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Abstract. Discovering user preference is an important task in various database
applications, such as searching product information and rating goods and ser-
vices. Previous work addressing user preference in databases either assumes that
users are able to formulate explicit preference criteria when querying, which may
not be feasible in reality, or develops mining techniques to discover users’ implicit
preference from their track record of purchasing and then to generate a restrictive
linear ranking on items, which needs to process a huge amount of data possibly
with noise. However, there still lacks of a unifying model that is able to capture
both implicit and explicit user preference information and to support managing,
querying and analysing the information obtained from different sources.
In this paper, we present a framework based on our newly proposed Preference
Band Model (PBM), which aims to achieve several goals. First, the PBM can
serve as a formal basis to unify both implicit and explicit user preferences. We
develop the model using a matrix-theoretic approach. Second, the model provides
means to manipulate different sources of preference information. We establish
a set of algebraic operators on Preference-Order Matrices (POMs). Third, the
model supports direct querying of collective user preference and the discovery
of a preference band. Roughly, a preference band is a ranking on sets of equally
preferred items discovered from a POM to classify collective user preference. We
demonstrate the applicability of our framework by studying two real datasets.

1 Introduction

Discovering user preference is an important task in various database applications, such
as searching product information and rating goods and services [3, 9, 11, 11]. Many
business activities also rely heavily on estimating overall user preference in order to
import user preferred goods and to design appropriate selling tactics. Previous work
that incorporates user preference into databases mainly falls into two main categories of
approaches. It either assumes that users are able to formulate their preference explicitly
in terms of formulas or constraints [3, 10, 11], which may not be easy in reality, or
develops mining techniques to discover implicit users’ preference from the log of item
selection [12] and then generate an adaptive full ranking of items, which may be too
restrictive. However, there still lacks of a unifying model that is able to capture both
implicit and explicit user preference information and to support managing, querying
and analysing the information obtained from different sources.



We identify three problems that arise from handling preferences obtained from dif-
ferent sources and times. First, individual user preference can be modelled as a partial or
full ranking between items [10, 11]; but how do we model a large amount of such rank-
ing information, which represents very different, possibly noisy and conflicting user
preferences? Second, how do we compare and contrast expected preference and real
user preference? This also gives challenges to focus on some target preference data for
analysing. Third, how do we rank and classify collective user preference and express
the result in some form of simple but useful knowledge?

In this paper, we present a holistic framework shown in Figure 1, which involves a
formal model, a set of algebraic operators and various algorithmic techniques to tackle
the above problems. The framework aims to manage preference information in a sys-
tematic way and to support better analyses of collective user preferences.
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Fig. 1. The framework for managing collective user preference based on PBM

The main idea of our approach is first to convert a collection of user ranked items
into a Preference-Order Matrix (POM). An entry aij in a POM is the frequency that one
item xi (more preferred) precedes another item xj (less preferred) in the collected infor-
mation, which captures the fact that in how many choices users preferred xi to xj . We
also propose to use a declarative language termed Preference-Order Query Language
(POQL) to formulate queries on POMs. A POQL expression can be transformed into a
set of POM operators that support combining preference information in various ways.
Then, we discover new preference knowledge in terms of the best possible preference
band over a normalized POM. In a nutshell, a preference band is a linear order of sets
of equally preferred elements found in the collective preference information.

As shown in the blueprint presented in Figure 1, we classify the process based on
our Preference Band Model (PBM) into three phases. In the first phase, the PBM inte-
grates implicit and explicit preference information represented by a set of user ranked
lists, each of which is a user preference with possible choice order on target items. The



information is modelled within a unifying matrix structure called POMs. In the second
phase, we use a high level declarative query language called POQL to support manipu-
lation of preference data and to generate a more effective POM for further analyses. The
language is executed and can be optimized via a set of POM operators, which shares the
similar spirit of execution of SQL expressions in relational databases. In the third phase,
we need to normalize the POM in order to have it run in an adapted PIVOT algorithm
[1], which classify and rank items into a preference band. The algorithm is known to be
an efficient and effective method for discovering order knowledge from similar matrix
structures, which is capable of tolerating noise of order in reasonable limit [7, 6].

Our main contribution in this paper is the development work of the PBM that sup-
ports managing user preference information and discovering preference bands.

– We formalise the novel concept of preference-order matrices (POMs) that express
collected preference information. POMs support the discovery of preference bands
that represent the maximal consistent collective preference obtained from a given
set of user preference ranked lists.

– We establish a new set of seven algebraic operators such as the sum, the union,
the intersection and the selection on POMs. The intuitions of overall, change, and
common preferences can be formalized by using them.

– We develop a new declarative language POQL based on the POM operators. The
POQL can be transformed into a corresponding sequence of POM operations, which
paves the way to study further optimization of running a POQL expression.

– We identify efficient algorithmic techniques for discovering preference bands, which
shows that the discovery of preference bands from a POM is feasible in practice.

– Finally, we present the preliminary results of two interesting applications, which
show the idea of preference bands is easily applicable.

The rest of the paper is organised as follows. In Section 2, we present some pre-
liminary concepts of user preference. In Section 3, we present a set of formal POM
operators. In Section 4, we discuss the issues arising from the three phases of the PBM
framework. In Section 5, we present our results of finding preference bands on two ap-
plications. In Section 6, we review some related work on user addressing preference
and the algorithmic techniques for finding preference bands. In Section 7, we give our
concluding remarks.

2 Preliminaries

In this section, we first introduce the basic concepts of preference-order matrices
(POMs) and preference bands used in the underlying model, and then define the prob-
lem of preference band discovery with respect to collective user preference.

