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Abstract. We introduce the concept of numerical Gaussian processes, which we define as Gauss-
ian processes with covariance functions resulting from temporal discretization of time-dependent
partial differential equations. Numerical Gaussian processes, by construction, are designed to deal
with cases where (a) all we observe are noisy data on black-box initial conditions, and (b) we are
interested in quantifying the uncertainty associated with such noisy data in our solutions to time-
dependent partial differential equations. Our method circumvents the need for spatial discretization
of the differential operators by proper placement of Gaussian process priors. This is an attempt
to construct structured and data-efficient learning machines, which are explicitly informed by the
underlying physics that possibly generated the observed data. The effectiveness of the proposed
approach is demonstrated through several benchmark problems involving linear and nonlinear time-
dependent operators. In all examples, we are able to recover accurate approximations of the latent
solutions, and consistently propagate uncertainty, even in cases involving very long time integration.
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1. Introduction. Data-driven methods are taking center stage across many dis-
ciplines of science, and machine learning techniques have achieved groundbreaking
results across a diverse spectrum of pattern recognition tasks [10, 15, 16]. Despite
their disruptive implications, many of these methods are blind to any underlying laws
of physics that may have shaped the distribution of the observed data. A natural
question would then be how one can construct efficient learning machines that ex-
plicitly leverage such structured prior information. To answer this question we have
to turn our attention to the immense collective knowledge originating from centuries
of research in applied mathematics and mathematical physics. Modeling the physical
world through the lens of mathematics typically translates into deriving conservation
laws from first principles, which often take the form of systems of partial differential
equations. In many practical settings, the solution of such systems is only accessible by
means of numerical algorithms that provide sensible approximations to given quanti-
ties of interest. In this work, we aim to capitalize on the long-standing developments
of classical methods in numerical analysis and revisit partial differential equations
from a statistical inference viewpoint. The merits of this approach are twofold. First,
it enables the construction of data-efficient learning machines that can encode physi-
cal conservation laws as structured prior information. Second, it allows the design of
novel numerical algorithms that can seamlessly blend equations and noisy data, infer
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latent quantities of interest (e.g., the solution to a partial differential equation), and
naturally quantify uncertainty in computations. This approach is aligned in spirit
with the emerging field of probabilistic numerics [1], which has roots all the way back
to Poincaré’s courses on probability theory [22] and has been recently revived by the
pioneering works of [8, 9, 12, 20].

To illustrate the key ingredients of this study, let us start by considering linear1

partial differential equations of the form

(1) ut = Lxu, x ∈ Ω, t ∈ [0, T ],

where Lx is a linear operator and u(t, x) denotes the latent solution. As an example,
the one dimensional heat equation corresponds to the case where Lx = ∂2

∂x2 . More-
over, Ω is a subset of RD. All we observe are noisy data {x0,u0} on the black-box
initial function u(0, x) as well as some information on the domain boundary ∂Ω to be
specified later. Our goal is to predict the latent solution u(t, x) at later times t > 0
and propagate the uncertainty due to noise in the initial data. In general, we envision
that the proposed method could be most useful in cases where one would like to ex-
trapolate from an initial condition obtained from noisy experimental data, and where
a governing equation is known. Take, for example, the case of reconstructing a flow
field from scattered measurements (e.g., particle image velocimetry data), and use the
governing Navier–Stokes equations to extrapolate this initial condition in time. For
starters, let us try to convey the main ideas of this work using the Euler time-stepping
scheme

(2) un = un−1 + ∆t Lxun−1.

Here, un(x) = u(tn, x). Building upon the work of Raissi and coworkers [24, 25], we
place a Gaussian process [26] prior on un−1, i.e.,

(3) un−1(x) ∼ GP(0, kn−1,n−1
u,u (x, x′, θ)).

Here, θ denotes the hyper-parameters of the covariance function kn−1,n−1
u,u . Gauss-

ian process regression (see [17, 26]) is a nonparametric Bayesian machine learning
technique that provides a flexible prior distribution over functions, enjoys analyti-
cal tractability, and has a fully probabilistic work-flow that returns robust posterior
variance estimates, which quantify uncertainty in a natural way. Moreover, Gaussian
processes are among a class of methods known as kernel machines (see [31, 36, 37]) and
are analogous to regularization approaches (see [21, 34, 35]). They can also be viewed
as a prior on one-layer feed-forward Bayesian neural networks with an infinite number
of hidden units [18]. The Gaussian process prior assumption (3) along with the Euler
scheme (2) will allow us to capture the entire structure of the differential operator Lx
as well as the Euler time-stepping rule in the resulting multioutput Gaussian process,

(4)
[

un

un−1

]
∼ GP

(
0,
[
kn,nu,u kn,n−1

u,u

kn−1,n−1
u,u

])
.

The specific forms of the kernels kn,nu,u and kn,n−1
u,u are direct functions of the Euler

scheme (2) as well as the prior assumption (3) and will be discussed in more detail
later. The multioutput process (4) is an example of a numerical Gaussian process,

1Nonlinear equations have to be studied on a case-by-case basis (see, e.g., section 2.6).
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Table 1
Some specific members of the family of linear multistep methods (5).

Forward Euler un = un−1 + ∆tLxun−1

Backward Euler un = un−1 + ∆tLxun

Trapezoidal rule un = un−1 + 1
2∆tLxun−1 + 1

2∆tLxun

Table 2
Some special cases of (6).

Forward Euler un = Qxun−1

Qxun−1 = un−1 + ∆tLxun−1

Backward Euler Pxun = un−1

Pxun = un −∆tLxun

Trapezoidal rule Pxun = Qxun−1

Pxun = un − 1
2∆tLxun

Qxun−1 = un−1 + 1
2∆tLxun−1

because the covariance functions kn,nu,u and kn,n−1
u,u result from a numerical scheme,

in this case the Euler method. Essentially, this introduces a structured prior that
explicitly encodes the physical law modeled by the partial differential equation (1).
In the following, we will generalize the framework outlined above to arbitrary linear
multistep methods, originally proposed by Bashforth and Adams [5], as well as Runge–
Kutta methods, generally attributed to Runge [28]. The biggest challenge here is the
proper placement of the Gaussian process prior (see, e.g., (3)) in order to avoid inver-
sion of differential operators and to bypass the classical need for spatial discretization
of such operators. For instance, in the above example (see (2) and (3)), it would
have been an inappropriate choice to start by placing a Gaussian process prior on
un rather than on un−1, as obtaining the numerical Gaussian process (4) would then
involve inverting operators of the form I + ∆tLx corresponding to the Euler method.
Moreover, propagating the uncertainty associated with the noisy initial observations
{x0,u0} through time is another major challenge addressed in what follows.

2. Linear multistep methods. Let us start with the most general form of the
linear multistep methods [7] applied to (1), i.e.,

(5) un =
m∑
i=1

αiu
n−i + ∆t

m∑
i=0

βiLxun−i.

