CVB DATA GUIDE HOW TO SUBMIT DATA

This document describes how to submit data for studies reported to CVB.

1 Overview – How to submit data

- Organize the data set according to a *data format*.
- Save the data set in *Comma Separated Value (CSV) files*.
- Use this data set in your own data analysis.
- Submit the *CSV files* to CVB.

2 Data Formats

2.1 What is a data format?

A *data format* is a defined way of arraying data. A *data format* definition specifies one or more related *tables* that have a particular structure.

2.2 What does a *data format* do?

Data formats provide a common "language" for sharing data sets. The CVB data formats are designed for several characteristics. One of the most important is to facilitate machine reading and processing.

2.3 Data Format definitions are found in the **Appendix**

3 CSV Files

A CSV file is a type of text file.

- Use CSV files, not another electronic file type. (If you think an exception is warranted, please check first.)
- Each *table* in a *data format* should be in a separate CSV file.
- Files should be named according the naming convention of its *data format*.
- See Appendix Section 3.2: Creating CSV Files for CVB Statistics for more information.

4 Before submission

4.1 Prepare the data set

- Select the appropriate Data Format
- Take into account <u>Data Principles</u>
- Perform quality checks for internal consistency

4.2 Use the data set

- First prepare the data set, then use the data set in your analysis (if you choose to do a statistical analysis).
- By working with the data set before submitting it to CVB, your analysis serves as a final check of the validity and quality of the data set before submission. Don't leave the preparation of the data set for submission to the end.
- Your programming code should usually show how you read in the data from the CSV files.

• See the <u>NCAH Portal Guidance</u> web page for instructions on submitting the data files.

5 Help

- See the Appendix for a number of helpful documents and tools.
- If you need technical support from a person, contact: CVB.Data.Help@aphis.usda.gov

APPENDIX

1	Data	a Formats	4
	1.1	Introduction	4
	1.2	ELISA Format	5
	1.3	Clinical Format	8
	1.4	Multi-well Assay Format	10
	1.5	Dichotomous Format	14
	1.6	General Field Safety Format	17
	1.7	Poultry/Fish Field Safety Format	19
	1.8	Diagnostic Kit Format - Dichotomous	21
	1.9	Diagnostic Kit Format - Quantitative	23
	1.10	Checkerboard Format	25
	1.11	Build Your Own Format	27
	1.12	Glossary of Mandatory Columns	29
2	Exp	ectations for all data submissions	31
	2.1	Use CSV Files	31
	2.2	Data Principles	31
	2.3	Data Types and Variable Roles	32
3	Too	ls, troubleshooting and help	34
	3.1	Common Data Formatting Issues	34
	3.2	Creating CSV files for CVB Statistics	36
	3.3	Optional data entry tools	37
	3.4	Contact CVB Statistics.	37
4	Rev	ision History	38

1 Data Formats

1.1 Introduction

A *data format* is a defined way of arraying data. A *data format* definition specifies one or more related *tables* that have a particular structure. The *table* specifications include "mandatory columns" – those that are always necessary, and "other columns" – those that may be necessary for specific studies. Both have required naming conventions.

The *data formats* are designed for the types of studies commonly submitted to CVB. To help choose a suitable *data format*, below is a list of study types with a suggested *data format* that often works. However if you think that your data doesn't quite fit, feel free to <u>Build Your Own Format</u> or <u>contact CVB statistics</u> for advice.

POSSIBLE DATA FORMATS FOR SOME COMMON STUDY TYPES

Category	Study Type	Data Format
Efficacy	Vaccination/Challenge	Clinical
	Serology or other efficacy surrogate	<u>Clinical</u>
	Natural exposure field efficacy	<u>Clinical</u>
Field Safety	FST in target species	General Field Safety
FST by VSM 800.204	FST in target species – poultry or fish	Poultry/Fish Field Safety
Clinical Safety	Designed safety study	Clinical
Assay	Relative potency ELISA	ELISA
e.g. Assay validation Reagent change	Checkerboard ELISA optimization	Checkerboard
Manufacturing process	Titration	Multi-well Assay
Inactivation kinetics Stability	Count	Multi-well Assay
Stability	Conventional PCR	Multi-well Assay
	Other dilution assays (e.g. RID, dot blot, etc.)	Multi-well Assay
	Dichotomous response (pos/neg)	<u>Dichotomous</u>
Diagnostic Test Kit	Dichotomous response (e.g. single use device)	Diagnostic Kit-Dichotomous
	Quantitative response (e.g. OD, Ct)	Diagnostic Kit-Quantitative
Other	Serological equivalence	Clinical

1.2 ELISA Format

1.2.1 Introduction

This format is for enzyme-linked immunosorbent assays (ELISA) used to estimate relative potency or analyte concentration. This assay is performed in a 96-well microtiter plate. For assays that are performed on a 96-well microtiter plate, but is not an RP ELISA, please see the <u>Multi-well Assay Format</u>.

1.2.2 What to Submit

When submitting electronic data that correspond to relative potency ELISA data format, include a total of four (4) CSV files, one corresponding to each of the 4 tables labeled below.

1.2.3 Tables

This format includes four tables, named *plateinfo*, *od*, *layout*, and *dilution*. Except for *plateinfo*, the tables are laid out as stacked 8×12 arrays of plate information, with one additional column. The data should be presented exactly as arrayed on the plate. In other words, the rows are A-H and the columns are 1-12.

Table	Description	Mandatory Columns	Other Columns
plateinfo	Information about each individual plate.	<u>plateID</u> <u>date</u>	technician capture antibody antigen role etc.
od	The optical density readings of the wells. Every well should have a numeric result.	<u>1-12</u> plateID	none
layout	The contents of each well, usually the preparation identifier. Include information on every well.	1-12 plateID	none
	For columns 1-12, if no material was added to the well, use "NA". Note that the word "blank" should not be used for an empty well, since it usually refers to the preparation known as the reagent blank. For wells that are not part of the study, please use "NPS".		
dilution	The dilution of the material in each well. For columns 1-12, specify "undiluted" wells as 1. Use number (8, 0.125, NA) <u>not</u> text (1:8, 1/8, NPS). Do not use commas (1,024) that might cause a number to be interpreted as text. For ten-fold dilutions, scientific notation (1e9) may be used to avoid data entry errors of large dilutions (1000000000).	<u>1-12</u> <u>plateID</u>	none
serialtesting	(optional) Relationships between serial number, product code number and test data results.	<u>plateID</u>	serial ID product code test outcome relative potency etc.

1.2.4 Submission subtypes with additional required information

Assay validation: Please provide the Relative Potency (<u>RP</u>), product code (<u>prod_code</u>), and plate role (<u>plate_role</u>). The RP and product codes can be added as columns to the **serialtesting** table. The plate role, which would identify the aspect of the assay validation the plate was used in, should be added as a column to the **plateinfo** table (add multiple columns if a plate has more than one role).

Stability – product: Please add a column for the Relative Potency (<u>RP</u>) results, serial fill date (<u>fill_date</u>), and bulk date (<u>bulk_date</u>) for each serial to the **serialtesting** table. If testing is conducted on bulk and final container, please add the column <u>MaterialTested</u>.

Stability - reference: Please provide the product code (<u>prod_code</u>) for each serial by adding a column to the *serialtesting* table.

Note: When submitting the Relative Potency (RP) results which rely on a linear model fit, please also provide the start and end dilutions¹ used for each serial and reference that the linear model was fit to. Please see the *serialtesting* table example below for prefered column names.

1.2.5 Example

Below are examples of the 4 tables in the format that should be included when submitting a study to the CVB. The fifth table, *serialtesting*, is used when specific serial information needs to be included.

