

DEPLOYING CUSTOM
MICROSOFT OFFICE TEMPLATES

WITH SYSTEM CENTER
CONFIGURATION MANAGER

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 2 of 25

Author Trevor Jones

Version 1.0

Date 2017-03-07

Blog smsagent.wordpress.com

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 3 of 25

Contents
Introduction .. 5

Requirements ... 5

Deploying Custom Office Templates the Microsoft Way .. 5

How This Solution Works .. 6

Solution Creation Flow .. 6

Compliance Item Process Flow ... 7

Remote Template Store .. 8

Local System Template Store ... 9

Local User Template Store (XML files) .. 9

Compliance Setting .. 10

Machine-based Compliance Setting ... 10

Discovery Script ... 10

Hash Check ... 10

Remediation Script ... 10

User-based Compliance Setting .. 11

Discovery Script ... 11

HKCU Registry Changes ... 11

Remediation Script ... 11

Multiple Office Versions ... 12

Deploying the Solution .. 12

Create the Remote Template Store .. 12

Create the Root Path .. 12

Categorise Your Templates .. 12

Template Directories .. 13

XML Directory .. 13

Creating the Template Files ... 13

The Custom Template.. 13

The Preview and Thumbnail Files .. 13

File Versioning .. 14

XML Configuration File ... 14

Example XML Configuration ... 15

Example XML Configuration File ... 15

Setting the Correct Template Source .. 16

Multiple Architectures .. 16

Naming the XML Configuration File ... 16

Adding the Template Files to the Remote Template Store .. 17

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 4 of 25

Creating the Compliance Setting ... 17

Create a Configuration Item .. 17

Create the Machine-based Compliance Setting ... 18

Create the User-based Compliance Setting .. 20

Add the Configuration Item to a Configuration Baseline .. 22

Changing the Script Execution Timeout Setting .. 23

Managing the Custom Template Lifecycle ... 24

Adding New Templates .. 24

Updating a Template .. 24

Retiring a Template ... 24

Multiple Language Support ... 25

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 5 of 25

Introduction
Many organisations that use Microsoft Office like to make custom templates available to their

employees. These templates are usually unique to their organisation and allow their employees to

create consistent documentation following a pre-defined style and document flow. For

enterprises that use System Center Configuration Manager (aka SCCM), such custom templates

can be deployed to end users using SCCM’s Windows management capabilities, and this guide

presents a solution for achieving that.

SCCM allows more than one way of deploying software, scripts and the like to end user’s

computers. In this guide, we will use SCCM’s Compliance Settings feature. This will allow us both to

deploy the templates, and also to manage them through their lifecycle including updating,

adding or removing templates, and ensuring that all targeted systems remain compliant with the

current templates available at all times.

Requirements
 Microsoft Office 2010 (32-bit) or later on targeted clients

 System Center Configuration Manager 2012 or later

 PowerShell 4.0 or later on targeted clients

 Familiarity with Compliance Settings in SCCM

 Familiarity with PowerShell scripting

Note: this guide is intended for locally-installed versions of Microsoft Office. It has not been tested

for Office 365.

Deploying Custom Office Templates the Microsoft Way
For Office 2010, Microsoft created some documentation on TechNet describing a supported way

to deploy custom Office templates. This documentation can be found here:

https://technet.microsoft.com/en-us/library/cc178976(v=office.14).aspx

There is actually more than one way to deploy custom templates, but the method described in

this article is the best and most reliable I have found, especially since it allows you to include

thumbnail and preview images of your templates which adds a professional touch. Even though

the documentation was produced for Office 2010 (and there is nothing more recent to my

knowledge) it still works perfectly well through Office 2013 and Office 2016.

As the article describes, there is a high-level overview to deploying custom templates:

1. Create your templates.

2. Create thumbnail and preview files.

3. Create an XML configuration file that describes the custom template, thumbnail, and

preview files.

4. Deploy a registry key that enables Office to read the XML configuration file.

We will look at each of these. First, however, let’s have a look at how this solution works.

https://technet.microsoft.com/en-us/library/cc178976(v=office.14).aspx

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 6 of 25

How This Solution Works
The following is an overview of the solution and how it works. Below are two flow diagrams – the

first gives an overview of what is required to create this solution, the second gives a logical

overview of how the compliance item (that does all the ‘heavy lifting’) works.

