DEFINITION

DIFFERENTIAL EQUATIONS

FIRST ORDER DIFFERENTIAL EQUATIONS

Example	General Solution	Particular Solution
$\frac{d y}{d x}=x-1$	$y=\int x-1 d x$	
	$y=\frac{x^{2}}{2}-x+c$	$y=\frac{x^{2}}{2}-x+3$
$y=\frac{x^{2}}{2}-x+15$		

${ }^{3}$

Example	General Solution	Particular Solution
$\frac{d y}{d x}=\sqrt{1-x}$	$y=\int \sqrt{1-x} d x$	
	$y=\int(1-x)^{\frac{1}{2}} d x$	
$y=\frac{(1-x)^{\frac{3}{2}}}{\frac{3}{2}(-1)}+c$		
	$y=\frac{-2(1-x)^{\frac{3}{2}}}{3}+c$	$y=\frac{-2(1-x)^{\frac{3}{2}}}{3}+20$
	$y=\frac{-2(1-x)^{\frac{3}{2}}}{3}-100$	

SEPARATING THE VARIABLES

HOW DOWE KNOW IF IT CAN BE SEPARATED?

To put it simply, you separate the variables of y and x

$$
\begin{aligned}
& \qquad \underset{x}{ } y^{2} \frac{d y}{d x}=1 \\
& \text { y on the left } \quad \mathrm{x} \text { on the right }
\end{aligned}
$$

$$
\begin{aligned}
y^{2} \frac{d y}{d x} & =\frac{1}{x} \\
y^{2} d y & =\frac{1}{x} d x \\
\int y^{2} d y & =\int \frac{1}{x} d x
\end{aligned}
$$

To put it simply, you separate the variables of y and x

$$
\begin{aligned}
& \left(y^{2} x-y \frac{d y}{d x}=5\right. \\
& y(y \mid y-1) \frac{d y}{d x}=5
\end{aligned}
$$

y on the left x on the right
CANNOT BE SEPARATED
ANNOT BE SEPARATED

METHOD

- Separate the variables x and y
- Integrate the left hand side in terms of y and the right hand side in terms of x

$$
\begin{gathered}
f(y) \frac{d y}{d x}=g(x) \\
\int f(y) d y=\int g(x) d x
\end{gathered}
$$

To put it simply, you separate the variables of y and x
$[x y+x] \frac{d y}{d x}=3$
$\boxed{x}(y+1) \frac{d y}{d x}=3$
y on the left x on the right
$(y+1) \frac{d y}{d x}=\frac{3}{x}$
$(y+1) d y=\frac{3}{x} d x$
$\int(y+1) d y=\int \frac{3}{x} d x$

DIFFERENTIAL EQUATIONS
SOLVING FIRST ORDER DIFFERENTIAL EQUATIONS

Example 1: Find the general solution of the differential equations

$$
\text { I.(a) } \quad \begin{aligned}
\frac{d y}{|d x|} & =\frac{1}{x} \\
1 d y & =\frac{1}{x} d x \\
\int 1 d y & =\int \frac{1}{x} d x \\
y & =\ln x+c
\end{aligned}
$$

Example 1: Find the general solution of the differential equations
I.(b) $\frac{d y}{d x}=\operatorname{cosec} y$

$$
\begin{aligned}
\frac{1}{\operatorname{cosec} y} d y & =1 d x \\
\frac{1}{\frac{1}{\sin y}} d y & =1 d x \\
\sin y d y & =1 d x \\
\int \sin y d y & =\int 1 d x \\
-\cos y & =x+c
\end{aligned}
$$

Example I: Find the general solution of the differential

 equationsI.(d) $y(1+x) \frac{d y}{d x}-2\left(1+y^{2}\right)=0$

$$
\begin{aligned}
& y \sqrt{(1+x) \frac{d y}{d x}}=2\left(1+y^{2}\right) \\
& \frac{y}{\left(1+y^{2}\right)} \frac{d y}{d x}=\frac{2}{(1+x)} \\
& \frac{y}{\left(1+y^{2}\right)} d y=\frac{2}{(1+x)} d x \\
& \int \frac{y}{\left(1+y^{2}\right)} d y=\int \frac{2}{(1+x)} d x \\
& \frac{\ln \left(1+y^{2}\right)}{2 x}=2 \ln (1+x)+c
\end{aligned}
$$

