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Deriving C?(h) from a Scintillometer Array

Frank Hill Richard Radick Manuel Collados
April 23, 2003

1. Introduction

It has been known for some time (e.g. Roddier 1981) that the scintillation of starlight is a measure
of optical seeing in the atmosphere. Seykora (1993) demonstrated that the scintillation of sunlight is
also closely correlated with seeing, providing a simple way to measure seeing in the daytime. Beckers
(1993) placed the observation on a firm theoretical basis and also showed (Beckers et al. 1997) that
the pattern of decreasing cross-correlation with increasing separation measured by a linear array
of scintillometers contains information on the structure function, C?(h). Beckers further developed
the idea for solar site testing (Beckers et al. 1997; Beckers and Rutten 1998; Beckers 1999; Beckers
2001; Beckers et al. 2003) into an instrument known as a SHABAR. SHABAR stands for SHAdow
BAnd Ranging, and the instrument consists of a non-redundant linear array of six scintillometers.

In this report we present a method to extract C2(h) from the ATST SHABAR instrument.
The original method of Beckers (2001) relied on a specific model (Huffnagel-Valley) of C?(h) and
estimated a few parameters from the data. The assumption of a specific model can lead to errors
when nature does not cooperate. A method developed by R. Radick (Radick et al. 2002) extended
the original method and dispensed with adopting a pre-determined C?(h). Radick demonstrated
that the data can be used to detect the general characteristics of C2(h) by comparing observations
obtained at three heights. Here we present a more detailed inversion of the data that produces
a quantitative estimate of C2?(h) and thus allows the determination of ro as a function of height.
We follow the approach developed by Hickson & Lanzetta as presented in their draft manuscript
“Measurement, of atmospheric turbulence and wind profiles with a scintillometer array”, to be
submitted to PASP, 2002 (referred to as paper HL).

We present the method in considerable detail to allow implementation by interested researchers
and review by the ATST SSWG. We test the methods with simulated data and also compare the
results of the analyses using the “Three-Height” data obtained at Sacramento Peak in November,
2001.



2. Basic Theory

In this section we summarize the relevant portions of the basic theory of wave propagation in a
turbulent medium, using the formalism of sections 3.1, 7, and 8 of Roddier (1981).

2.1 Definitions and Assumptions

Following section 3.1 of Roddier (1981), consider a monochromatic horizontal plane wave of
wavelength \ propagating through the atmosphere with a coordinate system described by a vertical
height h above the ground and a horizontal position denoted by a coordinate vector x. The wave
field in the atmosphere can then be written as a complex amplitude ¥y (x) with

Wi (x) = [Wa(x)] exp [pn(x)] (1)

At each height, the phase ¢,(x) is taken with respect to its average value so that for any h,
(¢n(x)) = 0 where the angle brackets indicate that an average (in this case over all horizontal
directions) has been taken. The unperturbed complex amplitude of the wave is normalized to unity
outside the atmosphere so that U, (x) = 1. The atmosphere is assumed to be non-absorbing and
horizontally stratified so that its statistical properties depend only on h.

2.2 The Effect of a Thin Turbulent Layer

Assume that the wave propagates vertically downward at the zenith through a thin horizontal
turbulent layer between height h and h 4 dh. The thickness dh is assumed to be large compared
to the correlation scale of the layer inhomogeneities but small enough so that diffraction over dh
can be ignored. At the top of the layer, the normalization and assumptions discussed above give
U 6n(x) = 1. At the bottom of the layer,

Wi (x) = exp [¢(x)] (2)
where ¢(x) is the phase shift created by refraction of index fluctuations n(x, h) in the layer:

9 rhtoh

o(x) =3/

From the bottom of the layer to the ground at h = 0, the propagation of the wave can be described
by Fresnel diffraction. Thus,

n(x, h') dh' (3)

Wo(x) = Wy (x) + ﬁ exp <m;‘—2> (4)

where the symbol * indicates convolution.
As discussed in section 7 of Roddier (1981), the small perturbation assumption can usually, but
not always, be made for astronomical observations at zenith angles ( < 60°. This assumption is
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that ¢(x) < 1 and thus W (x) &~ 1 4 i¢(x). Note that this is a fairly restrictive assumption that, if
violated, invalidates the representation of continuous turbulence as a linear sum of the contributions
from many individual thin layers. With the small perturbation assumption,

1 2
Uo(x) = [1 +ip(x)] * YA exp (Z?T%) (5)
It can be shown that
e ep (05) =1 (6)
ixh S\ ) T
so that
Up(x) =1+ €(x) (7)
where

€(x) = ¢(x) * % exp <m;‘—2> (8)

is the relative fluctuation of the complex amplitude of the wave at the ground.
The real part of €(x)

() = 00x) 5 cos (77 )
X(x) = ¢(x) * - cos { T
represents the fluctuations of the modulus | ¥y(x) | while the imaginary part
1 2
Bo(x) = B(x) * 1 sin G%) (10)

represents the phase fluctuations.
The spatial covariance of the amplitude and phase fluctuations can be written as

