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(Goals

* Provide a broad (and incomplete) survey of vision
research applying deep networks at Google

* Avoid details but describing overview of problem.

* Almost all of the work | did not do. My amazing
colleagues did It.






The computer vision competition: IMAGENET

Large scale academic competition focused on predicting 1000
object classes (~1.2M images).

electric ray, crampfish, numbfish, torpedo
sawfish

smalltooth sawfish, Pristis pectinatus
guitarfish

stingray

roughtail stingray, Dasyatis centroura

Imagenet: A large-scale hierarchical image database
J Deng et al (2009)



History of technigues in ImageNet Challenge

ImageNet 2010

Locality constrained linear coding + SVM NEC & UIUC

Fisher kernel + SVM Xerox Research Center Europe

SIFT features + LI2C Nanyang Technological Institute

SIFT features + k-Nearest Neighbors Laboratoire d'Informatique de Grenoble
Color features + canonical correlation analysis National Institute of Informatics, Tokyo
ImageNet 2011

Compressed Fisher kernel + SVM Xerox Research Center Europe

SIFT bag-of-words + VQ + SVM University of Amsterdam & University of
SIFT + 7 ISI Lab, Tokyo University

ImageNet 2012

Deep convolutional neural network University of Toronto
Discriminatively trained DPMs University of Oxford
Fisher-based SIFT features + SVM ISI Lab, Tokyo University

Google



Convolutional neural networks, revisited
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ImageNet Classification with Deep Convolutional Neural Networks
A Krizhevsky | Sutskever, G Hinton (2012)

 Repeated motifs of convolution, local response
normalization and max pooling across ~13 layers.

 Most elements of network architecture employed as
early as the late 1980's.

Backpropagation applied to handwritten zip code recognition
Y LeCun et al (1990)



What happened?
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ImageNet Classification with Deep Convolutional Neural Networks
A Krizhevsky | Sutskever, G Hinton (2012)

* Winning network contained c0OM parameters.

e Achieving scale in compute and data is critical.

e |arge academic data sets

 SIMD hardware (e.g. GPU’s, SSE instruction sets)



Applications at Google (and beyond)

* Image Search

* Image Labeling

* Image Segmentation
* Object Detection

* Object Tracking

e Photo OCR

Video Annotation

Video
Recommendation

Fine-grained
Classification

Robot Perception

Microscopy Analysis
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One method to achieve scale is parallelization

Model

Training Data
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One method to achieve scale is parallelization
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Training Data



One method to achieve scale is parallelization

J Dean et al (2012)
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Large scale distributed deep networks
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One method to achieve scale is parallelization

Parameter Server

\\

Large scale distributed deep networks

A

J Dean et al (2012)
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One method to achieve scale is parallelization

Parameter Server P =p +Ap
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Large scale distributed deep networks

J Dean et al (2012)
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Steady advances in vision architectures.

e Successive improvements to CNN architectures provide steady
Improvement in image recognition.

2012 Krizhevsky, Suskever and Hinton * 16.4%
2013 Zeiler and Fergus * 11.5%
2014 Szegedyetal * 6.6%
2015 He et al 4.9%
2015 loffe and Szegedy 4.8%

* winner of ImageNet Challenge



Inception is both better and more etfticient.

params FLOPs

Krizhevsky, Suskever and Hinton (2012) oOM 2B

Zeiler and Fergus (2013) /5M 2B+

Szegedy et al (2014) 1 3 5M 1.5B
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T— “inception” module






Natural images are locally heavily correlated.

features

Natural Image Statistics and Neural Representation
E Simoncelli and B Olshausen (2001)



Filter activations reflect image correlations

convolutional
filter




Image correlations reflected in filter bank correlations

# of filters —

filter bank




Correlations in natural images are multi-scale

features




Correlations in natural images are multi-scale

. 1x1 filters
# of filters

3x3 filters

5x5 filters

Going Deeper with Convolutions
C Szegedy et al (2014)



output

Convolution

A

Input

Going Deeper with Convolutions
C Szegedy et al (2014)



Replace convolution with multi-scale convolution

output

Convolution 1x1 Convolution 3x3 Convolution 5x5

Input

Going Deeper with Convolutions
C Szegedy et al (2014)



Multi-scale representation is not sufticient.