Example 2: Solve the following differential equations:
2.(a)

Example 1: Find the general solution of the differential equations
I.(c) $\frac{d y}{d x}=5$ 包

$$
\begin{aligned}
\frac{1}{y} d y & =5 d x \\
\int \frac{1}{y} d y & =\int 5 d x \\
\ln y & =5 x+c
\end{aligned}
$$

Example 1: Find the general solution of the differential equations
I.(e) $\frac{d y}{d x}=y^{2}$
$\frac{1}{y^{2}} \frac{d y}{d x}=\frac{1}{x}$
$\frac{1}{y^{2}} d y=\frac{1}{x} d x$
$\int y^{-2} d y=\int \frac{1}{x} d x$
$\frac{y^{-1}}{-1}=\ln x+c$
$-\frac{1}{y}=\ln x+c$

Example 2: Solve the following differential equations:
2.(b)

$$
\begin{aligned}
\frac{d y}{d x} & =\text { 泡 } \\
\frac{1}{y} d y & =5 d x \\
\int \frac{1}{y} d y & =\int 5 d x
\end{aligned}
$$

$$
\begin{gathered}
\hline y=2, x=0 \\
\ln y=5 x+c \\
\ln 2=5(0)+c \\
c=\ln 2 \\
\hline \ln y=5 x+\ln 2 \\
y=e^{5 x+\ln 2} \\
y=e^{5 x} e^{\ln 2} \\
y=2 e^{5 x}
\end{gathered}
$$

Example 2: Solve the following differential equations:

Example 2: Solve the following differential equations:
2.(e) $\left[(x+1) \frac{d y}{d x}=\sqrt{y}\right.$
$\frac{1}{y} d y=\frac{1}{(x+1)} d x$
$\int \frac{1}{y} d y=\int \frac{1}{(x+1)} d x$
$\ln y=\ln (x+1)+c$

$\ln y=\ln (x+1)+c$
$\ln 1=\ln (1+1)+c$
$0=\ln 2+c$
$c=-\ln 2$
$\ln y=\ln (x+1)-\ln 2$

APPLICATION ON DIFFERENTIAL EQUATIONS

- Examples are real life
- Rate of change of a quantity Q is proportional to the value Q

$$
\frac{d Q}{d t} \alpha Q
$$

- Rate of change is taken with respect to time

Example 2: Solve the following differential equations:
2.(d)

APPLICATION ON DIFFERENTIAL EQUATIONS

NATURAL GROWTH
AND
NATURAL DECAY

(II) Natural Decay

If the rate of decrease of Q is proportional to Q,

$$
\frac{d Q}{d t} \alpha Q \quad \longmapsto \quad \frac{d Q}{d t \mid}=-k Q
$$

Solve the first order differential equation:

$$
\begin{array}{|l|l|}
\hline \text { Q to the left to the right } & \begin{array}{l}
\frac{1}{Q} d Q
\end{array} \begin{array}{l}
\\
\hline
\end{array} \\
& \int \frac{1}{Q} d Q d t \\
& =\int-k d t \\
\ln Q=-k t+c & Q=e^{-k t+c} \\
& Q=A e^{-k t} e^{c} \\
\hline
\end{array}
$$

Example 2(I): The rate of increase of a colony of bacteria is proportional to the number of bacteria present at any particular time. If initial number of bacteria is 100 and 4 hrs later there are 1350, then find \mathbf{k} and \mathbf{A}.