B, (r) = (x(x)x(x +r)) (11)

By, (r) = (¢o(¥)¢o(x + 1)) (12)

where the angle brackets denote an average over x. The Fourier transforms of B, and By, are
the power spectra W, (f) and W, (f) of the amplitude and phase fluctuations, where f is the two-
dimensional spatial frequency in units of inverse length. Explicitly,

W, = / B, (r) exp(—2rr - £) dr = W, (£) sin® (T Ah£?) (13)
Wy, = Wy(£) cos® (mAhf?) (14)
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where W, (f) is the two-dimensional power spectrum of the complex phase fluctuations at the bottom
of the layer. In general, W (f) is related to the three-dimensional power spectrum of refractive index
fluctuations, ®,,, by

2m\? 3
W,(f) = <7> 5h (27)°, (2f) (15)
For Kolmogorov turbulence,
®, (k) = 0.033C>(h) k=113 (16)

where k is the magnitude of the spatial wavenumber, &k = 27 f = 27 | f |. Combining terms, the
expressions for the two-dimensional power spectrum of amplitude and phase fluctuations arising
from a single thin layer at height h and thickness dh are

W, (F) = 0.38\2f /3 C2(h) 6h sin®(mAhf?) (17)

W, (£) = 038X 2f /3 C2(h) 6h cos*(mAhf?) (18)

It is useful to summarize the major assumptions that have been made in the theory. First, for the
small perturbation approximation (¢(x) < 1), fluctuations produced by several layers add linearly.
Since the layer properties are statistically independent, their power spectra also add linearly, and
any continuous distribution of turbulence will produce power spectra of the form

W, (f) = 0.38) 2f ~11/3 / C2(h) sin2(rAhf?) dh (19)

Wi, (£) = 0.38) 2 ~11/3 / C2(h) cos*(mAhf?) dh (20)

This is vital for the determination of C?(h). The small perturbation approximation usually holds if
the zenith angle, (, is less than 60°, but occasionally breaks down even for moderate (. In addition,
the small perturbation approximation can be valid at large zenith angles. The scintillation saturates
when the approximation is invalid. It would be useful to have an observable way of continuously
determining the validity of the approximation.

The other major assumptions concern the turbulent power spectrum. The first is that the
turbulent spectrum is Kolmogorov, i.e. both the power spectrum of temperature fluctuations ® (k)
and humidity fluctuations ®¢ (k) are proportional to k=>/3. This may not always be true, especially
if the inner and outer scales (the minimum and maximum length scales between which the spectrum
actually is Kolmogorov) are on the order of the relevant dimensions of the observing system. In
addition, the structure function C2(h) is assumed to depend only on the temperature fluctuations
without any contributions from humidity fluctuations. This may not be true in the vicinity of a
lake.



2.3 Scintillation Measurements

The ATST SHABAR system measures the scintillation index, 0%, defined as the variance of the
relative irradiance fluctuations. The scintillation index is related to the variance 0)2( of the relative
amplitude fluctuations by

o] =402 (21)

and the spatial power spectrum of scintillation, W;(f), is related to W, (f) by
Wi(f) = AW, (F) = 1.52\2f 3 65h C2(h) sin®(m AR f?) (22)
for a single layer, and
Wi(f) = 4W, (f) = 1522 ~11/3 / C2(R) sin®(wAhf?) dh (23)

for a continuous distribution of turbulence.

Figure 1 shows plots of the single-layer W;(f) per unit height for five heights H assuming that 1)
C2(H) =107**, and is independent of H; 2) the object is at the zenith; and 3) the ATST SHABAR
has a wavelength coverage centered on 510 nm. The spatial covariance B(x), where x is distance, is
the real part of the Fourier transform of Wi (f). Figure 2 shows this function corresponding to the
power spectra in Figure 1. The ATST SHABAR measures B(z) but, since the sun is an extended
source rather than a point source, the shape of the function B(x) is rather different. This shape is
derived in the next section.

2.4 The Extended-Source Solar Case

So far, these equations have been developed for scintillation of a point source at the zenith observed
with an infinitely small detector. Since the sun is an extended source, the SHABAR detectors have
a finite size, and the sun is almost never at the zenith, the equations must be generalized. Much of
the following development can be found in Hickson & Lanzetta (2002)

The generalization to ¢ # 0 is simple. Since the diffraction from the layer depends on distance
from the layer, replacing h in the diffraction term with the line-of-sight distance to the layer,
z = hsec (, transforms the amplitude power spectrum into the non-zenith form:

W, (f) = 0.38 sec ¢ A~ 2f 11/ / C2(h) sin®(wAzf?) dh (24)

where the sec ¢ term before the integral comes from dz = dh sec (.