ELISAExample_plateinfo.csv

plateID	date	tech	plate_role	AltPlateName
1083110t	8/31/2010	1	accuracy	1:083110tech1serial1vsqs

ELISAExample_layout.csv

1	2	3	4	5	6	7	8	9	10	11	12	plateID
NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	blank	1083110t
NPS	ref	blank	1083110t									
NPS	ref	blank	1083110t									
NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	blank	1083110t
NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	blank	1083110t
NPS	ser657	blank	1083110t									
NPS	ser657	blank	1083110t									
NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	NPS	blank	1083110t

ELISAExample _od.csv

1	2	3	4	5	6	7	8	9	10	11	12	plateID
0.180	0.020	0.170	0.100	0.010	0.140	0.050	0.130	0.160	0.160	0.030	0.030	1083110t
0.180	2.800	2.650	2.270	1.810	1.000	0.530	0.270	0.280	0.200	0.170	0.170	1083110t
0.200	2.730	2.730	2.450	1.680	1.050	0.500	0.400	0.30	0.270	0.150	0.150	1083110t
0.150	0.220	0.260	0.310	0.130	0.150	0.250	0.120	0.150	0.130	0.190	0.190	1083110t
0.060	2.820	2.870	2.610	2.110	1.440	0.800	0.390	0.240	0.260	0.300	0.300	1083110t
0.080	2.720	2.910	2.560	2.170	1.590	0.940	0.50	0.310	0.200	0.230	0.230	1083110t
0.030	2.940	2.870	2.650	2.080	1.590	0.830	0.540	0.380	0.240	0.190	0.190	1083110t
0.040	0.140	0.120	0.160	0.090	0.160	0.160	0.080	0.130	0.130	0.110	0.110	1083110t

¹ Integer where 1 is the first dilution in the series, 2 is the second, etc. Not the same as $\underline{\text{dil}}$, and not the column number. In example 1.2.5, the linear model is fit to the 1st – 4th dilutions for the reference (dil 1:1 – 1:8) and the linear model is fit to the 2nd to 5th dilutions for the serial (dil 1:2 – 1:16).

ELISAExample_dilution.csv

1	2	3	4	5	6	7	8	9	10	11	12	plateID
1	1	1	1	1	1	1	1	1	1	1	1	1083110t
1	1	2	4	8	16	64	128	256	512	1024	1	1083110t
1	1	2	4	8	16	64	128	256	512	1024	1	1083110t
1	2048	2048	2048	2048	2048	1	1	1	1	1	1	1083110t
1	2048	2048	2048	2048	2048	1	1	1	1	1	1	1083110t
1	1	2	4	8	16	64	128	256	512	1024	1	1083110t
1	1	2	4	8	16	64	128	256	512	1024	1	1083110t
1	1	1	1	1	1	1	1	1	1	1	1	1083110t

ELISAExample _serialtesting.csv

serialID	plateID	prod_code	result	RP	ref	refstart	refend	serialstart	serialend
ser657	1083110t	100A.00	Satisfactory	0.95	ref	1	4	2	5

1.3 Clinical Format

1.3.1 Introduction

This format is intended for designed experiments with live animals. This includes vaccination-challenge efficacy studies, natural exposure or field efficacy studies, other experimental efficacy studies without a challenge, feasibility studies involving target species or laboratory surrogates, and serological studies. It is not intended for simple *in vivo* titrations involving lab animals, for those studies see <u>Dichotomous</u> Format.

1.3.2 What to Submit

When submitting electronic data in the Clinical Format, include a total of three (3) CSV files, one corresponding to each of the 3 tables listed below. If no daily observations are taken, a repeated table may not be necessary.

1.3.3 Tables

Table	Description	Mandatory Columns	Other Columns
individual	This table will contain all the information for the individual animal. Include any information that pertains to housing or litter (if applicable). It may also include any observations that are made once, usually at necropsy.	<u>animalID</u> group	sex date of birth litter pen lung lesions lymphoid depletion etc.
repeated	This table will contain information on outcomes that were observed more than once. In most cases this means the daily observations. It should have an animal ID (identical to the one used in the individual table), a day column, and other observation columns.	<u>animalID</u> <u>day</u>	temperature coughing diarrhea etc.
variables	This table is for the explanation of all the columns names in the previous two tables. You will provide the column name exactly as it appears in the previous two tables, a brief description of the column, and what table the column belongs to.	variable table description	comments

1.3.4 Example

Below are examples of the three tables in the format that should be included when submitting a study to the CVB with the Clinical format.

ClinicalExample_individual.csv

	animalID	group	litter	pen	la	lc	ld	ra	rc	rd	int	lungpct
[278	Α	4775	1	0.3	0	0	0	1.1	0.4	0	0.28

ClinicalExample_repeated.csv

animalID	day	wbc	lymph	bt	nasal	ocular	resp	cough	fecal
278	-2	9.43	3.866	101.6	1	0	0	0	0
278	-1	11.90	5.831	101.8	1	0	0	0	0
278	0	8.65	4.498	101.5	1	0	0	0	0
278	1	9.60	5.184	101.6	0	0	0	0	0
278	2	7.03	3.655	101.3	0	0	0	0	0
278	3	6.02	4.093	102.8	0	0	0	0	0
278	4	5.78	3.005	101.8	1	0	0	1	0
278	5	4.49	2.918	102.4	0	0	0	0	0
278	6	4.33	2.121	103.0	0	0	0	0	0
278	7	3.14	2.229	103.7	0	0	0	0	0
278	8	2.51	1.255	105.0	1	0	0	0	0
278	9	2.67	1.788	105.4	1	0	0	1	0
278	10	2.36	2.194	105.4	1	0	0	0	1
278	11	2.09	2.048	105.2	2	0	0	0	2
278	12	2.25	2.205	99.2	2	0	0	0	2
278	13	2.36	2.194	105.4	1	0	0	0	0
278	14	2.09	2.048	105.2	1	0	0	1	0

ClinicalExample_variables.csv

variable	description	table	comments
animalID	Pig ID	NA	
group	Treatment Group	individual	
litter	Litter	individual	
pen	Pen	individual	
la	Left Apical	individual	percent
lc	Left Cardiac	individual	percent
ld	Left Diaphragmatic	individual	percent
ra	Right Apical	individual	percent
rc	Right Cardiac	individual	percent
rd	Right Diaphragmatic	individual	percent
int	Intermediate	individual	percent
lungpct	Total Lung Lesions	individual	percent
day	Day of Study	repeated	day
wbc	WBC	repeated	
lymph	Lymphocytes	repeated	
bt	Body Temperature	repeated	F
nasal	Nasal discharge	repeated	0= none;1= serous; 2=
			mucopurulent
ocular	Ocular discharge	repeated	0= none; 1= discharge
resp	Respiratory rate	repeated	breaths/min
cough	Coughing	repeated	0= none; 1= cough
fecal	Fecal consistency	repeated	0= none; 1= soft;
			2= liquid; 3= bloody

1.4 Multi-well Assay Format

1.4.1 Introduction

This format is designed for any assay that uses multiple wells or vessels for a single test. It is particularly suited for microtiter (multi-well) plates that can be of any shape or size.

1.4.2 What to Submit

When submitting electronic data that corresponds to the Multi-well Assay Format, include a total of three (3) CSV files, one corresponding to each of the 3 tables listed below.

1.4.3 Tables

Table	Description	Mandatory Columns	Other Columns
plateinfo	This table is designed to give us all the information that is specific to the plate or test.	<u>plateID</u> <u>date</u>	technician role etc.
wellinfo	This table is designed to give us all the information on the individual wells. This file will include the plate ID (this needs to match exactly with the <i>plateinfo</i> table), the reading, the well position, the layout (content of well), and any other information	<u>plateID</u>	od count area layout position dilution etc.
variables	This table is for the explanation of all the columns names in the previous two tables. You will provide the column name exactly as it appears in the previous two tables, a brief description of the column, and what table the column belongs to.	variable table description	comments

1.4.4 Submission subtypes with additional required information

Stability – product: Please provide the results of the test as a column on the *plateinfo* table. If you have more than one serial/test per plate, please provide a *testinfo* table. The *testinfo* table would include columns for *testID*, *plateID*, *date*, *serialID*, *fill_date*, *bulk_date* and *results*. If testing is conducted on bulk and final container, please add the column *MaterialTested*.