Going Deeper with Convolutions
C Szegedy et al (2014)



Multi-scale representation is not sufticient.

Going Deeper with Convolutions
C Szegedy et al (2014)



"Network-in-network”™ constrains representation.

* “"Network-in-network” architecture demonstrated impressive
performance on ImageNet Challenge.

T
x
N
|
T

* Restrict the representational power and may reduce the number
of matrix multiplications.

Network in network.
M Lin, Q Chen, and S Yan (2013)
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Input

Going Deeper with Convolutions
C Szegedy et al (2014)



-mploy multi-scale and dimensional reduction.
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Going Deeper with Convolutions
C Szegedy et al (2014)



Summary of Inception architecture.

e Multl-scale architecture to mirror correlation
structure in images. |

 Dimensional reduction to constrain representation
along each spatial scale.
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Going Deeper with Convolutions
C Szegedy et al (2014)
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Covariate shifts are problematic in machine learning

* [raditional machine learning

must contend with covariate Covariate Shift -W.N.Nq \
shift between data sets. |

e Covariate shifts must be
mitigates through domain
adaptation.

@J@@

blog.bigml.com


http://blog.bigml.com

Covariate shifts are problematic in machine learning

time = 1

time = N

* [raditional machine learning
must contend with covariate 1
shift between data sets.

layer i
 Covariate shifts must be 1
mitigates through domain o
adaptation.

time = N



Covariate shifts occur between network layers.

logistic unit activation

during MNIST training
e Covariate shifts occur

across layers in a deep 2| | 85%
network.
0l 50%
* Performing domain - [ 15%
adaptation or whitening is
impractical in an online time
setting.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
S loffe and C Szegedy (2015)



Previous method for addressing covariate shifts

time = 1
time = N
e whitening input data
* building invariances 1
through normalization Ll
* regularizing the network 1
(e.g. dropout, maxout) ime =1
time = N

| Goodfellow et al (2013)
N Srivastava et al. (2014)



Mitigate covariate shift via batch normalization.

1B %Z T; // mini-batch mean

* Normalize the activations . 1¢. 0 misschrine
in each layer withina mini- =, P
batch. - Vohte |

Yi « 7Zi + B = BN, g(z;) // scale and shift

e [ earn the mean and

| 2 2| e | 85%
variance (7, 8) of each 0 : "
layer as parameters S

_2 - %

(b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
S loffe and C Szegedy (2015)



Batch normalization improves Inception network.

 Multi-layer CNN'’s train
faster with fewer data

087

samples (15x). § e A
° // """
* Employ faster learning g
rates and less network =
regularizations. I

number of mini-batches

* Achieves state of the art
results on ImageNet.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
S loffe and C Szegedy (2015)
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Machine learning systems can easily be tooled.

 Employ second-order
method to search for
minimal distortion to create
a false classification.

* (Generate slight deviations in
images that eftect almost
any image classifier system.

original distortion adversarial

Intriguing Properties of Neural Networks
C Szegedy et al (2013)



Compute adversaries cheaply with gradient.

\7‘:\’.' »
+.007 x e

DN ¢

x sign(V,J(0,z, 1)) T

esign(V,J(0,z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

* (Generate adversarial examples by back-
propagating the loss from the classitier.

* Requires two passes of the network for every
image example.

Explaining and Harnessing Adversarial Examples
| Goodfellow et al (2015)



Harnessing adversaries for improves network training.

e Consider adversarial
examples as another form of
data augmentation.