User preferences can be expressed in an implicit and explicit order of items. For ex-
ample, explicit user preference is formulated in a lexicographic order of preference at-
tributes [11]. Preference SQL [9] is equipped with a “preferring” clause that allows user
to specify soft constraints reflecting multiple preference terms. All these approaches
would result in a preference ranking of items. Implicit preferences are some ranking or-
der that is inferred from users’ track record of choosing items against some background
of item order [12], which also depends on the interpretation of the chosen items.



We assume that a preference rank list can be obtained via some users’ implicit or
explicit preference information and formalize the concept as follows:.

Definition 1. (Preference Ranked List) Given a set of items I = {x1, . . . xn} with
an imposed order <I . A choice C ⊆ I is a list of items ordered according to some
user preference <C , where (C,<C) may or may not equal to (I, <I). We generate
a preference ranked list T by appending (I − C) into C such that T = 〈C, (I −
C)〉, in which the items of (I − C) are ordered according to <I . We denote by L =
{T1, . . . , Tm} a collection of m preference ranked lists.

Note that in Definition 1, <C can represent the order of choosing items in C by
the user, which is an implicit preference, or it can represent the order according to
some explicit preference criteria. L is a collective user preference on I . The following
example helps illustrate the ideas of individual and collective preferences.

Example 1. Let I = {a, b, c, d, e, f} be the items stored in a database and there are
two customers search some items on the web. Let the items be ranked according to
the default order I = {a > b > c > d > e > f}, which can be interpreted as an
arbitrary ranking or a ranking derived from some commercial considerations. One cus-
tomer explicitly states his or her preference criteria, which result in a preferred ranking
C1 = {c > f > e > d > b > a}. Another customer does not state any preference
and just browses the items ranked by the default order <I . However, s/he only checks
a subset of items of I in some different order given by C2 = {d > b > f > e}.

We now show in Figure 2 two sets of preference ranked lists L1 and L2, each of
which contains five preference ranked lists. L1 and L2 can represent collective customer
preference information obtained from two sources. It can be checked that T1 and T8 are
the preference ranked lists derived from C1 and C2 respectively. T5 can also be viewed
as a precise match between a user’s preference and the shop’s estimated user preference
that is expressed in the default item order.

L1 =

T1: c > f > e > d > b > a

T2: a > c > b > d > f > e

T3: a > c > d > b > f > e

T4: d > f > c > a > b > e

T5: a > b > c > d > e > f

L2 =

T6: c > f > e > d > b > a

T7: a > c > b > d > f > e

T8: d > b > f > e > a > c

T9: d > f > c > a > e > b

T10: b > d > f > e > c > a

Fig. 2. An example of two sets of five preference ranked lists

A collection of preference ranked lists L from a given source can be modelled as a
Preference Order matrices (POMs) ML, which is a matrix structure derived from L to
support further querying and preference band discovery.

Definition 2. (Preference Order Matrix) Given L and let | L |= n. A Preference-
Order Matrix (POM) ML with respect to L (or simply M if L is understood) is an
n × n matrix such that each entry aij ∈ M is equal to the number of occurrences that
item xi precedes item xj in L. We define aij ∈ M to be | L |whenever i = j. M is said
to be normalized if each entry norm(aij) = aij

n (or equivalently, aij

aii
or aij

ajj
) whenever

i 6= j, and norm(aij) = 1
2 whenever i = j.



Clearly, it follows from Definition 2 that 0 ≤ aij ≤| L |, aij + aji =| L | for any
distinct i, j. The normalization implies that each entry aij ∈ norm(ML) is equal to the
probability that item xi precedes item xj in L. Given norm(ML). The entries satisfies
the following conditions: (1) (normalization constraint) 0 ≤ aij ≤ 1; (2) (linearity
constraint) aij + aji = 1; and (3) (triangle constraint) aij ≤ aik + akj .

Normalised POMs are important. Although for presentation simplicity we assume
all T being a total order, if a partial order is resulted from more general user preferences
[10] we still can use a corresponding set of linear extensions to represent the order
whose information of equally preferred items, say xi and xj , can still be captured by
normalised POMs in the entry aij = 1

2 . Specifically, a partial order can be directly
represented by a normalised POM as follows: aij ∈ M is equal to 1 if xi ≤ xj ,
aij ∈ M is equal to 0 if xj ≤ xi, and aij ∈ M is equal to 1

2 otherwise (i.e. xi and
xj are incomparable). In other words, normalised POMs are flexible enough to capture
more general user preference information.

Example 2. We now continue Example 1 to derive the POMs and their normalized form
from L1 and L2. The POMs M1 and M2 and their normlized forms are given in Figures
3(a) and (b).

a b c d e f

a 5 4 3 3 4 3
b 1 5 1 2 4 3
c 2 4 5 4 5 4
d 2 3 1 5 4 4
e 1 1 0 1 5 1
f 2 2 1 1 4 5

⇒

a b c d e f

a 0.5 0.8 0.6 0.6 0.8 0.6
b 0.2 0.5 0.2 0.4 0.8 0.6
c 0.4 0.8 0.5 0.8 1.0 0.8
d 0.4 0.6 0.2 0.5 0.8 0.8
e 0.2 0.2 0.0 0.2 0.5 0.2
f 0.4 0.4 0.2 0.2 0.8 0.5

a b c d e f

a 5 2 2 1 2 1
b 3 5 2 2 3 3
c 3 3 5 2 3 2
d 4 3 3 5 4 4
e 3 2 2 1 5 0
f 4 2 3 1 5 5