Assay validation: Please provide the potency, product code, and plate role. These can be added to the *plateinfo* table using column names: <u>potency</u>, <u>prod_code</u>, <u>plate_role</u>. If you have more than one serial/test per plate, please provide a *testinfo* table for the results instead of reporting on the *plateinfo* table.

1.4.5 Example 1

Example of the three tables in the Multi-well Assay Format that should be included when submitting a study like a count assay to the CVB.

MWAExample1_plateinfo.csv

plateID	date	tech	prepID	prepRole
MWBR14	2011-06-14	DAR	234516	Serial
MWBR18	2011-08-16	BJR	234516	Serial

MWAExample1_wellinfo.csv

plateID	vial no	dil	well no	solony sount
·				colony_count
MWBR14	1	1e-5	1	100
MWBR14	1	1e-5	2	120
MWBR14	1	1e-5	3	115
MWBR14	1	1e-6	1	20
MWBR14	1	1e-6	2	29
MWBR14	1	1e-6	3	19
MWBR14	2	1e-5	1	116
MWBR14	2	1e-5	2	122
MWBR14	2	1e-5	3	130
MWBR14	2	1e-6	1	30
MWBR14	2	1e-6	2	19
MWBR14	2	1e-6	3	25
MWBR18	1	1e-5	1	101
MWBR18	1	1e-5	2	116
MWBR18	1	1e-5	3	113
MWBR18	1	1e-6	1	26
MWBR18	1	1e-6	2	14
MWBR18	1	1e-6	3	23
MWBR18	2	1e-5	1	99
MWBR18	2	1e-5	2	106
MWBR18	2	1e-5	3	113
MWBR18	2	1e-6	1	20
MWBR18	2	1e-6	2	21
MWBR18	2	1e-6	3	18

MWAExample1_variables.csv

variable	description	table	comments
plateID	Unique Plate identifier		
date	Date the test was performed	plateinfo	
tech	Technician performing the test	plateinfo	DAR = D.A. Rigs; BJR = B.J. Robose
prepID	Contents of the well	plateinfo	
prepRole	Role of the preparation	plateinfo	
vial_no	Number of the vial	wellinfo	
dil	dilution	wellinfo	
well_no	well number	wellinfo	
colony_count	number of colonies observed	wellinfo	

1.4.6 Example 2

Example of the three tables in the Multi-well Assay Format that should be included when submitting a study like a Western Blot to the CVB.

MWAExample2_plateinfo.csv

plateID	date	tech	vial_no	pixels
GEL1	2016-07-29	MWA	1	11500
GEL2	2016-07-29	ARV	1	11500

MWAExample2_wellinfo.csv

	T			
plateID	prepID	well	dil	volume
GEL1	ref	1	2	40.123
GEL1	ref	2	4	38.456
GEL1	ref	3	8	37.897
GEL1	ref	4	16	36.985
GEL1	ref	5	32	35.998
GEL1	ref	6	64	35.500
GEL1	blank	7	1	35.000
GEL1	serial1	8	2	39.456
GEL1	serial1	9	4	37.994
GEL1	serial1	10	8	36.123
GEL1	serial1	11	16	35.554
GEL1	serial1	12	32	34.854
GEL1	serial1	13	64	34.455
GEL1	posctrl	14	1	40.000
GEL2	ref	1	2	40.125
GEL2	ref	2	4	38.445
GEL2	ref	3	8	37.325
GEL2	ref	4	16	36.878
GEL2	ref	5	32	35.454
GEL2	ref	6	64	35.254
GEL2	blank	7	1	34.887
GEL2	serial1	8	2	39.987
GEL2	serial1	9	4	37.484
GEL2	serial1	10	8	36.324
GEL2	serial1	11	16	35.897
GEL2	serial1	12	32	34.354
GEL2	serial1	13	64	34.156
GEL2	posctri	14	1	39.887

MWAExample2_variables.csv

variable	description	table	comments
plateID	Unique Plate identifier		
date	Date the test was performed	plateinfo	
tech	Technician performing the test	plateinfo	MWA = Mush Aroom; ARV = Ann Vel
vial_no	vial number	plateinfo	
pixels	pixel	plateinfo	
prepID	preparation identifier	wellinfo	
well	well number on the plate	wellinfo	
dil	dilution	wellinfo	
volume	volume	wellinfo	

1.4.7 Example 3

Example of the three tables in the Multi-well Assay Format that should be included when submitting a study like a PCR to the CVB.

MWAExample3_plateinfo.csv

plateID	date	tech	geltype
pcrgel1	2016-12-01	СТ	MyFavGel1.0

MWAExample3_wellinfo.csv

plateID	prepID	lane	result
pcrgel1	posctrl	1	positive
pcrgel1	posctrl	2	positive
pcrgel1	serial123	3	positive
pcrgel1	serial123	4	positive
pcrgel1	serial456	5	positive
pcrgel1	serial456	6	positive
pcrgel1	serial789	7	negative
pcrgel1	serial789	8	positive
pcrgel1	negctrl	9	negative
pcrgel1	negctrl	10	negative
pcrgel1	NPS	11	NA
pcrgel1	NPS	12	NA

MWAExample3_variables.csv

variable	description	table	comments
plateID	Unique Plate identifier		
date	Date the test was performed	plateinfo	
tech	Technician performing the test	plateinfo	CT = Carry Tuff
geltype	name of the gel used	plateinfo	
prepID	preparation identifier	wellinfo	
lane	lane in the gel that the prep	wellinfo	
	was placed		
result	result of the prep in the lane	wellinfo	positive or negative

1.5 Dichotomous Format

1.5.1 Introduction

The Dichotomous Format is for studies where results are reported as positive (or negative) out of a total. For submissions where results are not dichotomous (such as continuous or integer readings like counts, etc.), please review the <u>Multi-Well Assay Format</u>. The Dichotomous Format can also be used for live lab animal vaccination/challenge with challenge back-titration studies.²

1.5.2 What to Submit

When submitting electronic data that corresponds to the Dichotomous Format, include at least three (3) CSV files, one corresponding to each of the three tables listed below. If the study also has a challenge with a back-titration, also include a fourth *challenge* table.

1.5.3 Tables

Table	Description	Mandatory Columns	Other Columns
testinfo	This table contains information about each individual test.	testID date	challenge date vaccination date back-titer date technician results vial comments product code etc.
titration	This table contains information about each titration within a test.	testID prepID prepRole dil positive total	comments etc.
variables	This table is for the explanation of all the columns names in the previous two tables. You will provide the column name exactly as it appears in the previous two tables, a brief description of the column, and what table the column belongs to.	variable table description	comments
challenge	(optional) This table contains information on the animals that were used in the back-titration of the challenge material.	prepID dil positive total testID	

1.5.4 Submission subtypes with additional required information

Stability –product: Please make sure to add the titer <u>results</u>, fill date (<u>fill_date</u>), and bulk date (<u>bulk_date</u>) for each test to the **testinfo** table. If testing is conducted on bulk and final container, please add the column <u>MaterialTested</u>.

² This was formerly known as the Bioassay Format

1.5.5 Example 1

Below are examples of the three tables in the format that should be included when submitting a study to the CVB when performing assays with dichotomous results.

DichotomousExample1_testinfo.csv

test/D	date	vial	comments
01192010-1	1/19/2010	Vial 1	initial dilution 1 in 500

DichotomousExample1_titration.csv

testID	prepID	prepRole	dil	positive	total
01192010-1	QWD-908	test	2.5	11	11
01192010-1	QWD-908	test	6.25	3	11
01192010-1	QWD-908	test	15.625	3	11
01192010-1	QWD-908	test	39.0625	0	11
01192010-1	QWD-908	test	97.65625	0	11
01192010-1	QWD-908	test	244.1406	0	11
01192010-1	QWD-908	test	610.3516	0	11
01192010-1	QWD-908	test	1525.879	0	11

DichotomousExample1_variables.csv

variable	description	table	comments
testID	Unique test identifier		
date	Date the test was performed	testinfo	
vial	vial number	testinfo	
comments	comments about the test	testinfo	
prepID	identifier for the preparation	titration	
prepRole	role of the preparation	titration	test; reference
dil	dilution	titration	
positive	number positive at that dilution	titration	
total	total at that dilution	titration	

1.5.6 Example 2

Below are examples of the four tables in the format that should be included when submitting a study to the CVB that has a live lab animal component where animals were vaccinated, challenged, and monitored. A third table has the challenge back-titration information.

