
Django Admin Cookbook
Release 2.0

Agiliq

May 22, 2018

Contents

1 Django Admin Cookbook - How to do things with Django admin. 1

2 Text and Design 2

3 Calculated fields 10

4 Bulk and custom actions 17

5 Permissions 24

6 Multiple models and inlines 27

7 Listview Page 31

8 Changeview Page 34

9 Misc 41

10 Indices and tables 46

1 Django Admin Cookbook - How to do things with Django admin.

This is a book about doing things with Django admin. It takes the form of about forty questions and common tasks
with Django admin we answer.

The chapters are based on a common set of models, which you can read in detail here (Models used in this book). In
short, we have two apps, events and entities. The models are

• Events: Epic, Event, EventHero, EventVillian

• Entities: Category, Origin, Hero, Villain

1.1 Introduction

Django Admin Cookbook is a book about doing things with Django admin. It is targeted towards intermediate Django
developers, who have some experience with Django admin, but are looking to expand their knowledge of Django
admin and achieve mastery of Django admin.

It takes the form of question and answers about common tasks you might do with Django admin. All the chapters are
based on a common set of models, which you can read in detail here (Models used in this book). In short, we have two
apps, events and entities. The models are

• Events: Epic, Event, EventHero, EventVillain

• Entities: Category, Origin, Hero, Villain

How to use this book

You can read this book either from start to end, or search for the things you need to do and only read those chapters.
Each chapter focusses on a single, specific task.

In either case, you should read the entities/models.py and events/models.py first.

2 Text and Design

2.1 How to change ‘Django administration’ text?

By default Django admin shows ‘Django administration’. You have been asked to replace this with ‘UMSRA Admin-
istration’

The text is at these pages:

• Login Page

• The listview page

• The HTML title tag

Login, Listview and Changeview Page

By default it looks like this and is set to “Django administration”

site_header can be set to change this.

Listview Page

BY default it looks like this and is set to “Site administration”

index_title can be set to change this.

HTML title tag

By default it looks like this and is set to “Django site admin”

site_title can be set to change this.

We can make the three changes in urls.py:

admin.site.site_header = "UMSRA Admin"
admin.site.site_title = "UMSRA Admin Portal"
admin.site.index_title = "Welcome to UMSRA Researcher Portal"

2.2 How to set the plural text for a model?

By default admin will show the name of your model appended with an “s”, aka the plural form of your model. It looks
like this

You have been asked to set the correct plural spellings: Categories and Heroes

You can do this by setting the verbose_name_plural in your models. Change that in your models.py.:

class Category(models.Model):
...

class Meta:
verbose_name_plural = "Categories"

class Hero(Entity):
...

class Meta:
verbose_name_plural = "Heroes"

With the changes your Admin will look like this.

2.3 How to create two independent admin sites?

The usual way to create admin pages is to put all models in a single admin. However it is possible to have multiple
admin sites in a single Django app.

Right now our entity and event models are in same place. UMSRA has two distinct group researching Events
and Entities, and so wants to split the admins.

We will keep the default admin for entities and create a new subclass of AdminSite for events.

In our events/admin.py we do:

from django.contrib.admin import AdminSite
class EventAdminSite(AdminSite):

site_header = "UMSRA Events Admin"
site_title = "UMSRA Events Admin Portal"
index_title = "Welcome to UMSRA Researcher Events Portal"

event_admin_site = EventAdminSite(name='event_admin')

event_admin_site.register(Epic)
event_admin_site.register(Event)
event_admin_site.register(EventHero)
event_admin_site.register(EventVillain)

And change the urls.py to

from events.admin import event_admin_site

(continues on next page)

(continued from previous page)

urlpatterns = [
path('entity-admin/', admin.site.urls),
path('event-admin/', event_admin_site.urls),

]

This separates the admin. Both admins are available at their respective urls, /entity-admin/ and
event-admin/.

2.4 How to remove default apps from Django admin?

Django will include django.contrib.auth in INSTALLED_APPS, which means User and Groups models are
included in admin automatically.

If you want to remove it, you will have to unregister them.

from django.contrib.auth.models import User, Group

admin.site.unregister(User)
admin.site.unregister(Group)

After making these changes, your admin should look like this.

2.5 How to add a logo to Django admin?

Your higher ups at UMSRA love the admin you have created till now, but marketing wants to put the UMSRA logo on
all admin pages.

You need to override the default templates provided by Django. In your django settings, you code::TEMPLATES
setting looks like this.

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {

'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',

],
},

},
]

This means that Django will look for templates in a directory called templates inside each app, but you can override
that by setting a value for TEMPLATES.DIRS.