⇒

a b c d e f

a 0.5 0.4 0.4 0.2 0.4 0.2
b 0.6 0.5 0.4 0.4 0.6 0.6
c 0.6 0.6 0.5 0.4 0.6 0.4
d 0.8 0.6 0.6 0.5 0.6 0.8
e 0.6 0.4 0.4 0.2 0.5 0.0
f 0.8 0.4 0.6 0.2 1.0 0.5

(a) M1 and norm(M1) (b) M2 and norm(M2)

Fig. 3. The POMs M1 and M2 obtained from L1 and L2, and their normalized counterparts

One objective of this work is to establish a set of operators that are able to ma-
nipulate POMs and support in-depth analyses of collective user preference modelled
in POMs. Another objective is to discover preference bands obtained from a given nor-
malised POM. A preference band is intuitively a linear order of sets of equally preferred
items taking into collective user preference. The motivation of defining a preference
band is that in many adaptive searching applications, modelling the preference with a
total order might be too restrictive in the sense that all items in I should be compa-
rable. However, it is also too complex to manage, analyse and present the preference
information expressed in general partial order.

We now give the formal definition of a preference band as follows.

Definition 3. (Preference Band) A preference band B of I with granularity k is an
ordered partition of I given by 〈P1, . . . , Pk〉, where Pi ⊆ I is a non-empty set called a
band element in B. A band order of the items in I arising from B, denoted as <B , can
be inferred from B as follows: For any pair of items x and y in the same band element
P , x and y are incomparable (i.e. x 6<B y and y 6<B x). However, if x and y are from
two distinct band elements Pi and Pj such that i < j, then x <B y.



Essentially, a preference band adopts an appropriately low granularity to eliminate
noises and ranking contradictions of items among preference ranked lists collected in L.
However, there is an inherent cost of losing some information of the preference orders
in individual T when putting items in a band element; as an extreme we can put all
items in one single band element which is obviously no use. Thus, we need to establish
a penalty cost function for measuring the quality of a preference band. A simple one is
adopted as below but more sophisticated functions can be studied as a future work.

If M1 and M2 are two normalized POMs, we define the distance measure given by
D(M1,M2) = Σi 6=j | aM1

ij − aM2
ij |.

Given a normalised POM M . We aim to find the best preference band describing
M . We now formulate the Preference Band Discovery (PBD) problem.

Definition 4. (PBD problem) Let ML be a normalised POM on I obtained from L and
MB be a normalised POM obtained from a preference band B of I . Find a preference
band such that D(ML,MB) is minimized. (Note that B is a partial order and can be
represented by POM MB .)

In other words, the main task of PBD is to find a preference band B on the items of
I such that the penalty cost function is minimized, which is equal to the sum of values
in the following three cases: (i) | (aij)M − 1 | if xi <B xj , (ii) | (aij)M | if xj <B xi,
and (iii) | (aij)M − 1

2 | otherwise.

Example 3. Consider our running example L1 and L2 given in Figure 2. Suppose there
is a preference band B = 〈{a, b, c, d} > {e, f}〉 (which may not be the best one
according to D). Then, it can be checked that D(ML1 ,MB) = 6.6 and D(ML2 ,MB) =
10. The difference is reasonable, since it can be checked that L1 has a noise level of 40%
with respect to the preference band B because two of the five preference ranked lists,
namely T1 and T4, are not the linear extension [7] of B, whereas L2 has an even worse
noise level of 80% with respect to B because only T7 is the linear extension of B. This
motivates us to develop an effective algorithm to generate B from a given ML.

3 The POM Operators

In this section, we define seven POM operators, namely the sum, the union, the differ-
ence, the intersection, the complement, the projection and the selection, each of which
takes one or two given POMs as input parameters, and returns a POM. The operators
serve as a useful tool to manipulate preference ranked lists and provide a basis to de-
velop a high level query language. For example, the output result provides a deeper
insight for sellers to check if the estimated preference order achieves the customer pref-
erence. The seven operators are briefly described as the table given in Figure 4.

The POM operators are easy to understand and to compute and their output result
serves as a basis for carrying out the discovery of preference band. The sum operator is
additive to preference data, that is, the result is incremental with respect to preference
information. This gives advantage to handle preference data in a progressive manner,
say temporal change in preference can be detected. The overall, change, common, oppo-
site preference can be formalised by the sum, the union, the difference, the intersection,



and the complement operations. We can focus on the preference information of a par-
ticular set of items by using the projection and the selection operations. On the other
hand, matrices are an elegant notion studied in a well-established branch of mathemat-
ics. It implies that many interesting results in matrix theory can be used to strengthen
the foundation of PBMs as a development work.

Operators Functions
Sum (+) To add up the preference orders that are inferred from two preference

ranked lists.
Union (∪) To overlap the preference orders that are inferred from two preference

ranked lists.
Difference (−) To differ the preference orders that are inferred from two preference

ranked lists.
Intersection (∩) To obtain the common preference orders that are inferred from two

preference ranked lists.
Complement (¬) To obtain the preference orders that are opposite to that are inferred

from the preference ranked list.
Projection (πX ) To extract the preference orders that are only related to the items X ⊆

I and are inferred from the preference ranked list.
Selection (σp) To select the preference orders that satisfy the predicate p and are in-

ferred from the preference ranked list.

