
DIFFERENTIAL GEOMETRY NOTES

HAO (BILLY) LEE

Abstract. These are notes I took in class, taught by Professor Andre Neves. I claim no credit to the originality of the
contents of these notes. Nor do I claim that they are without errors, nor readable.

Reference: Do Carmo Riemannian Geometry

1. Review

Example 1.1. When M =
{
(x, |x|) ∈ R2 : x ∈ R

}
, we have one chart φ : R →M by φ(x) = (x, |x|). This is bad, because

there’s no tangent space at (0, 0). Therefore, we require that our collection of charts is maximal.
Really though, when we extend this to a maximal completion, it has to be compatible with φ, but the map F : M → R2

is not smooth.

Definition 1.2. F : M → N smooth manifolds is differentiable at p ∈ M , if given a chart φ of p and ψ of f(p), then
ψ−1 ◦ F ◦ φ is differentiable.

Given p ∈ M , let Dp be the set of functions f : M → R that are differentiable at p. Given α : (−ε, ε) → M with
α(0) = p and α differentiable at 0, we set α′(0) : Dp → R by

α′(0)(f) =
d

dt
(f ◦ α) (0).

Then
TpM = {α′(0) : Dp → R : α is a curve with α(0) = p and diff at 0} .

This is a finite dimensional vector space. Let φ be a chart, and αi(t) = φ(tei), then the derivative at 0 is just d
dxi

, and
claim that this forms a basis.

For F : M → N differentiable, define dFp : TpM → TF (p)N by

(dFp) (α
′(0))(f) = (f ◦ F ◦ α)′ (0).

Need to check that this is well-defined.

Example 1.3. If F : Rn → Rk with k ≤ n, and dFα is surjective for all x ∈ F−1(0), then F−1(0) is a smooth manifold.
TM = {(x, V ) : X ∈M, v ∈ TpM}.
M smooth manifold, G a group acting on M properly discontinuously, that is, F : G×M →M so that for all g ∈ G,

Fg : M →M by x 7→ F (g, x) is a diffeomorphism. Fgh = FgFh and Fe = 1. For all x ∈M , there exists U neighbourhood
of x such that Fg(U) ∩ U = ∅ for all g ∈ G, g 6= e. Set N =Mn/ {x ∼ Fg(x) : g ∈ G} is a manifold.

Recall: F : M →M is a diffeo if F bijective, differentiable, AND F−1 is diff

Theorem 1.4. Given M smooth manifold, there is M̃ simply connected manifold such that π1(M) acts properly discon-
tinuously on M̃ and Mn = M̃/π1(M).

Example 1.5. RPn = Sn/ {x ∼ −x}. CPn = Cn+1 − {0}/ {x ∼ λx : λ 6= 0}.

Definition 1.6. A vector field X is a map M → TM . Let X(M) be the set of all vector fields. Given X,Y ∈ X(M),
define the Lie bracket to act by

[X,Y ] (f) = X (Y (f))− Y (X(f)) .
1
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Satisfying
[[X,Y ] , Z] + [[Y, Z] , X] + [[Z,X] , Y ] = 0.

2. Riemannian Metric

Definition 2.1. LetM be an n-dimensional manifold. A metric g onMn is a symmetric bilinear map gp : TpM×TpM → R
for all p ∈M so that

(1) gp (aX + Y, Z) = agp (X,Z) + gp (Y, Z) all a ∈ R, X,Y, Z ∈ TpM

(2) gp (X,Y ) = gp (Y,X)

(3) gp(X,X) > 0 for all X ∈ TpM − 0

(4) If X,Y ∈ X(M), then p 7→ gp (X(p), Y (p)) is a smooth function

Theorem 2.2. Every manifold has a metric (partition of unity)

Let (U,ϕ) be a chart for Mn. Then gij(x) = gϕ(x)(
∂
∂xi

, ∂
∂xj

) for all x ∈ U and i, j = 1, ..., n. Then the matrix (gij) is
positive definite and symmetric. Additionally, gij(x) are smooth functions of x.

If we write X,Y ∈ Tϕ(x)M as X =
∑
ai

∂
∂xi

and Y =
∑
bj

∂
∂xj

then

gϕ(x)(X,Y ) =
∑
i,j

aibjgϕ

(
∂

∂xi
,
∂

∂xj

)
=
∑
i,j

aibjgij .

(V, ϕ) is another chart, gϕij from first chart, gψij from another chart. Let h = ψ−1 ◦ φ, then

Claim 2.3. ∂
∂xi

=
∑
k
∂hk
∂xi

∂
∂yk

.

Proof. For all f ∈ C∞(M),

∂

∂xi
(f) =

∂

∂xi
(f ◦ φ) = ∂

∂xi
(f ◦ ψ ◦ h) =

∑ ∂hk
∂xi

◦ ∂f ◦ ψ
∂yk

.

�

Therefore,

gφij = g

(
∂

∂xi
,
∂

∂xj

)
=
∑
k,`

∂hk
∂xi

∂h`
∂xj

gψk`.

As a matrix, (
gφij

)
= (Dh)

T (
gψ
)
(Dh) .

Given a curve γ : I →M , the
length(γ) =

ˆ
I

√
g (γ′(t), γ′(t))dt.

If R is a region of M , so that R ⊆ φ(U) of a chart,

vol(R) =

ˆ
φ−1(R)

√
det(gij)dx1...dxn.

If R is not contained in a single chart, use a partition of unity.

Example 2.4. On Rn, for X,Y ∈ TxRn = Rn, gx(X,Y ) = X · Y is called the Eucliean metric.
If Mn ⊆ Rn+k is a manifold, gp (X,Y ) = X · Y is called induced metric.
Sn =

{
x ∈ Rn+1 : |x| = 1

}
⊆ Rn+1 then gsn is the induced metric on Sn.

Bn = {x ∈ Rn : |x| < 1} then gHn (X,Y ) = 4(
1−|x|2

)2X · Y is called the hyperbolic metric

Definition 2.5. F : (M, g) → (N,h) is an isometry if

(1) F is a local diffeomorphism
(2) g(X,Y ) = h ((dF )(X), (dF )(Y )) for all X,Y ∈ X(M)
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Example 2.6. Any two curves of the same length are isometric.
{(x, y) : y > 0} is isometric to a cone (locally)
Isometries of (Rn,Euclidean Metric) are rigid motions
Isometries of (Sn, gsn) = O(n+ 1). For A ∈ O(n+ 1),

Ax ·Ax =
(
ATA

)
x · x = x · x = 1

for all x ∈ Sn. Therefore, A is an isometry of Sn.
Isometries of (Hn, gHn) are comformal maps from Bn to Bn. F : Bn → Bn is comformal if (dF )x (X) · (dF )x (Y ) =

λ(x)X · Y .

Definition 2.7. A connection ∇ : X(M)× X(M) → X(M) so that

(1) ∇fX+Y Z = f∇XZ +∇Y Z where f ∈ C∞(M)

(2) ∇X (fY + Z) = X(f)Y + f∇XY +∇XZ

A connection is symmetric if ∇XY −∇YX = [X,Y ] .

A connection is compatible with metric g if for all X,Y, Z ∈ X(M),

X (g(Y, Z)) = g (∇XY, Z) + g (Y,∇XZ) .

A connection compatible with g and symmetric is called a Levi-Civita connection.
In coordinates (U,ϕ),

∇ ∂
∂xi

∂

∂xj
=
∑
k

Γkij
∂

∂xk
,

where Γ is called the Christoffel symbols. If X =
∑
ai

∂
∂xi

and Y =
∑
j bj

∂
∂xj

, then

∇XY =
∑
i

ai∇ ∂
∂xi

∑
j

bj
∂

∂xj

 =
∑
i,j

aibj∇ ∂
∂xi

∂

∂xj
+
∑
i,j

ai
∂bj
∂xi

∂

∂xj

=
∑
i,j,k

aibjΓ
k
i,j

∂

∂xk
+
∑
j

X(bj)
∂

∂xj

=
∑
i,j,k

aibjΓ
k
ij

∂

∂xk
+
∑
k

X(bk)
∂

∂xk

Suppose γ : I → M is a curve, and Y (t) ∈ Tγ(t)M . If γ has self intersection, γ(t1) = γ(t2), Y may take different values
there. ∇γ′(t)Y is well-defined from the above expression, because the first term just need values. The second part, we just
need that the first vector field X to be differentiable along the integral curves defined by Y .

Theorem 2.8. Levi-Civita connections exist and are unique.

Proof. We have

X (〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉

Y (〈Z,X〉) = 〈∇Y Z,X〉+ 〈Z,∇YX〉

Z (〈X,Y 〉) = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉

Now add the first two, and subtract the last, to get (using symmetricity)

X (〈Y, Z〉) + Y (〈Z,X〉)− Z (〈X,Y 〉) = 2 〈∇XY, Z〉+ 〈Z, [Y,X]〉+ 〈Y, [X,Z]〉+ 〈X, [Y, Z]〉 .

Therefore,
〈∇XY, Z〉 =

1

2
(X 〈Y, Z〉+ Y 〈Z,X〉 − Z 〈X,Y 〉)− 〈Z, [Y,X]〉 − 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 ,
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which defines it. For a chart (U,ϕ), then by combining symmetry and Christofell symbols,〈
∇ ∂

∂xi

∂

∂xj
,
∂

∂xk

〉
=
∑
`

Γ`ij · gk` =
1

2

(
∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij

)
.

If gij is
(
g−1
ij

)
ij

, then

Γ`ij =
∑
k

gk`

2

(
∂

∂xi
gjk +

∂

∂xj
gik −

∂

∂xk
gij

)
.

�

Example 2.9. On (Rn,Euclidean) , DXY = (X(y1), ..., X(yn)) = (〈X,Dy1〉 , ..., 〈X,Dyn〉) where Y = (y1, ..., yn).
For Mn ⊆ Rn+k, X,Y ∈ X(M),

∇XY = (DXY )
T

induced connection (the T is the projection to the tangent space, as a subspace of Rn+k).

Definition 2.10. Let (M, g) be a Riemannian manifold. A curve γ : I → M is a geodesic if ∇γ′(t)γ
′(t) = 0 for all t ∈ I

(its acceleration is constant).

Example 2.11. On Rn with the Euclidean metric, a curve γ(t) = (γ1(t), ..., γn(t)) and so γ′(t) = (γ′1(t), ..., γ
′
n(t)). Then

∇γ′(t)γ
′(t) = Dγ′(t)γ

′(t) = (γ′′1 (t), ..., γ
′′
n(t)) = γ′′(t).

Therefore, γ ⊆ Rn is a geodesic iff γ′′(t) = 0 for all t. That is γ(t) = a+ tv for a, v ∈ Rn.

Remark 2.12. If γ is a geodesic, then g (γ′(t), γ′(t)) = |γ′(t)|2 is constant.

Proof. We have
∂

∂t
(g (γ′(t), γ′(t))) = g (∇γ′γ′, γ′) + g (γ′,∇γ′γ′) = 0.

�

Example 2.13. Let Mn ⊆ Rn+k with induced metric. γ : I →Mn is a geodesic iff

0 = ∇γ′γ′ = (Dγ′γ′)
T
= (γ′′)

T

has no tangential acceleration.

Example 2.14. If Mn = Sn ⊆ Rn+1. Let P be a 2-plane through the origin. Let γ = Sn ∩P (a circle) is then a geodesic
(if parametrized by constant speed).

Can check this via the connections. Or

(1) γ′′ ∈ P (all the other components are zero)
(2) γ′′ · γ′ = 0. Since |γ′(t)| = 1, take derivatives, to get that this must be 0.
(3) η(p)= the normal vector to Sn at p is p at all points of Sn. η (γ(t)) = γ ∈ P

Then η (γ(t)) is parallel to γ′′(t). Therefore, (γ′′)T = 0 and so it’s a geodesic.

Example 2.15. Let M2 =
{
a2x2 + b2y2 + c2z2 = 1

}
⊆ R3. If P is a coordinate plane (ie, the xy, yz or xz plane). Let

γ = P ∩M2, then γ is a geodesic.
Do a similar thing, and not that reflections are isometries (they are isometries of R3 and we are using induced metric).

Fact 2.16. Every closed surface has infinite number of geodesics.

Example 2.17. On (Hn, gHn) =
(
Bn, 4(

1−|x|2
)2 δij). Geodescis are planar circles that intersect ∂Bn = Sn orthogonally.

These have finite length for Euclidean metric, but it’s infinite length for this metric, because the 1
1−|x|2 blows up as you

approach the boundary.
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(1) γ(t) = tv for some v and |t| < 1. Then γ(s) = tanh sv for s ∈ R.
If R is reflection across γ, then R ∈ O(n). Hence, R ∈ isom (Hn). Now, is γ a geodesic. First, it’s clear that
Rγ = γ.
Since R is an isometry, (dR) (∇γ′γ′) = ∇γ′γ′ (R is also linear... so dR = R). Hence, Dγ′γ′ is parallel to γ′. But
these are always orthogonal, so Dγ′γ′ = 0.

(2) If γ̃ is a circle intersecting ∂Bn orthogonally, then there exists F ∈ conf (Bn) = isom (Hn) such that F (γ) = γ a
curve from point 1.

Theorem 2.18. Given (p, v) ∈ TM for v ∈ TpM , there exists U nbhd of (ρ, v) ∈ TM and δ > 0 so that for all (x, z) ∈ U ,
there exists unique geodesic γx,z : (−δ, δ) →M such that γx,z(0) = x and γ′x,z(0) = z.

Proof. Let (V, ϕ) be a chart where p = ϕ(0). Write γ(t) = (x1(t), ..., xn(t)). Then

∇γ′(t)γ
′(t) = ∇γ′(t)

(
n∑
i=1

x′i
∂

∂xi

)
=
∑
i

x′′i
∂

∂xi
+
∑
i

x′i∇γ′(
∂

∂xi
)

=
∑
i

x′′i
∂

∂xi
+
∑
ij

x′ix
′
j∇ ∂

∂xj

∂

∂xi
=
∑
i

x′′i
∂

∂xi
+
∑
i,j,k

Γkijx
′
ix

′
j

∂

∂xk

=
∑
k

x′′k +∑
i,j

x′ix
′
jΓ
k
ij

 ∂

∂xk
.

Therefore, ∇γ′γ′ = 0 iff
x′′k +

∑
i,j

x′ix
′
jΓ
k
ij = 0, (?)

Need to solve the equations 
x′′k +

∑
i,j x

′
ix

′
jΓ
k
ij = 0

γ(0) = x

γ′(0) = z

Need to reduce this to first order ODE. Let x′k = yk, then

y′k =
∑
i,j

yiyjΓ
k
ij(x1, ..., xn) = 0, x(0) = (x1, ..., xn) , y(0) = (z1, ..., zn) .

