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Four issues are discussed concerning Thurstone's discriminal processes: the 
distributions governing the representation, the nature of the response decision rules, 
the relation of t.he mean representation to physical characteristics of the stimulus, 
and factors affecting the variance of the representation. A neural schema underlying 
the representation is proposed which involves samples in time of pulse trains on 
individual neural fibers, estimators of parameters of the several pulse trains, samples 
of neural fibers, and an aggregation of the estimates over the sample. The resulting 
aggregated estimate is the Thurstonian representation. Two estimators of pulse rate, 
which is monotonic with signal intensity, are timing and counting ratios and two 
methods of aggregation are averaging and maximizing. These lead to very different 
predictions in a speed-accuracy experiment; data indicate that both estimators are 
available and' the aggregation is by averaging. Magnitude estimation data are then 
used both to illustrate an unusual response rule and to study the psychophysical 
taw. In addition, the pattern of variability and correlation of magnitude estimates on 
successive trials is interpreted in terms of the sample size over which the aggregation 
takes place. Neural sample size is equated with selective attention, and is an im- 
portant factor affecting the variability of the representation. It accounts for the 
magical number seven phenomenon in absolute identification and predicts the im- 
pact of nonuniform distributions of intensities on the absolute identification of two 
frequencies. 
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This being the twenty-fifth anniversary  of the L. L. Thurs tone  Psycho- 
metric Labora tory ,  I wished to relate my remarks  to one or another  aspect of 
Thur s tone ' s  scientific c o n t r i b u t i o n s - - t o  either factor analysis, test theory, 
a t t i tude measurement ,  or  psychophysical analysis. With that list of  topics and  
my interests, the choice was uniquely determined.  But the choice is for tui tous 
since not  only is this an anniversary  of  the Labora tory ,  bu t  it also happens  to 

be the fiftieth anniversary  of  Thurs tone ' s  three basic papers in psychophysics: 
"Psychophysical  analysis" ,  which appeared in the 1927 volume of The Ameri- 
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Table 1. A Comparison of Terms 

Thurstone's Thurstone's Current 
description term term 

Psychological values of a 
psychophysical stimulus 

Fluctuations among discriminal 
processes of a signal 

Relation between the typical 
psychological value and the 
physical measure 

Discriminal Decision random variable; 
p r o c e s s  representation of signal 

Discriminal Standard deviation of 
dispersion random variable 

Psychological Psychophysical law 
scale 

can Journal of Psychology, and "A law of  comparative judgment" and "Three  
psychophysicaf]aws", both of which were in the 1927 volume of the Psycholog- 
ical Review. 

My goal, then, is to take stock of  our progress in psychophysical analysis 
and to see hgw:Thurstone's program has developed. I will not examine all of 
the other'uses to which the idea of discriminal process has been put, both by 
Thurstone ~nd others, nor will I describe and evaluate the various refined 
procedures f6r scaling so ably treated by Torgerson [1958] and by Bock and 
Jones [1968]. Rather, I shall accept the 1927 papers at face value as an 
approach topsychophysics,  no more, no less, and ask how we have come to 
interpret and to modify these ideas in the ensuing fifty years. 

Since some of the terms have changed over the years, let me remind you 
briefly of the ideas and terms (see Table 1). Thurstone's basic idea was the 
essence of  simplicity: Each time a signal is presented, it is transduced in the 
nervous system into what he called a discriminal process. Few if any psycholo- 
gists now use that term; rather, the random variable language is pervasive. Of  
course, we frequently speak of the value of the random variable associated with 
a particular signal presentation as a psychological, or internal, representation 
of the signal. The representation captures some relevant aspect of the signal, 
but does so in some language of the nervous system and only imperfectly 
because of variability inherent in the transduction, transmission, and process- 
ing. Decisions about a signal or about its relation to other signals are assumed 
to be based entirely upon these representations. 

This conception of  internal representations of signals is so simple and so 
intuitively compelling that no one ever really manages to escape from it. No 
matter how one thinks about psychophysical phenomena, one seems to come 
back to it. Our concern in recent years has not been so much to replace it as to 
make it specific--to transform it from a theoretical schema into a psycho- 
physical theory. 
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Four Questions About the Representation 

Four questions must ultimately be resolved about Thurstone's discriminat 
processes before one can be said to have a fully articulated psychophysical 
theory. 

Question 1. What is the family of distributions governing the random variables 
that represent signals? 

Thurstone assumed normal distributions. But recall his caution: "The 
normal probability curve has been so generally abused in psychological and 
educational measurement that one has reason to be fearful of criticism from 
the very start in even mentioning it. The only valid justification for bringing in 
the probability curve in this connection is that its presence can be experimen- 
tally tested." [Thurstone, 1927a, p. 373] He was equally explicit that he would 
not attempt to derive it from other considerations. "I shall not assume that the 
process by which an organism differentiates between two stimuli is either 
psychic or physiological . . . .  I shall try not to disturl3 the main argument with 
systematic irrelevances or with my personal notions regarding the psychic or 
physiological nature of the psychophysical judgrrleiat." [Thurstone, 1927a, p. 
368] 

History has not followed him closely on either of these positions. Testing 
the assumption of normality has proved rather less easy and direct than he 
seemed to imply and many of us feel that it is quite profitable to take account 
of physiological results. We will return to both points later. 