DichotomousExample2_testinfo.csv

testID vacc_		chal_date	results
072607-1 07/26	6/07	08/10/07	Satisfactory

DichotomousExample2_titration.csv

testID	prepID	prepRole	dil	dead	total
072607-1	S-1001	test	10	6	16
072607-1	S-1001	test	50	4	16
072607-1	S-1001	test	250	13	16
072607-1	S-1001	test	1250	16	16
072607-1	Ref-887	reference	2	5	16
072607-1	Ref-887	reference	10	9	16
072607-1	Ref-887	reference	50	13	16
072607-1	Ref-887	reference	250	15	16

DichotomousExample2_challenge.csv

testID	prepID	dil	dead	total
072607-1	Chal-209	1	9	10
072607-1	Chal-209	10	6	10
072607-1	Chal-209	100	1	10
072607-1	Chal-209	1000	0	10

 ${\it Dichotomous Example 2_variables.csv}$

variable	description	table	comments
testID	Unique test identifier		
vacc_date	Date the test was performed	testinfo	
chal_date	Date of the challenge	testinfo	
results	results	testinfo	satisfactory; no test; unsatisfactory
prepID	identifier for the preparation	titration;	
		challenge	
prepRole	role of the preparation	titration	
dil	dilution	titration;	
		challenge	
dead	number of animals dead at that	titration;	
	dilution	challenge	
total	total animals at that dilution	titration;	
		challenge	

1.6 General Field Safety Format

1.6.1 Introduction

This format is designed mainly for Field Safety Trials (FST) done in accordance with VSM 800.204. FSTs are observational studies done at several sites without much in the way of experimental design other than observing what happens after the product is administered under everyday conditions. This format is intended for use with all animals, except poultry and fish (see Poultry/Fish Field Safety Format).

1.6.2 What to Submit

When submitting electronic data that corresponds to the General Field Safety Format, include a total of three (3) CSV files, one corresponding to each of the 3 tables listed below.

1.6.3 Tables

Table	Description	Mandatory Columns	Other Columns
individual	This table will provide us with the information on the individual animal.	animalID siteID group sex age	
repeated	This table will provide us with the observations on each animal. It will have a unique animal ID (exactly the same that was provided in the <i>individual</i> table). Then we need a date column, a column that states whether an adverse event was observed, and the VEDDRA term if an AE was observed (If there is more than one AE for an animal on the same day, please add an additional row with that animal and that day). Please click here for further information about the formatting for the VEDDRA term. You may also add a non-VEDDRA term and any other pertinent information about the animal on that date.	animalID date ae veddra altetiology	nonveddra localsite localsize comments etc.
variables	This table is for the explanation of all the column names in the previous two tables. You will provide the column name exactly as it appears in the previous two tables, a brief description of the column, and what table the column belongs to.	variable table description	comments

1.6.4 Example

Below are examples of the three tables in the format that should be included when submitting a study to the CVB with the General Field Safety Format. Please note this is a very brief example. It is understood that each site can have 100 or more animals and may go on for many days. These files can be very large.

GeneralFSTExample_individual.csv

animaIID	siteID	group	sex	age	ageunit
1	1	1	M	3	months
2	1	2	F	13	months
3	1	1	M	3	years
4	1	2	М	3.5	years
5	1	1	F	2.75	years

 ${\it GeneralFSTExample_repeated.csv}$

animalID	date	ae	veddra	altetiology	localsize	localsite	nonveddra	comments
1	2016-	Υ	Application	NA	2 inches	1	NA	NA
	02-01		Site					
			Swelling					
1	2016-	γ	Application	NA	1 inch	1	NA	NA
	02-02		Site					
			Swelling					
1	2016-	γ	Loose stool	affirm	NA	NA	NA	Slightly
	02-02							watery
1	2016-	N	NA	NA	NA	NA	NA	NA
	02-03							
1	2016-	N	NA	NA	NA	NA	NA	NA
	02-04							
1	2016-	Υ	Dermatosis	affirm	NA	NA	Flea	
	02-05		NOS				Infestation	

 ${\it GeneralFSTE} x ample _variables.csv$

variable	table	description	comments
animalID	both	Unique identifier for animal	
siteID	individual	Unique identifier for location	1 = California; 2 = South Dakota; 3 = Georgia
group	individual	Treatment Group	1 = Serial 1 ; 2 = Serial 2
sex	individual	Sex of the animal	M = Male; F = Female
age	individual	Age of the animal	
ageunit	Individual	Unit used for the age of the animal	
date	repeated	Date the animal was observed	
ae	repeated	Whether an Adverse Event was present on that day.	
veddra	repeated	VEDDRA code for AE that day.	
altetiology	repeated	Support for possible cause of AE other than vaccination	affirm; NA
localsize	repeated	size of local reaction	
localsite	repeated	Unique designation of injection site	1=1st vaccination, 2=2nd vaccination
nonveddra	repeated	non-VEDDRA term	
comments	repeated	Additional information about the AE	

1.7 Poultry/Fish Field Safety Format

1.7.1 Introduction

This format is designed mainly for Field Safety Trials (FST) done in accordance with VSM 800.204. FSTs are observational studies done at several sites without much in the way of experimental design other than observing what happens after the product is administered under everyday conditions. This FST Format is intended for use with poultry and fish.

1.7.2 What to Submit

When submitting electronic data that corresponds to Poultry/Fish Field Safety Format, include a total of four (4) CSV files, one corresponding to each of the 4 tables listed below.

1.7.3 Tables

Table	Description	Mandatory	Other Columns
		Columns	
siteinfo	This table will provide us with the information on the treatment	<u>siteID</u>	tanks
-	groups for each site.	<u>group</u>	isolators
		<u>total</u>	etc.
		<u>dead</u>	
repeated	This table will provide us with the mortality for each group at	<u>siteID</u>	comments
_	each site. It will have the site ID and the group (exactly the	<u>group</u>	etc.
	same that was provided in the <i>individual</i> table). Then we need	<u>date</u>	
	a date column and a column for mortality for that date.	<u>dead</u>	
hatchability	This table will provide us with the number of eggs that hatched	<u>siteID</u>	
	per group.	<u>group</u>	
		<u>total</u>	
		<u>hatched</u>	
variables	This table is for the explanation of all the columns in the	<u>variable</u>	comments
	previous two tables. You will provide the column name	<u>table</u>	
	exactly as it appears in the previous two tables, a brief	<u>description</u>	
	description of the column, and what table the column belongs	_	
	to.		

1.7.4 Example

Below are examples of the four tables in the format that should be included when submitting a study to the CVB with the Poultry/Fish Field Safety Format.

