
Directions in 
Convolutional Neural 
Networks at Google

Jon Shlens 
Google Research 

2 March 2015



• Provide a broad (and incomplete) survey of vision 
research applying deep networks at Google 

• Avoid details but describing overview of problem. 

• Almost all of the work I did not do. My amazing 
colleagues did it.

Goals



. . .



Large scale academic competition focused on predicting 1000 
object classes (~1.2M images).

...  
electric ray, crampfish, numbfish, torpedo 
sawfish 
smalltooth sawfish, Pristis pectinatus 
guitarfish 
stingray!
roughtail stingray, Dasyatis centroura 
...

                     The computer vision competition:

Imagenet: A large-scale hierarchical image database 
J Deng et al (2009)

. . .



History of techniques in ImageNet Challenge

Locality constrained linear coding + SVM NEC & UIUC
Fisher kernel + SVM Xerox Research Center Europe
SIFT features + LI2C Nanyang Technological Institute
SIFT features + k-Nearest Neighbors Laboratoire d'Informatique de Grenoble
Color features + canonical correlation analysis National Institute of Informatics, Tokyo

Compressed Fisher kernel + SVM Xerox Research Center Europe
SIFT bag-of-words + VQ + SVM University of Amsterdam & University of 

TrentoSIFT + ? ISI Lab, Tokyo University

Deep convolutional neural network University of Toronto
Discriminatively trained DPMs University of Oxford
Fisher-based SIFT features + SVM ISI Lab, Tokyo University

ImageNet 2010

ImageNet 2011

ImageNet 2012



• Repeated motifs of convolution, local response 
normalization and max pooling across ~13 layers.  

• Most elements of network architecture employed as 
early as the late 1980’s.

Convolutional neural networks, revisited

ImageNet Classification with Deep Convolutional Neural Networks  
A Krizhevsky I Sutskever, G Hinton (2012) 

Backpropagation applied to handwritten zip code recognition 
Y LeCun et al (1990)



• Winning network contained 60M parameters. 

• Achieving scale in compute and data is critical. 

• large academic data sets 

• SIMD hardware (e.g. GPU’s, SSE instruction sets)

What happened?

ImageNet Classification with Deep Convolutional Neural Networks  
A Krizhevsky I Sutskever, G Hinton (2012) 



• Image Search 

• Image Labeling 

• Image Segmentation 

• Object Detection 

• Object Tracking 

• Photo OCR 

• Video Annotation 

• Video 
Recommendation 

• Fine-grained 
Classification 

• Robot Perception 

• Microscopy Analysis

Applications at Google (and beyond)



• Architectures for building vision models  

• New methods for optimization 

• Combining vision with language 

• Beyond image recognition
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Large scale distributed deep networks 
J Dean et al (2012)
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• Successive improvements to CNN architectures provide steady 
improvement in image recognition.

Steady advances in vision architectures.

top 5 error

2012 Krizhevsky, Suskever and Hinton * 16.4%

2013 Zeiler and Fergus * 11.5%

2014 Szegedy et al * 6.6%

2015 He et al 4.9%

2015 Ioffe and Szegedy 4.8%
 * winner of ImageNet Challenge



Inception is both better and more efficient.

params

Krizhevsky, Suskever and Hinton (2012) 60M 2B

Szegedy et al (2014) 5M 1.5B

Zeiler and Fergus (2013) 75M 2B+

FLOPs
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Natural images are locally heavily correlated.

image

features

Natural Image Statistics and Neural Representation 
E Simoncelli and B Olshausen (2001)



Filter activations reflect image correlations

convolutional 
filter

image



Image correlations reflected in filter bank correlations

filter bank

image

# of filters



Correlations in natural images are multi-scale

image

features



image

1x1 filters

3x3 filters

5x5 filters

# of filters

Going Deeper with Convolutions 
C Szegedy et al (2014)

Correlations in natural images are multi-scale



Convolution

output

input
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Replace convolution with multi-scale convolution

Max PoolConvolution 3x3Convolution 1x1 Convolution 5x5

output

input

Going Deeper with Convolutions 
C Szegedy et al (2014)



Multi-scale representation is not sufficient.

Going Deeper with Convolutions 
C Szegedy et al (2014)

Max PoolConvolution 3x3Convolution 1x1 Convolution 5x5

output

input



Multi-scale representation is not sufficient.

Going Deeper with Convolutions 
C Szegedy et al (2014)

Max PoolConvolution 3x3Convolution 1x1 Convolution 5x5

output

input



“Network-in-network” constrains representation. 