Let W (x, y) =
(
y,
(
−yiyjΓkij(x)

)n
k=1

)
is a vector field, so the equation is now(x′, y′) =W (x, y)

(x(0), y(0)) = (x, z)
.

By the theorem that says vector fields can be integrated and solved locally, with continuous dependence on parameters. �

Remark 2.19. If γ̃(t) = γp,v(εt), then γ̃ is also a geodesic, because γ̃′ = εγ′ and γ̃(0) = p with γ̃′(0) = εv. Therefore,
γ̃ = γρ,εv.

Corollary 2.20. Given p ∈M, there exists ε > 0 and U nbhd of p so that for all q ∈ U , v ∈ TpM , |v| < ε , then γq,v(t)

is defined for |t| < 2.

Proof. Use theorem with v = 0. Use remark to shrink the interval to get (−2, 2). �

Definition 2.21. expp : Bε(0) ⊆ TpM →M given by expp(v) = γp,v(1) is called the exponential map.

Remark 2.22. If γ(t) = expp(tv) with |t| < 1, then v = γ′(0) = d
(
expp

)
0
v.

Lemma 2.23. (Gauss Lemma). For all p ∈M , v, w ∈ TpM , (assuming everything is well-defined),〈
d
(
expp

)
v
(v), d

(
expp

)
v
(w)
〉
= 〈v, w〉
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Not quite an isometry.

Proof.

(1) w parallel to v, then

d
(
expp

)
v
(v) =

d

dt

(
expp (v + tv)

)
t=0

=
d

dt

(
expp ((1 + t)v)

)
t=0

= γ′(1)

where γ(t) = expp(tv). Hence,〈
d expp(v), d expp(v)

〉
= 〈γ′(1), γ′(1)〉 = 〈γ′(0), γ′(0)〉 = 〈v, v〉

where the second equality is because geodesics have constant speed.
(2) Now, suppose w ⊥ v. Let w(s) be a curve in TpM such that w(0) = v, w′(0) = w and |w(s)| = |v| for all |s| < δ.

Let F : (−δ, δ)× (0, 1) →M by
F (s, t) = expp (tw(s)) .

Check that [
∂F

∂s
,
∂F

∂t

]
=
∂2F

∂t∂s
− ∂2F

∂s∂t
= 0.

See Do Carmo for more careful discussion.
∂F

∂s
(0, t) = (d exp)tv (tw) here, w′(0) = w

∂F

∂t
(0, t) = (d exp)tv (v) using w(0) = v.

Then
∂

∂t
〈(d exp)tv (tw), (d exp)tv (v)〉 |(0,t)= 0.

This is also equal to

∂

∂t

〈
∂F

∂s
,
∂F

∂t

〉
|(0,t)=

〈
∇ ∂F

∂t

∂F

∂s
,
∂F

∂t

〉
+

〈
∂F

∂s
,∇ ∂F

∂t

∂F

∂s

〉
.

The second of the last expression is 0 because t 7→ F (s, t) is a geodesic for all s.〈
∇ ∂F

∂t

∂F

∂s
,
∂F

∂t

〉
=

∂

∂s

〈
∂F
∂t ,

∂F
∂t

〉
2

=
∂

∂s
〈w(s), w(s)〉 = 0.

because t 7→
〈
∂F
∂t (t, s),

∂F
∂t (t, s)

〉
is constant, and equal to

〈
∂F
∂t (0, s) ,

∂F
∂t (0, s)

〉
= 〈w(s), w(s)〉. Therefore,

〈(d exp)tv (w), (d exp)tv (v)〉 =

〈
∂F

∂t
(0, 1),

∂F

∂s
(0, 1)

〉
=

〈
∂F

∂t
(0, 0),

∂F

∂s
(0, 0)

〉
=

〈
∂F

∂t
(0, 0), 0

〉
= 0.

Recall: for all p ∈M , there exists ε > 0 and a neighbourhood U of p such that for all q ∈ U ,

expq : Bε(0) ⊆ TqM →M

is well-defined, and
d

dt
expq (tv) |t=0= v.

�

Proposition 2.24. For all p ∈M , there exists Ũ neighbourhood of p, ε > 0 such that

(1) For all q ∈ Ũ , expq : Bε(0) ⊆ TqM →M is a diffeomorphism onto its image
(2) Ũ ⊆ expq (Bε(0)) for all q ∈ Ũ

Definition 2.25. Neighbourhood like the one in the proposition are called totally normal neighbourhoods.
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Remark 2.26.
(
Bε(0), expq

)
is a chart, has the property that the metric that (gij) (0) = Id = δij , and ∂kgij(0) = 0 for all

i, j, k = 1, ..., n. That is, the chart is Eucliean up to first order at the origin. They are called normal coordinates.

Proof. F : U ×Bε(0) →M ×M given by (x, v) 7→ (x, expx(v)) =
(
x, expx

(∑
i vi

∂
∂xi

))
.

Then

(dF )(x,0) =

(
Id Id

0 Id

)
.

Since
(dF )(x,0)

(
∂

∂xi
, 0

)
=

∂

∂xi
F (x, 0) =

∂

∂xi
(x, x) =

(
∂

∂xi
,
∂

∂xi

)
.

Similarly,

(dF )(x,0)

(
0,

∂

∂xi

)
=

∂

∂xi
F

(
x, t

∂

∂xi

)
=

d

dt

(
x, expx(t

∂

∂xi
)

)
|t=0=

(
0,

∂

∂xi

)
.

For the second, Inverse function theorem, if we choose small ε and U , we get that F : U ×Bε → F (U ×Bε(0)) = V is a
diffeomorphism. Choose Ũ such that Ũ × Ũ ⊆ V and this should be the one we want (check!). �

Theorem 2.27. Let U be a totally normal neighbourhood. Given x, y ∈ U , we have

(1) There exists a unqiue geodesic γ connecting x to y, with length(γ) < ε

(2) If σ : (0, 1) →M is a curve with σ(0) = x and σ(1) = y, then length(σ) ≥ length(γ)
(3) If σ : (0, 1) →M is a curve that is piecewise smooth, connects x to y with the same length as γ, then σ = γ

Proof.

(1) Let x, y ∈ U , then y = expx(v) where |v| < ε. γ(t) = expx(tv) is geodesic connecting x to y. If γ̃ is another
geodesic, then let ṽ = γ̃′(0).

Claim. |ṽ| < ε.

Proof. We have

ε > length(γ̃) =
ˆ 1

0

|γ̃′(t)| dt =
ˆ 1

0

|γ̃′(0)| dt = |ṽ|
ˆ 1

0

dt = |ṽ| .

�

Then, γ̃ = expx(tṽ) and γ̃(1) = y and so expx (ṽ) = expx(v) and so ṽ = v by local diffeo.
(2) σ * expx (Bε(0)). There exists t̄ such that σ(t̄) = expx(v̄) where |v̄| = ε, and σ(t) ∈ expx (Bε(0)) for all 0 ≤ t < t̄.

Assume we proved the 2nd case, then
σ : (0, t̄) →M

connects x to expx(v̄) by the second case. We get if γ̄(t) = expx(tv̄) then length(σ̄) ≥ length(γ̄) =
´ 1

0
|v̄| dt = ε.

Second case: σ ⊆ expx
(
B̄ε(0)

)
.

σ(t) = expx (r(t)v(t)) where |v(t)| = |v| for all t. WLOG, assume r(t) > 0 for 0 < t ≤ 1. (this is polar coordinates).
Then r(0) = 0, r(1) = 1 and v(1) = v.
Check that length(σ) ≥ length(γ) = |v|. Then

σ′(t) = r′ (d expx) (v(t)) + d expx (rv
′(t)) ,

then by the Gauss lemma

〈σ′(t), σ′(t)〉 = (r′(t))
2 |(d expx)rv (v(t))|

2
+ 2r′r 〈(d expx)rv v, (d expx)rv v

′〉+ r2 |d expx(v)|
2

= |r′(t)|2 |v(t)|2 + 2r′r 〈v(t), v′(t)〉+ (·)2

≥ |r′(t)|2 |v|2 by orthogonality
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Thus,

length(σ) =

ˆ 1

0

|σ′(t)| dt ≥
ˆ 1

0

|r′(t)| · |v| dt = |v|
ˆ 1

0

|r′(t)| dt

≥ |v|
ˆ 1

0

r′(t)dt = |v| (r(1)− r(0)) = |v| = length(γ).

�

Theorem 2.28. (Cartan) If (M, g) closed Riemannian manifold, and π1(M) 6= 0, then there exists closed geodesic
γ : S1 →M smooth.

Remark 2.29. Theorem is true even if π1(M) = 0 (hard, by Birkhoff).
Mn is closed is crucial (in Rn, there are no closed geodesics)
Open question does

(
S3, g

)
admit two distinct closed geodesics (not nec the same metric)

Proof. Let [σ] ∈ π1(M). Let
` = inf {length(γ) : γ ∈ [σ]} .

` > 0 because if γ : S1 →M is a curve with length(γ) << 1, it can be contracted to a point. (HWK proves this)
Let γi ∈ [σ] such that length(γi) → `. Want “convergent” subsequence. Reduce from space of curves (∞ dimensional)

to space of points in M (finite dimensional). Suppose γi : S1 →M have

|γ′i(t)| = costant in t.

Given δ0 small, break S1 into n-intervals I1, ..., IN such that length(γi |Ij ) < δ0 for all i large and j ∈ 1, ..., N . Consider
γ̄i,j unique geodesic connecting the end points of γi (Ij). Set γ̄i to be the piece-wise geodesic.

dist (γ̄i(0), γi(0)) < 2δ0

for all σ. Hence, (by the hwk again) γ̄i ∈ [σ] . Let Ωi = {γ̄i(σ0), ..., γ̄i(σN−1)} ⊆ M (the end points). There exists
Ω = {ρ0, ρ1, ..., ρN−1} such that Ωi → Ω. γ̄ geodesic connecting them. Then

γ̄i → γ̄

and γ̄ ∈ [σ].
` ≤ length(γ̄) = lim(γ̄i) ≤ lim γi = `.

Therefore, the length is exactly ` and it has to be smooth. �

3. Curvature

(M, g) a Riemannian manifold.

Definition 3.1. R : X(M)× X(M)× X(M) → X(M),

R(X,Y )Z = ∇X (∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z.

• R is bilinear in all of its entries.

R (X + fT, Y )Z = R (X,Y )Z + fR (T, Y )Z

for all f ∈ C∞(M). Similarly,

R (X,Y + fT )Z = R (X,Y )Z + fR(X,T )Z

Finally,
R (X,Y ) (Z + fT ) = R (X,Y )Z + fR(X,Y )T.
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Proof. Check the third.

R(X,Y )(fT ) = ∇X∇Y f(T )−∇Y∇X(fT )−∇[X,Y ](fT )

= ∇X (Y (f)T + f∇Y T )−∇Y (X(f)T + f∇XT )− [X,Y ] (f)T − f∇[X,Y ]T

= X (Y (f))T + Y (f)∇XT +X(f)∇Y T + f∇X∇Y T − Y (X(f))T −X(f)∇Y T

− Y (f)∇XT − f∇Y∇XT − [X,Y ] (f)T − f∇[X,Y ]T

= f
(
∇X∇Y T −∇Y∇XT −∇[X,Y ]T

)
= fR (X,Y ) (T ).

�

Definition 3.2. The curvature tensor is R : X(M)× X(M)×X(M)× X(M) → C∞(M) given by

R (X,Y, Z,W ) = g (R(X,Y )Z,W ) .

Supose T : X(M)× ...× X(M)︸ ︷︷ ︸
r

→ C∞(M) is a r-tensor, if T is linear in all its entries.

Key property: T (X1, ..., Xr)(p) only depends on X1, ..., Xr at the point p (not of T )
Check: suffices to see that if Xj(p) = 0, then T (X1, ..., Xr) (p) = 0. Take j = 1. X1 =

∑
ai

∂
∂xi

where ai(p) = 0 for all
i. Then

T (X1, ..., Xr) (p) =

n∑
i

aiT

(
∂

∂x1
, X2, ..., Xr

)
(p) = 0.

Example 3.3. T : X(M)×X(M)×X(M) → C∞(M) given by T (X,Y, Z) = 〈∇XY, Z〉 is not a tensor. (not linear in Y ).

In coordinates, the curvature tensor is given by:

Ri,j,k,` = R

(
∂

∂xi
, ...,

∂

∂x`

)
=

〈
∇ ∂

∂xi

∇ ∂
∂xj

∂

∂xk
−∇ ∂

∂xj

∇ ∂
∂xi

∂

∂xk
−∇[

∂
∂xi

, ∂
∂xj

] ∂

∂xk
,
∂

∂x`

〉
=

〈
∇∂xi

(∑
p

Γpjk
∂

∂xk

)
−∇∂xj

(
Γmik

∂

∂xm

)
,
∂

∂x`

〉
here,

[
∂

∂xi
,
∂

∂xj

]
= 0

=
∑
p

∂iΓ
p
jkgp` −

∑
p

∂jΓ
p
ikgp` +

∑
p,s

ΓpjkΓ
s
ipgs` −

∑
ΓmikΓ

s
jmgs`

Properties:

(1) R (X,Y, Z,W ) +R (Y, Z,X,W ) +R (Z,X, Y,W ) = 0 The first Bianchi identity
(2) R (X,Y, Z,W ) = −R (Y,X,Z,W )

(3) R (X,Y, Z,W ) = R (Z,W,X, Y )

(4) R (X,Y, Z,W ) = −R (X,Y,W,Z)

Proof. The first follows from Jacobi identity. Will check that

R (X,Y )Z +R (Y, Z)X +R (Z,X)Y + [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The second follows from the fact that R (X,Y )Z = −R (Y,X)Z.

R (X,Y, Z,W ) +R (Y, Z,X,W ) +R (Z,X, Y,W ) = 0

R (Y, Z,W,X) +R (Z,W, Y,X) +R (W,Y,Z,X) = 0

R (Z,W,X, Y ) +R (W,X,Z, Y ) +R (X,Z,W, Y ) = 0

R (W,X, Y, Z) +R (X,Y,W,Z) +R (Y,W,X,Z) = 0.

Add all of these up. .... then use last property.
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For the last, suffice to check that R (X,Y, Z, Z) = 0 for all X,Y, Z. Use identity above with Z +W instead of Z. Use{
∂
∂x1

, ..., ∂
∂xn

}
are normal coordinates. Then gij(0) = δij and ∇∂xi∂xj(0) = 0. Need to check that Ri,j,n,n = 0. WLOG,

∂
∂xn

(p) = z
|z| (p) (choose k).