We change the 'DIRS': [], to 'DIRS': [os.path.join(BASE_DIR, 'templates/')],, and create
the templates folder. If your STATICFILES_DIRS is empty set it to:

STATICFILES_DIRS = [
os.path.join(BASE_DIR, "static"),

]

Now copy the base_site.html from the admin app to templates\admin folder you just created. Replace thre
default text in branding block with:

<h1 id="site-name">

(continues on next page)

(continued from previous page)

</h1>

With the changes your base_site.html will look like this:

{% extends "admin/base.html" %}

{% load staticfiles %}

{% block title %}{{ title }} | {{ site_title|default:_('Django site admin') }}{%
→˓endblock %}

{% block branding %}
<h1 id="site-name">

</h1>
{% endblock %}

{% block nav-global %}{% endblock %}

And your admin will look like this

2.6 How to override Django admin templates?

https://docs.djangoproject.com/en/dev/ref/contrib/admin/#overriding-admin-templates

https://docs.djangoproject.com/en/dev/ref/contrib/admin/#overriding-admin-templates

3 Calculated fields

3.1 How to show calculated fields on listview page?

You have an admin for the Origin model like this:

@admin.register(Origin)
class OriginAdmin(admin.ModelAdmin):

list_display = ("name",)

Apart from the name, we also want to show the number of heroes and number of villains for each origin, which is not
a DB field on Origin. You can do this in two ways.

Adding a method to the model

You can add two methods to your Origin model like this:

def hero_count(self,):
return self.hero_set.count()

def villain_count(self):
return self.villain_set.count()

And change list_display to list_display = ("name", "hero_count", "villain_count").

Adding a method to the ModelAdmin

If you don’t want to add method to the model, you can do instead add the method to the ModelAdmin.

def hero_count(self, obj):
return obj.hero_set.count()

def villain_count(self, obj):
return obj.villain_set.count()

The list_display, as earlier, changes to list_display = ("name", "hero_count",
"villain_count").

Performance considerations for calculated_fields

With either of the above approaches, you would be running two exta queries per object (One per calculated field). You
can find how to optimize this in How to optimize queries in Django admin?.

With any of these changes your admin looks like this:

3.2 How to optimize queries in Django admin?

If you have a lot of calculated fields in your admin, you can be running multiple queries per object leading to your
admin can becoming quite slow. To fix this you can override the get_querysetmethod on model admin to annotate
the calculated fields.

Lets take the example of this ModelAdmin we have for Origin:

@admin.register(Origin)
class OriginAdmin(admin.ModelAdmin):

list_display = ("name", "hero_count", "villain_count")

def hero_count(self, obj):
return obj.hero_set.count()

def villain_count(self, obj):
return obj.villain_set.count()

This adds two extra queries per row in your listview page. To fix this you can override the get_queryset to
annotate the counted fields, and then use the annotated fields in your ModelAdmin methods.

With the changes, your ModelAdmin field looks like this:

@admin.register(Origin)
class OriginAdmin(admin.ModelAdmin):

list_display = ("name", "hero_count", "villain_count")

def get_queryset(self, request):
queryset = super().get_queryset(request)
queryset = queryset.annotate(

_hero_count=Count("hero", distinct=True),
_villain_count=Count("villain", distinct=True),

)
return queryset

(continues on next page)

(continued from previous page)

def hero_count(self, obj):
return obj._hero_count

def villain_count(self, obj):
return obj._villain_count

There are no per object extra queries. Your admin continues to look like it did before the annotate call.

3.3 How to enable sorting on calculated fields?

Django adds sorting capabilities on fields which are attributes on the models. When you add a calculated field Django
doesn’t know how to do a order_by, so it doesn’t add sorting capability on that field.

If you want to add sorting on a calculated field, you have to tell Django what to pass to order_by. You can do this
by setting the admin_order_field attribute on the calculated field method.

You start from the admin you wrote in the previous chapter (How to optimize queries in Django admin?).:

hero_count.admin_order_field = '_hero_count'
villain_count.admin_order_field = '_villain_count'

With these changes your admin becomes:

@admin.register(Origin)
class OriginAdmin(admin.ModelAdmin):

list_display = ("name", "hero_count", "villain_count")

def get_queryset(self, request):
queryset = super().get_queryset(request)
queryset = queryset.annotate(

_hero_count=Count("hero", distinct=True),
_villain_count=Count("villain", distinct=True),

)
return queryset

(continues on next page)

(continued from previous page)

def hero_count(self, obj):
return obj._hero_count

def villain_count(self, obj):
return obj._villain_count

hero_count.admin_order_field = '_hero_count'
villain_count.admin_order_field = '_villain_count'

