clock realtime parameter). Next, in order to
construct the eviction sets in PNaCl’s execution environment we allocate a suf-
ficiently large contiguous buffer (approximately 4 times larger than the size of
the LLC). Using this buffer and the aforementioned timing source, we performed
the phases outlined above for the construction of the eviction sets.

WebAssembly Implementation. As discussed in Sect. 2.1, PNaCl has been
available for a few years, but only on Chrome browser. Using the newer
WebAssembly standard, along with Web Workers and SharedArrayBuffers
allowed us to reimplement the approach without using browser-specific features.
Similarly to PNaCl, in order to construct eviction sets we obtain a high-precision
timer, and a contiguous allocated memory buffer.

The work of [28] prompted the web browser developers to reduce the precision
of the time source available to JavaScript code. Unlike PNaCl, WebAssembly
does not have access to system’s APIs like clock gettime(). Thus, we use
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an alternative technique, based on an intentional inter-thread race condition
(see [33] for a recent survey of JavaScript timing sources, including this one).

In this approach, we allocate a SharedArrayBuffer array within the main
JavaScript context, and pass it to a “Timer” Web Worker which iteratively incre-
ments the value in the first cell of the array in a tight loop. To learn the current
time, the main context reads that cell. The naive implementation, accessing
the array directly, did not work due to runtime optimization of supposedly-
redundant reads. To overcome this, we used the Atomics API to force reading
from the array (with sufficiently small performance penalty).

Next, we construct our eviction sets using WebAssembly.Memory contiguous
buffer accessible both for JavaScript and WebAssembly. Accessing to this buffer
from WebAssembly, and using the time source described above, allows us to
identify cache misses using the above techniques.

Exprimental Results. On the Chromebook machine described in Sect. 1.2 we
used the PNaCl implementation. Out of the 4096 sets, withing less then a minute
we were able to construct 4032–4160 eviction sets (some duplicate eviction set
was not removed during the collect phase). For the HP EliteBook 8760w laptop
equipped with 8192 cache set, constructing the eviction sets took 11 min using
the PNaCl and resulted in 7680–8320 eviction sets (with some duplicates as well).
Using the WebAssembly implementation we were able to construct eviction sets
on Chrome and Firefox as well. Constructing the eviction sets took 60–70 min
and yield 7040–7680 eviction sets.

4 Attacking Elliptic

This section shows that even highly regular algorithms, which do not perform
key-dependent operations or memory accesses, can produce exploitable side
channel leakage when implemented in high-level programming languages such
as JavaScript. We empirically demonstrate this on Elliptic’s Curve25519-based
ECDH implementation, which uses the Montgomery ladder method.

4.1 Deployment

Our attack scenario is based on running cache-monitoring portable code, using
either of PNaCl or WebAssembly, inside the target’s browser. We now describe
a specific attack scenario which does not require the user to install any malicious
application or even actively browse to the attacker’s website.

Pop-Under Advertisement. Pop-Under advertisement is a common tech-
nique to circumvent pop-up protection used in modern web browsers. Once the
user clicks anywhere inside the web page, a new browser tab containing the
requested web page is shown with while the previous tab (which is now hidden)
is redirected to an advertisement loaded from the attacker’s website.
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Attack Scenario. We created an advertisement leading to a web page contain-
ing our portable attack code and submitted it to a web ad service. The targeted
user opened a web browser (either Chrome or Firefox, and on either the Chrome-
book or HP laptops described in Sect. 1.2), accessed a third party web page which
uses the ad service, and clicked anywhere within the page. Consequentially (cour-
tesy of the ad service), our advertisement was opened in a background tab and
started monitoring the cache access patterns on the target machine. Concur-
rently, the user opened a third tab, in the Chrome browser, which performed
ECDH key-exchange operations using Ellipstic’s Curve25519. Neither the web-
site used to trigger the attack, nor the ad service, were controlled by the attacker;
and the user never typed or followed a link to an attacker-controlled website.

4.2 Key Extraction

ECDH. Elliptic curve Diffie Hellman (ECDH) is a variant of the Diffie-Hellman
key exchange protocol [8] performed over suitable elliptic curves. Given a curve
over a finite field F and a generator point G ∈ (F × F), in order to generate a
key Alice chooses a random scalar k as a private key and computed the public
key by [k]G (here and onward, we use additive group notation with and [k]G
denoting scalar-by-point multiplication of k and G). In order to compute the
shared secret, Bob sends his public key G′ = [k′]G to Alice (where k′ is Bob’s
secret key). Alice and Bob then recover the shared secret by computing [k]G′

and [k′]G, respectively. Notice that [k]G′ = [k]([k′]G) = [k′]([k]G) = [k′]G.

