
10 PERVASIVEcomputing Published by the IEEE Computer Society ■ 1536-1268/07/$25.00 © 2007 IEEE

Design Challenges 
and Principles for Wizard 
of Oz Testing of Location-
Enhanced Applications

L
ocation-enhanced applications adapt
their behavior to or provide informa-
tion about the location of people,
places, and things. Boost Mobile’s
Loopt service (www.boostmobile.com/

boostloopt), for example, lets mobile phone users
identify their friends’ current locations, while Navi-
time’s EZNaviWalk (http://brew.qualcomm.com/
brew_bnry/pdf/press_kit/navitime.pdf) helps users
find optimal routes to their destinations based on
the mode of transportation they select. Such loca-
tion-enhanced applications are the most widely
adopted type of ubicomp application; analysts pre-
dict that their use will grow tremendously in the

near future.1

The problem, however, is that
designing location-enhanced ap-
plications is often difficult.2 Re-
searchers have built toolkits for
developing these applications,3–5

but using the toolkits requires
significant technical expertise.
This makes it hard for inter-
action designers who lack a pro-
gramming or hardware back-
ground to prototype, evaluate,

and iterate on designs. In addition, location infra-
structures aren’t always available—GPS, for exam-
ple, doesn’t work indoors—and location-sensing
technologies are still nonstandard and complex.
In short, it takes significant effort to deploy a loca-
tion-enhanced application so that you can realis-

tically test it with users. And, by that time, it’s often
too late and too expensive to make major changes.

Here, we discuss Wizard of Oz techniques6 for
testing location-enhanced applications. WOz tech-
niques are often employed in user interface (UI)
prototyping and have been successfully used in sev-
eral tools for early stage design.7 The WOz ap-
proach lets users try out a system before it’s fully
developed. It accomplishes this using a “wizard”
to simulate system parts that require sophisticated
technologies, such as speech recognition7 or loca-
tion sensing.8,9 This makes it easy to quickly
explore many ideas because designers are less con-
strained by technical details.10 Previous research
has performed field experiments with location-
based systems.8–11 Here, we focus on tool support
for WOz testing of location-enhanced applications,
which pose two new challenges:

• They must incorporate location contexts,
which have a much larger design space than
traditional GUI input.

• The target setting is often a dynamically chang-
ing field environment, rather than a desk.

To address these issues, we built Topiary, which
includes a suite of WOz techniques for testing 
location-enhanced applications. We previously de-
scribed how designers can use Topiary to prototype
and test location-enhanced applications.9 Here, we
use it as a proof of concept of WOz techniques and
highlight three important research issues related

Using Wizard of Oz techniques, designers can efficiently test location-
enhanced application prototypes during the early stages of design,
without building a full-fledged application or deploying a sensing
infrastructure.

R A P I D  P R O T O T Y P I N G  A N D  T E S T I N G  

Yang Li
University of Washington

Jason I. Hong
Carnegie Mellon University

James A. Landay
University of Washington 
and Intel Research Seattle



to designing WOz testing techniques for
ubicomp applications:

• designing visual languages for WOz
testing,

• allocating tasks between wizards and
designers, and

• automating wizard tasks.

Topiary overview
Topiary provides a set of high-level pro-

totyping abstractions—maps, scenarios,
and storyboards—that designers can use
in the tool’s active map, storyboard, and
test workspaces.

Designers use the active-map work-
space to create a model of the location of
people, places, and things. They can then
place graphical objects representing these
entities on a map to signify their locations
and spatial relationships to one another—
for example, “Alice is in the café” and
“Bob is far from Tom.”

In the storyboard workspace, designers
can capture location contexts as scenar-
ios. To create interface mockups, design-
ers sketch pages that represent screens and
create links that represent transitions
between pages. They can then use cap-
tured scenarios as link conditions or trig-
gers. For example, the designer might
specify that an application prototype auto-
matically switches from one page to
another when “anyone moves near Bob.”
Likewise, when users click on a button,
the prototype could show different infor-
mation depending on the user’s location.

Designers can use Topiary to test a
design with real users by running the inter-
face mockup on a mobile device, such as
a PDA (see figure 1a). During a test, users
interact with the interface mockup, while
a wizard follows them and updates the
location of people and things on a sepa-
rate device (see figure 1b). The test work-
space has two components:

• the end-user UI that users see and
interact with (see figure 1a), and

• the wizard UI, where designers simu-
late location contexts (see figure 2).

