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1 Abstract 
The current selective laser melting (SLM) process lacks both process quality and reproducibility. Recent 

research focuses on the integration of optical measuring technology, but acoustic sensors also seem promising. 
Initial results on acoustic methods show their suitability. The further processing of the data still shows difficulties, 
mostly due to the high sample rate. In this work a concept for an acoustic process monitoring system is developed 
and integrated into the process. First results show its capability to distinguish different process qualities. 

For this purpose, various configurations for in-process integration of acoustic measurement techniques 
are discussed and evaluated. The most promising structure-borne sound concept is integrated and tested in a test 
bed. In a Design of Experiments for specific parameter selection, cubes with different process qualities are 
produced, and the acoustic signatures are evaluated. For a first prove of concepts a Neuronal Network is trained 
to classify three different laser classes. Therefore, different NN topologies were tested and the best-found solution 
had a precision of more than 90%.  

2 Introduction/Motivation 
Additive manufacturing (AM) enables a high level of functional integration, the capability of rapid 

prototyping, individualized products as well as economical production in small series. As a result, additive 
manufacturing processes are becoming increasingly important in many industries. The laser beam melting (LBM 
or more commonly known as SLM) is focused, since it is an established process in the area of prototype 
construction that stands at the threshold for the employment in large and small series production (Kief, Roschiwal 
& Schwarz 2015). The SLM process is a powder-bed-based process in which metal powder is melted layer by 
layer using a laser to form a solid body (Gebhardt 2016).  

If material defects occur during the process, they lead to an undefined reduction in fatigue resistance and 
a shortened life of the components (Yadollahi & Shamsaei 2017). This means that components can only be used 
at highly stressed and safety-relevant points once complex end of line quality assurance has been implemented. 
Focusing serial production with this manufacturing technique an end of line quality assurance is much too 
expensive and has to be mitigated. . (Lanza et al. 2017) 

To avoid costly end of line quality assurance, as well as guarantee the durability of the AM parts, a suitable 
process monitoring method that is integrated into the build process is advantageous. It is essential that the recorded 
data gets processed in a way that the information helps to ensure the required process quality. With an information 
about the actual process quality the built process can be stopped, or process parameters be changed to mitigate 
further defects. 

Among the different kind of defects inner defects are of special interest. For porosity, some aircraft 
companies have defined a maximum diameter of 200µm to ensure the durability of AM parts. (Kiefel, Scius-
Bertrand & Stößel 2018) Other work has shown that the shape and the location in relation to the outer surface has 
a significant role on the fatigue resistance. (Reschetnik 2017) This makes it necessary to integrate process 
monitoring techniques that give quantitative information about shape, location and size of inner defects like pores. 

This work will first investigate current existing techniques upon their capabilities before suggesting an 
acoustic measuring setup and presenting first results proving this concept. 
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3 State of the art 
In this section a short review of SLM defect characteristics will be given and existing process monitoring 

techniques are discussed. Furthermore, the approaches to visualize the results of this monitoring techniques are 
introduced. This is followed by the discussion about systematically introduced defects in reference test bodies for 
evaluating the capabilities of process monitoring techniques. The last part of this section focuses on the discussion 
of relevant reference measurement techniques to evaluate location and shape of pores in AM parts. 

3.1 Defects in SLM 
There are different characteristic defects in SLM (Everton et al. 2016; Grasso & Colosimo 2017). Pores 

are of special interest since they are difficult to detect by end of line inspection and have a major influence on the 
fatigue behaviour (Leuders et al. 2013). To evaluate the influence it is important to know the shape and location 
of each pore (Reschetnik 2017), which strongly correlates with its formation mechanism. 

 
Too High Energy Too Low Energy 

Keyhole/Vaporization Spatter Unmolten powder 

   
(Gong et al. 2014) (Haeckel 2017) (Gong et al. 2014) 

Table 1: Pores may result from either bringing in too high or too low energy in the process zone (Gong et al. 2014) 

When bringing in too high energy keyhole phenomena may occur, which result in subsurface pores. These 
kind of pores often have a spherical shape and indicate high concentrations of alloys with low vaporization 
temperature due the high temperature at the bottom of the melt pool, shown in Table 1 (Liu et al. 2016). Another 
phenomenon which is likely to occur from too high energy input is the generation of spatter which results from 
the recoil pressure spattering molten material (Khairallah et al. 2016). This molten material is likely to form a 
spherical shaped drop somewhere on the powder bed. Even though there are a few other phenomena resulting in 
powder bed contamination in the end this powder bed contamination cannot be melted completely and is likely 
to trap unmolten powder under it. (Haeckel 2017) The micrograph of such pore resulting from powder 
contamination is shown in Table 1-middle. Not only does spatter lead to insufficiently molten powder, if there is 
a too small overlap in scan strategies or insufficient laser power input, welding lines are only partly connected 
like shown in Table 1 on the right. (Gong et al. 2014; Thijs et al. 2010) 