Solution Creation Flow

Create Central Template

Store (file share)

Create Template File/s

Create Thumbnail and

Preview Images

Create XML

Configuration File/s

Create SCCM

Configuration Item

Create a machine-

based setting to copy

the template files locally

Create a user-based

setting to copy the XML

configuration file and

update the HKCU

registry

Add the Compliance

Item to a Baseline and

deploy to a collection

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 7 of 25

Compliance Item Process Flow

D
is

c
o

v
e

ry
 B

ra
n

c
h

R
e

m
e

d
ia

ti
o

n
 B

ra
n

c
h

Machine-based

setting evaluates

Does the folder structure of the

local (system) template store

mirror the remote template store?

Compliance

Baseline evaluates

Create the correct

local folder

structure; remove

any folders that

shouldn t be there

Are all the remote

template files present

in the local store?

Copy any new or

missing template

files from remote to

local; remove any

templates that

shouldn t be there

Do the hash values of the

remote templates match

those of the local

templates?

Copy over (replace)

any template

whose hash value

is not matching

from remote to

local

User-based setting

evaluates

Does the folder structure of the

local (user) template store (for

XML files) mirror the remote

template store?

Create the correct

local folder

structure; remove

any folders that

shouldn t be there

Are all the remote XML files

present in the local user

store?

Copy any new or

missing XML files

from remote to

local; remove any

XML files that

shouldn t be there

Do the hash values of the

remote XML files match

those of the local XML files?

Copy over (replace)

any XML file whose

hash value is not

matching from

remote to local

Do all the

 provider keys

exist in HKCU

registry?
Create any missing

 provider keys and

remove any that

shouldn t be there

Are all the

 ServiceURL keys

correct in HKCU

registry?
Update any

 ServiceURL keys

that are not correct

Report Compliance

Yes
No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 8 of 25

Remote Template Store
We will place our template files (templates, preview and thumb images, XML configuration files) in

a remote template store. This store can be a file server share that is accessible to all. If you have

several global offices and slow network links, you may consider replicating this store using DFS. The

directory structure we use is important as it will be mirrored to the local template store on the

client. Under this share we organise our templates by grouping them together into subfolders, for

example, one subfolder per department (HR, Finance, Engineering etc). These subfolder

(provider) names will be used by your Office applications to create template collections.

To illustrate, here is an example from Word 2016. Once the custom templates are deployed, when

you open Word and click New, you will see a list of default templates. Next to the Featured

category, you will also find Custom.

When you click on Custom, you will see your templates grouped into the relevant subfolders:

In the remote template store, these subfolders are defined:

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 9 of 25

If we go into the General subfolder, there are further subfolders containing template files and XML

files. We create one subfolder for each template type (eg PowerPoint, Word, Excel, Visio), as well

as one subfolder containing the XML file that defines the templates for that provider.

The Compliance Setting is configured such that any changes to providers, subfolders or files in this

remote store will be mirrored on the client. This makes it easier for us to manage template updates

or additions or retirements.

Local System Template Store
The local template store is a local cache of all these templates contained in the remote store. The

reason we cache them locally rather than link to the remote store directly is that our templates will

always be available even when working offline.

Microsoft Office creates a system-wide template directory which can be found in your Program

Files location. On a typical x64 system, for example, the template directory is found here:

C:\Program Files (x86)\Microsoft Office\Templates

This is the location we will use to copy the remote template store to. The XML configuration file will

reference this location. Changes to this location require administrative privileges, therefore one of

the Compliance Item settings will run in administrative context to manage the templates files.

Local User Template Store (XML files)
We will also use an additional location in the user profile area to store the XML files. The reason for

separating the XML files from the templates is that when we add a new XML file, or update an

existing XML file, we must make a change in the HKCU (current user) branch in the registry.

Therefore, one of the Compliance Item settings will run in the logged-on user context to manage

the XML files and the HKCU registry changes.

There are a couple of locations that can be used for the local user template store, for example

since Office 2013 we have a Custom User Templates directory contained in the My Documents

area of the user profile. We also have %AppData%\Microsoft\Templates directory, and this is the

one we will use for the local user template store since it is also compatible with Office 2010.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 10 of 25

I am calling it a template store, but in fact it will just be used to store the XML configuration files,

nothing else.