Fig. 4. Brief description of the seven POM operators

We need two binary operators, denoted as min and max, to represent the usual min-
imum and maximum of two given integers in defining the POM operators. From now
on, we use throughout the paper M1 and M2 to represent two POMs defined over the
same set of items I . The sum operation is given in Definition 5.

Definition 5. (Sum) The sum of two POMs M1 and M2 , denoted as M1 + M2, is
defined as a POM M3 over I such that for all i, j ∈ {1, . . . , n}, (aij)3 = (aij)1+(aij)2.

An interesting property of the sum operation is that the sum of two POMs M1 and
M2, which originates from the two respective preference ranked lists L1 and L2, is
equal to the matrix which originates from the preference ranked list L3 containing the
combination of the information in L1 and L2 (i.e. L3 = L1 ∪ L2). This implies that
we are able to perform analyses on “overall” preference information by summing up
“individual” pieces of preference information, in this sense we say that the sum operator
is additive with respect to the preference data.

Another possibility to combine preference information is to consider the maximum
number of occurrences of precedence between items, taking into account the “overlap”
effect. We now define this operation by the union operator as follows.

Definition 6. (Union) The union of two POMs M1 and M2, denoted as M1 ∪ M2,
is defined as a POM M3 over I such that (aii)3 := max((aii)1, (aii)2) for all i ∈
{1, . . . , n} and for all pairs of distinct i, j ∈ {1, . . . , n}, we obtain (aii)3 as follows:

Let x := max((aij)1, (aij)2) and y := max((aji)1, (aji)2).
If x > y then (aij)3 := x and (aji)3 := max((aii)1, (aii)2)− x;
otherwise (i.e. x ≤ y) (aji)3 := y and (aij)3 := max((aii)1, (aii)2)− y.



Note that the comparison x > y makes sure that the most dominant precedence
in M1 and M2 is chosen as the output. In contrast, we can consider the less dominant
precedence but it is common to both M1 and M2. This becomes another operation called
intersection defined as follows.

Definition 7. (Intersection) The intersection of two POMs M1 and M2, denoted as
M1 ∩M2, is defined as a POM M3 over I such that (aii)3 := min((aii)1, (aii)2) for
all i ∈ {1, . . . , n} and for all pairs of distinct i, j ∈ {1, . . . , n}, we obtain (aii)3 as
follows:

Let x := max((aij)1, (aij)2) and y := max((aji)1, (aji)2).
If x < y then (aij)3 := x and (aji)3 := min((aii)1, (aii)2)− x;
otherwise (i.e. x ≥ y) (aji)3 := y and (aij)3 := min((aii)1, (aii)2)− y.

We now introduce the difference operator, which is useful to contrast two preference
ranked lists. For example, we can use the difference operator to find the temporal change
in preference data obtained at two different time intervals or to compare the preference
data obtained from two user groups having different preference profiles.

Definition 8. (Difference) Assume | L1 |>| L2 |. The difference of two POMs M1

and M2 , denoted as M1 − M2, is defined as a POM M3 over I such that (aii)3 :=
(aii)1 − (aii)2 for all i ∈ {1, . . . , n} and for all pairs of distinct i, j ∈ {1, . . . , n}, we
obtain (aii)3 as follows:

Let x := (aij)1 − (aij)2 and y := (aji)1 − (aji)2.
Case x > 0 and y > 0: (aij)3 := x and (aji)3 := y;
Case x > 0 and y ≤ 0: (aij)3 := min(x, (aii)1 − (aii)2) and (aji)3 := (aii)1 −

(aii)2 −min(x, (aii)1 − (aii)2);
Case y > 0 and x ≤ 0: (aij)3 := (aii)1 − (aii)2 − min(y, (aii)1 − (aii)2) and

(aji)3 := min(y, (aii)1 − (aii)2).

Notably, the operator is undefined for | L1 |≤| L2 |. This prevents the happening of
meaningless negative entries in a POM. Thus, there is no need to consider the possibility
of y ≤ 0 and x ≤ 0 in the definition. It also implies that either x or y is strictly positive
as shown in the three cases in Definition 8.

The following is an interesting operator that defines the “reverse” of the preference
order for all items in I .

Definition 9. (Complement) The complement of a POM M1, denoted as ¬M1, is de-
fined as a POM M2 over I such that for all i, j ∈ {1, . . . , n}, (aij)2 = (aji)1.

Similar to using relational algebra [2], we may focus on a target set of items for
further analyses. The following two operators aim to realise the similar objective. Un-
like operating on relational tables, we still need to preserve the entries of the non-target
items in the output, since POM is a matrix. To tackle this problem, we simply fill in the
entries of these items according to the default order <I . I.e. All the items in (I −X) in
the projection are ordered according to <I in the output POM.

Definition 10. (Projection) The projection of a POM M1, denoted as πX(M1) where
X ⊆ I is a set of items, is defined as a POM M2 as follows:



Case xi, xj ∈ P : (aij)2 = (aij)1.
Case xi ∈ P but xj 6∈ P : (aij)2 = (aij)1 + (aji)2 and (aji)2 = 0.
Case xi, xj 6∈ P : (aij)2 = (aij)1 + (aji)2 if xj <I xi; otherwise (i.e. xi <I xj)

(aji)2 = 0.

The tricky point in defining the POM selection is that we should not allow arbitrary
entry comparison, since it is difficult to know or seldom need to concern the absolute
occurrence of precedence in L. Instead, we choose the relative ratio of precedence be-
tween items as the parameter used in the selection predicate, which always falls in a
unit interval. This also captures the intuition that how much x is more preferred to y.