 
By tuning the process parameters, it is possible to mitigate pores resulting from too low or too high energy 

input. Despite this, process and melt pool instabilities from powder bed contamination or attenuation of the laser 
power from process gases, resulting in discontinuity energy input, can’t be avoided completely. In total there are 
more than 50 process parameters influencing the SLM process which have to be considered. (Spears & Gold 
2016; van Elsen 2007) Only few are correctly user controlled and they have only been partially researched. This 
shows the necessity of process monitoring or process integrated measurement techniques capable of detecting 
and quantifying pores.  

3.2 Sensors for process monitoring 
To detect process discontinuities which may result in pores, different in-situ process monitoring 

techniques exist. These are summarized in table 2. They can be divided in optical and acoustic monitoring 
techniques. Most of these methods are already known from laser welding. (Purtonen, Kalliosaari & Salminen 
2014) There are first works also evaluating eddy current testing and backscatter computed tomography. These 
methods are up to date not yet implemented. (García-Martín, Gómez-Gil & Vázquez-Sánchez 2011)  
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First process monitoring techniques available in industrial application focus on the integration of optical 

measuring equipment in the beam path (Berumen et al. 2010; Everton et al. 2016). By integrating cameras and 
diodes/pyrometers into the optical path it is possible to quantify melt pool size, shape and radiation from the melt 
pool (Clijsters et al. 2014; Furumoto et al. 2013). With this information it is possible to realize a closed-loop 
control to reduce the occurrence of too high energy input and thereby the number of produced pores can be 
reduced. Further work also showed a correlation of position data of the laser with data from the melt pool 
monitoring, resulting in maps for each layer which help the operator to identify process variation, but cannot give 
a quantitative feedback about occurred defects and part quality. (Grasso & Colosimo 2017) 

 
A more complex on-axial measurement technique is the optical coherence tomography, where a second 

laser system is integrated in the beam path (Neef et al. 2014). It might even be upgraded  with a separate 
galvanometer-system scanning the melt pool (Kanko, Sibley & Fraser 2016). This technique achieves a new level 
of information, making it possible to evaluate further melt pool properties like keyhole depth and the geometrical 
profile of the melt pool. 

 
The integration of Off-Axial sensors have the scope to monitor powder bed properties or scan path/scan 

surface (Grasso & Colosimo 2017). For observing the scan path or scan surface, pyrometers (Doubenskaia, Pavlov 
& Chivel 2010; Islam et al. 2013) or IR Cameras (Krauss, Eschey & Zaeh 2012) can be integrated. For observing 
the powder bed, cameras (Zur Jacobsmühlen et al. 2015) or laser line scanners (Haeckel 2017) can be used. For 
scientific purposes and to understand the process as well as melt pool dynamics, a high speed camera close to the 
process zone was integrated. (Ly et al. 2017)  

 
Besides the above discussed optical monitoring methods mentioned, there are novel works elaborating 

further non-destructive testing techniques. Existing works an all four different kinds of non-destructive testing 
methods are summarized in Table 2. 

There are first works on Eddy Current Testing integrated in the process, which right now is related with a 
high effort scanning the surface and thereby slows down the process. (García-Martín, Gómez-Gil & Vázquez-
Sánchez 2011) 

Rieder integrated an ultrasonic transducer under the build platform which can detect porosity by pulse 
reflection method. In this case an ultrasonic wave is generated by the transducer and the reflected wave from the 
backwall or defects is analysed. (Rieder et al. 2016) For this active acoustic approach an acoustic signal must be 
generated. The spatially resolved acoustics emissions approach, introduced by (Smith et al. 2016) works in a 
similar way. Surface acoustic waves are generated with a laser and the propagation is evaluated by measuring the 
surface acoustic wave at a second point. (Ye et al. 2018) introduced a passive acoustic approach measuring the 
airborne acoustic signature. Due to plasma generation it is possible to evaluate process discontinuity and detect 
overheating and balling. 

