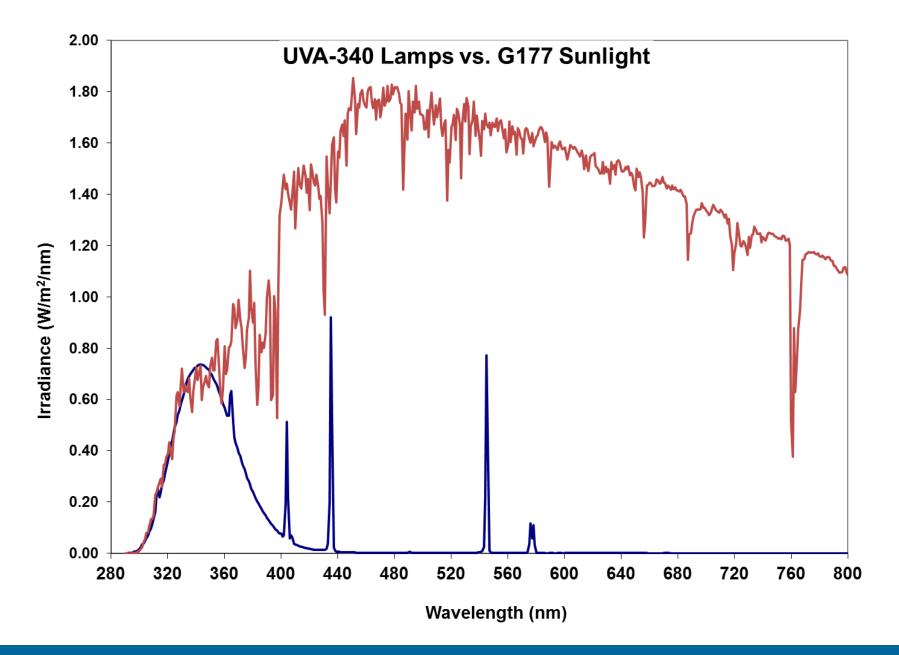
Developing Steady State Exposure Conditions in an ASTM G154 Fluorescent UV Test Chamber for Backsheet Materials

Sean Fowler
Q-Lab Corporation
sfowler@q-lab.com
(216)870-0932

Purpose

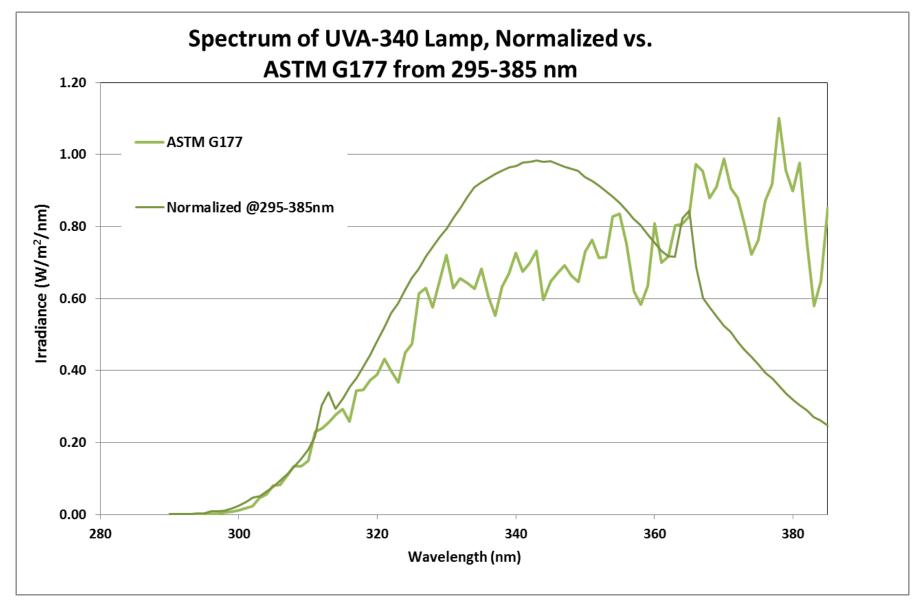

Fluorescent UV test chambers are commonly used for weathering tests of durable polymeric materials.