Ri,j,n,n =
〈
∇∂i∇∂j∂n, ∂n

〉
−
〈
∇∂j∇∂i∂n, ∂n

〉
= ∂i

〈
∇∂j∂n, ∂n

〉
−
〈
∇∂j∂n,∇∂i∂n

〉
− ∂j 〈∇∂i∂n, ∂n〉+

〈
∇∂i∂n,∇∂j∂n

〉
= ∂i

〈
∇∂j∂n, ∂n

〉
− ∂j 〈∇∂i∂n, ∂n〉

= ∂i∂j
gnn
2

− ∂j∂i
gnn
2

= 0,

because ∂i∂j = ∂j∂i. �

Definition 3.4. Given Q a 2-plane in TpM , sectional curvative of Q = K(Q)(p) = R (e1, e2, e2, e1) where {e1, e2} is an
orthonormal basis of Q. Or,

R (u, v, v, u)

|u ∧ v|2

if Q = span {u, v}. Here, |u ∧ v|2 = |u|2 |v|2 − 〈u, v〉2. (Professor originally defined this as R(u, v, u, v), which is wrong).

Lemma 3.5. The sectional curvature determine the curvature tensor.

Proof. Choose coordinates (ϕ,U).

f(α, β) = R
(
∂xi + α∂xk , ∂xj + β∂x` , ∂xi + α∂xk , ∂xj + β∂x`

)
− R

(
∂xi + α∂x` , ∂xj + β∂xk , ∂xi + α∂x` , ∂xj + β∂x`

)
.

If Q1
α,β = span

{
∂xi + α∂xk , ∂xj + β∂x`

}
then

f(α, β) = K
(
Q1
α,β

)
|(∂xi + α∂xk) ∧ (∂xk + β∂x`)|

2 − ...

Check that
∂2f

∂α∂β
= 6Ri,j,k,`.

Therefore, f determine R. Therefore, sectional curvatures determine R. �

Corollary 3.6. If K(Q) = c(p) for all p ∈M , Q ⊆ TpM (depends only on the point, not the plane) then

R (X,Y, Z,W ) = c(p) (〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉) .

Example 3.7.

(1) For (Rn,Euclidean) then R (X,Y, Z,W ) = 0 and so sectional curvatures are zero.
(2) (Tn = Rn/Zn,Euclidean) also has sectional curvature zero.
(3) If (M, g) = (Sn, gsphere) or (Hn, gHn), then for every x, y ∈ M and every Qx, Qy 2-planes ⊆ TxM and TyM then

there is an isometry A ∈ Isom (Mn) such that Ax = y and dA (Qx) = Qy. Therefore, the sectional curvature is
the same at every point. They are ±1 respectively.

Definition 3.8. If T is a r-tensor, then ∇T is a (r + 1)-tensor, given by

(∇T ) (X,Y1, ..., Yr) = X (T (Y1, ..., Yr))−
n∑
i=1

T (Y1, ...,∇XYi, ..., Yr) .

We write ∇XT (...) = ∇T (X, ...). This last term is so that Leibniz rule holds.

Example 3.9. ∇g ≡ 0 because ∇Xg (Y, Z) = X (g(Y, Z))− g (∇XY, Z)− g (Y,∇XZ) = 0, so it is always parallel.

Proposition 3.10. Second Bianchi identity.

∇XR (Y, Z, T,W ) +∇YR (Z,X, T,W ) +∇ZR (X,Y, T,W ) = 0
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for all X,Y, T,W,Z ∈ X(M).

Proof. Use normal coordinates
{

∂
∂x1

, ..., ∂
∂xn

}
. Check this for a fixed point, 0. We know gij(0) = δij and ∇∂i∂j(0) = 0.

(1) ∇∂kRi,j,`,m = ∂kRi,j,`,m − R ?∇∂a∂b(0). (the second term is curvature times some Christopher symbols. This is
zero, so...)

= ∂k
(〈
∇∂i∇∂j∂`, ∂m

〉
−
〈
∇∂j∇∂i∂`, ∂m

〉)
(0)

=
〈
∇∂k∇∂i∇∂j∂`, ∂m

〉
−
〈
∇∂k∇∂j∇∂i∂`, ∂m

〉
skipped zero terms

(2) ∇∂k∇∂i (∇∂i∂`) = ∇∂i∇∂k (∇∂i∂`) +R (∂k, ∂i) (∇∂i∂`) (another term of Lie bracket, which is 0 for all points, not
just at 0). Notice that the curvature term is once again 0. This is abusing the fact that the 0 point is really
Euclidean again.

These two facts implies Bianchi identity. �

Why the identities. X ∈ X(M), {φt} such that ∂φt
∂t = X(φt). The Jacobi identity says

(φt)? [Y, Z] = [(φt)? Y, (φt)? Z] .

Differentiate the both sides, to get Lie derivative

LX [Y, Z] = [LXY, Z] + [Y,LXZ] .

Where, LXW = [X,W ]. So we get Jacobi identity from this.
First and second Bianchi gives (maybe −t)

gt = (φt)
?
g

and so φt : (M, gt) → (M, g) is an isometry. So R(gt) = (φt)
?
R(g). Differentiate both with respect to t. Then

d

dt
R(gt) =

d

dt
(φt)

?
R(g) = LX (R(g)) = ∇R ? X +R ?∇X

(RHS is some expression like that). On the other hand, if we let h = dgt
dt .

d

dt
R(gt) = (DR) (h) = ∂3h+R ? h = ∇R ? X +R ?∇X.

The RHS of the first expression will be true for all R. The second has to be only specific to our R, giving us different
expressions.

Pick p ∈ M and choose X such that X(p) = 0 and ∇∂iXj(0) = δij . Then ∇R is zero, and R ? ∇X will be some
expression depending on R. This will give first Bianchi identity.

Choose X such that X(p) = e1, then (∇∂iX) (p) = 0. Do the same thing to get second Bianchi identity.

Definition 3.11. Define Ric(g) : TpM × TpM → R given by

Ric (X,Y ) =

n∑
i=1

R (X, ei, ei, Y ) (p)

where {ei}ni=1 some o.n. basis of TpM . This is called Ricci Tensor.

Fact 3.12. Ric is symmetric. That is, Ric (X,Y ) = Ric (Y,X) and bilinear.

Definition 3.13. Scalar Curvature s(g) : M → R

s(g)(x) =

n∑
i=1

Ric (ei, ei) (x) =

n∑
i,j=1

R (ei, ej , ej , ei)

where ei and ej are in the same o.n. basis.
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Example 3.14. Let M be a surface. K(x) = K (TxM) called the Gaussian curvature (only one choice of a 2-plane).
Then

R (X,Y, Z,W ) = K(x) (〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉) .

When we do
Ric (X,Y ) = K(x) 〈X,Y 〉 .

The scalar curvature is then
S(g)(x) = 2K(x)

(the trace).

Theorem 3.15. Cartan Theorem. If (Mn, g) is closed has constant sectional curvature. That is, K(P 2)(x) = c0 is
constant for all P 2 ⊆ TxM and x ∈M . Then the universal cover

(
M̃n, g̃

)
of (Mn, g) is isometric to

(Sn, ground) c0 = 1

(Rn, Euclid) c0 = 0

(Hn, gHn) c0 = −1

.

Basically, if c0 6= 0, 1,−1, we increase or decrease the sphere or Hn to make the curvature go down or up. Therefore, M
is Sn/Γ, Rn/Γ or Hn/Γ.

Theorem 3.16. When n = 2, have uniformization theorem.
(
M2, g

)
closed surface. Then there exists u ∈ C∞(M) such

that K
(
e2ug

)
= c0 constant.

Combine this with the above theorem, to get that if M2 is orientable,

(
M2, g

)
=


S2 c0 = 1

T2 c0 = 0

H2/Γ c0 = −1

.

Proof. gt = e2tug for 0 ≤ t ≤ 1. Then g0 = g and g1 = ḡ. Then
d

dt
K(gt)dVgt =

d

dt
K(gt)dV +K(gt)

d

dt
Vgt

=
d

dt
K(gt)dV +K(gt)2udVgt

= div (....) dVgt .

We know that dVgt = e2tudV and so d
dtdVgt = 2udV gt. This gives second line.

This implies that
d

dt

ˆ
K(gt)dVgt =

ˆ
div (·) dVt = 0.

See assignment 3 to see what it is the divergence of. �

Remark 3.17. The LHS without the d
dt is Gauss-Bonet (for M closed,

´
M
K(g)dVg = 2πχ(M)), which gives you the genus

(χ = 2− 2g if compact orientable).

ˆ
K(g)dVg =

ˆ
K(ḡ)dV̄ =


4π if c0 = 1

0 if c0 = 0

4π (1− δ) if c0 = −1

.

Definition 3.18. Suppose we have constant sectional metric.

• g is Einstein if Ric(g) = Λg

• g has constant scalar curvature if S(g) = constant
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Awesome fact: when n = 3, Einstein implies constant sectional curvature.

Theorem 3.19. Perelman. If
(
M3, g

)
is closed and simply connected, then there exists ḡ an Einstein metric on M3.

Hence, has constant sectional curvature, and so

M3 =


S3

R3

H3

.

By closed, M3 = S3.

Constant scalar curvature ⇐= Einstein ⇐ constant sectional curvature.
When n = 2, they are all the same. When n = 3, have backwards of the second arrow.

Example 3.20.
(
S1 × S2, dσ2 + gS2

)
has universal cover R × S2, which is not the above. This is constant, but not

Einstein.(
S2 × S2, gS2 + gS2

)
does not admit constant scalar curvature, cuz simply connected. This is Einstein not constant

sectional curvature.

Open question. Is there an Eistein metric on Sn, which is not standard.

3.1. Relation of Parallel transport and curvature.

Definition 3.21. Parallel Transport. γ : I → M , smooth curve. For all V : I → TM , V (t) ∈ Tγ(t)M . V is parallel
transport of V (0), if ∇γ′V = 0.

Lemma 3.22. V is unique.

Proof. Choose (U,ψ) a chart. γ(t) = (x1(t), ..., xn(t)). γ′(t) =
∑
i x

′
i
∂
∂xi

. Suppose V (0) =
∑n
i=1 ai

∂
∂xi

, with V (t) =∑
i ai(t)

∂
∂xi

. Then

0 = ∇γ′V =
∑
i

a′i(t)
∂

∂xi
+
∑

aj
∑
i

∇γ′
∂

∂xi

=
∑
k

a′k
∂

∂xk
+
∑
i,j

aix
′
jΓ
k
i,j

∂

∂xk
.

This says a′k +
∑
i,j aix

′
jΓ
k
ij = 0

ak(0) = ak

is a linear ODE, so solvable. �

Example 3.23. (Rn,Euclid), take a triangle. transport V along the triangle, then we get V again. This does not work
on the sphere. Get picture from ADAN

Let u, v ∈ TpM . Consider � the parallelogram generated by u and v. Let Pt : TpM → TpM by Pt(X) =parallel transport
of X along the scaled parallelogram expp(t�). (Need to scale to be small enough to apply expp). Take coordinate vectors
to be safe.

Theorem 3.24. Pt(x) = x+ t2R(u, v)x+O(t3).

3.2. Jacobi vector fields. Let p, q ∈Mn. Let Ωp,q = {γ : [0, 1] →M, γ(0) = p, γ(1) = q}.

TγΩp,q =
{
X : [0, 1] → TM : X(t) ∈ Tγ(t)M, X(0) = X(1) = 0

}
.
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Consider F : [0, 1]× (−ε, ε) →M with F (t, s) = expγ(t) (sX(t)). We have F (0, s) = γ(0) and F (1, s) = γ(1) for all |s| < ε.
Then writing γs = F (·, s), then

X(t) =
d

ds
γs(t) =

∂F

∂s
(t, s).

Cp,q = {γ ∈ Ωp,q : γ is a geodesic}. What is TγCp,q?

TγCp,q = {X ∈ TγΩp,q : ∇γ′∇γ′X +R(X, γ′)γ′ = 0} .

We usually write it as X ′′ +R(X, γ′)γ′ = 0.
Let (γs)|s|<ε be a one parameter family of geodesics with γ0 = γ. Let γs = F (·, s). Set X(t) = ∂F

∂s (t, 0).

0 = ∇γ′
s
γ′s = ∇ ∂F

∂t

∂F

∂t

for all s. Then

0 = ∇ ∂F
∂s

∇ ∂F
∂t

∂F

∂t
= ∇ ∂F

∂t
∇ ∂F

∂s

∂F

∂t
+R

(
∂F

∂s
,
∂F

∂t

)
∂F

∂t

= ∇ ∂F
∂t
∇ ∂F

∂t

∂F

∂s
+R

(
∂F

∂s
,
∂F

∂t

)
∂F

∂t

= ∇γ′∇γ′X +R(X, γ′)γ′

which is what we wanted. Here, we have a lot of commutator terms that we ignored, because we can pick nice parametriza-
tions.

Definition 3.25. γ a geodesic. J is a Jacobi vector field if J′′ +R(J, γ′)γ′ = 0 along γ.

Proposition 3.26.

(1) Jacobi vector fields along γ with J(0) = x and J′(0) = Y exists and are unique
(2) If J(0) = 0 then J(t) =

(
d expp

)
tγ′(0)

(tY )

(3) γ′ and tγ′ are Jacobi vector fields

Example 3.27. On (Sn, gSn) choose p ∈ Sn where u, v ∈ TpS
n with u · v = 0 and |u| = |v| = 1.

F : (0, π)× (−ε, ε) → Sn

by
F (t, s) = cos tp+ sin t

u+ sv√
1 + s2

.

Let J(t) = ∂F
∂s (t, 0). Can check that J′′(t) + J(t) = 0 for all t. Thus,

R(J, γ′)γ′ = J.

Differentiate again. We knew the curvature of the sphere is constant, so taking d
dt , we get

R (J′, γ′) γ′ = J′.

J′(0) = v and γ′(0) = u and so sectional curvature of span {u, v} = 1.

Example 3.28. On Hn, we need
F (t, s) = cosh tp+ (sinh t)

u+ sv√
1 + s2

∈ H3.

Argue similarly, implies that sectional curvature of Hn = −1.
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Example 3.29. Assume (Mn, g) has constant sectional curvature K̄. Then J(t) Jacobi vector field along γ with J(0) = 0

and J′(0) =W is given by J(t) = K(t)W (t) where W (t) is parallel transport of W along γ.

K(t) =


sin

√
K̄t√
K̄

if K̄ > 0

t if K̄ = 0

sinh
√
K̄t√

K̄
if K̄ < 0

Proof. If J(t) = K(t)W (t), then J′′(t) = K ′′(t)W = −K̄J(t). Hence, J′′ + K̄J = 0. Use uniqueness. �

Remark 3.30. Get picture from Adan

Proof. of proposition

(1) γ geodesic {e1, ..., en} an orthonormal basis of Tγ(0)M with e1 = γ′(0). {ei(t)}ni=1 parallel transport of {ei}. By
uniqueness, γ′(t) = e1(t). Check that {e1(t)} is an orthonormal frame. Suppose J(t) =

∑n
i ai(t)ei(t).