 
Beside of these monitoring techniques first concepts are available for integrating an X-Ray into the 

process. This approach promises a high degree of information about inner defect. (Shedlock, Edwards & Toh 
2011) 

 
 
 
 
 
 
 
 
 

Optical Eddy Current Acoustic CT 
Off-Axis On-Axis Active Passive 
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High-speed camera 
(Ly et al. 2017) 

Camera + diode 
(Berumen et al. 
2010; Clijsters 
et al. 2014; 
Furumoto et al. 
2013) 

(García-Martín, 
Gómez-Gil & 
Vázquez-
Sánchez 2011) 

Ultra sound 
emissions-reflexion 
(Rieder et al. 2016) 

Air borne acoustic 
emissions (Ye et 
al. 2018; 
Shevchik et al. 
2018) 

X-ray 
backscatter 
 (Shedlock, 
Edwards & 
Toh 2011) 

IR camera (Krauss, 
Eschey & Zaeh 
2012) 

Spatially resolved 
acoustic emission 
(Hirsch et al. 2017; 
Smith et al. 2016) Pyrometer 

(+Camera) (Islam et 
al. 2013; 
Doubenskaia, 
Pavlov & Chivel 
2010) 

High-speed 
Camera (Lott et 
al. 2011) 

Camera (Pulverbett) 
(Zur Jacobsmühlen 
et al. 2015) 

OCT (Neef et al. 
2014; Kanko, 
Sibley & Fraser 
2016) Laser line scanner 

(Haeckel 2017) 
Table 2: Literature overview on process monitoring systems for the SLM process 

3.3 Data evaluation of process monitoring 
The monitoring techniques described above are in the development phase and have different scopes of 

application. Not all of them will be used in productive SLM systems in the future. As soon as a technology comes 
out of the development phase, during which process engineers operate the machine, it is necessary to get intuitive 
and clear feedback about the process quality. For this purpose, visualization techniques are used to show 
deviations in a 2D or 3D image like shown in ((Krauss 2016)). Figure 1 shows areas marked in red, in which high 
IR radiation from the melt pool is observed. This is an indicator for too high energy input and therefore likely to 
cause defects. (Krauss 2016) This kind of visualizations require interpretation by an expert and may be improved 
by automated pattern recognition algorithms. (Zenzinger et al. 2014)  

 
Besides visualizing process deviations, a classification directly from raw signals is possible. A 

classification approach using machine learning algorithms for five classes was shown by (Ye et al. 2018), who 
were able to distinguish balling (a), light balling (b), good process (c), light overheating (d) and overheating (e) 
like shown in figure 2 by using the air borne acoustic raw signal. This classification of defects in combination 
with giving an indicator of the severity makes it easier for machine operators or automatized control systems to 
take the right actions or even precautions to prevent further defects in the process. 

 

 
Figure 1: Data evaluation of a process monitoring technique (Krauss 

2016) 

 
Figure 2: Distinguishing of classes: balling (a), light balling (b), good 
process (c), light overheating (d) and overheating (e) (Ye et al. 2018) 

 

3.4 Reference bodies 
The systematic introduction of defects or process characteristics in reference bodies is a common approach 

to evaluate the performance of process monitoring techniques. The most simple way to do this, is the creation of 
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single welding tracks like (Ye et al. 2018). This is especially advantageous since no complex measurement 
technique is needed to evaluate the properties of the welding tracks.  

 
More complex three dimensional reference bodies are used by (Rieder et al. 2016) or (Toeppel et al. 2016). 

To systematically introduce defects different parameters are used. They range from parameters correlating 
directly with the energy input (layer thickness, laser power, scan speed, hatching distance) to inert gas flow or 
powder bed contamination. Table 3 gives an overview over considered defects and the used process parameters. 
Beside of these used process parameters there are much more process parameters which affect process quality 
and are not yet used for evaluating process monitoring techniques since they are difficult to vary. (Krauss 2016; 
Spears & Gold 2016)  
 

Research approach Considered parameter Changed process parameter 
(Rieder et al. 2016) Density Laser power 
(Toeppel et al. 2016) Pores/density Laser power, hatch distance, 

geometry, scanner time delay 
(Ye et al. 2018) Balling/overheating Laser power 
(Haeckel 2017) Pores Powder bed contamination 
(Zenzinger et al. 2014) Pores Inert gas Flow 
(Krauss, Eschey & Zaeh 2012) Pore Laser Power 

