Disciplinary Core Idea Progressions

The tables below illustrate the progression of the Disciplinary Core Ideas K-12 found within the *Framework for K-12 Science Education*. This progression is for reference only and in no way endorses separation of the disciplinary core ideas from the other dimensions. Though the South Dakota Standards are presented as detailed integrations of the three dimensions, this document was built by the South Dakota Science Standards Workgroup to display the coherence and progression of the core ideas across K-12. This document can provide great support for schools and districts to ensure vertical progression occurs within the larger system. This document can also assist teachers seeking to identify where the major ideas appear within their respective grade-bands.

Physical Science Progression

DCI	K-2	3-5	6-8	9-12
PS1.A	Classifying different	Developing models that	Developing models that	Using the periodic table as
Structure of matter	materials by their	portray matter as particles	describe atomic and	a model to predict the
	observable properties.	too small to be seen, yet	molecular composition.	relative chemical and
	Determining which of	can be identified	Analyzing the physical and	physical properties and
	those properties are best	macroscopically based on	chemical properties of	reactivity of elements
	suited for a specific	their properties. Collecting	matter, describing its	based on the patterns of
	purpose. Designing	evidence that matter is	natural sources, phase	electrons in the outermost
	devices that require the	always conserved.	transitions, and impact on	energy level of atoms.
	assembly or disassembly		society.	Planning and carrying out
	of smaller objects.			investigations that
	Understanding the effects			compare atomic and
	of heating and cooling on			molecular structure and
	the properties of matter.			its impact on the strength
				of electrical forces
				between particles.
				Building models that
				illustrate the storage of
				energy in chemical bonds,
				and its effect on
				equilibrium.

PS1.B	Using evidence to	Providing quantitative	Analyzing matter before	Explaining the outcome of
Chemical reactions	determine if a change	evidence of the	and after an interaction to	a chemical reaction based
Chemical reactions	caused by heating or	conservation of matter	determine if a reaction	on knowledge of atomic
	cooling can be reversed.	during both physical and	has taken place, and the	structure, periodic trends,
	cooming can be reversed.	chemical changes.	relevance of such a	and knowledge of
		Conducting investigations	change within the context	patterns of chemical
		to prove whether changes	of the world in which we	properties. Building
		observed during the		models that illustrate the
			live. Understanding that	
		mixing of substances are	while they might change	transfer of energy
		physical or chemical.	state, matter and energy	between particles and
			are conserved during a	their surroundings during
			chemical reaction.	a chemical reaction.
				Explaining the effects of
				changing temperature or
				concentration on the rate
				or equilibrium state of a
				chemical reaction.
				Accounting for the
				conservation of matter
				during a chemical
				reaction.
PS1.C	N/A	N/A	N/A	Modeling and illustrating
Nuclear processes				the changes in the nuclear
				composition and
				energetics of the atom
				during the processes of
				fission, fusion, and
				radioactive decay.
				Developing a model to
				describe nuclear fusion in
				the sun's core and its
				release of energy that
	J.			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

				reaches Earth in the form of radiation.
PS2.A Forces and motion	Comparing and contrasting the effect of pushes and pulls in various directions and magnitudes on the motion of an object. Designing a solution to influence speed and direction change for various objects.	Using observation and measurement to determine the affect of balanced and unbalanced forces on an objects motion, and to determine its future motion.	A change in an objects motion (acceleration) depends on a change in the net force acting on an object and the mass of that object. Applying this, along with Newton's Third Law, can be used to solve a problem involving the collision of two objects.	Analyzing data supporting Newton's second law of motion and Coulomb's Law, and their effects on an objects net force, mass, and acceleration. Supporting the conservation of momentum within a system through mathematical representations. Using this information to design a device that minimizes net force on an object during a collision. Understanding how molecular structure plays a role in each of these concepts.
PS2.B Types of interactions	Determining the relationship between pushes/pulls and speed/direction.	Using scientific ideas to ask questions and conduct investigations about cause and effect relationships pertaining to gravitational, electric and magnetic interactions.	Analyzing and questioning data, arguments, and observations to determine the factors affecting electromagnetic and gravitational interactions.	Understanding how to manipulate net force on an object during a collision. Engineering devices that minimize this net force. Mathematically predicting gravitational and electrostatic forces between macroscopic and molecular objects, and evidentially supporting