Generalizing the power spectrum to the case of an extended source and detector is somewhat
more involved. Assuming that both the source and the detector are circular, Figure 3 shows the
geometry of the beams defined by the source, the detector, and the height of the turbulence.
Following Figure 3, 6 is the angular diameter of the source, then define o = 2tan(#/2). For the
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Stellar scint. Spatial

power spectrum, single—layer seeing at height H
2.5><'\Oi4 ‘ ‘ L [ A S B S B

2.0x10

1.5x10
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Power (Arbitrary Units)

50x10"

Fig. 1 The spatial power spectrum of the stellar scintillation signal that would result from single-
layer seeing at the heights indicated in km.



Covariance (Arbitrary Units)

6SteH0r scint. Spatial covariance, single—layer seeing at height H
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C.=1.0e—-13 -
- 10.0 ¢= 0.00 :
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Fig. 2 The spatial covariance of the stellar scintillation signal that would result from single-layer
seeing at the heights indicated.



small angular diameter of the sun, o =~ . Then, with detectors of diameter a, at height h the rays
propagating from the source to the detector pass through an area A(x, z) perpendicular to the line
of sight with

A(x,z) =11 < i ) (25)

a—+ oz

where
=1y 250 2

The term in the denominator, a + az, is the diameter of the cone defined by # and a at the line of
sight distance z = hsec (.

Thus, the complex wave amplitude W (x, 2) resulting from the turbulence at height h is averaged
over the area of the beam. This average amplitude, (¥(x, z)), can be written as a convolution with
the normalized area A(x, 2):

4A(x, 2)
7(a + az)?

(U(x,2)) =¥(x,2) x Ax, 2) = U(x, 2) * (27)
Replacing ¥(x, z) with (¥(x, z)) in the derivation in Section 2.2 leads to convolving ¢(x, z) with
A(x, z) and thus the covariance function B, (r) will contain the factor A(x, 2) * A(x, z). From the
convolution theorem for Fourier transforms, the power spectrum W, (f) will then be multiplied by
the squared modulus of the two-dimensional Fourier transform of A(x, z) denoted as G(f, z):

W, (f) = 0.38 sec C A2 ~11/3 / C2(h) G(f, 2) sin(r\zf?) dh (28)

where
g(f,z) = ‘//A(x, z) exp(—2mix - f) d*x ; (29)
i

where J; is the first-order Bessel function of the first kind.
Since the spatial covariance B, (r) is the inverse Fourier transform of the spatial power spectrum
W, (f) and the spatial covariance of the intensity fluctuations B;(r) = 4B, (r), then

By(r) = 0.38 / T C2 (W) K (h,r)dh (31)
0
where the kernel function K (h,r) is given by

K(h,r) =8 sec( A\ ? /Ooo sin?(m\h sec C £2) G(f, h sec ) Jo(2n fr) f83df (32)
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o =2 tan 6/2
A = (h+thha
h'=a/a
A=ha+a

o=r/a ,
y ()
,

A

Fig. 3 The geometry of the beams defined by the source and detectors intersecting the turbulence.
The symbols are: 6, angular diameter of the source (i.e. the sun); a, the linear diameter of the
detector; r, the separation of the detectors; h, the height of the turbulence; A, the linear diameter
of the cone at h; h', the distance behind the detector at which the cone converges; o, the height at
which the cones from the two detectors intersect; and o = 2tanf/2 ~ 6.



where J; is the zeroth-order Bessel function of the first kind.

A plot of G(f,2) shows that it essentially reaches zero and thus truncates the integral when
f > (a+ az)~!. Therefore, the argument of the sine must be less than 7Az/(a + az)?. Taking the
derivative of this function and setting it equal to zero shows that the argument reaches a maximum
at z = a/«, at which point the value is 7\ /4ac. For the SHABAR, with ¢ = 0.002 m, « > .009, and
A = 500 nm, the maximum value of the argument is about 0.02 and the sine can be approximated
by its argument. Thus,

K(h,r) = 8n°h*sec’( /000 Gg(f,h secC)J0(27rfr)f4/3df (33)

32m h? sec3 ¢ [

(a+ ahsec()? Jo [J1(7(a + ah sec C)f)]2Jo(27rf7“) F23 qf (34)

With a change of variables from f to (a + ahsec()f, this can be written as

32w h*sec®( r
K(h,r) = (a + ahsec()?/3 @ (a—irahsecC) (35)
where ~
Q(s) = /0 LT (m )2 Jo(2 f5) f~2/3df (36)

2.5 Properties of the Kernels

Figure 4 shows the function Q(s), which depends on the detector separation r scaled by a
factor a + ahsec (. This factor contains geometry effects: the diameter of the detector a, and the
temporally varying effects of the solar radius 6 (v = 2tan(#/2)), and the zenith angle, (.

Figure 5 shows 0.38 x K (h,r) as a function of log(h) for the fifteen SHABAR separations at
¢ = 0° 6 = 960.0 arcsec, and for the SHABAR detector diameters of 2 mm. This plot provides
some qualitative feel for the height range of the SHABAR. The curves are distinct below about 1000
m, so the maximum height of sensitivity of the system is roughly 1000 cos ( meters. In addition
the curves are slightly negative, indicating that the covariances could also become negative (i.e.
anticorrelation could occur) if the turbulence has significant structure close to the ground. Figure
6 shows 0.38 « K (h,r) as a function of r for selected heights. This figure illustrates the decrease in
signal as the height of the turbulence increases.