Question 2. What is the nature of the decision rules that lead to responses? 

Although Thurstone invoked a decision rule--namely, when discrimina- 
ting between two signals, select as the larger the one having the larger represen- 
t a t ion-he  hardly mentioned this fact. Later when others generalized his model 
to absolute identification and category judgments involving two or more 
signals, they simply assumed that the range of the several random variables is 
partitioned into as many intervals as there are responses. Again, they made 
little of this choice. In particular, both he and many of his followers failed to 
emphasize that the boundaries of the response categories might be manipu- 
lated experimentally. 

In contrast, the theory of signal detectability, which grew out of develop- 
ments concerning sonar and radar detection during World War II, clarified the 
significance of the response criterion. In addition, that theory postulated the 
likelihood ratio to be the decision random variable, and showed that under 
some assumptions its logarithm is normally distributed under the presentation 
of either signal in noise or noise alone. Formally, such a model is Thurstonian, 
but with a variable response criterion. The empirically important discovery 
resulting from these ideas is the fact that subjects really can vary their response 
criterion over a very large range, thereby sweeping out a whole locus of error 
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pairs. This is the same error tradeoff that a statistician considers when making 
inferences involving two hypotheses. The statistician calls it the power of the 
test; the psychophysicist calls it the receiver operator characteristic (ROC). 

The tradeoff of errors has proved to be an exceedingly powerful tool, as I 
shall illustrate below. To my mind, it is the major residue of signal detectability 
theory in psychology. The interpretation of the random variables in terms of 
likelihood ratio, although much stressed by some advocates of the theory, has 
not proved to be particularly important, and it is virtually impossible to 
generalize the likelihood formulation to responses to more than two signals. 

Was Thurstone aware of the ROC tradeotY?. He neither discussed it 
explicitly nor emphasized its importance. But he did write: "The writer has 
found experimentally that the normal probability curve was not applicable for 
certain stimuli. In most of the experiments the distributions are reasonably 
close to normal." [Thurstone, 1927a, p. 373] How did he draw these con- 
clusions? He did not say. Is it possible that he generated ROC data and plotted 
it in z-scores, as we do today? I find it difficult to understand the quote 
otherwise; but I also find it remarkable that he failed to write about it. 

Beyond variable boundaries, there are other aspects to the question about 
decision rules. For example, to encorporate the widely used methods of magni- 
tude estimation, magnitude production, and sensory matching into psycho- 
physical theory, we must also arrive at decision rules for these designs. I shall 
pursue this at length below. 

Question 3. What is the psychophysical law, i.e., how does the central tendency 
of the representation depend upon the physical characteristic of  the 
signal that is being varied? 

Thurstone was much concerned with this question, as have been many 
others from Fechner through Stevens. Thurstone pointed out explicitly that the 
answer to this question may be quite independent of the nature of the varia- 
bility of the random variable, a point much emphasized by Stevens. However, 
in accounting for some data a change in one can often compensate for a change 
in the other. For example, Thurstone explicitly contrasted Fechner's logarith- 
mic law with a special case of Stevens' power law, namely, the square; and he 
showed how each is compatible with Weber's law provided that one makes the 
correct assumption about how standard deviation varies with intensity. 

Stevens [1957, 1975] argued that an easy way to get at the psychophysical 
function is simply to ask subjects to report numbers in proportion to the 
subjective sensations arising from signals, and then to average these numbers. 
This seems to suggest the following simple decision rule: respond with a 
number proportional to the value of the internal representation of the signal. If 
it were that simple, then magnitude estimation data would provide us not only 
with the psychophysical function, but with the entire distribution of Thur- 
stone's random variables. As we shall see, this response rule is everly simple, 
but it may not be terribly far from the truth. 
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Question 4. Upon what does the standard deviation of the random variable 
depend? 

Thurstone explicitly acknowledged that the standard deviation might 
depend upon whatever physical attribute is being varied; however, the special 
Case V of constant standard deviations attracted a great deal of attention both 
because of its mathematical tractability and because of its close relation to 
Fechner's postulate. Aside from that, it is implicit in Thurstone's discussion 
that a unique random variable, or process, is associated with each signal, 
independent of the experimental context within which the signal appears. It 
does not matter whether the presentation is embedded in a discrimination or 
an absolute identification or a magnitude estimation experiment, it will always 
be represented by the same random variable. Apparently it was not until some 
time after World War II that it was fully recognized how erroneous this 
implicit assumption actually is. 

Miller [1956] cited psychophysical data showing that responses in an 
absolute identification experiment could not possibly arise from the Thurston- 
ian model in which a unique random variable is associated with each signal. 
As this result is extremely important, let me remind you of the details. If one 
carries out a two-signal absolute identification of loudness, it suffices to sepa- 
rate the two signals by 5 dB in order to achieve perfect identifiability. Thus, the 
two representations cannot overlap to any substantial degree. So, if both the 
Thurstonian model and the implicit assumption were true, we should be able to 
identify without error 20 signals equally spaced in dB over a range of 95 dB. 
The facts are otherwise. A total of 7 signals, adjacent ones being separated by a 
little more than 15 dB, is about the limit of perfect identifiability for a range of 
95 dB, as can be seen in Garner's [1953] data reproduced in Fig. 1. 