Let bacteria be B.

$$
\begin{aligned}
\frac{d B}{d t} & \alpha B \\
\frac{d B}{d t} & =k B \begin{array}{l}
\text { k is positive because } \\
\text { it is a rate of increase }
\end{array} \\
\frac{1}{B} d B & =k d t \\
\int \frac{1}{B} d B & =\int k d t \\
\ln B & =k t+c \\
B & =e^{k t+c} \\
B & =A e^{k t}
\end{aligned}
$$

(I) Natural Growth

If Q is increasing with time, it can be expressed as differential equation

$$
\frac{d Q}{d t} \alpha Q \quad \longmapsto \quad \frac{d Q}{d t}=k Q
$$

Solve the first order differential equation:

$$
\begin{array}{|c|c|}
\hline \text { Q to the leftt to the right } & \begin{array}{l}
1 \\
Q \\
\\
\\
\int \frac{1}{Q} d Q=k d t \\
\ln Q=k t+c
\end{array} \\
Q=e^{k t+c} \\
Q=e^{k t} e^{c} \\
Q=A e^{k t} \\
\hline \text { Rate of increase of number of cells of yeast is proportional to the number of cells }
\end{array}
$$

METHOD

- Interpret the word problem into a differential equation
- Solve the first order of differential equation
- Find the value of k and A (or c)
- Answer the question

Example 2(1): The rate of increase of a colony of bacteria is proportional to
the number of bacteria present at any particular time. If initial
number of bacteria is 100 and 4 hrs later there are 1350, then
find \mathbf{k} and \mathbf{A}.

$B=A e^{k t}$		$1350=A e^{4 k}$
$\begin{array}{\|ll\|}\text { At } t=0, & B=100 \\ \text { At } t=4, & B=1350\end{array}$	k and A ?	$1350=100 e^{4 k}$
$100=A e^{k 0}$		$\frac{1350}{100}=e^{4 k}$
$100=A e^{0}$		$e^{4 k}=1.35$
$A=100$		$4 k=\ln (1.35)$
		$k=\frac{\ln (1.35)}{4}$
		$k=0.0750$

Example 2(2): The rate of increase of a population of tigers is proportional to the population at any particular instant of time. If initial number of tigers is 400 and if after 2 years there are 480, how many tigers will there be after 5 years?

Let tigers be Q .

$$
\begin{array}{rlr}
\frac{d Q}{d t} \quad \alpha & \\
\frac{d Q}{d t} & =k Q & \begin{array}{l}
\text { k is positive because } \\
\text { it is a rate of increase }
\end{array} \\
\frac{1}{Q} d Q & =k d t & \\
\int \frac{1}{Q} d Q & =\int k d t & \\
\ln Q & =k t+c \\
Q & =e^{k t+c} \\
Q & =A e^{k t}
\end{array}
$$

Example 2(3): The number of insects in a population t days after the start of observations is denoted by N. The variation in the number of insects is modelled by a differential equation of the form

$$
\frac{d N}{d t}=k N \cos (0.02 t)
$$

where k is a constant and N is taken to be a continuous variable. It is given that $N=125$ where $t=0$.
(i) Solve the differential equation, obtaining a relation between N, k and t.

$\frac{d N}{d t}$	$=k \sqrt{N} \cos (0.02 t)$	
$\frac{1}{N} d N$	$=k \cos (0.02 t) d t$	$N=A e^{k \frac{\sin (0.02 t)}{0.02}}$
$\int \frac{1}{N} d N$	$=\int k \cos (0.02 t) d t$	
$\ln N$	$=k \frac{\sin (0.02 t)}{0.02}+c$	
N	$=e^{k \frac{\sin (0.02 t)}{0.02}+c}$	
N	$=e^{k \frac{\sin (0.02 t)}{0.02}} e^{c}$	
At $t=0, N=125$		

Example 2(3): (iii)Obtain an expression for N in terms of t, and find the least value of N predicted by this model.

$-1 \leq \sin (0.02 t) \leq 1$
$-1(0.0100) \leq 0.0100 \sin (0.02 t) \leq 1(0.0100)$
$\frac{-1(0.0100)}{0.02} \leq 0.0100 \frac{\sin (0.02 t)}{0.02} \leq \frac{1(0.0100)}{0.02}$
$-0.502 \leq 0.0100 \frac{\sin (0.02 t)}{0.02} \leq 0.502$

$$
\begin{aligned}
& N=125 e^{-0.502} \\
& N=75.66 \\
& N=76
\end{aligned}
$$

Example 2(2): The rate of increase of a population of tigers is proportional to the population at any particular instant of time. If initial number of tigers is 400 and if after 2 years there are 480 how many tigers will there be after 5 years?

