
Page 1Digital Media Asset Management and Sharing

Digital Media Asset
Management and
Sharing

Introduction

Digital media is one of the fastest growing areas on the internet. According
to a market study by Informa Telecoms & Media conducted in 2012, the global
online video market only, will reach $37 billion in 2017¹. Other common media
types include images, music, and digital documents. One driving force for this
phenomena growth is the popularity of feature rich mobile devices2, equipped
with higher resolution cameras, bigger screens, and faster data connections.
This has led to a massive increase in media content production and con-
sumption. Another driving force is the trend among many social networks to
incorporate media sharing as a core feature in their systems². Meanwhile,
numerous startup companies are trying to build their own niche areas in
this market.

This paper will use an example scenario to provide a technical deep-dive on
how to use Google Cloud Platform to build a digital media asset management
and sharing system.

Example Scenario - Photofeed
Photofeed, a fictitious start-up company, is interested in building a photo sharing application that allows
users to upload and share photos with each other. This application also includes a social aspect and
allows people to post comments about photos. Photofeed’s product team believes that in order for them
to be competitive in this space, users must be able to upload, view, and edit photos quickly, securely and
with great user experiences. Additionally, they would like this application to easily scale as the number
of users and photos increases. In order for these goals to be achieved, the system must also have an
efficient pipeline for photo processing capabilities, such as resizing, cropping, and thumbnail generation.
As the business grows, the system must allow the development team to rapidly introduce new features.

1.
OTT Video Revenue
Forecasts,
2011-2017,
by Informa Telecoms
& Media,
November 2012.

2.
Key trends and
Takeaways in Digital
Media Market,
by Abhay Paliwal,
March 2012.

https://commerce.informatm.com/reports/ott-video-revenue-forecasts.html
https://commerce.informatm.com/reports/ott-video-revenue-forecasts.html
http://www.kajashi.com/?q=content/key-trends-and-takeaways-digital-media-market
http://www.kajashi.com/?q=content/key-trends-and-takeaways-digital-media-market
http://www.kajashi.com/?q=content/key-trends-and-takeaways-digital-media-market

Page 2Digital Media Asset Management and Sharing

Challenges In Building Scalable Digital Media Systems
Building a scalable digital media system from scratch that supports a large number of users and stores
huge amount of media content is not a trivial task. The following list provides an overview of the common
technical challenges associated with building scalable digital media systems:

Ingestion
• 	 The system must allow end users to quickly and securely upload media objects while still providing
	 a compelling user experience.

• 	 Metadata of the media objects needs to be ingested and synchronized if media objects are modified
	 or re-ingested.

• 	 The ingestion workflow that defines the communication among all involved components needs
	 to be managed.

Storage
• 	 Virtually unlimited storage for the media content and the storage must be reliable, globally accessible,
	 and cost effective³.

Processing
• 	 Scalable computing resources are required for media processing, such as document format
	 conversion, image processing, and media transcoding.

• 	 The media processing workflow needs to be managed.

Serving
• 	 The system must allow end users to quickly and securely download media content while still providing
	 a good user experience.

• 	 The serving workflow needs to be managed.

Media Applications
• 	 The system supports the integration of media metadata with application specific domain data.
	 It also allows for the development of scalable media applications, such as asset management, and
	 content sharing, on top of this data.

End User Experiences
• 	 The system provides compelling user experiences for multiple clients such as browsers, mobile
	 devices, and desktop applications.

The solution presented in this paper demonstrates how the Google Cloud Platform is able to address
each of the challenges described above. The proposed system architecture is generally applicable to
any media type. The solution serves as a reference for software architects and software developers for
building their own digital media systems on the Google Cloud Platform.

Solution Overview
Google App Engine, Google Cloud Storage, and Google Compute Engine are the three features of the
Google Cloud Platform. As shown in Figure 1, all of these products work together to form the basis of this
digital media asset management and sharing solution.

Ingestion
Both Google Cloud Storage and Google App Engine play a critical role in media content ingestion. During

3.
Garnter: Consumers
Will Drive Huge Growth
for Cloud Storage,
by Colleen Miller,
July 2012.

http://www.datacenterknowledge.com/archives/2012/07/02/gartner-consumers-will-store-more-in-the-cloud/
http://www.datacenterknowledge.com/archives/2012/07/02/gartner-consumers-will-store-more-in-the-cloud/
http://www.datacenterknowledge.com/archives/2012/07/02/gartner-consumers-will-store-more-in-the-cloud/

Page 3Digital Media Asset Management and Sharing

uploading, media content flows directly from the client, through the global Google network into the
Google Cloud Storage. With its global reach, massive bandwidth, and integration with Google Cloud
Storage, the Google network allows content to be ingested into the storage with low latency from almost
anywhere. Google Cloud Storage supports two common uploading mechanisms: HTTP POST using
signed URL and RESTful APIs.