UVA-340 type lamps are a good match to the noon summer sunlight spectrum from the cut-on (295 nm) to approximately 350-360 nm

What are the best test conditions for achieving the same dosage of UV radiation as a backsheet would see in 1 year?

For a 6 month test, how many years of energy dosage could be achieved at various irradiance set points in the weathering chamber?

Caution: This exercise is done to provide an estimate of the approximate exposure time in a test chamber. It is useful for time budgeting purposes only. It does not account for the effects of temperature and moisture on the long term durability of any material. Also, reciprocity of UV exposure should never be assumed. Assuming that a laboratory exposure of equivalent energy dosage to a given outdoor exposure will result in equivalent degradation normally leads to gross errors.



The Challenges

- Outdoor weathering site data measures energy dosage in range from 295-385 nm
- UVA-340 lamps only have a good match to sunlight through approximately 340 or 360 nm, making direct dosage comparisons difficult
- Matching the dosage in the entire UV range causes a spectral mismatch error

Questions

- What wavelength range should be used to compare the chosen sunlight spectrum (G177) to the UVA-340 lamp?
- Over this wavelength range, what multiplier is used to convert outdoor sunlight data into data for UVA-340 dosage calculations?
- Putting this all together, calculate exposure times using fluorescent UV weathering chambers to achieve dosages very similar to the outdoor sites

Integrated irradiance is the same for both curves.

How well does the UVA-340 lamp match sunlight?

- Designed to match the UV portion of noon summer sunlight
- ASTM G177 is a reference noon summer sunlight standard, based on SMARTS2
- Method
 - Normalize UVA-340 spectrum to match ASTM G177 integrated irradiance
 - 295-385 nm
 - 295-360 nm
 - 295-350 nm
 - 295-340 nm
 - Compare the resulting normalized spectrum to the reference
 - · Calculate a correlation coefficient
 - Standard deviation using a Pearson Chi-square statistic
 - 1.0 means perfect correlation
 - Use the longest wavelength that results in > 0.90 coefficient

Correlation Coefficient: 1 Minus the Standard Deviation Using a Pearson Chi-square Statistic

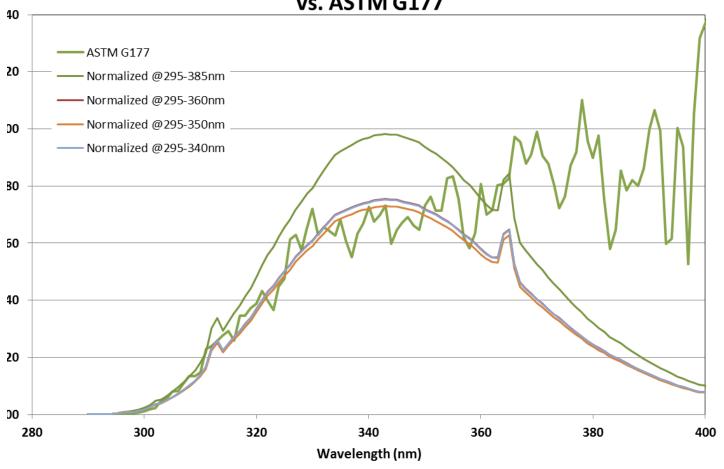
$$1 - \sqrt{\frac{\sum_{\lambda=295}^{\lambda=x} \frac{(I_{G177} - I_{UVA340})^2}{I_{G177}}}{x-295}}$$

Where

I_{G177} = Spectral irradiance according to ASTM G177

I_{UVA340} = Spectral irradiance of UVA-340 Lamp

x = integration upper limit


 λ = wavelength in nanometers

Results

Range	UVA-340 to G177 (W/m2) correlation				
295-385	0.59				
295-370	0.83				
295-360	0.91				
295-350	0.92				
295-340	0.92				

Use the integral 295-360 nm to compare UVA-340 to ASTM G177

Areas under the curve for UVA-340 equal G177 for the given wavelength range: for example, the curve for 295-360 nm has an equal integrated irradiance versus G177, also from 295-360 nm.