Here is the admin sorted on hero_count

3.4 How to enable filtering on calculated fields?

You have a Hero admin which looks like this:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin):

list_display = ("name", "is_immortal", "category", "origin", "is_very_benevolent")
list_filter = ("is_immortal", "category", "origin",)

def is_very_benevolent(self, obj):
return obj.benevolence_factor > 75

It has one calculated field is_very_benevolent, and your admin looks like this

You have added filtering on the fields which come from the models, but you also want to add filtering on the calculated
field. To do this, you will need to subclass SimpleListFilter like this:

class IsVeryBenevolentFilter(admin.SimpleListFilter):
title = 'is_very_benevolent'
parameter_name = 'is_very_benevolent'

def lookups(self, request, model_admin):
return (

('Yes', 'Yes'),
('No', 'No'),

)

def queryset(self, request, queryset):
value = self.value()
if value == 'Yes':

return queryset.filter(benevolence_factor__gt=75)
elif value == 'No':

return queryset.exclude(benevolence_factor__gt=75)
return queryset

And then change your list_filter to list_filter = ("is_immortal", "category",
"origin", IsVeryBenevolentFilter).

With this you can filter on the calculated field, and your admin looks like this:

3.5 How to show “on” or “off” icons for calculated boolean fields?

In the previous chapter, How to enable filtering on calculated fields? you added a boolean field.:

def is_very_benevolent(self, obj):
return obj.benevolence_factor > 75

Which looks like this

The is_very_benevolent field shows the string True and False, unlike the builtin BooleanFields which show an
on and off indicator. To fix this, you add a boolean attribute on your method. You final modeladmin looks like this:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin):

list_display = ("name", "is_immortal", "category", "origin", "is_very_benevolent")
list_filter = ("is_immortal", "category", "origin", IsVeryBenevolentFilter)

def is_very_benevolent(self, obj):
return obj.benevolence_factor > 75

is_very_benevolent.boolean = True

And your admin looks like this

4 Bulk and custom actions

4.1 How to add additional actions in Django admin?

Django admin allows you to add additional actions which allow you to do bulk actions. You have been asked to add
an action which will mark multiple Hero s as immortal.

You can do this by adding the action as method to ModelAdmin and adding the method as a string to actions

actions = ["mark_immortal"]

def mark_immortal(self, request, queryset):
queryset.update(is_immortal=True)

4.2 How to export CSV from Django admin?

You have been asked to add ability to export Hero and Villain from the admin. There are a number of third party
apps which allow doing this, but its quite easy without adding another dependency. You will add an admin action to
HeroAdmin and VillanAdmin.

An admin action always has this signature def admin_action(modeladmin, request, queryset):,
alternatively you can add it directly as a method on the ModelAdmin like this:

class SomeModelAdmin(admin.ModelAdmin):

def admin_action(self, request, queryset):

To add csv export to HeroAdmin you can do something like this:

actions = ["export_as_csv"]

def export_as_csv(self, request, queryset):
pass

(continues on next page)

(continued from previous page)

export_as_csv.short_description = "Export Selected"

This adds an action called export selected, which looks like this:

You will then change the export_as_csv to this:

import csv
from django.http import HttpResponse
...

def export_as_csv(self, request, queryset):

meta = self.model._meta
field_names = [field.name for field in meta.fields]

response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta)
writer = csv.writer(response)

writer.writerow(field_names)
for obj in queryset:

row = writer.writerow([getattr(obj, field) for field in field_names])

return response

This exports all of the selected rows. If you notice, export_as_csv doens’t have anything specific to Hero, so
you can extract the method to a mixin.

With the changes, your code looks like this:

class ExportCsvMixin:
def export_as_csv(self, request, queryset):

meta = self.model._meta
field_names = [field.name for field in meta.fields]

response = HttpResponse(content_type='text/csv')
response['Content-Disposition'] = 'attachment; filename={}.csv'.format(meta)
writer = csv.writer(response)

writer.writerow(field_names)
for obj in queryset:

row = writer.writerow([getattr(obj, field) for field in field_names])

return response

export_as_csv.short_description = "Export Selected"

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

list_display = ("name", "is_immortal", "category", "origin", "is_very_benevolent")
list_filter = ("is_immortal", "category", "origin", IsVeryBenevolentFilter)
actions = ["export_as_csv"]

...

@admin.register(Villain)
class VillainAdmin(admin.ModelAdmin, ExportCsvMixin):

list_display = ("name", "category", "origin")
actions = ["export_as_csv"]

You can add such an export to other models by subclassing from ExportCsvMixin

4.3 How to remove the delete selected action in Django admin?

By default Django adds a Delete Selected action to the listview page. You have been asked to remove the action from
the Hero admin.

The method ModelAdmin.get_actions returns the actions shown. By overriding this method, to remove
delete_selected We can remove it form the dropdown. Your code looks like this with the changes.:

def get_actions(self, request):
actions = super().get_actions(request)
if 'delete_selected' in actions:

del actions['delete_selected']
return actions

And your admin looks like this

You should also read How to remove the ‘Add’/’Delete’ button for a model?.