Google App Engine is designed to power scalable web applications that handle millions of users. Front
end application for content ingestion can be developed on App Engine. The application is responsible for
authentication, allowing only authorized users to upload content. Meanwhile, the application manages
the ingestion workflow and coordinates with the clients to upload content to Google Cloud Storage.
For browser clients, the application also implements the web user interface for content uploading.
For mobile or desktop clients, the user interface resides in the client application while the App Engine
application exposes its functionality as RESTful APIs using Google Cloud Endpoints. The client side
applications make calls to the APIs for authentication and for gaining access to Google Cloud Storage.

Another important role of the App Engine application is ingesting metadata and keeping it in sync with
the media content. The metadata is stored along with the application data in the App Engine Datastore
or in the Google Cloud SQL database. The decision about which storage option to choose from depends
on the characteristics of your application. There are a few ways to synchronize metadata ingestion with
media content ingestion, for example, (1) by using Blobstore upload callback URL, (2) by using the Cloud
Storage Object Change Notification, or (3) simply by exposing appropriate APIs from the App Engine
application using Google Cloud Endpoints.

Storage
Google Cloud Storage provides virtually unlimited storage for media content at low cost. The media
data is replicated across data centers for redundancy. By leveraging the Google network, the content in
Google Cloud Storage is globally accessible from Google App Engine, from Google Compute Engine, and
from public internet outside the Google Cloud Platform.

Google Cloud Storage also provides a Durable Reduced Availability (DRA) storage option at an even lower
cost. The tradeoff is lower availability compared to what standard Google Cloud Storage provides. The
DRA option is useful for storing assets that are not always immediately required or can be regenerated.
One example might be the output content from the media processing pipeline.

Figure 1.
Key components of
proposed Digital Media
Asset Management
and Sharing Solution

https://developers.google.com/storage/docs/accesscontrol
https://developers.google.com/storage/docs/developer-guide
https://developers.google.com/appengine/docs/java/endpoints/overview
https://developers.google.com/appengine/docs/java/blobstore/overview
http://www.youtube.com/watch?v=NU_wNR_UUn4
https://developers.google.com/storage/docs/durable-reduced-availability

Page 4Digital Media Asset Management and Sharing

Processing
Google Compute Engine provides superior performance for batch computation. Media processing,
such as document format conversion, transcoding, and image manipulation, is a perfect candidate
for Compute Engine. In this case, Google Cloud Storage acts as both the input source and the output
destination of the media processing pipeline. Since Google Cloud Storage is well integrated with Google
Compute Engine, such as automatic authentication via service account, it can be easily accessed from
Compute Engine.

The media processing workflow is also managed by the App Engine application mentioned previously.
After media content is uploaded into storage, the App Engine application creates and inserts media
processing tasks into TaskQueue. The enqueued tasks are pulled out by the media processing software
running on Compute Engine using RESTful APIs and executed accordingly. The App Engine application
can also maintain the processing status of the media content and the load information of virtual
machines in order to autoscale the Compute Engine instances.

Serving
Google Cloud Storage leverages the Google network to allow media content to be served across the
internet with low-latency and high-availability. The Google network automatically provides edge caching
capability for public content, which can significantly lower the serving costs.

As is the case with ingestion, the Google App Engine application handles user authentication and
authorization, and coordinates access to Google Cloud Storage from the clients. For browser clients, the
App Engine application powers the web user interface for media content downloading. For mobile or
desktop clients, the client-side applications implement the user interface and communicate with the App
Engine application through APIs exposed using Google Cloud Endpoints.

Media Applications
Various media applications can be built with the availability of metadata and application data. Depending
on the application domains, some common examples of media applications are asset management,
content sharing, and social gaming. Google App Engine provides a scalable platform to build media
applications. App Engine applications are easy to build, easy to maintain, and easy to scale as your traffic
and data storage needs grow. This allows developers to focus on building their core business and bring
new features to market quickly.

User Experiences
In this solution, the App Engine application plays a critical role in defining user experiences for the
system. As mentioned earlier, for browser clients, the App Engine application implements the web user
interface for ingestion, serving, and media applications. For mobile and desktop clients, the App Engine
application exposes its functionality as APIs using Google Cloud Endpoints. The native user interface at
the client side is powered by these APIs.