Definition 11. (Selection) The selection of a POM M1, denoted as σθx(M1), where θ
is a comparator such as >, <,≥,≤, or =, and x ∈ [0, 1] is a positive number, is defined
as a POM M2 as follows:

For all i ∈ {1, . . . , n}(aii)2 = (aii)1 and for all distinct i, j ∈ {1, . . . , n},
If | (aij)1−(aji)1

(aij)1+(aji)1
| θx, then (aij)2 = (aij)1;

otherwise (i.e. | (aij)1−(aji)1
(aij)1+(aji)1

| θ̄x) if xj <I xi (aij)2 = (aij)1 + (aji)2; or else
(i.e. xi <I xj) (aji)2 = 0,

where the notation θ̄ denotes the complement of θ (e.g. θ̄ is “≤” when θ is “>”).

It follows from Definition 11 σ≥0(M) = M , where all entries are trivially selected.
The result σ>1(M) represents the preference being reduced to the default order <I .
This can be used as the identity POM ID for revealing some interesting properties of
the union and intersection operators in the following discussion.

We let δ1 ∈ {+,∪,∩} and δ2 ∈ {¬, πX} and δ3 ∈ {¬, σp, πX}. The following
properties of the POM operations can be verified by Definitions 5 to 11.

Associative Property. The POMs on the same I are associative under sum, union
and intersection which is shown in the equations as follows:

(M1δ1M2)δ1M3 = M1δ1(M2δ1M3).
Commutative Property. The POMs on the same I are also commutative under

sum, union and intersection.
(1) M1δ1M2 = M2δ1M1. (2) δ′3(δ3(M)) = δ3(δ′3(M)).
Distributive Property. Projection and negation are distributive under sum, union

and intersection.
δ2(M1 δ1 M2) = (δ2(M1)) δ1 (δ2(M2)).
In general, σp(M1δ1M2) 6= (σp(M1))δ1(σp(M2)) and πX(M1−M2) 6= (πX(M1))−

(πX(M2)). However, ¬(M1 −M2) = (¬(M1))− (¬(M2)) and ¬(¬(M)) = M .
We now let σ>1(M) = ID and present the identity property.
Identity Property. Union and intersection satisfy the identity property.
(1) M ∪ ID = ID. (2) M ∩ ID = M.

Example 4. We now make use the POMs M1 and M2 given in Figure 3 to show some
of the results of M1δ1M2 and δ3(M2) in Figure 5.

4 Implementation Issues

In this section, we discuss the techniques and methods that addresses the challenges
arising from the three phases of the PBM framework depicted in Figure 1.



a b c d e f

a 10 6 5 4 6 4
b 4 10 3 4 7 6
c 5 7 10 6 8 6
d 6 6 4 10 8 8
e 4 3 2 2 10 1
f 6 4 4 2 9 10

a b c d e f

a 5 4 3 1 4 1
b 1 5 1 2 4 3
c 2 4 5 4 5 4
d 4 3 1 5 4 4
e 1 1 0 1 5 0
f 4 2 1 1 5 5

a b c d e f

a 5 2 2 3 2 3
b 3 5 2 2 3 3
c 3 3 5 2 3 2
d 2 3 3 5 4 4
e 3 2 2 1 5 1
f 2 2 3 1 4 5

a b c d e f

a 5 4 3 5 5 5
b 1 5 1 5 5 5
c 2 4 5 5 5 5
d 0 0 0 5 5 5
e 0 0 0 0 5 5
f 0 0 0 0 0 5

a b c d e f

a 5 4 5 5 4 5
b 1 5 1 5 4 5
c 0 4 5 4 5 4
d 1 0 1 5 4 4
e 1 1 0 1 5 1
f 0 0 1 1 4 5

(a) (b) (c) (d) (e)

Fig. 5. The results of the some binary and unary POM operations (a) M1 + M2 (b) M1 ∪M2 (c)
M1 ∩M2 (d) πabc(M1) (e) σθ>0.2(M1)

4.1 Phase 1: How to obtain and store POMs?

We can construct the POM M by using L in two ways. The first way is to adopt a brute
force approach to bookkeep aij when scanning the total order in which xi precedes xj .
As the algorithm for discovering preference bands needs to take a normalized POM as
the input, we still need to compute the normalized values of the entries in M in the
final phase. So we may use a more direct way to obtain norm(M). We can sample
possible orderings of the user preference T ∈ I and in this case norm(aij) is set to be
the fraction of L in which xi precedes xj , such as Markov Chain Monte Carlo method
used in [15]. In this approach, we avoid the heavy computation to track all precedences.
In fact it is inevitable to have noise in preference data in real applications. Sampling
techniques seem to be more appropriate to generate normalized POMs.

The storage scheme of a matrix greatly affects the performance of POM operators.
In practice, there are usually many items to be considered. As I is large and the number
of preferred items is small, the POMs may be very sparse with respect to the entries that
actually represent user preference data. As the entries of diagonal and lower triangular
portion of a POM can be deduced from | L |, we may develop a concise version that
targets on only those entries that contain preference information. Specifically, we fill in
zeros in entry of (i) the lower triangular portion of the POM and (ii) the diagonal running
top left to bottom right. The first condition is valid, since we have aji =| L | −aij . The
second condition is also valid since we have aii =| L |. There will be more zero entries
in the upper triangular portion of M if the ranking order is skew.

Example 5. We use M1 given in Figure 3 to illustrate some storage schemes. The matrix
is reduced into a concise version as shown in Figure 6. The first three rows of Figure
7 constitute a simple storage scheme for M1, which is called the co-ordinate Based
scheme (COO). It stores each nonzero entry together with its column and row indexes
in three arrays as shown. The scheme holds the non-zero entries in row-first order.