J′(t) = ∇γ′J(t) =
∑
i

a′i(t)e1(t) +
∑
i

ai(t)e
′
1(t) =

∑
a′1(t)e1(t).

Meanwhile,
J′′(t) =

∑
i

a′′i (t)ei(t).

Then

0 = J′′ +R (J, γ′) γ′ =
∑
i

a′′i (t)ei(t) +
∑
j

ajR(ej , e1)e1

=
∑

a′′i ei +
∑
i,j

aj 〈R(ej , e1)e1, ei〉 ei

=
∑
i

a′′i +∑
j

ajRj11i

 ei.

This is a second order linear ODE equation, so has unique solution after specifying initial speed ai(0) and a′i(0).
(2) F : [0, 1]× (−ε, ε) →M given by

F (t, s) = expp (t(γ
′(0) + sy)) .

Then γs = F (·, s) is a geodesic for all |s| < ε. So J(t) = ∂F
∂s (t, 0) is a Jacobi vector field. Just need J(0) = 0 and

J′(0) = y. Note that
J(t) =

(
d expp

)
tγ′(0)

(ty).

J(0) =
(
d expp

)
0
(v) = v.

J′(0) = ∇γ′(t)J(t) = ∇ ∂F
∂t

∂F

∂s
= ∇ ∂F

∂t
(d exp)tγ′(0) (ty)

= ∇ ∂F
∂t

(
t
(
d exptγ′(0)(y)

))
= (d exp)tγ′(0) (y) + t∇ ∂F

∂t

(
d expp

)
tγ′(0)

(y).

At t = 0, we get y + 0(blah) = y.

�

Definition 3.31. γ(t0) is conjugate point to γ(0) along γ, if there exists J a Jacobi vector field with J(0) = J(t0) = 0.

Remark 3.32. This means that γ(t0) is conjugate to γ(0) iff t0γ′(0) is a critical point for expγ(0). That is, ker (d exp)t0γ′(0) 6=
0. (by proposition).

If γ is a geodesic, J(0) = 0, J′(0) =W , then

J(t) = (d exp)tv (tW )
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where γ(t) = exp(tv).

Remark 3.33. γ(t0) conjugates to γ(0) ⇐⇒ ker (d exp)t0v 6= {0} ⇐⇒ expp has a critical point at t0v.

Lemma 3.34. Fix x, there exists ε > 0 such that if y ∈M , there is z ∈M so that

(1) z ∈ expx (∂Bε)

(2) d(x, y) = d (x, z) + d (z, y)

Proof. Choose z so that
d (z, y) = d (exp(∂Bε), y)

then d (x, y) ≤ d (x, z) + d (z, y).
Take γ connecting x to y so that length(γ) is almost d(x, y). There exists E so that γ(E) ∈ exp (∂Bε). Since

length(γ) = length(γ(0, E)) + length (γ(E, 1))

≥ ε+ d(z, y) = d(x, z) + d(z, y).

�

Theorem 3.35. (Hopf-Rinow Theorem). TFAE:

(1) There exists p ∈M such that expp : TpM →M is defined everywhere
(2) Bounded and closed sets of M are compact
(3) Cauchy sequences converge
(4) expq is defined on TqM for all q ∈M (geodesically complete)

They also all imply that for all q, there exists γ geodesic connecting p to q where length(γ) = d(p, q).

Proof. 1 =⇒ 5. Given p, q. By the lemma, we can get a z ∈ expp (∂Bε) satisfying.... Let γ(t) be the geodesic of unit
speed with γ(ε) = z. Let d = d(p, q) and

I = {t ∈ [0, d] : d (γ(t), p) = d− t} .

I 6= ∅ because ε ∈ I. Let T = sup I. Need to show that T = d (which implies d (γ(T ), q) = 0, so γ connects to q). I is
closed by continuity. Suppose T < d. Apply the lemma, so

d (γ(T ), q) = d (γ(T ), z′) + d (z′, q) .

Want to argue that z′ = γ (T + ε′). This will give the contradiction. Let σ be the curve along γ to γ(T ), and then to z′,
a broken geodesic.

Claim. length(σ) = d (p, z′) which implies that σ is a simple geodesic and so σ = γ.

Proof. We know d (γ, q) = d− T and d (γ(T ), q) = d (z′, q) + d (z′, γ(T )) . Hence,

d (p, z′) ≥ d (p, q)− d (q, z′) = d− d (z′, q)

= d− (d− T − ε′) = T + ε′ = length(σ).

Therefore, length(σ) = d (p, z′) �

�

Definition 3.36. Given (Mn, g) connected, define

d(p, q) = inf {length(γ) : γ connects p to q} .

If σ is a piecewise smooth curve so that

• σ connects p to q
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• d(p, q) = length(σ)

then σ is a geodesic (hence, completely smooth).

Corollary 3.37. If M is compact (no boundary), then it’s geodesically complete. If Mn ⊆ Rn+k is closed and complete,
then it’s geodesically complete.

Example 3.38. of not complete, just take M -{a point}. Then can’t extend over the point. Or Orbifold.

Theorem 3.39. (M, g) simply connected, COMPLETE and constant sectional curvature, then (M, g) is isometric to
(Rn,Euclid) k = 0

(Sn, gSn) k = 1

(Hn, gHn) k = −1

Remark 3.40. If g has constant sectional curvature K 6= 0, then g
|K| has constant curvature ∓1 (so can scale to assume

the above).

Proof. Suppose k = 0. Want to show g ((d exp)v(X), (d exp)v (Y )) = 〈X,Y 〉 for all X,Y ∈ TpM and v ∈ TpM . Let γ be
geodesic corresponding to v. If X,Y are parallel to v, then this is just Gauss lemma. Suppose X1, X2 ⊥ v. Let Xi(t) be
the parallel transport of Xi along γ. Ji(t) Jacobi vector fields with Ji(0) = 0 and J′i(0) = Xi(0).

Ji(t) = tXi(t) for all t because, in this case, the Jacobi vector field equation is L′′ = 0 and both sides satisfy the
equation and (tXi(0))

′′
= (Xi(t))

′
= 0. They are both 0 at t = 0 and derivative at 0 is the same.

g ((d exp)v(X1), (d exp)v(X2)) = g (J1(1), J2(2)) = g (X1(1), X2(1))

= g (X1(0), X2(0)) = 〈X1, X2〉

When k = −1, the candidate for the isometry is then F = exp ◦A ◦ exp−1 where exp is the exponential on M , exp is that
of Hn and A is TpM → Tp̄Hn.

ḡ ((dF )x(X1), (dF )x(X2)) = g (X1, X2)

for all X1, X2 ∈ TxM and all x ∈M . Let γ = exp(tv), and check that γ̄ = exp (tAv). Once again, if parallel, this is again
by Gauss lemma. Assume X1, X2 ⊥ γ′(1). Let Xi(t) be the parallel transport of Xi along γ. Let Ji(t) be Jacobi vector
fields with Ji(0) = 0 and J′i(0) = Xi(0). Then

Ji(t) = sinh tXi(t)

because both satisfies X ′′ −X = 0.
Ji(1) = (d exp)v (Xi(0))

and combining the identities, we get
Xi =

d exp (Xi(0))

sinh(1)
.

Hence,

(dF )(X1) = (dexp)dA(d exp)−1(X1) = dexpdA
X1(0)

sinh(1)
,

and so

ḡ ((dF )(X1), (dF )(X2)) =
ḡ (dexp (dA(X1(0))) , dexp (dA(X2(0))))

sinh2 1

= ḡ
(
dA (X1(0)) (1), dA (X2(0)) (1)

)
= ḡ (dA(X1(0), dA (X2(0)))

= ḡ (X1(0), X2(0)) = g (X1, X2) .
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where the first equality is by undo-ing what we do with hyperbolic metric.
k = 1. We have the diagram (see Adan or Nacho). F = exp ◦Aexp−1.

Claim. F : Sn − {south pole} →Mn is an isometry

Proof. X̄i ∈ TyS
n and Pt is parallel transport along γ or γ̄.

They obey the identity
(d exp)tv (tZ) = sin tPt(Z).

Xi = (dF )
(
X̄i

)
= d exp dA (dexp)

−1 (
X̄i

)
= d exp dA (dexp)

−1 (
P1

(
X̄i(0)

))
= d exp dA

(
X̄i(0)

sin 1

)
=

1

sin 1
d exp(dA)X̄i(0)

= P1

(
dA
(
X̄i(0)

))
Since

g (dF (X1), dF (X2)) = g
(
P1

(
dA(X̄1(0))

)
, P1

(
dA(X̄2(0)

))
= g

(
dA
(
X̄i(0)

)
, dA

(
X̄2(0)

))
=
〈
X̄1(0), X̄2(0)

〉
=

〈
P1

(
X̄1(0)

)
, P1

(
X̄2(0)

)〉
=
〈
X̄1, X̄2

〉
.

where the last inequality is because A was chosen to be an isometry. �

�

Theorem 3.41. Hadamard Theorem. If (Mn, g) with sectional curvature ≤ 0 (not necessarily constant) and Mn simply
connected, then Mn ∼= Rn (diffeo, not isometric)

Corollary 3.42. If closed (Mn, g) has sectional curvature ≤ 0, then πk (M
n) = 0 if k ≥ 2.

Proof. If
(
M̃, g

)
is universal cover, then

πk (M
n) = πk

(
M̃
)
= πk(Rn) = 0.

�

If (Mn, g) has section curvature ≤ 0, then all topology is in π1(M
n).

Corollary 3.43. Sn,CPn or Sn ×Mk, CPn ×Mk have no metric with non-positive sectional curvature.

Theorem 3.44. (Gao-Yau). S3 has metric with negative Ricci curvature.

Remark 3.45. This is because for non-surfaces Ricci curvature and sectional curvature are not the same. Also, will
contradict Gauss-Bonnet with averages non-positive.

Proof. Idea: There exists a map γ : S1 → S3 the figure eight knot, so that S3 − γ has a complete hyperbolic metric. Fill
in a metric in tubular neighbourhood of the knot (which is a torus), so that the metric is complete, and the Ricci is always
negative. �

Theorem 3.46. (Locham) Every (Mn, g) with n ≥ 3 has metric with Ricc < 0.

Theorem 3.47. Every (Mn, g) with n ≥ 3, has a metric with constant negative scalar curvature.

Conjecture 3.48. If n is large enough, can we put an Eisenstein metric with negative constant on any manifold.

Proof. of Hadamard theorem.
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(1) exp : TpM
n →Mn is a local diffeo

Suppose ker (d exp)v 6= ∅. Then there exists J a Jacobi vector field along γ(t) = exp (tv) where J(0) = J(1) = 0.
This is because critical points of exponential are critical points, so they define Jacobi vector fields. Let f(t) =

〈J(t), J(t)〉. Then
f ′′(t) = (2 〈J′, J〉)′ = 2 〈J′′, J〉+ 2 〈J′, J′〉 .

Since J′′ +R(J, J′)J′ = 0, we get

f ′′(t) = −2R (J, J′, J′, J) + 2 |J′|2

= − |J ∧ J′′|2K (span(J, J′}) + 2 |J′|2

≥ 2 |J′|2 ≥ 0.

This means that f is a convex function. If f ′′ ≥ 0, C2 then f ≤ max {f(0), f(1)}. (draw a picture). But f(0) = 0

and f(1) = 0, so
|J(t)|2 = 0

for all t and so J = 0.
(2) Show that exp is a convering map

Let ḡ = (exp)
?
g. ḡ is complete, because t 7→ exp(tv) is a globally defined geodesic. exp is an isometry with

respect to ḡ. Then exp map has unique lifting property.

These two facts plus the fact that π1(M) = 0 implies that exp is a diffeomorphism. �

4. First and Second variation of energy

For p, q ∈Mn,
Ωp,q = {γ : [a, b] →M, γ(a) = p, γ(b) = q, piece-wise smooth} .

Let L : Ωp,q → R given by L(γ) = length(γ) =
´ b
a
|γ′(t)| dt.

Let the energy E : Ωp,q → R is E(γ) =
´ b
a
|γ′(t)|2 dt.

Lemma 4.1. Then L(γ)2 ≤ (b− a)E(γ) for all γ, with equality iff |γ′(t)| is constant for all t

Proof. We have

|L(γ)|2 =

(ˆ b

a

|γ′(t)| dt

)2

≤ (b− a)

ˆ b

a

|γ′(t)|2 dt.

�

Lemma 4.2. If C : (a, b) →M is a minimizing geodesic with C ∈ Ωp,q, then E(γ) ≥ E(C) for all γ ∈ Ωp,q. With equality
iff γ is a geodesic

Remark 4.3. Just because length(γ) = length(C) does not imply |γ′(t)|=constant.

Proof. We get

E(C) =

ˆ b

a

|C ′(t)|2 dt = (b− a)L(C)2

≤ 1

b− a
L (γ)

2 ≤ E(γ).

If equality holds, then γ is length minimizing and constant speed. Therefore, it’s a geodesic. �

What are the critival points, say ∇E (but this is infinite dimensional).
If γ ∈ Ωp,q and smooth on [ti, ti+1], then

∇E = −2∇γ′γ′ − 2
∑
i

(
γ′(t+i )− γ′

(
t−i
))
δγ(ti).
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F : (−ε, ε)× [a, b] → M a C2-map on (−ε, ε)× [ti, ti+1] and continuous everywhere, where F (0, ·) = γ. Let γs = F (s, ·),
and V (t) = ∂F

∂s (0, t)

1

2

∂

∂s
E (γs) |s=0= −

ˆ b

a

〈V,∇γ′γ′〉 dt−
∑
i

(
γ′(t+i )− γ′(t−i )

)
V (ti)− 〈V (0), γ′(0)〉+ 〈V (1), γ′(1)〉 .

Proof. We have

d

ds
E (γs) =

d

ds

ˆ b

a

|γ′s(t)|
2
dt =

d

ds

ˆ b

a

∣∣∣∣∂F∂t (s, t)
∣∣∣∣2 dt

=

ˆ b

a

2

〈
∂2F

∂s∂t
(0, t),

∂F

∂t
(0, t)

〉
dt =

ˆ b

a

2

〈
∂2F

∂t∂s
,
∂F

∂t

〉
dt

=

ˆ b

a

2∂t

〈
∂F

∂s
,
∂F

∂t

〉
dt−

ˆ b

a

2

〈
∂F

∂s
(0, t),∇ ∂F

∂s

∂F

∂t

〉
dt

= −2

ˆ b

a

〈v(t),∇γ′γ′〉 dt+ 2
∑
i

〈
v(ti+1), γ

′(t−i+1)
〉
− 2

∑
i

〈
v(ti), γ

′(t+i )
〉

�

For γ ∈ Ωp,q, TγΩp,q is

{V : (0, 1) → TM : V is continuous, V (0) = V (1) = 0, V (t) ∈ TγM piece-wise smooth} .