Compliance Setting
This solution uses SCCM’s Compliance Settings feature to deploy and manage our templates.

Once set up, we will be able to deploy the templates to our targeted users, and have any easy

way to manage template changes in future. Templates can get updated, or retired, or new

templates created, so we need an easy mechanism to manage the custom template lifecycle.

Using Compliance Settings, we can deploy custom PowerShell scripts that will make this possible.

Compliance Settings in SCCM require one or more Compliance Baselines. These baselines are

targeted for deployment to collections (groups of devices or users), and contain one or more

Compliance Items. Each compliance item contains one or more Compliance Settings. A

compliance setting can be used to check whether the target system is compliant with a

particular requirement and optionally perform some remediation activity if it is not.

This solution uses one Compliance Item with two Compliance Settings. One setting runs in

administrative context, which we are calling a Machine-based setting, and one setting runs in the

logged-on user context, which we are calling a User-based setting.

These two settings with their custom discovery and remediation scripts will help manage the

lifecycle of our deployed custom templates.

Machine-based Compliance Setting
The machine-based compliance setting runs in the default administrative context that

compliance settings use. Since our targeted users may or may not have administrative rights, this

setting allows us to access the local template store on the client (which is read-only to standard

users) and add, remove or update template files.

Discovery Script

The discovery script for this setting will check the following things:

 Does the directory structure of the local template store mirror what exists in the remote

template store?

 Do the files present in the local template store mirror the files present in the remote

template store?

 Does the hash value of the files in the local template store match the hash values of the

files in the remote template store?

If any of these are not true, it will report non-compliance and then attempt remediation.

Hash Check

The hash value of the files is used to check whether a template has been updated in the remote

template store. For example, if you have deployed a template, and the author has now updated

the template but used the same file name, the hash value comparison will detect that the file is

different even though the file name has not changed. This way, an existing template can be

updated without the need to update the XML configuration file with a new template file name.

The template version can instead be stored in the metadata of the file itself, and not in the file

name.

Remediation Script

The remediation script will do the following:

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 11 of 25

 Create any directories or files that are present in the remote template store but missing

from the local template store.

 Remove any directories or files that are present in the local template store but are not

present in the remote template store.

 Replace any files in the local template store whose hash values do not match those in the

remote template store.

User-based Compliance Setting
The user-based compliance setting runs in the context of the logged-on user. This is because we

need to access the profile of the logged-on user to store the XML configuration files and because

we need to access the HKCU (current user) branch in the registry. Remember that in terms of files,

this setting only manages the XML configuration files in the local user template store, while the

machine-based setting manages the other template files in the local system template store.

Discovery Script

The discovery script for the user-based setting will check the following things:

 Does the directory structure of the local user template store mirror what exists in the remote

template store?

 Do the XML files present in the local user template store mirror the files present in the remote

template store?

 Does the hash value of the XML files in the local user template store match the hash values

of the files in the remote template store?

 For each version of Microsoft Office installed:

o Do the providers (ie categories) in the HKCU registry match the providers that exist in

the remote template store?

o Does the ServiceURL key for each provider in the HKCU registry point to the correct

location of the relevant XML file?

HKCU Registry Changes

The HKCU registry branch we are referring to is located here:

HKCU:\SOFTWARE\MICROSOFT\OFFICE\<OFFICEVERSIONCODE>\COMMON\SPOTLIGHT

Under this registry branch are two further branches, Providers and Content. This will be discussed

later but a key needs to be created for each provider (ie Engineering, HR etc) under the Provider

branch, and a ServiceURL key defined. This ServiceURL key tells Office where to locate the XML

configuration file for that provider. Once it finds the XML file, it can create the custom templates

folder you see in your Office application based on the contents of this file.

The Content branch is where Office stores the locations of the template files based on what it has

read from the XML configuration. If the XML file has been updated, this branch needs to be

updated or regenerated. To accomplish this we delete the branch so that Office is forced to re-

read the XML file, recreate the Content branch and store the updated details there.