PFFSTExample_siteinfo.csv

siteID	group	housing	total	dead	
Region1	Control	Barn1	4550	215	
Region1	Control	Barn2	4875	310	
Region1	Vaccinate	Barn3	4290	195	
Region1	Vaccinate	Barn4	4115	335	
Region2	Control	Barn1	9825	782	
Region2	Vaccinate	Barn2	9773	635	
Region3	Control	Barn1	14850	945	
Region3	Vaccinate	Barn2	14625	997	

PFFSTExample_repeated.csv

siteID	group	housing	date	dead
Region1	Control	Barn1	2016-02-01	10
Region1	Control	Barn1	2016-02-02	35
Region1	Control	Barn1	2016-02-03	20
Region1	Control	Barn1	2016-02-04	5
Region1	Control	Barn1	2016-02-05	15
Region1	Control	Barn1	2016-02-06	25
Region1	Control	Barn1	2016-02-07	20
Region1	Control	Barn1	2016-02-08	30
Region1	Control	Barn1	2016-02-09	40
Region1	Control	Barn1	2016-02-10	15

PFFSTExample_hatchability.csv

siteID	group	housing	total	hatched
Region1	Control	Barn1	5000	4550
Region1	Control	Barn2	5000	4875
Region1	Vaccinate	Barn3	5000	4290
Region1	Vaccinate	Barn4	5000	4115
Region2	Control	Barn1	10000	9825
Region2	Vaccinate	Barn2	10000	9773
Region3	Control	Barn1	15000	14850
Region3	Vaccinate	Barn2	15000	14625

PFFSTExample_variables.csv

variable	description	table	comments
siteID	Name of the location.	siteinfo;	
		repeated;	
		hatchability	
group	Treatment Group	siteinfo;	Vaccinate; Control
		repeated;	
		hatchability	
housing	Location of birds	siteinfo;	
		repeated;	
		hatchability	
total	total number of birds	siteinfo;	
		hatchability	
dead	total number of birds dead for the site	siteinfo;	
		repeated	
date	Date of observation	repeated	
hatched	Number of birds hatched	hatchability	

1.8 Diagnostic Kit Format - Dichotomous

1.8.1 Introduction

This format is designed for diagnostic test kits with a dichotomous response such as lateral flow devices, or similar single use devices where a positive/negative determination is made by the presence or absence of a visible dot or line.

1.8.2 What to Submit

When submitting electronic data that corresponds to Diagnostic Kit - Dichotomous data format the number of tables submitted is dependent on the study type. Not all study types for diagnostic testing are listed below, such as confirmation of dating. However, formatting of those data may be similar to one of the study types described.

1.8.3 Tables

	1.0.3 1 autos		
Table	Description	Mandatory Columns	Other Columns
deviceinfo	This table is designed to give us the results from each device and information about that device. Each device ID should only appear once. If the device has more than one spot or line that is read, like a control line, then add columns for additional readings.	deviceID serialID visual_read	date sample ID specimen species manufacture date test session panel member instrument reading reference result population product code etc.
labinfo	This table contains information for each lab for interlaboratory testing. Information about the lab will include the lab name, technician, and other columns may be appropriate also.	testsession labID date	technician etc.
panelinfo	This table is designed to give us the information on the panel members. Information will include the panel member description, specimen type and species.	panelmember memberdesc	blind ID code species specimen etc.
testinfo	If multiple devices are used to report one derived value, such as a mean instrument result, then report the derived information on this table.	<u>sampleID</u>	
variables	This table is for the explanation of all the column names in the previous tables. You will provide the column name exactly as it appears in the previous tables, a brief description of the column, and what table the column belongs to.	variable table description	comments

1.8.4 Tables to submit for submission subtypes

Assay Validation – Sensitivity and Specificity: Please submit a *deviceinfo* and *variables* table. Additional mandatory columns to those listed above for this study type on the *deviceinfo* table include: <u>sampleID</u>, <u>date</u>, and <u>ref_result</u>. If the reference test was not conducted concurrently, then please provide a <u>reference date</u> column indicating what date the reference test was initiated. If more than one reference test is conducted, columns can be numbered (refl_result, ref2_result).

<u>Assay Validation – Interlaboratory Comparison (Diagnostic Field Study)</u>: Please submit a *deviceinfo, labinfo, panelinfo*, and *variables* table. An additional mandatory column to those listed above for this study type on the *deviceinfo* table include: <u>panelmember</u> and <u>testsession</u>. For the *panelinfo* table, information such as blinding code, the description of the panel member (negative, weak positive, strong positive), species, and specimen should be included.

<u>Serial Release Panel Validation (Diagnostic Panel Validation)</u>: Please submit a *deviceinfo*, *panelinfo* and *variables* table. Additional mandatory columns to those listed above for this study type on the *deviceinfo* table include: <u>panelmember</u>, and <u>date</u>. If multiple devices are used to report one derived value, such as a mean instrument result, then report the derived information on the *testinfo* table.

1.8.5 Example

An example of tables to submit for each of the three types of studies (1.8.4) is included in the following zip file.

https://www.aphis.usda.gov/animal health/vet biologics/publications/DiagnosticKitDichotomous.zip

1.9 Diagnostic Kit Format - Quantitative

1.9.1 Introduction

This format is designed for diagnostic test kits with a quantitative response such as OD or Ct, which are usually conducted on multi-well plates and read by a machine.

1.9.2 What to Submit

When submitting electronic data that corresponds to Diagnostic Kit - Quantitative data format the number of tables submitted is dependent on the study type. Not all study types for diagnostic testing are listed below, such as confirmation of dating. However, formatting for those data may be similar to one of the study types described.

1.9.3 Tables

Table	Description	Mandatory Columns	Other Columns
plateinfo	This table is designed to give us the information about the plate. Each plateID should only appear once on the <i>plateinfo</i> table.	plateID date serialID	lab ID technician manufacture date product code etc.
wellinfo	This table is designed to give us all the information on the well readings (such as <u>od</u>). If the results are calculated for an individual well, then also include derived result, interpretation (pos/neg) and any other information necessary.	plateID row col	sample ID sample specimen sample species panel member raw well reading derived result population etc.
panelinfo	This table is designed to give us the information about the panel member. Include information such as the description of the panel member, species, and specimen. Other columns may be appropriate also.	panelmember memberdesc	blind code member species member specimen etc.
testinfo	This table is for derived information on a plate that is across multiple wells (similar to <i>serialtesting</i> table in the <u>ELISA Format</u>). Example, the SP Ratio is calculated using average of three wells on the plate.	<u>plateID</u>	derived result panel member etc.
variables	This table is for the explanation of all the column names in the previous tables. You will provide the column name exactly as it appears in the previous tables, a brief description of the column, and what table the column belongs to.	variable table description	comments

1.9.4 Table to submit for submission subtypes

<u>Assay Validation – Sensitivity and Specificity:</u> Please submit a *plateinfo*, *wellinfo*, and *variables* table. Additional mandatory columns to those listed in the Tables above for this study type on the *wellinfo* table include: <u>sampleID</u>, and raw well reading (<u>od</u>, etc.). Information about the *reference result* (<u>ref_result</u>), and <u>reference date</u> (if the test was not conducted concurrently) may be appropriate on any of the tables listed, and are mandatory columns. If more than one reference test is conducted, columns can be numbered (ref1_result, ref2_result). If information is derived from multiple wells, please include this on the *testinfo* table.

<u>Assay Validation – Interlaboratory Comparison (Diagnostic Field Study):</u> Please submit a *plateinfo*, *wellinfo*, *panelinfo* and *variables* table. Additional mandatory columns to those listed

above for this study type on the *wellinfo* table include: *panelmember*, and well reading (<u>od</u>, etc.). Information about each lab that performed testing should be included on the *plateinfo* table. If information is derived from multiple wells, please include this on the *testinfo* table.

<u>Serial Release Panel Validation (Diagnostic Panel Validation):</u> Please submit a *plateinfo*, *wellinfo*, *panelinfo* and *variables* table. Additional mandatory columns to those listed above for this study type on the *wellinfo* table include: *panelmember*, and well reading (*od*, etc.). If information is derived from multiple wells, please include this on the *testinfo* table.

1.9.5 Example

An example of tables to submit for each of the three types of studies (1.9.4) is included in the following zip file.

https://www.aphis.usda.gov/animal health/vet biologics/publications/DiagnosticKitQuantitative.zip

1.10 Checkerboard Format

1.10.1 Introduction

The checkerboard format is usually used when optimizing an assay for an assay validation submission subtype.

1.10.2 What to Submit

When submitting electronic data that corresponds to checkerboard data format, include a total of two CSV files, one corresponding to each of the 2 tables labeled below.