Additionally,
dE = −∇γ′γ′ −

∑
i

(
γ′(t+i )− γ′(t−i )

)
δγ(tn).

That is for all X ∈ TγΩp,q,

dE(X) = −
ˆ 1

0

〈∇γ′γ′, X〉 −
∑
i

〈
γ′(t+i )− γ′(t−i ), X(ti)

〉
.

Lemma 4.4. γ is a critical point (ie, dEγ = 0) iff γ is a geodesic.

Proof. Backwards is clear.
Choose φ : (0, 1) → R, φ ≥ 0 and φ(ti) = 0. Let X = φ∇γ′γ′ ∈ TγΩp,q. Then

0 = (dE) (X) = −
ˆ 1

0

φ |∇γ′γ′|2 dt

and so ∇γ′γ′ is 0 almost everywhere. Hence, γ′ is a broken geodesic.
Now choose X ∈ TγΩp,q such that X(ti) = γ′(t+i )− γ′(t−i ). Then

0 = dE(X) = −
∑〈

γ′(t+i )− γ′(t−i ), X(ti)
〉
= −

∑
i

∣∣γ′(t+i )− γ′(t−i )
∣∣2 .

Therefore, γ′(t+i ) = γ′(t−i ) for all i. Hence, γ is a single geodesic. �

Lemma 4.5. γ geodesic. V ∈ TγΩp,q with V smooth.

d2Eγ(V, V ) = −2

ˆ 1

0

〈V ′′ +R (V, γ′) γ′, V 〉 dt.

Remark 4.6. V ∈ TγΩp,q then F : (−ε, ε)× (0, 1) →M such that F (0, ·) = γ.V (t) = ∂F
∂s (0, t), F (s, 0) = p, F (s, 1) = q for

all s.
Then γs = F (s, ·).

d

ds
E(γs) |s=0=?
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Proof. We have γ′s = ∂F
∂s and ∇γ′γ′ = ∂2F

∂2t (0, t) = 0,

d2Eγ(V, V ) =
d2

(ds)2
E (γs)s=0 =

d2

(ds)2

ˆ 1

0

|γ′s(t)|
2
dt

=
d

ds

ˆ 2

0

2

〈
∂2F

∂s∂t
,
∂F

∂t

〉
= 2

ˆ 1

0

〈
∂3F

∂s∂s∂t
,
∂F

∂t

〉
+ 2

〈
∂2F

∂s∂t
,
∂2F

∂s∂t

〉
s = 0 = 2

ˆ 1

0

〈
∂3F

∂s∂t∂s
,
∂F

∂t

〉
+ 2

〈
∂

∂t
V,

∂

∂t
V

〉
= 2

ˆ 1

0

〈
∂3F

∂t∂2s
,
∂F

∂t

〉
+ 〈R (∂sF, ∂tF ) ∂sF, ∂tF 〉 − 2 〈V, V ′′〉 dt

= 2

〈
∂2F

(∂s)2
(0, 1), γ′(1)

〉
− 2

〈
∂2F

(∂s)2
(0, 0), γ′(0)

〉
− 2

ˆ 〈
∂2F

∂s∂s
,
∂2F

(∂t)2

〉
+ 〈R (∂sF, ∂tF ) ∂sF, ∂tF 〉 − 2 〈V, V ′′〉 dt

all others are 0 =

ˆ 1

0

〈R (∂sF, ∂tF ) ∂sF, ∂tF 〉 − 2 〈V, V ′′〉 dt

= −2

ˆ 2

0

〈V ′′ +R(V, γ′)γ′, V 〉 dt

�

Remark 4.7. This is like the Jacobi relation.

d2E (V, V ) = −
ˆ

〈LV, V 〉 dt

where LV = V ′′ +R (V, γ′) γ′ Jacobi operator

If (M, g) has section curvature < 0, then(
d2E

)
(V, V ) =

ˆ 1

0

|V ′|2 −R (V, γ′, γ′, V ) dt > 0

Theorem 4.8. If (Mn, g) closed has sectional curvature < 0, then close geodesics are unqiue in their homotopy class.
That is, π1(M) = {closed geodesics}.

Remark 4.9. For a torus, take the rings going up down. The above theorem does not apply.
With negative curvature, geometric objects tend to be unique (geodesics, harmonic maps, unit volume metric with

constant scalar metrics in conformal classes)

Proof. Convexity.
Suppose γ0, γ1 are two closed geodesics, homotopic. There exists H : (0, 1) × S1 → M such that H(0, ·) = γ0 and

H(1, ·) = γ1.

Claim. There exists F : (0, 1)× S1 →M homotopy between γ0 and γ′1 such that s→ F (θ, s) = γθ(s) is a geodesic.

Proof. H : (0, 1)× R → M̃ the lift to universal cover. H is π1(M)-equivariant.
For all θ ∈ R, there exists unqiue geodesic γ0 connecting γ0(θ) to γ1(θ). Define F in this way. γθ unique implies that

F is smooth and π1(M)-equivariant.
Set γs = F (s, ·) and f(s) = E(γs). Then f ′(0) = f ′(1) = 0 because γ0, γ1 are geodesics.

f ′′(s) ≥ 0 (think you need >0)

because the sectional curvature is < 0. Thus, there’s only one critical point, which is a contradiction. �

�

Theorem 4.10. (Bonnet-Myers) If (Mn, g) with Ric ≥ n−1
r2 g then diam (Mn, g) ≤ πr.
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Remark 4.11. Here Ric ≥ εg means that Ric− εg is positive definite. That is, Ric(X,X) ≥ ε |X|2 for all X ∈ TpM .

• If Sn(r) = 2
{
|x|2 ≤ r2 : x ∈ Rn+1

}
• Ric = n−1

r2 gSn(r)

Proof. Strategy: If γ is length minimizing, then γ is absolute minimum for E.

d2E (X,X) ≥ 0

for all X. Want to choose γ a minimizing geodesic realizing the diameter. Use geometry to find X vector field such that(
d2E

)
(X,X) < 0, which will be a contradiction.

Assume diam (M, g) = ` > πr. Let p, q have distance > πr and we can connect them by a geodesic γ.
{ei}n−1

i=0 orthonormal basis of TpM and e0 = γ′(0). {ei(t)}n−1
i=0 parallel transport along γ.

Xi(t) = sin (πt) ei(t)

for i = 1, ..., n− 1. Then (
d2E

)
(Xi, Xi) =

ˆ 1

0

|X ′
i(t)|

2 −R (Xi, γ
′, γ′, Xi) dt

=

ˆ 1

0

π2 cos2 (πt)−
(
sin2 πt

)
R (ei, γ

′, γ′, ei) dt

Now, average,
n−1∑
i=1

(
d2E (Xi, Xi)

)
=

ˆ 1

0

(n− 1)π2 cos2(πt)− sin2(πt)Ric (γ′, γ′) dt

≤
ˆ 1

0

(n− 1)π2 cos2(πt)− sin2(πt)
|γ′(t)|2

r2
dt

=

ˆ 1

0

(n− 1)π2 cos2(πt)− (n− 1) sin2(πt)
`2

r2
dt

<

ˆ 1

0

(n− 1)π2 cos2(πt)− (n− 1)π2 sin2(π)dt = 0

where ` = length(γ) > 2π. Therefore, there exists Xj such that
(
d2E

)
(Xj , Xj) < 0. �

Theorem 4.12. (Bonnet-Myers) M a complete metric. If Ric ≥ n−1
r2 g then diam (M, g) ≤ πr.

Corollary 4.13. If (Mn, g) with Ric ≥ εg for ε > 0 then vol (Mn) <∞ and |π1(M)| <∞

Proof.
(
M̃n, g

)
universal cover of (Mn, g).

diam
(
M̃n, g

)
<∞ =⇒ vol (Mn, g) <∞.

Then |π1 (M)| <∞ and so there’s finitely many covers, because

vol (Mn) =
vol
(
M̃n

)
|π1(M)|

.

�

Example 4.14.

(1) There is no metric on parabloid which is complete and κ=Gaussian curvature ≥ ε (because Ric(g) = K(g)g for a
surface).

(2) S1 × S2, Tn ×Mk can not have a metric with positive Ricci curvature.

Remark 4.15. Every three manifold has a negative Ricci curvature.
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For surfaces, we know almost everything about Gaussian curvature, except for the following.

• Nirenberg. Pick f : S2 → R+, is there a metric g on S2 so that K(g) = f?

If f is constant, this is easy. There are obstructions. This is possible for negative metric and any surface of genus higher
than one.

Theorem 4.16. (Hamilton) If
(
M3, g

)
with Ric > 0, then M3 ∼= S3/Γ.

Theorem 4.17.
(
M4, g

)
has Ric > 0 iff it admits a metric with positive scalar curvature.

n > 5, no idea.

Theorem 4.18. (Synge-Weinstein) If (Mn, g) with positive sectional curvature then if n is even, thenπ1(M) = 0 if Mn is orientable

π1(M) = Z/2Z else

if n is odd, then Mn is orientable.

Remark 4.19. Just need to prove the orientable case. For non-orientable, we always have a two cover that’s orientable.
That must be simply-connected by the first case.

Conjecture 4.20. (Hopf) S2 × S2 has no metric with positive sectional curvature.

Conjecture 4.21. If
(
M4, g

)
complete with sectional curvature > 0, then M4 = S4 or CP2.

Theorem 4.22. (Cheeger) For each integer n ∈ N, there are only finitely many diffeomorphism types of manifolds (Mn, g)

with π1 (Mn) = 0 and having positive sectional curvature.

• Let M4 be the orientable covers of RP2 ×RP2, then M4 has no metric with positive sectional curvature (because
RP2 × RP2 has fundamental group Z2 × Z2 so M4 has fundamental group Z2 which contradicts the theorem)

What about negative sectional curvature? When n = 3, M3 ∼= H3/Γ. When n ≥ 4 there are way too many to have
classification

Proof. Assume n even and Mn orientable. Suppose π1 (M
n) 6= 0, then there exists γ : S1 → M length minimizing

geodesic (which is also energy minimizing).

TγΩ =
{
V : S1 →M so that V smooth, V (t) ∈ Tγ(t)M

}
.

V ∈ TγΩ then (
d2E

)
γ
(V, V ) =

ˆ
S1

|V ′|2 −R (V, γ′, γ′, V ) dθ.

We know (
d2E

)
(V, V ) ≥ 0

for all V ∈ TγΩ, because γ is absolute minimum for E.
Let V ∈ Tγ(0)M and set V (t) to be the parallel transport along γ. 〈V, γ′(0)〉 = 0 iff 〈V (θ), γ′(θ)〉 = 0 for all θ. Then(

d2E
)
(V, V ) =

ˆ
S1

0− |V ∧ γ′| sectional span {V, γ′} dθ < 0.

Problem: V (0) might be different from V (2π).
Let Q = (γ′(0))

⊥
=
{
V ∈ Tγ(0)M : V · γ′(0) = 0

}
. P : Q → Q with P (V ) is parallel transport along γ. We want V

such that P (V ) = V . P is isometry, dimQ = n − 1 is odd, detP = 1. The real eigenvalues of P are ±1. There are odd
numbers of them. Therefore, λ = 1 must be an eigenvalue, and so there exists V such that P (V ) = V .
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n-odd, Mn non-orientable the π1(M) 6= 0 so there exists γ : S1 →M length minimizing geodesic. Argue as before and
get P : Q→ Q so that

dimQ = n− 1 = even.

detP = −1 (not orientable). P isometry. The number of real eigenvalues is even, and so detP = −1 and so λ = 1 is an
eigenvalue. �

5. Cut Locus

P ∈Mn, V ∈ TpM , |V | = 1. Let γ(t) = exp(tv). Let

t0(p) = sup
{
t : γ[0,t] is length minimizing

}
.

Also
cut(p) = {exp (t0(v)v) : |v| = 1, v ∈ TpM} .

Up = {tv : |v| = 1, v ∈ TpM, 0 < t < t0(v)} ⊆ TpM.

cut(p) = exp (∂Up).

Example 5.1.

(1) (Sn, g), take p to be the north pole. Then Up = Bπ(0) and cut(p) = {south pole}.
(2) (RPn, g), take the north pole again, it stops being length minimizing when we hit the equator. So Up = Bπ/2(0),

and the cut locus is the whole “half-equator”, which is RPn−1

(3) Torus, draw as a rectangle with p being the center. Then the Up is the same rectangle (the fundamental domain).

Fact 5.2.

(1) expp : Up →M is surjective.
(2) expp : Up →M is a global diffeo (needs proof)
(3) ∂Up has measure zero in TpM

Proof. Of 3. t0 : Sn−1 ⊆ TpM → R+ is continuous. Then

∂Up =
{
(t0(v), v) : v ∈ Sn−1

}
(written in polar coordinates). Fubini theorem in polar coordinates imply that we have measure zero. �

Proposition 5.3. q ∈ Cut(p) if one of the following holds.

(1) q is conjugate to p along a geodesic
(2) there are two length minimizing geodesics connecting p to q

Example 5.4. Only b occurs: take RPn

both a and b, use S2

Only a, take an ellipse, and pull out one side a bit more to have a unique geodesic.

Proof. q ∈ cut(p). Suppose a does not happen. Then q = γ(t0) where γ(t) = exp(tv). a not happening means there exist
Λ a neighbourhood of t0v where exp is a diffeo.

There exists σi length minimizing geodesic connecting p to γ(t0 + 1
i ) (no longer in the cut locus). |σ′

i(0)| = 1. Pass to
a subsequence, so that σ′

i(0) → u ∈ TpM . If u 6= v we have found a second geodesic connecting p to q, contradicting the
local diffeo.

If u = v, we will be contradicting the local diffeo property. Because we would have two points in Λ that maps to
γ(t0 +

1
i ) when i sufficiently large.

Assume a. So there is a Jacobi vector field J with J(0) = J(t0) = 0. Choose ε > 0 small. Want to show that

d (p, γ(t0 + ε)) < t0 + ε.
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X ∈ TγΩp,γ(t0+ε). dEγ(X) = 0 (geodesic). Want d2Eγ (X,X) < 0 (this will mean our length is less than the less than
t0 + ε).

Suppose X does not exists, so
(
d2Eγ

)
(X,X) ≥ 0 for all X. Extend J a bit more, to t0 + ε by making it 0 between t

and t0 + ε. But (
d2E

)
(J, J) = −

ˆ
〈J, J′′ +R(J, γ)γ〉 dt = 0

by being a Jacobi vector field. This implies that J ∈ TγΩp,γ(t0+ε). This implies that J is a minimizer of d2Eγ . By general
PDE principle, J is smooth (from being a minimizer). But it can’t be smooth (only continuous) by the way we extended
it. (By the uniqueness of ODE to get the Jacobi vector field, if it’s zero in a neighbourhood, it should be the identically
zero). Finish the proof with assignment problem.