$Q=A e^{k t}$

$\begin{array}{ll}\text { At } t=0, & Q=400 \\ \text { At } t=2, & Q=480\end{array} \quad$ At $t=5, Q=?$

$$
\begin{aligned}
& Q=400 e^{\frac{\ln (1.2)}{2} t} \\
& Q=400 e^{\frac{\ln (1.2)}{2}(5)} \\
& Q=630.97 \\
& Q=631 \text { tigers }
\end{aligned}
$$

480	$=A e^{2 k}$	$2 k=\ln (1.2)$	
480	$=400 e^{2 k}$	$k=\frac{\ln (1.2)}{2}$	
$\frac{480}{400}$	$=e^{2 k}$		
$e^{2 k}$	$=1.2$		

Example 2(3): (ii)Given also that $N=166$ when $t=30$, find the value of k.

$$
N=125 e^{k \frac{\sin (0.02 t)}{0.02}}
$$

At $t=30, N=166$

$$
\begin{array}{rlr}
166 & =125 e^{k \frac{\sin (0.02(30))}{0.02}} \\
166 & =125 e^{k \frac{\sin (0.6)}{0.02}} \\
\frac{166}{125} & =e^{k \frac{\sin (0.6)}{0.012}} \\
1.328 & =e^{k \frac{\sin (0.6)}{0.012}} \\
\ln 1.328 & =k \frac{\sin (0.6)}{0.02} & \\
k & =\frac{(\ln 1.328)(0.02)}{\sin 0.6} & \\
k & =0.0100479 & \\
k & =0.0100 &
\end{array}
$$

APPLICATION ON DIFFERENTIAL EQUATIONS

NEWTON'S LAW OF COOLING

NEWTON'S LAW OF COOLING

The rate of cooling of a body is proportional to the difference between it's temperature and the temperature of the surroundings

$$
\begin{aligned}
& \text { Let } \theta \text { be the temperature of the body } \\
& \text { Let } \theta_{0} \text { be the temperature of the surroundings } \\
& \frac{d \theta}{d t} \quad \alpha \quad\left(\theta-\theta_{0}\right) \\
& \qquad \frac{1}{\theta-\theta_{0}} d \theta=k d t \\
& \int \frac{1}{\theta-\theta_{0}} d \theta=\int k d t \\
& \ln \left(\theta-\theta_{0}\right)
\end{aligned}=k t+c
$$

Example 3(1): A cup of coffee, originally at $90^{\circ} \mathrm{C}$ is left to cool in a room at a constant $20^{\circ} \mathrm{C}$. After 5 minutes, the temperature is $80^{\circ} \mathrm{C}$. Find how long the coffee takes to cool to $60^{\circ} \mathrm{C}$.
$\ln \left(\theta-\theta_{0}\right)=-0.0308 t+\ln 70$
At $t=?, \theta=60^{\circ} \mathrm{C}$
Surrounding temperature $20^{\circ} \mathrm{C}$
$\ln (60-20)=-0.0308 t+\ln 70$
$\ln 40=-0.0308 t+\ln 70$
$0.0308 t=\ln 70-\ln 40$

$$
t=\frac{\ln 70-\ln 40}{0.0308}
$$

$t=18.2$

Example 3(2): A liquid is heated in an oven kept at a constant $180^{\circ} \mathrm{C}$. It is assumed that the rate of increase in the temperature of the tiquid is proportional to $\left(180^{\circ} \mathrm{C}-\theta\right)$ where θ is the temperature of the liquid at time t minutes. If the temperature rises from $0^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ in 5 minutes, find the temperature of the liquid after a further 5 minutes.

Further 5 minutes $\quad t=10 \quad \theta=?$
$-\ln (180-\theta)=0.220 t-\ln 180$
$-\ln (180-\theta)=0.220(10)-\ln 180$
$\ln (180-\theta)=-0.220(10)+\ln 180$

$$
180-\theta=e^{-0.220(10)+\ln 180}
$$

$$
\theta=180-e^{-0.220(10)+\ln 180}
$$

$$
\theta=180-20
$$

$\theta=160$

Example 3(1): A cup of coffee, originally at $90^{\circ} \mathrm{C}$ is left to cool in a room at a constant $20^{\circ} \mathrm{C}$. After 5 minutes, the temperature is $80^{\circ} \mathrm{C}$. Fin how long the coffee takes to cool to $60^{\circ} \mathrm{C}$.