Different choices for the parameters αi and βi result in specific schemes. For instance,
in Table 1, we present some specific members of the family of linear multistep methods
(5). We encourage the reader to keep these special cases in mind while reading the
rest of this section. Linear multistep methods (5) can be equivalently written as

(6) Pxun =
m∑
i=1

Qixun−i,

where Pxu := u − ∆tβ0Lxu and Qixu := αiu + ∆tβiLxu. Some special cases of (6)
are given in Table 2. For every j = 0, 1, . . . ,m and some τ ∈ [0, 1] which depends on
the specific choices for the values of the parameters αi and βi, we define un−j+τ to
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Table 3
Some special cases of (7).

Forward Euler un = Qxun−1

τ = 0

Backward Euler Pxun = un−1

τ = 1

Trapezoidal rule Pxun = un−1/2 = Qxun−1

τ = 1/2

be given by

(7) Pxun−j+1 =: un−j+τ :=
m∑
i=1

Qixun−i−j+1.

Definition (7) takes the specific forms given in Table 3 for some example schemes.
Shifting every term involved in the above definition (7) by −τ yields

(8) Pxun−j+1−τ = un−j =
m∑
i=1

Qixun−i−j+1−τ .

To give an example, for the trapezoidal rule we obtain Pxun+1/2 = un = Qxun−1/2

and Pxun−1/2 = un−1 = Qxun−3/2. Therefore, as a direct consequence of (8) we have

un =
m∑
i=1

Qixun−i+1−τ when j = 0,(9)

un−j = Pxun−j+1−τ when j = 1, . . . ,m.

This, in the special case of the trapezoidal rule, translates to un = Qxun−1/2 and
un−1 = Pxun−1/2. It is worth noting that by assuming un−1/2(x) ∼ GP(0, k(x, x′; θ)),
we can capture the entire structure of the trapezoidal rule in the resulting joint dis-
tribution of un and un−1. This proper placement of the Gaussian process prior is
key to the proposed methodology, as it allows us to avoid any spatial discretization
of differential operators since no inversion of such operators is necessary. We will
capitalize on this idea in the following.

2.1. Prior. Assuming that

(10) un−j+1−τ (x) ∼ GP(0, kj,j(x, x′; θj)), j = 1, . . . ,m,

are m independent processes, we obtain the following numerical Gaussian process: un

...
un−m

 ∼ GP
0,

 kn,nu,u · · · kn,n−mu,u

. . .
...

kn−m,n−mu,u


 ,

where

(11)
kn,nu,u =

m∑
i=1

QixQix′ki,i, kn,n−ju,u = QjxPx′kj,j ,

kn−i,n−ju,u = 0, i 6= j, kn−j,n−ju,u = PxPx′kj,j , j = 1, . . . ,m.
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It is worth noting that the entire structure of linear multistep methods (5) is captured
by the kernels given in (11). Note that although we start from an independence as-
sumption in (10), the resulting numerical Gaussian process exhibits a fully correlated
structure, as illustrated in equations (11). Moreover, the information on the boundary
∂Ω of the domain Ω can often be summarized by noisy observations {xnb ,unb } of a
linear transformation Bx of un, i.e., noisy data on

unb := Bxun.

Using this, we obtain the following covariance functions involving the boundary:

kn,nb,u = Bxkn,nu,u , kn,nb,b = BxBx′kn,nu,u , kn,n−jb,u = Bxkn,n−ju,u , j = 1, . . . ,m.

The numerical examples in the supplementary material accompanying this manuscript
are designed to showcase different special treatments of boundary conditions, includ-
ing Dirichlet, Neumann, mixed, and periodic boundary conditions.

2.2. Work flow and computational cost. The proposed work flow is sum-
marized below:

1. Starting from the initial data {x0,u0} and the boundary data {x1
b ,u

1
b}, we

train the kernel hyper-parameters as outlined in section 2.3. This step carries
the main computational burden, as it scales cubically with the total number
of training points since it involves Cholesky factorization of full symmetric
positive-definite covariance matrices [26].

2. Having identified the optimal set of kernel hyper-parameters, we utilize the
conditional posterior distribution to predict the solution at the next time-
step and generate the artificial data {x1,u1}. Note that x1 is randomly
sampled in the spatial domain according to a uniform distribution, and u1 is
a normally distributed random vector, as outlined in section 2.4.

3. Given the artificial data {x1,u1} and boundary data {x2
b ,u

2
b}, we proceed

with training the kernel hyper-parameters for the second time-step2 (see sec-
tion 2.3).

4. Having identified the optimal set of kernel hyper-parameters, we utilize the
conditional posterior distribution to predict the solution at the next time-step
and generate the artificial data {x2,u2}, where x2 is randomly sampled in
the spatial domain according to a uniform distribution. However, since u1 is
a random vector, we have to marginalize it out in order to obtain consistent
uncertainty estimates for u2. This procedure is outlined in section 2.5.

5. Steps 3 and 4 are repeated until the final integration time is reached.
In summary, the proposed methodology boils down to a sequence of Gaussian

process regressions at every time-step. To accelerate training, one can use the optimal
set of hyper-parameters from the previous time-step as an initial guess for the current
one.

2.3. Training. In the following, for notational convenience and without loss of
generality,3 we will operate under the assumption that m = 1 (see (5)). The hyper-
parameters θi, i = 1, . . . ,m, can be trained by employing the negative log marginal

2To be precise, we are using the mean of the random vector u1 for training purposes.
3The reader should be able to figure out the details without much difficulty while generalizing

to cases with m > 1. Moreover, for the examples in the supplementary material accompanying this
manuscript, more details are also provided in the supplementary material (M112076 01.pdf [local/web
126KB]).
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likelihood resulting from

(12)
[

unb
un−1

]
∼ N (0,K) ,

where {xnb ,unb } are the (noisy) data on the boundary, {xn−1,un−1} are artificially
generated data to be explained later (see (14)), and

K :=
[
kn,nb,b (xnb ,x

n
b ) + σ2

nI kn,n−1
b,u (xnb ,x

n−1)
kn−1,n−1
u,u (xn−1,xn−1) + σ2

n−1I

]
.

It is worth mentioning that the marginal likelihood provides a natural regularization
mechanism that balances the trade-off between data fit and model complexity. This
effect is known as Occam’s razor [27] after William of Occam (1285–1349), who en-
couraged simplicity in explanations by the principle: “Plurality should not be assumed
without necessity.” Although these properties are very attractive, they do come at a
cost. The cost is primarily computational, and it is associated with computing the in-
verse and the determinant of the covariance matrices appearing in the computation of
the negative log marginal likelihood. These matrices are symmetric, positive-definite,
and typically dense. The computation of their inverse and determinant is commonly
done using the Cholesky decomposition, which has an unfavorable cubic scaling with
the total number of training points. A large body of recent literature has been de-
voted to overcoming this scalability shortcoming, and some prevalent approaches can
be found in [13, 23, 32].