Another way to view the same phenomenon is to fix the number of signals 
and vary the range, Braida and Durlach [1972] proceeded in this manner, and 
found that performance improves linearly with range up to about 15 or 20 dB, 
at which point it begins to slacken off just when the Thurstonian model 
predicts improvement. Such data will be shown below (Fig. 15). 

Clearly, Thurstone's implicit assumption of a unique representation must 
go. In some sense the representation must vary with the experimental context. 
Both Durlach and Braida [1969] and, independently, Gravetter and Lockhead 
[1973] have pointed out that one can fit the variable range data quite accurately 
by assuming that the Thurstonian variance grows linearly with the square of 
the range in dB. In my view, this assumption is ad hoc and implausible, and 
thus demands a deeper explanation. 

Let us now turn to what is known about the answers to these four 
questions: the form of the distribution, the nature of the response rule, the 
form of the psychophysical law, and the factors that affect the variability of the 
representation. In attempting to formulate answers, I find it helpful first to 
outline a neural schema that D. M. Green and I have evolved as possibly 
underlying the Thurstonian representation. 
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Information transmitted vs. information input (= log2 number of  signals) in absolute identification 
of  auditory intensity. Signals were equally spaced in dB over a 95 dB range and they were presented 

equally often. The data are from Garner (1953); this is Fig. 2 of Miller (1956). 

A Neural  Schema 

Any sensory transducer has the role of transforming sensory signals into 
the internal language of the nervous system, presumably into neural pulse 
trains. In at least the case of the eye and the ear, the neural structure immedi- 
ately following the transduction is an elaborate system of parallel nerve fibers. 
In the case of the human ear, there are some 30,000 peripheral fibers. One can 
examine the activity of these fibers in at least two quite different ways. 

If one looks at the whole bundle of fibers, each signal activates some 
characteristic subset of the fibers. Theories which assume that the central 
nervous system (CNS) identifies the signal by identifying the active subset of 
fibers are called place theories. One should note that it is not completely trivial 
to devise mechanisms to identify more or less arbitrary subsets of 30,000 
fibers--that  problem has blocked the development of  satisfactory readers for 
computers. 

If  instead one examines an individual fiber, one can ask both which signals 
activate it and, when it is active, what is encoded by the neural pulse train. In 
audition, the plot of  the firing rate of a single fiber as a function of the intensity 
and frequency of a pure tone is known as the tuning curve of  that fiber [Kiang, 
1965]. Typically, at any frequency there is a relatively narrow range of  in- 
tensities, say 15 to 20 dB, for which the fiber is neither at its resting level nor its 
maximum firing level. 

Turning to the code, for pure tones of less than 2000 Hz, Rose et al. [1967] 
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have established that the pulse train on a single fiber encodes both frequency 
and intensity information. This surprising result opens up the possibility of 
statistical theories of a character quite different from place theories. The only 
difficulty is that in order to achieve a quality of statistical inference needed to 
account for psychophysical results a very long sample of pulses is needed from 
a single fiber. Not only is this unsatisfactory because signals do not usually stay 
put for very long, but it would surely prove lethal to the organism. Perhaps, 
then, some of the role of the parallel structure of nerve fibers is to increase the 
sample size on which inferences are made without introducing excessive delays. 
According to such a view, the place information is simply an artifact of two 
factors: the replication of fibers in order to get adequate samples quickly and 
the inability of a single fiber to span the full dynamic range of intensities and 
frequencies. 

Assuming this point of view, three key ideas must be developed and 
studied. First, consider some feature of the signal, say intensity or frequency, 
which is encoded in the pulse train. Some estimator of that parameter must be 
used to decode it from the sample of pulses observed on an individual fiber. 
For example, single unit records show that pulse rate increases with the 
intensity of a pure tone. So when considering questions about intensity, the 
CNS is forced to use estimators of rate. Two extreme ones, which we have been 
investigating, are called counting [McGill, 1967] and timing [Luce & Green, 
1972; Uttal and Krissof, 1965] estimators. In each case, the name corresponds 
to the random variable observed by the CNS: for the counting estimator, the 
observable is the count of pulses obtained in a fixed period of time; for the 
timing one, it is the time required to complete a fixed count. In each case the 
rate is estimated by the ratio of counts to time. Both obviously require that in 
some sense the CNS be able to count pulses and to time intervals, thus 
suggesting that maybe both estimators are available under the proper condi- 
tions. 

A second feature of the schema is that these individual estimates must be 
aggregated over some sample of fibers in order to upgrade their statistical 
quality. If the samples are at all large, as we have reason to believe, then the 
resulting distribution is largely determined by the aggregation scheme em- 
ployed and not much influenced by the exact nature of the estimator used. 
Such decoupling is to our advantage. 