Assume b. Let γ and σ be two length minimizing geodesics. Let |v| = 1 be the vector field coor to γ. Let t0 = d(p, q).
Let η minimizing geodesic connecting σ(t0 + ε) to γ(t0 + ε). Hence,

length (η) < d (σ(t0 + ε), q) + d (q, γ(t0 + ε)) = 2ε.

Then
d (p, γ(t0 + ε)) ≤ d (p, σ(t0 + ε)) + d (σ(t0 + ε), γ(t0 + ε)) < t0 − ε+ 2ε = t0 + ε.

�

Last time: (Mn, g) a manifold, q ∈ Cut(p) iff two minimizing geodesics connecting p to q OR q conjugate to p.

Fact 5.5. Given K ∈ R, gK constant curvature metric, with curvature k

vol
(
BKr (0)

)
=


(

1√
k

)n−1 ´ 1

0
sinn−1

(√
ks
)
ds k > 0

´ r
0
sn−1ds k = 0(
1√
−k

)n−1 ´ 1

0
sinhn−1

(√
−ks

)
k < 0

.

Theorem 5.6. (Gromov-Bishop) Assume (Mn, g) has Ric(g) ≥ (n − 1)kg for some k ∈ R. Then vol(Br(p))
vol(Bkr (0))

≤ vol(Bs(p))
vol(Bks (0))

for s < r. With equality iff (Br(p), g) ≡
(
Bkr (0), gk

)
.

Example 5.7. Get from ADAN

Remark 5.8. Can assume k = 0,−1, or 1.

Making s→ 0,
vol (Br(p)) ≤ vol

(
Bkr (0)

)
for all r ≥ 0 if Ric(g) ≥ (n− 1)kg.

False if we replace Ric by scal meaning scal(g) ≥ n(n− 1) does not imply vol (M) ≤ vol (Sn).
Note that if Ric ≥ (n− 1)g then Bonnet-Myers imply that diam (Mn) ≤ π. Volume comparison implies that

vol (Mn) = vol (Bπ(p)) ≤ vol
(
BS

n

π (0)
)
= vol (Sn)

and with equality iff (Mn, g) ≡ (Sn, gSn).
Contradiction for scalar, is use things like S2 × S1(r), the scalar curvature is 2, vol

(
M3
)
= 3π2r.

Course: Peter Li Lectures in Geometric Analysis (chapter 1 and 2).

6. Isometric Immersions

Let Σn−1 ⊆ (Mn, g)

Definition 6.1. The second fundamental form is

A : TpΣ× TpΣ → (TpΣ)
⊥
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defined by
A (X,Y ) = (∇XY )

⊥
.

Let (U, φ) chart so that φ(0) = p and φ (x1, ..., xn−1, 0) ⊆ Σ.

A

(
∂φ

∂xi
,
∂φ

∂xj

)
=

(
∇∂xiφ

∂φ

∂xj

)⊥

=
(
∇∂jφ∂iφ

)⊥
= A

(
∂φ

∂xj
,
∂φ

∂xi

)
so it is symmetric.

Additionally,
A (fX, Y ) = fA (X,Y )

so A is a symmetric bilinear 2-tensor.
Let η be a unit normal to Σn−1 near p. Let B : TpΣ → TpΣ given by B(X) = ∇Xη (check that ∇Xη · η = 0).

〈A (∂i, ∂j) , η〉 =
〈
(∇∂i∂j)

⊥
, η
〉
= 〈∇∂i∂j , η〉 = ∂i 〈∂j , η〉 − 〈∂j ,∇∂iη〉

= −〈B (∂i) , ∂j〉 .

Definition 6.2. The mean curvature of Σn−1 is H = Tr(A) =
∑n−1
i=1 A (ei, ei) where {ei}n−1

i=1 is an orthonormal basis of
TpΣ.

Geometric meaning of H. Let Σn−1 ⊆Mn. Given X ∈ X(M), let {φt}t∈R be the flow.

Σt = φt(Σ)

for φt : Σ →M . dVt be volume for Σt.

Fact 6.3. d
dtdVt |t=0= divΣXdV0 =

∑n−1
i=1 〈DeiX, ei〉 dV0 where {ei} is an orthonormal basis of TpΣ.

Lemma 6.4. divΣX = divΣX
T − 〈H,X〉. Thus, if X is parallel to η then divΣX = −〈H,X〉.

Proof. We have

divΣX = divΣX
T + divΣX

⊥ = divΣX
T +

∑
i

〈
DeiX

⊥, ei
〉

= divΣX
T +

∑
i

ei
〈
X⊥, ei

〉
−
∑
i

〈
X, (∇ei , ei)

⊥
〉

= divΣX
T −

∑
i

〈X,A (ei, ei)〉

�

If Σn−1 is closed (∂Σ = ∅), then

d

dt
vol (Σt) |t=0 =

d

dt

ˆ
Σt

dVt |t=0=

ˆ
Σ

(
divΣX

T − 〈H,X〉
)
dV

= −
ˆ
Σ

〈H,X〉 dV

that is, H = −∇V ol (gradient of the volume in some sense). Philosphy, mean curvature points towards the direction that
decreases the area.

Consider gk for k = 0, 1,−1. Then

H (∂Br(0)) =


(n− 1) cos rsin r if k = 1

n−1
r if k = 0

(n− 1) cosh rsinh r if k = −1

.

Note: if η is unit normal to Σn−1, let H(Σ) = 〈H, η〉 ∈ C∞(Σ) (not longer vectors, just the magnitude).
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When k = 0,
H
(
Sn−1(r)

)
=
n− 1

r
When n = 2, k = 1 (draw picture). H > 0 then = 0 then < 0.
When n = 2 and k = −1, r → ∞, H (∂Br) → 1.

Definition 6.5. First variation formula.
d

dt
dVt =

(
divΣX

T − 〈H,X〉
)
dV.

6.1. Ricatti equation (2nd variation formula). Σn−1 ⊆Mn, with η the unit normal vector.
φt : Σ →M with φt(x) = expx (tη(x)).

H (Σt) = 〈H(Σt), η〉

and
d

dt
|t=0 H (Σt) = − |A|2 −Ric (η, η) .

where for `i eigenvalues of A,

|A|2 =

n−1∑
i=1

`2i ≥

(∑n−1
i=1 `i

)2
n− 1

=
(TrA)

2

n− 1
=

H2

n− 1
.

Hence,
d

dt
H ≤ −H2

n− 1
−Ric (η, η)

is also called Ricatti equation.

Theorem 6.6. If Ric ≥ (n− 1)kg, then we have

vol (Br(p))

vol (Bkr (0))
is monotonically decreasing.

Proof. expp : TpM →M . Outside the cut locus,(
expp

)?
(g) = dr2 + J(r, θ)gSn−1

by Gauss lemma, with polar coordinates. In particular,

(exp)
?
(gk) = dr2 +


sinn−1(r) k = 1

rn−1 k = 0

sinhn−1(r) k = −1

· gSn−1.

Let φr : Sn−1 →M by φr(θ) = expp(rθ). Then Sr = φr
(
Sn−1

)
.

dV olSr = J(r, θ)dV olSn−1 .

First variation, implies that
d

dr
dV olSr = H (r, θ) dV olSr

The LHS is
∂rJdV olSn−1 =

∂rJ

J
dV olSr .

Therefore, H(r, θ)J(r, θ) = ∂rJ(r, θ). We also have

∂rH ≤ − H2

n− 1
−Ric(η, η) ≤ − H2

n− 1
− (n− 1)k.

Moreover, this holds with equality if we have constant curvature. �

Notation: K = −1, 0, 1. ḡ = gK =constant sectional curvature metric
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Theorem 6.7. (Gromov-Bishop) Assume (Mn, g) with Ric ≥ (n−1)gK then vol(Br(p))
vol

(
B̄r(0)

) ≤ vol(Bs(p))
vol

(
B̄s(0)

) , if s < r and equality
gives rigidity.

Proof. First part was done last time, with small typo.
Take expp : TpM → M ,

(
expp

)?
g = dr2 + f2 (r, θ) gSn−1 . Sr = expp (∂Br(0)), and dVsr = J (r, θ) dsn−1 (J 6= f was

the thing that’s wrong. In fact, J = fn−1). Have two equations

∂rJ = H(r, θ)J (1)

∂rH ≤ − H2

n− 1
−Ric(η, η) ≤ − H2

n− 1
−K(n− 1) (2).

We know ∂rf = H
n−1f then

f ′′ =
H ′

n− 1
f +

H

n− 1
f ′ ≤ − H2

(n− 1)
2 f −Kf +

H2

(n− 1)
2 f ≤ −Kf.

Then f ′′ +Kf ≤ 0.

f̄ =


r if k = 0

sin r if k = 1

sinh r if k = −1

then f̄ ′′ +Kf̄ = 0. We also know that f(0, θ) = 0 (volume of a point). From the equation, f ′(0, θ) = 1 (think locally, all
functions are Euclidean). Let

φ = f ′f̄ − f̄ ′f

then

φ′ = f ′′f̄ + f ′f̄ ′ − f̄ ′′f − f̄ ′f ′

≤ −Kff̄ +Kff̄ = 0.

Since φ(0) = 0, so φ ≤ 0 for all r that makes sense. Then

f ′f̄ − f̄ ′f ≤ 0 =⇒
(
f

f̄

)′

≤ 0

which implies that (
J

J̄

)′

≤ 0 =⇒ J

J̄
is monotone.

S(θ) =cut point of t 7→ exp(tθ) for some θ ∈ Sn−1. Then

vol (Br(p)) =
ˆ
Sn−1

ˆ min{r(θ),s}

0

J(s, θ)dsdθ.

Want to use Fubini, so set

J+(r, θ) =

J(r, θ) if r < r(θ)

0 else

then we still have J+

J̄
↘.

vol (Br(p)) =

ˆ
Sn−1

ˆ r

0

J+(s, θ)dsdθ =

ˆ r

0

ˆ
Sn−1

J+ (r, θ) dθds

=

ˆ r

0

(ˆ
Sn−1

J+(s, θ)

J̄(s)
dθ

)
J̄(s)ds

= vol
(
Sn−1

) ˆ r

0

 
Sn−1

J+(r, θ)

J̄(θ)
dθJ̄(s)ds.
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Call the
ffl r
0

J+(r,θ)

J̄(θ)
dθ by q(s). Then

vol (Br(p))
vol
(
B̄r(0)

) =
vol
(
Sn−1

) ´ r
0
q(s)J̄(s)ds

vol(Sn−1)
´ r
0
J̄(s)ds

=

´ r
0
q(s)J̄(s)ds´ r
0
J̄(s)ds

.

Let ν = J̄ds (new measure), then this is just

=

´ r
0
qdν´ r

0
dν

is monotone, because this is just the average of a montone function q which is monotone. �

Ricatti-Equation.

Proof. Let Σn−1 ⊆Mn, φt : Σ →M by x 7→ expt (tηx) and Σt = φt(Σ) then

∂tH = − |A|2 −Ric (η, η) .

Will prove this. First,
A : TΣ× TΣ → (TZ)

⊥

by A (X,Y ) = (∇XY )
⊥ and B : TΣ → TΣ by B(X) = ∇Xη.

H = TrB =

n−1∑
`=1

〈B(ei), ei〉

where {ei} an o.n.b of TpΣ.
∂ηH =

∑
i

〈(∇ηB) (ei), ei〉 .

Choose {xi}n−1
i=1 coordinates near p ∈ Σ.

(∇ηB)

(
∂φt
∂ei

)
=

(
∇ ∂φ

∂t
B
)( ∂φ

∂xi

)
= ∇ dφ

∂t

(
B(

∂φ

∂xi
)

)
−B

(
∇ ∂φ

∂t

∂φ

∂xi

)
= ∇ ∂φ

∂t
∇ ∂φ

∂xi

∂φ

∂t
−B

(
∇ ∂φ

∂t

∂φ

∂t

)
= ∇∂xi

(
∇∂t

∂

∂t

)
+R

(
∂φ

∂t
,
∂φ

∂xi

)
∂φ

∂t
−B

(
B(

∂φ

∂t
)

)
= R

(
∂φ

∂t
,
∂φ

∂xi

)
∂φ

∂t
−B2

(
∂φ

∂xi

)
= R

(
η,
∂φ

∂xi

)
η −B2

(
∂φ

∂xi

)
.

THen
n−1∑
i=1

〈(∇ηB) (ei), ei〉 =

n−1∑
i=1

R (η, ei, η, ei)−
n−1∑
i=1

〈
B2(ei), ei

〉
= −

n−1∑
i=1

R(η, ei, ei, η)− TrB2

= −Ric (η, η)−
∣∣B2

∣∣ = −Ric(η, η)− |η|2 .

�

6.2. Applications.

Theorem 6.8. (Cheng) If Ric ≥ (n− 1)g and diam(Mn) = π then (Mn, g) = (Sn, gSn).

Proof. Let p, q be such that d(p, q) = diam = π. Then Bπ
2
(p) ∩Bπ

2
(q) = ∅.
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vol
(
Bπ

2
(p)
)
≥

vol
(
B̄π

2
(p)
)

vol
(
B̄π(0)

) vol (Bπ(0)) =
vol (Bπ(p))

2
=
vol (M)

2
.

Similarly,
vol
(
Bπ

2
(q)
)
≥ vol(M)

2
.

Therefore,
vol(M) ≥ vol

(
Bπ

2
(p)
)
+ vol

(
Bπ

2
(q)
)
≥ vol(M).

Since equalities must hold, so
(Bπ(p), g) = (Sn − {q}, gSn)

and so (Mn, g) = (Sn, gSn) . �

Let G be a finitely generated by S = {a1, ..., aN} (assume S = S−1).

N(k) = # {g ∈ G : g = b1...bk, bi ∈ S}

= #words of length k.

Theorem 6.9. (Milnor) If Ric ≥ 0, and π1(M) is finitely generated (ie. if Mn is closed), then N(k) ≤ Ckn for all k ∈ N
(polynomial growth, of order dimension of the manifold).

Remark 6.10. Counter example: surface of infinitely generated

Conjecture 6.11. (Milnor) Ric ≥ 0 then π1(M) is finitely generated.

Gromov: this is true if sec ≥ 0.

Proof. M̃n universal cover, π1 ⊆ isom
(
M̃
)

.
There exists r > 0, Br(0) ∩Br (φ(p)) = ∅ for all φ ∈ π1(M) iff Br(φ(p)) ∩Br (ψ(p))) = ∅ for all φ 6= ψ.
Set L = max {d (p, φ(p)) : φ ∈ S} (S the generating set).
If φ ∈ N(k) then d (p, φ(p)) ≤ kL.
Br(φ(p)) ⊆ BkL+r(p) for all φ ∈ N(k).
By first and fourth fact, N(k)vol (Br(p)) =

∑
φ∈N(k) vol (Br(φ(p)) ≤ vol (BkL+r(p)) . By the theorem, this is ≤

(kL+ r)
n. �

Theorem 6.12. (Milnor) If (Mn, g) is closed, and sectional is < 0 then π1(M) has exponential growth.