A wizard simulates location contexts by
moving people and things around to
dynamically update their locations. If mov-
ing a person or a thing activates a story-
board transition, the end-user UI auto-
matically transitions to a target page. To
simulate the entity’s orientation change, the
wizard rotates the arrow attached to the
entity. A wizard navigates in the wizard

map by either panning the map directly or
circling a target region in the radar view.

Designing visual languages 
for WOz testing

Understanding how to design more
effective WOz testing interfaces is one of
our major research goals. In our view, to
help wizards better run user tests and
better simulate ubicomp applications,
we need more appropriate visual lan-
guages. Traditionally, researchers address
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Figure 1. A typical location-based WOz test setting. (a) An end user interacts with the
end-user UI on a device, such as a PDA. (b) A wizard follows the user and updates his
or her location in the wizard UI on a tablet PC.

Figure 2. Topiary’s wizard UI. The wizard map represents entities’ current location and
orientation; to simulate updates, a wizard drags them on the map. The end-user
screen lets a wizard monitor the user’s action on the end-user UI. The storyboard
analysis window lets the wizard debug the interaction flow by highlighting the current
page and the most recent transition. The radar view provides an overview of the 
wizard map. In this example, a wizard drags Bob’s arrow to reflect his orientation; the
map in the end-user UI (and on the end-user screen) automatically rotates so that its
orientation is always consistent with the direction Bob is facing.



visual language issues only for creating a
design. For ubicomp applications, how-
ever, designing visual languages for test-
ing is just as important.

In the iterative design process, wizards
and designers play two different roles,
which either the same person or different
people can perform. Ideally, WOz testing
requires a wizard to update the proto-
type’s state on the basis of the world state.
A visual language for testing should help
a wizard observe dynamic changes in a
test environment and easily specify these
changes to update the prototype’s state.
For example, in location-enhanced appli-
cations, dynamic changes refer to the
movement of users and physical objects.
In Topiary, the prototype’s state includes

• the locations of entities stored in the
prototype’s repository (see the wizard
map in figure 2), and

• the current storyboard page (see the sto-
ryboard analysis window in figure 2).

Most of the time, a wizard updates only
the location of entities and Topiary auto-
matically updates and maintains other
parts of the prototype’s state (for exam-
ple, the current page) on the basis of the
storyboard’s interaction logic. To meet
the goal of having wizards update pro-
totypes on the basis of the real-world
state, we propose two basic design prin-
ciples. A visual language should

• make it easy for a wizard to efficiently

visualize the prototype’s current state
and perceive the difference between
that state and the real-world state, and

• provide an interaction vocabulary that
lets the wizard easily update the pro-
totype state on the basis of his or her
direct observations.

Topiary’s wizard map, for example,
provides a simple overview of entity
locations maintained by a prototype,
which lets the wizard easily see where
updates are needed. Wizards need only
capture two things about entities: their
position and orientation. Both are based
on the wizard’s direct observation, and
he or she can change them through direct
manipulation.

When we evaluated Topiary with
seven researchers and interface design-
ers, they rated the tool’s wizard interface
highest among all features.9 Participants
particularly appreciated how straight-
forward the wizard interface is. We also
conducted six field experiments with
four people to test various designs of a
tour-guide application. While acting as
wizards, we found Topiary’s interface
was effective at capturing users’ move-
ment while walking. Our participants
confirmed Topiary’s WOz testing effec-
tiveness: they didn’t realize their loca-
tions were being updated by a wizard,
rather than by real sensors.

Allocating tasks
In designing Topiary’s WOz interfaces,

we found that there was often a trade-
off in allocating tasks between designers
and wizards. On one hand, designers can
quickly create rough designs with few
details, placing the burden on the wiz-
ard to simulate more sophisticated
behaviors. On the other hand, designers
can shoulder more of this burden by ini-
tially specifying more detail and func-
tionality up front so that it can be auto-
matically executed at test time, making
the wizard’s job much easier.

For example, to show users the short-
est path in Topiary, a designer can—at
design time—draw a road network on a
map (see the bold brown lines on the
wizard map in figure 2) and specify a
starting point and destination (such as
Bob’s current location and the parking
lot, respectively). Then, at test time, To-
piary automatically constructs a short-
est path on the basis of Bob’s current
location (see the bold pink line on figure
2’s end-user screen). Alternatively, a de-
signer can leave this feature unspecified
and have the Wizard draw lines repre-
senting the shortest paths on the end
user’s screen during the tests. Clearly, the
former requires more work from the
designer, while the latter requires more
from the wizard. The latter also lets a
designer quickly try out rough ideas. As
a design evolves, designers need to solid-
ify their design ideas into a design that
is validated by user tests (see figure 3).