A third feature of the schema is the sample over which the aggregation is 
carried out. One's initial inclination is to assume that all of the fibers activated 
by the signal are in the sample, but the data have forced us to conclude 
otherwise. Indeed, after the fact, it seems quite plausible to me that it is 
unlikely for a system to evolve in which all peripheral fibers are monitored 
simultaneously. That would entail a great deal more computational capacity-- 
higher-order neural cells--than if the monitoring is more selective. In any 
event, we have been led to suppose that there is some mechanism that focuses 
attention, i.e., a mechanism that monitors fully just one group of substantially 



468 PSYCHOMETRIKA 

identical fibers, so that signals activating this group are represented as accu- 
rately as possible, while keeping tabs on all other groups of similar fibers only 
sufficiently well to attract attention when one of them is activated. When that 
happens, the CNS may decide--we know not how-- to  shift attention to that 
group. By "shift attention" I simply mean to monitor it fully. In this view of  
sensory information processing, attention is treated as identical to increasing 
the sample size underlying the inference being made by the CNS. 

In sum, then, our neural schema involves four ingredients: 
1. a system of parallel peripheral fibers of  which only a relatively small 

subset is activated by a particular signal; 
2. an estimator of a parameter of the pulse train which operates on a time 

sample of  that pulse train; 
3. a sample of  fibers whose size depends upon where attention is focussed; 

and 
4. a scheme for aggregating over the sample of  fibers the estimates ob- 

tained from individual fibers. 

I shall treat the aggregated estimate as the random variable in Thurstone's 
theory. As will soon be evident, we use our neural schema as a means for 
arriving at experiments which help to answer the four questions originally 
posed about  the Thurstonian representation. 

The Form of  the Distribution 

The first decision one ought to make about the representation of  a signal is 
whether it is a discrete or continuous random variable. Of course, strictly 
speaking it must be discrete, but the issue is whether or not the discreteness is 
sufficiently coarse--well above the molecular level--so that it shows up in 
some behavioral observations. The theory of such coarse representations is 
called neural quantum theory, and there has been much controversy about it. 
(Several of the major publications are: Corso, 1956; Krantz,  I969; Luce, 1963; 
Norman,  1964; Stevens, 1972; Stevens, et al., 1941; Swets, 1961.) Although the 
consensus seems to be against the discrete theory, I do not feel that the issue 
has really been settled, in part because no decisive experiment has yet been 
devised. 

Despite my nagging doubts, I shall nonetheless proceed as if the random 
variables are continuous. Having accepted that, should we assume with Thurs- 
tone that they are normally distributed? Turning back to the neural schema 
just outlined, the answer centers primarily on the nature of the aggregation 
across fibers. If the CNS averages the estimates from the individual fibers and 
if these estimates are of  comparable magnitude, the Central Limit Theorem 
tells us that the resulting estimate is approximately normally distributed. 

Is there any serious alternative? A priori, there are many possibilities, of 
which one of  the most inviting is to suppose that decisions are based on an 
extreme observation, in particular, the largest of  the several estimates. Accord- 
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ing to classical work, summarized in detail by Gumbel [1958], if the estimates 
from single fibers are identically and independently distributed with the upper 
tails being asymptotically exponential, then the limit distribution of the max- 
imum value is the double exponential, 

exp [-e-~x-~] .  

I find this model attractive, in part, because it is known [McFadden, 1974; 
Yellott, 1977] that a Thurstonian model with a shift family of distributions is 
equivalent to the choice axiom [Luce, 1959] if and only if the Thurstonian 
random variables are distributed as the double exponential. 

Our reasoning so far leaves us with two ideas for the estimator, namely, 
counting and timing, and two ideas for the aggregation, namely, averaging and 
maximizing. The question then is how to put them together into an experiment 
capable of selecting among the alternatives. Initially, one is not optimistic 
because it has been shown by computations that the double exponential and 
normal distributions do not differ greatly for appropriate choices of parame- 
ters. Despite this, I will show that there is a simple way to decide. 

Consider a Yes-No design in which, On each trial, one of two levels of 
intensity is presented, denoted s and n, with s more intense than n. The subject 
is to say either Yes if he thinks it is s or No if he thinks it is n, and let the signals 
be terminated when the subject responds. Green and Luce [1973] argued that if 
an experimenter-controlled time deadline is imposed on all trials of such an 
experiment, it is optimal for the subject to establish an observation time, just 
short enough so that most responses beat the deadline, and to base decisions 
on the number of pulses occurring in that interval. However, if the deadline is 
imposed only on s trials, then it is optimal to invoke the timing estimator. 
Later, Wandell [1977] pointed out an interesting asymmetry of prediction: 
when the deadline is imposed only on n trials counting, not timing, is optimal. 
The reasoning in all three cases rests entirely on seeing which estimator 
manages both to satisfy the deadline and achieves the larger sample size. 

The two kinds of estimators and the two methods of aggregation lead to 
different predictions about both reaction times and the error tradeoff embo- 
died in the ROC curve. Assuming Poisson pulse trains, the predictions [Green 
&Luce,  1973; Wandell & Luce, Note 1] are summarized in Table 2. Let me 
point out four important facts about these predictions. First, by choosing 
different coordinates for each estimator and each method of aggregation, each 
ROC can be made into a straight line and consequently one can speak of its 
slope. Second, for the counting estimator, the slope of the ROC is always less 
than unity, and for the timing estimator, it is always greater than unity. Third, 
for the timing estimator, if the deadline is varied, the plot of the mean reaction 
time calculated over n trials is a linear function of the mean reaction time 
calculated over s trials. And fourth, for the timing estimator, the slope of the 
mean reaction time line is identical to that of the ROC in the coordinates 
appropriate to the aggregation method being used. 
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Table 2. Slopes of ROC Curve and Mean Reaction Time Relations. All ROC curves are linear in 
the coordinates shown; for timing, mean reaction time to noise is linear with mean reaction time 

to signal. The Poisson pulse rates are #(s) and #(n), with #(s) > #(n). 

