
1

C. Varela 1

Concurrent Programming
Actors, SALSA, Coordination Abstractions

Carlos Varela
RPI

March 22, 2007

C. Varela 2

Advantages of
concurrent programs

• Reactive programming
– User can interact with applications while tasks are running, e.g., stopping

the transfer of a big file in a web browser.
• Availability of services

– Long-running tasks need not delay short-running ones, e.g., a web server
can serve an entry page while at the same time processing a complex
query.

• Parallelism
– Complex programs can make better use of multiple resources in new

multi-core processor architectures, SMPs, LANs or WANs, e.g.,
scientific/engineering applications, simulations, games, etc.

• Controllability
– Tasks requiring certain preconditions can suspend and wait until the

preconditions hold, then resume execution transparently.

C. Varela 3

Disadvantages of
concurrent programs

• Safety
– « Nothing bad ever happens »
– Concurrent tasks should not corrupt consistent state of program

• Liveness
– « Anything ever happens at all »
– Tasks should not suspend and indefinitely wait for each other (deadlock).

• Non-determinism
– Mastering exponential number of interleavings due to different schedules.

• Resource consumption
– Threads can be expensive. Overhead of scheduling, context-switching,

and synchronization.
– Concurrent programs can run slower than their sequential counterparts

even with multiple CPUs!

C. Varela 4

Overview of
concurrent programming

• There are four basic approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is

ok, else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela 5

Actors/SALSA
• Actor Model

– A reasoning framework to model concurrent
computations

– Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

• SALSA
– Simple Actor Language System and

Architecture
– An actor-oriented language for mobile and

internet computing
– Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

C. Varela 6

SALSA and Java

• SALSA source files are compiled into Java source files before being compiled into
Java byte code.

• SALSA programs may take full advantage of the Java API.

2

C. Varela 7

Hello World Example

module examples.helloworld;

behavior HelloWorld {

 void act(String[] args) {

 standardOutput <- print("Hello") @
 standardOutput <- println("World!");

 }

}

C. Varela 8

Hello World Example

• The act(String[] args) message handler is
similar to the main(…) method in Java and is used to
bootstrap SALSA programs.

• When a SALSA program is executed, an actor of the given
behavior is created and an act(args) message is sent to
this actor with any given command-line arguments.

• References to standardOutput, standardInput
and standardError actors are available to all SALSA
actors.

C. Varela 9

SALSA Support for Actors

• Programmers define behaviors for actors.

• Messages are sent asynchronously.

• State is modeled as encapsulated objects/primitive types.

• Messages are modeled as potential method invocations.

• Continuation primitives are used for coordination.

C. Varela 10

Reference Cell Example

module examples.cell;

behavior Cell {
Object content;

Cell(Object initialContent) {
 content = initialContent;
 }

Object get() { return content; }

void set(Object newContent) {
content = newContent;

}
}

C. Varela 11

Actor Creation

• To create an actor:

TravelAgent a = new TravelAgent();

C. Varela 12

Message Sending

• To create an actor:

TravelAgent a = new TravelAgent();

• To send a message:

a <- book(flight);

3

C. Varela 13

Causal order
• In a sequential program all execution states are totally

ordered

• In a concurrent program all execution states of a given actor
are totally ordered

• The execution state of the concurrent program as a whole is
partially ordered

C. Varela 14

Total order
• In a sequential program all execution states are totally

ordered

computation step

sequential
execution

C. Varela 15

Causal order in the actor model

• In a concurrent program all execution states of a given
actor are totally ordered

• The execution state of the concurrent program is partially
ordered

computation step

actor A1

actor A2

actor A3

Create new
actor

Send a
message

C. Varela 16

Nondeterminism

• An execution is nondeterministic if there is a computation
step in which there is a choice what to do next

• Nondeterminism appears naturally when there is
asynchronous message passing
– Messages can arrive or be processed in an order different from the

sending order.