2.4. Posterior. In order to predict un(xn∗ ) at a new test point xn∗ , we use the
following conditional distribution:

un(xn∗ )
∣∣∣∣[ unb
un−1

]
∼ N

(
qTK−1

[
unb
un−1

]
, kn,nu,u (xn∗ , x

n
∗ )− qTK−1q

)
,

where

qT :=
[
kn,nu,b (xn∗ ,x

n
b ) kn,n−1

u,u (xn∗ ,x
n−1)

]
.

2.5. Propagating uncertainty. However, to properly propagate the uncer-
tainty associated with the initial data through time, one should not stop here. Since
{xn−1,un−1} are artificially generated data (see (14)), we have to marginalize them
out by employing

un−1 ∼ N
(
µn−1,Σn−1,n−1)

to obtain

(13) un(xn∗ ) | unb ∼ N (µn(xn∗ ),Σ
n,n(xn∗ , x

n
∗ )) ,

where

µn(xn∗ ) = qTK−1
[

unb
µn−1

]
and

Σn,n(xn∗ , x
n
∗ ) = kn,nu,u (xn∗ , x

n
∗ )− qTK−1q + qTK−1

[
0 0
0 Σn−1,n−1

]
K−1q.

Now, one can use the resulting posterior distribution (13) to obtain the artificially
generated data {xn,un} for the next time-step with

(14) un ∼ N (µn,Σn,n) .
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Here, µn = µn(xn) and Σn,n = Σn,n(xn,xn). Throughout this work the location of
the artificially generated data is chosen using a uniform sampling strategy. This simple
choice is mainly motivated by the fact that it allows us to visit as many locations as
possible in our spatial domain while we march in time. We should also note here that
the method is still applicable if the spatial locations of the artificial points are fixed in
time. More interestingly, one could construct more sophisticated sampling strategies
to enable adaptive refinement, for example by tracking the curvature of the solution.
This direction will be further investigated in future work.

2.6. Example: Burgers’ equation (backward Euler). Burgers’ equation is
a fundamental partial differential equation arising in various areas of applied mathe-
matics, including fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow
[4]. In one space dimension the equation reads as

(15) ut + uux = νuxx,

along with Dirichlet boundary conditions u(t,−1) = u(t, 1) = 0, where u(t, x) denotes
the unknown solution and ν is a viscosity parameter. Let us assume that all we observe
are noisy measurements {x0,u0} of the black-box initial function u(0, x) = − sin(πx).
Given such measurements, we would like to solve the Burgers’ equation (15) while
propagating through time the uncertainty associated with the noisy initial data (see
Figure 1). This example is important because it involves solving a nonlinear partial
differential equation.

To illustrate how one can encode the structure of the physical laws expressed by
Burgers’ equation in a numerical Gaussian process let us apply the backward Euler
scheme to (15). This can be written as

(16) un = un−1 −∆tun
d

dx
un + ν∆t

d2

dx2u
n.

We would like to place a Gaussian process prior on un. However, the nonlinear term
un d

dxu
n causes problems simply because the product of two Gaussian processes is

no longer Gaussian. Hence, we will approximate the nonlinear term with µn−1 d
dxu

n,
where µn−1 is the posterior mean of the previous time-step. Therefore, the backward
Euler scheme (16) can be approximated by

(17) un = un−1 −∆tµn−1 d

dx
un + ν∆t

d2

dx2u
n.

Rearranging the terms, we obtain

(18) un + ∆tµn−1 d

dx
un − ν∆t

d2

dx2u
n = un−1.

2.6.1. Numerical Gaussian process. Let us make the prior assumption that

(19) un(x) ∼ GP(0, k(x, x′; θ))
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Fig. 1. Burgers’ equation: Initial data along with the posterior distribution of the solution at
different time snapshots. The solid (blue) line represents the true data generating solution, while the
dashed (red) line depicts the posterior mean. The shaded (orange) region illustrates the two-standard
deviations band around the mean. We are employing the backward Euler scheme with time-step size
∆t = 0.01. At each time-step we generate 31 artificial data points randomly located in the interval
[−1, 1] according to a uniform distribution. These locations are denoted by the ticks along the
horizontal axis. Here, we set ν = 0.01/π—a value leading to the development of a nonsingular thin
internal layer at x = 0 that is notoriously hard to resolve by classical numerical methods [4]. (See
the supplementary code: http://bit.ly/2mnUiKT and movie: http://bit.ly/2m1sKHw.)

is a Gaussian process with a neural network [26] covariance function

(20) k(x, x′; θ) =
2
π

sin−1

(
2(σ2

0 + σ2xx′)√
(1 + 2 (σ2

0 + σ2x2)) (1 + 2 (σ2
0 + σ2x′2))

)
,

where θ =
(
σ2

0 , σ
2
)

denotes the hyper-parameters. Here we have chosen a nonstation-
ary prior motivated by the fact that the solution to the Burgers’ equation can develop
discontinuities for small values of the viscosity parameter ν. This enables us to obtain
the following numerical Gaussian process:[

un

un−1

]
∼ GP

(
0,
[
kn,nu,u kn,n−1

u,u

kn−1,n−1
u,u

])
,

where the covariance functions kn,nu,u , kn,n−1
u,u , and kn−1,n−1

u,u can be derived as

(21) kn,n−1
u,u = k + ∆tµn−1(x′)

d

dx′
k − ν∆t

d2

dx′2
k
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and

kn−1,n−1
u,u = k + ∆tµn−1(x′)

d

dx′
k − ν∆t

d2

dx′2
k(22)

+ ∆tµn−1(x)
d

dx
k + ∆t2µn−1(x)µn−1(x′)

d

dx

d

dx′
k

− ν∆t2µn−1(x)
d

dx

d2

dx′2
k − ν∆t

d2

dx2 k

− ν∆t2µn−1(x′)
d2

dx2

d

dx′
k + ν2∆t2

d2

dx2

d2

dx′2
k.

The only nontrivial operations in the aforementioned kernel computations are those
involving derivatives of the kernels, which can be performed using any mathematical
symbolic computation program, like Wolfram Mathematica. Training, prediction, and
propagating the uncertainty associated with the noisy initial observations can be per-
formed as in sections 2.3, 2.4, and 2.5, respectively. Figure 1 depicts the noisy initial
data along with the posterior distribution of the solution to the Burgers’ equation
(15) at different time snapshots. It is remarkable that the proposed methodology can
effectively propagate an infinite collection of correlated Gaussian random variables
(i.e., a Gaussian process) through the complex nonlinear dynamics of the Burgers’
equation.