Coordinates Slope 
Average Maximum 

Estimator (Normal) (Double Exponential) ROC Mean RT 

Counting z(p) In In 1/(1 - p) La(n)/#(s)] 1/2 
Timing z(p) -In In 1/p #(s)/u(n) #(s)/#(n) 

Turning to the auditory intensity data of Green and Luce [1973], consider 
first those obtained when the deadline was applied to all trials. This is plotted 
in normal coordinates in Fig. 2 and in double exponential coordinates in Fig. 
3. Note that both slopes are less than unity, as they should be for the counting 
estimator, and that it is impossible by eye to decide which fit is the better. Next, 
thd data obtained when the deadline is applied only on s trials is shown in 
normal coordinates in Fig. 4 and in double exponential coordinates in Fig. 5. 
Both slopes are appreciably greater than unity, as they should be for the timing 
estimator. The evidence, therefore, supports the belief that, no matter how the 
estimates are aggregated, applying the deadline to all trials induces the count- 
ing estimator and applying it only to s trials induces the timing estimator. 
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FIGURE 2 

ROC curves, plotted in z-score coordinates, for a 600 msec deadline on all trials and a signal to 
noise ratio 10 log P//Vo = 20. Five different payoff matrices were used. This is Fig. 4 of Green and 

Luce (1973). 
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These are the same data as in Fig. 2 but plotted in the coordinates In in 1/(I - p). This is Fig. 6 of 

Wandell and Luce (1977). 

The corresponding auditory data for the deadline applied just to n trials 
were not collected. But Wandell [1977], using visual intensity, replicated the 
whole experiment including this third condition, He not only found results 
paralleling the auditory ones for the s n  and s-deadline conditions, but for the n- 
deadline condition the slopes were well below unity, suggesting the counting 
est imator  as predicted. 

To select between the two aggregat ion schemes we turn  to the reaction 
t ime data  for the s-deadl ine condi t ion ,  shown in Fig. 6. Observe that the slopes 
are nearly identical to those of Fig. 4 and  abou t  half  the value of those of Fig. 
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ROC curve, plotted in z-score coordinates, for a 600 msec deadline on s trials only. This is Fig. 9 of 
Green and Luce (19"/'3). 
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Wandell  and Luce (Note I). 
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Mean reaction time to n trials versus mean reaction time to s trials where the deadline is on s trials 
only. The deadlines used were 250, 300, 400, 500, 600, 800, 1000, and 1500 msec. This is Fig. 7 of  

Green and Luce (1973). 
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5. Thus, of the two methods of aggregation, the averaging one is strongly 
favored. 

This last argument is not without methodological interest. From the pairs 
of figures, 2 versus 3 and 4 versus 5, it is apparent that one cannot decide on the 
form of the distribution using the ROC data alone; indeed, these plots make 
clear that it really is idle to defend an hypothesis about the distribution on the 
basis of the fit to ROC data alone. In contrast, the comparison of ROC slopes 
to mean reaction time slopes appears to be extremely sensitive to the under- 
lying distribution, so much so that no statistical test was required to select 
between averaging and maximizing. 

At this point I conclude that Thurstone's choice of the normal distribution 
was correct, although I rather doubt that it was well-justified at the time. 
Moreover, we have demonstrated that we can experimentally induce either 
counting or timing estimators. Since most psychophysical procedures involve 
observation intervals of fixed, brief duration, which amounts to deadlines on 
all types of trials, we anticipate that experienced subjects will resort to the 
counting estimator. But probably they do not normally use counting because 
such constraints are rare in natural environments; moreover, the fact that 
response times increase significantly with decreased signal intensity strongly 
suggests timing, not counting, estimators. Thus, our experiments probably 
force subjects to switch from timing to counting, which is at least one factor in 
what we mean by a well-practiced observer. Moreover, if most of our psycho- 
physical data reflect, in part, the counting estimator, then they do not general- 
ize immediately to natural situations where timing estimators are most likely 
used. The latter point may sometimes be important. 

For those who find the differences between timing and counting of inter- 
est, there is another striking way of exhibiting these differences. Suppose we 
vary the value of the deadline in the two procedures and observe how the 
accuracy of  the performance is affected. We measure the latter in terms of the 
normalized difference d' between the Thurstone distributions. The result, 
shown in Fig. 7, is that d' grows much more rapidly when the deadline applies 
only to signal trials than when it applies to both kinds of  trials. 