4.4 How to add Custom Action Buttons (not actions) to Django Admin list page?

UMSRA has decided that given sufficient kryptonite, all Heroes are mortal. However, they want to be able to change
their mind and say all heroes are immortal.

You have been asked to add two buttons - One which makes all heroes mortal, and one which makes all immortal.
Since it affects all heroes irrespective of the selection, this needs to be a separate button, not an action dropdown.

First, we will change the template on the HeroAdmin so we can add two buttons.:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

change_list_template = "entities/heroes_changelist.html"

Then we will override the get_urls, and add the set_immortal and set_mortal methods on the model
admin. They will serve as the two view methods.:

def get_urls(self):
urls = super().get_urls()
my_urls = [

path('immortal/', self.set_immortal),
path('mortal/', self.set_mortal),

]
return my_urls + urls

def set_immortal(self, request):
self.model.objects.all().update(is_immortal=True)

(continues on next page)

(continued from previous page)

self.message_user(request, "All heroes are now immortal")
return HttpResponseRedirect("../")

def set_mortal(self, request):
self.model.objects.all().update(is_immortal=False)
self.message_user(request, "All heroes are now mortal")
return HttpResponseRedirect("../")

Finally, we create the entities/heroes_changelist.html template by extending the admin/
change_list.html.:

{% extends 'admin/change_list.html' %}

{% block object-tools %}
<div>

<form action="immortal/" method="POST">
{% csrf_token %}

<button type="submit">Make Immortal</button>
</form>
<form action="mortal/" method="POST">

{% csrf_token %}
<button type="submit">Make Mortal</button>

</form>
</div>

{{ block.super }}

{% endblock %}

And after using the make_mortal action, the Heroes are all mortal and you see this message.

4.5 How to import CSV using Django admin?

You have been asked to allow csv imports on the Hero admin. You will do this by adding a link to the Hero changelist
page, which will take to a page with an upload form. You will write a handler for the POST action to create the objects
from the csv.:

class CsvImportForm(forms.Form):
csv_file = forms.FileField()

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
change_list_template = "entities/heroes_changelist.html"

def get_urls(self):
urls = super().get_urls()
my_urls = [

...
path('import-csv/', self.import_csv),

]
return my_urls + urls

def import_csv(self, request):
if request.method == "POST":

csv_file = request.FILES["csv_file"]
reader = csv.reader(csv_file)
Create Hero objects from passed in data
...
self.message_user(request, "Your csv file has been imported")

(continues on next page)

(continued from previous page)

return redirect("..")
form = CsvImportForm()
payload = {"form": form}
return render(

request, "admin/csv_form.html", payload
)

Then you create the entities/heroes_changelist.html template, by overriding the admin/
change_list.html template like this.:

{% extends 'admin/change_list.html' %}

{% block object-tools %}
Import CSV

{{ block.super }}

{% endblock %}

Finally you create the csv_form.html like this.:

{% extends 'admin/base.html' %}

{% block content %}
<div>

<form action="." method="POST" enctype="multipart/form-data">
{{ form.as_p }}
{% csrf_token %}

<button type="submit">Upload CSV</button>
</form>

</div>

{% endblock %}

With these changes, you get a link on the Hero changelist page.

And the import form apge looks like this.

5 Permissions

5.1 How to restrict Django admin to specific users?

Django admin allows access to users marked as is_staff=True. To disable a user from being able to access the
admin, you should set is_staff=False.

This holds true even if the user is a superuser. is_superuser=True. If a non-staff tries to access the admin, they
see a message like this.

5.2 How to restrict access to parts of Django admin?

You can enable and restrict access to specific parts of Django admin using the permission system. When a model is
added, by default, Django creates three permissions. add, change and delete

Admin uses these permissions to decide access for users. For a user with is_superuser=False, and no permis-

sions, the admin looks like this

If you add a permission user.user_permissions.add(Permission.objects.
get(codename="add_hero")), the admin starts looking like this

You can add more complex logic to restrict access by changing these methods:

def has_add_permission(self, request):
...

def has_change_permission(self, request, obj=None):
...

def has_delete_permission(self, request, obj=None):
...

def has_module_permission(self, request):
...

5.3 How to allow creating only one object from the admin?

The UMSRA admin has asked you to limit the number of categories to only one. They want every entity to be of the
same category.

You can do this by:

MAX_OBJECTS = 1

(continues on next page)

(continued from previous page)

def has_add_permission(self, request):
if self.model.objects.count() >= MAX_OBJECTS:

return False
return super().has_add_permission(request)

This would hide the add buton as soon as one object is created. You can set MAX_OBJECTS to any value to ensure
that larger number of objects can’t be ceated than MAX_OBJECTS.