Table 3: Overview of considered defects and varied process parameters 

3.5 Reference measurement technique 
If reference bodies are produced it is essential for qualifying the measurement technique to have a 

reference to measure the introduced defects. To get information about the inner defects like pores different 
measurement techniques are suitable, each having its own advantages. In total, three different types are worth to 
be considered: Archimedes density measurement, micrographs and computer tomography (CT) (Spierings, 
Schneider & Eggenberger 2011) 

 
Density measurements according to Archimedes have the lowest degree of information since it only gives 

a number of the overall density but no information about the location or particular shape of pores. Beside of this, 
the reproducibility and standard deviation of Archimedes measurement is the best of the three mentioned 
measurement techniques. (Spierings, Schneider & Eggenberger 2011) 

 
Micrographs give the opportunity to evaluate the shape of pores and the location in the cross-section. This 

gives more information about pore properties than Archimedes measurement. By using microscopes, the usable 
resolution of this approach goes down to a few micrometres. Unfortunately the process of making micrographs 
with grinding, polishing and the parameters for taking pictures to evaluate the pores are hard to reproduce. 
(Spierings, Schneider & Eggenberger 2011) 

 
The highest amount of data about the reference body can be generated by using a CT. With CT it is 

possible to evaluate size and shape of the pores according to BDG P202 (BDG 2010) over the whole volume of 
the test body. Major drawback of this technique is its measurement uncertainty and its undefined limit for small 
pores. Depending on the used parameter for the image acquisition the resolution of the CT image changes. (Schild 
et al. 2018) 
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4 Methodical approach 
In this section the overall approach for developing an acoustic monitoring system will be explaind. 

Therefor first of all the reasons for investigating an acoustic measurement setup will be explained before its 
integration into a test bench will be shown. In section 4.2 de design of the chosen reference bodies and the chosen 
defect mechanisms are introduced. Section 4.3 focuses on the data processing of the acoustic signal and the 
correlation of the features generated from the reference measurement. 

4.1 Sensor and test setup 

4.1.1 Selection of measurement technique 
Figure 3 summarizes the capabilities of the different non-destructive testing (NDT) methods in general 

and compares their abilities in resolution and defect position (inside or surface) in a qualitative way. Since eddy 
current testing is only capable of detecting defects close to surface all techniques above the red line can detect 
defect inside a volume. The ones below the red line can detect surface or close to surface defects.  

 
Figure 3: Comparison of NDT methods in resolution and defect positioning according to Gevatter & Grünhaupt 2006) 

Section 3.1 showed that the formation mechanism of SLM characteristic pores only partly understood and 
there are works indicating the pore formation taking place without being visible at the surface (Calta et al. 2018). 
Nevertheless, pores are volume defects which makes it necessary to have a closer look on the testing methods 
which are in general capable of evaluating defects within the volume.  

X-ray backscatter tomography, which is a special method of the computed tomography (CT), is part of 
further research and not yet integrated in the process. The process integration of CT was already shown for FDM 
and is also plausible for SLM. Regarding the high integration effort and investment cost, this is likely to be limited 
for research and special applications. Since the integration of acoustic sensors is much less complex (as shown in 
(Rieder et al. 2016; Ye et al. 2018)), it is promising to have a closer look on this kind of measuring principle. 

 

4.1.2 Integration concepts of acoustic measurement systems 
The generation and detection of acoustic signals in general can be performed by three different kind of 

actors/sensors: piezo, electromagnetic transducer (EMAT) or by the laser itself. Furthermore, acoustic waves can 
be air borne or structure born. This work will focus on structure born noise due to its expected higher degree of 
information. 

With regard to the integration of the actor and the sensors, there are two general placements, which are 
schematically sketched in figure 5 as variants A and B. In variant B, the probe is mounted in the available space 
between the construction platform and the substrate plate. Such a construction has already been implemented and 
tested (Rieder et al. 2016). Variant A provides space for the sensor to be positioned above the workpiece or 
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integration into the beam. The installation space above the workpiece is limited by the fact that the beam path of 
the laser must not be disturbed. Nevertheless, this variant offers advantages in terms of component coverage.  

 

 
Figure 4: Integration and signal generation/detection options for SLM process monitoring 

With these options to integrate sensors and the three sensor options to generate/detect acoustic signals, 18 
different options for acoustic testing in SLM can be generated. 9 concepts are plausible and worth of further 
discussion which can be found in (Eschner et al. 2017) and will be only summarized here. 