Figures 7 and 8 show the effect of the temporal variations of # and ¢ during the measurements.
These variations effectively change the area over which the turbulence power spectrum is measured.
This changes the apparent spatial spectrum by truncating the wavenumber response of the mea-
surement. Figure 7 shows the effect of the variation in the apparent solar diameter during the
course of the year. This effect is rather small in magnitude, about 5 %. However, Figure 8 shows
the importance of including the zenith angle ¢ in the computation of K (h,r). The change in the
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curves is quite large, and increases rapidly with increasing . This is primarily due to the ¢ terms
in the expression for K (h,r).

3. Determining C?2(h)

The basic equation for the method is the spatial covariance of the intensity fluctuation given by
Bi(r) = 0.38 / C2(h)K (h,r)dh (37)
0

where the kernel K (h,r) is

K(h,r) =

321 h? sec3 ¢ ( r ) (38)

(a + ahsec()?/3 a + ahsec(

In practice, we have the measurements B;(r), can calculate the kernels K (h, ), and seek estimates
of C2(h). This is a classic inversion problem of the type encountered in radiative transfer, vector
magnetometry, and helioseismology. Many methods have been developed to solve this problem.
Here we describe the solution adopted for the SHABAR, which corresponds to the method of
regularized least squares.

8.1 Model of C2(h)

The covariance By(r) is sampled by a non-redundant array of six detectors, giving 15 different
baselines. The 15 covariance values are recorded every 10 seconds by the SHABAR. Let n be the
number of baselines (n = 15 for the SHABAR), r; be the lengths of the baselines, and B; the
measured covariances over the baselines. Further, model C?(h) as an expansion in a set of m basis
functions C;(h) so that

C2(h) = f’;aic@(h) (39)

There are many choices for C;(h). Here we select Dirac delta functions as the simplest option.
Then,

Ci(h) = 6(h — h) (40)
Next, define .
K;; =0.38 ; Ci(h)K(h,r;)dh (41)
Then, with this model,
By (r;) = iaiKij (42)



Kernels as function of height for ShaBaR detector separations
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Fig. 5 The functions 0.38 K (h,r) as a function of log(h) for the SHABAR detector separations.
These curves are for # = 960 arcsec, ( = 0°, and a = 0.2 cm.
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Kernels as function of detector separation for selected heights

4x10° Zeta: 0.0000000
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Fig. 6 The functions 0.38K (h,r) as a function of separation r for the the heights 10, 20, 40, 60,
80, 100, 200, and 600 meters. These curves are for # = 960 arcsec, ( = 0°, and ¢ = 0.2 cm.
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Effect of solar radius variations on kernels
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Fig. 7 The effect of the changing apparent solar diameter on 0.38 K (h,r). The function is shown
for & = 940 arcsec (dashed lines), 960 arcsec (solid lines) and 980 arcsec (dotted lines) at three
heights (10, 40, and 100 m). For this plot, ¢ = 0°; and a = 0.2 cm.
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Effect of zenith angle variations on kernels
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Fig. 8 The effect of a non-zero zenith angle on 0.38 K (h,r). The function is shown for ¢ = 0° (solid
line), 30° (dotted lines) and 60° (dashed lines) at three heights (10, 40, and 100 m). For this plot,
6 = 960 arcsec and a = 0.2 cm.
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The advantage of this model is that it assumes nothing about the profile of C2(h) other than it
can be sampled at selected heights. This avoids the introduction of systematic errors that generally
result by fitting an inappropriate model to a data set.

3.2 Estimating C2(h)

The next step is to determine the coefficients a;. If the model is correct, then the observations
B; will differ from the model B;(r;) by the observational noise alone. If o} is the estimate of the
RMS uncertainty in the measured B; then we can define an error £, as
1 & 2
En ==Y 0;%(Bj— Bi(ry)) (43)

ni=

Thus, the task of estimating C*(h) should be accomplished in principle by choosing a; such that
E,, is minimized. In practice, this procedure is unstable, and additional constraints on the model
must be applied. These constraints are usually motivated by prior physical knowledge of the process
being modeled. In the case of C2(h), we know that it is a positive definite continuous function.
In addition, we expect that the solution must be rather smooth, since we have essentially only 6
independent measurements from the SHABAR. We thus also apply a smoothing or regularization
constraint by first defining Ej:

1 q
Ef = 5= (k= 1) (44)
4 k=1
where ) .
k+1
R — In C2(h) dh 45
=g [ mCi) (45)

Then, the coefficients a; are selected to minimize E, where

and A is a regularization parameter that is adjusted to trade off the error and the height resolution of
the estimated C2(h). In practice, the selection of a; is accomplished using an amoeba optimization
method. In addition, the minimization is done to compute In C?(h) so that C2(h) is positive definite.