5.4 How to remove the ‘Add’/’Delete’ button for a model?

The UMSRA management has added all the Category and Origin objects and wants to disable any further addi-
tion and deletion. They have asked you to disable ‘Add’ and ‘Delete’ buttons. You can do this by overriding the
has_add_permission and has_delete_permission in the Django admin.:

def has_add_permission(self, request):
return False

def has_delete_permission(self, request, obj=None):
return False

With these changes, the admin looks like this

Note the removed Add buttons. The add and delete buttons also get removed from the detail pages. You can also read
How to remove the delete selected action in Django admin?.

6 Multiple models and inlines

6.1 How to edit mutiple models from one Django admin?

To be able to edit multiple objects from one Django admin, you need to use inlines.

You have the Category model, and you need to add and edit Villain models inside the admin for Category. You
can do:

class VillainInline(admin.StackedInline):
model = Villain

@admin.register(Category)
class CategoryAdmin(admin.ModelAdmin):

...

inlines = [VillainInline]

You can see the form to add and edit Villain inside the Category admin. If the Inline model has alot of fields,
use StackedInline else use TabularInline.

6.2 How to add One to One relation as admin inline?

OneToOneFields can be set as inlines in the same way as a FK. However, only one side of the OneToOneField can be
set as the inline model.

You have a HeroAcquaintance model which has a One to one relation to hero like this.:

class HeroAcquaintance(models.Model):
"Non family contacts of a Hero"
hero = models.OneToOneField(Hero, on_delete=models.CASCADE)
....

You can add this as inline to Hero like this:

class HeroAcquaintanceInline(admin.TabularInline):
model = HeroAcquaintance

(continues on next page)

(continued from previous page)

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
inlines = [HeroAcquaintanceInline]

6.3 How to add nested inlines in Django admin?

You have yor models defined like this:

class Category(models.Model):
...

class Hero(models.Model):
category = models.ForeignKey(Catgeory)
...

class HeroAcquaintance(models.Model):
hero = models.OneToOneField(Hero, on_delete=models.CASCADE)
...

You want to have one admin page to create Category, Hero and HeroAcquaintance objects. However, Django
doesn’t support nested inline with Foreign Keys or One To One relations which span more than one levels. You have
a few options,

You can change the HeroAcquaintance model, so that it has a direct FK to Category, something like this:

class HeroAcquaintance(models.Model):
hero = models.OneToOneField(Hero, on_delete=models.CASCADE)
category = models.ForeignKey(Category)

def save(self, *args, **kwargs):
self.category = self.hero.category
super().save(*args, **kwargs)

Then you can attach HeroAcquaintanceInline to CategoryAdmin, and get a kind of nested inline.

Alternatively, there are a few third party Django apps which allow nested inline. A quick Github or DjangoPackages
search will find one which suits your needs and tastes.

6.4 How to create a single Django admin from two different models?

Hero has a FK to Category, so you can select a category from Hero admin. If you want to also be able to create
Category objects from Hero admin, you can change the form for Hero admin, and customise the save_model
behaviour.:

class HeroForm(forms.ModelForm):
category_name = forms.CharField()

class Meta:
model = Hero
exclude = ["category"]

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

form = HeroForm
....

def save_model(self, request, obj, form, change):
category_name = form.cleaned_data["category_name"]
category, _ = Category.objects.get_or_create(name=category_name)
obj.category = category
super().save_model(request, obj, form, change)

With this change, your admin looks like below and has allows creating or updating category from the Hero admin.

7 Listview Page

7.1 How to show larger number of rows on listview page?

You have been asked to increase the number of heroes one can see on a single page to 250. (The default is 100). You
can do this by:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
list_per_page = 250

You can also set it to a smaller value. If we set it to 1 as list_per_page = 1 the admin looks like this.

7.2 How to disable django admin pagination?

If you want to completely disable pagination on a admin listview page, you can do this.

import sys
...

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...

list_per_page = sys.maxsize

You can also read How to show larger number of rows on listview page?.

7.3 How to add date based filtering in Django admin?

You can add a date based filtering on any date field by setting the date_hierarchy.:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
date_hierarchy = 'added_on'

It looks like this:

This can be very costly with a large number of objects. As an alternative, you can subclass SimpleListFilter,
and allow filtering only on years or the months.

7.4 How to show many to many or reverse FK fields on listview page?

For heroes you can track their father using this field:

father = models.ForeignKey(
"self", related_name="children", null=True, blank=True, on_delete=models.SET_NULL

)

You have been asked to show the childeren of each Hero, on the listview page. Hero objects have the children
reverse FK attribute, but you can’t add that to the :code‘:list_display. You need to add an attribute to ModelAdmin and
use that in list_display. You can do it like this:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...

def children_display(self, obj):
return ", ".join([

child.name for child in obj.children.all()
])

children_display.short_description = "Children"

You will see a column for children like this:

You can use the same method for M2M relations as well. You should also read How to get Django admin urls for

specific objects?.