2.6.2. Numerical study. It must be re-emphasized that numerical Gaussian
processes, by construction, are designed to deal with cases where (a) all we observe is
noisy data on black-box initial conditions, and (b) we are interested in quantifying the
uncertainty associated with such noisy data in our solutions to time-dependent partial
differential equations. In fact, we recommend resorting to other alternative classical
numerical methods such as finite differences, finite elements, and spectral methods in
cases where (a) the initial function is not a black-box function and we have access
to noiseless data, or (b) we are not interested in quantifying the uncertainty in our
solutions. However, in order to be able to perform a systematic numerical study of
the proposed methodology, and despite the fact that this defeats the whole purpose
of the current work, sometimes we will operate under the assumption that we have
access to noiseless initial data. For instance, concerning the Burgers’ equation, if we
had access to such noiseless data, we would obtain results similar to those depicted
in Figure 2.

Moreover, in order to make sure that the numerical Gaussian process resulting
from the backward Euler scheme (18) applied to the Burgers’ equation is indeed first-
order accurate in time, we perform the numerical experiments depicted in Figures 3
and 4. Specifically, in Figure 3 we report the time-evolution of the relative spatial
L2-error until the final integration time T = 1.0 is reached. We observe that the error
indeed grows as O(∆t), and its resulting behavior reveals both the shock development
region and the energy dissipation due to diffusion at later times. Moreover, in Figure
4 we fix the final integration time to T = 0.1 and the number of initial and artificial
data to 50, and vary the time-step size ∆t from 10−1 to 10−4. As expected, we recover
the first-order convergence properties of the backward Euler scheme, except for a sat-
uration region arising when we further reduce the time-step size below approximately
10−3. This behavior is not a result of the time-stepping scheme but is attributed
to the underlying Gaussian process regression and the finite number of spatial data
points used for training and prediction. To investigate the accuracy of the posterior
mean in predicting the solution as the number of training points is increased, we per-
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form the numerical experiment depicted in Figure 5. Here we have considered two
cases for which we fix the time-step size to ∆t = 10−2 and ∆t = 10−3, respectively,
and increase the number of initial as well as artificial data points. A similar accuracy
saturation is also observed here as the number of training points is increased. In this
case, it is attributed to the error accumulated due to time-stepping with the relatively
large time-step sizes for the first-order accurate Euler scheme. If we keep decreasing
the time-step further, this saturation behavior will occur for higher numbers of total
training points.

The key point here is that, although Gaussian processes can yield satisfactory
accuracy, they, by construction, cannot force the approximation error down to machine
precision. This is due to the fact that Gaussian processes are suitable for solving
regression problems. This is exactly the reason why we recommend other alternative
classical numerical methods for solving partial differential equations in cases where
one has access to noiseless data. In such cases, it is desirable to use numerical schemes
that are capable of performing exact interpolation on the data rather than merely a
regression.

2.7. Example: Wave equation (trapezoidal rule). The wave equation is
an important second-order linear partial differential equation for the description of
wave propagation phenomena, including sound waves, light waves, and water waves. It
arises in many scientific fields such as acoustics, electromagnetics, and fluid dynamics.
In one space dimension the wave equation reads as

(23) utt = uxx.

The function u(t, x) = 1
2 sin(πx) cos(πt) + 1

3 sin(3πx) sin(3πt) solves this equation and
satisfies the following initial and homogeneous Dirichlet boundary conditions:

u(0, x) = u0(x) :=
1
2

sin(πx),

ut(0, x) = v0(x) := π sin(3πx),

u(t, 0) = u(t, 1) = 0.(24)

Now, let us assume that all we observe are noisy measurements {x0
u,u

0} and {x0
v,v

0}
of the black-box initial functions u0 and v0, respectively. Given this data, we are
interested in solving the wave equation (23) and quantifying the uncertainty in our
solution associated with the noisy initial data (see Figure 6). To proceed, let us define
v := ut and rewrite the wave equation as a system of equations given by

(25)
{
ut = v,
vt = uxx.

This example is important because it involves solving a system of partial differential
equations. One could rewrite the system of equations (25) in matrix-vector notation
and obtain

∂

∂t

[
u
v

]
= Lx

[
u
v

]
,

which takes the form of (1) with

Lx =
[

0 I
∂2

∂x2 0

]
.
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Fig. 2. Burgers’ equation: Initial data along with the posterior distribution of the solution at
different time snapshots. The solid (blue) line represents the true data generating solution, while the
dashed (red) line depicts the posterior mean. The shaded (orange) region illustrates the two-standard
deviations band around the mean. We are employing the backward Euler scheme with time-step size
∆t = 0.01. At each time-step we generate 101 artificial data points randomly located in the interval
[−1, 1] according to a uniform distribution. These locations are denoted by the ticks along the
horizontal axis. Here, we set ν = 0.01/π—a value leading to the development of a nonsingular
thin internal layer at x = 0 that is notoriously hard to resolve by classical numerical methods [4].
We report here the relative L2-error between the posterior mean and the true solution. (See the
supplementary code: http://bit.ly/2mDKCwb; Movie: http://bit.ly/2mDOPA5.)

Fig. 3. Burgers’ equation: Time evolution of the relative spatial L2-error up to the final inte-
gration time T = 1.0. We are using the backward Euler scheme with a time-step size of ∆t = 0.01,
and the dashed (red) line illustrates the optimal first-order convergence rate. (See the supplementary
code: http://bit.ly/2mDY6It.)
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Fig. 4. Burgers’ equation: Relative spatial
L2-error versus step-size for the backward Euler
scheme at time T = 0.1. The number of noise-
less initial and artificially generated data is set
to be equal to 50. (See the supplementary code:
http://bit.ly/2mDY6It.)

Fig. 5. Burgers’ equation: Relative spa-
tial L2-error versus the number of noiseless ini-
tial as well as artificial data points used for the
backward Euler scheme with time-step sizes of
∆t = 10−2 and ∆t = 10−3. (See the supple-
mentary code: http://bit.ly/2mDY6It.)

Fig. 6. Wave equation: Initial data along with the posterior distribution of the solution at
different time snapshots. Here, v(t, x) = ut(t, x). The solid (blue) line represents the true data
generating solution, while the dashed (red) line depicts the posterior mean. The shaded (orange)
region illustrates the two-standard deviations band around the mean. At each time-step we generate
51 artificial data points for u and 49 for v, all randomly located in the interval [0, 1] according
to a uniform distribution. These locations are denoted by the ticks along the horizontal axis. We
are employing the trapezoidal scheme with time-step size ∆t = 0.01. (See the supplementary code:
http://bit.ly/2m3mfnA; Movie: http://bit.ly/2mpfhNi.)
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This form is now amenable to the previous analysis provided for general linear mul-
tistep methods. However, for pedagogical purposes, let us slowly walk through the
trapezoidal rule and apply it to the system of equations (25). This can be written as

un = un−1 +
1
2

∆tvn−1 +
1
2

∆tvn,(26)

vn = vn−1 +
1
2

∆t
d2

dx2u
n−1 +

1
2

∆t
d2

dx2u
n.

