
DIFFERENTIAL 
EQUATIONS

FIRST ORDER DIFFERENTIAL EQUATIONS
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DEFINITION 

• A differential equation is an equation 
involving a differential coefficient i.e. 

• In this syllabus, we will only learn the first 
order

• To solve differential equation       , we 
integrate and find the equation y which 
satisfies the differential equation

dy

dx

dy

dx
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Example General Solution Particular Solution

dy

dx
= x− 1 y =

�
x− 1 dx

y =
x2

2
−x + c y =

x2

2
− x+ 3

y =
x2

2
− x+ 15

y =
x2

2
− x− 30
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Example General Solution Particular Solution

dy

dx
= x− 3x2 y =

�
x− 3x2 dx

y =
x2

2
−3x3

3
+ c

y =
x2

2
− x3 + c y =

x2

2
− x3 + 7

y =
x2

2
− x3 − 1
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Example General Solution Particular Solution

dy

dx
=

√
1− x y =

� √
1− x dx

y =

�
(1− x)

1
2 dx

y = (1− x)
3
2

3

2
(−1)

+ c

y =
−2(1− x)

3
2

3
+ c y =

−2(1− x)
3
2

3
+ 20

y =
−2(1− x)

3
2

3
− 100
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SEPARATING THE 
VARIABLES

HOW DO WE KNOW IF IT CAN BE SEPARATED?
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To put it simply, you separate the variables of y and x 

y on the left x on the right

xy2
dy

dx
= 1

y2
dy

dx
=

1

x

y2 dy
1

x
dx=

�
y2 dy =

�
1

x
dx
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To put it simply, you separate the variables of y and x 

y on the left x on the right

(xy + x)
dy

dx
= 3

x(y + 1)
dy

dx
= 3

(y + 1)
dy

dx

3

x

(y + 1) dy
3

x
dx

�
3

x
dx

�
(y + 1) dy

=

=

=
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To put it simply, you separate the variables of y and x 

y on the left x on the right

(y2x− y)
dy

dx
= 5

y(yx− 1)
dy

dx
= 5

CANNOT BE SEPARATED
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DIFFERENTIAL 
EQUATIONS

SOLVING FIRST ORDER DIFFERENTIAL EQUATIONS
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METHOD

• Separate the variables x and y 

• Integrate the left hand side in terms of y 
and the right hand side in terms of x

f(y)
dy

dx
= g(x)

�
f(y) dy =

�
g(x) dx
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Example 1: Find the general solution of the differential 
equations

1.(a) dy

dx
=

1

x

1 dy =
1

x
dx

�
1 dy =

�
1

x
dx

y = lnx + c

12



Example 1: Find the general solution of the differential 
equations

1.(b) dy

dx
= cosec y

1

cosec y
dy = 1 dx

1
1

sin y

dy = 1 dx

sin y dy = 1 dx

�
sin y dy =

�
1 dx

− cos y = x+ c
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Example 1: Find the general solution of the differential 
equations

1.(c) dy

dx
= 5y

1

y
dy = 5 dx

�
1

y
dy =

�
5 dx

ln y = 5x+ c
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Example 1: Find the general solution of the differential 
equations

1.(d) y(1 + x)
dy

dx
− 2(1 + y2) = 0

y(1 + x)
dy

dx
= 2(1 + y2)

y

(1 + y2)

dy

dx
=

2

(1 + x)

y

(1 + y2)
dy =

2

(1 + x)
dx

�
y

(1 + y2)
dy =

�
2

(1 + x)
dx

y
ln(1 + y2)

2y
= 2 ln(1 + x) + c
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Example 1: Find the general solution of the differential 
equations

1.(e) x
dy

dx
= y2

1

y2
dy

dx
=

1

x

1

y2
dy =

1

x
dx

�
y−2 dy =

�
1

x
dx

y−1

−1
= lnx+ c

−1

y
= lnx+ c
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Example 2: Solve the following differential equations:

2.(a) dy

dx
= 3x2 + 4x3

1 dy = 3x2 + 4x3 dx

�
1 dy =

�
3x2 + 4x3 dx

y =
3x3

3
+

4x4

4
+ c

y = x3 + x4 + c

y = 1 , x = 1

y = x3 + x4 + c

1 = 13 + 14 + c

1 = 2 + c

c = 2− 1

c = 1

y = x3 + x4 + 1
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Example 2: Solve the following differential equations:

2.(b) dy

dx
= 5y

1

y
dy = 5 dx

�
1

y
dy =

�
5 dx

ln y = 5x+ c

y = 2 , x = 0

ln y = 5x+ c

ln 2 = 5(0) + c

c = ln 2

ln y = 5x+ ln 2

y = e5x+ln 2

y = e5xeln 2

y = 2e5x
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Example 2: Solve the following differential equations:

2.(c) x
dy

dx
= y2

1

y2
dy =

1

x
dx

�
1

y2
dy =

�
1

x
dx

�
y−2 dy =

�
1

x
dx

y−1

−1
= lnx+ c

−1

y
= lnx+ c

x = 1 , y = 1

−1

y
= lnx+ c

−1

1
= ln 1 + c

−1 = 0 + c

c = −1

−1

y
= lnx− 1

y =
−1

lnx− 1
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Example 2: Solve the following differential equations:

2.(d) dy

dx
=

sin2 x

y2

y2 dy = sin2 x dx
�

y2 dy =

�
sin2 x dx

y3

3
=

cos 2x = 1− 2 sin2 x

sin2 x =
1

2
− 1

2
cos 2x

�
1

2
− 1

2
cos 2x dx

y3

3
=

1

2
x −1

2

sin 2x

2
+ c

y3

3
=

1

2
x− 1

4
sin 2x+ c

y = 1 , x = 0

y3

3
=

1

2
x− 1

4
sin 2x+ c

13

3
=

1

2
(0)− 1

4
sin 2(0) + c

1

3
= 0− 0 + c

c =
1

3

y3

3
=

1

2
x− 1

4
sin 2x+

1

3
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Example 2: Solve the following differential equations:

2.(e) (x+ 1)
dy

dx
= y

1

y
dy =

1

(x+ 1)
dx

�
1

y
dy =

�
1

(x+ 1)
dx

ln y = ln(x+ 1) + c

y = 1 , x = 1

ln y = ln(x+ 1) + c

ln 1 = ln(1 + 1) + c

0 = ln 2 + c

c = − ln 2

ln y = ln(x+ 1)− ln 2
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DIFFERENTIAL 
EQUATIONS

APPLICATION ON DIFFERENTIAL EQUATIONS
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APPLICATION ON DIFFERENTIAL 
EQUATIONS

• Examples are real life

• Rate of change of a quantity Q is 
proportional to the value Q

• Rate of change is taken with respect to time

dQ

dt

dQ

dt
α Q
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APPLICATION ON DIFFERENTIAL 
EQUATIONS

Natural 
Growth

Natural 
Decay

Newton’s 
Law of 
Cooling

Rate of 
Liquid 

Leaking
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APPLICATION ON 
DIFFERENTIAL 
EQUATIONS

NATURAL GROWTH
AND

NATURAL DECAY
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(1) Natural Growth

If Q is increasing with time, it can be expressed as 
differential equation

dQ

dt
α Q

dQ

dt
= kQ

Solve the first order differential equation:
1

Q
dQ = k dtQ to the left ..... t to the right

�
1

Q
dQ =

�
k dt

lnQ = kt+ c

Q = ekt+c

Q = ektec

Q = Aekt

Rate of increase of number of cells of yeast is proportional to the number of cells
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(II) Natural Decay

If the rate of decrease of Q is proportional to Q,

dQ

dt
α Q

dQ

dt
=

Solve the first order differential equation:

Q to the left ..... t to the right

−kQ

1

Q
dQ = −k dt

�
1

Q
dQ =

�
−k dt

lnQ = −kt+ c

Q = e−kt+c

Q = e−ktec

Q = Ae−kt
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METHOD

• Interpret the word problem into a 
differential equation

• Solve the first order of differential equation

• Find the value of k and A (or c)

• Answer the question
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The rate of increase of a colony of bacteria is proportional to 
the number of bacteria present at any particular time. If initial 
number of bacteria is 100 and 4 hrs later there are 1350, then 
find k and A.

Example 2(1):

Let bacteria be B.
dB

dt
α B

dB

dt
= kB k is positive because 

it is a rate of increase

1

B
dB = k dt

�
1

B
dB =

�
k dt

lnB = kt+ c

B = ekt+c

B = Aekt
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The rate of increase of a colony of bacteria is proportional to 
the number of bacteria present at any particular time. If initial 
number of bacteria is 100 and 4 hrs later there are 1350, then 
find k and A.

Example 2(1):

B = Aekt

At t = 0, B = 100

At t = 4, B = 1350

100 = Aek0

100 = Ae0

A = 100

1350 = Ae4k

1350 = 100e4k

1350

100
= e4k

e4k = 1.35

4k = ln(1.35)

k =
ln(1.35)

4

k = 0.0750

k and A ?
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The rate of increase of a population of tigers is proportional to 
the population at any particular instant of time. If initial 
number of tigers is 400 and if after 2 years there are 480, how 
many tigers will there be after 5 years?