8 Changeview Page

8.1 How to show image from Imagefield in Django admin.

In your Hero model, you have an image field.:

headshot = models.ImageField(null=True, blank=True, upload_to="hero_headshots/")

By default it shows up like this:

You have been asked to change it to that the actual image also shows up on the change page. You can do it likethis:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

readonly_fields = [..., "headshot_image"]

def headshot_image(self, obj):
return mark_safe(''.format(

url = obj.headshot.url,
width=obj.headshot.width,
height=obj.headshot.height,
)

)

With this change, your imagefield looks like this:

8.2 How to associate model with current user while saving?

The Hero model has the following field.:

added_by = models.ForeignKey(settings.AUTH_USER_MODEL,
null=True, blank=True, on_delete=models.SET_NULL)

You want the added_by field to be automatically set to current user whenever object is created from admin. You can
do this.:

def save_model(self, request, obj, form, change):
if not obj.pk:

Only set added_by during the first save.
obj.added_by = request.user

super().save_model(request, obj, form, change)

If instead you wanted to always save the current user, you can do.:

def save_model(self, request, obj, form, change):
obj.added_by = request.user
super().save_model(request, obj, form, change)

If you also want to hide the added_by field to not show up on the change form, you can do.:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
exclude = ['added_by',]

8.3 How to mark a field as readonly in admin?

UMSRA has temporarily decided to stop tracking the family trees of mythological entities. You have been asked to
make the father, mother and spouse fields readonly.

You can do this by:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
readonly_fields = ["father", "mother", "spouse"]

Your create form looks like this:

8.4 How to show an uneditable field in admin?

If you have a field with editable=False in your model, that field, by default, is hidden in the change page. This
also happens with any field marked as auto_now or auto_now_add, because that sets the editable=False on
these fields.

If you want these fields to show up on the change page, you can add them to readonly_fields.:

@admin.register(Villain)
class VillainAdmin(admin.ModelAdmin, ExportCsvMixin):

...
readonly_fields = ["added_on"]

With this change the Villain admin looks like this:

8.5 How to make a field editable while creating, but read only in existing objects?

You need to make the name and category read only once a Hero is created. However duing the first write the
fields needs to be editable.

You can do this by overriding get_readonly_fields method, like this:

def get_readonly_fields(self, request, obj=None):
if obj:

return ["name", "category"]
else:

return []

obj is None during the object creation, but set to the object being edited during an edit.

8.6 How to filter FK dropdown values in django admin?

Your Hero model has a FK to Category. So all category objects will show in the admin dropdown for
category. If instead, you wanted to see only a subset, Django allows you to customize that by overriding
formfield_for_foreignkey:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
def formfield_for_foreignkey(self, db_field, request, **kwargs):

if db_field.name == "category":
kwargs["queryset"] = Category.objects.filter(name__in=['God', 'Demi God'])

return super().formfield_for_foreignkey(db_field, request, **kwargs)

8.7 How to manage a model with a FK with a large number of objects?

You can create a large number of categories like this:

categories = [Category(**{"name": "cat-{}".format(i)}) for i in range(100000)]
Category.objects.bulk_create(categories)

Now as Category has more than 100000 objects, when you go to the Hero admin, it will have category dropdown
with 100000 selections. This will make the page both slow and the dropdown hard to use.

You can change how admin handles it by setting the raw_id_fields:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
raw_id_fields = ["category"]

This change the Hero admin to look like:

Add the popup looks like this

8.8 How to change ForeignKey display text in dropdowns?

Hero has a FK to Catgeory. In the dropdown, rather than just the name, you want to show the text “Category:
<name>”.

You can change the __str__ method on Category, but you only want this change in the admin. You can do this
by creating a subclassing forms.ModelChoiceField with a custom label_from_instance.:

class CategoryChoiceField(forms.ModelChoiceField):
def label_from_instance(self, obj):

return "Category: {}".format(obj.name)

You can then override formfield_for_foreignkey to use this field type for category.:

def formfield_for_foreignkey(self, db_field, request, **kwargs):
if db_field.name == 'category':

return CategoryChoiceField(queryset=Category.objects.all())
return super().formfield_for_foreignkey(db_field, request, **kwargs)

Your admin look like this.

8.9 How to add a custom button to Django change view page?

Villain has a field called is_unique:

class Villain(Entity):
...
is_unique = models.BooleanField(default=True)

You want to add a button on Villain change form page called “Make Unique”, which make this Villain unique. Any
other villain with the same name should be deleted.