Remediation Script

The remediation script will do the following:

 Create any directories or XML files that are present in the remote template store but missing

from the local user template store.

 Remove any directories or XML files that are present in the local user template store but are

not present in the remote template store.

 Replace any XML files in the local user template store whose hash values do not match

those in the remote template store.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 12 of 25

 For each version of Microsoft Office installed:

o Create any missing provider branch in the HKCU registry, including the ServiceURL

key

o Remove any provider that is present in the HKCU registry but does not exist in the

remote template store

o Update the ServiceURL key is for each provider in the HKCU registry that is not

pointing to the correct location

 For any registry change or XML file change, delete the Content branch in the HKCU registry

so that Office is forced to re-read the XML files for each provider and recreate the Content

branch pointing to the correct locations of the template files

Multiple Office Versions

In some (hopefully rare) cases users may have more than one version of Office or Office

applications installed, for example they may have Office 2013/6 and use Excel 2010 for some

backwards compatibility purpose. The User-based compliance setting will update the HKCU

registry for each version of Microsoft Office installed, provided you have listed the applicable

Office Version Keys in the User-set Variables (more on this later). This will make the custom

templates available in each Office version.

Deploying the Solution
Now let’s go ahead and create and deploy this solution.

Create the Remote Template Store
First, we need to create the remote template store. This will be a location on a file share that is

accessible to everyone. The template files will be copied from this remote store to the local clients.

The directory structure of this store is important as it will be mirrored exactly on the client, and any

changes to files or directories will also be changed on the client.

Create the Root Path
The root path will be defined in the compliance scripts as the $RemoteTemplatePath variable. It

can be a normal SMB file share, eg:

\\FILESERVER01\OFFICETEMPLATES

Categorise Your Templates
Underneath the root path, create subdirectories for each template category you want to create.

This could be departments, projects etc. For example:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING

\\FILESERVER01\OFFICETEMPLATES\FINANCE

These categories are important as they will be used to group your custom templates together in

your Office application, as we have seen before.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 13 of 25

Template Directories
Underneath each template category, create subdirectories for each template application type,

for example, Word Templates, PowerPoint Templates etc:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\WORD TEMPLATES

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\POWERPOINT TEMPLATES

XML Directory
Underneath each category, create one XML directory. All the XML files for that category will be

located here. Eg:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\XML

Creating the Template Files
Now we need to create the relevant template files for each template we want to deploy.

The Custom Template
Save the template file in a template format, for example .potx for a PowerPoint template, .dotx for

a Word template etc.

Note: The Microsoft Technet article we referenced earlier states that we can deploy Word, Excel

or PowerPoint templates, but you can actually deploy Visio templates too.

The Preview and Thumbnail Files
The Preview and Thumbnail files are used to provide a preview image of the template so you get

a quick visual of what the template actually looks like:

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 14 of 25

Create two image files with different dimensions using the Microsoft recommendations below for

the image sizes.

Image Type Width (px) Height (px)

Thumbnail 100 120

Preview 256 350

To do this, you can open the template and use a screenshot tool (like Greenshot) to capture an

image of the first page. You can then resize the image (using MS Paint for example) and save the

image to a supported format (.jpg, .png, .bmp, .gif).

I recommend to name these files using a similar descriptor, for example:

Custom Template File: MyTemplate.dotx

Preview Image File: MyTemplate_Preview.png

Thumbnail Image File: MyTemplate_Thumbnail.png

File Versioning

With this solution, it is not necessary to use version numbers in the file names. For example, you

might want to use MyTemplate_v1.dotx, then when it gets updated in future you can use

MyTemplate_v2.dotx. This is not necessary as the file hash checks performed by the compliance

setting scripts will detect any changes in the source template file even if the file name has not

changed. Therefore, to manage file versions you do not need to increment version numbers in the

file name, you could instead use the metadata of the file itself to document the version number,

for example the Revision number in the screenshot below:

XML Configuration File
The XML configuration file is used to define which application/s and languages the templates are

for, where the template source files can be found and how the template is referenced. Office will

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 15 of 25

read this configuration file when an Office application is opened and add the relevant custom

templates within the application.