Remark 6.13. Thus, Tn has no metric with sectional < 0

There exists simply connected manifolds with Ric = 0 (K3-surface)

Theorem 6.14. (Preissman) Mn closed, sec < 0, then every abelian group of π1(M) is Z (ie. no Z2 ⊆ π1(M)). (Will
prove this at the end)

7. Lacplacian Comparison

Recall that for f ∈ C∞(M), ∆f = div (∇f) =
∑
i 〈∇ei∇f, ei〉 where {ei}ni=1 is an o.n. basis.

Definition 7.1. If f is continuous, then we say ∆f ≤ h in the weak sense for h ∈ C0(M), if for all φ ∈ C∞
c (M) and

φ ≥ 0, we have ˆ
M

f∆φdV ≤
ˆ
M

hφdV
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Theorem 7.2. If (Mn, g) has Ric ≥ (n − 1)Kg for K = 0,−1, 1 then if we set r(x) = d(x, p) for fixed p ∈ M , then in
the weak sense,

∆r ≤


(n− 1) cos rsin r if k = 1

n−1
r if k = 0

(n− 1) coshrsinh r if k = −1

.

Proof. expp : TpM →M , then exp? g = dr2 + f2(r, θ)gSn−1 . J(r, θ) = fn−1(r, θ). We had

(1) ∂rJ = H(r, θ)J(r, θ)

(2) If J̄, H̄ are the corresponding quantities for constant curvature, then

∂rJJ̄− ∂rJ̄J ≤ 0

Then

H(r, θ) =
∂rJ

J
≤ ∂rJ̄

J̄
= H̄ =


(n− 1) cos rsin r if k = 1

n−1
r if k = 0

(n− 1) coshrsinh r if k = −1

.

Claim. ∆r = H(r, θ)

Proof. We know that

∆r = div (∇r) = div

(
∂

∂r

)
.

We know that ∂
∂r = γ′(r) where γ(t) = expp(tθ). Let {ei}n−1

i=1 be an orthonormal basis for T(r,θ)∂Br(p). Then

∆r =
∑
i

〈
∇ei

∂

∂r
, ei

〉
+

〈
∇ ∂

∂r

∂

∂r
,
∂

∂r

〉
second is 0 by geodesics

=
∑
i

ei

〈
∂

∂r
, ei

〉
−
∑
i

〈
∂

∂r
,∇eiei

〉
.

The first term is zero, because we can choose the basis to be always orthogonal. By Gauss lemma, the second is

−
∑
i

〈η,A(ei, ei)〉 = −〈η,H〉 = H(r, θ).

We know that mean curvature always points inwards, so the last equality is just from changing the exterior normal to the
interior normal. �

Then ∆r = H(r, θ) ≤ H̄ = ∆r̄ and so this theorem holds where things are smooth.
Check that in the weak sense, for φ ∈ C0

c (M) with φ ≥ 0, let r(θ) be the cut point, then
ˆ
M

∆r̄φdV =

ˆ
M

H̄φdV =

ˆ
Sn−1

ˆ r(θ)

0

H̄(r)φJ(r, θ)drdθ

≥
ˆ
Sn−1

ˆ r(θ)

0

H(r, θ)J(r, θ)φdrdθ =

ˆ
Sn−1

ˆ r(θ)

0

∂rJφdrdθ

=

ˆ
Sn−1

ˆ r(θ)

0

∂r(Jφ)− J∂rφdrdθ

=

ˆ
Sn−1

J (r(θ), θ)φ−
ˆ
Sn−1

ˆ r(θ)

0

J 〈∇φ,∇r〉 drdθ

≥ −
ˆ
M

〈∇φ,∇r〉 dV =

ˆ
M

∇φrdV

where the last inequality is because J ≥ 0 and φ ≥ 0, and things are bounded in the second term. �
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Theorem 7.3. (Splitting theorem, Cheeger-Gromoll) Assume (Mn, g) with Ric(g) ≥ 0 and containing a line. Then

Mn = Nn−1 × R, g = gN + dr2

and Ric(g) ≥ 0 in Nn−1.

Remark 7.4.

(1) GET PICTURE FROM ADAN OR NACHO
(2) (Schoen-Yau, Liu) If M3 non-compact, has Ric ≥ 0, then either M3 ∼= R3, or M3 = N2 × R isometrically,

g = gN2 + dt2.
(3) If Mn has two ends and Ric ≥ 0, then Mn = Nn−1 × R isometrically. Here, two ends means that there exists

K compact, contained in M such that M − K = M1 qM2 (the pieces are not compact). For example: (GET
PICTURE FROM ADAN/NACHO). Basically, an infinite cylinder, or torus that extends infinitely to the left or
right.

(4) (Soul Theorem) (Cheeger-Fromoll, Perelman). If (Mn, g) has sectional ≥ 0, then there exists K a totally geodesic
compact set (soul) so that Mn is diffeomorphic to normal bundle of K.
If sec > 0 at some point and (Mn, g) is non-compact, then K = {pt} ⊆Mn ∼= Rn.

If Mn = Nn−1 × R, then there exists f : Mn → R where f−1(t) = Nn−1 × {t} and Hess(f) = 0.
Converse is true, if there exists such an f non-constant, then Mn = Nn−1 × R with g = gNn−1 + dt2, where Nn−1 =

f−1(0) (the map is let X = ∇f , which gives {φt}t∈R diffeos. Show φ : f−1(0) × R → Mn with φ(x, t) = φt(x) is an
isometry).

This f should be seen as the distance to γ(∞).

Definition 7.5. Given γ a line, the Busemann function is bγ : M → R given by

bγ(x) = lim
t→∞

(t− d (γ(t), x)) .

Example 7.6. If Mn = Rn with γ(t) = te1 then check that bγ(x) = x · e1 = x1.

In Hn, b−1
γ (t) are horospheres. (Get picture).

Basic properties:

(1) If s ≤ t, then s− d (γ(s), x) ≤ t− d (γ(t), x). The LHS is

t− d (γ(t), γ(s))− d (γ(s), x) = t− (t− s)− d (γ(s), x)

so this is Lipschitz and so the limit exists.
(2) Also,

|bγ(x)− bγ(y)| = lim
t→∞

|bγ (x, γ(t))− bγ (x, γ(t))| ≤ d(x, y)

so the Lipschitz constant is just 1

(3) Also,
bγ (γ(s)) = lim

t→∞
(t− d (γ(s), γ(t))) = lim

t→∞
(t− (t− s)) = s.

(4) We have,
b+γ = lim

t→∞
(t− d (γ(t), x)) , b−γ = lim

t→∞
(t− d (γ(−t), x))

where the − is distance to γ(−∞).

Proof. Since Ric ≥ 0, weakly, we have

∆b+γ = lim
t→∞

(
−∆dγ(t)

)
≥ − lim

t→∞

n− 1

d (γ(t), x)
≥ 0.
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Similarly,
∆
(
b+γ + b−γ

)
≥ 0.

Additionally, (
b+γ + b−γ

)
(γ(s)) = s− s = 0.

Everywhere else,

b+γ (x) + b−γ (x) = lim
t→∞

(2t− d (γ(t)− x)− d (γ(−t)− x))

≤ lim (2t− d (γ(t), γ(−t))) = lim(2t− 2t) = 0.

Therefore, it achieves its maximal. By maximal principal, we must get that b+γ + b−γ is constantly zero.
Therefore, ∆b+γ = −∆b−γ , and so ∆b+γ = 0. This means that it is a harmonic function, so it has to be smooth.
Bochman formula.

∆
∣∣∇b+γ ∣∣2 = 2

∣∣∇2b+γ
∣∣2 +Ric

(
∇b+γ ,∇b+γ

)
.

After proving this, we will get that Hess
(
b+γ
)
= 0. �

Theorem 7.7. Maximal Principle. If f is a function on U (bounded open set) such that

(1) ∆f ≥ 0 (in W 1,2)
(2) f assumes maximal at interior point

then it is contstant. In particular, f ≤ sup∂U f .

Proof. Assume f ∈ C2 (see other sources for weaker condition). There exists p ∈ U and r small such that

f(p) = max f = I and inf
∂Br(p)

f < I.

(1) Suppose ∆f > 0 in U .
But ∆f(p) ≤ 0 because p is a global maximum, contradiction.

(2) Let V = {x ∈ ∂Br(p) : f(x) = I} .

Claim. There exists h ∈ C∞(Ū) such that ∆h > 0, h(p) = 0 and h < 0 on V

Proof. h = eαφ − 1. Get picture for description of φ. Basically, φ is constructed to be always increasing, so
|Dφ| > 0 on B̄r.
h < 0 on V because φ < 0 on V .

∆h = ∆eαφ =
∑
i

∂i
(
α∂iφe

αφ
)
= α2 |Dφ|2 eαφ + αDφeαφ

= αeαφ
(
α |Dφ|2 +∆φ

)
if α� 1, then ∆h > 0. �

Set fδ = f + δh. Then ∆fδ > 0. Then for all δ � 1, sup∂Br fδ < I. fδ(p) = I so

sup
B̄r

fδ ≥ I > sup
∂Br

fδ

but fδ has interior maximuum which is impossible.

�

Recall: we had

Theorem 7.8. Ric ≥ 0 + line implies Mn = Nn−1 × R

Proof. Recall: stuff about b+γ and b−γ .
By the maximum principle, b+γ + b−γ ≡ 0 and so ∆b+γ ≡ 0 and so b+γ = 0.
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∣∣b+γ (x)− b−γ (y)

∣∣ ≤ a(x, y). Since b+γ (γ(t)) = t we get
∣∣∇b+γ ∣∣ = 1 on γ.

∆
∣∣∇b+γ ∣∣2 = 2 〈∇∆bγ ,∇bγ〉+ 2

∣∣∇2bγ
∣∣2 + 2Ric 〈∇bγ ,∇bγ〉 .

Will prove this later. By harmonic, the first term is zero. Since Ric ≥ 0, ∆
∣∣∇b+γ ∣∣2 ≥ 0. By maximal principle,

∣∣∇b+γ ∣∣ ≡ 1

and so
∣∣∇2b+γ

∣∣ ≡ 0. �

8. De Rham Cohomology

Definition 8.1. Λk(M) the space of k-forms on M . Have dk : Λk(M) → Λk+1(M), with Hk(M) = ker(dk)/im
(
dk−1

)
.

If (Mn, g) has a metric, have a metric on Λk(M) where we declare that

e?i1 ∧ ... ∧ e
?
ik

is an o.n.b. Then
(α, β) =

ˆ
M

〈α, β〉 dV

on Λk(M). Define δk : Λk+1(M) → Λk(M) be the L2-adjoint of dk. That is, (δα, β) = (α, dβ) for all α ∈ Λk+1(M) and
β ∈ Λk(M). Then

∆dRα = δdα+ dδα

where ∆dR : Λk → Λk. Define
Hk (M) =

{
α ∈ Λk(M) : ∆dRα = 0

}
.

Example 8.2. Let f ∈ C∞(M) = Λ0(M). Then

∆dRf = δdf = −div
(
(df)#

)
= −div (∇f) = −∆f.

Claim. α ∈ Λ1(M), δα = −div(α#). (see next remark for definition.

Proof. φ ∈ C∞(M), then (dφ)
#
= ∇φ.ˆ
(δα)φ = (δα, φ) = (α, dφ) =

ˆ
〈α, dφ〉 =

ˆ 〈
α#, Dφ

〉
=

ˆ
div
(
α#φ

)
− φdiv

(
α#
)
= −

ˆ
φdiv(α#)

for all φ. �

Theorem 8.3. (Hodge) Hk(M) ∼= Hk(M).

If α ∈ Λ1(M) = (TM)
?, then there exists a unique α# ∈ X(M) such that α(Z) =

〈
α#, Z

〉
for all Z ∈ X(M).

∆α# = Tr∇2α#.

Question: relate ∆α# with (∆dRα)
#.

Theorem 8.4. (Bocher) ∆α# = − (∆dRα)
#
+Ric

(
α#
)
. That is,〈

∆α#, Z
〉
= −

〈
(∆dRα)

#
, Z
〉
+Ric

(
α#, Z

)
for all Z ∈ X(M).

Proof. (U, φ) chart so that
{
∂φ
∂xi

= ∂i

}
give normal coordinates at p (〈∂i, ∂j〉 = δij and ∇ij = 0).

We have two identities for α ∈ Λ1(M).

(dα) (∂i ∧ ∂j) =
〈
∇∂iα

#, ∂j
〉
−
〈
∇∂jα

#, ∂i
〉
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for all i, j (this is hwk). For β ∈ Λ2(M),

(δβ) (∂i)(p) = −
∑
k

∂k (β(∂k, ∂i))− β (∇∂k∂k, ∂i)− β (∂k,∇∂k∂i)

= −
∑
k

∂k (β(∂k, ∂i)) (p).

We have ∆dRα = δdα+ dδα, so

δdαp(∂i) = −
∑
k

∂k (dα (∂k, ∂i)) = −
∑
k

∂k
(〈
∇∂kα

#, ∂i
〉
−
〈
∇∂iα

#, ∂k
〉)

= −
∑
k

(〈
∇∂k∇∂kα

#, ∂i
〉
+
〈
∇∂kα

#,∇∂k∂i
〉
−
〈
∇∂k∇∂iα

#, ∂k
〉
−
〈
∇∂iα

#,∇∂k∂i
〉)

= −
〈
∆α#, ∂i

〉
+
∑
k

〈
∇∂k∇∂kα

#, ∂i
〉
.

Meanwhile,

(dδα)p (∂i) = ∂i (δα) (p) = −∂i

(∑
k

〈
∇ekα

#, ek
〉)

= −
∑
k

〈
∇∂i∇ekα

#, ek
〉
−
∑
k

〈
∇ekα

#,∇∂iek
〉

= −
∑
k

〈
∇∂i∇∂kα

#, ∂k
〉
,

here ei is a o.n. frame in the neighbourhood of p.

(∆dRα) (∂i) = −
〈
∆α#, ∂i

〉
+
∑
k

〈
∇∂k∇∂iα

#, ∂k
〉
−
∑
k

〈
∇∂i∇∂kα

#, ∂k
〉

= −
〈
∆α#, ∂i

〉
+
∑
k

R
(
∂k, ∂i, α

#, ∂k
)

= −
〈
∆α#, ∂i

〉
+
∑
k

R
(
∂i, ∂k, ∂k, α

#
)

= −
〈
∆α#, ∂i

〉
+Ric

(
∂iα

#
)
.

The rest follows. �

Fact 8.5. Identities:

• If X ∈ X(M), then

∆ |X|2 =
∑
i

∂i∂i |X|2 = 2
∑
i

∂i (〈∇∂iX,X〉) = 2
∑
i

〈
∇2
∂i∂iX,X

〉
+ 2

∑
i

〈∇∂iX,∇∂iX〉

= 2 〈∆X,X〉+ 2 |∇X|2 .