In literature, the technique of storing sparse matrices has been intensively studied
[13, 8]. There are other storage schemes which make use the zero entries to compress
a matrix further such as the Compressed Sparse Row (CSR) storage scheme, which
differs from COO in the Compressed Row array. In the table shown in Figure 7, the
fourth row, namely the compressed row (54221), represents five ”1” (meaning the first
row), four ”2” (meaning the second row), two ”3” (meaning the third row), and so on.
We fill in ”-1” if there is no non-zero entry at a row if it is not the end (no occurrence



in this example). Another is the Compressed Sparse Column (CSC) storage scheme,
which is similar to CSR but uses compressed column array to hold the location of the
first non-zero entry of that column. There are also other sparse matrix storage schemes,
such as Compressed Diagonal Storage (CDS) and Jagged Diagonal Storage (JDS) [14],
which need further study on their effectiveness on storing and compressing POMs.

a b c d e f

a 5 4 3 3 4 3
b 1 5 1 2 4 3
c 2 4 5 4 5 4
d 2 3 1 5 4 4
e 1 1 0 1 5 1
f 2 2 1 1 4 5

=⇒

a b c d e f

a 0 4 3 3 4 3
b 0 0 1 2 4 3
c 0 0 0 4 0 4
d 0 0 0 0 4 4
e 0 0 0 0 0 1
f 0 0 0 0 0 0

Fig. 6. POM in concise form by filling in zeros

Non-zero 4 3 3 4 3 1 2 4 3 4 4 4 4 1
Column 2 3 4 5 6 3 4 5 6 4 6 5 6 6

Row 1 1 1 1 1 2 2 2 2 3 3 4 4 5
Compressed Row 5 4 2 2 1

Fig. 7. Simple Co-ordinate-Based (COO) and
Compressed Spares Row (CSR) Schemes

4.2 Phase 2: How to use the POM operators to formulate queries?

We develop a declarative language on POMs in our framework and term the langauge
the Preference Order Query Language (or simply the POQL). A POQL expression is
executed via the seven POM operators defined in Section 3, which shares the same prin-
ciple of translating a SQL expression into a sequence of relational algebra operations.
We now define the POQL syntax in Backus Naur Form (BNF):

<query> :: = <selectClause><fromClause>[<conditionClause>]
<selectClause> :: = SELECT <itemList>
<queryList> :: = query [, query. . .]
<fromClause> :: = FROM <matrixIdentifier> | FROM <operator> <matrixList>
<conditionClause> :: = WHERE PREFERENCE RATIO <compOp> a number in [0,1]
<itemList> :: = itemIdentifier [, itemIdentifier. . .] | ∗
<matrixList> :: = matrixIdentifier [, matrixIdentifier. . .]
<operator> :: = SUM|UNION|DIFFERENCE|INTERSECT|COMPLEMENT
<compOp> :: = |<=|>=|<|=
There are three main clauses in a query expression: the select, from, and condition.

Among them the select and the from clauses are compulsory, while the condition clause
is optional. Similar to SQL, POQL is a simple declarative language but is expressive
enough to formulate query on finding preference information stored as POMs.

We execute a POQL expression by translating it into a sequence of POM opera-
tions using Algorithm 1. Suppose X ⊆ L is a set of items which appears in the se-
lect clause, M is a set of m POMs which appears in the from clause, where M =
{M∗

1 ,M∗
2 , . . . , M∗

m} and M∗ means either M or COMPLEMENT M , and OPER ∈
{ε, SUM , UNION , DIFFERENCE, INTERSECT}. Note that the input POQL
query expression is assumed to be syntactically valid. If OPER = ε, then m = 1.

Now, we present a set of examples, which illustrates the usage of the POQL expres-
sions and the translation into the corresponding sequence of POM operations. Let M1,
M2 and M3 be the POMs obtained from different sources.

(Q1): We want to know how popular the items x1 and x2 in the three branches of a shop
(sources M1, M2 and M3).



Algorithm 1 Translate POQL Algorithm
Input: A POQL expression q
LET q = <selectClause><fromClause>[<conditionClause>]

<selectClause> := “SELECT X | ∗”
<fromClause> := “FROM OPERM”
<conditionClause> := “WHERE PREFERENCE RATIO θx”

Procedure:
Step 1 : For the fromClause, CASE OPER OF:

ε : TEMP := “M1”
COMPLEMENT : TEMP := “¬M1”
SUM : TEMP := “M1 + M2 + · · ·+ Mm”
UNION : TEMP := “M1

⋃
M2

⋃ · · ·⋃ Mm”
DIFF : TEMP := “M1 −M2 − · · · −Mm”
INTERSECT : TEMP := “M1

⋂
M2

⋂ · · ·⋂ Mm”
Step 2 : For the selectClause:

IF “∗” THEN TEMP := TEMP
ELSE TEMP := “πX(TEMP )”

Step 3 : IF there is a whereClause THEN TEMP := “σθx(TEMP )”
Output: TEMP expression

POQL expression: SELECT x1, x2 FROM SUM M1, M2, M3.
POM operation: π{x1,x2}(M1 + M2 + M3).

(Q2): We want to find out the essential difference of preferences between the two groups
of users in M1 and M2. We consider only extreme cases of those items having prefer-
ence ratio > 0.9.

POQL expression: SELECT * FROM DIFFERENCE M1, M2 WHERE PREFER-
ENCE RATIO > 0.9.