				those predictions.
PS2.C Stability and instability in physical systems	Determining if a design solution works as intended to change the speed or direction of an	N/A	N/A	Mathematically supporting the conservation of momentum in a system
	object.			with no net force.
PS3.A Definitions of energy	N/A	Defining the relationship between energy and motion, sound, light, heat, electricity, and collisions.	Describing the impact of thermal energy on the physical and chemical properties of matter. Evaluating the roles and interaction of kinetic and potential energy.	Defining the relationship between molecular and macroscopic energy, and utilizing this information to design devices capable of converting energy between various forms.
PS3.B Conservation of energy and energy transfer	Determining the effects of sunlight on the Earth's surface. Building a structure that can minimize temperature changes resulting from this interaction.	Describing energy transfer in various forms (motion, sound, light, heat, electricity, and collisions).	Understanding insulation, conduction, and their role in the transfer of energy. Engaging in argument regarding the transfer of energy to or from an object.	Utilizing technology to model energy transfer, and supporting this through experiential evidence consistent with the 2 nd Law of Thermodynamics.
PS3.C Relationship between energy and forces	N/A	Understanding the impact of energy transfer on various forces, and forces on energy transfer.	Describing the relationship of kinetic and potential energy.	Modeling the interaction of electric and magnetic fields to illustrate the resulting force and energy interactions.
PS3.D Energy in chemical processes and everyday life	Determining the effects of sunlight on the Earth's surface.	Designing a device capable of converting energy from one form to another. Use models to describe energy conversion from sunlight to various functions in	N/A	Providing evidence of thermal energy transfer according to the 2 nd Law of Thermodynamics. Relating energy transfer to the transmission and

		living species.		capture of information
				and energy.
PS4.A	Investigating the	Developing a model to	Using mathematical	Mathematically
Wave properties	relationship between	describe wave and light	formulas to describe the	supporting claims
	vibrating materials and	patterns.	wave model, and how	describing wave
	sound, vision and light,		waves are reflected,	properties in various
	and how knowledge of		absorbed, or transmitted	media. Evaluating the
	these concepts can be		through various media.	advantages of digital
	used to develop			transmission and storage
	communication devices.			of information.
PS4.B	Determining the effect	Developing a model to	Using mathematical	Describing wave-particle
Electromagnetic radiation	light has on different	describe radiation (wave)	formulas to describe	duality as it pertains to
	objects, and using this	and light patterns.	electromagnetic radiation,	electromagnetic radiation.
	information to develop a		and how it is reflected,	Evaluating evidence of the
	device for visual		absorbed, or transmitted	effects of radiation on
	communication.		through various media.	matter.
PS4.C	Utilizing sound and light to	Developing and optimizing	Comparing and	Evaluating the process and
Information technologies	develop communication	multiple pattern solutions	contrasting digitized and	advantages of digital
and instrumentation	devices.	to information transfer.	analog signaling.	transmission, capture, and storage of information.

Life Science Progression

DCI	K-2	3-5	6-8	9-12
LS1.A Structure and function	Using plant and animal anatomical function to design a solution to a human problem of growth and development.	Making an argument about how the structure and function of plant and animal anatomy can support growth, behavior, and reproduction.	Investigating the idea that organisms are made of one or more cells, and that cells or parts of cells may have different functions within a larger system. Supporting the argument that the body is comprised of subsystems, which are in turn	Constructing an explanation, using evidence, for how DNA structure has downstream effects on the structure and function of an organism. Investigating how feedback mechanisms maintain homeostasis in an
LS1.B Growth and development of organisms	Describing patterns of survival for plants and animals, and their assistance in the survival	Developing models to describe both common and unique life cycle processes in different	composed of groups of cells. Using empirical evidence and reasoning to explain characteristics and behaviors of organisms,	Developing a model to explain the hierarchy of interacting systems and functions within
	of offspring.	organisms.	and how they might influence reproduction. Explaining how environmental and genetic factors might influence the growth of organisms.	multicellular organisms. Illustrating the role of mitosis and differentiation in producing and maintaining complex organisms.
LS1.C Organization for matter and energy flow in organisms	Explaining the life cycle of different organisms within an ecosystem.	Using evidence to describe how plants get the materials they need to survive from air and water. Developing a	Constructing a scientific explanation for the role of photosynthesis in the cycling of matter and flow of energy into and out of	Illustrating how photosynthesis transforms light energy into stored chemical energy. Constructing and revising