Prior to the optimization, a height grid must be specified. There is no need to specify a very
fine grid since there are a total of 15 covariance measurements and six independent detectors. In
addition, the grid should place most of the height points at lower heights to accommodate the non-
uniform sampling of the functions in Figure 5. Numerical experiments demonstrate that a small
amount of oversampling is useful to reduce noise and stabilize the fit. We have thus adopted the
following specification for the set of m heights which have a uniform separation Ah in log(h) up to
a maximum height Ay

Ah = pl/m=D (47)

max

17



Experiments have led to the choice of m = 20 and Ay, = 10000 meters.
Once the set of a; has been determined, C?(h) can be computed and interpolated onto a fine
grid to compute rq(h) via

00 -3/5
ro(h) = 0.18466X%/5 sec3/ ¢ [ [ cm) dh,]
h

(48)
The fine grid is specified to have a spacing of 1 m from 0 to Ay ax.

The data must be processed prior to applying the inversion procedure to obtain a set of estimated
uncertainties ;. This is done by determining the mean and standard deviation of the mean of the
covariances in a time block which has been chosen to be 5 minutes (30 samples). In addition, the
observed covariances must be scaled by the scintillation signal in the detectors. This normalization
constant and its uncertainty is obtained from the mean and standard deviation of the mean of the
scintillation over all six detectors and in the 5-minute time block (total of 180 samples).

The code that produces the estimated C?(h) and ry(h) is provided in the Appendices. Appendix
A contains the data preprocessing code. Appendix B provides the calculation of the kernel functions
K(h,r). The code that performs the inversion to determine C%(h) is provided in Appendices C and
D.

4. Testing the method

In order to test the method, two approaches have been made. The first is to compute simulated
profiles of C?(h) and then attempt to recover the input. The second test is experimental: obtain
measurements from multiple SHABAR systems located at various physical heights, and compare
ro(h) at the selected heights.

4.1 Constructing Simulated Profiles of C2(h)

In order to test the different analyses, we construct synthetic profiles of C2(h). We start with
computing the Huffnagel-Valley (C?,,-(h)) profile:

ht 2\ " h+ 2z h+2)|
2 (h) =A [2.2 1072 ——— ] +10710 — 4
Crrry (1) e O\ to00 ) P\ 1000 ) TP 1500 J (49)

where Apy is a chosen amplitude, and z is the elevation of the site in meters. The HV profile is a
good approximation to C2(h) for night time conditions.

For a better model of a daytime C?(h), we add additional turbulence near the ground. The
simulation allows three additional near-ground profiles:

e A simple exponential boundary layer:

C2(h) = Clyy(h) + A exp(—h/hy) (50)
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where Ap is the boundary amplitude and A is the boundary scale height.
e A Valley boundary layer:

C2(h) = C%(h) + Ap(2.33 x 107 4+ 5.38 x 107121 2/3) exp(—h/hy) (51)

e A Wyngaard boundary layer:

Ap

2 _ 2
Cn(h) - CnHV(h) + hg/g + h,4/3

(52)

where here hg is a low cutoff to remove the singularity at h = 0.

The simulation also allows the addition of localized layers. These are specified with a height of
the highest layer, the total number of layers, the mean and standard deviation of the layer thickness,
and the mean and standard deviation of the layer strength relative to the background C?(h). The
thickness and strength quantities are then used to generate a set of normally distributed layer
properties that is added to C2(h).

Once the simulated C?(h) has been computed, it can be integrated to provide a simulated
ro(h), and to compute a simulated B;(r;). Random measurement noise is added, and the simulated
observations can be inverted to estimate C2(h).

The results of this test are shown in Figures 9 and 10. Figure 9 shows that, in this specific
realization, the method does a good job of providing a smoothed estimate of C2(h) at many heights
but deviates from the input between logh = 2 and logh = 3. Figure 10 shows good agreement
in ro(h) for heights up to 20 m, and then about a 10% overestimate higher up. The smoothing
nature of the method is a result of the relatively small number of detectors in the system. Note that
this is a single realization—the simulations should be run many times with different C*(h) profiles
and with different observational noise realizations to build a Monte-Carlo statistical picture of the
accuracy and precision of the method.