Implementation Details
The next section walks through the implementation details of the proposed digital media solution. It
begins with a list of key components of the system and ends with a detailed presentation of the three
important workflows of the system: media ingestion flow, media processing flow, and media serving flow.

https://developers.google.com/appengine/docs/java/taskqueue/
http://www.youtube.com/watch?v=NU_wNR_UUn4

Page 5Digital Media Asset Management and Sharing

System Components

Frontend and Media Applications Running on Google App Engine
• 	 Authenticates and authorizes users and coordinate access to Google Cloud Storage.

• 	 Implements the user interface for browser clients, and/or exposes APIs using Google Cloud
	 Endpoints to mobile and desktop clients.

• 	 Plays the role of system controller and is responsible for managing workflows for media
	 ingestion, serving, and processing.

• 	 Scalable media applications are powered by App Engine, with built-in load-balancing and
	 auto-scaling.

Google Datastore
• 	 Stores media content metadata and application data model.

Google Cloud SQL
• 	 Stores media content metadata and application data model, as an alternative to Google Datastore.

App Engine Task Queue
• 	 Integrates App Engine application with media processing software running on Google
	 Compute Engine.

Image Services
• 	 Provides dynamic image processing services for App Engine applications, such as thumbnail
	 generation, resizing, and cropping.

Google Cloud Storage
• 	 Provides scalable and highly available storage for media content. The storage can be accessed by
	 using RESTful APIs and/or signed URLs.

• 	 Leverages Google network for the following advantages: (1) to allow for fast and secure content
	 ingestion into and serving from the storage and (2) for edge caching capability for public content
	 which lowers the serving costs.

Media Processing Server
• 	 Executes media processing on Google Compute Engine.

Media Ingestion Workflow and Media Processing Workflow
The media ingestion workflow and the media processing workflow are often tied together. Both
workflows are shown in the component communication diagram in Fig 2.

1.	 The client accesses the Google App Engine application to start an upload. Depending on the type
	 of clients, this request can be: (1) a simple HTTP request from the browser or (2) a call to an endpoint
	 implemented by the App Engine application from a mobile or desktop application, such as a batch
	 uploader. The App Engine application is responsible for authenticating the client/user and coordinate
	 the Cloud Storage access.

2.	 If the client is a web browser, the application can generate a signed upload URL to the Cloud Storage
	 embedded in an HTTP POST form. Otherwise, if the client is a mobile or desktop application, the web
	 application returns Cloud Storage access information as an endpoint call response.

3.	 Regardless of the client, media files are uploaded to Google Cloud Storage directly by using either
	 the web form or the Cloud Storage RESTful APIs.

http://www.youtube.com/watch?v=NU_wNR_UUn4
http://www.youtube.com/watch?v=NU_wNR_UUn4

Page 6Digital Media Asset Management and Sharing

4.	 Google Cloud Storage returns a response back to the client. Depending on the uploading mechanism
	 used in Step 3, the response can either be an HTTP response for form-based upload or a RESTful API
	 response.

5.	 If the upload succeeds, the media metadata needs to be pushed into the App Engine application.
	 There are a few different ways to streamline the process:

	 • 	 For browser clients using an upload form, a callback URL can be specified inside the upload URL.
		 Based on the response, the browser can be redirected to this URL with limited metadata
		 information 	embedded in the callback URL.

	 • 	 Google Cloud Storage can notify the App Engine application upon upload success using a Cloud
		 Storage feature called Object Change Notification [1]. The notification contains metadata of the
		 media object being uploaded.

	 • 	 Based on the content upload response from the Cloud Storage, clients can also call the App Engine
		 application Google Cloud Endpoints directly to upload any metadata.

6.	 App Engine application stores the metadata in a persistent store. There are two options for the data
	 stores depending on the application setup: (1) App Engine NoSQL Datastore, or (2) Google Cloud SQL.

7.	 If media processing is required, the App Engine application can create a task on the task queue in

Figure 2. Media Ingestion and Media Processing Workflows

[1]
The Object Change
Notification is currently
still a feature under
the Trusted Tester
program.

https://developers.google.com/storage/docs/reference-methods#postobject
https://developers.google.com/storage/docs/reference-methods#putobject
https://developers.google.com/storage/docs/reference-methods#putobject

Page 7Digital Media Asset Management and Sharing

Figure 3.
Media Serving and
Download Flow

	 order to start the media processing workflow. It is also possible for the App Engine application to spin
	 up or bring down virtual machines based on the workload on demand.