The Response Decision Rule 

Having discussed the distribution of the Thurstonian representation, let us 
turn now to the question of how it is used in arriving at responses. For all 
procedures that can be thought of as category experiments--those for which 
each signal presentation is uniquely associated with a response, though the 
converse need not be so--one decision rule is usually assumed: Partition the 
range of the possible representation into as many intervals as there are ordered 
responses, and respond according to the interval within which the representa- 
tion fails. I implicitly assumed this rule in the above analysis of the response 
terminated, Yes-No design. Although experiments of this type are common, 
there are other types. For one, there are those with more than one signal 
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interval, such as the two-interval forced-choice design. It is usual to assume the 
subject transforms the problem into one of the category type by looking at a 
new random variable, either the difference or ratio of the random variables 
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arising in the two intervals. I shall not go into this in any detail here because 
modeling of this type is widely accepted and, so far as I know, we do not have 
any experimental designs directly aimed at testing this assumption. 

Other types of experiments which do not readily transform into the 
category mode, and in my opinion are really quite different, are magnitude 
estimation, magnitude production, and cross modality matching. In estimation 
no response is prescribed as correct; the subject simply reports whatever 
number he or she feels is appropriate to the signal. In magnitude production, 
the stimulus is a number and the subject selects the signal which seems 
appropriate to that number. And in matching, the stimulus is a signal in one 
modality and the response is that one in a different modality which is felt to 
match the first one. Although there are no correct responses, exceedingly 
regular data are obtained. 

Presumably, whatever a subject does, it involves some use of the internal 
representation of the signal. One simple idea for magnitude estimation [Luce & 
Green, 1972] is that the number emitted is proportional to the representation. 
Symbolically, if S, is the random variable describing the signal presentation on 
trial n, X(s) is the internal representation (random variable) of signal s when it 
is presented, and R, is the response random variable on trial n, then for some 
constant C, 

(1) R. = CX(S.). 

Without going into the details here, Green and Luce [1974] cast doubt upon 
this by showing that the observed distribution of responses to signals of 
relatively long duration is not what one would have expected if (1) were true 
and X is the representation due to a timing estimator operating on a Poisson 
pulse train. 

A second suggestion [Luce& Green, 1974a], which arises in part from the 
fact that instructions in magnitude estimation urge the subject to reflect in his 
responses the subjective ratios of intensities, is that 

R. X(S.) 
(2) ~-.-1 = C X*(S ._ I )  

This is called the response-ratio hypothesis. The starred random variable in the 
denominator reflects the assumption that independent samples are used on the 
successive trials, which is needed to account for sequential effects in the 
responses. Although this is important, I shall not go into it here. 

To test the response-ratio hypothesis, Jesteadt, Luce and Green [1977] 
noted that taking the logarithm of (2) suggests fitting the following regression 
equation to the data: 

In Rn = /3 In Rn_~ + 3' In I(S,)  + o~ In I(S,_a) + 6. 
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(1977). 

Note that if the response-ratio hypothesis is true, then the parameter 13 should 
be 1. Our estimate of/3 was about .3, which left us just about nowhere until we 
calculated it for each stimulus pair separately and averaged over all pairs with 
constant differences in dB. The result is shown in Fig. 8. A similar result, 
shown in Fig. 9, holds for magnitude production [Green, Luce, & Duncan, 
Note 2]. These data give considerable support to the response ratio hypothesis, 
(2), when the successive stimuli are not too far apart. But when they are quite 
far apart, the response appears to be directly proportional to the representa- 
tion of the signal, as in (1). 

A possible neural interpretation is as follows: If the signals on successive 
trials activate the same, or nearly the same, set of fibers, then the response is 
determined by calculating the ratio of the successive representations and 
multiplying it by the preceding response. When, however, the signals fall in two 
different groups of fibers, the preceding trial is utterly ignored and the response 
is based only on the current representation. It is as though one kind of 
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calculation is possible within a fiber which is not available across distinct 
fibers. This is an interesting possibility and surely bears careful investigation. 

The Psychophysical Law 

Fechner initiated his psychophysical studies in order to discover how 
sensation grows with physical variables or, in the language of Stevens, to 
determine the psychophysical law. On the assumptions that Weber's law is 
correct and that subjective confusions are all equal, he arrived at a logarithmic 
relation, now called Fechner's law. One trouble with this approach is that 
Weber's law is not correct for important modalities; e.g., Fig. 10 gives the latest 
data [Jesteadt, Wier, & Green, 1977] on the Weber fraction for auditory 
intensity, and it is hardly constant. Another trouble is that there really is no 
justification for assuming the equality of subjective confusions. 

Stevens [1957, 1975] attacked this approach, pointing out quite cogently, 
as Thurstone had done earlier, that there is no necessary interlock between the 
rate of growth of the mean of a random variable and its variance. One has to 
study each aspect independently. Stevens proposed studying the mean via 
magnitude estimation, magnitude production, and matching. Implicitly he 
assumed. (1), and so 

E(R)  = CE[X(s)] ,  

to I 
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where the expectation is taken over the trials for which S,  = s. i-lis data, based 
upon a few observations per stimulus per subject and averaged over a number 
of subjects, suggested that E(R) grows approximately as a power function of 
l(s), where I is the physical lntensity of signal s. These data led him to urge that 
the psychophysical law is a power function, which has since been dubbed 
Stevens' law. 