Since the location of the template files is a “hard-coded” path in the configuration file, it may be

necessary to create two XML files per category, one for each OS architecture in your

environment. This is because 32-bit software is installed to a different “Program Files” directory on a

64-bit OS, therefore one XML file will need to reference the “Program Files” directory on a 32-bit

system, and one will need to reference the “Program Files (x86)” directory on a 64-bit system.

Example XML Configuration

Below is an example of an XML configuration file for the x64 architecture. It contains three

templates: one for PowerPoint, and two for Word.

In the headers we have some parameters such as lcid, which is the language code for the version

of Office you are targeting. 1033 represents US English. Other supported language codes can be

found here: https://technet.microsoft.com/en-us/library/cc179219.aspx

The id parameter in the o:application tag indicates the application you are targeting, for

example:

WD = Word

PP = PowerPoint

XL = Excel

VO = Visio

The startdate and enddate in the o:featuredtemplates tag indicate the validity period of the

template. Always set the enddate to far in the future if you plan to use the template indefinitely.

Within each featured template you need to specify the template title that will appear in the

Office application, the location of the source files for the template and image files etc.

You can have multiple templates per application, and multiple applications all in one XML file.

EXAMPLE XML CONFIGURATION FILE
<?xml version="1.0" encoding="utf-8"?>
 <o:featuredcontent lcid="1033" xmlns:o="urn:schemas-microsoft-com:office:office">
 <o:application id="PP">
 <o:featuredtemplates startdate="2011-03-01" enddate="2099-03-01">

 <!-- PP TEMPLATE 1 -->
 <o:featuredtemplate title="Contoso PowerPoint Template" source="C:\Program Files
(x86)\Microsoft Office\Templates\Contoso\Engineering\PowerPoint
Templates\Contoso_PP_Template.potx" >
 <o:media mediatype="png" filename="Contoso_PP_Thumb.PNG" source="C:\Program
Files (x86)\Microsoft Office\Templates\Contoso\Engineering\PowerPoint
Templates\Contoso_PP_Thumb.PNG" />
 <o:preview filename="Contoso_PP_Preview.PNG" source="C:\Program Files
(x86)\Microsoft Office\Templates\Contoso\Engineering\PowerPoint
Templates\Contoso_PP_Preview.PNG" />
 </o:featuredtemplate>

 </o:featuredtemplates>
 </o:application>

 <o:application id="WD">
 <o:featuredtemplates startdate="2011-03-01" enddate="2099-03-01">

 <!-- WD TEMPLATE 1 -->
 <o:featuredtemplate title="Design" source="C:\Program Files (x86)\Microsoft
Office\Templates\Contoso\Engineering\Word Templates\Design_Template.potx" >
 <o:media mediatype="png" filename="Design_Thumb_2015.PNG" source="C:\Program
Files (x86)\Microsoft Office\Templates\Engineering\Contoso\Design_Thumb.PNG" />
 <o:preview filename="Design_Preview_2015.PNG" source="C:\Program Files
(x86)\Microsoft Office\Templates\Engineering\Contoso\Design_Preview.PNG" />
 </o:featuredtemplate>

 <!-- WD TEMPLATE 2 -->

https://technet.microsoft.com/en-us/library/cc179219.aspx

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 16 of 25

 <o:featuredtemplate title="Memo" source="C:\Program Files (x86)\Microsoft
Office\Templates\Contoso\Engineering\Word Templates\Memo_Template.potx" >
 <o:media mediatype="png" filename="Memo_Thumb_2015.PNG" source="C:\Program Files
(x86)\Microsoft Office\Templates\Contoso\Engineering\Word Templates\Memo_WD_Thumb.PNG" />
 <o:preview filename="Memo_Preview_2015.PNG" source="C:\Program Files
(x86)\Microsoft Office\Templates\Contoso\Engineering\Word Templates\Memo_WD_Preview.PNG" />
 </o:featuredtemplate>

 </o:featuredtemplates>
 </o:application>
 </o:featuredcontent>

Setting the Correct Template Source

As mentioned previously, the local template store is using the Microsoft default location for

system-wide templates in the program files installation directory. Within this directory, all the

custom templates will be placed underneath a single subfolder, using the same directory structure

that exists in the remote template store. This subfolder is defined in the compliance scripts as the

$RootFolderName variable. The subfolder name could be a company name, or just “Custom