Clean examples . Adversarial examples

* Achieved state of the art
results on MNIST digit
classification (error rate =
0.78%)

Validation set error

{(

Validation set error (adversarial

=== Standard training
=== Adversarial training

300

* Model becomes resistant to
adversarial examples (error
rate 89.4% —> 17.9%).

Training time (epochs)

S 3

Training time (epochs

Explaining and Harnessing Adversarial Examples
| Goodfellow et al (2015)
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Classification versus embedding.

e [raditional image models make predictions within a
fixed, discrete dictionary.

visual P “shark”

* Why restrict ourselves to classification? Embeddings
are far more rich and generic.

—

visual ~ |=» T

T_ learned

transformation



Domain transfer in visual domain.

 Embeddings from visual models can be applied “out
of the box” to other visual problems.

core .
visual et -
model

T_ learned

transformation

* Embedding are just vectors. Why restrict ourselves
to one domain®

DECAF: A deep convolutional activation feature for generic visual recognition
T Darrell et al (2013)

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
P Sermanet et al (2014)



Synthesizing vision and language models.

* [rain embeddings to predict into language model

space.
\
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core . O
visual e |=P o
model ) O
x< tuna
| learned stingray
transformation

Distributed Representations of Words and Phrases and their Compositionality
T Mikolov et al (2013)

Zero-Shot Learning Through Cross-Modal Transfer
R Socher et al (2013)

DeVIiSE: A Deep Visual-Semantic Embedding Model
A Frome et al (2013)
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Synthesizing vision and language models.
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DeVIiSE: A Deep Visual-Semantic Embedding Model
A Frome et al (2013)



/Zero shot learning on unseen image labels.

“‘DeViSE”, A Frome et al (2013) A Krizhevsky et al (2012)

eyepiece, ocular typewriter keyboard
Polaroid tape player
compound lens reflex camera
CD player
rangefinder, range finder space bar
oboe, hautboy, hautbois reel
bassoon punching bag, punch bag,
1. whistle
hook and eye bassoon
hand letter opener, paper knife,
barbet patas, hussar monkey,
patas, hussar monkey, ... proboscis monkey, Nasalis
macaque
titmouse, tit titi, titi monkey

bowerbird, catbird guenon, guenon monkey



Synthesizing vision and language models.

 [Language is not just a bag of words but a sequence
of words expressing an idea.

wing chair T Obama
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Synthesizing vision and language models.

 [Language is not just a bag of words but a sequence

of words expressing an idea.

core
visual
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wing chair
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A shark swims in the ocean.



Synthesizing vision and language models.

 [Language is not just a bag of words but a sequence
of words expressing an idea.

core

visual (— |=»7T A shark swims in the ocean.
model




Synthesizing vision and language models.

 [Language is not just a bag of words but a sequence
of words expressing an idea.
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Synthesizing vision and language models.

 [Language is not just a bag of words but a sequence
of words expressing an idea.

The shark ocean
log pi(S1) log pz(S2) log pr(Sn)
) | t
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Synthesizing vision and language models.

A person riding a Two dogs play in the grass. A skateboarder does a trick
motorcycle on a dirt road. Adogle jumplng to catch a

A group of young pooplo Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
j a ¢ _fighting over the puck blowing bubbles food and drinks.
. dlyeess,

A herd of elephants walking
across a d rass field. A C'O“O:‘;::’::;f laying A red motorcycle parked on the A yellow school bus parked

side of the road. “T==——in a parking lot.

Show and Tell: A Neural Image Caption Generator
O Vinyals et al (2014)



Exploiting the reqgularities in the language model

Nearest images

Nearest images

-dog + cat =

-cat + dog =

'
‘g_m.,w.m,,-.:; ’g A
il

(a) Simple cases (b) Colors

Nearest images Nearest images

- day + night = night
- flying + sailing = sailing
- bow| + box = box
.—i
o)
- box + bowl = bowl|
|
(c) Image structure (d) Sanity check

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
R Kiros, R Salakhutdinov, R Zemel (2014)



Synthesizing vision and language models.