 
• In general, the integration above in volume A of a piezo electric or EMAT makes it necessary to 

implement a mechanism to move the transducer for signal detection over the process zone in order to not 
interact with the laser beam. Such mechanisms are complex, susceptible to failure and slow down the 
overall process time.  

• When the laser induces energy, acoustic waves are generated which can be measured and evaluated like 
((Ye et al. 2018)) has shown for air-borne acoustic emissions. 

• It is likely to interact with ferromagnetic material and EMATs which lead to a disturbance of the powder 
bed. 

• Low frequency ultrasonic transducers have limited performance in resolution, while high frequency 
ultrasonic transducers have limited access to the whole volume since the waves are damped excessively 

• For the integration in variant A attention should be spent to the existing temperatures and the platform 
heating. Nevertheless, it was shown, that the integration at this position is possible.  

 
To have an optimal solution regarding process time, expected information content and minimizing 

integration effort of the nine plausible concept one was favoured. The favoured concept is shown in figure 6 and 
will be explained in the following.  
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Figure 5: Monitoring concept for SLM using structure-borne acoustic emissions  

In this concept, the acoustic waves are generated by the SLM process itself from plasma and other process 
dynamics. The generated waves propagate through the build object and are recorded by a piezoelectric transducer. 
If a defect, like a crack prevents the propagation recorded signals change. Furthermore, the process stability itself 
can be judged, since process inhomogeneity produces inhomogeneous signals. This concept is favoured since it 
monitors the building process and thereby promises the highest degree of information, while not slowing down 
the process. (Eschner et al. 2017) 

 

4.1.3 Integration of an acoustic measurement system in a reference SLM process 
In order to investigate the capabilities of the process monitoring technology, reference bodies are printed 

as shown in section 3.4 and systematic errors are introduced into them. For this purpose, it is necessary to have a 
process environment which gives the flexibility to vary process parameters freely and integrate the sensor. A test 
setup imitating the SLM process was designed, giving flexibility for the relevant process parameters and sensor 
integration. 

 
Figure 6: Sectional view of SLM build chamber in test setup 

 
Figure 7: Complete view of test setup 
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Figure 6 shows a cross sectional view of the process chamber which is the central unit of the test setup. 
The powder application mechanism is a simple wiper mechanism to reduce overall complexity. There is one 
cylinder used as a powder reservoir. The wiper moves from left to right and applies the powder from the powder 
reservoir onto the build platform. The build platform moves down after a layer is exposed. Under the build 
platform an acoustic sensor by QASS is integrated.  All axes are moved with stepper motors in micro stepping 
mode. Right next to the build platform, outlet and inlets for the inert gas flow are integrated. The outlets and inlets 
are easily replaced to influence the inert gas flow. The whole system is sealed against the environment to avoid 
oxygen contamination and to realize positive or negative pressure. 
The process chamber is integrated in a machine frame made from standard profiles which connect all the 
different components (Figure 7). Since an acoustic sensor is used, some effort was spent for acoustic decoupling 
of peripheral equipment like computer or optical system with the scan head.  

The laser system consists of a 250W IPG laser and a Cambridge Technology SMC scanner card. The 
XML API provided by Cambridge Technology offers a flexible adaption of process parameters. A python script 
generates the code needed for every layer of the test cubes. The cubes are then placed in a 3x3 matrix on the 
substrate plate. Every cube is printed with its own set of parameters. More complex objects are generated via a 
CAD/CAM chain consisting of a slicer software (Slic3r with a custom configuration suitable for SLM) and a 
python script converting the generated G-code into the according xml code. The printing parameters are also 
freely variable. A main LabVIEW application controls the stepper motors, the inert gas system, all sensors as well 
as the QASS ultrasonic measurement device. The data is recorded with a frequency of 4 MHz. The inert gas 
system is designed to have the ability to vary process parameters like flow rate and oxygen content. For this 
purpose, the system is equipped with an oxygen-, a temperature- and a flowrate sensor.  

To get information about the actual position of the laser beam spot and to synchronize this information 
with the acoustic signal, a FPGA for interpreting the XY2-100 protocol (protocol for communication between 
scanner card and galvanometer scanner) of the galvanometer system was realized. With this system it is possible 
to assign a position to its corresponding acoustic signal during the build job.  