C. Varela 17

Example of nondeterminism

time

Actor 1

a<-m1();

time

Actor 2

Actor a can receive messages m1() and m2() in any order.

a<-m2();

time

Actor a

C. Varela 18

Coordination Primitives

• SALSA provides three main coordination constructs:
– Token-passing continuations

• To synchronize concurrent activities
• To notify completion of message processing
• Named tokens enable arbitrary synchronization (data-flow)

– Join blocks
• Used for barrier synchronization for multiple concurrent

activities
• To obtain results from otherwise independent concurrent

processes
– First-class continuations

• To delegate producing a result to a third-party actor

4

C. Varela 19

Token Passing Continuations
• Ensures that each message in the continuation expression is sent after

the previous message has been processed. It also enables the use of a
message handler return value as an argument for a later message
(through the token keyword).

– Example:

a1 <- m1() @
a2 <- m2(token);

Send m1 to a1 asking a1 to forward the result of processing m1 to a2
(as the argument of message m2).

C. Varela 20

Named Tokens
• Tokens can be named to enable more loosely-coupled synchronization

– Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until messages m1()..m4() have been
processed. m1() can proceed concurrently with m2().

C. Varela 21

Causal order in the actor model

computation step

actor A1

actor A2

actor A3

create new
actor

bind a token

synchronize on a token

x

y

C. Varela 22

Cell Tester Example

module examples.cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(“Hello”);
 standardOutput <- print(”Initial Value:”) @
 c <- get() @
 standardOutput <- println(token) @
 c <- set(“World”) @
 standardOutput <- print(”New Value:”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

C. Varela 23

Join Blocks

• Provide a mechanism for synchronizing the processing of a set of
messages.

• Set of results is sent along as a token containing an array of results.
– Example:

Actor[] actors = { searcher0, searcher1,
 searcher2, searcher3 };

join {
for (int i=0; i < actors.length; i++){

 actors[i] <- find(phrase);
 }

} @ resultActor <- output(token);

Send the find(phrase) message to each actor in actors[] then after all
have completed send the result to resultActor as the argument of an
output(…) message.

C. Varela 24

Example: Acknowledged
Multicast

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @
cust <- n(token);

5

C. Varela 25

Lines of Code Comparison

31100168Acknowledged Multicast

SALSAFoundryJava

C. Varela 26

First Class Continuations

• Enable actors to delegate computation to a third party independently of
the processing context.

• For example:

 int m(…){
 b <- n(…) @ currentContinuation;

 }

Ask (delegate) actor b to respond to this message m on behalf of current actor
(self) by processing its own message n.

C. Varela 27

Delegate Example

module examples.fibonacci;

behavior Calculator {

int fib(int n) {
Fibonacci f = new Fibonacci(n);
f <- compute() @ currentContinuation;

}
int add(int n1, int n2) {return n1+n2;}

void act(String args[]) {
fib(15) @ standardOutput <- println(token);
fib(5) @ add(token,3) @
standardOutput <- println(token);

}
}

C. Varela 28

Fibonacci Example
module examples.fibonacci;

behavior Fibonacci {
int n;

Fibonacci(int n) { this.n = n; }

int add(int x, int y) { return x + y; }

int compute() {
if (n == 0) return 0;
else if (n <= 2) return 1;
else {

Fibonacci fib1 = new Fibonacci(n-1);
Fibonacci fib2 = new Fibonacci(n-2);
token x = fib1<-compute();
token y = fib2<-compute();
add(x,y) @ currentContinuation;

}
}

void act(String args[]) {
n = Integer.parseInt(args[0]);
compute() @ standardOutput<-println(token);

}
}

C. Varela 29

Fibonacci Example 2
module examples.fibonacci2;

behavior Fibonacci {

int add(int x, int y) { return x + y; }

int compute(int n) {
if (n == 0) return 0;
else if (n <= 2) return 1;
else {

Fibonacci fib = new Fibonacci();
token x = fib <- compute(n-1);
compute(n-2) @ add(x,token) @ currentContinuation;

}
}

void act(String args[]) {
int n = Integer.parseInt(args[0]);
compute(n) @ standardOutput<-println(token);

}
}

C. Varela 30

Execution of
salsa Fibonacci 6

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1F3

F2

Create new actor

Synchronize on
result

Non-blocked actor

6

C. Varela 31

Exercises

1. How would you implement the join continuation
linguistic abstraction in terms of message passing?

2. Download and execute the CellTester.salsa
example.

3. *Write a solution to the Flavius Josephus problem in
SALSA. A description of the problem is at VRH Section
7.8.3 (page 558).