Corollary 8.6. For α ∈ Λ1(M),

∆ |α|2 = −2 〈∆dRα, α〉+ 2
∣∣∇α#

∣∣2 + 2Ric
(
α#, α#

)
.

Proof. We have

∆ |α|2 = ∆
∣∣α#

∣∣2 = 2
〈
∆α#, α#

〉
+ 2

∣∣∇α#
∣∣2

= −2 〈∆dRα, α〉+ 2Ric
(
α#, α#

)
+ 2

∣∣∇α#
∣∣2 .

�

Corollary 8.7. ∆ |∇f |2 = 2 〈∆∇f,∇f〉+ 2
∣∣∇2f

∣∣2 + 2Ric (∇f,∇f).
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Proof. Let α = df . Then

∆ |∇f |2 = −2 〈∆dRdf, df〉+ 2
∣∣∇2f

∣∣2 + 2Ric (∇f,∇f)

= −2 〈∇∆dRf,∇f〉+ 2
∣∣∇2f

∣∣2 + 2Ric (∇f,∇f) .

�

Corollary 8.8. If (Mn, g) closed with Ric ≥ 0, then

(1) If Ric > 0 then b1(M) = dimH1(M) = 0

(2) If Ric ≥ 0 then b1(M) ≤ n and with equality iff (Mn, g) = (Tn, gflat).

Proof. Suppose there exists α ∈ Λ1(M), ∆dRα = 0. The first corollary implies that

∆ |α|2 = 2
∣∣∇α#

∣∣2 +Ric
(
α#, α#

)
> 0

which is not possible by maximal principal. �

Remark 8.9. If (Tn, g) with Ric ≥ 0 then g is flat.

Theorem 8.10. (Schoen-Yau). There does not exists g on Tn with S(g) ≥ 0 and g not flat. ,

Theorem 8.11. If (Mn, g) is closed with Ric ≥ 0, then

(1) Ric > 0 then b1(M) = 0

(2) Ric ≥ 0 then b1(M) ≤ n and with equality iff (Mn, g) = (Tn, gflat)

(Betti number)

Proof. Recall that
H1(M) =

{
α ∈ Λ1(M) : ∆dRα = 0

}
and H1(M) ∼= H1 (M,R) and b1(M) = dimH1(M).

If α is harmonic, ∆dRα = 0,
∆ |α|2 = 2

∣∣∇α#
∣∣+ 2Ric

(
α#, α#

)
this is called teh Bochner formula.

For α ∈ H1(M) and Ric ≥ 0,
∆ |α|2 ≥ 2

∣∣∇α#
∣∣2 ≥ 0

and so |α| =constant and ∇α# = 0 by maximal principle.
Let Φ : H1(M) → TpM given by α 7→ α#(p). Since ∇α# = 0, this means that Φ is injective, and so b1(M) ≤ n. If

b1(M) = n then let {αi}ni=1 be a linearly independent parallel vectors
(
∇α#

i = 0
)

(do this at a point, by parallel, they are
linearly independent everywhere. Similarly, orthonormal at one point will carry to everywhere). Get orthonormal basis
{ei}ni=1 (everywhere) which is parallel. Therefore, R the curvature tensor is zero. Hence, Mn is covered by (Rn, gflat).
Since M is closed, (Mn, g) ≡ (Tn, gflat). �

Theorem 8.12. If (Mn, g) closed has Ric < 0 then #(Isom (M, g)) <∞.

Remark 8.13. Isom (Hn, gHn) = conf
(
Sn−1

)
so closed is important.

Similarly, Isom (Sn, gSn) = O(n+ 1) so Ric < 0 is important.

Proof. (Myers-Steenrod) Isom (M, g) is a compact Lie Group and

TidIsom (Mn, g) = {X ∈ X(M) : LXg = 0} .

If {φt}|t|≤ε ⊆ Isom (M, g) with φ0 = id then

X =
dφt
dt

|t=0, φ
?
t g = g
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and 0 = d
dt (φt)

?
g = LXg. Just need to show that there are no killing vector fields (the Lie group is a zero dimensional

manifold, then by compactness, it’s finite).
Suffices to see that if X ∈ X(M) is killing, then X = 0. LXg = 0 iff for (U,ψ) a chart, then〈

∇ ∂ψ
∂xi

X,
∂ψ

∂xj

〉
+

〈
∇ ∂ψ

∂xj

X,
∂ψ

∂xi

〉
= 0

for all i, j. First, notice that if j = i, then each part is 0. Write ∂i = ∂ψ
∂xi

.

Normal coordinates at p, then

〈∆X, ∂k〉 (p) =

〈∑
i

∇∂i∇∂iX, ∂k

〉
(p) = −

〈∑
i

∇∂i∇∂kX, ∂i

〉
(p)

(because of normal coordinates from ∇∂k∂i = 0 and use the killing property). This is

= −

〈∑
i

∇∂k∇∂iX, ∂i

〉
(p)−

∑
i

R (∂i, ∂k, X, ∂i)

= −
∑
i

∂k 〈∇∂iX, ∂i〉+
∑
i

〈∇∂iX,∇∂k∂i〉 −Ric(X, ∂k)

= −Ric (X, ∂k)

because 〈∇∂iX, ∂i〉 = 0.
∆ |X|2 = 2 〈∆X,X〉+ 2 |∇X|2 = −2Ric (X,X) + 2 |∇X|2 ≥ 0

By maximal principle, |X| = constant and X ≡ 0. �

Theorem 8.14. Preissman Theorem. (Mn, g) closed with sectional < 0 then Γ abelian subgroup of π1(M) then Γ ∼= Z.

Remark 8.15.

(1) There does not exists (Tn, g) with sec < 0 (since π1 (Tn) = Zn)
(2) Lawson-Yau. If (Tn, g) with sectional ≤ 0 then g is flat.

Proof. Assume α, β ∈ π1 with α ? β = β ? α.

(1) There exists F : T2 →Mn which is homotopically non-trivial.
There exists H homotopy between α ? β and β ? α. H : [0, 1]× [0, 1] →M by

H(s, 0) = H(s, 1) = α(s) and H(0, t) = H(1, t) = β(t).

Then H? : π1
(
S1, S1

)
→ π1(M) is injective.

Will come back to this proof �

C∞ ((Nk, h
)
, (Mn, g)

)
=
{
f : Nk →Mn smooth

}
with k ≤ n.

E(f) =

ˆ
N

|df |2 dh

Definition 8.16. Critical points for E are called Harmonic maps.

Example 8.17.

(1) Nk = S1, E(f) =
´
S1 |f ′|2 dθ harmonic is geodesic.

(2) Nk = S1 × S1 and f : S1 × S1 →M , f(θ1, θ2) = f(θ1) then f harmonic iff t 7→ f(t) is a geodesic.
(3) f : S1 × S1 → S1 × S1 × S1 by f(θ1, θ2) = (θ1, θ2, θ1) then f is harmonic
(4) If Mn = Rn and f : Nk → Rn is harmonic, iff ∆Nfi = 0 for all i

Theorem 8.18. (Eels-Sampson) If section (Mn) < 0 then every homotopic non-trivial map F : Nk →Mn is homotopic
to a harmonic map.
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Remark 8.19. There exists f : RP2 → S2 which is homotopically non-trivial set has no harmonic map in its homotopy
class.

Question: can one remove sect < 0? When k = 2 and N is orientable, it is known that one can.

Remark 8.20. (Hartman) Under sect(Mn) < 0, harmonic maps are unique in their homotopy class and energy minimizing.

Let f : Nk →Mk be harmonic, with (∆f)
T
= 0.

∆ |df |2 = 2 |∇df |2 + 2

k∑
i=1

〈
df(RicN (ei)), df(ei)

〉
−

k∑
i,j=1

RM (df(ei), df(ej), df(ej), df(ei))

where {ei}ki=1 o.n.b for TpNk. Here, Ric (Z) is the unique vector such that

〈Ric(Z), Y 〉 = Ric (Z, Y )

for all Y .
Recall, if f ∈ C∞ (N,R) with ∆f = 0, then

∆ |∇f |2 = 2
∣∣∇2f

∣∣2 + 2Ric (∇f,∇f)

(special case of the above. CHECK! Diagonalize Ricci and use basis).

Corollary 8.21. Assume sec(Mn) < 0. There does not exists f : Sk →Mn harmonic.

Proof. We have RicSk(ei) = (n− 1)ei,

∆ |∇f |2 = 2 |∇f |2 + 2(n− 1)(df)2 −
∑
i

RM (·) ≥ 2 |∇df |2 + 2(n− 1) |df |2 .

Maximal principal implies that |df |2 =constant and so |df |2 ≡ 0. �

Corollary 8.22. For f : T2 →M harmonic, then image of f is a closed geodesic.

Proof. This is when RicN = 0.

∆ |df |2 = 2 |∇df |2 −R (df(e1), df(e2), df(e2), df(e1)) ≥ 0.

Maximal principal says that |df | =constant and ∇df ≡ 0. And R (df(e1), df(e2), df(e2), df(e1)) = 0, so df(e1) is colinear
with df(e2) and so the image of f is one dimensional (a curve) which is also a geodesic. �

Proof. Application to proof of Preissman Theorem, there exists γ geodesic such that α = γk and β = γk then 〈α, β〉 ∼=
Z. �

Recall:

Theorem 8.23. (Hadamard?) If (Mn, g) is closed, with π1(M) 6= 0, then there exists a closed geodesic.

Question: (Poincare, 1905). Is there a closed geodesicin
(
S2, g

)
for any g. He gave two approaches:

(1) Say there is a functional F : Ω → R, does F need to have a critical point (not true on R, like x 7→ x)
(2) Must a geodesic always close?

Birkhof: (1912) Every
(
S2, g

)
has a closed geodesic.

(90’s) (Franks, Bangert) Every
(
S2, g

)
has infinitely many closed geodesics.

Toy problem: Suppose Ω is compact, and finite dimensional, then there are at least two critical points (min and max).
Question: does it need to have a third?

Claim 8.24. If π1 (Ω) 6= 0, then there exists a third critical point.
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Proof. Take [γ] 6= 0 in π1(Ω). For each σ : S1 → Ω in [γ], take

inf
σ∈[γ]

max
p∈S1

F ◦ σ(p) =W

is a critical point. (Get picture). �

Claim 8.25. There exists p such that ∇F (p) = 0 and F (p) =W .

Proof. Choose {σi} ⊆ [γ] such that maxF ◦ σi = F (σi(θi)) → W . Pass to a subsequence, σi(θi) → p. Is ∇F (p) = 0?
Suppose not, consider (φt)|t|≤ε where ∂φt

∂t = −∇F (φt). Then there exists δ > 0 so that

maxF (φεσσi) ≤ max (F ◦ σi)− δ →W − δ.

But the
W ≤ LHS

by definition. �

Proof. of Birchoff.

ΩL =

{
γ : S1 → S2 ⊆ R3 |

ˆ
S1

|γ|2 + |γ′(0)|2 dθ < L

}
.

(Note, this is with respect to the Euclidea embedding, not the w/e metric).
Sobolov. If γ ∈ ΩL then γ is continuous. If (γi) ⊆ ΩL , there is γ ∈ ΩL such that γi → γ in W 1/2 and in C0.
E : ΩL → R, E(γ) =

´
S1

√
〈γ′(0), γ′(0)〉gdθ.

π1
(
ΩL
)
6= 0?, π1(ΩL) = π2(S

2) = Z.
γ : [−1, 1] → ΩL, by γ(t) = S2 ∩ {x3 = t}. Let

[γ] =
{
σ : (−1, 1) → Ω1 : σ homotopic to γ and σ(−1), σ(1) are points

}
Remark. If σ ∈ [γ], σ : (−1, 1)× S1 → S2, σ̂ : S2 → S2 which is homotopically non-trivial.

Claim. There exists c0 > 0 such that if σ ∈ [γ],

max
|t|≤1

E (σ(−1)) ≥ c0

Proof. Assume E (σ(t)) � 1, all |t| ≤ 1. Fix θ̄ ∈ S1.

W = inf
σ∈[γ]

max
|t|≤1

E (σ(t)) ≥ c0.

There exists D : ΩL → ΩL such that

(1) E (D(γ)) ≤ E(γ)

(2) E (D(γ)) = E(γ) implies that γ is a geodesic
(3) D(γ) is homotopic to γ
(4) D is continuous weakly in W 1,2. If γi → γ, then E (D(γi)) → E (D(γ))

(5) Let L =
{
γ : S1 →

(
S2, g

)
: geodesic

}
⊆ ΩL , then for all ε > 0, there exists δ so that d (γ,L) ≥ ε implies

E (D(γ)) ≤ E(γ)− δ.

Assume the existence of D. Choose σi ∈ [γ], maxE ◦ σi →W . D(σi) ∈ [γ] and E (D ◦ σi) ≤ E(σi).

W ≤ max
|t|≤1

E (D ◦ σi) ≤ maxE(σi) →W.

There exists ti, so that E (D ◦ σi(ti)) = maxE (D ◦ σi) →W . Then

|E (D ◦ σi(ti))− E (σi(ti))| → 0

as i→ ∞. Fourth property implies that d (γi(t0),L) → 0. In particular, L 6= 0.
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This D is the following. Let σ ∈ ΩL. Divide S1 into I1, ..., I2N all of the same legnth. If N � 1 then length (σ(Ij)) � 1

for all j, independent of σ (just on L). σ1 replacement of σ by geodesics connecting endpoints of σ(Ij ∪ Ij+1) where j is
odd, E(σ1) ≤ E(σ).
σ2, do same process to σ1, but on σ1 (Ij ∪ Ij+1), where j is even.
Set D(σ) = σ2 if D(σ) = σ, the σ is a geodesic. �

�

(Rademacher) For a generic set of metrics,
(
M4, g

)
, there are infinitely many closed geodescs.

(Gronoll-Meyers, Gromov) For all manifolds but a finite set (Sn,CPn, ...), they have infinitely many closed geodesics.

Conjecture 8.26. Every (Sn, g) has infinitely many closed geodesics.

Conjecture 8.27. (Yau) Every
(
M3, g

)
has infinitely many closed minimal surfaces.

Theorem 8.28. (Pitts, Schoen-Simon) Every (Mn, g) has 1 minimal hypersurface (codimension 1).

Theorem 8.29. (-N) Every (Mn, g) with Ric(g) > 0 has inifnitely many minimal surfaces.

Theorem 8.30. Every (Mn, g) for generic metrics g, there are infinitely many minimal surfaces.