4.2 Evaluation of the acoustic measuring system with reference bodies 
To evaluate the acoustic measuring system in a first approach, reference bodies are printed with varying 

part quality. As shown in section 3.4 there are different ways for producing reference bodies. One of the easiest 
ways is to vary process parameters like laser power (𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), layer thickness (𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), scan speed (𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) or 
hatching distance (𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖). These four parameters directly correlate with the energy density which can be 
calculated as following: 

𝐸𝐸 =
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑑𝑑𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖
 (Formula 1) 

 
Previous work by (Cherry et al. 2015) (see Figure 8) and (Gong et al. 2014) (see Figure 9) have shown 

that the energy density within the process is correlated directly to the part quality, which was measured in these 
cases on porosity. There is an optimal interval, in which the process produces good results. Above and below the 
interval, quality drops rapidly (Gong et al. 2014; Cherry et al. 2015). Based on this knowledge, the varied process 
parameter to influence part quality regarding pores will be the energy density used in the process.  
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Figure 8: Relation between part porosity and energy density in (Cherry et 

al. 2015) 

 
Figure 9: Relation between part porosity and energy density in (Gong 

et al. 2014) 

 
To evaluate the capabilities of the acoustic monitoring technique, this correlation of energy density and 

part quality/porosity is used. Therefore, to obtain a wide range of energy inputs, a Design of Experiments (DOE) 
was conducted with the four parameters influencing the energy input. Since only four parameters are varied, a 
full factorial test plan is used. Each parameter range has a minimal value, a centre point and a maximal value. 

 
The given formula for energy input (Formula 1) is a hyperbola, which means a true centre point of the 

min-max interval results in an unevenly distributed energy input throughout the test objects. To counter this effect, 
the centre value of the scan speed was set to a third of the interval range. The parameters were set as stated in 
Table 4: 

 
Parameter  Minimal value Centre value Maximal value 
Laser power 150 W 200 W 250 W 
Scan speed 200 mm/s 400 mm/s 1000 mm/s 
Layer thickness 0.02 mm 0.03 mm 0.04 mm 
Hatching distance 0.03 mm 0.04 mm 0.05 mm 

Table 4: Parameter set for Design of Experiments 

The resulting 81 parameter sets are printed in the designed test setup as cubes with an edge length of 
0.5 mm. The material used is 316L stainless steel. Each build job contains 9 different reference bodies as shown 
in Figure 10. Since a 3x3 matrix is printed on the substrate plate, the scan speed is varied in the y direction, the 
laser power in x direction (compare Figure 10). The other two parameters, layer thickness and hatching distance, 
are varied in between the different substrate plates. This results in a total of 81 test cubes on 9 substrate plates. 
To ensure an even distribution over all energy input levels, the energy input over the parameters as well as the 
number of the according substrate plate can be plotted (Figure 11) 
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Figure 10: Substrate plate with 3x3 cube matrix and varied print parameters 
 

 
 

 
Figure 11: Energy density distribution over all substrate plates 

 
Several tests conducted before setting up the test plan showed a rough estimate of the expected process 

window. An energy input between 500 and 1000 𝐽𝐽/𝑚𝑚𝑚𝑚3 seems to be optimal. For testing purposes, it is mandatory 
to achieve values below and under that interval, thus provoking process states with too high energy (resulting in 
keyhole mode / overheating) and states with too low energy (pores, partial melting of powder).  
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4.3 Correlating acoustic signals with reference measurements 
The main objective of the utilised process monitoring technique is not to detect the variance between 

different processes, but rather to carry out an analysis of the component quality (with the associated defects) at 
coordinate level. The goal is to automatically determine the type of defect as well as the spatial extent and location 
in the component. Selected process parameters are to be validated automatically by a machine learning technique. 
If it is necessary to adjust parameters due to the current process situation, the system should propose a suitable 
parameter set. 

 
To evaluate the printed test cubes, two methods will be used: computer tomography and Archimedes. The 

results of the reference measuring, the acoustic signal of the process (with extracted features) and the printing 
parameters are then compiled into datasets. These are then used to train an artificial neural network (ANN), which 
will be realized in Pythons sklearn package and Google TensorFlow. To handle the great amount of data, most 
calculations will be done with GPU support (Nvidia CUDA).  

 
For first analysis classification is used to determine the type of the main defect (overheating, balling, 

pores), whereas in future work regression will be used to get quantitative features like density value. The complete 
dataset is randomly split into training (70%) and test data (30%) to test repeatability of the training (each training 
is repeated five times and the according mean and standard deviation is calculated). To evaluate the model 
performce regarding a classification over the whole dataset, a five-time cross-validation is performed with an 
according 80/20-split of the data. 