POM operation: σ>0.9(M1 −M2).

(Q3): We want to get the specific information of a particular set of items X = {x1, x2, x3}
with common preference in the three sources. We consider only those items having
roughly equal preference (ratio < 0.1).

POQL expression: SELECT X FROM INTERSECT M1, M2, M3 WHERE PREF-
ERENCE RATIO < 0.1.

POM operation: σ<0.1(ΠX(M1

⋂
M2

⋂
M3)).

Let us consider the query Q3. The optimal plan is to first execute the POM oper-
ators that can minimize the number of non-zero elements in the matrix. For the sake
of efficiency, the projection should be executed as early as possible. So a better POM
execution plan of Q5 can be obtained as follows:

(Q4): σ<0.1(πX(M1)
⋂

πX(M2)
⋂

πX(M3)).

4.3 Phase 3: How to generate preference bands?

The challenge of this final phase is to tackle the PBD problem in Definition 4. However,
the problem is equivalent to the Bucket Order Discovery (BOD) problem, which aims
to find a linear order of buckets from a given set of linear orders. The BOD problem has



been proved to be NP-hard [1]. Thus, we have to resort to heuristic algorithms. Given
a set of full rankings T1 and T2 over I . Gionis et al. [7] proposed a heuristic algorithm
called Bucket Pivot, which is adapted from Ailon’s randomized algorithm Pivot [1] (or
simply called the PIVOT algorithm).

Essentially, the PIVOT algorithm starts with a random selected element and then
compares the elements with others and finally generates three classes of “left”, “same”
and “right” classes. To apply the techniques in our context, the PIVOT algorithm can
be employed to exploit precedence probabilities stored in the input normalized POM
M and then to discover the output preference band recursively, in which a preference
band can be regarded as a bucket order B. The three classes of buckets correspond to
the lower band (LB), current band (CB) and upper band (UB) elements.

Specifically, the adapted PIVOT algorithm runs in a quick-sort-like manner. In each
recursion, a random pivot item xi is first selected and the following three band elements,
〈UB > CB > LB〉, are also created for xi. Other items are then compared with the
pivot xi. An item xj will be put into CB if the precedence probability aij satisfies the
following inequality: 0.5 − β ≤ aij < 0.5 + β, where β ∈ [0, 0.5] is a parameter
that describes the degree of precision of precedence probability relative to 0.5. The
drawback of using PIVOT is that it is not easy to set a suitable β value and the choice of
β affects the final number of band elements in B. Clearly if β = 0 we cannot generate
any approximated band element to provide insight of the collective preference in the
input POM. On the other hand, if β = 0.5 we have a very imprecise (and is likely to be
large) band element that contains all xj having aij 6= 1 (which has a high probability).
Fortunately, according to [7], the default value β = 0.25 is shown to be able to make
PIVOT achieve good approximation ratio with respect to the penalty cost function D.

We now present the adapted PIVOT algorithm for PBD problem in Algorithm 2,
which adapts PIVOT in our contest. We simply assume β = 0.25 for running PBD.

Algorithm 2 The Preference Band Discovery Algorithm PBD(X, M, β)
Input: A normalized POM M of I , X ⊆ I and β = 0.25 by default
Procedure:

Step 1 : IF X = ∅ RETURN ∅
Step 2 : Pick xi ∈ I randomly as a pivot DO

UB ← ∅
CB ← {xi}
LB ← ∅

Step 3 : FOR ALL items xj ∈ (X − {xi}) DO
IF 0.5 + β ≤ aij THEN UB ← UB ∪ {xj}
ELSE IF 0.5− β ≤ aij < 0.5 + β THEN CB ← CB ∪ {xj}
ELSE IF aij < 0.5− β THEN LB ← LB ∪ {xj}

Output: A preference band given by 〈PBD(UB, M, β), CB, PBD(LB, M, β)〉

5 Applications of Preference Bands

We now present an application of the PBM to discover the user preference in (1) a real
rating movie dataset and (2) a real clickstream dataset. A clickstream is the evidence of
user preference in choosing a web page to browse.



(1) Movie Preference. We consider the ranking of movie obtained from Eachmovie
data1. The dataset consists of 72916 users, 1628 movies, and 2811983 movie votes.
Each of the movie votes has a weight and a score, where the weight denotes whether
or not the user actually saw the movie, and where the score denotes the user’s movie
rating. Using Algorithm 2, we ignore the weight and set it to 1 for all users. There are
actually very different preference in ranking the movies. We target on the following set
of ten movies to find the PB:

I = {Strange Days (SD), Lawnmover Man 2 (LM), Flintstones (FS), Free Willy
(FW), Godfather (GF), 3 Musketeers (MU), 101 Dalmatians (DM), Empire Strikes
Back (ES), Barb Wire (BW), and Jungle Book (JB)}.

Figure 8 shows the normalised POM for the rankings of the 10 movies. We obtain
the best preference band of four band elements of movies as follows: 〈{GF, ES} >
{SD, JB, } > {FS, FW, DM, MU} > {BW, LM}〉. The band elements are not
so trivial to be obtained from the huge amount of data or even from the POM given in
Figure 8, which is obtained after the processing efforts in Phases 1 and 2.