4.2 Observational multi-height test

In November 2001, we performed a test of the ability of the SHABAR to determine r4(h). This
was done by placing three SHABAR systems at physically separate heights on and near the Dunn
Solar Tower at Sacramento Peak. The systems were placed on a tripod on the ground, giving an
effective height of 2 m; on the ATST Site Survey Test Stand putting the SHABAR at a height of
8 m; and on the top of the DST at a height of 40 m. The data from these 3 systems were then
inverted. The results are shown in Figures 11 and 12, which compare the time history of ry from
all three instruments at the common height of 40 m above the ground (38 m above the tripod
instrument; 32 m above the test stand, and 0 m above the DST).
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Shabar Fit to simulated data — small errors
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Fig. 9 A simulated C?(h) function (dash-dot line) and the inversion of the simulated data (solid
line).
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Shabar Fit to simulated data — small errors
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Fig. 10 The height profile ro(h) derived from the input simulated C'?(h) function (dash-dot line)
and the inversion of the simulated data (solid line).
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Figure 11 shows the comparison using all data without regard for the operational status of
the SHABARs. The agreement is generally very good, except at the beginning of the run, where
several of the 40-m instrument values are substantially lower than the values from the other two
instruments. In Figure 12, samples at which the instrument reported a problem with the SHABAR
have been removed, the statistics within each 5-min time block have been renormalized for the
varying number of valid data points, and only those blocks for which at least 25% of the points are
valid have been retained. This shows that most of the discrepant points from the 40-m instrument
were due to instrumental problems.

The results from both the simulations and the three-heigh test demonstrate that the inversion
of the SHABAR data provides reasonably accurate estimates of C2(h) and ro(h). The method does
not have enough resolution in height to capture narrow features in C2(h) but, as will be seen in the
next section, can detect inversion layers in C2(h).

5. Applying the method to sample data

In this section, the inversion method is applied to short temporal sequences of SHABAR data
obtained at three different sites. Site A is a continental mountain site, site B is a lake site, and site
C is an ocean mountain peak. These three sites provide a range of different geographic and meteo-
rological conditions, which potentially produce qualitatively different profiles of C?(h). Thus, this
tests the response of the inversion method to diverse seeing conditions. In addition, another seeing
instrument, a solar differential image motion monitor (S-DIMM) is colocated with the SHABAR
on the same mount. The S-DIMM gives an independent measure of ry but only at the height of the
mount, and weighted more heavily towards high layers in the atmosphere.

Figure 13 shows examples of the fits and the input data for the three sites. For site C (bottom
figure), the observed covariance is negative for large separations, and the model does not fit the
data well in this region. Since { > 60° for this data, the poor fit may be an indication that the
small perturbation approximation is in valid.

Figure 14 shows the set of inverted C?(h) for each of the sites, plotted with height on the y-axis
so that layers can be seen in the correct orientation. Sites A and B show rather smoothly varying
C2(h), while site C has a more chaotic nature. Site C also shows the appearance of inversion layers.

Figure 15 displays the temporal behavior of C?(h) at each of the heights sampled in the inver-
sion. Site A shows an increasing C'2(h) at all heights (top curves) until 17 UT when the higher
layers appear to stabilize. Site B shows a fairly constant behavior of C?(h) over the short time
analyzed, with large spikes at all heights which may be due to interference with the light entering
the scintillometers. Site C shows a chaotic behavior at low heights, which vanishes in the upper
layers.

Figure 16 compares the value of ry obtained from the S-DIMM and from the SHABAR at h = 0.
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Shabar Three Height Test SPO 07 Nov 2001 —— All Data 5—min bins
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Fig. 11 The temporal variation of ry at a height of 40 m above the ground as obtained by inverting
SHABAR data from three instruments mounted at heights of 2 (solid line), 8 (points marked with
+), and 40 m (points marked with x). All data has been included in this plot.
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Shabar Three Height Test SPO 07 Nov 2001 —— at least 25% Data 5—min bins
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Fig. 12 As for Figure 11, but using culled data and including only those points for which at least
25% of the data points in a 5-min block were valid. Here, the solid line repeats the results for the
instrument at 2 m including all data for reference. The points are for the culled data obtained at a
height of 2 (points marked with a ¢), 8 (points marked with +), and 40 m (points marked with x).
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At Site A, these values track each other closely, implying that most of the seeing came from higher
layers. Site B shows fairly poor agreement between the curves, with the SHABAR curve oscillating
with a large amplitude. Since site B is a lake site, this may be an indication that the approximation
that the contribution of humidity to C?(h) can be neglected is invalid. Site C shows a period of
time when the two curves agree and then a period when the curves track each other but are offset.
This suggests the formation of a low layer of turbulence as the day progresses.

Figure 17 shows the curves of ro(h) for various times at the sites. Sites A and B show similar
smooth curves, and site C shows higher variability including one curve that has a plateau.

These plots demonstrate that C2?(h) assumes very different qualities as a function of time and
site. It will be very interesting to analyze many more data sets.