		model to show how matter and energy can be transferred through different participants within an ecosystem.	organisms. Modeling how food can be digested and processed through chemical reactions, forming new molecules to support matter and energy transfer in an organism.	an explanation for how elements from non-living sources can combine to form organic molecules, and how cellular respiration plays a crucial role in the energy transfer that accompanies this process.
LS1.D Information processing	N/A	Modeling and describing the processing of the five senses to the brain to support survival, growth, behavior, and reproduction.	N/A	Explain the role of information processing within the context of anatomical structure and function.
LS2.A Interdependent relationships in ecosystems	Determining if plants need sunlight and water to grow. Explaining the role of animals in the dispersion of seeds and pollination in plants.	Making arguments about how some animals form groups to help members survive.	Describing the effects of resource availability on organisms and groups of organisms within an ecosystem. Recognizing patterns of interactions among organisms across multiple ecosystems.	Supporting and revising explanations about factors affecting populations in ecosystems.
LS2.B Cycles of matter and energy transfer in ecosystems	N/A	Developing a model to show how matter and energy can be transferred through different participants within an ecosystem.	Modeling the cycling of matter and energy among living and nonliving parts of an ecosystem. Constructing a scientific explanation for the role of photosynthesis in the cycling of matter and flow	Constructing an explanation for the cycling of matter and flow of energy under aerobic and anaerobic conditions, and among organisms in an ecosystem. Quantitatively illustrate the role of

			of energy into and out of organisms.	photosynthesis and cellular respiration in the cycling of carbon.
LS2.C Ecosystem dynamics, functioning, and resilience	N/A	Using evidence and reasoning to describe how certain characteristics of the same species and different species within an ecosystem may provide advantages in survival, mating, and reproduction.	Explaining why changes to physical or biological components of an ecosystem affect its population. Evaluating competing design solutions for maintaining ecosystem services.	Computationally modeling how factors can affect the carrying capacity of ecosystems at different scales. Evaluating claims and evidence that ecosystems maintain relative homeostasis, but can be altered as the result of changing conditions.
LS2.D Social interactions and group behavior	N/A	Making arguments about how some animals form groups to help members survive.	Explaining patterns of interactions among organisms across multiple ecosystems.	Examining evidence of group behavior and its influence on survival and reproduction.
LS3.A Inheritance of traits	Explaining, using evidence, how plants and animals are both similar and dissimilar to their parents.	Using data to provide evidence of inherited traits in plants and animals.	Using a model to describe why asexual organisms share identical genetic information with their parents and sexual organisms do not.	Asking questions to clarify the role of DNA and chromosomes in coding for the inheritance of traits. Using statistical data to explain how organisms with an advantageous and inheritable trait tend to increase in proportion to organisms lacking this trait.
LS3.B	Explaining, using evidence,	Using data to provide	Using a model to describe	Making and defending

Variation of traits	how plants and animals are both similar and dissimilar to their parents.	evidence of variable traits in plants and animals. Understanding that traits can be influenced by both inheritance and environment.	how genetic mutations have downstream effects in the function of organisms.	claims regarding how genetic variations can result from a number of factors.
LS4.A Evidence of common ancestry and diversity	Making observations about plant and animal similarities and diversity in different habitats.	Analyzing data to describe organisms and environments that existed long ago.	Examining the fossil record as documentation of diversity and commonality over the history of life on Earth, and how those similarities and differences can infer evolutionary relationships.	Examining the passing of traits from parents to offspring, and across populations over time. Communicating this information through multiple lines of empirical evidence.
LS4.B Natural selection	N/A	Using evidence and reasoning to describe how certain characteristics of the same species may provide advantages in survival, mating, and reproduction.	Using evidence to explain how genetic variations of traits can increase some individuals' probability of survival and reproduction in a specific environment. Explaining how natural non-natural influences can alter this process.	Providing evidence of evolution and the factors that drive this process. Using statistical data to explain how organisms with an advantageous and inheritable trait tend to increase in proportion to organisms lacking this trait.
LS4.C Adaptation	N/A	Explaining the impact that habitat, genetic inheritance, and ability to adapt can have on an organism's chances of survival. Understanding that plants and animals	Supporting the claim that natural selection can lead to increases or decreases in specific traits over time. Explaining the impact that habitat, genetic inheritance, and ability to	Using statistical evidence and probability to explain the variation, distribution, and expression of traits over time in a population. Providing evidence of the factors that drive this