At $t=0$	
Initial Body temperature $\quad 90^{\circ} \mathrm{C}$	
Surrounding temperature $20^{\circ} \mathrm{C}$	

$\ln \left(\theta-\theta_{0}\right)=k t+\ln 70$
At $t=5, \theta=80^{\circ} \mathrm{C}$

$$
\begin{aligned}
\frac{d \theta}{d t} \quad \alpha\left(\theta-\theta_{0}\right) & \frac{d \theta}{d t}=k\left(\theta-\theta_{0}\right) \\
\frac{1}{\theta-\theta_{0}} d \theta & =k d t \\
\int \frac{1}{\theta-\theta_{0}} d \theta & =\int k d t \\
\ln \left(\theta-\theta_{0}\right) & =k t+c \\
\ln (90-20) & =k(0)+c \\
c & =\ln 70
\end{aligned}
$$

$$
\begin{aligned}
\ln (80-20) & =k(5)+\ln 70 \\
\ln 60 & =5 k+\ln 70 \\
5 k & =\ln 60-\ln 70 \\
k & =\frac{\ln 60-\ln 70}{5} \\
k & =-0.0308 \\
\ln \left(\theta-\theta_{0}\right) & =-0.0308 t+\ln 70
\end{aligned}
$$ the rate of increase in the temperature of the liquid is proportional to $\left(180^{\circ} \mathrm{C}-\theta\right)$ where θ is the temperature of the liquid at time t minutes the temperature rises from $0^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ in 5 minutes, find the temperature of the liquid after a further 5 minutes.

At $t=0$ Initial Body temperature $0^{\circ} \mathrm{C}$	
Surrounding temperature $180^{\circ} \mathrm{C}$	$-\ln (180-0)=k(0)+c$ $c=-\ln (180)$
$\frac{d \theta}{d t} \alpha\left(180^{\circ} \mathrm{C}-\theta\right)$	$-\ln (180-\theta)=k t-\ln 180$
At $t=5, \theta=120$	

$$
\begin{aligned}
\frac{d \theta}{d t} & =k(180-\theta) \\
\frac{1}{(180-\theta)} d \theta & =k d t \\
\int \frac{1}{(180-\theta)} d \theta & =\int k d t \\
-\ln (180-\theta) & =k t+c
\end{aligned}
$$

$$
\begin{aligned}
-\ln (180-120) & =k(5)-\ln 180 \\
-\ln 60 & =5 k-\ln 180 \\
5 k & =\ln 180-\ln 60 \\
k & =\frac{\ln 180-\ln 60}{5} \\
k & =0.220 \\
-\ln (180-\theta) & =0.220 t-\ln 180
\end{aligned}
$$

Example 3(3): The temperature of a quantity of liquid at time t is θ. The liquid is cooling in an atmosphere whose temperature is constant and equal to A . The rate of decrease of θ is proportional to the temperature difference $(\theta-A)$. Thus θ and t satisfy the differential equation.

$$
\frac{d \theta}{d t}=-k(\theta-A)
$$

where k is a constant.
(i) Find, in any form, the solution to this differential equation, given that $\theta=4 A$ when $\mathrm{t}=0$

$$
\begin{aligned}
\frac{d \theta}{d t} & =-k(\theta-A) \\
\frac{1}{(\theta-A)} d \theta & =-k d t \\
\int \frac{1}{(\theta-A)} d \theta & =\int-k d t \\
\ln (\theta-A) & =-k t+c \\
\ln (4 A-A) & =-k(0)+c \\
c & =\ln 3 A \\
\ln (\theta-A) & =-k t+\ln 3 A
\end{aligned}
$$

$\frac{d \theta}{d t}=-k(\theta-A)$

ON THE BOARD :D