6. Conclusions

As discussed in section 2.2, there are approximations that have been made in the analysis that
must be kept in mind—the results can be affected by the saturation of scintillation at large zenith
angles, and the statistics of the turbulence could be altered by the presence of substantial humidity
in the atmosphere. However, the SHABAR instrument is capable of providing C2(h) and ro(h) with
sufficient accuracy over the first 100 m of height for the ATST site survey. This is demonstrated
by the results in Figures 9 to 12.
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Fig. 15 The inverted C?(h) as a function of time for each height for site A (top), B (middle), and
C (Bottom)
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Appendix A - The IDL data preprocessing procedure

pro procscint,ac,cc,t,tblock,data,errors,ndata,tdata
; procedure to pre-process the shabar scintillation data to prepare
; it for the inversion

; input: ac -- 2-D array of AC scintillation signals (npts,6)
; cc —— 2-D array of scintillation cross-correlations (npts,15)
; t -- array of times from the file

; tblock —- the length of the time block, in sec, over which to
; compute the data statistics

; output: data —-- the processed cross-correlations for input to the
; inversion (ndata,16)

; errors -- the corresponding error estimates

; ndata -- the number of data points

; tdata -- the time of each data point

; this routine multiplies the cross—-correlations by the ac signal to

; recover a physical cross-correlation, and then

; computes the mean and variance of the cross-correlations over a length
; of time tblock sec.

dt=10. ; sampling rate in sec of original data.
ninp=n_elements(ac(*,0)) ; number of input points

nsamp = fix(tblock/dt) ; number of data points in each tblock time
fact=sqrt(float(nsamp)) ; for the sd of the mean

ndata = fix(ninp)/fix(nsamp) ; number of data points to be output
data=dblarr(ndata,16)

errors=dblarr(ndata,16)

tdata=dblarr(ndata)

acd=dblarr(ndata)

acde=dblarr(ndata)

; mapping of cc indices to separation order
ccsep=[11,12,13,14,15,4,5,6,10,1,3,9,2,8,7]

; compute the average and std. dev of the AC scintillation from all 6 detectors
; in a time block. This is the CC(0) signal.
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for ib=0,ndata-1 do begin
blst=ib*nsamp
blnd=blst+nsamp-1
rr=moment (ac(blst:blnd, *) ,sdev=errnow)
acd(ib)=rr(0)
acde(ib)=errnow

endfor

fact2=nsamp*6.0

data(*,0)=acd

errors (*,0)=acde/sqrt (fact2)

;errors (x,0)=acde

; compute the average and std dev of the cross—correlations

for ib=0,ndata-1 do begin
blst=ib*nsamp
blnd=blst+nsamp-1
rt=moment (t (blst:blnd))
tdata(ib)=rt(0)
for icc=0,14 do begin
ccnow=acd (ib) *cc(blst:blnd,icc)
rr=moment (ccnow,sdev=errnow)
data(ib,ccsep(icc))=rr(0)
errors(ib,ccsep(icc))=errnow/fact
; errors(ib,ccsep(icc))=errnow
endfor
endfor
return
end
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Appendix B - The IDL kernel generating procedure

pro basisf2b,h,z,radius,x,func,q

; procedure to compute the basis functions for the ShaBar instrument
; for a given height at a given location at a given UT date & time

; input: h - height for basis function in meters

; z,radius: zenith angle (deg) and solar radius (arcsec)

; X - an array of detector separations in cm

; NOTE: either h OR x can be an array, but not both!

; output:func - array containing the basis function. It is either an
; array for all h at a given x, or for all x at a given h, depending on
; the input.

z=double(z)

radius=double(radius)

close,3

openr,3,’/enz0/hill/atst/cn2h/qgsbest.dat’

g=dblarr(2001)

readf,3,q

close,3

s=dindgen(2001)*0.01d0

adet=0.2d0 ; detector diameter in cm

cz=cos(z*double(!DTOR)) ; cosine (zenith angle)

sz=1.d0/cz ; secant (zenith angle)
omega=(2.d0*radius/3600.d0)*double(!dtor) ; solar diameter in radians
alpha=2.d0*tan(omega/2.d0) ; the factor relating physical to angular diameter
;print,’ zenith angle: ’,z

;print, ’alpha: ’,alpha,’ omega:’,omega

; compute kernel function

ze=adet*.01d0+alphaxh*sz

num=32.d0* ! dpi*h*h*sz*sz*sz

denom=ze~ (7.d0/3.d0)

fact=num/denom

;print,’ ze: ’,ze,’ fact: ’,fact

; ilnterpolate
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xm=x*.01d0 ; convert to meters
sn= xm/ze

rr=interpol(q,s,sn)
func=rrx*fact

return

end
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Appendix C - The IDL inversion procedure

pro invcn2hb,data_arr,errors,zen,radius,lambdat,ni,solution,hhs,model,r0,$
Imf ,ferr,serr,nit

; procedure to invert the Shabar covariance data to infer
; cn2(h)

; input: data is the set of 15 covariances between the detector pairs
; error is the array of 15 estimated errors in the data

; zen, radius: zenith angle (degrees) and solar radius (arcsec)
common func_f,error,data,krn,hh,lambda,errl,err2
data=double(data_arr)

error=double (errors)

lambda=double (lambdat)