Templates” – anything you decide, but all template files will be placed here. For example, on an

x64 system with 32-bit Microsoft Office installed, using a root folder name of “Contoso”, the

templates would be located here:

C:\PROGRAM FILES (X86)\MICROSOFT OFFICE\TEMPLATES\CONTOSO

The directories underneath this would then mirror what is in the remote template store. For

example, the following remote files and directories:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\WORD TEMPLATES

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\WORD TEMPLATES\CUSTOM_TEMPLATE.DOTX

would become the following local files and directories:

C:\PROGRAM FILES (X86)\MICROSOFT OFFICE\TEMPLATES\CONTOSO\ENGINEERING

C:\PROGRAM FILES (X86)\MICROSOFT OFFICE\TEMPLATES\CONTOSO\ENGINEERING\WORD TEMPLATES

C:\PROGRAM FILES (X86)\MICROSOFT OFFICE\TEMPLATES\CONTOSO\ENGINEERING\WORD

TEMPLATES\CUSTOM_TEMPLATE.DOTX

So when specifying the source of the MS Word Custom_Template.dotx for the Engineering

department, you would use the following in the XML file:

SOURCE=”C:\PROGRAM FILES (X86)\MICROSOFT OFFICE\TEMPLATES\CONTOSO\ENGINEERING\WORD

TEMPLATES\CUSTOM_TEMPLATE.DOTX”

MULTIPLE ARCHITECTURES

If you are deploying to both x86 and x64 systems, create one XML file for each architecture. Use

the correct program files directory location in each file, for example in an XML for a 32-bit OS you

would use the following for the Custom_Template.dotx:

SOURCE=”C:\PROGRAM FILES\MICROSOFT OFFICE\TEMPLATES\CONTOSO\ENGINEERING\WORD

TEMPLATES\CUSTOM_TEMPLATE.DOTX”

NAMING THE XML CONFIGURATION FILE

The name of the XML configuration file must include the OS architecture being targeted, even if

you are only targeting a single architecture. For example, if targeting both 32-bit and 64-bit OS

architectures, you would create two XML files:

Engineering_x64.xml

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 17 of 25

Engineering_x86.xml

The compliance scripts will only copy the relevant XML for the OS architecture of the client,

filtering by the keywords “x86” or “x64” in the file name.

Adding the Template Files to the Remote Template Store
Once you have created all the templates files, add them to the remote template store. Let’s use

the MS Word Custom_Template for the Engineering department as an example.

The template file (Custom_Template.dotx), and the two image files

(Custom_Template_Preview.png and Custom_Template_Thumbnail.png) go into the following

location:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\WORD TEMPLATES

If we had an Excel template, the template files would go into:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\EXCEL TEMPLATES

…and so on.

The XML configuration files (Engineering_x64.xml and Engineering_x86.xml) would go into:

\\FILESERVER01\OFFICETEMPLATES\ENGINEERING\XML

Creating the Compliance Setting
Now let’s go to Configuration Manager and create the Compliance Setting.

Create a Configuration Item
In the ConfigMgr console, navigate to Assets and Compliance > Compliance Settings. Click on

Configuration Items and create a new Configuration item.

Give it a Name and Description and choose the Windows type.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 18 of 25

Click Next. Select the applicable Windows versions. Remember that PowerShell 4.0 minimum is

required on the client.

On the Settings pane, click New.

Create the Machine-based Compliance Setting

Enter a Name and Description, choose Script for the setting type and String for the data type.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 19 of 25

Download the discovery and remediation scripts from my Github repo. Use the Machine Setting

scripts for this setting.

https://github.com/SMSAgentSoftware/ConfigMgr/tree/master/PowerShell%20Scripts/Compliance

%20Settings/Microsoft%20Office%20Templates

In both the discovery and remediation scripts, set the following two variables found at the top in

the User-Set Variables section:

$RemoteTemplatePath – This is the file-share being used for the remote template store, eg

\\FILESERVER01\OFFICETEMPLATES

$RootFolderName – This is name of the directory in the local template store where all the template

files will be copied to (see the “Setting the Correct Template Source” section), eg “Contoso”

In the Create Setting window, click Add Script and paste the discovery script into the window (or

click Open and locate the script). Make sure that Windows PowerShell is set as the script

language.