 
The raw input signal of the sensor is decoded from its binary and proprietary data format of the 

manufacturer into a Pandas dataframe which is stored with zlib compression as a HDF5 file on disk. The 
timeseries in then fast fourier transformed (FFT) using a window of 0.005 seconds. As windowing function, the 
hanning window is used. To reduce background noise, a frequency mask of the background signal is subtracted 
from the resulting FFT (see Figure 13 and Figure 14). The result is a spectrogram for each layer like shown in 
Figure 12. 

 
 

 
Figure 12: Spectrogram of measured signal of one layer (filtered) 

To feed the FFT of each layer into the artificial neural network, the data must be flattened since they are 
stored as an array (Formula 2). The additional features can be added in the future to the input vector. The vector 
resulting directly from the spectrogram contains 12 million values, meaning one value for each pixel. To reduce 
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this amount, a bottleneck approach is used. The number of neurons in a hidden layer is set between five and a 
hundred. Performance of different topology will be tested. 
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The output vector can contain different types of output classes like scan speed, laser power, energy density, 

defect type (pore volume, pore shape, number of pores, …) etc. from which an array of outputs can be created 
(Formula 3).  

 
{𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  �𝑦𝑦𝑚𝑚=1 ⋯𝑦𝑦𝑚𝑚=𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� (Formula 3) 

 
  

2109



5 Results 
This section will show first results of the above described methodical approach in detail. The results 

contain the analysis of 18 cubes build in two build jobs. Each cube has 120 usable layers (the first five layers 
were discarded due to double exposure), which leads to a total dataset of 2160 individual datasets. To gain first 
experiences with artificial intelligence (AI) data analysis, only the given laser power from the output vector was 
used. So, no features from the reference measurement technique is used for first exemplary evaluations of acoustic 
signals of the process. The analysis of all 81 cubes with the use of a reference measurement technique will take 
place in the future. 

5.1 Capturing raw process data 
For data processing, it is crucial to obtain a clear, noise free signal with a sufficient amplitude. First tests 

with a ceramic coupling between the sensor and the substrate plate showed a high dampening of the process 
sound. Therefore, the resulting measurements had to be discarded. After removing the ceramic coupling and 
adding glycerol as a coupling agent, the signal was much stronger. As a drawback, the background noise of the 
test setup (stepper motors, vibrations of the inert gas pump) were present and reduced the usable information 
within the signal. Using a difference mask (see Figure 13 and Figure 14) showed very good results in reducing 
noise from the test setup. The printing process of each layer was recorded by the QASS measurement system. The 
resulting time series was then transformed via FFT to the frequency domain. The process has an effective 
frequency range up to 1.3 MHz. 

 

 
Figure 13: Raw measuring signal without applied filter  

Figure 14: Difference mask to reduce noise from test setup 

 

5.2 Data preprocessing 
Each measurement is decoded and processed and stored along with its parameter set on disk. One substrate 

plate creates roughly 100 gigabytes of data. Every layer is then assigned with an output class: for the first test, the 
used laser power. For feeding the data into an artificial neural network, every dataset must contain an equal 
number of samples. To achieve this, the machine noise is appended at the end to fill to the desired length. During 
pre-processing, a dataset with input and output vectors is created and stored separately on disk to reduce processor 
(CPU) time for repeated use. The dataset is then randomised and split into 70% training data und 30% test data. 

5.3 Artificial Intelligence 
Utilizing sklearn’s MLPClassifier1, a multi-layer perceptron is used to make a first attempt on 

classification. First results show a better performance of a stochastic gradient descent solver over the ADAM 
solver. As activation function, ReLu is used. Tanh was tested but produced worse results than ReLu. 

 

                                                 
1 Scikitlearn: A python package which has a lot of built in AI and data processing functionality 2110



Precision defines the number of true positive classifications in regard to all positive classifications (“What 
proportion of positive identifications was actually correct?”2), whereas recall is calculated by comparing the true 
negative classifications to all real positives (“What proportion of actual positives was identified correctly?”3). The 
F1-Score combines precision and recall via (Formula 4): 

 

𝐹𝐹1 =
2 ∗ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (Formula 4) 

 
To check the repeatability of training the artificial neural network, the network was trained and tested five 

times on the same split of training and test data. The mean and standard deviation of precision, recall and F1-
score are shown in Figure 15 to Figure 20.  