Rearranging the terms yields

un − 1
2

∆tvn = un−1 +
1
2

∆tvn−1, vn − 1
2

∆t
d2

dx2u
n = vn−1 +

1
2

∆t
d2

dx2u
n−1.

Now, let us define un−1/2 and vn−1/2 to be given by

un − 1
2

∆tvn =: un−1/2 := un−1 +
1
2

∆tvn−1,(27)

vn − 1
2

∆t
d2

dx2u
n =: vn−1/2 := vn−1 +

1
2

∆t
d2

dx2u
n−1.

As outlined in section 2, this is a key step in the proposed methodology, as it hints at
the proper location at which to place the Gaussian process prior. Shifting the terms
involved in the above equations by −1/2 and +1/2, we obtain

(28) un−1/2 − 1
2

∆tvn−1/2 = un−1, vn−1/2 − 1
2

∆t
d2

dx2u
n−1/2 = vn−1,

and

(29) un = un−1/2 +
1
2

∆tvn−1/2, vn = vn−1/2 +
1
2

∆t
d2

dx2u
n−1/2,

respectively. Now we can proceed with encoding the structure of the wave equation
into a numerical Gaussian process prior for performing Bayesian machine learning of
the solution {u(t, x), v(t, x)} at any t > 0.

2.7.1. Numerical Gaussian process. Let us make the prior assumption that

(30) un−1/2(x) ∼ GP(0, ku(x, x′; θu)), vn−1/2(x) ∼ GP(0, kv(x, x′; θv)),

are two independent Gaussian processes with squared exponential [26] covariance
functions

ku(x, x′; θu) = γ2
u exp

(
−1

2
wu(x− x′)2

)
,(31)

kv(x, x′; θv) = γ2
v exp

(
−1

2
wv(x− x′)2

)
,

where θu =
(
γ2
u, wu

)
and θv =

(
γ2
v , wv

)
. From a theoretical point of view, each covari-

ance function gives rise to a reproducing kernel Hilbert space [3, 6, 29] that defines a
class of functions that can be represented by this kernel. In particular, the squared
exponential covariance function chosen above implies smooth approximations. More
complex function classes can be accommodated by appropriately choosing kernels
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Fig. 7. Wave equation: Initial data along with the posterior distribution of the solution at
different time snapshots. Here, v(t, x) = ut(t, x). The solid (blue) line represents the true data
generating solution, while the dashed (red) line depicts the posterior mean. The shaded (orange)
region illustrates the two-standard deviations band around the mean. At each time-step we generate
51 artificial data points for u and 49 for v, all randomly located in the interval [0, 1] according
to a uniform distribution. These locations are denoted by the ticks along the horizontal axis. We
are employing the trapezoidal scheme with time-step size ∆t = 0.01. We are reporting the relative
L2-error between the posterior mean and the true solution. (See the supplementary code: http:
//bit.ly/2m3mKhK; Movie: http://bit.ly/2mFalVg.)

(see, e.g., (20)). This enables us to obtain the following numerical Gaussian process:
un

vn

un−1

vn−1

 ∼ GP
0,


kn,nu,u kn,nu,v kn,n−1

u,u kn,n−1
u,v

kn,nv,v kn,n−1
v,u kn,n−1

v,v

kn−1,n−1
u,u kn−1,n−1

u,v

kn−1,n−1
v,v


 ,

which captures the entire structure of the trapezoidal rule (26) when applied to the
wave equation (23), in its covariance functions given in section SM1 of the supple-
mentary material (M112076 01.pdf [local/web 126KB]). Training, prediction, and
propagating the uncertainty associated with the noisy initial observations can be per-
formed as in section SM1 of the supplementary material. Figure 6 depicts the noisy
initial data along with the posterior distribution (SM4 of the supplementary material)
of the solution to the wave equation (23) at different time snapshots.

2.7.2. Numerical study. In the case where we have access to noiseless initial
data, we obtain the results depicted in Figure 7. Moreover, we perform a numerical
study similar to the one reported in section 2.6.2. This is to verify that the numer-
ical Gaussian process resulting from the trapezoidal rule (26) when applied to the
wave equation is indeed second-order accurate in time. In particular, the numerical
experiment shown in Figure 8 illustrates the time evolution of the relative spatial L2

up to the final integration time T = 1.5. The second-order convergence of the algo-
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Fig. 8. Wave equation: Time evolution of the relative spatial L2-error up to the final integration
time T = 1.5. The solid (blue) line corresponds to the u component of the solution, while the dashed
(black) line corresponds to the function v. We are using the trapezoidal rule with a time-step size
of ∆t = 0.01, and the dashed (red) line illustrates the optimal second-order convergence rate. (See
the supplementary code: http://bit.ly/2niW6lW.)

rithm is also demonstrated in Figure 9, where we have fixed the number of noiseless
initial and artificially generated data while decreasing the time-step size. We also
investigate the convergence behavior of the algorithm for a fixed time-step ∆t = 10−2

and as the number of training points is increased. The results are summarized in
Figure 10. The analysis of both temporal and spatial convergence properties yields
qualitatively similar conclusions to those reported in section 2.6.2. In Figures 9 and
10 (and similarly in all the other examples presented in this paper) the early signs of
error saturation are visible. Indeed, increasing the total number of training points or
decreasing ∆t will eventually not affect the decrease of approximation error. This can
be considered as a drawback of our method, and it is primarily attributed to spatial
approximation errors. Specifically, Gaussian processes offer a regression framework
and cannot practically decrease the approximation error to machine precision as the
number of training points is increased.

3. Runge–Kutta methods. Let us now focus on the general form of Runge–
Kutta methods [2] with q stages applied to (1); i.e.,

un+1 = un + ∆t
q∑
i=1

biLxun+τi ,(32)

un+τi = un + ∆t
q∑
j=1

aijLxun+τj , i = 1, . . . , q.

Here, un+τi(x) = u(tn + τi∆t, x). This general form encapsulates both implicit and
explicit time-stepping schemes, depending on the choice of the weights {aij , bi}. An
important feature of the proposed methodology is that it is oblivious to the choice of
these parameters; hence the implicit or explicit nature of the time-stepping scheme is
ultimately irrelevant. This is in sharp contrast to classical numerical methods in which
implicit time-integration is burdensome due to the need for repeatedly solving linear
or nonlinear systems. Here, for a fixed number of stages q, the cost of performing
implicit or explicit time-marching is identical. This is attributed to the fact that the
structure of the time-stepping scheme is encoded in the numerical Gaussian process

D
ow

nl
oa

de
d 

03
/2

2/
18

 to
 1

28
.1

48
.2

31
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://bit.ly/2niW6lW


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL GAUSSIAN PROCESSES A187

Fig. 9. Wave equation: Relative spatial L2-
error versus step-size for the trapezoidal rule.
Here, the number of noiseless initial data as
well as the artificially generated data is set to be
equal to 50. We are running the time-stepping
scheme up until time 0.2 is reached. (See the
supplementary code: http://bit.ly/2niW6lW.)