; set up array of detector separations in mm

dist=dblarr(6)

sep=dblarr(16)

dist(5)=-234.375D
dist(4)=-121.875D
dist(3)=-103.875D
dist(2)= -91.875D
dist(1)= -46.875D
dist(0)= 234.375D

sep(00)=0.0D

sep(01)=dist(2)-dist(3)
sep(02)=dist(3)-dist (4)
sep(03)=dist(2)-dist(4)
sep(04)=dist(1)-dist(2)
sep(05)=dist(1)-dist(3)
sep(06)=dist(1)-dist (4)
sep(07)=dist (4)-dist(5)
sep(08)=dist (3)-dist(5)
sep(09)=dist(2)-dist(5)
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sep(10)=dist(1)-dist(5)
sep(11)=dist(0)-dist (1)
sep(12)=dist(0)-dist(2)
sep(13)=dist(0)-dist(3)
sep(14)=dist(0)-dist (4)
sep(15)=dist(0)-dist(5)

nsep=16

; set up array hh of heights in meters
;nh=0.5*nsep

nh=20

dh=10000.d0~ (1.d0/ (nh-1))
ddh=sqrt (dh)-1.d0/sqrt (dh)

ht=dindgen (nh)

hh=1.d0*dh"ht

;hh (nsep)=20000.d0

nh=n_elements (hh)

; set up the array of kernels

krn=dblarr (nh,nsep)
for ih=0,nh-1 do begin
basisf2b,hh(ih),zen,radius,sep*0.1,f
krn(ih,*)=0.38d0*f (x)
endfor
krns=krn
; The model is to represent cn2(h) as a sum of Dirac delta functions
; at the heights in hh

pO=alog(data(0)/krn(*,0))

pO=reform(p0)

scale=20.d0

ftol=1.d-5

tol2=1.4d-1

t013=100.d0

;print,p0
r=amoeba(ftol,scale=scale,p0=p0,function_name=’cn2func’,$
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ncalls=niter,function_value=fval,nmax=2000000)
;print,’r: ’,r
;print,’niter: ’,niter,’ fval: ’,fval
;goto,done
1i=0
again:bb=0
ii=ii+l
rprev=r
r=amoeba(ftol,scale=scale,pO=rprev,function_name=’cn2func’,$
ncalls=niter,function_value=fval,nmax=2000000)
;print,’r: ’,r
;print,’ii: ’,ii,’ niter: ’,niter
dif=sqrt(total ((r-rprev)~2)/nh)
;print,’ lambda: ’,lambda,’ dif: ’,dif
;print,’ errl: ’,errl,’ err2’ ,err2
;if (dif le tol2)then goto, done
if (errl le tol2 and err2 le tol2 or ii ge ni)then goto, done
;if (dif ge tol3 or ii eq ni)then begin
; lambda=1.1*lambda
; goto, again
;endif
if (err2 1t errl )then lambda=lambda/1.1 else lambda=lambdax*1.1
goto, again
done:solution=r-alog(hh*ddh)
hhs=hh
nn=n_elements(data)
model=dblarr(nn)
for j=0,nn-1 do model(j)=total(exp(r)*krn(*,j))
;dneg=where(data 1t 0,icnt)
;if (icnt ne 0) then model(dneg)=-1.*model (dneg)
,stop
lam=5.d2 ; wavelength in nm
lam=lam*1.d-9 ; convert to m
lam2=lam"~(-2.d0)
cz=cos (zen*double(!DTOR)) ; cosine (zenith angle)
sz=1.d0/cz ; secant (zenith angle)

const=16.6d0*xlam2*sz
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;rO=dblarr (nh-1)

;for ih=0,nh-2 do rO0(ih)= $

;  int_tabulated(hhs(ih:nh-1) ,exp(solution(ih:nh-1)),/double)
;rO=const*r0

;r0=r0"(-3.d0/5.40)

hhi=dindgen (20001)

hhi=dindgen (max (hhs)+1)

cn2h=interpol(alogl0(exp(solution)) ,hhs,hhi)

cn2h=10. cn2h

r0=0.18466%*1lam~(6./5.)*cz"(3./5.)*(total (reverse(reform(cn2h)),/cumulative))~(-3./5.)
rO=reverse(r0)

ferr=erri
serr=err2
Imf=1ambda
nit=ii
return

end
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Appendix D - The IDL minimization function procedure

function cn2func,a
common func_f,errors,data,kernels,hh,lambda,tl,t2

nn=n_elements(data)
nh=n_elements (hh)
model=dblarr (nn)
g=nh-1

for j=0,nn-1 do model(j)=total(exp(a)*kernels(*,j))
;dneg=where(data 1t 0,icnt)

;if (icnt ne 0)then model(dneg)=-1.*model (dneg)
t1=(1./nh)*total(((data-model)/errors) ~2)

dh=ts_diff (hh,1)

da=ts_diff(a,1)

;£2=(1.d0/(2.d0*q) ) *total((da(0:q-1)/dh(0:9-1))~2.d0)
t2=(1./(2.*%q))*total(da(0:9-1)"2.)

;rint,’tl: 2 ,t1,’ t2: ’,t2,’ func: ’,tl+lambdax*t2
return,tl+lambda*t?2

end
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