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Advantages of
concurrent programs

• Reactive programming
– User can interact with applications while tasks are running, e.g., stopping

the transfer of a big file in a web browser.
• Availability of services

– Long-running tasks need not delay short-running ones, e.g., a web server
can serve an entry page while at the same time processing a complex
query.

• Parallelism
– Complex programs can make better use of multiple resources in new

multi-core processor architectures, SMPs, LANs or WANs, e.g.,
scientific/engineering applications, simulations, games, etc.

• Controllability
– Tasks requiring certain preconditions can suspend and wait until the

preconditions hold, then resume execution transparently.

C. Varela 3

Disadvantages of
concurrent programs

• Safety
– « Nothing bad ever happens »
– Concurrent tasks should not corrupt consistent state of program

• Liveness
– « Anything ever happens at all »
– Tasks should not suspend and indefinitely wait for each other (deadlock).

• Non-determinism
– Mastering exponential number of interleavings due to different schedules.

• Resource consumption
– Threads can be expensive.  Overhead of scheduling, context-switching,

and synchronization.
– Concurrent programs can run slower than their sequential counterparts

even with multiple CPUs!
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Overview of
concurrent programming

• There are four basic approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is

ok, else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela 5

Actors/SALSA
• Actor Model

– A reasoning framework to model concurrent
computations

– Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

• SALSA
– Simple Actor Language System and

Architecture
– An actor-oriented language for mobile and

internet computing
– Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.
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SALSA and Java

• SALSA source files are compiled into Java source files before being compiled into
Java byte code.

• SALSA programs may take full advantage of the Java API.
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Hello World Example

module examples.helloworld;

behavior HelloWorld {

   void act( String[] args ) {

      standardOutput <- print( "Hello" ) @
      standardOutput <- println( "World!" );

   }

}
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Hello World Example

• The act( String[] args ) message handler is
similar to the main(…) method in Java and is used to
bootstrap SALSA programs.

• When a SALSA program is executed, an actor of the given
behavior is created and an act(args) message is sent to
this actor with any given command-line arguments.

• References to standardOutput, standardInput
and standardError actors are available to all SALSA
actors.
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SALSA Support for Actors

• Programmers define behaviors for actors.

• Messages are sent asynchronously.

• State is modeled as encapsulated objects/primitive types.

• Messages are modeled as potential method invocations.

• Continuation primitives are used for coordination.
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Reference Cell Example

module examples.cell;

behavior Cell {
Object content;

Cell(Object initialContent) {
         content = initialContent;
   }

Object get() { return content; }

void set(Object newContent) {
content = newContent;

}
}
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Actor Creation

• To create an actor:

TravelAgent a = new TravelAgent();
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Message Sending

• To create an actor:

TravelAgent a = new TravelAgent();

• To send a message:

a <- book( flight );
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Causal order
• In a sequential program all execution  states are totally

ordered

• In a concurrent program all execution states of a given actor
are totally ordered

• The execution state of the concurrent program as a whole is
partially ordered
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Total order
• In a sequential program all execution  states are totally

ordered

computation step

sequential
execution
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Causal order in the actor model

• In a concurrent program all execution states of a given
actor are totally ordered

• The execution state of the concurrent program is partially
ordered

computation step

actor A1

actor A2

actor A3

Create new
actor

Send a
message
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Nondeterminism

• An execution is nondeterministic if there is a computation
step in which there is a choice what to do next

• Nondeterminism appears naturally when there is
asynchronous message passing
– Messages can arrive or be processed in an order different from the

sending order.
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Example of nondeterminism

time

Actor 1

a<-m1();

time

Actor 2

Actor a can receive messages m1() and m2() in any order.

a<-m2();

time

Actor a
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Coordination Primitives

• SALSA provides three main coordination constructs:
– Token-passing continuations

• To synchronize concurrent activities
• To notify completion of message processing
• Named tokens enable arbitrary synchronization (data-flow)

– Join blocks
• Used for barrier synchronization for multiple concurrent

activities
• To obtain results from otherwise independent concurrent

processes
– First-class continuations

• To delegate producing a result to a third-party actor
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Token Passing Continuations
• Ensures that each message in the continuation expression is sent after

the previous message has been processed. It also enables the use of a
message handler return value as an argument for a later message
(through the token keyword).