Given this, a WOz tool should let
designers choose appropriate task allo-
cations for wizards and designers as a
design evolves, to ensure a smooth iter-
ative design process. For example, a tool
can offer designers multiple options for
designing the same feature. Such options
might vary in terms of how much work
they require from designers and wizards,
and how large a design/testing scale they
can handle. For example, while having
a wizard manually draw paths requires
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Figure 3. Workload distribution as
designs progress. As a design matures, 
a wizard does less work, while a designer
does more.



little work from a designer, it’s very inef-
ficient for a wizard to do in a complex
testing environment. So, tools should let
designers choose an appropriate ap-
proach based on whether they prefer
quick iteration, larger-scale design, or
something in between. This creates an-
other design challenge for tool builders:
how to present this redundant support
to tool users so that they’ll know which
approach to choose for a particular
design at a particular design stage.

Automating wizard tasks
It can be challenging for wizards to

keep track of dynamically changing envi-
ronments while testing ubicomp appli-
cations. We’ve therefore been designing
and experimenting with various tech-
niques to automate wizard tasks. Here,
we discuss two such techniques. Al-
though both are specific to location-
enhanced applications, the techniques
address two common problems of WOz
testing of ubicomp applications: simu-
lating sensing inaccuracy to better ap-
proximate realistic testing, and relieving
wizards from routine tasks.

Simulating sensing inaccuracy
Sensing inaccuracy is an important issue

in designing ubicomp applications. For
location-enhanced applications, location
acquisition depends heavily on sensed data
(such as wireless signals, GPS, or ac-
celerometer readings) and inferences (Place
Lab uses temporal probabilistic reason-
ing, for example5). Sensed data is often
noisy and sometimes even abnormal

owing to environmental variations or sen-
sor hardware failure. Inferencing tech-
nologies are also imperfect. Consequently,
location context is inherently ambigu-
ous—a reported location isn’t necessarily
the user’s real location, for example.

Simulating sensing inaccuracy can
help designers uncover related usability
issues in the early stages of design. In our
previous Topiary version, a wizard could
manually simulate sensing errors by
dragging entities to a random map posi-
tion. However, to lower wizards’ cogni-
tive load and systematically examine
how sensing inaccuracy influences usa-
bility, we wanted to offer explicit sup-
port for modeling sensing inaccuracy.

Suede, a tool for designing speech-
based UIs, lets designers specify speech-
recognition accuracy and automatically
generate random errors during a test.7

Inspired by Suede, our new version of
Topiary lets designers model location-
sensing inaccuracy by specifying a target
location-sensing infrastructure’s stability
and accuracy (see figure 4a). On the basis
of such specifications, Topiary automat-
ically generates location-sensing errors at
test time using a simple probabilistic
model. Generally speaking, it’s hard to
attribute a location-sensing error purely
to sensor hardware or inference algo-
rithms. So, we don’t make distinctions in
Topiary as to the ambiguity’s source.

As figure 4a shows, a designer can
specify sensing inaccuracy using the

Specify Sensing Errors dialog box. By
checking the “Apply sensing errors”
option, a designer can add noise to the
wizard’s simulation during a test. For
example, when a wizard drags Bob to a
map position, Topiary would automat-
ically move Bob to another random posi-
tion—such as five meters away—based
on the generated noise.

Before testing, designers must specify
how often a sensing infrastructure might
work under normal conditions. This
implies the sensing infrastructure’s stabil-
ity. In an abnormal condition, a sensing
infrastructure gives completely unrea-
sonable location reports. A designer can
specify a percentage by either typing it in
the text field or dragging the slider. Dur-
ing a test, the system uses this percentage
to sample whether the simulated sensing
infrastructure is in a normal condition.
When it’s not, the system randomly gen-
erates a map location based on a uniform
probabilistic distribution, without con-
sidering the entity’s location as set by the
wizard. Otherwise, Topiary generates a
random location around the wizard’s
location by applying Gaussian noise. To-
piary automatically centers a translucent
circle around a location generated by the
sensing-error model on the end user’s
screen; this circle represents the entity’s
region of possible location (see figure 4b).
The smaller the circle, the more accurate
the location sensing.