1.10.3 Tables

Table	Description	Mandatory Columns	Other Columns
plateinfo	Information about each individual plate. Each unique dilution series on a plate is designated "A", "B", etc.	<u>plateID</u> <u>date</u>	series name series pre-dilution technician role etc.
stacked	This table contains information about the well including the plate ID, the location of the well (row and column), the optical density reading, and the dilution. There will be a row of data for each well on the plate.	plateID row col od dil_A (and other dilution series, dil_B, etc.)	

1.10.4 Example

Below are examples of the 2 tables in the format that should be included when submitting a study to the CVB.

CheckerboardExample_plateinfo.csv

plateID	A_name	predil_A	B_name	predil_B	C_name	predil_C	tech	date
plate1	detAb1	1	conj1	20	serial3	1	JD	11/8/2011

plateID	row	cai	od	di/ A	dil B	di/ C
plate1 plate1	A	2	0.001 0.001	2 4	2 2	2 2
plate1	Ã	3	0.001	8	2	2
plate1	Â	4	0.045	16	2	2
plate1	A	5	0.543	32	2	2
plate1	A	6	0.600	64	2	2
plate1	A	7	0.352	128	2	4
plate1	A	9	0.543	256 512	2 2	4
plate1 plate1	A	10	0.600 0.352	1024	2	4
plate1	Â	11	0.425	2048	2	4
plate1	A	12	0.300	4096	2	4
plate1	В	1	0.001	2	4	2
plate1	В	2	0.001	4	4	2
plate1	В	3	0.001	8	4	2
plate1 plate1	B B	- 4	0.045 0.543	16 32	4	2 2
plate1	В	6	0.600	64	4	2
plate1	В	7	0.352	128	4	4
plate1	В	8	0.543	256	4	4
plate1	В	9	0.600	512	4	4
plate1	В	10	0.352	1024	4	4
plate1	B B	11	0.425	2048 4096	4	4
plate1 plate1	C	1	0.001	4030	- 8	2
plate1	č	2	0.001	4		2
plate1	С	3	0.001	8	88	2
plate1	c	4	0.045	16	8	2
plate1	c	5	0.543	32	8	2
plate1	C	- 6 7	0.600 0.352	64 128	8	2
plate1 plate1	c	8	0.352	128 256	8	4
plate1	č	9	0.600	512	9 80	4
plate1	C	10	0.352	1024	8	4
plate1	С	11	0.425	2048	80	4
plate1	c	12	0.300	4096	8	4
plate1 plate1	D	1 2	0.001 0.001	2 4	16 16	2 2
plate1	D	3	0.001	8	16	2
plate1	D	4	0.045	16	16	2
plate1	D	5	0.543	32	16	2
plate1	D	6	0.600	64	16	2
plate1	D	7	0.352	128	16	4
plate1	D	8	0.543	256	16	4
plate1 plate1	D	9 10	0.600 0.352	512 1024	16 16	4
plate1	D	11	0.425	2048	16	4
plate1	D	12	0.300	4096	16	4
plate1	E	1	0.001	2	32	2
plate1	E	2	0.001	4	32	2
plate1	E	3 4	0.001	8	32 32	2
plate1 plate1	Ē	- 3	0.045 0.543	16 32	32	2 2
plate1	E	6	0.600	64	32	2
plate1	E	7	0.352	128	32	4
plate1	E	8	0.543	256	32	4
plate1	E	9	0.600	512	32	4
plate1 plate1	E	10 11	0.352 0.425	1024 2048	32 32	4 4
plate1	E	12	0.423	4096	32	4
plate1	F	1	0.001	2	64	2
plate1	F	2	0.001	4	64	2
plate1	F	3	0.001	8	64	2
plate1	F	4	0.045	16	64	2
plate1	F	5	0.543	32	64	2
plate1 plate1	F	- 6 7	0.600 0.352	64 128	64 64	2 4
plate1	F	8	0.543	256	64	4
plate1	F	9	0.600	512	64	4
plate1	F	10	0.352	1024	64	4
plate1	F	11	0.425	2048	64	4
plate1	F	12	0.300	4096	64	4
plate1 plate1	G G	1 2	0.001 0.001	2 4	128 128	2 2
plate1	G	3	0.001	8	128	2
plate1	G	4	0.045	16	128	2
plate1	G	5	0.543	32	128	2
plate1	G	6	0.600	64	128	2
plate1	G	7	0.352	128	128	4
plate1	G	9	0.543 0.600	256 512	128 128	4
plate1 plate1	G	10	0.600	1024	128	4
plate1	G	11	0.425	2048	128	4
plate1	G	12	0.300	4096	128	4
plate1	н	1	0.001	2	256	2
plate1	H	2	0.001	4	256	2
plate1	н	3	0.001	8	256	2
plate1 plate1	H	- 4 5	0.0453 0.543	16 32	256 256	2 2
plate1	н	6	0.600	64	256	2
plate1	н	7	0.352	128	256	4
plate1	Н	8	0.543	256	256	4
plate1	н	9	0.600	512	256	4
plate1	н	10	0.352	1024	256	4
plate1	H	11	0.425	2048	256	4
plate1		12	0.300	4096	256	. 4

1.11 Build Your Own Format

1.11.1 Introduction

The Build Your Own Format goes over the basic formatting ideas that you need in order to submit electronic data if none of the prior formats fit your study design. If you like you may <u>email STAT</u> the format you determined was appropriate, and we can provide feedback.

1.11.2 What to Submit

When submitting electronic data, there will probably be 2-3 tables that are saved as CSV files. Depending on your data, there may be different combinations of the three tables that follow. However, the *variables* table should always be one of them.

1.11.3 Tables

Table	Description	Mandatory Columns	Other Columns
individual	A table that has unique information in each row. You will have one column that links this file to your <i>repeated</i> table; like <i>ID</i> . Other columns in this table describe that key identifier column.	<u>ID</u>	conjugate plate role date of birth group tech etc.
repeated	A table that has one column that has a repeated entry in several rows of the table but is the key identifier that ties it to the <i>individual</i> table, and all other columns have unique entries to their row in the table.	<u>ID</u>	day of study daily observations well position well readings counts etc.
variables	A table that describes the columns in the other two tables. The column (variable) names that you choose for the <i>individual</i> and <i>repeated</i> tables, might be obvious, or they might not be. In order to make the submission as clear as possible, the <i>variables</i> table should describe the column names that are used.	variable description table	comments

1.11.4 Example

Below are examples of 3 tables in the format could be included when submitting a study to the CVB.

BYOExample_individual.csv

ID	date	tech
6162016-1	2016-06-16	MR
6172016-1	2016-06-17	MR
6172016-2	2016-06-17	BW

BYOExample_repeated.csv

ID	prepID	well	reading	result
6162016-1	Ref	1	80	Pos
6162016-1	34685	2	160	Pos
6172016-1	34685	1	20	Neg
6172016-1	Ref	2	40	Pos
6172016-2	Ref	1	80	Pos
6172016-2	34685	2	20	Neg

BYOExample_variables.csv

variable	description	table	comments
ID	Unique Test identifier		
date	Date the test was performed	Individual	
tech	Technician performing the test	Individual	MR = Margaret Rye; BW = Ben Wheat
prepID	Contents of the well	Repeated	Ref = master reference
well	Well	Repeated	
reading	Titer	Repeated	
result	Result of the Titer	Repeated	Pos = Positive; Neg = Negative

1.12 Glossary

This glossary includes the names of Columns (Variables) that are mandatory, and some non-mandatory, with a description of the column. It also includes some non-mandatory columns if their names are fixed and should not be altered. Not all column names will apply to every submission. Please review specific formats to determine which column names your table will need.