Fig. 10. Wave equation: Relative spa-
tial L2-error versus the number of noiseless ini-
tial as well as artificial data points used for
the trapezoidal rule. Here, the time-step size
is set to be ∆t = 0.01. We are running
the time-stepping scheme up until time 0.2 is
reached. (See the supplementary code: http:
//bit.ly/2niW6lW.)

prior, and the algorithm only involves solving a sequence of regression problems as
outlined in section 2.2. This allows us to enjoy the favorable stability properties of
fully implicit schemes at no extra cost and thus perform long-time integration using
very large time-steps. Equations (32) can be equivalently written as

un+1 −∆t
q∑
i=1

biLxun+τi = un =: unq+1,(33)

un+τi −∆t
q∑
j=1

aijLxun+τj = un =: uni , i = 1, . . . , q.

Let us make the prior assumption that

un+1(x) ∼ GP(0, kn+1,n+1
u,u (x, x′; θn+1)),(34)

un+τi(x) ∼ GP(0, kn+τi,n+τi
u,u (x, x′; θn+τi)), i = 1, . . . , q,

are q+ 1 mutually independent Gaussian processes. Therefore, we can write the joint
distribution of un+1, un+τq , . . . , un+τ1 , unq+1, . . . , u

n
1 to capture the entire structure of

the Runge–Kutta methods in the resulting numerical Gaussian process. However,
rather than getting bogged down by heavy notation, and without sacrificing any
generality, we will present the main ideas through the lens of an example.

3.1. Example: Advection equation (Gauss–Legendre method). We have
chosen this classical pedagogical example as a prototype benchmark problem for test-
ing the limits of long-time integration. This example also highlights the implementa-
tion of periodic constraints at the domain boundaries (36). The advection equation
in one space dimension takes the form

(35) ut = −ux.
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Fig. 11. Advection equation: Initial data along with the posterior distribution of the solution at
different time snapshots. The solid (blue) line represents the true data generating solution, while the
dashed (red) line depicts the posterior mean. The shaded (orange) region illustrates the two-standard
deviations band around the mean. At each time-step we generate 25 artificial data points randomly
located in the interval [0, 1] according to a uniform distribution. These locations are denoted by
the ticks along the horizontal axis. We are employing the Gauss–Legendre time-stepping quadrature
rule with time-step size ∆t = 0.1. It is worth highlighting that we are running the time-stepping
scheme for a very long time and with a relatively large time-step size. (See the supplementary code:
http://bit.ly/2m3JoXb; Movie: http://bit.ly/2mKHCP4.)

The function u(t, x) = sin(2π(x − t)) solves this equation and satisfies the following
initial and periodic boundary conditions:

u(0, x) = u0(x) := sin(2πx),
u(t, 0) = u(t, 1).(36)

However, let us assume that all we observe are noisy measurements {x0,u0} of the
black-box initial function u0. Given this data, we are interested in encoding the
structure of the advection operator in a numerical Gaussian process prior and using
it to infer the solution u(t, x) with quantified uncertainty for any t > 0 (see Figure
11). Let us apply the Gauss–Legendre time-stepping quadrature [14] with two stages
(thus making it fourth-order accurate) to the advection equation (35). Referring to
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equations (33), we obtain

un3 := un = un+1 + b1∆t
d

dx
un+τ1 + b2∆t

d

dx
un+τ2 ,(37)

un2 := un = un+τ2 + a21∆t
d

dx
un+τ1 + a22∆t

d

dx
un+τ2 ,

un1 := un = un+τ1 + a11∆t
d

dx
un+τ1 + a12∆t

d

dx
un+τ2 .

Here, τ1 = 1
2 −

1
6

√
3, τ2 = 1

2 + 1
6

√
3, b1 = b2 = 1

2 , a11 = a22 = 1
4 , a12 = 1

4 −
1
6

√
3, and

a21 = 1
4 + 1

6

√
3.

3.1.1. Prior. We make the prior assumption that

un+1(x) ∼ GP(0, kn+1,n+1
u,u (x, x′; θn+1)),(38)

un+τ2(x) ∼ GP(0, kn+τ2,n+τ2
u,u (x, x′; θn+τ2)),

un+τ1(x) ∼ GP(0, kn+τ1,n+τ1
u,u (x, x′; θn+τ1))

are three independent Gaussian processes with squared exponential covariance func-
tions similar to the kernels used in (31). This assumption yields the following numer-
ical Gaussian process:

un+1

un+τ2

un+τ1

un3
un2
un1

 ∼ GP
0,



kn+1,n+1
u,u 0 0 kn+1,n

u,3 0 0
kn+τ2,n+τ2
u,u 0 kn+τ2,n

u,3 kn+τ2,n
u,2 kn+τ2,n

u,1
kn+τ1,n+τ1
u,u kn+τ1,n

u,3 kn+τ1,n
u,2 kn+τ1,n

u,1
kn,n3,3 kn,n3,2 kn,n3,1

kn,n2,2 kn,n2,1
kn,n1,1



 ,

where the covariance functions are given in section SM2 of the supplementary material
(M112076 01.pdf [local/web 126KB]).

3.1.2. Training. The hyper-parameters θn+1, θn+τ2 , and θn+τ1 can be trained
by minimizing the negative log marginal likelihood resulting from

(39)


un+1(1)− un+1(0)
un+τ2(1)− un+τ2(0)
un+τ1(1)− un+τ1(0)

un3
un2
un1

 ∼ N (0,K) .

Here, un+1(1)− un+1(0) = 0, un+τ2(1)− un+τ2(0) = 0, and un+τ1(1)− un+τ1(0) = 0
correspond to the periodic boundary condition (36). Moreover, un3 = un2 = un1 = un

and {xn,un} are the artificially generated data. This last equality reveals a key fea-
ture of this Runge–Kutta numerical Gaussian process, namely the fact that it inspects
the same data through the lens of different kernels. This observation directly results
from applying the 2-stage implicit Runge–Kutta scheme (i.e., the 2-stage Gauss–
Legendre method) described in (37) to the advection equation. Specifically, the joint
distribution in (39) follows directly after applying the periodic boundary conditions
on the two Runge–Kutta stages and the final solution un+1, as well as from the consis-
tent Runge–Kutta discretization shown in (37). A detailed derivation of the covariance
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Fig. 12. Advection equation: Initial data along with the posterior distribution of the solution
at different time snapshots. The solid (blue) line represents the true data generating solution,
while the dashed (red) line depicts the posterior mean. The shaded (orange) region illustrates the
two-standard deviations band around the mean. At each time-step we generate 25 artificial data
points randomly located in the interval [0, 1] according to a uniform distribution. These locations
are denoted by the ticks along the horizontal axis. We are employing the Gauss–Legendre time-
stepping quadrature with time-step size ∆t = 0.1. It is worth highlighting that we are running the
time-stepping scheme for a very long time with a relatively large time-step size. We report here the
relative spatial L2-error between the posterior mean and the true solution. (See the supplementary
code: http://bit.ly/2mpOtfQ; Movie: http://bit.ly/2m6XE2h.)

matrix K is given in section SM2 of the supplementary material (M112076 01.pdf [lo-
cal/web 126KB]). Prediction and propagation of the uncertainty associated with the
noisy initial observations can be performed as in section SM2. Figure 11 depicts the
noisy initial data along with the posterior distribution (SM6 of the supplementary
material) of the solution to the advection equation (35) at different time snapshots.