• “Network-in-network” architecture demonstrated impressive 
performance on ImageNet Challenge.

• Restrict the representational power and may reduce the number 
of matrix multiplications.

Network in network. 
M Lin, Q Chen, and S Yan (2013)

Convolution 5x5

Convolution 1x1

Convolution 5x5



Max PoolConvolution 3x3Convolution 1x1 Convolution 5x5

output

input
Going Deeper with Convolutions 

C Szegedy et al (2014)



Employ multi-scale and dimensional reduction.

Going Deeper with Convolutions 
C Szegedy et al (2014)

Convolution 3x3Convolution 1x1 Convolution 5x5 Convolution 1x1

Convolution 1x1 Convolution 1x1 Max Pool

input

output



• Multi-scale architecture to mirror correlation 
structure in images. 

• Dimensional reduction to constrain representation 
along each spatial scale.

\

Summary of Inception architecture.

Going Deeper with Convolutions 
C Szegedy et al (2014)



• Architectures for building vision models  

• New methods for optimization 

• Combining vision with language 

• Beyond image recognition

Outline

batch normalization 
adversarial training

DeViSE 
Show-And-Tell

DRAW 
video

Dist-Belief 
Inception



• Traditional machine learning 
must contend with covariate 
shift between data sets. 

• Covariate shifts must be 
mitigates through domain 
adaptation.

Covariate shifts are problematic in machine learning

blog.bigml.com

http://blog.bigml.com
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• Covariate shifts occur 
across layers in a deep 
network. 

• Performing domain 
adaptation or whitening is 
impractical in an online 
setting.

Covariate shifts occur between network layers.

logistic unit activation 
during MNIST training

time

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 
S Ioffe and C Szegedy (2015)

50%

85%

15%



• whitening input data 

• building invariances 
through normalization 

• regularizing the network 
(e.g. dropout, maxout)

I Goodfellow et al (2013) 
N Srivastava et al. (2014)

layer i

time = 1

time = N

time = 1

time = N

Previous method for addressing covariate shifts



• Normalize the activations 
in each layer within a mini-
batch. 

• Learn the mean and 
variance           of each 
layer as parameters

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 
S Ioffe and C Szegedy (2015)

Mitigate covariate shift via batch normalization.

(�,�)
50%

85%

15%



• Multi-layer CNN’s train 
faster with fewer data 
samples (15x). 

• Employ faster learning 
rates and less network 
regularizations. 

• Achieves state of the art 
results on ImageNet.

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 
S Ioffe and C Szegedy (2015)

Batch normalization improves Inception network.

number of mini-batches
pr
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• Employ second-order 
method to search for 
minimal distortion to create 
a false classification. 

• Generate slight deviations in 
images that effect almost 
any image classifier system.

Machine learning systems can easily be fooled.

Intriguing Properties of Neural Networks 
C Szegedy et al (2013) 

original distortion adversarial



• Generate adversarial examples by back-
propagating the loss from the classifier. 

• Requires two passes of the network for every 
image example.

Compute adversaries cheaply with gradient.

Explaining and Harnessing Adversarial Examples 
I Goodfellow et al (2015)



• Consider adversarial 
examples as another form of 
data augmentation. 

• Achieved state of the art 
results on MNIST digit 
classification (error rate = 
0.78%) 

• Model becomes resistant to 
adversarial examples (error 
rate 89.4% —> 17.9%). *RRJOH�3URSULHWDU\

7UDLQLQJ�RQ�DGYHUVDULDO�H[DPSOHV

Harnessing adversaries for improves network training.

Explaining and Harnessing Adversarial Examples 
I Goodfellow et al (2015)
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Classification versus embedding.

core!
visual!
model

“shark”

• Why restrict ourselves to classification? Embeddings 
are far more rich and generic.

• Traditional image models make predictions within a 
fixed, discrete dictionary.

core!
visual!
model

~x

learned!
transformation



Domain transfer in visual domain.

• Embeddings from visual models can be applied “out 
of the box” to other visual problems.

core!
visual!
model

~x

learned!
transformation

DECAF: A deep convolutional activation feature for generic visual recognition 
T Darrell et al (2013)

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 
P Sermanet et al (2014)

• Embedding are just vectors. Why restrict ourselves 
to one domain? 



Synthesizing vision and language models.