 [Language is not just a bag of words but a sequence
of words expressing an idea.

4 ™
core i
isual (|| et
model guage mode
Y,

Deep Visual-Semantic Alignments for Generating Image Descriptions

A Karpathy and L Fei Fei (2014)

Show and Tell: A Neural Image Caption Generator

O Vinyals et al (2014)

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
R Kiros, R Salakhutdinov, R Zemel (2014)

Explain Images with Multimodal Recurrent Neural Networks

J Mao, W Xu, Y Yang, Jd Wang, A Yuille (2014)

Long-term Recurrent Convolutional Networks for Visual Recognition and Description
J Donohue et al (2014)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

K Xu et al (2015)



The unsung hero Is the data.

Microsoft COCO: Common Objects in Context

Tsung-YiLin Michael Maire Serge Belongie Lubomir Bourdev Ross Girshick
James Hays Pietro Perona Deva Ramanan C. Lawrence Zitnick Piotr Dollar

a giraffe has it's head up to a small tree.
a giraffe in a pen standing under a tree.
giraffe standing next to a wooden tree-like structure.
a tall giraffe standing next to a tree

a giraffe in an enclosure standing next to a tree.
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L STM’s and video

e Consider this a placeholder. Please search for the paper online.

Beyond Short Snippets: Deep Networks for Video Classification
J Ng, M Hausknecht, S Vijayanarasimhan, R Monga, O Vinyals, G Toderici



Nalvely porting image recognition to video.

* Train a model on ImageNet but score individual video frames from a
YouTube video.

171.96 sec 172.00 sec 172.03 sec
https://www.youtube.com/watch?v=_AtP7au_Q9w&i=171

Susanna Ricco and Rahul Sukthankar
(unpublished)



Video presents an amazing opportunity.

* Temporal contiguity and motion signals offers an enormous clue for
what images should be labeled the same.

Susanna Ricco and Rahul Sukthankar
(unpublished)
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Synthesizing images is a holy grail.

“painting of
woman”

|

* de-noising, super-resolution, srediction
de-mosaicing, In-painting, etc.

* |Image restoration

 Compression and hashing
method

 Debugging and visualizing the
state of a CNN network.




Synthesizing images is a challenging domain

* Images reside in a high dimensional space.

* Higher order correlations exist between individual
pixels or groups of pixels.

“The distribution of natural images is complicated. Perhaps it is
something like beer foam, which is mostly empty but contains a thin
mesh-work of fluid which fills the space and occupies almost no volume.

I'he fluid region represents those images which are natural in character.”

[Ruderman 1996

slide from Siwei Lyu



Consider synthesizing an image seqguentially.

 Network must make a series of consistent predictions.

https://www.youtube.com/watch?v=/t-7MI9eKEo

DRAW: A Recurrent Neural Network For Image Generation
K Gregor, | Danihelka, A Graves, D Wierstra (2015)



Network employs attention and recurrence.

e Variational auto-encoder + LSTM network.

e | earned selective attention mechanism for drawing
and reading an image.
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DRAW: A Recurrent Neural Network For Image Generation
K Gregor, | Danihelka, A Graves, D Wierstra (2015)




Synthesized street view house numbers

DRAW: A Recurrent Neural Network For Image Generation
K Gregor, | Danihelka, A Graves, D Wierstra (2015)



Synthesized CIFAR-10 image patches
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DRAW: A Recurrent Neural Network For Image Generation
K Gregor, | Danihelka, A Graves, D Wierstra (2015)




lt's not just about recognizing Images.

e Synthesizing images is an open domain to apply
convolutional architectures.

 Combining images with other modalities.
 We haven't even discussed depth.

* How might we curate public data sets to enable
this research?
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Vision and Langu
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Themes

* Vision as a plug-in.
* Transfer learning across modalities.

* Jraining methods accelerate development of
Nnetworks