1-12 The twelve columns that relate to the 96-well plate used in relative potency ELISA

ae Whether an Adverse Event is observed (Yes, No).age Age of the animal when vaccination is administered

alive The number of animals that did not die or were not affected by the challenge

altetiology Use "affirm" or NA. The licensee affirms that there is diagnostic or clinical support for a

possible cause of this AE other than vaccination (alternative etiology).

animalID Unique identifier for an animal

bulk date The date (preferably formatted "YYYY-MM-DD") in which the serial in bulk was produced to final

form and composition.

col Most commonly a number (1-12) that corresponds to the numbered row on a 96-well microtiter plate date Start date of the test, assay, or observation, including month, day and year. Preferably in the format

"YYYY-MM-DD". The start date is considered to be the date the product is introduced into the test system (the first day the product is injected into the animal or the first day the product is added to an *in*

vitro test plate)."

day A number to either indicate the day of the study, or day post challenge. It is not a date, but a count of

the days since time point 0 (vaccination, challenge, etc.)

dead The number of animals in the group that died

description Description of the column

deviceID A single use device identifier that is unique to the table. The use of special characters such as periods,

hyphens, spaces, arithmetic operators, etc. is discouraged. Limiting the length of the string to fewer

than 16 alphanumeric characters is encouraged.

dil The dilution administered to the animal or used in a well. Specify "undiluted" wells as 1. Use number

(8, 0.125) not text (1:8, 1/8). Do not use commas (1,024) that might cause a number to be interpreted as text. For ten-fold dilutions, scientific notation (1e9) may be used to avoid data entry errors of large

dilutions (100000000).

fill date The date (preferably formatted "YYYY-MM-DD") in which the serial was filled into final containers.

group Treatment group assigned to an animal

hatched Number of birds hatched

ID Generic Identifier for a plate, gel, animal, test, etc.

labID Unique identifier for the laboratory that is performing testing. The use of special characters such as

periods, hyphens, spaces, arithmetic operators, etc. is discouraged.

localsite For injection site reactions only, identify the injection site if there is more than one vaccination: e.g. 1

for 1st vaccination and 2 for 2nd vaccination.

localsize For injection site reactions only, provide the size.

memberdesc Description of the panel member. Usually described as "negative", "weak positive", or "strong

positive".

Material Tested Use 'bulk' or 'final container'. The completed product material that was used in testing. If the testing

was conducted on a serial that was filled into final container, use 'final container'. If the testing was

conducted on a serial in final formulation bulk form, use 'bulk'.

nonveddra Can be used to apply a non-VEDDRA category term to the event.

od Optical density reading.

panelmember Unique identifier for the panel member being tested. The use of special characters such as

periods, hyphens, spaces, arithmetic operators, etc. is discouraged.

plateID A plate identifier that is unique to the table. The use of special characters such as periods,

hyphens, spaces, arithmetic operators, etc. is discouraged. Limiting the length of the string to

fewer than 16 alphanumeric characters is encouraged.

plate role Role of the plate in an assay validation (i.e. precision, ruggedness, specificity)

positive Total number of positive readings (tubes or wells) or animals affected by challenge.

potency potency of a product

prepID The identifier of the preparation used. This will usually be a lot or serial number of a vaccine

prepRole The role of the preparation. This must be reference, test, or other

ref_result Reference test result which is usually a dichotomous result, "positive" or "negative". In some

cases, a result of "suspect" may be appropriate. If multiple reference tests are performed, please report results in multiple columns with the reference tests numbered, refX_result. i.e. ref1_result, ref2_result, etc. Information about each of the tests can be included in the

variables table.

results The outcome of a test

row Most commonly a letter (A-H) that corresponds to the lettered row on a 96-well microtiter

plate.

RP Relative potency calculated

sampleID Unique identifier for the sample being tested. The use of special characters such as periods,

hyphens, spaces, arithmetic operators, etc. is discouraged.

serialID The identifier of the preparation used. This will usually be a lot or serial number of a vaccine

sex sex of animal; Male (M) or Female (F)

siteID Site location that animals were held at for observation

table Name of the table that the column is found on

testID A test identifier that is unique in the table. Every test must have a test identifier

testsession An identifier that can be used to group individual identifiers together.

total The total number of animals/tubes/wells in a group (treatment group or at a specified dilution)

variable Names of the columns that are used in the corresponding data files

veddra From the <u>VEDDRA List of Clinical Terms</u> select the appropriate Low Level Term (LLT) or Preferred

Term (PT).

visual read For tests that require a visual read per the SO or OP, include the visual read result.

2 Expectations for all data submissions

2.1 Use CSV Files

Comma Separated Value (CSV) files are a portable standard that allows for quick importation into statistics analytical programs. Occasionally there may be a reason to submit some other file type to CVB Statistics. In such cases, please <a href="mailto:em

When preparing your CSV files:

- Include only one table per file.
- If you use spreadsheet software to prepare the CSV file:
 - o Do not encode information via text formatting (e.g. italics, bold, color). This information is ignored when converting to CSV.
 - o Do not encode information by formatting the table (e.g. background color). This information is ignored when converting to CSV.
 - Values in merged cells will be arbitrarily assigned to a single cell (merging lost) when converting to CSV. This will result in empty cells on the table which may extend analysis time.
- Name individual CSV files using the structure SUBMISSIONFILENAME_tablename.csv, where
 SUBMISSIONFILENAME prefix is common to all tables of a single data set, and tablename matches the table
 names specified for the particular data format exactly (case-sensitive).

See Appendix Section 3 for troubleshooting technical help.

2.2 Data Principles

Basic principles for data sets that should be followed for all submissions. Consideration of competing goals prior to analysis can help identify the best data structure for a particular submission.

2.2.1 Principles

- Each variable is in a column, each observation is in a row.
 - Some data formats may have an exception to this rule. That occurs when certain types of
 multivariate data are handled as a chunk, such as when 96-well plate data are included as they
 are captured by a plate reader.
- Each column contains one data type.
 - o For example, do not include the *text* "undiluted" in a column of *numeric* dilutions.
 - o See list of data types (Section 2.3.1)
- Derived information.
 - O Do not include derived information, such as averages, in the same column as the raw data.
 - If it is needed for submission, derived information should be included in a separate column or table.

Example: the relative potency of two preparations on a plate.

Example: lung lesion score calculated as the weighted sum of individual lobes.

- Include an entry in every cell of a table.
 - o Indicate missing data with NA (not N/A, na, or other code).
 - o If using spreadsheet software, such as Excel, to create a CSV file, be sure to start the table in the first row and column of the spreadsheet (cell A1). Otherwise, there will be empty cells.

- Avoid redundant data.
 - o If the same data are used to support different aspects of the same study (e.g. accuracy and parallelism in an assay validation study) do not submit those data twice. Submit them in one data set. An additional variable can be used to indicate the roles of various subsets of the data.

2.2.2 Points to consider

- The *number of data sets* for a single study is sometimes a judgment call, and must balance design needs for data entry with demands for efficient analysis workflows.
 - Sometimes it's better to use multiple data sets
 Example: An efficacy study has daily clinical signs, nasal swabs every other day, and blood work weekly. It is convenient to use a separate repeated table for each observation sequence.
 - Sometimes it's better to use a single data set.

 Example: An assay validation study includes experiments for accuracy, parallelism, and freeze/thaw effects. Their data may be included in a single set, with a variable indicating which experiment they are from. The reason for using a single data set for similar data of this type is that statistical modeling may need to include all of them to estimate certain parameters.