Curve25519. Curve25519 is an elliptic curve introduced by [6] and standard-
ized by RFC 7748. Curve25519 was specifically designed to increase resistance
to side channel attacks and other common implementation issues.

Scalar-By-Point Multiplication. In order to increase side channel resistance,
implementations of Curve25519-based ECDH often use the Montgomery lad-
der [26] to perform the scalar-by-point multiplication operation. See Algorithm 1.
Notice that the algorithm performs the same number and order of addition and
double operations, regardless of the value of ki, making it more side channel
resistant compared to other multiplication algorithms [19,27].

Inapplicability of Data Cache Leakage. The Montgomery ladder scalar-
by-point multiplication routine attempts to achieve side channel resistance by
being highly regular. Each iteration of the main loop of Algorithm 1 accesses
both of the internal variables (a and b) and performs a single elliptic curve
add operation followed by a single elliptic curve double operation. In particular,
both operations are performed, in the same order, irrespective of the value of
the current secret key bit (ki). Thus, the Montgomery powering ladder does not
leak the secret key via key-dependent sequences of double and add operations,
or key-dependent memory accesses to a table of precomputed values. As we
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Algorithm 1. Elliptic’s Point Multiplication (simplified).
Input: A scalar k and a point P where the k =

∑n−1
i=0 ki2

i.
Output: b = [k]P .
1: procedure scalar by point multiplication(k, P )
2: a ← P, b ← O � O is the point of infinity
3: for i ← n to 1 do
4: if ki = 0 then
5: a ← a.add(b) � a + b
6: b ← b.double() � [2]b
7: else
8: b ← a.add(b) � a + b
9: a ← a.double() � [2]a

10: return b

have empirically validated, Elliptic’s implementation of Algorithm 1, running on
Chrome, is almost constant time, without key-dependent timing deviations.

While Algorithm 1 does leak the secret key via memory accesses performed
to the operand of the elliptic curve double operation (Lines 6 and 9) as well as
the memory accesses to the result of the elliptic curve add operation (Lines 5
and 8), this leakage is hard to exploit due to JavaScript’s memory allocation
mechanism. Concretely, since each iteration of the main loop always updates
both variables, Elliptic’s implementation always allocates new objects for the
updated values, at different and changing memory addresses. As we empirically
verified, the addresses of a and b change with each iteration of the main loop,
without any obvious patterns. This makes monitoring memory accesses to a and
b difficult, since the attacker has to predict and monitor a different cache set at
every iteration of the main loop.

While the memory re-allocation countermeasure was probably unintentional,
this countermeasure combined with the inherent regularity of the Montgomery
ladder scalar by point multiplication routine prevent the use of the data cache
as a source of side channel leakage.

Finding a Leakage Source. We choose, instead, to conduct a code-cache
side-channel attack. In this approach we identify a key-dependent change in the
target’s control flow. During the ECDH operation, we monitor the code cache
accesses via PNaCl or WebAssembly, deduce control flow changes, and from
these, recover the key.

An immediate candidate for such key-dependent control flow would be the
if-else statement in Line 4 of Algorithm 1. However, distinguishing between dif-
ferent cases of the if-else statement in Line 4 appears to be difficult, since both
case are very similar, call the same functions in the same order, have the same
length and are relatively small (each consisting of only two code lines).

While a high-level examination of Algorithm 1 does not reveal any additional
key-dependent control flow, we do observe that Algorithm 1 invokes the double
operation in Line 6 on variable b, while in Line 9 it is invoked on object a. While
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Fig. 2. Cache accesses as detected by the attacker during ECDH key exchange over
Curve25519 by Elliptic. Trace 3 (left) contains cache misses observed by the attacker
during the scalar-by-point multiplication. On the right, which only shows Trace 3, it
can clearly be noticed that the cache-misses corresponds to key bits of 1, while sequence
without cache-misses of 20µs corresponds to bits of 0.

in a low-level programing language the execution of different code paths is usu-
ally explicit, in a high-level language such as JavaScript, the compiler/interpreter
is at liberty to select different execution paths for performing identical opera-
tions on different data. Empirically, this indeed occurs here. We were able to
empirically distinguish, using code cache leakage, between the double operation
performed in Line 6 (on variable b) from the double operation in Line 9 (per-
formed on a)—thus attaining key extraction.