Data from individual subjects appear to deviate systematically, but idio- 
syncratically, from power functions by amounts up to about 5 dB. Examples 
are shown in Fig. 11. In addition, there are considerable differences in the 
"exponent" from subject to subject. For example, it is usually said that the 
typical exponent for loudness (with intensity measured in power) is .30, but my 
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experience is that the observed values run from about .10 to .60 with .25 or .27 
as the typical value. 

The implicit assumption of (I), the proportionality of responses to the 
representation, does not appear to be crucial. It we suppose the response-ratio 
hypothesis, (2), then we should look at the mean response ratio as a function of  
the signal ratio, and according to Fig. 12 there do not appear to be any more or 
less difficulties in the form of the function. 

If the psychophysical function describes some sort of physiological 
growth, I do not see any reason to expect a particular simple class of mathe- 
matical functions to fit the data exactly. Stevens' law appears to be a good first 
approximation to the growth, and certainly it is a plausible assumption to 
insert into various psychophysical models. There are, however, considerable 
difficulties in knowing exactly how to interpret it vis-a-vis what we know about 
neural activity. For example, in the speed-accuracy work, which led us to 
timing and counting estimators and to accept averaging as the aggregation 
schema, we interpreted the mean Of the random variable as proportional to 
neural pulse rate. That, together with the magnitude data, suggests the pulse 
rate grows as a power function with an exponent of  about .3 for loudness. If  
the signals span 10 log units, then the pulse rate spans 3 orders of magnitude. 
However, auditory pulse data on single nerve fibers show a change in respon- 
siveness over only a range of about two logarithmic units, the exact location of 
the change being a function both of the fiber and of signal frequency. The 
amount of  responsiveness is from one to two logarithmic units--a factor of  
between 10 and 100. What seems to be involved are two intensity codes--a 
gross one that is the total number of fibers firing at full rate and a more refined 
vernier that is the exact rate of those fibers that are neither at rest nor at full 
rate. Presumably, the magnitude data tell us about the overall pattern and 
discrimination data about the vernier. Our models have not maintained a 
careful separation between the two, and much work needs to be done. 

For example, we should be able to draw upon what we know about the 
representations of signals to derive the Weber functions of Fig. 10--that is, in a 
sense, to reverse the program of Fechner. Luce and Green [1974b] and, 
independently and somewhat differently Sanderson [1975, 1977] attempted to 
do this for both auditory intensity and frequency. Although Luce and Green 
achieved tolerable fits to the data, their model is surely wrong in detail because 
it does not maintain adequately the distinction between the gross and vernier 
codes just discussed. 

Factors Affecting the Variance 

As we have proceeded, we have, almost incidentally, touched on two 
factors affecting the variance of the representation. One, which was known to 
Thurstone, is signal intensity. Although this factor is important, it is hardly 
novel and I shall not dwell on it here. 

A second factor is how the CNS estimates pulse rate, by counting or by 
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timing. I did not point it out explicitly earlier, but the reason that the ROC 
curves corresponding to these estimators have very different slopes is that the 
estimators have very different variance structures. 

A third factor, of still a different character, appears to be as important as 
the first two. As I pointed out earlier, there is good reason to study the ratios of 
successive responses in magnitude estimation, and so we were led to examine 
the relative variability of these ratios, i.e., the coefficient of variation 

oIR./R.-~) 
m(R./Rn-t)" 

Green and Luce [1974] predicted from a Poisson model of neural pulses that 
this quantity should be constant independent of the stimulus pair used. But as 
a matter of fact, when plotted as a function of signal difference on successive 
trials, the coefficient of variability for most subjects exhibits the V-shaped 
pattern seen in the four and five subjects in Fig. 13. Note that this phenomenon 
holds for both estimation data (left panel) and for production data (right 
panel) and, except for one subject, a factor of about three is involved. 

At first one is inclined to suspect that this is nothing but a manifestation of 
the first factor, signal intensity; however, that probably is not the explanation. 
For one thing, I have never been able to devise any argument to account for 
how variability that depends on intensity produces the V-shaped pattern. For 
another, and more persuasively, changing the frequency distribution of signal 
differences inverted the V-shaped pattern, so that small signal differences had 
the largest coefficient of variation and large differences the smallest value, for 
two out of six subjects in Green and Luce [1974]. 

Our conjecture about the source of this phenomenon is the limited capac- 
ity of the CNS to attend to peripheral neural activity. This was discussed above 
as a concept of attention which is identified with a larger sample size over 
which aggregation takes place. If so, then a signal does not have a unique 
Thurstonian representation. Rather, the representation is an estimate based 
either on a large sample when the signal happens to activate the bundle of fully 
monitored fibers or on a small sample when it activates any other bundle of 
fibers. 

If we look at this phenomenon from the point of view of one stimulus 
variable, say intensity, with the other (frequency) fixed, then there will be a 
narrow band of intensities, about 15 or 20 dB wide according to the neurophy- 
siological data, which will receive the large sample size. The exact location of 
this attention band will depend both on the frequency of the signal and the 
bundle to which attention is currently being paid. In the frequency dimension 
the band, or something very much like it, has been called the critical band 
[Fletcher, 1940; Scharf, 1970]. 

Now, if we assume that such an attention band exists, that the samples 
within and outside the band differ by about an order of magnitude, and that in 
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the ordinary magnitude estimation experiment the band tends to be located in 
the region of the last signal, then we predict the V-shaped pattern with a factor 
of three in level. 