3.1.3. Numerical study. In the case when we have access to noiseless initial
data we obtain the results depicted in Figure 12. Moreover, in order to make sure
that the numerical Gaussian process resulting from the Gauss–Legendre method (37)
applied to the advection equation is indeed fourth-order accurate in time, we perform
the numerical experiment reported in Figures 13 and 14. The qualitative analysis
of the temporal as well as the spatial convergence properties (as seen in Figure 15)
closely follows the conclusions drawn in section 2.6.2.

3.2. Example: Heat equation (trapezoidal rule). Revisiting the trape-
zoidal rule, equipped with the machinery introduced for the Runge–Kutta methods,
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Fig. 13. Advection equation: Time evolution of the relative spatial L2-error up to the final
integration time T = 99.0. We are using the Gauss–Legendre implicit Runge–Kutta scheme with a
time-step size of ∆t = 0.1. The dashed (red) line illustrates the optimal fourth-order convergence
rate. (See the supplementary code: http://bit.ly/2mntVDh.)

Fig. 14. Advection equation: Relative spa-
tial L2-error versus step-size for the Gauss–
Legendre method. Here, the number of noise-
less initial data as well as the artificially gen-
erated data is set to be equal to 50. We are
running the time-stepping scheme up until time
0.5 is reached. (See the supplementary code:
http://bit.ly/2mntVDh.)

Fig. 15. Advection equation: Relative spa-
tial L2-error versus the number of noiseless ini-
tial as well as artificial data points used for
the Gauss–Legendre method. Here, the time-
step size is set to be ∆t = 0.1. We are run-
ning the time-stepping scheme up until time
0.5 is reached. (See the supplementary code:
http://bit.ly/2mntVDh.)

we obtain an alternative numerical Gaussian process to that proposed in section 2.
We will apply the resulting scheme to the heat equation in two space dimensions, i.e.,

(40) ut = ux1x1 + ux2x2 , x1 ∈ [0, 1], x2 ∈ [0, 1].
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Fig. 16. Heat equation: Initial data along with the posterior distribution of the solution at dif-
ferent time snapshots. The blue surface with solid lines represents the true data generating solution,
while the red surface with dashed lines depicts the posterior mean. The two-standard deviations
band around the mean is depicted using the orange surface with dotted boundary. We are employing
the trapezoidal rule with time-step size ∆t = 0.01. At each time-step we generate 20 artificial data
points randomly located in the domain [0, 1]× [0, 1] according to a uniform distribution. We employ
three noiseless data-points per boundary. (See the supplementary code: http://bit.ly/2mnFpGS;
Movie: http://bit.ly/2mq4UZt.)

The function u(t, x1, x2) = e−
5π2t

4 sin(πx1) sin
(
πx2
2

)
solves this equation and satisfies

the following initial and boundary conditions:

u(0, x1, x2) = sin(πx1) sin
(πx2

2

)
,

u(t, 0, x2) = u(t, 1, x2) = 0, u(t, x1, 0) = 0,(41)

ux2(t, x1, 1) = 0.(42)

Equations (41) involve Dirichlet boundary conditions, while (42) corresponds to a
Neumann-type boundary. Let us assume that all we observe are noisy measurements
{(x0

1,x
0
2),u0} of the black-box initial function u(0, x1, x2). Given such measurements,

we would like to infer the latent scalar field u(t, x1, x2) (i.e., the solution to the heat
equation (40)), while quantifying the uncertainty associated with the noisy initial data
(see Figure 16). This example showcases the ability of the proposed methods to handle
multidimensional spatial domains and mixed boundary conditions (see (41) and (42)).
Let us apply the trapezoidal scheme to the heat equation (40). The trapezoidal rule
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for the heat equation is given by

un+1 = un +
1
2

∆t
d2

dx1
2u

n +
1
2

∆t
d2

dx1
2u

n+1(43)

+
1
2

∆t
d2

dx2
2u

n +
1
2

∆t
d2

dx2
2u

n+1.

Rearranging the terms, we can write un1 := un and

un2 := un3 := un = un+1 − 1
2

∆t
d2

dx2
1
un − 1

2
∆t

d2

dx2
1
un+1(44)

− 1
2

∆t
d2

dx2
2
un − 1

2
∆t

d2

dx2
2
un+1.

In other words, we are just rewriting (37) for the heat equation (40) with τ1 = 0,
τ2 = 1, b1 = b2 = 1

2 , a11 = a12 = 0, and a21 = a22 = 1/2.

3.2.1. Prior. Similar to the strategy (34) adopted for the Runge–Kutta meth-
ods, and as an alternative to the scheme used in section 2, we make the following
prior assumptions:

un+1(x1, x2) ∼ GP(0, kn+1,n+1
u,u ((x1, x2), (x′1, x

′
2); θn+1)),(45)

un(x1, x2) ∼ GP(0, kn,nu,u ((x1, x2), (x′1, x
′
2); θn)).

Here, we employ anisotropic squared exponential covariance functions of the form

kn+1,n+1
u,u ((x1, x2), (x′1, x

′
2); θn+1)

= γ2
n+1 exp

(
−1

2
wn+1,1(x1 − x′1)2 − 1

2
wn+1,2(x2 − x′2)2

)
,

kn,nu,u ((x1, x2), (x′1, x
′
2); θn)

= γ2
n exp

(
−1

2
wn,1(x1 − x′1)2 − 1

2
wn,2(x2 − x′2)2

)
.