You start by extending the change_form to add a new button.:

{% extends 'admin/change_form.html' %}

{% block submit_buttons_bottom %}
{{ block.super }}
<div class="submit-row">

<input type="submit" value="Make Unique" name="_make-unique">
</div>

{% endblock %}

Then you can override response_change and connect your template to the VillainAdmin.:

@admin.register(Villain)
class VillainAdmin(admin.ModelAdmin, ExportCsvMixin):

...
change_form_template = "entities/villain_changeform.html"

(continues on next page)

(continued from previous page)

def response_change(self, request, obj):
if "_make-unique" in request.POST:

matching_names_except_this = self.get_queryset(request).filter(name=obj.
→˓name).exclude(pk=obj.id)

matching_names_except_this.delete()
obj.is_unique = True
obj.save()
self.message_user(request, "This villain is now unique")
return HttpResponseRedirect(".")

return super().response_change(request, obj)

This is how your admin looks now.

9 Misc

9.1 How to get Django admin urls for specific objects?

You have a children column displaying the names of each heroes’ children. You have been asked to link each children
to the change page. You can do it like this.:

@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

...
(continues on next page)

(continued from previous page)

def children_display(self, obj):
display_text = ", ".join([

"{}".format(
reverse('admin:{}_{}_change'.format(obj._meta.app_label, obj._

→˓meta.model_name),
args=(child.pk,)),

child.name)
for child in obj.children.all()

])
if display_text:

return mark_safe(display_text)
return "-"

The reverse('admin:{}_{}_change'.format(obj._meta.app_label, obj._meta.
model_name), args=(child.pk,)), gives the change url for an object.

The other options are

• Delete: reverse('admin:{}_{}_delete'.format(obj._meta.app_label, obj._meta.
model_name), args=(child.pk,))

• History: reverse('admin:{}_{}_history'.format(obj._meta.app_label, obj._meta.
model_name), args=(child.pk,))

9.2 How to add a model twice to Django admin?

You need to add the Hero model twice to the admin, one as a regular admin area, and one as read only admin. (Some
user will potentially see only the read only admin.)

If you have try to register the same model twice:

admin.site.register(Hero)
admin.site.register(Hero)

you will get an error like this:

raise AlreadyRegistered('The model %s is already registered' % model.__name__)

THe solution is to sublass the Hero model as a ProxyModel.:

In models.py
class HeroProxy(Hero):

class Meta:
proxy = True

...
In admin.py
@admin.register(Hero)
class HeroAdmin(admin.ModelAdmin, ExportCsvMixin):

list_display = ("name", "is_immortal", "category", "origin", "is_very_benevolent")
....

@admin.register(HeroProxy)
(continues on next page)

(continued from previous page)

class HeroProxyAdmin(admin.ModelAdmin):
readonly_fields = ("name", "is_immortal", "category", "origin",

...)

9.3 How to override save behaviour for Django admin?

ModelAdmin has a save_model method, which is used for creating and updating model objects. By overriding
this, you can customize the save behaviour for admin.

The Hero model has the following field.:

added_by = models.ForeignKey(settings.AUTH_USER_MODEL,
null=True, blank=True, on_delete=models.SET_NULL)

If you want to always save the current user whenever the Hero is updated, you can do.:

def save_model(self, request, obj, form, change):
obj.added_by = request.user
super().save_model(request, obj, form, change)

9.4 How to add a database view to Django admin?

You have a database view, created as this:

create view entities_entity as
select id, name from entities_hero
union
select 10000+id as id, name from entities_villain

It has all the names from Hero and Villain. The id’s for Villain are set to 10000+id as id because we don’t
intend to cross 10000 Heroes:

sqlite> select * from entities_entity;
1|Krishna
2|Vishnu
3|Achilles
4|Thor
5|Zeus
6|Athena
7|Apollo
10001|Ravana
10002|Fenrir

Then you add a managed=False model:

class AllEntity(models.Model):
name = models.CharField(max_length=100)

class Meta:
managed = False
db_table = "entities_entity"

And add it to admin.:

@admin.register(AllEntity)
class AllEntiryAdmin(admin.ModelAdmin):

list_display = ("id", "name")

And your admin looks like this

9.5 How to set ordering of Apps and models in Django admin dashboard.

Django, by default, orders the models in admin alphabetically. So the order of models in Event admin is Epic,
EventHero, EventVillain, Event

Instead you want the order to be

• EventHero, EventVillain, Epic then event.