		might change as a result of changes in the environment.	adapt can have on an organism's chances of survival, growth, and reproduction.	process, and how natural selection and changing environments lead to the adaptation, emergence, and extinction of populations.
LS4.D Biodiversity and humans	Describing similarities and differences in different organisms of the same species and different species.	Explaining why different members of the same species might have similar or different characteristics.	Describing how human influence and technologies can influence the inheritance of specific traits over time. Developing competing design solutions for maintaining biodiversity in a given population.	Designing, evaluating, and optimizing solutions for minimizing the impact of human activity on the environment and biodiversity. Mathematically representing natural and non-natural (human) factors that affect biodiversity within an ecosystem.

Earth and Space Science Progression

DCI	K-2	3-5	6-8	9-12
ESS1.A	Predicting patterns found	Supporting the argument	Modeling the Earth-sun-	Using astronomical
The universe and its stars	in the sun, moon, and	that distance from the	moon system to describe	evidence to construct an
	stars.	Earth plays a role in the	the repetition of patterns	explanation of the Big
		brightness of the sun and	in each.	Bang Theory. Explaining
		other stars.		through scientific ideas
				how stars can produce
				elements.
ESS1.B	Relating the movement of	Using graphical data to	Explaining how gravity	Explaining how energy,
Earth and the solar system	Earth in comparison to the	reveal changing patterns	plays a role in the motions	resulting from fusion
	patterns of the sun, moon,	in the length of shadows,	of galaxies and our solar	reactions in the sun's core,
	and stars, as well as the	day and night, and the	system.	can travel to Earth in the
	amount of daylight during	appearance of the night		form of radiation. Using
	different seasons.	sky over time.		mathematical and
				computational
				representations to predict
				interplanetary motion.
ESS1.C	Garnering the ability to	Utilizing patterns in rock	Using data to scale	Determining the age of
The history of planet Earth	describe changes on Earth	formations and fossils to	measurements and	crustal rocks by examining
	that occur quickly or	describe changes in the	properties within the	past and current
	slowly.	Earth over time.	context of our solar	movements of the Earth's
			system.	crust in the context of
				plate tectonics. Applying
				scientific reasoning and
				planetary evidence to
				account for Earth's early
				history.

ESS2.A	Providing multiple	Making observations and	Modeling the Earth's	Analyzing geoscience data
Earth materials and	solutions to slowing or	collecting data as evidence	materials cycle and the	to explain changing
systems	preventing land changes	of weathering or erosion.	energy that drives those	feedback and responsive
	that result from the	Describing the interaction	processes.	processes in the Earth's
	movement of wind or	of the geosphere,		systems. Describing the
	water.	biosphere, hydrosphere,		role of system changes on
		and/or atmosphere.		regional climates.
ESS2.B	Modeling different shapes	Analyzing and interpreting	Explaining changes in the	Using plate tectonics as
Plate tectonics and large-	and kinds of land and	data from Earth maps to	Earth's surface over time	evidence to explain the
scale system interactions	water in a given area.	describe physical patterns	based on evidence of	ages of crustal rocks.
		and features on the	geoscience processes.	
		Earth's surface.	Using the distribution of	
			fossils, rocks, continents,	
			and the sea floor to	
			provide evidence of plate	
			motion.	
ESS2.C	Identifying where water is	Using data to describe	Modeling the water cycle	Investigating the role of
The roles of water in	found on Earth and that it	water distribution on the	based on evidence of	water on the Earth's
Earth's surface processes	can take on various	Earth's surface, as well as	energy transfer from the	materials and surface
	physical states.	its role in erosion and	sun and gravity.	processes.
		weathering.		
ESS2.D	Sharing observations of	Using data to describe	Collecting and interpreting	Explaining climate changes
Weather and climate	local weather conditions	weather patterns during	evidence of air movement	using evidence of energy
	over an extended period	specific seasons, and in	and its impact on weather	transfer into and out of
	of time, including how to	specific climates	conditions. Using a model	the Earth's systems.
	predict and respond to	throughout the world.	of the heating and	
	severe weather.		rotation of the Earth to	
			describe atmospheric and	
			oceanic currents, as well	
			as regional climates.	
ESS2.E	Engaging in argument	Using fossils as evidence	N/A	Describing the cycling of