2.3 Data Types and Variable Roles

2.3.1 Data Types

Data Type	Description	
Continuous	A measurement on a continuous scale, such as body temperature. Large imprecise integer counts,	
	such as blood cell counts, are often considered continuous. Interval censored continuous data,	
	such as duration in days, may at times be treated as either continuous or integer.	
Count	Integer counts, such as frequencies.	
Ranked	A numerical value that reflects a valid ordering but a unit spacing that is not calibrated. For	
	example, a valid clinical scoring scheme may produce integers from 0 to 16, where a higher	
	number always indicates more severe disease than a lower number but the severity difference	
	between any two adjacent scores is not necessarily the same.	
Dichotomous	A binary response that can only take two values, such as dead or alive	
Ordinal	Categories that are ordered, such as those applied to disease severity. The number of categories	
	should be as few as possible and ideally would reflect distinct states, such as dead, sick, normal.	
	(Excessive categories lead to issues of discreteness and sparseness.) Simple grading scales may	
	generate ordinal categories.	
Nominal	Categories without any natural ordering, such as breed of cattle.	
Date	Date	
Censored	Measurements that have an upper or lower observational limit imposed by the instrument.	
	(example: colony counts greater than 300 may be reported as "TNTC" [too numerous to count])	

2.3.2 Variable Roles

Role
Unique identification given to each unit (or possibly subunit). The identifier also serves as the
grouping factor for repeated observations made on the individual. (Data type: nominal)
Grouping factors are nominal categories important in study design, such as treatments or
clusters. All efficacy studies have treatment groups, such as vaccine or placebo. Many have
clusters, such as litter or pen. (Data type: nominal.)
Direct observations or measurements. (Data types: continuous, count, ranked, dichotomous,
ordinal, nominal.)
Value calculated or derived from other variables. (Data types: continuous, count, ranked,
dichotomous, ordinal, nominal.)
Date or time. May be an actual date or time (Data type: date), or may be a count, such as the
number of days in relation to an event such as challenge, or continuous, such as the number of
minutes from inactivation. (Data type: count or continuous.)
The units of measurement. Units must be indicated for continuous and count data types. Leave
blank otherwise.

3 Tools, troubleshooting and help

3.1 Common Data Formatting Issues

3.1.1 Proper Formatting

Properly formatted data is suitable for immediate use in other software without need for additional manipulation that may delay analysis or introduce errors. Tables and screenshots in this document addresses common issues that occur when formatting data tables for submission as one of the CVB data formats.

DO	DON'T
Start data entry in first row, first column of	DON'T Include empty rows and/or columns
table (position 'A1' in Excel, OpenOffice)	
Indicate missing data by NA	DON'T Indicate missing data by 'NA', na, n/a or N/A
Report dilution units (1,2,4,8,etc.)	DON'T Report log dilution values
	DON'T Report dilution values as ratios
	'1:10', '1/10'
Include an entry (data or NA) for every cell in	DON'T Leave cells empty
each row and column of the table	
	DON'T Merge cells
Follow nomenclature outlined in <u>Appendix</u>	DON'T Include multiple tables in a single
Section 1: Data Formats	file
Report raw data once per observation	DON'T include raw data multiple times if
	different analysis is performed
Decimal separators should be the decimal	DON'T use decimal commas.
point. (Standard in the US)	
Use commas to separate text fields, since it is	DON'T use commas in numbers or commas
a comma separated value file.	in text in cells.
Use alpha-numeric characters or	DON'T use special characters such as %,
underscore in column names	#, space, period, etc. in column names

3.1.2 Example

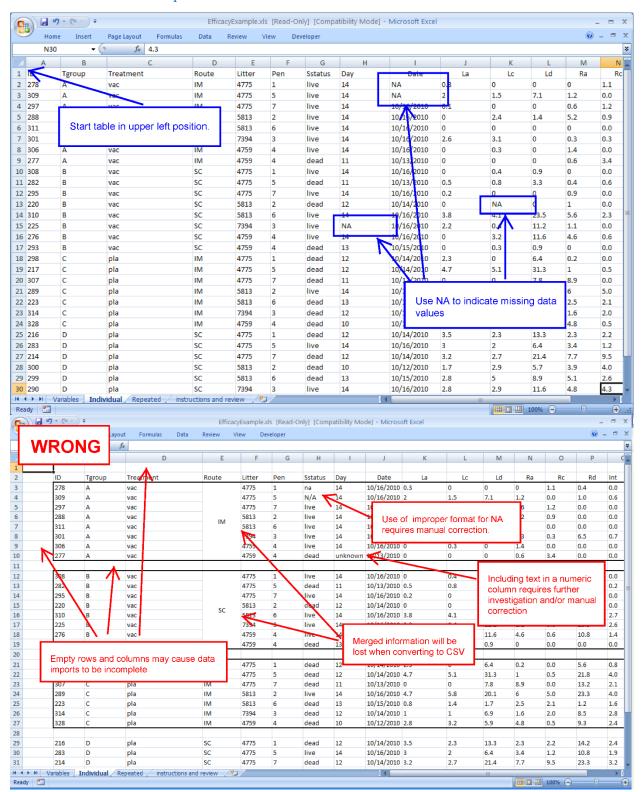
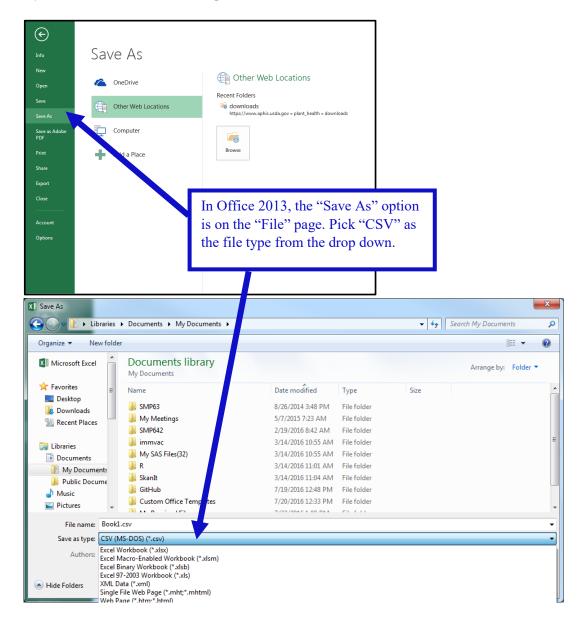


Figure 1: Common formatting errors that delay analysis (lower) and correct formatting for the same data (upper).

3.2 Creating CSV files for CVB Statistics


CSV tables created from user-specified files must follow a specific nomenclature to facilitate automated data management tools. Follow the nomenclature and conventions described in Appendix Section 1: Data Formats.

3.2.1 Starting from statistical software

- In R, use: write.csv(...)
- In SAS, use: proc export

3.2.2 Starting from Excel

- Use the "Save As" option to designate "CSV" as the file type.
 - o Merged cells will be ignored.
 - o Text and border formatting (font, color, background) will be lost.
 - Only one worksheet will be saved per destination file.

3.3 Optional data entry tools

CVB Statistics is in the process of creating tools to support creating CSV files that conform to the data formats described above. *These tools are completely optional to use*. Please check back later for details.

These tools can be found at:

https://www.aphis.usda.gov/animal health/vet biologics/publications/OptionalDataEntryTools.zip

3.4 Contact CVB Statistics

If your question is in regards to one of the following areas, ask to speak to a Statistician:

- Identifying the best Data Format for a specific submission
- Troubleshooting creating Data Format tables for submission
- Bug fixes/upgrades to optional data entry tools.
- Informal feedback regarding experimental design prior to submission

Email: CVB.Data.Help@aphis.usda.gov

4 Revision History

Date	Affected Sections	
2017-02-07	Appendix Sections 1.2.4, 1.2.5, 1.4.3, 1.4.4, 1.4.5, 1.4.6, 1.4.7, 1.5.2, 1.5.3, 1.5.4, 1.5.5, 1.5.6, 1.6.3, 1.6.4, 1.9.4, 1.10, 3.3	
2017-09-26	Overview 1; Appendix Sections 1.1, 1.2.3, 1.2.4, 1.2.5, 1.4.4, 1.4.5, 1.4.6, 1.5.6, 1.6, 1.8, 1.9, 1.12, 3.1.1	
2017-11-20	Appendix Sections 1.6.3, 1.6.4, 1.10.2, 1.10.3, 1.10.4, 1.12, 2.2.2	
2019-05-20	Overview 2.2, 3, 5; Appendix Sections 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10.2, 1.11, 1.12, 2.1, 3.1, 3.2, 3.4	