Monitoring Elliptic’s Side Channel Leakage with WebAssembly. We
demonstrated our WebAssembly attack in a cross-browser, cross-process sce-
nario. We used the HP laptop to launch two separate web browser instances:
Chrome, running a page that uses Elliptic’s implementation of Curve25519-based
ECDH, and Firefox, running a third-party web site presenting advertisements
from our advertisement provider. After clicking inside the third-party web site,
our WebAssembly attack code was loaded as a pop-under ad, and automatically
started the eviction-set construction procedure described in Sect. 3. The CPU of
this HP laptop has 8192 cache sets, and each Curve25519 ECDH key exchange
lasts 2.5 ms. Hence, after the construction procedure, our code sampled each of
the 8192 eviction sets, performing Prime+Probe cycle every 380µs for a duration
of 22 ms, for a total sampling time of about 3 min.

Monitoring Elliptic’s Side Channel Leakage with PNaCl. Alternatively,
we opened two tabs in the Chromebook’s browser: one tab running our PNaCl
attack code, and the other running Elliptic’s implementation of Curve25519-
based ECDH, with each key exchange lasting 4.5 ms. Next, we sampled each of
the 4096 eviction sets, performing Prime+Probe cycle every 3µs for a duration
of 35 ms, totally sampling for less than 3 min.

Leakage Analysis. Out of the acquired traces, for each of the sampling meth-
ods we identified 5 as containing the side channel leakage described above.
Figure 2 shows some out of the acquired traces using PNaCl on the Chrome-
book machine, Trace 3 (left) contains the information regarding the secret key.
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As can be seen from the right part of Fig. 2, showing only Trace 3, a sequence of
10µs of cache-misses cache-misses followed by 5µs of cache-hits in the monitored
set corresponds to a bit of 1, while 20µs of cache-hits corresponds to 0 bit.

Using this, we automated the extraction of keys from traces, yielding correct
extraction of up to 236 (out of 252) bits of the secret key from individual traces.
Combining 4 traces of key-exchange operations we were able to extract all the
252 bits of the secret key. For the WebAssembly attacks, the acquired traces and
automated algorithm are very similar, and likewise result in full key extraction.

5 Attacking ElGamal

5.1 Attacking End-to-End

ElGamal [9] is a public-key crptosystem based on hardness of computing discrete
logarithms. In a nutshell, to decrypt a ciphertext (c1, c2), one has to compute the
shared secret s = cx1 mod p and then recovers the message by computing m′ =
c2 ·s−1 mod p. To compute the modular exponentiation during decryption, End-
to-End uses a variant of the fixed-window (m-ary) exponentiation algorithm [25,
Algorithm 14.109]. The algorithm divides the secret exponent into equal-sized
groups of bits called windows, performing a single multiplication for each window
using a precomputed value for every possible windows value.

Our attack largely follows the technique of [23] and consists of two phases.
In the online phase we collect many memory access traces, with the aim of cap-
turing enough samples of accesses to memory locations that store the table of
pre-computed multipliers. In the offline phase we analyse the collected traces to
identify the traces that correspond to memory locations that store pre-computed
multipliers. From these, we recover information on the operands of the multipli-
cations, from which we deduce bits of the exponent and then recover the key.

Monitoring End-to-End’s Side Channel Leakage. Following Sect. 4 we
opened two tabs in the Chromebook’s browser: one running our PNaCl attack
code, and the other running End-to-End’s ElGamal, where each decryption oper-
ation lasts 1.58 s on the Chromebook device. Next, we selected 8 random cache
sets and monitored them in parallel, performing a Prime+Probe cycle on each of
the cache sets once every 31.5µs for a duration of 5 s. We repeated this process
sequentially for about 74 min, acquiring 7100 traces.