Do the same for the remediation script.

Next, click on the Compliance Rules tab. Click New to create a new rule.

Enter the Name and Description. Use the rule type Value and enter the value Compliant. The rule

will look for the string “Compliant” to be output by the script to determine compliance.

Be sure to check the box to run the specified remediation script, and optionally set the

noncompliance severity.

https://github.com/SMSAgentSoftware/ConfigMgr/tree/master/PowerShell%20Scripts/Compliance%20Settings/Microsoft%20Office%20Templates
https://github.com/SMSAgentSoftware/ConfigMgr/tree/master/PowerShell%20Scripts/Compliance%20Settings/Microsoft%20Office%20Templates
file://///FileServer01/OfficeTemplates

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 20 of 25

Click Ok and Ok again to save the machine-based setting.

Create the User-based Compliance Setting

Create the User-based compliance setting in the same way. Use the User Setting scripts from my

Github repo.

These scripts have one additional user-set variable called $OfficeVersionKeys. Here you enter in

an array the version number for each version of Microsoft Office you may be targeting in your

environment.

$OfficeVersionKeys = @(

 "16.0", # Office 2016

 "15.0", # Office 2013

 "14.0" # Office 2010

)

This setting must be run in the context of the logged-on user, so be sure to check the box Run

scripts by using the logged-on user credentials.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 21 of 25

Create a compliance rule identical to that of the machine-based setting.

When finished, click Next through the rest of the Configuration Item wizard.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 22 of 25

Add the Configuration Item to a Configuration Baseline

Now you can add the newly-created configuration item to an existing configuration baseline, or

you can create a new baseline or baselines targeted at specific collections.

For example, you can create a collection with all Microsoft Office users using a WQL query such as

the following:

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 23 of 25

select

SMS_R_SYSTEM.ResourceID,SMS_R_SYSTEM.ResourceType,SMS_R_SYSTEM.Name,SMS_R_SYSTEM.SMS

UniqueIdentifier,SMS_R_SYSTEM.ResourceDomainORWorkgroup,SMS_R_SYSTEM.Client from

SMS_R_System inner join SMS_G_System_INSTALLED_SOFTWARE on

SMS_G_System_INSTALLED_SOFTWARE.ResourceID = SMS_R_System.ResourceId where

SMS_G_System_INSTALLED_SOFTWARE.ProductName like "Microsoft Office Enterprise%" or

SMS_G_System_INSTALLED_SOFTWARE.ProductName like "Microsoft Office Home and Business%" or

SMS_G_System_INSTALLED_SOFTWARE.ProductName like "Microsoft Office Professional%" or

SMS_G_System_INSTALLED_SOFTWARE.ProductName like "Microsoft Office Home and Student%" or

SMS_G_System_INSTALLED_SOFTWARE.ProductName like "Microsoft Office Standard%"

Note: to use this WQL query, you will need to enable the Installed Software class in your Client

Settings > Hardware Inventory (it is not enabled by default).

Changing the Script Execution Timeout Setting
The default value for script execution timeout in SCCM for Compliance Items is 60 seconds. This

means that if your script takes longer than 60 seconds to run, it will result in an error and

compliance will be incorrectly assessed and reported. The scripts used in this solution may well

take longer than 60 seconds, therefore it is recommended to increase this value by editing the site

control setting. This can be done in WMI with a VBScript, or PowerShell:

https://blogs.msdn.microsoft.com/fei_xias_blog/2013/10/20/system-center-2012-configmgr-using-

vbs-to-extend-the-dcm-script-execution-timeout-value/

https://thedesktopteam.com/raphael/sccm-compliance-setting-script-error-0x87d00321/

Here I have changed the value to 600 seconds:

https://blogs.msdn.microsoft.com/fei_xias_blog/2013/10/20/system-center-2012-configmgr-using-vbs-to-extend-the-dcm-script-execution-timeout-value/
https://blogs.msdn.microsoft.com/fei_xias_blog/2013/10/20/system-center-2012-configmgr-using-vbs-to-extend-the-dcm-script-execution-timeout-value/
https://thedesktopteam.com/raphael/sccm-compliance-setting-script-error-0x87d00321/

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 24 of 25

Managing the Custom Template Lifecycle
Your custom templates may get periodically updated, new templates may be added, or existing

templates retired. Because of this we need to manage the lifecycle of these templates, and this

section describes how that can be done with this solution.