Example 2(2):

Let tigers be Q.

k is positive because 
it is a rate of increase

dQ

dt
α Q

dQ

dt
= kQ

1

Q
dQ = k dt

�
1

Q
dQ =

�
k dt

lnQ = kt+ c

Q = ekt+c

Q = Aekt
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The rate of increase of a population of tigers is proportional to 
the population at any particular instant of time. If initial 
number of tigers is 400 and if after 2 years there are 480, how 
many tigers will there be after 5 years?

Example 2(2):

Q = Aekt

At t = 0,

At t = 2,

Q = 400

Q = 480 At t = 5, Q =?

400 = Aek0

400 = Ae0

A = 400

480 = Ae2k

480 = 400e2k

480

400
= e2k

e2k = 1.2

2k = ln(1.2)

k =
ln(1.2)

2

Q = 400e
ln(1.2)

2 t

Q = 400e
ln(1.2)

2 (5)

Q = 630.97

Q = 631 tigers
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Example 2(3): The number of insects in a population t days after the start of 
observations is denoted by N. The variation in the number of insects is 
modelled by a differential equation of the form

dN

dt
= kN cos(0.02t)

where k is a constant and N is taken to be a continuous variable. It 
is given that N = 125 where t = 0.

(i) Solve the differential equation, obtaining a relation between N, k and t.

dN

dt
= kN cos(0.02t)

1

N
dN = k cos(0.02t) dt

�
1

N
dN =

�
k cos(0.02t) dt

lnN = k
sin(0.02t)

0.02
+ c

N = ek
sin(0.02t)

0.02 +c

N = ek
sin(0.02t)

0.02 ec

N = Aek
sin(0.02t)

0.02

At t = 0, N = 125

125 = Aek
sin(0.02(0))

0.02

125 = Ae0

A = 125

N = 125ek
sin(0.02t)

0.02
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Example 2(3): (ii)Given also that N = 166 when t = 30, find the value of k.

N = 125ek
sin(0.02t)

0.02

At t = 30, N = 166

166 = 125ek
sin(0.02(30))

0.02

166 = 125ek
sin(0.6)

0.02

166

125
= ek

sin(0.6)
0.02

1.328 = ek
sin(0.6)

0.02

ln 1.328 = k
sin(0.6)

0.02

k =
(ln 1.328)(0.02)

sin 0.6

k = 0.0100479

k = 0.0100

calculator in 
radians!
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Example 2(3): (iii)Obtain an expression for N in terms of t, and find the least value of N 
predicted by this model.

k = 0.0100479

k = 0.0100

N = 125e0.0100
sin(0.02t)

0.02

−1 ≤ sin t ≤ 1

−1 ≤ sin(0.02t) ≤ 1

−1(0.0100) ≤ 0.0100 sin(0.02t) ≤ 1(0.0100)

−1(0.0100)

0.02
≤ 0.0100

sin(0.02t)

0.02
≤ 1(0.0100)

0.02

−0.502 ≤ 0.0100
sin(0.02t)

0.02
≤ 0.502

N = 125e−0.502

N = 75.66

N = 76
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APPLICATION ON 
DIFFERENTIAL 
EQUATIONS
NEWTON’S LAW OF COOLING

36



NEWTON’S LAW OF COOLING 
The rate of cooling of a body is proportional to the difference between it’s temperature and the 
temperature of the surroundings

Let       be the temperature of the body
Let       be the temperature of the surroundings

θ
θ0

dθ

dt
α (θ − θ0) dθ

dt
= k(θ − θ0)

1

θ − θ0
dθ = k dt

�
1

θ − θ0
dθ =

�
k dt

ln(θ − θ0) = kt+ c
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A cup of coffee, originally at          is left to cool in a room at a 
constant          . After 5 minutes, the temperature is         . Find 
how long the coffee takes to cool to          . 

Example 3(1): 90◦C
20◦C 80◦C

60◦C

Initial Body temperature

Surrounding temperature

90◦C

20◦C

dθ

dt
α (θ − θ0)

At t = 0

At t = 5, θ = 80◦C

dθ

dt
= k(θ − θ0)

1

θ − θ0
dθ = k dt

�
1

θ − θ0
dθ =

�
k dt

ln(θ − θ0) = kt+ c

ln(90− 20) = k(0) + c

c = ln 70

ln(θ − θ0) = kt+ ln 70

ln(80− 20) = k(5) + ln 70

ln 60 = 5k + ln 70

5k = ln 60− ln 70

k =
ln 60− ln 70

5

k = −0.0308

ln(θ − θ0) = −0.0308t+ ln 70
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A cup of coffee, originally at          is left to cool in a room at a 
constant          . After 5 minutes, the temperature is         . Find 
how long the coffee takes to cool to          . 