– Example:

a1 <- m1() @
a2 <- m2( token );

Send m1 to a1 asking a1 to forward the result of processing m1 to a2
(as the argument of message m2).
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Named Tokens
• Tokens can be named to enable more loosely-coupled synchronization

– Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3( t1 );
token t4 = a4 <- m4( t2 );
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until messages m1()..m4()  have been
processed.   m1() can proceed concurrently with m2().
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Causal order in the actor model

computation step

actor A1

actor A2

actor A3

create new
actor

bind a token

synchronize on a token

x

y
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Cell Tester Example

module examples.cell;

behavior CellTester {

 void act( String[] args ) {

      Cell c = new Cell(“Hello”);
      standardOutput <- print( ”Initial Value:” ) @
      c <- get() @
      standardOutput <- println( token ) @
      c <- set(“World”) @
      standardOutput <- print( ”New Value:” ) @
      c <- get() @
      standardOutput <- println( token );

   }
}
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Join Blocks

• Provide a mechanism for synchronizing the processing of a set of
messages.

• Set of results is sent along as a token containing an array of results.
– Example:

Actor[] actors = { searcher0, searcher1,   
 searcher2, searcher3 };

join {
for (int i=0; i < actors.length; i++){

     actors[i] <- find( phrase );
  }

} @ resultActor <- output( token );

Send the find( phrase ) message to each actor in actors[] then after all
have completed send the result to resultActor as the argument of an
output( … ) message.
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Example: Acknowledged
Multicast

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @
cust <- n(token);
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Lines of Code Comparison

31100168Acknowledged Multicast

SALSAFoundryJava
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First Class Continuations

• Enable actors to delegate computation to a third party independently of
the processing context.

• For example:

  int m(…){
   b <- n(…) @ currentContinuation;

  }

Ask (delegate) actor b to respond to this message m on behalf of current actor
(self) by processing its own message n.
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Delegate Example

module examples.fibonacci;

behavior Calculator {

int fib(int n) {
Fibonacci f = new Fibonacci(n);
f <- compute() @ currentContinuation;

}
int add(int n1, int n2) {return n1+n2;}

void act(String args[]) {
fib(15) @ standardOutput <- println(token);
fib(5) @ add(token,3) @
standardOutput <- println(token);

}
}
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Fibonacci Example
module examples.fibonacci;

behavior Fibonacci {
int n;

Fibonacci(int n) { this.n = n; }

int add(int x, int y) { return x + y; }

int compute() {
if (n == 0) return 0;
else if (n <= 2) return 1;
else {

Fibonacci fib1 = new Fibonacci(n-1);
Fibonacci fib2 = new Fibonacci(n-2);
token x = fib1<-compute();
token y = fib2<-compute();
add(x,y) @ currentContinuation;

}
}

void act(String args[]) {
n = Integer.parseInt(args[0]);
compute() @ standardOutput<-println(token);

}
}
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Fibonacci Example 2
module examples.fibonacci2;

behavior Fibonacci {

int add(int x, int y) { return x + y; }

int compute(int n) {
if (n == 0) return 0;
else if (n <= 2) return 1;
else {

Fibonacci fib = new Fibonacci();
token x = fib <- compute(n-1);
compute(n-2) @ add(x,token) @ currentContinuation;

}
}

void act(String args[]) {
int n = Integer.parseInt(args[0]);
compute(n) @ standardOutput<-println(token);

}
}
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Execution of
salsa Fibonacci 6

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1F3

F2

Create new actor

Synchronize on
result

Non-blocked actor



6

C. Varela 31

Exercises

1. How would you implement the join continuation
linguistic abstraction in terms of message passing?

2. Download and execute the CellTester.salsa
example.

3. *Write a solution to the Flavius Josephus problem in
SALSA.  A description of the problem is at VRH Section
7.8.3 (page 558).