8.	 The media processing software, running on Google Compute Engine, pulls the task from the queue
	 and executes the required procedures.

9.	 The media processing software reads the media content from Cloud Storage, processes it, and stores
	 the output back to Cloud Storage.

Media Serving And Download Workflow
Figure 3 describes the media serving and download workflow and is accompanied by a list of detailed
descriptions.

1.	 The clients start the media download by contacting the App Engine application which authenticates
	 and authorizes the clients and also allows for browsing and searching of specific media content.
	 This can either be accomplished by presenting a web user interface for browser client or via a RESTful
	 API provided by the App Engine application using Google Cloud Endpoints.

2.	 Based on the media metadata and application data in Datastore or Cloud SQL, the App Engine
	 application can check the content sharing rules defined in the application, and look up access infor-
	 mation for the content stored in Google Cloud Storage.

3. 	For content to be securely downloaded from Google Cloud Storage, the App Engine application
	 can generate a signed URL or provide OAuth access token, along with the Cloud Storage bucket and
	 object names to the client. For browsers, the information is embedded in the web user interface.
	 For mobile and desktop clients, the information is returned in the response of the RESTful API
	 mentioned in Step 1.

4.	 The clients make a request to the Google Cloud Storage to download the content by sending
	 out HTTP or by calling the RESTful API. Google Cloud Storage can leverage the caching capability

https://developers.google.com/storage/docs/developer-guide

Page 8Digital Media Asset Management and Sharing

	 of the Google network for public content. If the content is available in the cache, content is
	 returned from the cache. Otherwise, the following occurs:

	 • 	 The content is retrieved from the Google Cloud Storage and the cache is filled.

	 •	 App Engine application allows the content retrieved from Cloud Storage to be proxied through
		 the App Engine Image Services for “on the fly” resizing and cropping images.

5.	 The media content is served to the client.

Implementation Considerations
• 	 The metadata for the media content can be stored along with the application data, either in
	 Google App Engine Datastore or in Google Cloud SQL. The choice depends on the size of the data,
	 the characteristics of the overall data model, and the developer team’s expertise. For example, you
	 may want to choose Cloud SQL if you have highly relational data. Alternatively, you may want to
	 choose Datastore if you are scaling denormalized data to a massive data set. The trade-off between
	 the two options is well discussed in the Google IO 2012 session, SQL vs NoSQL: Battle of the
	 Backends.

• 	 The provided solution uses Google Compute Engine for media processing. Compute Engine allows
	 running custom software and packages on supported operating systems. The platform is suitable for
	 general purpose media processing. Alternatively, for simple image and photo manipulations, Google
	 App Engine provides an Image Service that can perform image processing on the fly.

Sample Application
A sample photo sharing application⁴ has been developed to demonstrate how a media asset
management and sharing solution, like the one described earlier in the scenario, can be implemented.
The photo sharing application allows a user to upload and make them available for other users to view.
A user can also post comments for uploaded photos. The following list details the key elements of this
use case scenario:

• 	 A user is required to login with a valid Google account to use the application.

• 	 A user uploads a photo and a description from a local disk.

• 	 All photos uploaded into the photo sharing application are displayed in chronological order.

• 	 The user adds comments, visible to all users, to any photo.

• 	 When a photo is displayed, the image can be resized and cropped to fit into the user interface.

Detailed documentation of the requirements and design is provided here. The source code is hosted
under Github.

Conclusion
The Google Cloud Platform enables developers to quickly build a digital media asset management and
sharing solution that scales to millions of users and petabytes of data. The solution presented in this
paper combines the power of Google App Engine, Google Compute Engine, and Google Cloud Storage to
solve the technical challenges presented by digital media systems.

4.
Photo Sharing
Sample Application,
by Michael Tang,
Oct, 2012.

https://developers.google.com/appengine/docs/java/images/overview
http://www.youtube.com/watch?v=rRoy6I4gKWU
http://www.youtube.com/watch?v=rRoy6I4gKWU
https://developers.google.com/cloud/samples/
https://github.com/GoogleCloudPlatform/solutions-photo-sharing-demo-java
https://github.com/GoogleCloudPlatform/solutions-photo-sharing-demo-java
https://github.com/GoogleCloudPlatform/solutions-photo-sharing-demo-java
https://github.com/GoogleCloudPlatform/solutions-photo-sharing-demo-java