Currently, we use a simple model for
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Figure 4. Specifying sensing errors. 
(a) The Specify Sensing Errors dialog box.
Topiary uses the sensing accuracy (24
meters) as the standard deviation for
generating Gaussian noise. (b) The end-
user screen. The translucent circle 
represents the region of Bob’s possible
locations. The circle’s size dynamically
changes according to the distance
between the wizard’s selected location
and the location generated by the 
sensing-error model.



simulating sensing errors. Given the diver-
sity of available sensing technologies as
well as the physical world’s complexity,
our approach can’t model all errors.
However, we felt it was more important
to make the model easy for nontechnol-
ogists to use and understand. Our ap-
proach also lets wizards simulate other
location errors that might occur in a tar-
get situation by manually dragging an
entity to a random position.

Wizards’ cruise control
In our field study, we often observed

that participants moved straight ahead
at a constant speed, such as when they
knew their destination and were walking
down a street. To relieve wizards from
routine updating tasks in such situations,
we designed wizards’ cruise control.

Topiary automatically infers an en-
tity’s velocity on the basis of its trajec-
tory as produced by the wizard. Given
this information, Topiary can automat-
ically help a wizard update an entity’s
location. We designed this feature on the
basis of the metaphor of automobile
cruise control, which lets drivers main-
tain a constant speed without stepping
on the accelerator or brake. In Topiary,
a red arrow indicates an entity’s velocity

during a test (see figure 5). The arrow’s
length indicates the entity’s speed. A wiz-
ard might determine that an end user is
moving straight ahead at a constant
speed on the basis of observation of an
entity’s motion patterns and the testing
environment’s geographical attributes.
In such cases, the wizard can turn on the
entity’s cruise control option, and Topi-
ary will automatically move it at the cur-
rent speed. If the wizard thinks the auto-
matic update is inconsistent with the end
user’s current location, he or she can
manually drag the entity to the correct
map position. This mediation automat-
ically turns off the automatic update,
similar to how automobile drivers can
deactivate cruise control by stepping on
the accelerator or brake.

W
e’re developing a new suite
of tools for WOz testing.
This work involves several
ideas that researchers can

extend to WOz testing of general ubi-
comp applications.

First, we’d like Topiary to support
impromptu design during test sessions.
Designers can use a WOz approach to
rapidly explore various designs. In the

early stages of design, ideas are often
vague—making it hard to cover all sys-
tem aspects—while designers often have
design inspirations while running a test.
Given this, a WOz testing interface
should let designers try out different out-
put options and even create new feed-
back in response to unexpected discov-
eries made during a test. Building such
a feature entails two challenges. First,
how much flexibility should a wizard
have? A WOz test shouldn’t overload the
wizard, and achieving flexibility should
require little effort. Second, how can we
capture and solidify impromptu designs
so that they’re not ephemeral?

Second, combining WOz testing with
sensor-based testing will let users test
their designs in more realistic situations.
It will also enable longitudinal, large-
scale design testing, which is useful for
getting feedback and experience from
users’ daily lives rather than from con-
trolled experiments. As a design matures,
the need for wizards to mediate a test
decreases, and sensor-based testing can
play a larger role. Between the two ex-
tremes—complete WOz testing and com-
plete sensor-based testing—the two ap-
proaches can work together. A tool
should thus let designers transition
smoothly from WOz testing to sensor-
based testing as a design evolves.

Third, implementing multiwizard test-
ing in Topiary would let users scale up
testing when a target setting involves
multiple entities and complex activities.
For example, each wizard could use a
separate device to observe and track a
different entity’s movement. However,
the cost of multiwizard testing in a real-
istic situation is often high in the early
stages of design. Consequently, it would
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Figure 5. Topiary’s cruise control. The 
tool can automatically update an entity’s
location on the basis of its current 
velocity. Wizards can deactivate the 
function by manually dragging the target
entity. (The “gray star men,” shown here
to illustrate Bob’s path, aren’t visible in
the actual interface.)



be useful—though challenging—to esti-
mate a WOz study’s complexity and auto-
matically generate a plan for distributing
tasks or roles across multiple wizards.

Finally, when designers evaluate a de-
sign, it’s useful to analyze test data. So,
a tool should be able to log both user
behaviors and environmental changes.
Topiary can capture user actions—such
as mouse movements and clicks—as well
as the physical paths traveled (whether
simulated by wizards or generated by
sensors). Because testing often generates
large amounts of data, it’s important to
give designers an efficient UI to access
this data. Currently, the only way design-
ers can analyze tests in Topiary is to re-
play test logs. In the future, we’ll support
test data visualization by producing sta-
tistics of user–prototype interactions,
such as how long a user took to find a
correct location. We’ll also enable more
sophisticated visualizations for analyz-
ing multidimensional test data. These
additions will let designers efficiently an-
alyze test data and collect feedback from
a complex test setting.
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