ES GF JB SD MU DM FW FS LM BW
ES 0.5 0.51 0.70 0.66 0.78 0.86 0.86 0.88 0.94 0.98
GF 0.49 0.5 0.69 0.66 0.76 0.87 0.87 0.89 0.93 0.98
JB 0.30 0.31 0.5 0.55 0.66 0.76 0.79 0.80 0.91 0.94
SD 0.34 0.34 0.45 0.5 0.63 0.71 0.77 0.74 0.88 0.92
MU 0.22 0.24 0.34 0.37 0.5 0.57 0.69 0.64 0.79 0.87
DM 0.14 0.13 0.24 0.29 0.43 0.5 0.62 0.57 0.78 0.79
FE 0.14 0.13 0.21 0.23 0.31 0.38 0.5 0.54 0.78 0.79
FS 0.12 0.11 0.20 0.26 0.36 0.43 0.46 0.5 0.70 0.73
LM 0.06 0.07 0.09 0.12 0.21 0.22 0.22 0.30 0.5 0.46
BW 0.02 0.02 0.06 0.08 0.13 0.15 0.21 0.27 0.54 0.5




Fig. 8. The normalized POM of movie preference to discover preference bands

(2) Web Page Preference. We consider the user page visits of msnbc.com on a sin-
gle day. The clickstream dataset is obtained from MSNBC data2. Each user has exactly
one sequence of page visits, where each page visit is recorded as a URL category. There
are 17 categories in total, and each category is encoded by a distinct integer from 1 to
17. In other words, I = {1, . . . , 17} with usual numerical order and L consists of a set
of T sequences, each of which is a permutation of I .

First, we keep the first occurrence of a category in each sequence T and denote the
resulting sequence as C. Usually, C ⊆ I and thus | C | is less than 17. We denote the
(17 - | C |) categories as S and sort the categories in S according to the numerical order
of their integer code. Then, we append S to C to form a permutation of I as a result,
which is a T sequence. We select a subset of the sequences whose | C | contains at
least 14 categories in order to increase the effect of the user preference in L. In total,
we identify 160 such T sequences.

Examples of URL categories are “frontpage” and “msn-sports”. The page visit se-
quence is a total order if we do not consider duplicate page visits. The order of page

1 http://research.compaq.com/SRC/eachmovie
2 http://kdd.ics.uci.edu/databases/msnbc/msnbc.html



visits reflects a user’s browsing habit. By clustering page-visit orders, we generate a
user preferred categorization. For example, in Figure 9, we may use a preference band
to indicate the common browsing habits of the set of users, who may usually start from
reading some news, either about politics or about sports, and end up with a look at the
weather conditions.

User 1: frontpage → news → sports → weather
User 2: news → politics → weather

...
...

. . .
...

User n: frontpage → politics → weather

Fig. 9. Collective users’ browsing habits to form a preference band

The best preference band discovered in MSNBC data is found as follows:
〈{frontpage, news} > {tech, local, on-air, misc, weather, msn-news, health,
living, business, sports, summary, travel} > {opinion} > {msn-sports, bbs}〉.
It shows that the item “news” is put in the first band element in addition to the “front-
page”. The result that both “frontpage” and “news” are in the top band element is not
so trivial but seems to match real-life experience: while users can first visit “frontpage”
and then go from the “frontpage” to “news”, users may have bookmarked “news” and
visit “news” directly. In contrast, if we use a preference ranking instead of a preference
band to represent such browsing preference, “frontpage” would most likely be put in the
top of the preference rank, which wrongly assumes that users normally start with the
“frontpage” and then go to the “new”. Thus, using a preference band is a more natural
and meaningful representation of collective preference.

6 Related Work

Preferences are receiving much attention in querying, since DBMSs need to provide
better information services in advanced applications [9, 10]. In particular, preference
SQL [10] is equipped with a “preferring” clause that allows user to specify soft con-
straints reflecting multiple preference terms. Implicit preference have been commonly
studied in the area of searching such as using clickthrough data to mine user preference
in web browsing [12]. In reality, implicit and explicit user preferences are important but
there lacks of a formal basis to accommodate and manipulate both of them.

Our previous work [11] models single user preference as a hierarchy of its under-
lying data values and formalise the notion of Prioritized Preferences (PPs). We then
consider multiple user preferences in ranking tuples in a relational table. We examine
the impact of a given set of PPs on possible choices in ranking a database relation and
develop a new notion of Choice Constraints (CCs) in a relation.

The PBD problem can be translated into the bucket order discovery (BOD) problem
studied in recent years. The problem of obtaining a single bucket order from a collection
of input total orders has been considered by Fagin et al. [4, 5] in their general framework
of comparing and aggregating partial rankings. In our recent work in [6], we develop a
new algorithm, called GAP, to tackle the BOD problem. The GAP algorithm consists
of a two phase ranking aggregation and involves the use of a novel rank gap heuristic
for segmenting multiple quantile orders.



7 Concluding Remarks
In this paper, we propose a new PBM framework that consists of three phases of work

for managing a collection of user preference data that are modelled as POM matrices.
We also establish a set of operations which serve as the formal tool to analyse and ma-
nipulate preference data. We further develop a declarative query language based on the
POM operators and a new concept of preference band to discover and classify collective
user preference. We discuss various technical issues related to the three phases.

There are indeed many interesting issues that deserve further study. In the modelling
aspect, we need to clarify if POQL is expressive enough to obtain important preference
information from given POMs. In the deployment aspect, we still need to study the
efficiency of the POM operators and devise effective optimization strategy for the ex-
ecution of the operations. The algorithm of finding preference bands is also related to
the research work of bucket order in the data mining area. In the application aspect, we
believe there should be many more interesting possibilities to apply our framework, in
addition to the usual database and web applications discussed in Section 5.
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