Adding New Templates
To add a new template, the following procedure should be followed:

1. Create the template files (template, preview image, thumbnail image)

2. Add them to the remote template store in the appropriate location

a. If you wish to put the templates in a new location, for example creating a new

category, or adding a new subfolder such as “Excel Templates”, you can do this.

Simply create the required folders in the remote template store and place your

templates there. These new folders will be created on the targeted clients the next

time the compliance cycle is run. If you create a new category, remember to also

create a new XML file for that category.

3. Update the XML file for the category. Add an entry for a new template defining the

relevant parameters such as the location of the template file, the title etc.

Any changes to the directory structure or XML files in the remote template store will be detected

by the compliance scripts, and the client will be updated. If an XML file is updated, or a new one

created, the scripts will delete the “content” key in the HKCU registry to force the Office

applications to read the XML file again and create the necessary custom templates in the

application, otherwise the application will not reference the new template defined in the XML file.

Updating a Template
To update a template, simply make the required changes and save the template to the remote

template store, overwriting any existing file of the same filename. The compliance scripts will

detect that the hash value of the file has changed and copy over the new file to the client.

If you decide to change the filename of the template, remember to also update this in the XML

file for that category, otherwise the old filename will still be referenced in the registry and by the

Office application.

Retiring a Template
To retire or remove a template, simply remove the template files from the remote template store.

Then also remove the template entry from the XML file for that category. Again the compliance

scripts will detect these changes and update the client accordingly.

DEPLOYING CUSTOM MICROSOFT OFFICE TEMPLATES WITH SYSTEM CENTER CONFIGURATION MANAGER

Page 25 of 25

Multiple Language Support
This solution will work with a single language version of Microsoft Office deployed in your

environment. Some organisations however need to support multiple display languages for

Microsoft Office, and this solution could be customised to support that.

The language version of Office you are deploying to is indicated by the lcid value in the XML

configuration file. An lcid value of 1033 for example indicates US English. To support additional

languages, you would need to create an XML file for each language version you wish to support

containing the appropriate lcid code. Then save each of your XML files with the language code

in the filename, for example:

Engineering_x64_1033.xml

Engineering_x64_1046.xml

Now you would need to update both the discovery and remediation scripts for the User-based

setting to read the installed display language for Office and copy the appropriate XML file.

The following registry key in the current user branch should (in most cases) give you the language

version of Office being used on the client:

HKCU:\SOFTWARE\MICROSOFT\OFFICE\<OFFICEVERSIONCODE>\COMMON\LANGUAGERESOURCES\

UILANGUAGE

Search for the following code lines in the scripts. In the discovery script this will be in the Registry

Key Checks section, in the Providers foreach loop. In the remediation script, this will be in the

Registry Key Creation / Cleanup section, again in the Providers foreach loop.

$RemoteXMLFile = (Get-ChildItem "$RemoteTemplatePath\$Provider\XML" -File -
ErrorAction Stop).Name | where {$_ -match $Architecture}

Just above this line, put the following code:

$UILanguage = (Get-ItemProperty -Path
"HKCU:\SOFTWARE\Microsoft\Office\$OfficeVersionCode\Common\LanguageResources"
-Name UILanguage).UILanguage

Then change the first line to include a filter for the UILanguage, eg:

$RemoteXMLFile = (Get-ChildItem "$RemoteTemplatePath\$Provider\XML" -File -
ErrorAction Stop).Name | where {$_ -match $Architecture -and $_ -match
$UILanguage}

This will detect the UI language version of Office, then find the XML file in the remote template

store that contains this language code in the filename. This XML file will then be set in the registry

as the ServiceURL key for the relevant provider (category).

Another way to do it would be to create a new remote template store for each language you

need to support. Then create a new Compliance Item for each language, specifying the path to

the relevant remote template store for that language in the PowerShell scripts. Then deploy each

Compliance Item in separate Compliance Baselines which are targeted at collections where that

Office language version is installed.