Example 3(1): 90◦C
20◦C 80◦C

60◦C

ln(θ − θ0) = −0.0308t+ ln 70

At t =?, θ = 60◦C

Surrounding temperature 20◦C

ln(60− 20) = −0.0308t+ ln 70

ln 40 = −0.0308t+ ln 70

0.0308t = ln 70− ln 40

t =
ln 70− ln 40

0.0308

t = 18.2
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Example 3(2): A liquid is heated in an oven kept at a constant            . It is assumed that 
the rate of increase in the temperature of the liquid is proportional to
                     where       is the temperature of the liquid at time t minutes. 
If the temperature rises from         to            in 5 minutes, find the 
temperature of the liquid after a further 5 minutes.

180◦C

(180◦C − θ) θ
0◦C 120◦C

Initial Body temperature

Surrounding temperature

At t = 0

180◦C

dθ

dt
α (180◦C − θ)

dθ

dt
= k(180− θ)

1

(180− θ)
dθ = k dt

�
1

(180− θ)
dθ =

�
k dt

− ln(180− θ) = kt+ c

0◦C

− ln(180− 0) = k(0) + c

c = − ln(180)

− ln(180− θ) = kt− ln 180

At t = 5, θ = 120

− ln(180− 120) = k(5)− ln 180

− ln 60 = 5k − ln 180

5k = ln 180− ln 60

k =
ln 180− ln 60

5

k = 0.220

− ln(180− θ) = 0.220t− ln 180
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Example 3(2): A liquid is heated in an oven kept at a constant            . It is assumed that 
the rate of increase in the temperature of the liquid is proportional to
                     where       is the temperature of the liquid at time t minutes. 
If the temperature rises from         to            in 5 minutes, find the 
temperature of the liquid after a further 5 minutes.

180◦C

(180◦C − θ) θ
0◦C 120◦C

Further 5 minutes t = 10 θ =?

− ln(180− θ) = 0.220t− ln 180

− ln(180− θ) = 0.220(10)− ln 180

ln(180− θ) = −0.220(10) + ln 180

180− θ = e−0.220(10)+ln 180

θ = 180− e−0.220(10)+ln 180

θ = 180− 20

θ = 160
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Example 3(3):  The temperature of a quantity of liquid at time t is      . The liquid is 
cooling in an atmosphere whose temperature is constant and equal to A. The 
rate of decrease of     is proportional to the temperature difference             . 
Thus     and t satisfy the differential equation.

where k is a constant.

θ

θ
θ

(θ −A)

dθ

dt
= −k(θ −A)

(i) Find, in any form, the solution to this differential equation, given that                when t = 0θ = 4A

dθ

dt
= −k(θ −A)

1

(θ −A)
dθ = −k dt

�
1

(θ −A)
dθ =

�
−k dt

ln(θ −A) = −kt+ c

ln(4A−A) = −k(0) + c

c = ln 3A

ln(θ −A) = −kt+ ln 3A
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Example 3(3): (ii)Given also that              when t=1, show that

ln(θ −A) = −kt+ ln 3A

θ = 3A k = ln
3

2

At t = 1, θ = 3A

ln(3A−A) = −k(1) + ln 3A

ln 2A = −k + ln 3A

k = ln 3A− ln 2A

k = ln
3A

2A

k = ln
3

2
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Example 3(3): (iii) Find      in terms of A when t = 2, expressing your answer in its simplest form.θ

ln(θ −A) =

�
− ln

3

2

�
t+ ln 3A

At t = 2 ln(θ −A) =

�
− ln

3

2

�
(2) + ln 3A

θ −A = e(− ln 3
2 )(2)+ln 3A

θ = e(− ln 3
2 )(2)+ln 3A +A

θ = e(− ln 3
2 )(2)eln 3A +A

θ = e(−2 ln 3
2 )(3A) +A

θ = e

�
ln( 3

2 )
−2

�

(3A) +A

θ = e(ln
4
9 )(3A) +A

θ =
4

9
(3A) +A

θ =
4

3
(A) +A θ =

7

3
A
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APPLICATION ON 
DIFFERENTIAL 
EQUATIONS

RATE OF LIQUID LEAKING
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ON THE BOARD :D
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