The template used to render the admin index page is admin/index.html and the view function is ModelAdmin.
index.

def index(self, request, extra_context=None):
"""
Display the main admin index page, which lists all of the installed
apps that have been registered in this site.
"""
app_list = self.get_app_list(request)
context = {

**self.each_context(request),
'title': self.index_title,
'app_list': app_list,

**(extra_context or {}),
}

request.current_app = self.name

return TemplateResponse(request, self.index_template or
'admin/index.html', context)

The method get_app_list, set the order of the models.:

def get_app_list(self, request):
"""
Return a sorted list of all the installed apps that have been
registered in this site.
"""
app_dict = self._build_app_dict(request)

Sort the apps alphabetically.
app_list = sorted(app_dict.values(), key=lambda x: x['name'].lower())

Sort the models alphabetically within each app.
for app in app_list:

app['models'].sort(key=lambda x: x['name'])

return app_list

So to set the order we override get_app_list as:

class EventAdminSite(AdminSite):
def get_app_list(self, request):

"""
Return a sorted list of all the installed apps that have been
registered in this site.
"""
ordering = {

"Event heros": 1,
"Event villains": 2,
"Epics": 3,
"Events": 4

}
app_dict = self._build_app_dict(request)
a.sort(key=lambda x: b.index(x[0]))
Sort the apps alphabetically.
app_list = sorted(app_dict.values(), key=lambda x: x['name'].lower())

Sort the models alphabetically within each app.
for app in app_list:

(continues on next page)

(continued from previous page)

app['models'].sort(key=lambda x: ordering[x['name']])

return app_list

The code app['models'].sort(key=lambda x: ordering[x['name']]) sets the fixed ordering.
Your app now looks like this.

10 Indices and tables

10.1 Models used in this book

App entities

The models are:

class Category(models.Model):
name = models.CharField(max_length=100)

class Meta:
verbose_name_plural = "Categories"

def __str__(self):
return self.name

class Origin(models.Model):
name = models.CharField(max_length=100)

def __str__(self):
return self.name

(continues on next page)

(continued from previous page)

class Entity(models.Model):
GENDER_MALE = "Male"
GENDER_FEMALE = "Female"
GENDER_OTHERS = "Others/Unknown"

name = models.CharField(max_length=100)
alternative_name = models.CharField(

max_length=100, null=True, blank=True
)

category = models.ForeignKey(Category, on_delete=models.CASCADE)
origin = models.ForeignKey(Origin, on_delete=models.CASCADE)
gender = models.CharField(

max_length=100,
choices=(

(GENDER_MALE, GENDER_MALE),
(GENDER_FEMALE, GENDER_FEMALE),
(GENDER_OTHERS, GENDER_OTHERS),

)
)
description = models.TextField()

def __str__(self):
return self.name

class Meta:
abstract = True

class Hero(Entity):

class Meta:
verbose_name_plural = "Heroes"

is_immortal = models.BooleanField(default=True)

benevolence_factor = models.PositiveSmallIntegerField(
help_text="How benevolent this hero is?"

)
arbitrariness_factor = models.PositiveSmallIntegerField(

help_text="How arbitrary this hero is?"
)
relationships
father = models.ForeignKey(

"self", related_name="+", null=True, blank=True, on_delete=models.SET_NULL
)
mother = models.ForeignKey(

"self", related_name="+", null=True, blank=True, on_delete=models.SET_NULL
)
spouse = models.ForeignKey(

"self", related_name="+", null=True, blank=True, on_delete=models.SET_NULL
)

class Villain(Entity):
(continues on next page)

(continued from previous page)

is_immortal = models.BooleanField(default=False)

malevolence_factor = models.PositiveSmallIntegerField(
help_text="How malevolent this villain is?"

)
power_factor = models.PositiveSmallIntegerField(

help_text="How powerful this villain is?"
)
is_unique = models.BooleanField(default=True)
count = models.PositiveSmallIntegerField(default=1)

App events

The models are:

class Epic(models.Model):
name = models.CharField(max_length=255)
participating_heroes = models.ManyToManyField(Hero)
participating_villains = models.ManyToManyField(Villain)

class Event(models.Model):
epic = models.ForeignKey(Epic, on_delete=models.CASCADE)
details = models.TextField()
years_ago = models.PositiveIntegerField()

class EventHero(models.Model):
event = models.ForeignKey(Event, on_delete=models.CASCADE)
hero = models.ForeignKey(Hero, on_delete=models.CASCADE)
is_primary = models.BooleanField()

class EventVillain(models.Model):
event = models.ForeignKey(Event, on_delete=models.CASCADE)
hero = models.ForeignKey(Villain, on_delete=models.CASCADE)
is_primary = models.BooleanField()

• genindex

• modindex

	Django Admin Cookbook - How to do things with Django admin.
	Text and Design
	Calculated fields
	Bulk and custom actions
	Permissions
	Multiple models and inlines
	Listview Page
	Changeview Page
	Misc
	Indices and tables