Leakage Analysis. Figure 3 shows the side channel leakage from an End-to-
End ElGamal decryption. Traces 3 and 19 contains cache misses observed during
the multiplication operations used by the exponentiation algorithm. To extract
the key, we applied offline processing: denoising, clustering, merging, conflict
resolution and key recovery. This took 90 min (cost: under $6 on Amazon EC2).
We ran our attack on several random ElGamal keys with 3072-bit public primes,
both on the Chromebook and the HP laptop, successfully extracting the entire
secret exponent in every trial.
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Fig. 3. Cache accesses as detected by the attacker during ElGamal decryption by End-
to-End (left) and OpenPGP.js (right). Intensity represents the number of cache misses.
Traces 3 and 19 on the left, and trace 11 and 19 on the right, contain cache misses
observed by the attacker during the multiplication operations used by the exponentia-
tion algorithm. Trace 2 (right) shows code-cache misses in the execution of the modular
multiplication code during an OpenPGP.js decryption operation; the different intervals
between the multiplications leak the location of sequences of zero bits.

End-to-End’s implementation of RSA [32] decryption operations uses the
same fixed-window routine to perform modular exponentiation. Thus, our attack
is applicable for extracting RSA keys, even tough End-to-End implemented
ciphertext blinding countermeasure against side-channel attacks.

5.2 Attacking OpenPGP.js

OpenPGP.js implements ElGamal decryption using sliding-window exponentia-
tion [25, Algorithm 14.85]. Similarly to fixed-window exponentiation, the sliding
window algorithm also use indexes a table of precomputed multipliers, on every
multiplication operation. However, for speed, sequences of 0-bits are handled by
simply performing corresponding squaring operations. Thus, the sliding-window
algorithm leaks the location and length of zero sequences, and has been proven
less resistant to side-channel attacks [23].

To measure the leakage we used an analogous setup to the one used in
Sect. 5.1. Using the Chromebook, we opened two browser tabs with one tab
running our PNaCl attack code while the other tab was performing ElGamal
decryption operations using the OpenPGP.js. We monitored random cache sets,
performing a Prime+Probe cycle on each set every 20µs for a period of 0.62 s.
The cache access patterns observed by the attacker reveal when a specific win-
dow value is used during the multiplication operations, Fig. 3 (right) shows the
side channel leakage from one ElGamal decryption operation. Finally, the squar-
ing operations performed by the sliding-window algorithm reveal long sequences
of zero exponent bits This additional source leakage in Trace 2 of Fig. 3 (right)
by monitoring the executions of the modular multiplication code.

6 Conclusion

In this paper we present a method for implementing an LLC-based Prime+Probe
attack on an multiple cryptographic libraries ranging from ElGamal to state-of-
the-art Curve25519-based ECDH using portable code executing inside a sand-
boxed web browser. We successfully deployed the attack using a commercial ad
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service that triggers the attack code from third-party websites, and automati-
cally starts monitoring the memory access patterns when users navigate to the
ad. To our knowledge, this is the first demonstration of a drive-by cache attack,
and the first portable cryptographic side channel attack.

Unlike prior works, our attack target is implemented using a portable code.
Yet, even without the knowledge of the target’s memory layout, the attack suc-
cessfully extracts the target’s ElGamal and ECDH keys. Finally, we show that in
spite of their secure design, Chromebooks are vulnerable to cache based attacks.

Countermeasures. Side-channel resistant code requires constant-time imple-
mentation and avoiding secret dependent branches and memory accesses. These
approaches are very delicate, and may fail when on different hardware or with
different compilers. Using these techniques in JIT-compiled environments is an
unexplored area that we leave for future work. Meanwhile, cryptographic opera-
tions in JavaScript should to delegated to suitable native implementations, such
as (extensions of) WebCrypto API.

Limitations. Constructing eviction sets as described in Sect. 3 depends on the
cache structure and eviction policy: in particular, an inclusive LLC, and an
LRU (or similar) eviction policy. While both assumptions hold for modern Intel
CPUs, other vendors may differ. Some of our attacks (Sect. 4) requires only a few
minutes of sampling time (corresponding to about a thousand decryptions), and
suggest a realistic threat to affected systems that conduct frequent decryptions.
Others (Sect. 5) requires over an hour of sampling time, but should none the
less indicate that observable leakage is prevalent across diverse cryptographic
algorithms and implementations, and is expoitable by portable code.

Thus, the threat of cache timing side-channel attacks from sandboxed
portable code must be considered, and mitigated, in the design of modern sys-
tems where such code is trivially controlled by attackers.
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