The kernel hyper-parameters are given by θn+1 = (γ2
n+1, wn+1,1, wn+1,2) and θn =

(γ2
n, wn,1, wn,2). To deal with the mixed boundary conditions (41) and (42), let us

define vn+1 := d
dx2

un+1 and vn := d
dx2

un. We obtain the following numerical Gaussian
process:


un+1

vn+1

un

vn

un3
un1

 ∼ GP
0,



kn+1,n+1
u,u kn+1,n+1

u,v 0 0 kn+1,n
u,3 0

kn+1,n+1
v,v 0 0 kn+1,n

v,3 0
kn,nu,u kn,nu,v kn,nu,3 kn,nu,1

kn,nv,v kn,nv,3 kn,nv,1
kn,n3,3 kn,n3,1

kn,n1,1



 ,

where the covariance functions are given in section SM3 of the supplementary material
(M112076 01.pdf [local/web 126KB]).
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3.2.2. Training. The hyper-parameters θn+1 and θn can be trained by mini-
mizing the negative log marginal likelihood resulting from

(46)


un+1
D

vn+1
N

unD
vnN
un3
un1

 ∼ N (0,K) ,

where {(xn+1
1,D ,x

n+1
2,D ),un+1

D } and {(xn1,D,xn2,D),unD} denote the data on the Dirichlet
(41) portion of the boundary, while

{(xn+1
1,N ,x

n+1
2,N ),un+1

N } and {(xn1,N ,xn2,N ),unN}

correspond to the Neumann (42) boundary data. Moreover, un1 = un3 = un and
{(xn1 ,xn2 ),un} are the artificially generated data. The exact form of the covariance
matrix K is given in section SM3 of the supplementary material (M112076 01.pdf
[local/web 126KB]). Prediction and propagation of uncertainty associated with the
noisy initial observations can be performed as in section SM3 of the supplementary
material. Figure 16 depicts the noisy initial data along with the posterior distribution
(SM11 of the supplementary material) of the solution to the heat equation (40) at
different time snapshots.

3.2.3. Numerical study. In order to be able to perform a systematic numerical
study of the proposed methodology, we will operate under the assumption that we have
access to noiseless initial data. The corresponding results are reported in Figure 17.
Moreover, in order to make sure that the numerical Gaussian process resulting from
the Runge–Kutta version of the trapezoidal rule (43) applied to the heat equation is
indeed second-order accurate in time, we perform the numerical experiments reported
in Figures 18 and 19. Again, the qualitative analysis of the temporal as well as the
spatial convergence properties (as seen in Figure 20) closely follows the conclusions
drawn in section 2.6.2.

4. Concluding remarks. We have presented a novel machine learning frame-
work for encoding physical laws described by partial differential equations into Gauss-
ian process priors for nonparametric Bayesian regression. The proposed algorithms
can be used to infer solutions to time-dependent and nonlinear partial differential
equations, and effectively quantify and propagate uncertainty due to noisy initial or
boundary data. Moreover, to the best of our knowledge, this is the first attempt to
construct structured learning machines which are explicitly informed by the under-
lying physics that possibly generated the observed data. Exploiting this structure is
critical for constructing data-efficient learning algorithms that can effectively distill
information in the data-scarce scenarios appearing routinely when we study complex
physical systems. In contrast to classical deterministic numerical methods for solv-
ing partial differential equations (e.g., finite difference and finite-element methods),
the proposed approach is by construction capable of propagating entire probability
distributions in time. Although popular methods such as Monte Carlo sampling or
probabilistic collocation could be employed for propagating uncertainty, their appli-
cability depends on the cost of repeatedly sampling a forward model for solving the
PDE for a given initial condition. However, all such sampling-based methods are
well known to suffer from the curse of dimensionality; i.e., their convergence either
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Fig. 17. Heat equation: Initial data along with the posterior distribution of the solution at dif-
ferent time snapshots. The blue surface with solid lines represents the true data generating solution,
while the red surface with dashed lines depicts the posterior mean. The two-standard deviations
band around the mean is depicted using the orange surface with dotted boundary. We are employing
the trapezoidal rule with time-step size ∆t = 0.01. At each time-step we generate 20 artificial data
points randomly located in the domain [0, 1]× [0, 1] according to a uniform distribution. We employ
three noiseless data-points per boundary. We are reporting the relative L2-error between the pos-
terior mean and the true solution. (See the supplementary code: http://bit.ly/2mLwyB6; Movie:
http://bit.ly/2mnFRod.)

Fig. 18. Heat equation: Time evolution of the relative spatial L2-error up to the final integration
time T = 0.2. We are using the trapezoidal rule with a time-step size of ∆t = 0.01, and the red
dashed line illustrates the optimal second-order convergence rate. (See the supplementary code:
http://bit.ly/2m7aoG9.)
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Fig. 19. Heat equation: Relative spatial
L2-error versus step-size for the Runge–Kutta
version of the trapezoidal rule at time T = 0.2.
Here, the number of noiseless initial data as
well as the artificially generated data is set to be
equal to 50. We are running the time-stepping
scheme up until time 0.2 is reached. We em-
ploy 10 noiseless data per boundary. (See the
supplementary code: http://bit.ly/2m7aoG9.)

Fig. 20. Heat equation: Relative spa-
tial L2-error versus the number of noiseless
initial as well as artificial data points used
for the Runge–Kutta version of the trapezoidal
rule at time T = 0.2. Here, the time-step
size is set to be ∆t = 0.01. We are run-
ning the time-stepping scheme up until time
0.2 is reached. We employ 10 noiseless data
per boundary. (See the supplementary code:
http://bit.ly/2m7aoG9.)

becomes slower or requires an excessive number of samples as the problem dimension
increases. This shortcoming is severely pronounced in our case as we are trying to
propagate an infinite collection of jointly Gaussian correlated random variables (i.e.,
a Gaussian process) through the partial differential equation. Therefore, all these
methods are susceptible to returning inaccurate uncertainty estimates or attain a
very slow convergence rate. In contrast, the proposed approach leverages the prop-
erties of Gaussian processes and offers an exact treatment of this particular infinite
dimensional uncertainty propagation problem. Although the proposed methodology
provides a natural platform for learning from noisy data and computing under uncer-
tainty, it comes with a nonnegligible computational cost. Specifically, a limitation of
this work in its present form stems from the cubic scaling with respect to the total
number of training data points.

In future work we plan to design more computationally efficient algorithms by
exploring ideas including recursive Kalman updates [11] and variational inference
[13]. From a classical numerical analysis standpoint, it also becomes natural to ask
questions about convergence, derivation of dispersion relations, quantification of trun-
cation errors, comparison against classical schemes, etc. We must underline that these
questions become obsolete in the presence of noisy data and cannot be straightfor-
wardly tackled using standard techniques from numerical analysis due to the proba-
bilistic nature of the proposed work flow. In the realm of numerical Gaussian processes
such questions translate into investigating theoretical concepts like prior consistency
[26], posterior robustness [19], and posterior contraction rates [33]. These define a vast
territory for analysis and future developments that currently remains unexplored. In
terms of future work, we plan to leverage the proposed framework to study more
complex physical systems (e.g., fluid flows via the Navier–Stokes prior); propose ex-
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tensions that can accommodate parameter inference, inverse, and model discovery
problems [24]; and incorporate probabilistic time integration schemes that allow for
a natural quantification of uncertainty due to time-stepping errors [30].
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