Results

- Outdoor UV dosages include energy from 295 nm to 385 nm
 - Using ASTM G177 as the reference, calculate a multiplier to convert dosage from 295-385nm into the dosage from 295-360nm
 - G177 Irradiance from 295-385 nm = 50.8 W/m²
 - G177 Irradiance from 295-360 nm = 29.6 W/m²

$$29.6 \div 50.8 = 0.583$$

Integrating UVA-340 Irradiance

UVA-340 Spectral Irradiance									
Wavelength Irradiance		Wavelength		Irradiance		Wavelength	Irradiance		
295	0.0029		331	0.6334		366	0.5278		
296	0.0060		332	0.6538		367	0.4619		
297	0.0072		333	0.6763		368	0.4405		
298	0.0088		334	0.6982		369	0.4218		
299	0.0123		335	0.7073		370	0.4029		
300	0.0179		336	0.7164		371	0.3888		
301	0.0254		337	0.7254		372	0.3696		
302	0.0361		338	0.7327		373	0.3520		
303	0.0394		339	0.7401		374	0.3369		
304	0.0496		340	0.7435		375	0.3199		
305	0.0600		341	0.7505		376	0.3019		
306	0.0726		342	0.7516		377	0.2892		
307	0.0865		343	0.7546		378	0.2742		
308	0.1014		344	0.7521		379	0.2574		
309	0.1181		345	0.7529		380	0.2448		
310	0.1375		346	0.7467		381	0.2326		
311	0.1657		347	0.7420		382	0.2218		
312	0.2321		348	0.7373		383	0.2075		
313	0.2600		349	0.7322		384	0.1997		
314	0.2248		350	0.7196		385	0.1905		
315	0.2466		351	0.7102		386	0.1789		
316	0.2717		352	0.7001		387	0.1688		
317	0.2911		353	0.6882		388	0.1600		
318	0.3168		354	0.6767		389	0.1505		
319	0.3405		355	0.6644		390	0.1415		
320	0.3710		356	0.6472		391	0.1329		
321	0.3989		357	0.6295		392	0.1237		
322	0.4287		358	0.6166		393	0.1169		
323	0.4495		359	0.5981		394	0.1097		
324	0.4775		360	0.5804		395	0.1022		
325	0.5037		361	0.5633		396	0.0965		
326	0.5225		362	0.5506		397	0.0901		
327	0.5508		363	0.5491		398	0.0841		
328	0.5714		364	0.6312		399	0.0791		
329	0.5922		365	0.6476		400	0.0785		
330	0.6090								

From 295-360 nm $Irradiance = 29.58 \text{ W/m}^2$

At 340 nm Irradiance = 0.7435 W/m^2

 $29.58 \div 0.7435 = 39.79$

Use this multiplier to convert UVA-340 machine set point to integrated irradiance from 295-360 nm

Results

- Fluorescent UV test chambers typically control irradiance at 340 nm
 - To convert a 340 nm set point into irradiance from 295-360 nm, multiply by 39.79

Now, divide outdoor dosage by irradiance to calculated time in the test chamber

Example: 202 MJ ÷ (1.55 W/m² @340 x 39.79) ÷ 3600 seconds/hour

= 910 hours

UVA-340 Dosage vs. Outdoor Data

	Annual UV (295-385 nm)	Annual UV (295-360 nm)	time to 1 year at 340 nm set point			years @ 4200 hours			
Location	(MJ/m ²)	(MJ/m ²)	0.55	0.80	1.55	0.55	0.80	1.55	
Phoenix34° Rack	360	210	2663	1831	945	1.6	2.3	4.4	
Sanary (from Atlas)	226	132	1672	1149	593	2.5	3.7	7.1	
Miami5° Rack	344	200	2544	1749	903	1.7	2.4	4.7	

The ground facing side of a backsheet is subject to reflected radiation. The values above can be scaled to accommodate any albedo assumptions, such as 10%, 12% or 20%.