• Train embeddings to predict into language model 
space.

core!
visual!
model

~x

learned!
transformation

DeViSE: A Deep Visual-Semantic Embedding Model 
A Frome et al (2013)

stingray

tuna

Obamawing chair

Zero-Shot Learning Through Cross-Modal Transfer 
R Socher et al (2013)

Distributed Representations of Words and Phrases and their Compositionality 
T Mikolov et al (2013)
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Zero shot learning on unseen image labels.

“DeViSE”, A Frome et al (2013) A Krizhevsky et al (2012)



Synthesizing vision and language models.

• Language is not just a bag of words but a sequence 
of words expressing an idea.
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Synthesizing vision and language models.

• Language is not just a bag of words but a sequence 
of words expressing an idea.

core!
visual!
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The blue



Synthesizing vision and language models.

Show and Tell: A Neural Image Caption Generator 
O Vinyals et al (2014)



Exploiting the regularities in the language model

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models  
R Kiros, R Salakhutdinov, R Zemel (2014)



Synthesizing vision and language models.

• Language is not just a bag of words but a sequence 
of words expressing an idea.

core!
visual!
model

recurrent 
language model

Deep Visual-Semantic Alignments for Generating Image Descriptions 
A Karpathy and L Fei Fei (2014) 

Show and Tell: A Neural Image Caption Generator 
O Vinyals et al (2014) 

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models  
R Kiros, R Salakhutdinov, R Zemel (2014) 

Explain Images with Multimodal Recurrent Neural Networks 
J Mao, W Xu, Y Yang, J Wang, A Yuille (2014) 

Long-term Recurrent Convolutional Networks for Visual Recognition and Description 
J Donohue et al (2014) 

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention 
K Xu et al (2015)



The unsung hero is the data.

a giraffe has it's head up to a small tree. 
a giraffe in a pen standing under a tree. 
giraffe standing next to a wooden tree-like structure. 
a tall giraffe standing next to a tree 
a giraffe in an enclosure standing next to a tree.
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• Consider this a placeholder. Please search for the paper online.

LSTM’s and video

Beyond Short Snippets: Deep Networks for Video Classification 
J Ng, M Hausknecht, S Vijayanarasimhan, R Monga, O Vinyals, G Toderici



• Train a model on ImageNet but score individual video frames from a 
YouTube video.

Naively porting image recognition to video.

Susanna Ricco and Rahul Sukthankar 
(unpublished)

171.96 sec 172.00 sec 172.03 sec

fox = 0.27 fox = 0.63 fox = 0.45

https://www.youtube.com/watch?v=_AtP7au_Q9w&t=171



• Temporal contiguity and motion signals offers an enormous clue for 
what images should be labeled the same.

Video presents an amazing opportunity.

Susanna Ricco and Rahul Sukthankar 
(unpublished)

tracking
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• Image restoration 

• de-noising, super-resolution, 
de-mosaicing, in-painting, etc. 

• Compression and hashing 
method  

• Debugging and visualizing the 
state of a CNN network.

Synthesizing images is a holy grail.

prediction

“painting of 
 woman”



• Images reside in a high dimensional space. 

Synthesizing images is a challenging domain

• Higher order correlations exist between individual 
pixels or groups of pixels.

slide from Siwei Lyu



• Network must make a series of consistent predictions.

Consider synthesizing an image sequentially.

DRAW: A Recurrent Neural Network For Image Generation 
K Gregor, I Danihelka, A Graves, D Wierstra (2015)

https://www.youtube.com/watch?v=Zt-7MI9eKEo



• Variational auto-encoder + LSTM network. 

• Learned selective attention mechanism for drawing 
and reading an image.

Network employs attention and recurrence.

DRAW: A Recurrent Neural Network For Image Generation 
K Gregor, I Danihelka, A Graves, D Wierstra (2015)



Synthesized street view house numbers

DRAW: A Recurrent Neural Network For Image Generation 
K Gregor, I Danihelka, A Graves, D Wierstra (2015)



Synthesized CIFAR-10 image patches

DRAW: A Recurrent Neural Network For Image Generation 
K Gregor, I Danihelka, A Graves, D Wierstra (2015)



• Synthesizing images is an open domain to apply 
convolutional architectures. 

• Combining images with other modalities. 

• We haven’t even discussed depth. 

• How might we curate public data sets to enable 
this research? 

It’s not just about recognizing images.
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DistBelief

Inception

Vision and Language

gibbon

Optimization

~x

core!
visual!
model

synthesis



• Vision as a plug-in. 

• Transfer learning across modalities. 

• Training methods accelerate development of 
networks

Themes