Biogeology	about the ability of plants and animals to change the environment to meet their needs.	to support changes in the Earth's landscape over time.		matter by thermal convection.
ESS3.A Natural resources	Understanding the relationship between living organisms and the natural resources around them.	Using data and observations to describe how energy and fuel are derived from Earth's natural resources.	Using evidence to describe the uneven distribution of natural resources that result from geoscience processes.	Evaluating competing positions for the development and consumption of energy and natural resources based on a cost-benefit ratio and its impact on sustainability, human populations, and biodiversity. Explaining the impact that scarce availability of natural resources can have on human activity.
ESS3.B Natural hazards	Discussing severe weather patterns.	Providing a design solution that protects against severe weather-related hazards.	Analyzing and interpreting data on natural hazards to forecast catastrophic events and to develop technologies that diminish their effects.	Explaining the impact that occurrences of natural hazards can have on human activity.
ESS3.C Human impacts on Earth systems	Using evidence to discuss the impact of humans on a changing environment and ecosystem. Discussing potential solutions to minimizing this impact.	Generating and comparing multiple solutions to minimize the impact of the Earth's natural processes on humans. Combining information about how communities	Applying scientific principles to design methods of monitoring and minimizing human impact on the environment. Constructing arguments	Optimizing technological solutions that reduce the impact of human activity on Earth systems. Using computational models to illustrate how our relationship with Earth

APPENDIX A – Disciplinary Core Idea Progressions

		use science to protect the	supported by evidence for	systems is changing due to
		Earth's resources and	how the human	human activity.
		environment.	population has impacted	
			the consumption of	
			natural resources and	
			impacted Earth's systems	
ESS3.D	N/A	N/A	Asking questions and	Explaining the impact that
Global climate change			providing clarifying	climate change can have
			statements about the	on human activity.
			factors that have caused	Analyzing data of global
			changes in global	climate models in order to
			temperatures and	forecast future climate
			climates over the past	changes.
			century.	

Engineering Design Progression

This table was included to complement the addition of the optional Engineering Design Standards. Please see APPENDIX C for the list of the grade-banded standards.

DCI	K-2	3-5	6-8	9-12
ETS1.A	Approaching change as a	Understanding that	Consideration of scientific	Utilizing design criteria,
Defining and delimiting an	problem that is solvable	solutions to a problem are	principles and relevant	constraints, and
engineering problem	through engineering:	limited by the availability	knowledge towards a	technological models to
	asking questions,	of materials and	proposed solution to a	address function,
	gathering information,	resources. These	problem.	durability, risk, and design
	and determining solutions.	limitations can be		specifications.
		minimized through the		
		optimization of design.		
ETS1.B	Developing sketches,	Researching a problem	Testing a design solution,	Breaking down problems
Developing possible	drawings, or models to	through available	or combining multiple	into simpler components
solutions	express a design strategy.	resources, such as the	solutions for optimization.	in order to develop
		internet, library, or	Communicating solutions	potential solutions, taking
		observation, and	to others.	into account a variety of
		brainstorming <i>prior</i> to		constraints (cost, safety,
		generating a design		reliability, aesthetics,
		strategy.		societal impacts, etc).
ETS1.C	Comparing designs, while	Comparing designs,	Systematically comparing	Determining the best
Optimizing the design	discussing strengths and	looking for the best	designs, within the	possible design for a
solution	weaknesses of each.	possible solution within a	context of constraints and	solution under a given set
		given set of constraints.	criteria, through tests,	of prioritized constraints.
			control experiments, and	Utilizing a design matrix to
			optimization.	aide the process of
				optimization.