Do we predict anything else? It is evident that whenever the signal range 
exceeds the width of the band, some signals will fall outside the band [Luce, 
Green, & Weber, 1976]. That seems to be just the idea needed to explain why 
the variance of the representation appears to grow with range in the absolute 
identification experiment. Indeed, if we accept the model and suppose that the 
psychophysical function is a power function, the Garner data are well fit with 
reasonable parameters, as seen in Fig. 14. Similarly, data in which the range is 
varied, Fig. 15, are nicely accounted for by the solid curve; the dotted curve, 
which is equally good, arises from assuming the variance of the representation 
grows linearly with the square of the range in dB. 

If we are correct about the differential monitoring of fibers, another 
prediction follows. Suppose the intensity of signals varies, so that sometimes a 
signal lies within the region of attention and sometimes not; in this case a 
subject's performance both on frequency and intensity should be affected. In 
particular, suppose we ask the subject to identify absolutely one of two 
frequencies, ]'t or f2, but with randomized intensities to which he does not 
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respond. Further, suppose we group the intensities so that most, but not all, 
fall in a narrow cluster, as shown in Fig. 16 for three possible locations of the 
cluster. Then, it is to the subject's advantage in identifying frequency to locate 
his attention wherever the cluster is. Thus, we should find performance on 
signals within the cluster somewhat better than for the outliers. In fact, if the 
sample sizes on which the decisions are based do differ by an order of magni- 
tude, it is possible to select frequency differences so that the one probability of 
correct identification is .8 while the other is .6. The data from this experiment 
[Luce & Green, Note 3] are shown in Fig. 17. The prediction is well confirmed 
when the cluster is in the midrange of intensities, which is about the normal 
range for voices; it is somewhat less clear for very soft and for very loud 
clusters. Despite the discrepancies from the prediction, I feel the evidence is, on 
the whole, quite supportive of the attention hypothesis. 

Our major problem in working with this idea is that we do not really 
understand what controls the focus of attention. Everything that seems to have 
some effect--the location of the last signal, the clustering of  signals, the most 
intense signals--is less than totally controlling. Thus, it is very difficult to 
isolate the phenomena for detailed study. 

Conclusions 

According to the view I am urging, the Thurstonian representation of a 
signal arises as follows. There is some sort of aggregation, calculated over a 
sample of nerve fibers, of estimates of a parameter of neural pulse trains. These 
estimates result from estimators being applied to limited time samples of 
individual neural pulse trains. This view has four key concepts--samples of 
individual pulse trains in time, estimators, samples of fibers, and an aggrega- 
tion of the estimates. For each, several alternative possibilities seem plausible. I 
have tried to show how auditory and visual intensity data can be used to select 
among these alternatives on the well-justified assumption that intensity is 
encoded as pulse rate. 

First, the nature of the time sample of pulses and the estimator are closely 
interlocked, at least for timing and counting estimators. These led to different 
predictions for both mean reaction times and ROC curves. Experimental 
procedures have been devised which appear to show that both kinds of estima- 
tors are available. Interestingly, timing seems to be the natural one, whereas 
typical psychophysical procedures with brief signals of fixed duration appear 
to cause people to shift over to counting. 

Second, in aggregating these estimates over fibers, which is clone in order 
to upgrade the statistical quality of  the responses, we considered two alterna- 
tives: averaging and maximizing. Comparing ROC and mean reaction time 
data, we were led to favor the averaging model and hence, by the Central Limit 
Theorem, we are led to normally distributed representations. 

Third, we considered carefully the sample of fibers over which the aggre- 
gation occurs because this may welt not be an invariant of the nervous system. 
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Rather, because of a limited capacity of the central nervous system to process 
peripheral information, the size of the sample depends on whether or not the 
signal activates fibers to which the system is attending. If we vary intensity 
alone, the result is a band, about 15-20 dB wide in auditory intensity, of 
variable location such that when a signal falls within the band it receives a 
sample whose size is about an order of magnitude larger than when it falls 
outside the band. This assumption was shown to account for three things: in 
absolute identification, the limiting effect on performance of either increasing 
signal range with a fixed number of signals or of increasing the number of 
signals for a fixed large range; in magnitude estimation, the reduced relative 
variability of the ratio of responses to successive signals when they are close to 
one another; and in frequency discrimination, the effect of intensity distribu- 
tion on the probability of correct identification. 

Of the four questions we originally asked about Thurstone's model--the 
form of the distribution, the nature of the decision rule, the psychophysical 
law, and factors affecting the variance--we have obtained satisfying answers 
about both the form of the distribution and the factors affecting the variance. 
Concerning the decision rule, there is no evidence against simple partitions of 
the range of the representation when it is appropriate; however, for methods 
such as magnitude estimation we have encountered complexities suggesting 
quite different rules depending on whether successive signals activate the same 
or different groups of fibers. Similarly, the superficial simplicity of Stevens' 
psychophysical law seems to break down into different answers depending on 
whether the experiment lies within or across groups of similar fibers. 

From my perspective, our progress has led us both to some understanding 
and to some unexplained, but interesting, phenomena which clearly complicate 
the Thurstonian model without, however, destroying its basic spirit. 
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