 
When regarding precision, recall and f1-score, one can notice that there is an interval of neurons in which 

the classification results are optimal. Above and below that interval the classification score drops rapidly. 
Furthermore, it can be seen that the addition of multiple hidden layers does not provide a increase regarding the 
reachable classification score. In contrary, when regarding the standard deviation it is noticeable that the standard 
deviation rises with the addition of more layers. This means that the training itself lacks repeatability and therefore 
gets more stochastic.  

                                                 
2 From: https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall [22.08.2018] 
3 From: https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall [22.08.2018] 2111



 
Figure 15: Precision of tested multi layer perceptron  

 
Figure 16: Precision – Standard deviation 

 
Figure 17: Recall of multi layer perceptron 

 
Figure 18: Recall – Standard deviation 

 
Figure 19: F1-Score of multi layer perceptron 

 
Figure 20: F1-Score – Standard deviation 

 
After checking repeatability for a fixed dataset, five times cross validation with an 80/20 split (the dataset 

is split into five batches and all iterations of four training batches and one test batch are used to train and validate 
the ANN) is used to validate the model over the complete data set. The results of the cross validation are shown 
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in Table 5. The selected topology does not have quite as strong an effect through complete cross-validation. The 
achievable classification rates between 80 and 90 percent represent a good level for a first approach (no tweaking 
regarding learning rate, momentum etc. was done). 
 

Model 
(neurons in 
one hidden 

layer) 

Precision Recall F1-Score 

Mean Standard 
deviation Mean Standard 

deviation Mean Standard 
deviation 

20 0.85 0.026 0.83 0.031 0.83 0.031 
30 0.86 0.024 0.86 0.025 0.86 0.025 
40 0.87 0.027 0.87 0.027 0.87 0.027 
50 0.87 0.038 0.87 0.041 0.87 0.038 

Table 5:  Results of a fivefold cross-validation 

 A major drawback when working with such big datasets is computation performance. Training duration 
rises linear with the number of neurons in a hidden layer until a certain point, where it starts rising exponentially 
(Figure 21). This is probably due to the internal memory of the computer maxing out, so the operating system 
starts to cache data on the system disk. This process greatly reduces the speed of the training. Hence it is very 
important to have enough internal memory to not slow down the process. Furthermore, the batch size should not 
be too small. The overhead from various function calls increase the training time as well (Figure 22). Last, the 
final model will be stored on disk. Using a single hidden layer with a hundred neurons, the final model reaches 
almost 20 gigabytes (Figure 23). For further use, the model is loaded in memory, which decreases the available 
memory for batches or limits the maximum number neurons trainable. 

 
Figure 21: Training duration changes over 

hidden layer size 

 
Figure 22: Training duration decreases with 

increasing batch size 

 
Figure 23: Final models get bigger with 

increasing complexity 

 
Regarding the current classification the following statements can be made: 

• Bottleneck approach is very useful, since roughly 12 million input neurons are used 
• Three hidden-layer-topology offers best classification result, but also needs more computational 

resources 
• Optimum between 25 and 45 neurons in hidden layer (also valid for multi-hidden-layer topologies) 
• Maximum precision with this approach: 0.93 
• Maximum recall with this approach: 0.93 
• Maximum F1-score with this approach: 0.93 
• ADAM is slower than SGD 
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These findings give a first impression how the artificial neural networks can be suitably designed to 

evaluate the acoustic signals of the process for an in-situ process monitoring. 

6 Summary and Outlook 
To detect pores in additive manufactured parts, a possible solution lies within an in-situ process 

monitoring. As a measurement technique, an acoustic sensor was chosen and implemented. The acquired process 
signals could be processed and were fed into an artificial neural network. It was possible to make a classification 
regarding the used laser power in the process. Multiple topologies of the artificial neural network were tested. A 
bottleneck approach with a single hidden layer seems the most promising. It can be concluded, that the acoustic 
signal of the process is suited to characterize the SLM process. 

 
Once the final DOE is finished (all plates are printed), a bigger dataset will be created, and the different 

models will be tested against varying output classes. Using Google TensorFlow might decrease the overall time 
needed for training and testing. Furthermore, different parameter sets must be tested as well as other types of 
neural networks like convolutional neural networks or restricted Boltzmann machines.  

 
After getting reference measures of the defects in the parts, it will be tried to correlate the defect type and 

position to the acoustic signals. The AI approach can easily be supplemented with additional input and output 
parameters to enable modular traceability. With this approach it should be possible to monitor the process and 
give a quantitative feedback on the estimated density or type of pores. 
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